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ABSTRACT OF THESIS

FILTERED-DYNAMIC-INVERSION CONTROL FOR
FIXED-WING UNMANNED AERIAL SYSTEMS

Instrumented umanned aerial vehicles represent a new way of measuring turbulence
in the atmospheric boundary layer. However, autonomous measurements require con-
trol methods with disturbance-rejection and altitude command-following capabilities.
Filtered dynamic inversion is a control method with desirable disturbance-rejection
and command-following properties, and this controller requires limited model in-
formation. We implement filtered dynamic inversion as the pitch controller in an
altitude-hold autopilot. We design and numerically simulate the continuous-time
and discrete-time filtered-dynamic-inversion controllers with anti-windup on a non-
linear aircraft model. Finally, we present results from a flight experiment comparing
the filtered-dynamic-inversion controller to a classical proportional-integral controller.
The experimental results show that the filtered-dynamic-inversion controller performs
better than a proportional-integral controller at certain values of the parameter.

KEYWORDS: Filtered dynamic inversion, Unmanned Aerial Vehicle, Altitude hold,
Disturbance rejection, Command following
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Walinksky, Alex Alverson, Heidi, Mike Haley, Rita Griffith, Amy Craiglow, Tom

Suggs, Tony D’Amato and the Ford Motor Company, Steely Dan and Barack Obama.

iii



Table of Contents

Acknowledgments iii

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Motivation for Unmanned Aerial Vehicle Altitude Tracking . . . . . . 1

1.2 Overview of Filtered Dynamic Inversion . . . . . . . . . . . . . . . . 2

1.3 Summary of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background: Nonlinear Aircraft Model 5

2.1 Aircraft Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Aircraft Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Aerodynamic Forces and Moments . . . . . . . . . . . . . . . . . . . 10

2.4 Linearization of Longitudinal Equations . . . . . . . . . . . . . . . . 12

3 Background: Filtered Dynamic Inversion 16

3.1 Review of Filtered Dynamic Inversion . . . . . . . . . . . . . . . . . . 16

3.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Filtered Dynamic Inversion . . . . . . . . . . . . . . . . . . . 18

3.2 Filtered Dynamic Inversion with Anti Windup . . . . . . . . . . . . . 21

3.2.1 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 23

iv



4 Test Platform: The AeroWorks EDGE 540T 28

4.1 Airframe Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Generating Model Parameters from Athena Vortex Lattice . . . . . . 30

5 Continuous-Time FDI with Nonlinear Aircraft Model 32

5.1 Longitudinal Autopilot . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Speed Control Inner Loop . . . . . . . . . . . . . . . . . . . . 33

5.1.2 Linearized Elevator-to-Pitch Dynamics . . . . . . . . . . . . . 34

5.1.3 FDI Pitch Control Inner Loop . . . . . . . . . . . . . . . . . . 36

5.1.4 PI Pitch Control Inner Loop . . . . . . . . . . . . . . . . . . . 38

5.1.5 Altitude Error Outer Loop . . . . . . . . . . . . . . . . . . . . 38

5.2 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Discrete-Time FDI with Nonlinear Aircraft Model 49

6.1 Discrete-Time Controllers . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Discrete-Time FDI Pitch Control Inner Loop . . . . . . . . . . 49

6.1.2 Discrete-Time PI Pitch Control Inner Loop . . . . . . . . . . . 51

6.1.3 Discrete-Time Altitude Error Outer Loop . . . . . . . . . . . 52

6.2 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Experimental Description 58

7.1 Airframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Autopilot and Implementation . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Flight Location and Flight Path . . . . . . . . . . . . . . . . . . . . . 60

7.4 Experiment Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Experimental Results 65

8.1 Flight Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.1.1 Flight 1: FDI Controller with k=25 . . . . . . . . . . . . . . . 65

v



8.1.2 Flight 2: FDI Controller with k=30 . . . . . . . . . . . . . . . 66

8.1.3 Flight 3: FDI Controller with k=30 . . . . . . . . . . . . . . . 67

8.1.4 Flight 4: FDI Controller with k=12 . . . . . . . . . . . . . . . 69

8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.3 Discrepancies Between Simulation and Experiment . . . . . . . . . . 72

9 Conclusions and Future Work 75

Appendices 76

A Aerodynamic Model Parameters . . . . . . . . . . . . . . . . . . . . . 76

B Model Parameters Used in Linearization . . . . . . . . . . . . . . . . 85

C MATLAB Script to Generate FDI Controller Matrices . . . . . . . . . 85

D AP PitchController.h . . . . . . . . . . . . . . . . . . . . . . . . . . 88

E AP PitchController.cpp . . . . . . . . . . . . . . . . . . . . . . . . 90

F FDI params.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 96

Vita 100

vi



List of Figures

2.1 Inertial and Body Frames. . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Filtered Dynamic Inversion with Anti-Windup Strategy. . . . . . . . 23

3.2 Serially Connected Two-Mass Structure. . . . . . . . . . . . . . . . . 24

3.3 Response without Saturation. . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Response with Saturation without Anti-windup. . . . . . . . . . . . . 26

3.5 Response with Saturation and Anti-windup. . . . . . . . . . . . . . . 27

4.1 The AeroWorks EDGE 540T. . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Longitudinal Navigation, Guidance, and Control Systems. . . . . . . 33

5.2 Altitude Autopilot with FDI as Inner Pitch Control Loop. . . . . . . 37

5.3 Altitude Autopilot with PI as Inner Pitch Control Loop. . . . . . . . 38

5.4 Pitch Controller Frequency Response. . . . . . . . . . . . . . . . . . . 39

5.5 White-Noise Wind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 Turbulent Wind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 Open-Loop Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.8 Average Powers of the Performances as Functions of k. . . . . . . . . 43

5.9 Pitch Error Frequency Response. . . . . . . . . . . . . . . . . . . . . 44

5.10 Altitude Frequency Response. . . . . . . . . . . . . . . . . . . . . . . 45

5.11 Altitude Derivative Frequency Response. . . . . . . . . . . . . . . . . 46

5.12 Closed-Loop Responses with Zero Altitude Command. . . . . . . . . 47

5.13 Closed-Loop Responses with Step Altitude Command. . . . . . . . . 48

vii



6.1 Average Powers of the Performances as Functions of k. . . . . . . . . 54

6.2 Closed-Loop Responses with Zero Altitude Command. . . . . . . . . 56

6.3 Closed-Loop Responses with Step Altitude Command . . . . . . . . . 57

7.1 Lexington Model Airplane Club . . . . . . . . . . . . . . . . . . . . . 63

7.2 Experimental Flight Path . . . . . . . . . . . . . . . . . . . . . . . . 64

8.1 Time Histories for Flight 1. . . . . . . . . . . . . . . . . . . . . . . . 66

8.2 Frequency Content for Flight 1. . . . . . . . . . . . . . . . . . . . . . 67

8.3 Time Histories for Flight 2. . . . . . . . . . . . . . . . . . . . . . . . 68

8.4 Frequency Content for Flight 2. . . . . . . . . . . . . . . . . . . . . . 69

8.5 Time Histories for Flight 3. . . . . . . . . . . . . . . . . . . . . . . . 70

8.6 Frequency Content for Flight 3. . . . . . . . . . . . . . . . . . . . . . 71

8.7 Time Histories for Flight 4. . . . . . . . . . . . . . . . . . . . . . . . 72

8.8 Frequency Content for Flight 4. . . . . . . . . . . . . . . . . . . . . . 73

viii



List of Tables

5.1 Transfer Function Parameters Used in (5.9). . . . . . . . . . . . . . . 36

7.1 Summary of Experimental Flights . . . . . . . . . . . . . . . . . . . . 61

8.1 Summary of Experimental Results. . . . . . . . . . . . . . . . . . . . 70

ix



Chapter 1 Introduction

1.1 Motivation for Unmanned Aerial Vehicle Altitude Tracking

Understanding the structure of turbulence within the Earth’s atmospheric bound-

ary layer (ABL) is important for both for the sake of atmospheric science and for

furthering fundamental turbulence research. Phenomena like pollutant transport and

localized weather happen in the ABL, and the ABL plays a role in global climate

change dynamics [1,2]. Meanwhile, turbulence researchers can benefit from studying

parts of the ABL as canonical flows. Obtaining a spatial description of the structure

and organization of turbulence is thus of theoretical interest. Towers are not suitable

for this work because they are stationary, and thus reliant on Taylor’s frozen flow

hypothesis, and are typically instrumented with anemometers having poor temporal

response [3, 4]. Manned aircraft have been used to measure atmospheric turbulence;

characterize wind, temperature and humidity profiles; and track pollutant disper-

sion [5–9]. However, manned aircraft are costly, and conducting measurements close

to the ground would be dangerous.

Unmanned aerial vehicles (UAVs) offer an innovative way to provide safe, low-

cost, autonomous measurement of the ABL [10–12]. However, the requirements of

a UAV meant for ABL research are unique. Most properties of the ABL are func-

tions of height, thus the UAV must track altitude well. Additionally, air velocity

sensors measure only the relative velocity of air with respect to the airframe, thus it

is desirable to minimize unnecessary movement of the airframe.

The turbulence we wish to study constitutes a disturbance from the point of view

1



of the UAV’s control system. The anemometer’s signal is in a system apart from

the autopilot, and thus is not available for feedback. Therefore, the wind must be

treated as an unknown-and-unmeasured disturbance. The dynamics of a fixed-wing,

subsonic aircraft are generally well-understood, but are also nonlinear and sensitive

to environmental conditions. Furthermore, affordable hardware solutions for a UAV’s

autopilot are limited in processing power. Thus, a linear controller that excels at

disturbance rejection and requires minimal model information is ideal.

1.2 Overview of Filtered Dynamic Inversion

Filtered dynamic inversion is a high-parameter-stabilizing controller for multiple-

input-multiple-output minimum-phase systems. [13, 14]. For a sufficiently large pa-

rameter, the average power of the performance is arbitrarily small. The controller

is designed using minimal model information, specifically, the plant’s relative degree

and high-frequency-gain matrix. In the case of a single-input-single-output system,

these assumptions can be weakened to require knowledge of the plant’s relative de-

gree, the sign of the high-frequency-gain, and an upper-bound on the magnitude of

the high-frequency-gain.

The model information required to design the filtered-dynamic-inversion controller

for pitch angle error to elevator deflection can be found using knowledge of fixed-

wing aircraft dynamics and computational aerodynamics software. First, the rela-

tive degree from elevator deflection to pitch angle is usually taken as two; three for

commanded elevator deflection to pitch angle if the servo dyanmics are first-order.

Second, for an elevator located on the plane’s tail, the sign of the high-frequency-

gain, i.e. leading nonzero Markov parameter, is negative. Finally, an upper-bound

on the magnitude of the high-frequency-gain can be estimated using computational

aerodynamics software. Thus, we expect the filtered-dynamic-inversion controller to

be appropriate for the UAV altitude-tracking problem.
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In this thesis, we implement the filtered dynamic inversion controller as the pitch

controller in an altitude-hold autopilot. In Chapter 5, we design and numerically

simulate the filtered dynamic inversion controller with anti-windup with a nonlinear

aircraft model. In Chapter 6, we discretize the controller designed in Chapter 5 and

numerically simulate the discrete-time controller with the same continuous-time non-

linear aircraft model. Finally, in Chapter 8, we present results from a flight experiment

comparing the filtered dynamic inversion controller to a baseline proportional-integral

controller.

1.3 Summary of Chapters

Chapter 2

We present a nonlinear model for an aircraft. In particular, we develop the six-

degree-of-freedom kinematics and dynamics for an aircraft, and a nonlinear model

of the aerodynamic forces and moments that act on the aircraft. In addition, we

linearize the longitudinal equations of motion.

Chapter 3

We review the filtered-dynamic-inversion controller. We provide the closed-loop

stability and performance properties. In addition, we augment the filtered-dynamic-

inversion controller with an anti-windup strategy.

Chapter 4

We describe the AeroWorks EDGE 540T fixed-wing aircraft, which is used as the

experimental testbed for the filtered dynamic inversion controller. We compute the

model parameters of the test platform using computational fluid dynamics software.

3



Chapter 5

We construct the filtered dynamic inversion controller in continuous-time for use

as a pitch control on the EDGE UAV. We construct a speed control loop and an

altitude-to-pitch-command outer loop. We simulate the nonlinear aircraft dynamics

developed in Chapter 2 with the test platform model developed in Chapter 4.

Chapter 6

We discretize the filtered-dynamic-inversion control, which was developed in Chap-

ter 3 and designed in continuous time in Chapter 5. We augment the discrete-time

filtered-dynamic-inversion and proportional-integral pitch controllers with an anti-

windup strategy. Finally, we present results from simulations of the continuous-time

aircraft dynamics with the discrete-time altitude autopilot in feedback.

Chapter 7

We describe the experiment used to compare the altitude-tracking capabilities of

the autopilot with the filtered dynamic inversion controller to the autopilot with the

proportional-integral controller.

Chapter 8

We present results from the experiment described in Chapter 7 with the EDGE

test platform described in Chapter 4. We compare the results to simulation results

from Chapters 5 and 6.

4



Chapter 2 Background: Nonlinear Aircraft Model

In this chapter, we present a nonlinear model for an aircraft. We develop the six-

degree-of-freedom kinematics and dynamics for an aircraft, and a nonlinear model

of the aerodynamic forces and moments that act on the aircraft. In addition, we

linearize the longitudinal equations of motion about a constant-velocity, constant-

altitude, wings-level flight condition.

2.1 Aircraft Kinematics

The inertial frame FI is a frame in which Newton’s second law is valid. The inertial

frame FI is centered at OI with orthogonal unit vectors ı̂I, ̂I, and k̂I. The body frame

FB is fixed to the aircraft at the aircraft’s center of mass OB with orthogonal unit

vectors ı̂B, ̂B, and k̂B as shown in Figure 2.1.

The position of OB relative to OI is

⇀
r = Xı̂I + Y ̂I + Zk̂I,

and the velocity of OB relative to OI with respect to FI is

⇀
v

△
=

I·
⇀
r= Ẋı̂I + Ẏ ̂I + Żk̂I.

The angular velocity of FB relative to FI is
⇀
ω.

Let [ · ]I denote a physical vector resolved in the inertial frame, and let [ · ]B denote

a physical vector resolved in the body frame. Next,
⇀
v and

⇀
ω are resolved in the body

5



Figure 2.1: Inertial and Body Frames. The inertial frame FI is centered at OI with
orthogonal unit vectors ı̂I, ̂I, and k̂I. The body frame FB is fixed to the aircraft at
the aircraft’s center of mass OB with orthogonal unit vectors ı̂B, ̂B, and k̂B.

frame and written as

vB
△
= [

⇀
v ]B =













U

V

W













, ωB
△
= [

⇀
ω]B =













P

Q

R













. (2.1)

Moreover, the skew-symmetric matrix associated with ωB is given by

Ω
△
=













0 −R Q

R 0 −P

−Q P 0













. (2.2)

Let φ, θ, and ψ be Euler angles defined by a 3-2-1 rotation sequence, which is
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standard in flight dynamics [15–17]. The orientation matrix of FB relative to FI is

CBI
△
=













C11 C12 C13

C21 C22 C23

C31 C32 C33













,

where

C11
△
= (cos θ)(cosψ),

C12
△
= (cos θ)(sinψ),

C13
△
= − sin θ,

C21
△
= −(cos φ)(sinψ) + (sinφ)(sin θ)(cosψ),

C22
△
= (cosφ)(cosψ) + (sin φ)(sin θ)(sinψ),

C23
△
= (sin φ)(cos θ)

C31
△
= (sin φ)(sinψ) + (cosφ)(sin θ)(cosψ),

C32
△
= −(sin φ)(cosψ) + (cosφ)(sin θ)(sinψ),

C33
△
= (cosφ)(cos θ),

and define CIB
△
= C−1

BI = CT
BI, which is the orientation matrix of FI relative to FB.

Thus, the velocity of the aircraft’s center of mass resolved in FI is

[
⇀
v ]I = CIBvB. (2.3)

From Euler’s kinematic equations [16], we obtain













φ̇

θ̇

ψ̇













=













1 (tan θ)(sinφ) (tan θ)(cosφ)

0 cosφ − sinφ

0 (sin φ)/(cos θ) (cosφ)/(cos θ)

























P

Q

R













. (2.4)
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2.2 Aircraft Dynamics

Let m be the aircraft’s mass and Ic be the aircraft’s mass moment of inertia about

the center of mass. Resolving Ic in FB yields

[Ic]B =













Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz













. (2.5)

We make the following assumptions:

(2.A1) Flight is at low speed and low altitude.

(2.A2) The aircraft is rigid.

(2.A3) The aircraft mass m is constant.

(2.A4) The aircraft is symmetric about the ı̂B-k̂B plane.

(2.A5) The thrust force acts through the center of mass.

(2.A6) The thrust force is in the ı̂B-k̂B plane.

Assumption (2.A1) implies that a point fixed on the Earth’s surface can be the origin

of the inertial frame and the Earth can be treated as flat. Assumption (2.A2) implies

that no part of the aircraft moves in the body frame relative to the center of mass.

Assumption (2.A3) implies that dm/dt = 0. Furthermore, (2.A2) and (2.A3) imply

that the location of the center of mass in FB is time invariant, and that d([Ic]I)/dt = 0.

Assumption (2.A4) implies that Ixy = Iyz = 0. Assumption (2.A5) implies that there

are no moments about the center of mass due to the thrust force. Finally, (2.A6)

implies that the thrust force in the ̂B direction is zero.

Let
⇀

F a be the aerodynamic force, and let
⇀

FT be the thrust force. The aerodynamic

force resolved in FB is written as [
⇀

F a]B = [Xa Ya Za]
T, and the thrust force resolved

8



in FB is written as [
⇀

FT]B = [XT 0 ZT]
T, where the entry in the direction of ̂B is zero

because of (2.A6).

Let
⇀

M c be the moment about the aircraft’s center of mass due to the aerodynamic

forces. The aerodynamic moment
⇀

M c resolved in FB is written as [
⇀

M c]B = [L M N ]T.

Thus, Newton’s second law in the body frame yields

m[
⇀
g ]B + [

⇀

F a]B + [
⇀

FT]B = mv̇B +mΩvB, (2.6)

where
⇀
g = gk̂I is the acceleration due to gravity. Moreover, Euler’s equation yields

[
⇀

M c]B = [Ic]Bω̇B + Ω[Ic]BωB. (2.7)

Finally, combining (2.1), (2.2), and (2.5)–(2.7) gives













U̇

V̇

Ẇ













= −













0 −R Q

R 0 −P

−Q P 0

























U

V

W













+
1

m













−mg sin θ +Xa +XT

mg(sinφ)(cos θ) + Ya

mg(cosφ)(cos θ) + Za + ZT













,

(2.8)












Ṗ

Q̇

Ṙ













=













Ixx 0 −Ixz

0 Iyy 0

−Ixz 0 Izz













−1























L

M

N













−













0 −R Q

R 0 −P

−Q P 0

























Ixx 0 −Ixz

0 Iyy 0

−Ixz 0 Izz

























P

Q

R

























. (2.9)
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2.3 Aerodynamic Forces and Moments

In this section, we develop a nonlinear model of the aerodynamic force [
⇀

F a]B and

aerodynamic moment [
⇀

M c]B. Let
⇀

W denote the velocity of the wind, and define

⇀
v r

△
=

⇀
v −

⇀

W, (2.10)

which we resolve in the body frame as [
⇀
v r]B = [Ur Vr Wr]

T. Next, define the total

velocity, angle of attack, and sideslip angle by

VT
△
=

√

U2
r + V 2

r +W 2
r ,

α
△
= tan−1 Wr

Ur

,

β
△
= sin−1 Vr

VT
,

respectively. We assume the aerodynamic forces Xa, Ya, and Za can be expressed as

the functions

Xa = Xa(VT, α, β,Q, δe, δr, δa), (2.11)

Ya = Ya(VT, α, β, P, R, δe, δr, δa), (2.12)

Za = Za(VT, α, β,Q, δe, δr, δa), (2.13)

where δe, δr, δa are the elevator, rudder, and aileron deflections, respectively. More-

over, we assume the aerodynamic moments L, M , and N can be expressed as the

functions

L = L(VT, α, β, P, R, δe, δr, δa), (2.14)

M =M(VT, α, β,Q, δe, δr, δa), (2.15)

N = N(VT, α, β, P, R, δe, δr, δa). (2.16)

10



There is no accepted closed-form expression for the aerodynamic forces and mo-

ments acting on an airframe with arbitrary attitude, velocity, angular velocity, and

control deflections. However, wind tunnel experiments and computational fluid dy-

namics software are able to estimate the first-order Taylor series expansions of (2.11)–

(2.16). Thus, we use a Taylor series expansion to approximate the aerodynamic forces

and moments (2.11)–(2.16) in a neighborhood of ωB = 0 and δe = δr = δa = 0.

To model the aerodynamic forces and moments, we expand (2.11)–(2.16) as a Taylor

series to the first order,

Xa = Xa(VT, α, β, 0, 0, 0, 0) +
∂Xa

∂Q

∣

∣

∣

(VT,α,β,0,0,0,0)
Q

+
∂Xa

∂δe

∣

∣

∣

(VT,α,β,0,0,0,0)
δe +

∂Xa

∂δr

∣

∣

∣

(VT,α,β,0,0,0,0)
δr +

∂Xa

∂δa

∣

∣

∣

(VT,α,β,0,0,0,0)
δa, (2.17)

Ya = Ya(VT, α, β, 0, 0, 0, 0, 0) +
∂Ya
∂P

∣

∣

∣

(VT,α,β,0,0,0,0,0)
P +

∂Ya
∂R

∣

∣

∣

(VT,α,β,0,0,0,0,0)
R

+
∂Ya
∂δe

∣

∣

∣

(VT,α,β,0,0,0,0,0)
δe +

∂Ya
∂δr

∣

∣

∣

(VT,α,β,0,0,0,0,0)
δr +

∂Ya
∂δa

∣

∣

∣

(VT,α,β,0,0,0,0,0)
δa, (2.18)

Za = Za(VT, α, β, 0, 0, 0, 0) +
∂Za

∂Q

∣

∣

∣

(VT,α,β,0,0,0,0)
Q

+
∂Za

∂δe

∣

∣

∣

(VT,α,β,0,0,0,0)
δe +

∂Za

∂δr

∣

∣

∣

(VT,α,β,0,0,0,0)
δr +

∂Za

∂δa

∣

∣

∣

(VT,α,β,0,0,0,0)
δa, (2.19)

L = L(VT, α, β, 0, 0, 0, 0, 0) +
∂L

∂P

∣

∣

∣

(VT,α,β,0,0,0,0,0)
P +

∂L

∂R

∣

∣

∣

(VT,α,β,0,0,0,0,0)
R

+
∂L

∂δe

∣

∣

∣

(VT,α,β,0,0,0,0,0)
δe +

∂L

∂δr

∣

∣

∣

(VT,α,β,0,0,0,0,0)
δr +

∂L

∂δa

∣

∣

∣

(VT,α,β,0,0,0,0,0)
δa, (2.20)

M =M(VT, α, β, 0, 0, 0, 0) +
∂M

∂Q

∣

∣

∣

(VT,α,β,0,0,0,0)
Q

+
∂M

∂δe

∣

∣

∣

(VT,α,β,0,0,0,0)
δe +

∂M

∂δr

∣

∣

∣

(VT,α,β,0,0,0,0)
δr +

∂M

∂δa

∣

∣

∣

(VT,α,β,0,0,0,0)
δa, (2.21)

N = N(VT, α, β, 0, 0, 0, 0, 0) +
∂N

∂P

∣

∣

∣

(VT,α,β,0,0,0,0,0)
P +

∂N

∂R

∣

∣

∣

(VT,α,β,0,0,0,0,0)
R

+
∂N

∂δe

∣

∣

∣

(VT,α,β,0,0,0,0,0)
δe +

∂N

∂δr

∣

∣

∣

(VT,α,β,0,0,0,0,0)
δr +

∂N

∂δa

∣

∣

∣

(VT,α,β,0,0,0,0,0)
δa. (2.22)

Thus, the nonlinear aircraft model is given by (2.3), (2.4), (2.8), (2.9), and (2.17)–

(2.22).
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2.4 Linearization of Longitudinal Equations

In this section, we linearize the equations of motion (2.3), (2.4), (2.8), (2.9), and

(2.17)–(2.22) about a constant-velocity, constant-altitude, wings-level flight condition.

Since we assume that the plane is in longitudinal flight, it follows that φ = V =

P = R = Ya = L = N = 0. We also assume that there is no wind, that is,
⇀

W = 0,

which, using (2.10), implies that Ur ≡ U and Wr ≡ W . Thus, (2.3), (2.4), (2.8), and

(2.9) become

























mU̇

mẆ

IyyQ̇

θ̇

Ż

























=

























Xa +XT −mg sin θ −mWQ

Za +mg cos θ +mUQ

M

Q

−U sin θ +W cos θ

























. (2.23)

Next, we assume small motion in U , W , θ, Xa, XT, Za, ZT, M , and δe about a

forced equilibrium. Specifically, consider the perturbations

∆U(t) ≈ U(t)− U0, (2.24)

∆W (t) ≈W (t)−W0, (2.25)

∆θ(t) ≈ θ(t)− θ0, (2.26)

∆Xa(t) ≈ Xa(t)−Xa,0, (2.27)

∆XT(t) ≈ XT(t)−XT,0, (2.28)

∆Za(t) ≈ Za(t)− Za,0, (2.29)

∆ZT(t) ≈ ZT(t)− ZT,0, (2.30)

∆M(t) ≈M(t)−M0, (2.31)

∆δe(t) ≈ δe(t)− δe,0, (2.32)
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where subscript zero indicates a value at a forced equilibrium.

Evaluating (2.23) under the equilibrium condition U̇ ≡ Ẇ ≡ Q̇ ≡ θ̇ ≡ Ż ≡ 0

implies that

0 = Xa,0 +XT,0 −mg sin θ0, (2.33)

0 = Za,0 + ZT,0 +mg cos θ0, (2.34)

0 =M0, (2.35)

0 = Q, (2.36)

0 = −U0 sin θ0 +W0 cos θ0. (2.37)

Next, substituting (2.24)–(2.32) into (2.23) yields

m∆U̇ = Xa,0 +∆Xa +XT,0 +∆XT −mg(cos θ0)(sin∆θ)

−mg(sin θ0)(cos∆θ)−mW0Q−m∆WQ, (2.38)

m∆Ẇ = Za,0 +∆Za + ZT,0 +∆ZT +mg(cos θ0)(cos∆θ)

−mg(sin θ0)(sin∆θ) +mU0Q +m∆UQ, (2.39)

IyyQ̇ =M0 +∆M, (2.40)

∆θ̇ = Q, (2.41)

Ż = −[(sin θ0)(cos∆θ) + (cos θ0)(sin∆θ)](U0 +∆U)

+ [(cos θ0)(cos∆θ)− (sin θ0)(sin∆θ)](W0 +∆W ). (2.42)

Using the equilibrium conditions (2.33)–(2.37), small angle approximations, and elim-
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inating higher-order terms, (2.38)–(2.42) becomes

























m∆U̇

m∆Ẇ

IyyQ̇

∆θ̇

Ż

























=

























∆Xa +∆XT −mg(cos θ0)∆θ −mW0Q

∆Za +∆ZT −mg(sin θ0)∆θ +mU0Q

∆M

Q

−(sin θ0)∆U + (cos θ0)∆W − (U0 cos θ0 +W0 sin θ0)∆θ

























. (2.43)

Next, we model the perturbations to aerodynamic forces and moments using the

first-order Taylor-series approximations

∆Xa =
∂Xa

∂U

∣

∣

∣

0
∆U +

∂Xa

∂W

∣

∣

∣

0
∆W +

∂Xa

∂Q

∣

∣

∣

0
Q+

∂Xa

∂δe

∣

∣

∣

0
∆δe, (2.44)

∆Za =
∂Za

∂U

∣

∣

∣

0
∆U +

∂Za

∂W

∣

∣

∣

0
∆W +

∂Za

∂Q

∣

∣

∣

0
Q+

∂Za

∂δe

∣

∣

∣

0
∆δe, (2.45)

∆M =
∂M

∂U

∣

∣

∣

0
∆U +

∂M

∂W

∣

∣

∣

0
∆W +

∂M

∂Q

∣

∣

∣

0
Q+

∂M

∂δe

∣

∣

∣

0
∆δe, (2.46)

where subscript zero indicates a forced equilibrium. Finally, substituting (2.44)–(2.46)

into (2.43) implies that

























∆U̇

∆Ẇ

Q̇

∆θ̇

Ż

























=



























1
m

∂Xa

∂U

∣

∣

∣

0

1
m

∂Xa

∂W

∣

∣

∣

0

1
m

∂Xa

∂Q

∣

∣

∣

0
−W0 −g cos θ0 0

1
m

∂Za

∂U

∣

∣

∣

0

1
m

∂Za

∂W

∣

∣

∣

0

1
m

∂Za

∂Q

∣

∣

∣

0
+ U0 −g sin θ0 0

1
Iyy

∂M
∂U

∣

∣

∣

0

1
Iyy

∂M
∂W

∣

∣

∣

0

1
Iyy

∂M
∂Q

∣

∣

∣

0
0 0

0 0 1 0 0

− sin θ0 cos θ0 0 −U0 cos θ0 −W0 sin θ0 0



















































∆U

∆W

Q

∆θ

Z
























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+



























1
m

∂Xa

∂δe

∣

∣

∣

0

1
m

0

1
m

∂Za

∂δe

∣

∣

∣

0
0 1

m

1
Iyy

∂M
∂δe

∣

∣

∣

0
0 0

0 0 0

0 0 0







































∆δe

∆XT

∆ZT













. (2.47)
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Chapter 3 Background: Filtered Dynamic Inversion

In this chapter, we review the filtered-dynamic-inversion controller given in [13,

14]. Filtered dynamic inversion is a high-parameter-stabilizing controller for systems

that are multiple-input multiple-output (MIMO), linear time invariant (LTI), and

minimum phase (i.e., invariant zeros contained in the open-left-half complex plane).

The controller requires limited model information, specifically, the plant’s relative

degree and first nonzero Markov parameter. In Section 3.2, we augment the filtered-

dynamic-inversion controller with an anti-windup strategy.

3.1 Review of Filtered Dynamic Inversion

In this section, we present filtered dynamic inversion (FDI) and review the closed-

loop stability and performance properties, which are given in [13].

3.1.1 Problem Formulation

Consider the MIMO LTI system

ẋ(t) = Ax(t) +Bu(t) + w(t), (3.1)

y(t) = Cx(t), (3.2)

where t ≥ 0, x(0) ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, u(t) ∈ Rm is the control,

y(t) ∈ Rm is the output, w(t) ∈ Rn is an unmeasured disturbance, and the triple

(A,B,C) is controllable and observable. Define the relative degree d as the smallest
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integer i such that the ith Markov parameter Hi
△
= CAi−1B is nonzero. We assume

the disturbance w is d-times differentiable, and w, ẇ, ..., w(d) are bounded. We make

the following assumptions:

(3.A1) If λ ∈ C and det







λIn − A B

C 0m×m






= 0, then Re λ < 0.

(3.A2) d is known.

(3.A3) Hd is known.

Assumption (3.A1) states that the invariant zeros of (A,B,C) are contained in the

open-left-half complex plane. Assumption (3.A3) is invoked for clarity of presentation;

however, [13] demonstrates that FDI is robust to uncertainty in Hd. The system (3.1)

and (3.2) is otherwise unknown.

Let p = d/dt denote the differential operator, and consider the m×m polynomial

matrices

αm(p) = pdIm + pd−1αd−1 + · · ·+ pα1 + α0,

βm(p) = pdβd + pd−1βd−1 + · · ·+ pβ1 + β0,

where α0, ..., αd−1 ∈ Rm×m; β0, ..., βd ∈ Rm×m; and if λ ∈ C and detαm(λ) = 0, then

Re λ < 0. Next, consider the reference model

αm(p)ym(t) = βm(p)r(t),

where t ≥ 0; r(t) ∈ Rm is the reference-model command, which is d-times differen-

tiable and where r, ṙ, ..., r(d) are bounded; ym(t) ∈ R
m is the reference-model output

and the initial condition is given by ym(0), ..., y
(d−1)
m (0) and r(0), ..., r(d−1)(0). We

define the performance z(t)
△
= y(t)− ym(t), which is the command-following error.
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3.1.2 Filtered Dynamic Inversion

Define the dynamic-inversion control

u∗
△
= −H−1

d

[

CAdx− βdr
(d) +

d−1
∑

i=0

CAd−1−iw(i) − βir
(i) + αiy

(i)

]

, (3.3)

which is not implementable because u∗ depends on the full state x, the disturbance

w, and the plant parameters A, B, and C.

The origin of the closed-loop system (3.1) and (3.2) with u(t) ≡ u∗(t), r(t) ≡ 0, and

w(t) ≡ 0 is globally asymptotically stable [13, Lemma 1]. Moreover, the closed-loop

system (3.1) and (3.2) with u(t) ≡ u∗(t) yields a command-following error that tends

to zero asymptotically, that is, limt→∞ z(t) = 0.

Let ηk(s) be a parameter-dependent polynomial, that is, a polynomial in s over the

reals whose coefficients are functions of a real parameter k. Furthermore, let ηk(s) be

monic with degree ρ ≥ d. Thus, ηk(s) can be written as

ηk(s) = sρ + ηρ−1,ks
ρ−1 + · · ·+ η1,ks+ η0,k,

where for all k ∈ [0,∞), η0,k, ..., ηρ−1,k ∈ R. Define the parameter-dependent poly-

nomial

η̄k(s)
△
= sρ−1 + ηρ−1,ks

ρ−2 + · · ·+ η2,ks + η1,k.

We impose the following conditions on ηk(s):

(3.C1) There exists k0 > 0, such that for all k > k0, ηk(s) is Hurwitz.

(3.C2) For all ǫ > 0, there exists kǫ > k0 such that for all k > kǫ,

sup
ω∈R

∣

∣

∣

∣

η̄k(jω)

ηk(jω)

∣

∣

∣

∣

< ǫ.
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Note that ηk(s) = (s + k)ρ satisfies (3.C1) and (3.C2). See [13] for other choices of

ηk(s) that satisfy (3.C1) and (3.C2).

Consider the control u that satisfies

ηk(p)u = ηk(0)u∗, (3.4)

where u∗ is given by (3.3). Taking the dth derivative of (3.2) and using (3.1) yields

y(d) = Hdu+ CAdx+
d−1
∑

i=0

CAd−1−iw(i). (3.5)

To express (3.4) as an implementable control, it follows from (3.5) and (3.3) that

u∗ = −H−1
d

[

y(d) −Hdu− βdr
(d) +

d−1
∑

i=0

αiy
(i) − βir

(i)

]

= u−H−1
d [αm(p)y − βm(p)r]. (3.6)

Combining (3.4) and (3.6) yields the FDI controller

pη̄k(p)u(t) = η0,kH
−1
d [βm(p)r(t)− αm(p)y(t)]. (3.7)

For all k > k0, let the FDI controller have the ρm-order state-space realization

ẋc = Acxc +Bcy + Ecr, (3.8)

u = Ccxc +Dcy + Fcr, (3.9)

where xc(t) ∈ Rρm, and for all k > k0, Ac ∈ Rρm×ρm, Bc ∈ Rρm×m, Cc ∈ Rm×ρm,

Dc ∈ Rm×m, Ec ∈ Rρm×m, and Fc ∈ Rm×m. To see that such a realization exists,

consider the block-observable realization given in [13]. The closed-loop system (3.1),
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(3.2), (3.8), and (3.9) is given by







ẋ

ẋc






= Ã







x

xc






+







BFc

Ec






r +







In

0ρm×n






w, (3.10)

y =
[

C 0m×ρm

]







x

xc






, (3.11)

where

Ã
△
=







A+BDcB BCc

BcC Ac






. (3.12)

The following result from [13] characterizes the stability and performance of the

closed-loop system.

Theorem 3.1. Consider the closed-loop system (3.10)–(3.12) that consists of (3.1),

(3.2), (3.8), and (3.9). Assume (3.A1)–(3.A3) are satisfied, and assume ηk(s) satis-

fies (3.C1) and (3.C2). Then, the following statements hold:

(i) There exists ks > k0 such that for all k > ks, Ã is asymptotically stable.

(ii) For all δ > 0, there exists kδ > ks such that for all k > kδ,

lim
T→∞

1

T

∫ T

0

zT(t)z(t)dt < δ.

Part (i) of Theorem 3.1 states that FDI is a high-parameter-stabilizing controller,

specifically, there is a minimum parameter k above which Ã is asymptotically stable.

Part (ii) of Theorem 3.1 states that the average power of the performance is made

arbitrarily small by a sufficiently large parameter k.
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3.2 Filtered Dynamic Inversion with Anti Windup

We first specialize the FDI controller to single-input single-output (SISO) systems.

Next, we augment the SISO FDI controller, which has integral action, with an anti-

windup strategy.

We now specialize the FDI controller to the case where m = 1, ρ > d, and αm(s) =

βm(s). In this case, (3.7) becomes

pη̄k(p)u(t) =
η0,k
Hd

αm(p)e(t),

where e(t)
△
= r(t)− y(t). Thus, the transfer function from e to u is

Gc(s) =
η0,kαm(s)

Hdsη̄k(s)
,

which has integral action, that is, a pole at zero.

We use partial fraction expansion to separate the pole at zero from the poles at the

roots of η̄k(s). Specifically, Gc can be expressed as

Gc(s) =
η0,k
Hd

(

kI
s
+
cd−1s

d−1 + cd−2s
d−2 + · · ·+ c1s+ c0
η̄k(s)

)

, (3.13)

where

kI =
αm(0)

η̄k(0)
, (3.14)

and, for i = 0, 1, · · · , d− 1,

ci = αi+1 − kIηi+2,k. (3.15)

Next, it follows from (3.13)–(3.15) that Gc has the state space realization (3.8) and
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(3.9) where

Ac =

































−ηρ−1,k −ηρ−2,k · · · −η2,k −η1,k 0

1 0 · · · 0 0 0

0 1
. . . 0 0 0

...
. . .

. . .
...

...

0 0 1 0 0

0 0 · · · 0 0 0

































, Ec =













1

01×ρ−2

kI













, (3.16)

Bc = −Ec, Cc =
η0,k
Hd

[01×ρ−d−1 cd−1 cd−2 · · · c0 1] , (3.17)

Dc = 0, Fc = 0. (3.18)

We now augment the FDI controller (3.8), (3.9), and (3.16)–(3.18) with an anti-

windup strategy to mitigate integrator windup effects that can occur due to control

saturation.

Let usat(t) denote u(t) after it has been saturated between a lower limit umin ∈ R

and an upper limit umax > umin. Specifically, usat(t)
△
= sat(u(t)), where

sat(u)
△
=























umin, u ≤ umin,

u, umin < u < umax,

umax, u ≥ umax.

(3.19)

To mitigate the effect of saturation, we use the back-calculation anti-windup method

[18–20], which is shown in Figure 3.1. The FDI controller augmented with back-

calculation is given by

ẋc = Acxc + Ece+







0ρ−1

−Kb






(u− usat), (3.20)

u = Ccxc, (3.21)
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Figure 3.1: Filtered Dynamic Inversion with Back-Calculation Anti-Windup Strategy.
To mitigate integrator windup, back calculation uses feedback to augment the error
signal, which is sent to the integrator. Specifically, the input to the integrator is
e−Kb(u− usat), instead of e for FDI without back calculation.

where Ac, Ec, and Cc are given by (3.16)–(3.18).

3.2.1 Numerical Examples

We now provide numerical examples of the FDI controller with and without back

calculation. Consider the serially connected two-mass structure shown in Figure 3.2

where usat is a control force on the second mass. The equations of motion for the

system shown in Figure 3.2 are







m1 0

0 m2






q̈ +







b1 + b2 −b2

−b2 b2






q̇ +







k1 + k2 −k2

−k2 k2






q =







0

usat






, (3.22)

where q
△
= [q1 q2]

T. The model parameters are arbitrary positive numbers. For this

section, the masses are m1 = 1 kg and m2 = 1 kg, the damping coefficients are b1 = 2

kg/s and b2 = 0.5 kg/s, and the spring constants are k1 = 3 kg/s2 and k2 = 1 kg/s2.

Let y = q2 be the measurement. The transfer function from usat to y is given by

G(s) =
s2 + 2.5s+ 4

s4 + 3s3 + 6s2 + 3.5s+ 3
,
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m1

k1

b1
m2

k2

b2
usat

q1 q2

Figure 3.2: Serially Connected Two-Mass Structure. The transfer function G from
usat to y = q2 is fourth-order and relative degree two.

which implies that the relative degree is d = 2, and the first nonzero Markov parameter

is Hd = 1. Furthermore, the zeros of G are contained in the open-left-half complex

plane. Thus, (3.22) satisfies assumptions (3.A1)–(3.A3). The control objective is

to have the output y(t) asymptotically follow the reference r(t) = 0.5 sin t. The

disturbance w(t) is zero.

Example 3.1. No saturation on usat and FDI without back calculation. Consider

the SISO FDI controller (3.8), (3.9), (3.16)–(3.18), where αm(s) = βm(s) = s2+2.8s+4

and ηk(s) = (s + k)3, which satisfies (3.C1) and (3.C2). Let k = 20, and let usat =

sat(u), where umin = −∞ and umax = ∞, that is, the input is unsaturated, or

equivalently usat = u. Figure 3.3 shows the time history of y, r, e, and u. After

an initial transient, the error e is small. In steady-state, the maximum value of the

control signal u is approximately 0.27. △

Example 3.2. Saturation on usat and FDI without back calculation. Consider the

SISO FDI controller (3.8), (3.9), (3.16)–(3.18), where ηk(s), k, and αm(s) are the same

as in Example 3.1. However, let usat = sat(u), where umin = −0.2 and umax = 0.2.

Figure 3.4 shows the time history of y, r, e, u, and usat. The error e is large compared

to the error in Example 3.1, which does not have saturation. The control u is large

compared to usat, and the output y lags the command r. △
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Figure 3.3: Response without Saturation. After an initial transient, the FDI controller
makes the command-following error e = r − y small.

Example 3.3. Saturation on usat and FDI with back calculation. Consider the

SISO FDI controller (3.16)–(3.18), (3.20) and (3.21), where ηk(s), k, and αm(s), umin,

and umax are the same as in Example 3.1. Let Kb = 10. Figure 3.5 shows the time

history of y, r, e, u, and usat. The output y follows the command r better than in

Example 3.2. The controller output u does not exceed the input usat by as much as

in Example 3.2. △
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Figure 3.4: Response with Saturation without Anti-windup. With saturation on the
controller’s output, the controller is less able to follow the command than in Example
3.1, where there was no saturation. The controller’s output u is large compared to
the saturated value usat, and the output y lags the command r.
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Figure 3.5: Response with Saturation and Anti-windup. If the FDI controller is aug-
mented with back calculation, then the controller output u does not exceed the sat-
uration value usat as much as in Example 3.2. The command following is improved
relative to Example 3.2.
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Chapter 4 Test Platform: The AeroWorks EDGE 540T

In this chapter, we describe the AeroWorks EDGE 540T fixed-wing aircraft that is

the experimental testbed for the FDI controller. We compute the model parameters

of the test platform required by (2.17)–(2.22) using Athena Vortex Lattice (AVL)

software [21].

4.1 Airframe Description

The AeroWorks EDGE 540T (the “EDGE”) is the mid-winged, aerobatic, remote-

controlled aircraft, shown in Figure 4.1. The EDGE has a straight, tapered wing with

span br = 1.52 m, mean chord length cr = 0.2975 m, and planform area Sr = 0.4534

m2. The leading edge of the horizontal stabilizer is located 0.806 m from the leading

edge of the wing. The EDGE has massm = 4.48 kg at takeoff. The center of gravity is

located 69.9 mm aft of the wing’s leading edge, in accordance with the manufacturer’s

specifications [22]. For propulsion, the plane is fitted with an Electrifly RimFire 0.80

brushless outboard electric motor, which is rated for 1300 W constant output. The

motor is mounted along the ı̂B axis, and we assume that the thrust force acts along

the ı̂B axis. The electric motor draws power from two 8S lithium-polymer batteries,

each with capacity 5000 mAh. This setup is capable of nine minutes of flight. The

principle moments of inertia were measured using the experimental procedure in [23];

they are Ixx = 0.1778 kg-m2, Iyy = 0.3287 kg-m2, and Izz = 0.4231 kg-m2.

We use the low-rate control deflections recommended by the manufacturer. Thus,

the elevator is limited to a 15◦ deflection. The elevator servo is a Hitec HS-645MG
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Figure 4.1: The AeroWorks EDGE 540T. The EDGE is a mid-winged, aerobatic,
remote-controlled aircraft with a 1.52 m wingspan.

High-Torque 2BB Metal Gear servo, which has a maximum angular speed of 300◦/s.

We equip the EDGE with an Ardupilot Mega 2.5, which is an open-source autopilot

based on the Arduino computing platform [24]. The Ardupilot features an Invensense

MPU-6000 six-axis accelerometer and gryoscope, Measurement Specialties MS5611-

01BA03 barometer, Honeywell HMC5883L-TR magnetometer, and uBlox LEA-6H

GPS system. In addition, a Pitot-static probe and pressure transducer provide air-

speed sensing. The pressure transducer is a Freescale Semiconductor MPXV7002,

which has a ±2 kPa range, which roughly corresponds to a 55 m/s stagnation veloc-

ity.

The Ardupilot runs a software packaged called Arduplane, which is open-source.
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The altitude h, latitude, longitude, airspeed Ur, Euler angles φ, θ, ψ, and angular

rates P , Q, R are available for feedback.

4.2 Generating Model Parameters from Athena Vortex Lattice

We use AVL [21] to model the EDGE and generate aerodynamic model parameters.

AVL uses the vortex lattice method to estimate the aerodynamic pressure distribution,

and therefore aerodynamic force and moment, on a lifting body [25].

We use AVL in two different ways. First, we use AVL to estimate the first-order

Taylor series expansion of the aerodynamic force and moment about a variety of

airspeeds, angles of attack, and sideslip angles. Thus, for the nonlinear model (2.3),

(2.4), (2.8), (2.9), and (2.17)–(2.22), we use AVL to build lookup tables, which are

necessary to estimate the aerodynamic forces and moments (2.17)–(2.22). As inputs

to AVL, we use six airspeeds VT = {10, 15, 20, 25, 30, 35}m/s, thirteen angles of attack

α = {−30,−20,−12,−6,−4,−2, 0, 2, 4, 6, 12, 20, 30}◦, and seven sideslip angles β =

{−30,−12,−4, 0, 4, 12, 30}◦. We use these inputs in a batch process to estimate

33 model parameters at 524 combinations of airspeed, angle of attack, and sideslip

angle. The AVL estimates are dimensionless, and they are related to their dimensional

quantities by

CXtot ≈
1

qSr

Xa,0, CZtot ≈
1

qSr

Za,0, CMtot ≈
1

qSrcr
M0,

CXQ ≈
2U0

qSrcr

∂Xa

∂Q
, CZQ ≈

2U0

qSrcr

∂Za

∂Q
, CMQ ≈

2U0

qSrc2r

∂M

∂Q
,

CXδe ≈
1

qSr

∂Xa

∂δe
, CZδe ≈

1

qSr

∂Za

∂δe
, CMδe ≈

1

qSrcr

∂M

∂δe
,

CXδr ≈
1

qSr

∂Xa

∂δr
, CZδr ≈

1

qSr

∂Za

∂δr
, CMδr ≈

1

qSrcr

∂M

∂δr
,

CXδa ≈
1

qSr

∂Xa

∂δa
, CZδa ≈

1

qSr

∂Za

∂δa
, CMδa ≈

1

qSrcr

∂M

∂δa
,

CYtot ≈
1

qSr
Ya,0, CLtot ≈

1

qSrbr
L0, CNtot ≈

1

qSrbr
N0,
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CYP ≈
2U0

qSrbr

∂Ya
∂P

, CLP ≈
2U0

qSrb2r

∂L

∂P
, CNP ≈

2U0

qSrb2r

∂N

∂P
,

CYR ≈
2U0

qSrbr

∂Ya
∂R

, CLR ≈
2U0

qSrb2r

∂L

∂R
, CNR ≈

2U0

qSrb2r

∂N

∂R
,

CYδe ≈
1

qSr

∂Ya
∂δe

, CLδe ≈
1

qSrbr

∂L

∂δe
, CNδe ≈

1

qSrbr

∂N

∂δe
,

CYδr ≈
1

qSr

∂Ya
∂δr

, CLδr ≈
1

qSrbr

∂L

∂δr
, CNδr ≈

1

qSrbr

∂N

∂δr
,

CYδa ≈
1

qSr

∂Ya
∂δa

, CLδa ≈
1

qSrbr

∂L

∂δa
, CNδa ≈

1

qSrbr

∂N

∂δa
,

where q
△
= 1

2
ρaV

2
T , ρa is air density, and the AVL estimate appears on the left-hand

side of each approximation. The dimensionless parameters are shown as functions of

angle of attack α and sideslip angle β for VT = 20 m/s in Appendix A.

AVL is also used to estimate steady level flight equilibria and estimate the stability

derivatives we use in the linearized model. The AVL estimates are dimensionless and

appear on the left-hand side of each of the approximations

CXU ≈
U0

qSr

∂Xa

∂U
, CZU ≈

U0

qSr

∂Za

∂U
, CMU ≈

U0

qSrcr

∂M

∂U
,

CXW ≈
U0

qSr

∂Xa

∂W
, CZW ≈

U0

qSr

∂Za

∂W
, CMW ≈

U0

qSrcr

∂M

∂W
,

CXQ ≈
2U0

qSrcr

∂Xa

∂Q
, CZQ ≈

2U0

qSrcr

∂Za

∂Q
, CMQ ≈

2U0

qSrc2r

∂M

∂Q
,

CXδe ≈
1

qSr

∂Xa

∂δe
, CZδe ≈

1

qSr

∂Za

∂δe
, CMδe ≈

1

qSrcr

∂M

∂δe
,

which are tabulated in Appendix B for the steady, constant-altitude, wings-level

forced equilibrium with VT = 20 m/s.
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Chapter 5 Continuous-Time Filtered Dynamic Inversion with Nonlinear

Aircraft Model

5.1 Longitudinal Autopilot

For autonomous longitudinal flight, we require a system, shown schematically in

Figure 5.1, that uses mission information, GPS measurements, and other feedback

signals to generate throttle and elevator commands. This system is often described

in terms of three subsystems: navigation, guidance, and control [26]. The naviga-

tion system uses mission information and GPS measurements to generate an altitude

command hd. The guidance system uses the altitude command hd and measured al-

titude h
△
= −Z to generate a speed command Ud and a pitch command θd. The speed

control system uses the measured speed Ur and commanded speed Ud to generate a

throttle command. Finally, the pitch control system uses the measured pitch θ and

commanded pitch angle θd to generate a servo command ue for the elevator.

We are interested in improving the altitude-command-following behavior of the

aircraft. Let Ph(t1, t0) denote the average power of altitude error over the finite time

interval [t0, t1], that is,

Ph(t1, t0)
△
=

1

t1 − t0

∫ t1

t0

[hd(τ)− h(τ)]2dτ.

Moreover, define the average power of the altitude error over [t0, t1],

Pθ(t1, t0)
△
=

1

t1 − t0

∫ t1

t0

[θd(τ)− θ(τ)]2dτ.
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Figure 5.1: Longitudinal Navigation, Guidance, and Control Systems. The pitch and
speed controllers form an inner loop for the guidance system, which uses the altitude
error to generate a pitch command.

We propose improving altitude performance by implementing the FDI controller as

the pitch controller. The main result of [13] implies that implementing the filtered dy-

namic inversion controller as the pitch controller allows us to make limt1→∞ Pθ(t1, t0)

arbitrarily small.

In the following sections, we describe the control loops.

5.1.1 Speed Control Inner Loop

For autonomous flight, we require a closed-loop speed controller. The EDGE is

equipped with a Pitot probe and pressure transducer that measure Ur (approxi-

mately). We develop a closed-loop speed controller for use in simulation. Recall

the thrust force acts solely in the ı̂B direction, which implies that ZT ≡ 0. Since

we lack a model of the throttle-to-speed dynamics, we design the ı̂B thrust force XT

directly. Thus, the controller cannot be implemented on the EDGE, because the

EDGE speed controller has percent throttle as its output. However, we assume that

in practice we can design a control with the same closed-loop properties.
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For speed control, we use a proportional-integral (PI) controller,

XT(t) = kT,P(Ud(t)− Ur(t)) + kT,I

∫ t

0

[Ud(τ)− Ur(τ)]dτ + kT,0, (5.1)

where kT,P ∈ R is a proportional gain, kT,I ∈ R is an integral gain, and kT,0 ∈ R is a

constant bias.

5.1.2 Linearized Elevator-to-Pitch Dynamics with Speed Control

We now implement the speed controller (5.1) with the linearized longitudinal dy-

namics (2.47). We assume that
⇀

W ≡ 0, which implies that Ur ≡ U . We also assume

that kT,0 = XT,0. Let ∆Ud(t)
△
= Ud(t)− Ud,0, where Ud,0 = U0, and (5.1) becomes

∆XT(t) = kT,P(∆Ud(t)−∆U(t)) + kT,I

∫ t

0

[∆Ud(τ)−∆U(τ)]dτ. (5.2)

Substituting (5.2) into (2.47) yields

ẋ = Ax+B1∆δe +B2∆Ud, (5.3)

where

x
△
= [∆U ∆W Q ∆θ Z xT,I]

T , (5.4)
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






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



1
m
(∂Xa

∂U

∣

∣

∣

0
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1
m

∂Xa

∂W

∣

∣

∣

0

1
m

∂Xa

∂Q
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∣

∣

0
−W0 −g cos θ0 0 1

m
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1
m

∂Za
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∣

∣

∣

0

1
m
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1
m

∂Za
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∣
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1
Iyy
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∣

∣

∣

0

1
Iyy

∂M
∂W

∣

∣

∣

0

1
Iyy

∂M
∂Q

∣

∣

∣

0
0 0 0

0 0 1 0 0 0

− sin θ0 cos θ0 0 −U0 cos θ0 −W0 sin θ0 0 0

−1 0 0 0 0 0

































,

(5.5)
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B1
△
=

[

1

m

∂Xa

∂δe

∣

∣

∣

0

1

m

∂Za

∂δe

∣

∣

∣

0

1

Iyy

∂M

∂δe

∣

∣

∣

0
0 0 0

]T

, (5.6)

B2
△
=

[

1

m
kT,P 0 0 0 0 1

]T

, (5.7)

and xT,I is the integrator state of the controller (5.2).

Now, we compute the linearized longitudinal dynamics of the aircraft model pre-

sented in Chapter 4. We verify that the linearized elevator-command-to-pitch dy-

namics satisfy the FDI assumptions (3.A1)–(3.A3). First, recall that we desire near-

constant airspeed during measurement. Thus, assume constant airspeed command,

that is, ∆Ud ≡ 0.

To approximate the servo dynamics, let δe satisfy

τeδ̇e + δe = ue,

where ue is the commanded elevator deflection, and τe is a time constant associated

with the elevator servo. Define ∆ue(t)
△
= ue(t)− ue,0, where ue,0 = δe,0. Thus,

τe∆δ̇e +∆δe = ∆ue. (5.8)

We approximate τe using the manufacturer’s quoted servo rate limit of 300◦/s. Note

from (5.8) that if ∆ue(t) is the unit step function, then ∆δe(t) = 1 − e−t/τe . Thus,

the rate of ∆δe(t) at t = 0+ is 1/τe. To approximate τe, we set this initial rate

1/τe = 300◦/s, which gives τe ≈ 0.2 s.

Next, we compute the linearized longitudinal dynamics about the trim condition

given in Appendix B. Based on simulations, we choose KT,P = 2 and KT,I = 0.5. It

follows from (5.3)–(5.6) and (5.8) that the transfer function from the elevator input
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perturbation ∆ue to pitch perturbation ∆θ is given by

Gθue
(s)

△
=

L{∆θ(t)}

L{∆ue(t)}
=

b3s
3 + b2s

2 + b1s+ b0
s6 + a5s5 + a4s4 + a3s3 + a2s2 + a1s+ a0

, (5.9)

where the coefficients b3, ..., b0, a5, ..., a0 are given in Table 5.1.

Table 5.1: Transfer Function Parameters Used in (5.9).

b3 -636.6
b2 -3472
b1 -1729
b0 -355.7
a5 17.29
a4 188
a3 690.4
a2 321.9
a1 170.5
a0 -2.48

The roots of the numerator polynomial of Gθue
are in the open-left-half complex

plane, which implies that Gθue
is minimum phase. Thus, (3.A1) is satisfied. The

transfer function Gθue
is relative degree d = 3; knowledge of which satisfies (3.A2).

Using (5.3)–(5.6) and (5.8), it follows that the first nonzero Markov parameter is

Hd = b3 =
1

Iyyτe

∂M

∂δe
≈
ρaV

2
TSrcr(CMδe |0)

2Iyyτe
; (5.10)

knowledge of which satisfies (3.A3).

5.1.3 FDI Pitch Control Inner Loop

We design an FDI controller, which uses pitch error θ̃(t)
△
= θd(t)− θ(t) to generate

the commanded elevator deflection ue(t). To design the FDI controller, we must

choose a controller order ρ, parameter-dependent polynomial ηk(s), and reference

model βm(s)/αm(s). As in Section 3.2, we choose ρ > d and αm(s) = βm(s). Next, let

ρ = 4 and ηk(s) = (s+k)4. This choice of ηk(s) satisfies (3.C1) and (3.C2). We know
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from experience and experimentation that overdamped reference model dynamics are

desirable. Thus, we let αm(s) = (s+ 4)(s+ 6)(s+ 8).

Figure 5.2: Altitude Autopilot with FDI as Inner Pitch Control Loop. The FDI
controller uses pitch error θ̃ to generate an elevator deflection command ue.

We compute Hd using (5.10), with measured values for Sr, cr and Iyy, a standard

value for air density, ρa = 1.22 kg/m3, an estimate from AVL for CMδe |0, and τe = 0.2

s (as computed in Section 5.1.2). However, we note that, in general, VT is a function

of time. Corollary 1 in [13] shows that assumption (3.A3) can be replaced with the

weaker assumptions that sgn(Hd) is known and an upper-bound H̄d on the magnitude

of Hd is known. Although the numerical and physical experiments are performed at

VT = 20 m/s, we compute Hd from (5.10) under the assumption that VT = 25 m/s.

In this case, Hd is −1, 005. Thus, sgn(Hd) = −1, and we let H̄d = 1, 005.

Thus, the FDI controller is

GFDI(s)
△
=

k4(s+ 4)(s+ 6)(s+ 8)

H̄d(s4 + 4ks3 + 6k2s2 + 4k3s)
. (5.11)

The frequency response of the FDI pitch controller from pitch error to elevator

command is shown in Figure 5.4.
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5.1.4 PI Pitch Control Inner Loop

We design a PI controller, which is a standard flight controller that can be used to

evaluate the performance of the FDI controller. The PI controller has the form

GPI(s)
△
=
K(s− zc)

s
, (5.12)

where the gain K ∈ R and controller zero zc ∈ R must be chosen.

Figure 5.3: Altitude Autopilot with PI as Inner Pitch Control Loop. The PI controller
uses pitch error θ̃ to generate an elevator deflection command ue.

Classical root locus design shows that for a relative degree three system, at high

gain, two poles will diverge into the open-right-half complex plane. For the trans-

fer function Gθue
given by (5.9), choosing zc negative and near the origin places the

asymptote center in the open-left-half complex plane. If zc = −0.5, then all closed-

loop poles are in the open-left-half complex plane forK on the interval (−2.20,−0.005).

Thus, we let zc = −0.2 and K = −0.5.

The frequency response of the PI pitch controller from pitch error to elevator com-

mand is shown in Figure 5.4.

5.1.5 Altitude Error Outer Loop

To generate the pitch command, we use an altitude error outer loop around the

pitch controller. This outer loop uses altitude error to generate the pitch command
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Figure 5.4: Pitch Controller Frequency Response. We show the frequency response
of each pitch controller from pitch error to elevator command. Both the PI and FDI
controllers have infinite gain at low frequency. However, the FDI rolls off at high
frequency while the PI has finite gain at high frequency.

θd. We use a PI controller

θd(t) = kh,Ph̃(t) + kh,I

∫ t

0

h̃(τ)dτ, (5.13)

where kh,P is proportional gain, kh,I is integral gain, h̃(t)
△
= hd(t)− h(t) is in meters,

and θd is in degrees. Based on simulation, we choose the gains kh,P = 1.6 and

kh,I = 0.2.

5.2 Numerical Simulations

We simulate the nonlinear aircraft dynamics (2.3), (2.4), (2.8), (2.9), and (2.17)–

(2.22) with the autopilot from Section 5.1. We compare the performance of the FDI
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pitch controller (5.11) to the PI pitch controller (5.12). For these controllers, we

compare the magnitude of the frequency response from wind disturbance to pitch

error θ̃ and altitude error h̃, the finite-time average power of the pitch error Pθ(t1, t0),

and the finite-time average power of the altitude error Ph(t1, t0).
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Figure 5.5: White-Noise Wind. For the purpose of simulation, we generate a time
series realization of band-limited, zero-mean, unit-variance Gaussian white noise.

For all of the following simulations, we use the model parameters of the EDGE

test platform. Thus, we let the mass m = 4.48 kg; moments of inertia Ixx = 0.1778

kg-m2, Iyy = 0.3287 kg-m2, and Izz = 0.4231 kg-m2; reference span br = 1.52 m, chord

length cr = 0.2975 m, and planform area Sr = 0.4534 m2. The AVL estimates of the

1st-order Taylor series approximations of the aerodynamic forces and moments are

shown graphically in Appendix A.

To maintain wings-level flight in the presence of a disturbance, we implement a

roll-to-aileron PI controller, whose transfer function is

kφ,Ps+ kφ,I
s

, (5.14)
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where kφ,P = 0.5 and kφ,I = 1. Note that this roll control allows us to focus on the

longitudinal dynamics.

In each simulation, the initial heading is ψ(0) = 0, which implies that the plane

is initially traveling in the ı̂I direction. Although we do not implement a heading

control, in all simulations, the plane’s heading remains nearly constant.

To model the wind disturbance on the aircraft, we generate two stochastic, three-

dimensional realizations of the wind in the inertial frame FI. The first is a realization

of band-limited, zero-mean, unit-variance Gaussian white noise, shown in Figure 5.5.

The second is a zero-mean, unit-variance random sequence whose power spectra follow

the Kolmogorov κ−5/3 law [27] from 0.005 s−1 to 10 s−1. The realization in the time

domain is computed using an inverse fast Fourier transform and is shown in Figure

5.6. We remark that this is only a model for turbulence and is used as a disturbance

with frequency content more representative of the wind than Gaussian white noise.
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Figure 5.6: Turbulent Wind. For the purpose of simulating turbulent wind, we gen-
erate a zero-mean, unit-variance random sequence whose power spectra follow the
Kolmogorov κ−5/3 law.

Example 5.1. Open-loop. In this example, the roll-to-aileron controller (5.14) is
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the only control implemented. The airspeed-to-throttle static gain is kT,0 = 7.658

N, the elevator deflection is δe,0 = −3.937◦, and the rudder and aileron deflections

are δr,0 = δa,0 = 0, which are the steady-state values at the forced equilibrium where

VT = 20 m/s. The initial conditions are the forced equilibrium values, that is θ(0) =

θ0 = 5.532◦, U(0) = U0 = 20, W (0) = W0 = U0 tan(θ0), V (0) = P (0) = Q(0) =

R(0) = φ(0) = ψ(0) = 0. We use the white-noise wind shown in Figure 5.5.
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Figure 5.7: Open-Loop Response. Although the simulation is begun at the forced
equilibrium with VT = 20 m/s, the plane diverges from the equilibrium and begins
falling.

Time histories of the pitch θ, altitude h, and altitude derivative ḣ are shown in

Figure 5.7. We note that the transfer function Gθue
, given by (5.9), has a single

real pole in the open-right-half complex plane. Although we begin the simulation at

a forced equilibrium, the white-noise wind disturbance causes the aircraft to move

away from the forced equilibrium. Moreover, since this forced equilibrium is unstable

but the unstable pole of the linearization is near the origin, the response in Figure

5.7 diverges slowly. △

For the following examples, we implement the roll-to-aileron controller (5.14), the
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airspeed controller (5.1), the altitude error outer loop controller (5.13), and compare

the performance of the FDI controller (5.11) to the performance of the PI controller

(5.12). The controller parameters for (5.14) and (5.11)–(5.13) are the same as those

given in Section 5.1.

Example 5.2. Average power of pitch error and average power of altitude error as

functions of k. We simulate level flight by letting the altitude command hd(t) ≡ 0.

We use the white-noise wind shown in Figure 5.5 as the disturbance. We simulate

the FDI controller at different values of k and compute Pθ(t1, t0) and Ph(t1, t0), where

t0 = 20 s and t1 = 100 s. The results are shown in Figure 5.8.
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Figure 5.8: Average Powers of the Performances as Functions of k. As the FDI
parameter k increases, Pθ(t1, t0) decreases, becoming smaller than the average power
of pitch error for the PI controller at approximately k = 15. The average power
of altitude error becomes smaller than that of the PI at approximately k = 12 but
appears to approach a nonzero value as k increases.

This example illustrates part (ii) of Theorem 3.1, which states that limt1→∞ Pθ(t1, t0)
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is arbitrarily small for sufficiently large k. Similarly, the average power of altitude

error reduces as k increases, but it appears to approach a nonzero value. △

Example 5.3. Frequency response with white-noise disturbance. In this example,

we simulate level flight by letting the altitude command hd(t) ≡ 0. We use the

white-noise wind shown in Figure 5.5 as the disturbance. We compute the frequency

response of the aircraft to the disturbance. We use the discrete fast Fourier transform

on the simulation time series and take the quotient of the output and disturbance to

approximate the transfer function from disturbance to output.

We compute the frequency response from each of the three wind components to

pitch error θ̃, altitude error h̃, and altitude derivative ḣ, as shown in Figures 5.9,

5.10, and 5.11.
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Figure 5.9: Pitch Error Frequency Response. The FDI controller makes the magnitude
of the frequency response from disturbance to pitch error smaller than that of the PI
controller, particularly at low frequency.

The advantage of the FDI controller is most pronounced in the frequency response

from disturbance to pitch error, where the disturbance is more attenuated at low

frequency by the FDI controller than by the PI controller. In the frequency responses
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Figure 5.10: Altitude Frequency Response. The FDI controller makes the magnitude
of the frequency response from disturbance to altitude error smaller than that of the
PI controller at many frequencies.

to altitude error and altitude derivative, the magnitude of the FDI response is lower

than that of the PI response at many frequencies but not all. △

Example 5.4. Closed-loop response with turbulent wind. We simulate level flight by

letting the altitude command hd(t) ≡ 0. We use the turbulent wind shown in Figure

5.6. The FDI parameter is k = 25. The time histories of pitch, pitch command, pitch

error, altitude, altitude derivative, and elevator deflection are shown in Figure 5.12.

For the FDI controller, Pθ(t1, t0) = 0.00983 deg2 and Ph(t1, t0) = 0.907 m2, where

t0 = 20 s and t1 = 100 s. For the PI controller, Pθ(t1, t0) = 0.104 deg2 and Ph(t1, t0) =

0.960 m2. Thus, the ratio of the PI average power of pitch error to the FDI average

power of pitch error is 10.6. The ratio of the PI average power of altitude error to

the FDI average power of altitude error is 1.058. This result is similar to the result of

Example 5.2, that is, the FDI shows a large improvement in average power of pitch

error and a smaller improvement in average power of altitude error. △
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Figure 5.11: Altitude Derivative Frequency Response. For the controller parameters
we choose, the FDI controller makes the magnitude of the frequency response from
disturbance to altitude error derivative smaller than that of the PI controller at many
frequencies.

Example 5.5. Filtered-step altitude command with turbulent wind. We let the

altitude command hd(t) be a series of steps with amplitude five, filtered through

the first-order, unity-DC-gain, low-pass filter 2/(s + 2). We use the turbulent wind

shown in Figure 5.6. The FDI parameter is k = 25. The time histories of pitch, pitch

command, pitch error, altitude, altitude derivative, and elevator deflection are shown

in Figure 5.13.

For the FDI controller, Pθ(t1, t0) = 0.427 deg2 and Ph(t1, t0) = 5.69 m2, where

t0 = 20 s and t1 = 100 s. For the PI controller, Pθ(t1, t0) = 1.642 deg2 and Ph(t1, t0) =

7.56 m2. Thus, the ratio of the PI average power of pitch error to the FDI average

power of pitch error is 3.84. The ratio of the PI average power of altitude error to

the FDI average power of altitude error is 1.33. In this example, the FDI shows an

improvement in both average power of pitch error and average power of altitude error.

△
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ḣ
(m

/
s)

20 40 60 80 100
−8

−4

0

u
e
(d
eg
)

t (s)
20 40 60 80 100

t (s)

Figure 5.13: Closed-Loop Responses with Step Altitude Command. The FDI controller
follows the pitch command better than the PI does, which has the effect of decreasing
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Chapter 6 Discrete-Time Filtered Dynamic Inversion with Nonlinear Air-

craft Model

In this chapter, we discretize the FDI and PI pitch controllers from Chapter 5. We

augment the discrete-time FDI and PI controllers with an anti-windup strategy. Fi-

nally, we present simulation results of the continuous-time nonlinear aircraft dynamics

with the discrete-time longitudinal altitude autopilot in feedback.

6.1 Discrete-Time Controllers

To implement the FDI and PI pitch controllers on digital hardware, we discretize

the control laws (5.11)–(5.13). For each controller, we assume a zero-order hold on

the input and a uniform sampling time Ts.

6.1.1 Discrete-Time FDI Pitch Control Inner Loop

The continuous-time FDI pitch controller (5.11) has the state-space realization

ẋc(t) = Acxc(t) +Bcθ̃(t),

ẋI(t) = kIθ̃(t),

ue(t) = Ccxc(t) + k4H̄−1
d xI(t),
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where xc(t) ∈ R3, xI(t) ∈ R, and

Ac =













−4k −6k2 −4k3

1 0 0

0 1 0













, Bc =













1

0

0













,

Cc = k4H̄−1
d [1 18 104] , kI = 48k−3.

Next, note from the FDI formulation that k > 0. Discretizing the controller with a

zero-order hold on the input yields

xd[i+ 1] = Adxd[i] +Bdθ̃[i],

ue[i] = Cdxd[i],

where xd[i] ∈ R4, i = 0, 1, 2, ..., and

Ad =



















0

expAcTs 0

0

0 0 0 1



















, Bd =







A−1
c (expAcTs − I3)Bc

kITs






, (6.1)

Cd =
[

Cc k4H̄−1
d

]

. (6.2)

Next, we augment the FDI controller with an anti-windup scheme suited for digital

hardware. We choose to use the integrator clamping method [28,29]. In the integrator

clamping strategy, integration is conditional on the resulting controller output lying

in the saturation bounds. Thus, the discrete-time FDI controller with anti-windup is

given by

x′d[i+ 1] = Adx
′

d[i] +B′

dθ̃[i], (6.3)
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ue[i] = Cdx
′

d[i], (6.4)

where Ad and Cd are given by (6.1) and (6.2), and

B′

d =











[A−1
c (expAcTs − I3)Bc kITs]

T
, umin < Cd(Adx

′
d[i] +Bdθ̃[i]) < umax,

[A−1
c (expAcTs − I3)Bc 0]

T
, otherwise.

(6.5)

6.1.2 Discrete-Time PI Pitch Control Inner Loop

The continuous-time PI pitch controller (5.12) has the state-space realization

ẋc(t) = −Kzcθ̃(t),

ue(t) = Kθ̃(t) + xc(t).

Discretizing the controller with a zero-order hold on the input yields

xd[i+ 1] = xd[i]−KzcTsθ̃[i],

ue[i] = xd[i] +Kθ̃[i].

The PI controller is augmented with the integrator clamping anti-windup strategy,

which yields

x′d[i+ 1] =











x′d[i]−KzcTsθ̃[i], umin < x′d[i]−KzcTsθ̃[i] +Kθ̃[i] < umax,

x′d[i], otherwise,
(6.6)

ue[i] = x′d[i] +Kθ̃[i]. (6.7)
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6.1.3 Discrete-Time Altitude Error Outer Loop

The continuous-time altitude error outer loop PI controller (5.13) has the state-

space realization

ẋc(t) = kh,Ih̃(t),

θd(t) = kh,Ph̃(t) + xc(t).

Discretizing the controller with a zero-order hold on the input yields

xd[i+ 1] = xd[i] + kh,ITsh̃[i],

θd[i] = xd[i] + kh,Ph̃[i].

The altitude outer loop PI controller is augmented with the integrator clamping anti-

windup strategy, which yields

x′d[i+ 1] =











x′d[i] + kh,ITsθ̃[i], θd,min < x′d[i] + kh,ITsh̃[i] + kh,Ph̃[i] < θd,max,

x′d[i], otherwise,

(6.8)

ue[i] = x′d[i] + kh,Ph̃[i]. (6.9)

6.2 Numerical Simulations

In this section, we repeat Examples 5.2, 5.4, and 5.5 with the discrete-time FDI

controller (6.1)–(6.5) and the discrete-time PI controller (6.6) and (6.7). We use

the continuous-time nonlinear aircraft dynamics (2.3), (2.4), (2.8), (2.9), and (2.17)–

(2.22), and the same model parameters as in Section 5.2. The purpose of these simu-

lations is to ensure the performance of the discrete-time controllers is comparable to

that of the continuous-time controllers. Thus, for the following examples, we imple-
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ment the roll-to-aileron controller (5.14) and airspeed controller (5.1) in continuous

time, and compare the performance of the discrete-time FDI controller (6.1)–(6.5)

and the discrete-time PI controller (6.6) and (6.7). All controller parameters are the

same as those used in Section 5.2. The sampling time is Ts = 0.02 s, which is the

sampling time of the controller hardware used on the test platform.

Example 6.1. Average power of pitch error and average power of altitude error as

functions of k. We repeat the simulations of Example 5.2 with the discretized FDI

controller and discretized PI controller. The results are shown in Figure 6.1.

As in Example 5.2, over a range of k, the average power of pitch error and the

average power of altitude error decrease for increasing k, going below those of the PI

controller. However, the average power of pitch error does not decrease as rapidly as

in the continuous-time case, although the average power of altitude error appears to

be very similar to that in the continuous-time case. Additionally, once k is increased

above 40, the closed loop becomes unstable. △

Example 6.2. Closed-loop response with turbulent wind. We repeat Example 5.4

with the discretized FDI and PI controllers. We simulate level flight by letting the

altitude command hd[i] ≡ 0. We use the turbulent wind shown in Figure 5.6. We

choose the FDI parameter k = 25. The time histories of pitch, pitch command, pitch

error, altitude, altitude derivative, and elevator deflection are shown in Figure 6.2.

For the FDI controller, Pθ(t1, t0) = 0.0105 deg2 and Ph(t1, t0) = 0.904 m2, where

t0 = 20 s and t1 = 100 s. For the PI controller, Pθ(t1, t0) = 0.0781 deg2 and

Ph(t1, t0) = 0.889 m2. Thus, the ratio of the PI average power of pitch error to

the FDI average power of pitch error is 7.41. The ratio of the PI average power of

altitude error to the FDI average power of altitude error is 0.984. This simulation re-

sult is surprising in that the average power of pitch error is improved but the average

power of altitude error is made worse. This result shows that the relative improve-
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Figure 6.1: Average Powerof the Performances as Functions of k. As in Example 5.2,
there is a range of k where the average power of pitch error and the average power
of altitude error are better than those of the discrete-time PI control simulation.
However, unlike the continuous-time case, the FDI-controlled closed loop becomes
unstable as k increases past 40.

ments are sensitive to the frequency content of the disturbance, as this example uses

the model turbulent wind and Example 6.1 uses the white-noise wind. △

Example 6.3. Filtered-step altitude command with turbulent wind. We repeat

Example 5.5 with the discretized FDI and PI controllers. We let the altitude command

hd[i] be a series of steps with amplitude five, filtered through the first-order, unity-DC-

gain, low-pass filter with transfer function 2/(s+2). We use the turbulent wind shown

in Figure 5.6. We choose the FDI parameter k = 25. The time histories of pitch,

pitch command, pitch error, altitude, altitude derivative, and elevator deflection are

shown in Figure 6.3.

For the FDI controller, Pθ(t1, t0) = 0.421 deg2 and Ph(t1, t0) = 5.91 m2, where t0 =
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20 s and t1 = 100 s. For the PI controller, Pθ(t1, t0) = 1.31 deg2 and Ph(t1, t0) = 8.15

m2. Thus, the ratio of the PI average power of pitch error to the FDI average power

of pitch error is 3.11. The ratio of the PI average power of altitude error to the FDI

average power of altitude error is 1.38. This example is similar to the continuous-time

case. The large, fast changes in altitude command appear to favor the FDI controller.

△
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Chapter 7 Experimental Description

7.1 Airframe

We used the EDGE 540T airplane described in Chapter 4 to implement the FDI con-

troller and evaluate its performance relative to the PI controller. To gather data, we

made use of the Ardupilot’s onboard datalogging capability. The Arduplane firmware

can be altered to log an arbitrary signal at rates less than or equal to 50 Hz. Thus, we

altered the Arduplane firmware to log altitude h, altitude error hd − h, commanded

elevator deflection ue, pitch command θd, and pitch θ at 50 Hz. In addition, we logged

the plane’s distance from its next waypoint.

The plane was equipped with an XBee transceiver. A PC laptop functioned as a

groundstation using Mission Planner v1.3.1 software and was also equipped with an

XBee transceiver. Thus, the ground crew was able to monitor position, attitude, and

airspeed information while the plane was in the air. Additionally, the ground crew

were able to change predefined tunable parameters while the plane was in the air.

7.2 Autopilot and Implementation

To implement the pitch controllers described in Chapters 5 and 6, we altered the

pitch controller module of the Arduplane v2.74b source code, which is distributed on

Google Code [30]. The control laws of the pitch controller are contained in the library

files AP PitchController.h and AP PitchController.cpp.

The pitch controller defines several user-tunable parameters that can be changed

from the ground while the plane is in the air. These are the proportional gain K;
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the integral gain −Kzc; the estimated upper-bound on the first non-zero Markov

parameter used in the FDI controller H̄d; a boolean dc to select whether the PI or

FDI pitch control is active; and a scaling term δe,max. The proportional gain K

and integral gain −Kzc are used in the PI control strategy. Both K and H̄d are

assumed to be negative. The controller selector dc is 0 for the PI controller and 1

for the FDI controller. Finally, the scaling term δe,max is the maximum deflection for

the elevator. The scaling term is necessary because the Ardupilot hardware sends

pulse widths as outputs to the servos. The pulse width values are calibrated before

flight, and, when using angles in the code, the Arduplane software assumes that the

maximum and minimum pulse widths correspond to a ±45◦ deflection at the control

surface. To correct this assumption and therefore obtain accurate measurements of

the control surface deflections, we multiply the input to the controllers by 45◦/δe,max.

Otherwise, gains, the leading Markov parameter H̄d, and elevator deflections would

not be equivalent between the simulations and the experiment.

Finally, for convenience, and to ensure accuracy in transferring the control strategy

from MATLAB to C, we created a MATLAB script that computes the control law

(6.1)–(6.5), and writes the members of the Ad, Bd, and Cd matrices to a header file,

FDI params.h. This script is contained in Appendix C.

The function get servo out is responsible for inputting a pitch error and out-

putting a servo setting. It is called at every time step (i.e. at a rate of 50 Hz), after

the altitude control outer loop has chosen a pitch command. Based on the value of

dc, it computes the PI or FDI strategy.

The function reset I is run whenever there is a change in flight mode. For the PI,

it resets the integrator state to zero, and, for the FDI, it resets the state vector to

04×1.

The coded pitch controller is given in Appendices D–F, where Appendix F is the

output of the script given in Appendix C for k = 25.
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7.3 Flight Location and Flight Path

Through the University of Kentucky’s partnership with the Lexington Model Air-

plane Club (LMAC), we had access to a property that hobbyists use to fly remote-

controlled airplanes. The field features a paved runway that is approximately 200 m.

The runway is oriented WSW and ENE, to match the predominant wind direction in

the area during the warmer months. The field is shown in Figure 7.1.

The goal of the experimental flights was to evaluate the altitude and pitch command

following ability of the FDI controller compared to a PI controller. Thus, we designed

a flight path that we repeated several times. We also attempted to minimize the

amount of time the plane is in the air in order to leave a margin on battery life.

The clockwise flight path is shown in Figure 7.2, where the waypoints A–H are all

100 m above a constant reference ground level. We define a lap as starting and ending

at point A. The flight plan is as follows:

• Takeoff: The plane takes off going WSW under manual control.

• Experiment beginning: Under manual control, the plane gains altitude and

turns clockwise. The pilot lines the plane up approximately with the front

straightaway at approximately 100 m altitude. The plane is switched into au-

tomatic control before reaching waypoint A.

• First lap: We exclude the first lap for the purpose of measurement.

• Second and third laps: It is assumed that after the first lap under automatic

control, any initial condition response has subsided. Thus, we use the second

and third laps for measurement, beginning and ending at waypoint A.

• Fourth lap: On the back straightaway of the fourth lap, we change dc from the

ground to select the other pitch controller. We do not use the fourth lap for

measurement.
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Table 7.1: Summary of Experimental Flights.

Flight Takeoff time Wind (mph)1 Temp. (F)1 Barometric
Pressure (in)1

Controller
Order

k

1 12:14 PM 8.1 WSW 68.0 30.05 FDI then PI 25
2 12:42 PM 8.1 WSW 68.0 30.05 PI then FDI 30
3 2:01 PM 13.8 W 66.0 30.02 FDI then PI 30
4 3:12 PM 8.1 WSW 66.9 29.99 PI then FDI 12

• Fifth and sixth laps: We use the fifth and sixth laps for measurement, beginning

and ending at waypoint A.

• Landing: Once the plane has completed the sixth lap at waypoint A, the pilot

takes manual control, continues flying clockwise, and lands the plane on the

runway going WSW.

When the mission was complete, we downloaded the onboard log from the Ardupi-

lot. In processing the data, we used the distance-to-waypoint signal to decide where

to truncate each measurement with respect to time.

7.4 Experiment Execution

The experiment presented in this work was executed Tuesday May 27th, 2014 at

the LMAC field. The weather was clear and sunny. We conducted four flights, which

are summarized in Table 7.1.

For the experiment, we use the same pitch and altitude controller parameters as

in the simulations and vary the value of k. Specifically, we let the FDI parameter-

dependent polynomial ηk(s) = (s + k)4; FDI reference model αm(s) = βm(s) =

(s+4)(s+6)(s+8); estimated upper-bound on the magnitude of the leading Markov

parameter used in the FDI controller H̄d = 1, 005, where we know sgn(Hd) = −1; PI

proportional gain K = −0.5; PI zero zc = −0.2; altitude controller proportional gain

1We list the weather conditions measured at Blue Grass Airport (KLEX) [31], which is approxi-
mately 20 miles west of the LMAC field.

61



kh,P = 1.6; and the altitude controller integral gain kh,I = 0.2.
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Figure 7.1: Lexington Model Airplane Club. Shown is a screenshot from the Mission
Planner software. The Lexington Model Airplane Club field is located on the east side
of Lexington, KY. The field features a 200 meter runway oriented WSW and ENE.
The “Home” label indicates the GPS coordinates where the Ardupilot calibrates its
zero altitude.
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Figure 7.2: Experimental Flight Path. The experimental flightpath is designed resem-
bling a clockwise oval racetrack. The flight path is designed such that the plane is
flying straight and level for as long as possible without commanding any turns that
may be outside of the plane’s envelope in automatic control.
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Chapter 8 Experimental Results

In this chapter, we present results from the experiment described in Chapter 7.

We summarize the main result of the experiment, and discuss differences between the

simulation and experiment.

8.1 Flight Results

8.1.1 Flight 1: FDI Controller with k=25

The first flight was conducted following the procedure described in Section 7.3.

The FDI controller was used as the pitch controller first, then control was switched

to the PI controller. Time histories of the pitch angle θ, pitch error θd−θ, altitude h,

altitude derivative ḣ, and elevator servo input ue from the measurement portions of

Flight 1 are shown in Figure 8.1. The discrete Fourier transforms of the pitch error

and altitude error are shown in Figure 8.2, where the signals have been padded with

zeros to make their length a power of two.

For the FDI controller, the average power of pitch error was 2.62 deg2 and the

average power of altitude error was 3.93 m2. For the PI controller, the average power

of pitch error was 13.71 deg2 and the average power of altitude error was 10.14 m2.

Thus, the ratio of the PI average power of pitch error to the FDI average power of

pitch error is 2.62. The ratio of the PI average power of altitude error to the FDI

average power of altitude error is 3.93.
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Figure 8.1: Time Histories for Flight 1. For this flight, k = 25. For the FDI case,
pitch and altitude errors are visibly reduced while the control signal has larger peaks
and faster rate.

8.1.2 Flight 2: FDI Controller with k=30

The second flight was conducted following the procedure described in Section 7.3.

The PI controller was used as the pitch controller first, then control was switched to

the FDI controller. Time histories of the pitch angle θ, pitch error θd − θ, altitude h,

altitude derivative ḣ, and elevator servo input ue from the measurement portions of

Flight 2 are shown in Figure 8.3. The discrete Fourier transforms of the pitch error

and altitude error are shown in Figure 8.4, where the signals have been padded with

zeros to make their length a power of two.
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Figure 8.2: Frequency Content for Flight 1. For this flight, k = 25. For the FDI case,
the frequency content below 0.2 Hz of the pitch error is smaller than that in the PI
case. However, the frequency content of the altitude error is slightly smaller almost
everywhere.

For the FDI controller, the average power of pitch error was 1.38 deg2 and the

average power of altitude error was 3.60 m2. For the PI controller, the average power

of pitch error was 10.90 deg2 and the average power of altitude error was 14.47 m2.

Thus, the ratio of the PI average power of pitch error to the FDI average power of

pitch error is 10.52. The ratio of the PI average power of altitude error to the FDI

average power of altitude error is 3.03.

8.1.3 Flight 3: FDI Controller with k=30

The third flight was conducted following the procedure described in Section 7.3.

The FDI controller was used as the pitch controller first, then control was switched

to the PI controller. Time histories of the pitch angle θ, pitch error θd−θ, altitude h,

altitude derivative ḣ, and elevator servo input ue, from the measurement portions of

Flight 3 are shown in Figure 8.5. The discrete Fourier transforms of the pitch error
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Figure 8.3: Time Histories for Flight 2. For this flight, k = 30. For the FDI case,
pitch and altitude errors are visibly reduced while the control signal has larger peaks
and faster rate.

and altitude error are shown in Figure 8.6, where the signals have been padded with

zeros to make their length a power of two.

For the FDI controller, the average power of pitch error was 1.09 deg2 and the

average power of altitude error was 2.47 m2. For the PI controller, the average power

of pitch error was 7.09 deg2 and the average power of altitude error was 11.16 m2.

Thus, the ratio of the PI average power of pitch error to the FDI average power of

pitch error is 10.21. The ratio of the PI average power of altitude error to the FDI

average power of altitude error is 2.87.
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Figure 8.4: Frequency Content for Flight 2. For this flight, k = 30. For the FDI case,
the frequency content below 0.2 Hz of the pitch error is smaller than that in the PI
case. However, the frequency content of the altitude error is slightly smaller almost
everywhere.

8.1.4 Flight 4: FDI Controller with k=12

The fourth flight was conducted following the procedure described in Section 7.3.

The PI controller was used as the pitch controller first, then control was switched to

the FDI controller. Time histories of the pitch angle θ, pitch error θd − θ, altitude h,

altitude derivative ḣ, and elevator servo input ue, from the measurement portions of

Flight 4 are shown in Figure 8.7. The discrete Fourier transforms of the pitch error

and altitude error are shown in Figure 8.8, where the signals have been padded with

zeros to make their length a power of two.

For the FDI controller, the average power of pitch error was 40.09 deg2 and the

average power of altitude error was 7.97 m2. For the PI controller, the average power

of pitch error was 8.05 deg2 and the average power of altitude error was 5.60 m2.

Thus, the ratio of the PI average power of pitch error to the FDI average power of

pitch error is 0.20. The ratio of the PI average power of altitude error to the FDI
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Figure 8.5: Time Histories for Flight 3. For this flight, k = 30. For the FDI case,
pitch and altitude errors are visibly reduced and the control signal has larger peaks
and faster rate.

Table 8.1: Summary of Experimental Results.

k Flight PI Pθ (deg2) PI Ph (m2) FDI Pθ (deg2) FDI Ph (m2) PI Pθ

FDI Pθ

PI Ph

FDI Ph

12 4 8.05 5.60 40.09 7.97 0.20 0.70
25 1 13.71 10.14 2.62 3.93 5.23 2.58
30 2 14.47 10.90 1.38 3.60 10.52 3.03
30 3 11.16 7.09 1.09 2.47 10.21 2.87

average power of altitude error is 0.70.

8.2 Discussion

Table 8.1 shows the average powers of performance from each flight, arranged in

order of increasing k. In analyzing the results, we assume that the wind does not

change appreciably during a single flight but may have changed between flights. Thus,

to compare the FDI and PI, we examine the ratio between the average powers of

performance. Recall our goal is to make the average powers of performance of pitch
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Figure 8.6: Frequency Content for Flight 3. For this flight, k = 30. For the FDI
case, the low frequency content of the pitch error is much smaller than that in the PI
case. However, the frequency content of the altitude error is slightly smaller almost
everywhere.

and altitude error for the FDI controller smaller than those of the PI controller. Thus,

we would like to make the ratio of the PI controller’s average powers of a pitch and

altitude error large. Table 8.1 shows an increase in these ratios with increasing k.

Additionally, when we repeated the experiment for k = 30, the ratios of average power

of pitch error were 3.0% percent different from each other, and the ratios of average

power of altitude error were 5.4% different from each other. Thus, we argue that we

have accomplished our goal of improving the command-following and disturbance-

rejection properties of the altitude autopilot compared to a baseline PI controller.

Additionally, Figures 8.2, 8.4, and 8.6 show the frequency bands where the FDI

improves pitch and altitude errors. Pitch errors are improved at low frequency while

altitude errors are slightly improved at most frequencies.
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Figure 8.7: Time Histories for Flight 4. For this flight, k = 12. For the FDI case,
the system is clearly at the edge of instability. Neither average power of pitch error
or of altitude error was improved over the PI.

8.3 Discrepancies Between Simulation and Experiment

The ratios of powers of performance for the experiment appear to favor the FDI con-

troller more than simulation would have suggested. First, we discuss several possible

sources of variance that we believe were well-controlled during the experiment.

A possible source of variation in comparing the experimental results with the sim-

ulation results is airspeed error. However, in processing the flight data, we compute

the average power of airspeed error for each measurement segment. For the PI con-
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Figure 8.8: Frequency Content for Flight 4. For this flight, k = 12. For the FDI case,
the low frequency content of the pitch error is slightly smaller than that in the PI
case, however there is a large bump in the FDI around 0.2 Hz and the FDI is slightly
larger at high frequency. The frequency content of the altitude error is slightly larger
almost everywhere.

troller, the average powers of airspeed error range from 0.76 to 1.63 m2/s2. For the

FDI controller, the average powers of airspeed error range from 0.28 to 0.72 m2/s2,

where the largest was during flight 1, where k = 25.

Another possible source of variation that we argue is well-controlled is initial con-

dition response in beginning the experiment and in switching controllers mid-flight.

The presence of errors at the beginning of each measurement segment could skew the

finite time powers of performance of pitch and altitude error. We made an effort to

control any initial condition response by disregarding laps one and four. We argue on

the basis of the time series presented in Figures 8.1, 8.3, 8.5, and 8.7 that the errors

present at the beginning of each measurement are no larger than those seen during

the two laps of measurement.

Next, we pose several possible explanations for the discrepancies between the sim-

ulation results and experimental results.
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The most obvious difference between the simulations and the experiment is the

flight path. The simulations did not implement a heading control, only a roll angle

controller. In the simulations, the roll angle was controlled to zero, i.e. level flight.

In the experiment, a navigation loop gave a roll command based on heading error.

Thus, if the FDI controller were superior when the plane was not level, this would

tend to favor the FDI in the experiment more than in the simulations.

Although airspeed errors were well-controlled during measurement, we cannot con-

firm equivalence between the airspeed controller we designed for simulation and the

airspeed controller we used in the experiment. The airspeed dynamics are coupled

with the pitch and altitude dynamics. Thus, differences in the airspeed controllers

could be manifest in the difference between simulation and experiment.

For the simulation results, we use models of the wind, which may be dissimilar to

the wind encountered during the experiment. As shown in Figures 5.9 and 5.10, the

FDI and PI controllers suppress disturbances differently at different frequencies. In

the case of altitude error, the FDI is not superior at every frequency. It is possible that

the frequency content of the wind during the experiment favored the FDI controller.

Finally, differences between the estimated value of H̄d and the actual value during

experiment could cause changes in the average powers of performance of the FDI

controller. Underestimating H̄d can change the high-parameter-stabilizing nature of

the FDI controller, while overestimating H̄d can change the stability properties of the

FDI controller for low values of k.
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Chapter 9 Conclusions and Future Work

In this thesis, we implemented the FDI controller as the pitch controller in an

altitude-hold autopilot. We designed and simulated the continuous- and discrete-

time FDI controller with anti-windup on a nonlinear aircraft model. We showed

numerically that the average power of altitude error improves (relative to a classical

PI controller) for FDI parameter values in a range that could be implemented on

digital hardware.

We conducted a flight experiment comparing the FDI controller to a classical PI

controller. The experimental results showed that the FDI controller performed better

than the PI controller at certain values of the parameter.

Future Work

We suggest several ways of moving forward with the work presented in this thesis.

First, we must acknowledge that the UAV will probably be flown in limited airspace,

and thus will need to turn. We suggest altering the simulation to include the default

navigation (i.e. way-point tracking) controller present on the autopilot. If more

precise control is desired when the plane is turning, then MIMO filtered dynamic

inversion is viewed as an option.

Secondly, we suggest the controller be tested more thoroughly. One experiment

that would strengthen this thesis is tuning the PI controller to some optimal gains.

Another is commanding the altitude ramps that will be crucial to way-point tracking

during instrumented turbulence measurement.
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B Model Parameters Used in Linearization

Trim Condition

m 4.48 kg Iyy 0.3287 kg·m2

U0 19.90 m/s W0 1.95 m/s

θ0 5.60◦ δe,0 -3.94◦

Partial Derivatives

Dimensionless Dimensional

CXU 0 ∂Xa

∂U
0 kg/s

CZU -0.3947 ∂Za

∂U
-2.0242 kg/s

CMU 0.0016 ∂M
∂U

0.0026 kg·m/s

CXW 0.6174 ∂Xa

∂W
3.4316 kg/s

CZW -4.4178 ∂Za

∂W
-24.554 kg/s

CMW -0.9232 ∂M
∂W

-1.5266 kg·m/s

CXQ 0.4035 ∂Xa

∂Q
0.3336 kg·m/s

CZQ -7.5992 ∂Za

∂Q
-6.2827 kg·m/s

CMQ -8.5003 ∂M
∂Q

-2.0907 kg·m2/s

CXδe 0.0187 ∂Xa

∂δe
2.0727 N

CZδe -0.5265 ∂Za

∂δe
-58.246 N

CMδe -1.2716 ∂M
∂δe

-41.852 N·m

C MATLAB Script to Generate FDI Controller Matrices

clear all

k=25;

H_d = -1005;
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eta = poly([-k -k -k -k]);

eta_0 = eta(end);

eta_bar = eta(1:length(eta)-1);

alpha = poly([-4 -6 -8]);

G_ue_n = eta_0/H_d*alpha;

G_ue_d = [eta_bar 0];

FDI_K_I = polyval(alpha,0)/polyval(eta_bar,0);

c = alpha-FDI_K_I*eta_bar;

c = c(1:length(c)-1);

A = [-G_ue_d(2:end); ...

1 0 0 0;

0 1 0 0;

0 0 0 0];

B = [1 0 0 FDI_K_I]’;

C = eta_0*[c 1];

A_trunc = A(1:3,1:3);

B_trunc = B(1:3);

C_trunc = C(1:3);

A_d = expm(A_trunc*0.02);
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B_d = inv(A_trunc)*(expm(A_d-eye(3)))*B_trunc*3E4;

C_d = C/3E4;

C_d_w_H_d = C_d/H_d;

int_B = FDI_K_I * eta_0 * 0.02;

out_file = fopen(’FDI_params.h’, ’w’);

fprintf(out_file, ’#define FDI_A11 %4.10f \n’, A_d(1,1));

fprintf(out_file, ’#define FDI_A12 %4.10f \n’, A_d(1,2));

fprintf(out_file, ’#define FDI_A13 %4.10f \n’, A_d(1,3));

fprintf(out_file, ’#define FDI_A21 %4.10f \n’, A_d(2,1));

fprintf(out_file, ’#define FDI_A22 %4.10f \n’, A_d(2,2));

fprintf(out_file, ’#define FDI_A23 %4.10f \n’, A_d(2,3));

fprintf(out_file, ’#define FDI_A31 %4.10f \n’, A_d(3,1));

fprintf(out_file, ’#define FDI_A32 %4.10f \n’, A_d(3,2));

fprintf(out_file, ’#define FDI_A33 %4.10f \n’, A_d(3,3));

fprintf(out_file, ’#define FDI_B1 %4.10f \n’, B_d(1));

fprintf(out_file, ’#define FDI_B2 %4.10f \n’, B_d(2));

fprintf(out_file, ’#define FDI_B3 %4.10f \n’, B_d(3));

fprintf(out_file, ’#define FDI_C1 %4.10f \n’, C_d(1));

fprintf(out_file, ’#define FDI_C2 %4.10f \n’, C_d(2));

fprintf(out_file, ’#define FDI_C3 %4.10f \n’, C_d(3));

fprintf(out_file, ’#define FDI_BI %4.10f \n’, int_B);
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fclose(out_file);

D AP PitchController.h

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

#ifndef __AP_PITCH_CONTROLLER_H__

#define __AP_PITCH_CONTROLLER_H__

#include <AP_AHRS.h>

#include <AP_Common.h>

#include <math.h> // for fabs()

class AP_PitchController {

public:

AP_PitchController() {

AP_Param::setup_object_defaults(this, var_info);

}

void set_ahrs(AP_AHRS *ahrs) { _ahrs = ahrs; }

int32_t get_servo_out(int32_t angle_err, float scaler = 1.0,

bool stabilize = false, int16_t aspd_min = 0, int16_t aspd_max = 0);

void reset_I();

int16_t which_controller();
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static const struct AP_Param::GroupInfo var_info[];

private:

AP_Float _K_P;

AP_Float _K_I;

AP_Float _roll_ff;

AP_Float _H_d;

AP_Float _ele_servo_max;

AP_Int16 _pi_or_fdi;

uint32_t _last_t;

float _last_out;

float _integrator;

float _x1;

float _x2;

float _x3;

float _x4;

float _ele_out;

AP_AHRS *_ahrs;

};
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#endif // __AP_PITCH_CONTROLLER_H__

E AP PitchController.cpp

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-

// Initial Code by Jon Challinger

// Modified by Paul Riseborough

// This library is free software; you can redistribute it and / or

// modify it under the terms of the GNU Lesser General Public

// License as published by the Free Software Foundation; either

// version 2.1 of the License, or (at your option) any later version.

#include <AP_Math.h>

#include <AP_HAL.h>

#include <AP_Common.h>

#include "AP_PitchController.h"

#include "FDI_params.h"

extern const AP_HAL::HAL& hal;

const AP_Param::GroupInfo AP_PitchController::var_info[] PROGMEM = {

AP_GROUPINFO("P", 0, AP_PitchController, _K_P, 0.4f),

AP_GROUPINFO("I", 1, AP_PitchController, _K_I, 0.0f),

AP_GROUPINFO("RLL", 2, AP_PitchController, _roll_ff, 1.0f),

AP_GROUPINFO("CONT", 3, AP_PitchController, _pi_or_fdi, 0),

AP_GROUPINFO("H_D", 4, AP_PitchController, _H_d, 0),

AP_GROUPINFO("TRVL", 5, AP_PitchController, _ele_servo_max, 0),

AP_GROUPEND
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};

int32_t AP_PitchController::get_servo_out(int32_t angle_err,

float scaler, bool stabilize,

int16_t aspd_min, int16_t aspd_max)

{

angle_err = angle_err * (float)4500/_ele_servo_max;

float aspeed;

float rate_offset;

float bank_angle = _ahrs->roll;

bool inverted = false;

uint32_t tnow = hal.scheduler->millis();

uint32_t dt = tnow - _last_t;

if (_last_t == 0 || dt > 1000) {

dt = 0;

}

_last_t = tnow;

if(_ahrs == NULL) return 0;

float delta_time = (float)dt * 0.001f;

if (fabsf(bank_angle) < radians(90)) {

bank_angle = constrain_float(bank_angle,-radians(80),radians(80));

} else {
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inverted = true;

if (bank_angle > 0.0f) {

bank_angle = constrain_float(bank_angle,radians(100),radians(180));

} else {

bank_angle = constrain_float(bank_angle,-radians(180),-radians(100));

}

}

if (!_ahrs->airspeed_estimate(&aspeed)) {

aspeed = 0.5f*(float(aspd_min) + float(aspd_max));

}

if (_pi_or_fdi==0) {

float _integrator_delta = delta_time*(float)angle_err*_K_I;

if (((float)angle_err*_K_P+_integrator+_integrator_delta)>4500 ||

((float)angle_err*_K_P+_integrator+_integrator_delta)<-4500) {

_integrator_delta = 0;

}

_integrator = _integrator + _integrator_delta;

_ele_out = constrain_float(((float)angle_err*_K_P+_integrator),-4500,4500);

} else {

float _last_x1 = _x1;

float _last_x2 = _x2;

float _last_x3 = _x3;

float _last_x4 = _x4;
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_x1 = FDI_A11 * _last_x1 + FDI_A12 * _last_x2 + FDI_A13 * _last_x3 +

FDI_B1 * (float)angle_err;

_x2 = FDI_A21 * _last_x1 + FDI_A22 * _last_x2 + FDI_A23 * _last_x3 +

FDI_B2 * (float)angle_err;

_x3 = FDI_A31 * _last_x1 + FDI_A32 * _last_x2 + FDI_A33 * _last_x3 +

FDI_B3 * (float)angle_err;

_x4 = _x4 + FDI_BI * angle_err;

_ele_out = (FDI_C1 * _x1 + FDI_C2 * _x2 + FDI_C3 * _x3 + _x4)/_H_d;

if ((_ele_out>4500) || (_ele_out<-4500)) {

_x4 = _last_x4;

}

_ele_out = (FDI_C1 * _x1 + FDI_C2 * _x2 + FDI_C3 * _x3 + _x4)/_H_d;

_ele_out = constrain_float(_ele_out,-4500,4500);

}

return _ele_out;

}

void AP_PitchController::reset_I()

{

_integrator = 0.0f;

_x1 = 0.0f;
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_x2 = 0.0f;

_x3 = 0.0f;

_x4 = 0.0f;

}

int16_t AP_PitchController::which_controller()

{

return _pi_or_fdi;

}

F FDI params.h

#define FDI_A11 -0.0873081361

#define FDI_A12 -30.9794433151

#define FDI_A13 -411.0032226106

#define FDI_A21 0.0065760516

#define FDI_A22 0.5702970201

#define FDI_A23 -6.3192499584

#define FDI_A31 0.0001011080

#define FDI_A32 0.0166868515

#define FDI_A33 0.9494520176

#define FDI_B1 82.4009478931

#define FDI_B2 2.6624002385

#define FDI_B3 -0.4275192984

#define FDI_C1 12.9808333333

#define FDI_C2 230.3750000000
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#define FDI_C3 1204.1666666667

#define FDI_BI 24.0000000000
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