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ABSTRACT OF DISSERTATION 
 
 
 

THE ECOLOGICAL AND EVOLUTIONARY EFFECTS OF ENDOCRINE DISRUPTING 
COMPOUNDS ON SEXUALLY SELECTED TRAITS IN MALE GUPPIES 

 
Male mating signals convey important mate-quality information to females and are regulated by 
androgens. Endocrine disrupting compounds (EDCs) are chemicals that interfere with proper 
hormonal functioning in exposed animals, causing altered hormone levels and resulting in 
changed reproductive characteristics, including mating signals. Altered signals can have 
ecological implications by influencing population and community dynamics and evolutionary 
implications via trans-generational reduction in signal reliability leading to reduced preference 
and eventual loss of the signal trait. I examined the effects of exposure to environmentally 
relevant concentrations of atrazine, a widely used herbicide and EDC, on mating signals and 
behaviors in male guppies, a sexually dimorphic freshwater fish. Guppies were exposed either 
during adulthood or embryonic development. Prolonged atrazine exposure during adulthood 
reduced the size of the carotenoid-based ornament, the number of courtship displays 
performed, and aggression towards competing males. Embryonic exposure did not affect 
survival to adulthood and the time to develop male-specific morphologies. But there was a trend 
for smaller genitalia, and the ornament size was significantly increased. Possible increases in 
immunocompetence as a result of slight estrogenecity may have allowed for greater carotenoid 
allocation to the ornament. Embryonic exposure also resulted in reduced courtship behavior, 
forced copulatory attempts and aggression towards competitors; female guppies found these 
males less attractive. The low dose had the strongest effects with embryonic exposure, 
indicating the importance of low-dose exposures. These studies highlight the effects of low and 
environmentally relevant doses of atrazine on mating signals and behaviors in exposed wildlife. 
A mathematical model was used to understand the evolutionary effects of EDCs on the optimal 
allocation of carotenoids between ornament and immunocompetence. Animals obtain 
carotenoids through their diet, and allocate some of this to enhance immune function and the 
rest to ornaments for mate attraction. The model replicates the disruption of carotenoid-based 
ornaments as a result of EDC-exposure, and predicts that signal reliability will be reduced. The 
model simulates an evolutionary shift in the optimal allocation if exposure spanned multiple 
generations, but signal reliability is not restored. Including additional selective forces like 
predation further suppresses signal reliability. 
 
Keywords: atrazine, carotenoid-based ornament, mating behaviors, Poecilia reticulata, sexual 
signaling 
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CHAPTER ONE. INTRODUCTION 
 
Animal mating systems have been extensively studied, especially since Darwin (1859, 

1871) proposed his theory of Sexual Selection. Much is known about inter- and intra-sexual 
interactions and the behaviors and morphologies involved in mating success of both males and 
females of numerous species. Biologists have examined the proximate causes of these traits as 
well as the evolutionary pressures selecting for or against these traits. In recent years, 
increasingly more attention is being focused on understanding how anthropogenic interferences 
are shaping mating systems. Of notable importance are endocrine disrupting compounds 
(EDCs) which are chemicals, natural or synthetic, that interfere with proper hormonal functioning 
in exposed animals. Most EDCs have anthropogenic sources such as agrochemicals, industrial 
effluents, sewage, plastics, cosmetics, pharmaceuticals, and so forth. Contamination by EDCs 
pervades aquatic and terrestrial ecosystems, including all trophic levels. Many EDCs disrupt the 
functioning of gonadal hormones either by blocking or binding to hormone receptors, or 
upregulating or downregulating crucial enzymes involved in hormonal pathways. Disrupting 
hormonal pathways jeopardizes the production of traits regulated by hormones, including mating 
signals, ornaments and behaviors, with implications for mating system ecology. I was 
particularly drawn to this idea that sublethal EDC-exposures can have subtle and latent effects 
such as altered mating systems, which became the central theme of my dissertation. These 
effects can have long-term effects on population dynamics with crucial implications for wildlife 
health and conservation.  

Mating signals, including ornaments and courtship behaviors, are honest indicators of the 
bearer's quality as a potential mate. Signal honesty is maintained by the cost of producing the 
signal, the potential risks of expressing the signal, and social costs of dishonestly expressing a 
signal. Hamilton and Zuk (1982) proposed that in birds, the health of an individual was reflected 
in the condition of its plumage, and those that were infected by parasites had shabbier plumage 
than those in better health. So, females that chose to mate with more colorful males were 
indirectly choosing mates who could better resist parasitic infections, thus ensuring better genes 
for their offspring. Folstad and Karter (1992) proposed the "Immunocompetence Handicap 
Hypothesis" to include the role of testosterone and immunocompetence in sexual selection. 
They proposed that testosterone is a double-edged sword, enhancing sexual signaling on the 
one hand, but suppressing immune functioning on the other. Increased testosterone during 
breeding seasons raises metabolic rate, which leads to the production of free radicals that 
damage cells of the immune system. They suggested that testosterone, via the costs of 
suppressed immunocompetence, maintained the honesty of the signals. 

Courtship behaviors fall under the category of honest signals, because individuals in poor 
health are unable to display optimally. Androgens are necessary for the proper expression of 
displays, and are correlated with the frequency of displays, which in turn correlates with female 
mate preference. Immunocompetence is biochemically linked to courtship displays in a manner 
similar to the way it is linked to ornament expression.  

Male ornaments include exaggerated morphologies, plumage and color patterns used to 
attract females. I was particularly fascinated by carotenoid-based ornaments, which are yellow, 
orange or red colored ornaments. These colors are produced by carotenoids, which animals 
must obtain through their diet. Lozano (1994) hypothesized that because carotenoids were free-
radical scavengers and overall modulators of the immune system, carotenoids must either be 
allocated to immune functioning or to the ornament for mate attraction. Males that could bear 
the cost of a somewhat suppressed immune system could allocate more carotenoids to their 
ornament and thus appear more colorful; in this way, carotenoid-based ornaments are honest 
signals of the bearer's immunocompetence. Alonso-Alvarez and colleagues (2007) extended 
this hypothesis to the balance between ornament expression and overall oxidative stress. The 
"Oxidation Handicap Hypothesis" states that carotenoids can be allocated to ornament 
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coloration or to quench free radicals and relieve the body of oxidative stress. This central trade-
off in the allocation of carotenoids has been especially interesting to me, and I plan to devote 
much future research to this and related hypotheses. 

My first dissertation chapter reviews the literature in the fields of sexual selection, evolution 
and toxicology to synthesize a hypothesis that prolonged and trans-generational exposure of 
populations to EDCs can reduce the reliability of male mating signals with important ecological 
and evolutionary implications. I suggest that reduced signal reliability can cause females to lose 
the preference for the signal trait and result in the eventual loss of the trait from the population. 
Altered evolutionary trajectories as a result of anthropogenic disturbances have been 
documented, but are yet to be found in the context of EDC-contamination. My literature review 
indicates that such a phenomenon is very possible and merely awaits discovery.  

The second chapter examines the effects of prolonged exposure to environmentally 
relevant doses of a common herbicide atrazine on ornaments and mating behaviors in adult 
male guppies. The results indicated that realistic exposures to atrazine can reduce ornament 
size and decrease the frequency of courtship displays and aggression towards competitors. In 
the third and fourth chapters, I tested for the effects of embryonic exposure to realistic 
concentrations of atrazine on the development and expression of male reproductive 
characteristics in guppies. Although the development of male genitalia and ornaments was not 
delayed, I found that there was a trend for smaller genitalia, and surprisingly, significantly 
increased ornament size at adulthood. In Chapter Four, I show that embryonic exposure to 
atrazine reduced courtship displays, mating frequency, and aggression in male guppies at 
adulthood. In both of these chapters, non-monotonic responses were observed, with the low 
dose of atrazine having stronger responses than the high dose.  

In Chapter Five, I use a mathematical model to predict how EDC-exposure will disrupt the 
optimal balance of carotenoid allocation between ornament and immunocompetence to reduce 
signal reliability. I test whether this optimal allocation will shift, either as a plastic response or an 
evolutionary response, in populations exposed to EDCs for multiple generations. I then predict 
whether signal reliability can be restored under the shifted optimum, and also how additional 
selection pressures like predation can compound the effect of EDCs in the short and long-term.  

Overall, my dissertation represents an attempt at understanding how EDC-exposure can 
alter mating systems via disrupted biochemical pathways. More work is required to properly 
understand these mechanisms. In the ecotoxicology literature, much emphasis has been laid on 
the effects of contaminants on the health of individuals, but little research has focused on 
evolutionary trajectories. I believe I have laid the foundation for some novel and informative 
future research in evolutionary ecotoxicology. 
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CHAPTER TWO. ENDOCRINE DISRUPTION OF MALE MATING SIGNALS: ECOLOGICAL AND 
EVOLUTIONARY IMPLICATIONS  
 

SUMMARY 

Endocrine disrupting chemicals (EDCs) are chemicals that interfere with proper hormonal 
functioning in exposed animals. They enter the natural environment through multiple sources, 
and many non-target wildlife species are exposed to them via several modes. Exposure causes 
altered hormone levels, importantly gonadal hormones, resulting in changed reproductive 
characteristics. Vertebrate male mating signals convey important mate quality information to 
females. These signals are dependent on androgens for their production and maintenance. 
Female responses to signals depend on estrogens. Disrupting these pathways jeopardizes 
signal production and reception, which has implications for mating system ecology. Besides 
affecting various aspects of the vertebrate physiology, EDCs can impair hormonal functioning by 
binding to or blocking hormone receptors, or by altering production and function of hormones or 
hormone receptors. We consider the ecological implications of multi-generational signal 
disruption by EDCs. Altered signals can influence population dynamics and sex ratios; local 
extinctions are possible. Community-level dynamics may be affected via interspecific 
dependence on signals or population fluctuations. We then address the evolutionary effects of 
EDC-altered male mating signals in vertebrates and discuss how females may respond to 
altered signals over evolutionary time. Trans-generational reduction in signal reliability can lead 
to reduced preference and eventual loss of the signal trait and to the evolution of new traits as 
signals of mate quality. Genetic divergence between endocrine disrupted and undisrupted 
populations may result, perhaps giving rise to speciation. Finally, we recommend areas of 
research to further explore some of the issues addressed in this review. We suggest field 
surveys to document existing alterations in mating systems and genetic divergence in endocrine 
disrupted populations. Long term mesocosm studies and mathematical models would be useful 
to predict the fate of mating signals and female responses as a result of prolonged endocrine 
disruption. EDCs have been the focus of ecotoxicology for some time now, and we feel that this 
analysis should now enter the realm of evolutionary biology to determine the subtle, yet far-
reaching effects on exposed non-target wildlife. 

 

INTRODUCTION  

Endocrine disruption, the interference with proper hormonal functioning by exogenous 
compounds, has explicitly been a focus of ecological research for almost two decades now 
(since Colborn 1991). Some of the most important effects of these endocrine disrupting 
chemicals (EDCs) are the sub-lethal effects on populations caused by reproductive 
malfunctions. The most important of these are effects on reproductive traits, and these can have 
long term ecological as well as evolutionary significance, as we will emphasize. Endocrine 
disruptors can alter reproductive success by affecting all aspects of the reproductive system, 
including gonadal formation, production of hormones and gametes, sex determination (Basrur 
2006), formation of egg shells (Porter and Wiemeyer 1969), and production (Kelce and Wilson 
1997; Basrur 2006) and maintenance of mating signals and behaviors  (Palanza and vom Saal 
2002; Milnes et al. 2006). Several reviews have addressed endocrine disruption from ecological 
(Colborn et al. 1993b; Colborn 1995; Jones and Reynolds 1997; Crews et al. 2000; Guillette et 
al. 2000; Wingfield 2008), physiological (Basrur 2006; Milnes et al. 2006; Patisaul and Adewale 
2009) and clinical (Toppari et al. 1996; Kelce and Wilson 1997) perspectives.  

Endocrine disruptors can have lasting effects in local populations. Many of these chemicals 
are persistent in soil and animal tissue at low concentrations and can bioaccumulate (Smolen 
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and Colborn 1997); their effects are observable even at supposedly safe levels. The effects can 
be multi-generational either by exposure to soils containing persistent endocrine disruptors or 
via maternal effects (Clotfelter et al. 2004). Multi-generational changes in mating signals and 
behaviors in a local population can be of ecological significance if reproductive success is 
altered, and of evolutionary significance if populations evolve genetic responses to these 
alterations. Evolutionary effects may include altered mating systems or development of 
resistance to endocrine disruptors. If these changes are hereditary, intraspecific differences 
across populations may lead to genetic divergence.  

In this review we address the effects of endocrine disruptors on mating signals and 
behaviors in male vertebrates and show how these changes can have ecological and 
evolutionary significance in wild populations. We focus primarily on the estrogenic and anti-
androgenic effects of endocrine disruptors in vertebrate systems, as these are the most 
common effects of EDCs (Guillette 2006); androgenic contaminants are found mainly in 
livestock feedlot wastes (Soto et al. 2004; Kolok et al. 2007; Khan et al. 2008) and a few 
pesticides (Barbaglio et al. 2006). First, we outline concepts surrounding signaling theory and 
address altered signals and responses with the goal of understanding the implications of EDC-
altered signals. Next, we review the control of these mating signals by androgens, and then 
elucidate the mechanisms by which EDCs can disrupt the production and maintenance of these 
signals. We then explore the ecological and evolutionary implications of altered mating signals 
and female responses as a result of prolonged EDC-exposure. Finally we recommend areas of 
research that could further explore some issues addressed in this article. We focus mainly on 
EDCs disrupting male signals, their potential for altering female responses, and the resulting 
implications for mating systems. Alteration of female signals or other reproductive 
characteristics, like number of eggs or size of eggs, is a separate and complex topic in itself and 
will not be considered in this review. 

 

MALE MATING SIGNALS AND FEMALE RECEIVERS – DEFINITIONS 

For present purposes, we define mating signals as male morphological and behavioral 
traits that may be capable of transmitting information about the transmitter’s quality and of 
influencing his reproductive success via female choice. Male quality expresses benefits that the 
male provides to the female, which directly or indirectly increase her fitness. Displays are 
behaviors aimed at attracting the attention of females and consequently showing off specific 
morphologies. Zahavi (1975) suggested that signals are costly to produce and maintain, 
“confer[ring] a handicap on survival”. These costs may include metabolic costs of production 
and maintenance, and predation and parasitization risks due to the conspicuous nature of the 
signal or the added burden of a large ornament. In some systems where there are neither 
metabolic nor predatory costs on signal production and maintenance, social rules enforce signal 
honesty (Harris sparrows, Zonotrichia quereula: Rohwer and Rohwer 1978; house sparrows, 
Passer domesticus: Moller 1987). Signals thereby allow for assessment of quality, as implied by 
studies showing positive correlations between signal strength and male quality. For example, 
acquired resistance, a measure of quality in guppies (Poecilia reticulata), correlates with 
sigmoidal displays and orange color spots (Lopez 1998); foraging ability, another heritable trait 
that measures quality in guppies, is associated with coloration (Karino et al. 2005); bill color of 
male blackbirds (Turdus merula) correlates with parental abilities (Preault et al. 2005); and 
redness of northern cardinals (Cardinalis cardinalis) is strongly associated with quality of 
territory the male defended (ability to defend a good territory was the measure of quality; 
Wolfenbarger 1999). A signal is a reliable indicator of quality if there is a strong correlation 
between trait values expressed by the males and their quality, as defined according to the 
species (Maynard Smith and Harper 2003). 
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A signal has to be detectable, discriminable and assessable. We define detectability as the 
probability that the signal stands out from noise and is thus recognizable as a signal; 
discriminability as the probability that the receiver can accurately discern the level of the signal 
compared to the range of signal values produced by other individuals in the population; and 
assessability as the probability that the female can accurately associate the signal value with 
the appropriate quality level. Females receive these signals and respond more strongly to males 
expressing higher trait values (Grafen 1990). We refer to the measure of the females’ response 
to a given quality as responsiveness. A female’s response to a signal (i.e. how much she 
invests – time, energy, eggs – in that particular mating event) may be hereditary (Pomiankowski 
1987), and a response has a cost to the female, either metabolic or through predation risk, or as 
lost mating opportunities (Pomiankowski 1987). Females should have distinct thresholds in true 
trait value below which they do not respond and above which they respond maximally. But trait 
values are perceived with error (Hoelzer 1989) and females differ in their threshold magnitude, 
resulting in responsiveness that can be expected to increase in a sigmoid fashion with male trait 
value. For each quality value there is a “best” response that maximizes female fitness (Grafen 
1990).  

To describe discriminability, I refer to Figure 2.1: here the x-axis represents the value of the 
trait (for example, wavelength being reflected, reflectance of a particular wavelength, frequency 
of sound waves, etc.), while the y-axis represents frequency density. Two representative curves 
are shown, each representing a particular mean trait value corresponding to a quality value. For 
explanatory purposes in this review, the curves represent a mean high trait value (𝐓�H) produced 
by a high quality male (expressing quality QH), and a mean low trait value (𝐓�L) produced by a 
low quality male (expressing quality QL). The y-axis then represents frequency of trait values 
expressed by males of quality QH and QL. The closer these curves are to each other, the less 
discriminable is the high trait value from the low trait value. Discriminability is thus a function of 
the difference between high and low-quality trait means, divided by their common standard 
deviation (cf. effect size of Cohen 1969). In reality, quality values will occur along a continuum, 
and corresponding trait values will also occur continuously. Discriminability would then refer to 
the probability that a trait value from a QH distribution is greater than a trait value from a QL 
distribution, for any pair of trait values selected randomly from the two distributions.  
Discriminability could be reduced either by smaller difference between the means, or by 
increased variance.  
 

ALTERED SIGNALS AND RESPONSES 

 Here I address altered signals and their implications, with a view to discussing implications 
of EDC-altered signals further in the article. Altered signals are traits used for signaling quality 
whose means have shifted substantially in a short span of time. After the change, these traits 
may or may not continue to signal the true quality of the signaler. Signals may be altered due to 
novel selection pressures like habitat changes (e.g. see the case study of great tits, Parus 
major, reviewed by Slabbekoorn and Ripmeester 2008). It is possible that the altered signal may 
continue to be discriminable as well as reliable, remaining a dependable indicator of quality, 
even if it is altered. Females may undergo an assessability lag, during which the sigmoid 
response curve is displaced along the axis of male quality because of decline in trait values 
(Figure 2.2A). Eventually under selection, by shifts in behavior or by evolutionary change, this 
curve may shift back to its former position along the quality axis. Consequently, if the trait values 
remain constant, the female response curve shifts along the axis of male trait values so that the 
new trait values generate responses similar to those previously associated with high and low 
male qualities (Figure 2.2B). Further, if endocrine disruption were to induce estrogenicity, 
females could become more responsive to male displays (as seen in ovariectomized African 
clawed frogs, Xenopus laevis treated with a combination of estradiol and progesterone: Kelley 
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1982; tungara frogs, Physalaemus pustulosus during periods of high circulating estradiol: Lynch 
et al. 2005), thus shifting the female response curve to the left and leading to less discrimination 
between high and low signal values (Figure 2.3A). In other words, females could become less 
choosy. An alternate possibility is that females become more choosy (as seen in zebra finches, 
Taeniopygia guttata treated with estradiol: Vyas et al. 2008; Vyas et al. 2009) by responding 
even lower to low signals and higher to high signals (Figure 2.3B). In this case, the sigmoid 
response curve has a steeper slope about the same inflexion point. A similar change in the 
curve, but with a shallower slope, could also produce less choosy responses. The exact 
theoretical mechanism by which estradiol produces choosier or less choosy female responses is 
not clear, but regardless there is evidence for both cases.    

Some alterations lower the discriminability of the signal. In Figure 2.4, suppose after 
exposure to endocrine disruptors the high trait curve moves closer to the low trait curve (Figure 
2.4B), or varied responses to the endocrine disruptor within the population lead to increased 
variances (Figure 2.4C); then the signal will be less discriminable or less reliable, respectively. 
Lowered discriminability implies a smaller range of trait values within the population, and does 
not necessarily imply unreliability of the signal. However, increased variance can reduce the 
correlation between trait value and quality, thereby reducing reliability (Figure 2.4C). Females 
may then be unable to rely on these traits to assess male quality. Not all altered signals are 
rendered unreliable, but they may be less reliable.  

I assume that the exogenous compound responsible for signal alteration does not generally 
affect quality itself. However this may not be the case in all situations. For example, if the 
compound is an anti-androgenic or estrogenic compound, the same vector might enhance 
immunocompetence by reducing androgen levels (Folstad and Karter 1992), or reduce 
immunocompetence via other pathways (reviewed in Ahmed 2000; Christin et al. 2003; Brodkin 
et al. 2007; Markman et al. 2008). In many animals, immunocompetence is a measure of quality 
(Hamilton and Zuk 1982; Lopez 1998). Such more complex cases are beyond the scope of this 
review. 

In a system where a trait has evolved to be a reliable signal, and alterations render it either 
less reliable or unreliable, it becomes costly for females to depend on that signal as an indicator 
of quality. In such situations, one might expect females to stop responding to the signal, or 
respond more weakly. As illustrated in Figure 2.5, the loss or weakening of the signal-quality 
correlation can lead to a cyclic pattern of reduced female responsiveness to the signal and to 
the consequent further weakening of the signal-quality correlation. Reduced female choosiness 
(as in Figure 2.3A) relaxes selection pressures on the signal to be discriminable and through a 
similar cyclical pattern leads to the signal becoming a less reliable indicator of mate quality. A 
combination of effects of EDCs on both male signals and female responses can hasten the 
process of rendering the signal unreliable (Figure 2.5). Conversely, increased female 
choosiness (as in Figure 2.3B) raises selection pressures to make signals more discriminable. If 
males are able to respond to these pressures, the signal can become a more reliable indicator 
of mate quality; but if males are unable to make their signals more discriminable, choosier 
females face high costs of unreliable signals and are likely to stop using the trait as a quality 
indicator. Other traits may evolve to become primary indicators of quality, while the earlier trait 
might disappear (Morris et al. 2005) or become secondary cues in female mate assessment 
(Scheffer et al. 1996; Seehausen and van Alphen 1998; reviewed in Candolin 2003). 

Signals evolve to be specifically received by conspecifics and often serve as mate-
recognition factors (also reviewed in Ptacek 2000; Schluter 2001; courtship songs of sympatric 
flies, Drosophila ananassae and D. pallidosa: Yamada et al. 2002; mating preferences of the 
swordtail fish, Xiphophorus pygmaeus: Hankison and Morris 2003). If received and responded 
to by heterospecifics, hybridization may occur. This can happen in closely related sympatric 
species with similar signals (bluegill sunfish, Lepomis macrochirus, and pumpkinseed sunfish, L. 
gibbosus: Konkle and Philipp 1992). Changes between populations in sexual traits are quite 
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often driven by sexual selection (reviewed in Panhuis et al. 2001). The coevolution between 
signalers and receivers (males and females respectively, in the case of this review) based on 
the trait strengthens the linkage between mate quality advertising and assessment. Altered 
signals could hence blur the distinction between closely related sympatric species, leading to 
hybridization and possibly loss of species (Seehausen et al. 1997; Seehausen and van Alphen 
1998).  
 
HORMONAL REGULATION OF MATING SIGNALS AND FEMALE RESPONSES 

Testosterone, an important androgen, is believed to play a key role in the development and 
maintenance of ornaments and other signals in male vertebrates (Hillgarth and Wingfield 1997). 
Synthesis of 5α-dihydrotestosterone (DHT) from testosterone is necessary for the development 
of external sexual organs (Neubert 2002). Aromatization of testosterone into estrogen in the 
brain is essential for the development and execution of appropriate male behaviors (Ball and 
Balthazart 2004).  

For the purpose of this review male traits will be subdivided into male-specific anatomies, 
male-specific morphologies and male-specific behaviors, all relating to reproductive function. 
“Anatomy” will refer to internal organs, such as the larynx, vomeronasal organ and brain, 
responsible for the production or perception of signals, while “morphology” will refer to external 
features such as color patterns, plumage and other ornaments. “Behavior” will refer only to sex-
specific reproductive behaviors. I will explore the role of androgens in the development and 
expression of these phenotypes.  

Androgens are crucial for the proper development of sexually dimorphic anatomies. The 
example of the development of the larynx in anurans, illustrated below, provides a well-studied 
example. Males of most anuran species vocalize as a mating signal. Females of most species 
do not vocalize, while those that do have a different vocalization pattern from males. It is the 
difference in larynx structures that permits this difference between males and females.  

Male vocalization requires certain specific muscle types that develop only in the presence 
of androgens. Male and female X. laevis produce distinctly different calls (Tobias et al. 1991). 
Production of male calls requires certain muscle types (fast twitch) that do not develop in 
females (Sassoon et al. 1987; Marin et al. 1990; Tobias et al. 1991). A larynx specific myosin 
heavy chain gene (LM) isolated from laryngeal muscles of X. laevis is responsible for 
conversion of laryngeal muscle type from slow twitch to fast twitch after metamorphosis (Catz et 
al. 1992). Expression of LM is regulated by endogenous androgens, especially DHT (Catz et al. 
1995); the maintenance of fast twitch muscle fibers also requires androgens (Potter et al. 2005). 
Similarly, the syrinx in song-birds is an androgen-sensitive organ (Gong et al. 1999; reviewed in 
Wade 2001): female zebra finches with increased testosterone increase the size of their 
syrinxes (Gong et al. 1999; Wade and Buhlman 2000), while castrated males have reduced 
syrinxes, which can be reversed with testosterone or androsterone treatment (Harding et al. 
1983). This has mainly been explored in zebra finches. 

Males of many vertebrate species have conspicuous morphologies like bright plumage, 
large tails, and characteristic color patterns that signal the individual’s quality to conspecific 
females. Development and maintenance of these sexually dimorphic morphologies is believed 
to be regulated by androgens and has been well studied in various taxa (red jungle fowl, Gallus 
gallus combs: Zuk et al. 1995; house sparrow badges: Gonzalez et al. 2001; superb fairy-wren, 
Malurus cyaneus plumage: Peters et al. 2001; guppy coloration: Jayasooriya et al. 2002; 
Strasser and Schwabl 2004; zebra finch beaks: McGraw et al. 2006; cirri lengths of Shermani 
salamanders, Plethodon shermani, used in uptake of pheromones: Schubert et al. 2006; cichlid 
Pundalimia nyererei nuptial coloration: Dijkstra et al. 2007). 

The role of androgens in mating behaviors of vertebrates has been studied quite 
extensively in different taxa. Male reproductive behaviors may be defined as actions 
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performed by males that increase mating success, reproductive success and offspring survival. 
These include territoriality, courting females, vocalization, mounting females, building nests, and 
parental care. Studies from different taxa have shown the dependence of these behaviors on 
androgens. 11-Ketotestosterone (KT), a potent teleost androgen was found to be required for 
parental care in bluebanded goby (Lythrypnus dalli) (Rodgers et al. 2006), courtship behavior in 
mosquitofish (Gambusia holbrooki) (Toft and Guillette 2005) and guppies (Baatrup and Junge 
2001; Bayley et al. 2002), and female recognition and courtship in goldfish (Carassius auratus) 
(Thompson et al. 2004b).  

 Studies on brain regions responsible for sexual behavior in birds and mammals have 
shown that the preoptic area (POA) and medial preoptic nucleus (POM) in the brain control 
these behaviors (reviewed in Ball and Balthazart 2004). These regions are sexually dimorphic 
and larger in males than in females. They are rich in androgen receptors. Castration causes 
these regions of the brain to shrink and corresponds to a reduction in sexual behavior, while 
implanting testosterone in the POA or POM can restore sexual behavior to pre-castration levels. 
Electrolytic lesions of the POM also disrupt sexual behaviors. It is believed that aromatization of 
testosterone into estrogen and DHT in these regions of the brain are responsible for male 
sexual behaviors (Ball and Balthazart 2004).  

Empirical studies have correlated testosterone levels with mating behaviors in several bird 
species (singing, pursuing females, aggression towards males, territoriality in red grouse, 
Lagopus lagopus scoticus: Watson and Parr 1981; altered mating systems from monogamy to 
polygyny in white-crowned sparrows, Zonotrichia leucophrys pugetensis, and song sparrows, 
Melospiza melodia: Wingfield 1984; crowing and mounting attempts in Japanese quail, Coturnix 
coturnix japonica: Balthazart et al. 1990; bower features in satin bowerbirds, Ptilonorhynchus 
violaceus: Borgia and Wingfield 1991; extra pair copulations and time spent with paired female 
in mallard ducks, Anas platyrhynchos: Davis 2002). Similar patterns are also seen in 
amphibians (vocalization pattern in X. laevis: Kelley 1978; calling rates in tungara frogs: Marler 
and Ryan 1996; also reviewed in Moore et al. 2005; clasping behavior in X. laevis: Potter et al. 
2005; activity levels associated with recognizing female pheromones in Shermani salamanders: 
Schubert et al. 2006).  

Estradiol has been implicated in several taxa as the primary driver for female responses to 
male mating signals. In female tungara frogs, estradiol treatment increases receptivity, a 
positive response to a conspecific male call (Lynch et al. 2006; Chakraborty and Burmeister 
2009), and permissiveness, a positive response to any male call, including unattractive calls 
(Lynch et al. 2006). Similarly, female tungara frogs were more receptive to male calls, and less 
choosy between attractive and unattractive calls during amplexus, the stage associated with 
increased levels of circulating estradiol when females are ready to oviposit (Lynch et al. 2005). 
In another study estradiol treatment made the frogs more choosy (Lynch et al. 2006); but here 
the females chose between an attractive conspecific call and a hybrid artificial call, which may 
simply resemble a heterospecific call rather than an unattractive conspecific call.  

Female X. laevis treated with a combination of estradiol and progesterone increase 
receptivity to males (Kelley 1982). Similar estrogenic control of female responses to male 
mating behaviors has been seen in zebra finches (Vyas et al. 2008; Vyas et al. 2009), where 
estrogen treated females were more receptive to male songs, but also more discriminating 
between complex and simple male songs. Female white throated sparrows (Zonotrichia 
albicollis) implanted with estradiol responded to male songs with “copulation solicitation 
displays”, which corresponded to an increased expression of zenk (also known as egr-1) 
expression in the auditory forebrain (Maney et al. 2006). Zenk expression is associated with 
positive responses to male songs. Another study on the same species showed that zenk 
expression increased in nine brain regions thought to be part of the “social behavior network” in 
response to male songs only in estradiol treated females (Maney et al. 2008). Similarly, female 
tungara frogs treated with human chorionic gonadotropin (which stimulates the production of 
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gonadal hormones) showed higher expression of egr-1 in the auditory midbrain in response to 
male choruses (Lynch and Wilczynski 2008). This mechanism is dependent on catecholamines, 
which allow the brain to respond selectively to important stimuli (LeBlanc et al. 2007). Estrogen 
treatment of female white throated sparrows increased density of catecholaminergic innervation 
in the auditory forebrain and the number of catecholaminergic cells in brain regions involved in 
song learning and production (LeBlanc et al. 2007).  

 

ENDOCRINE DISRUPTION OF MATING SIGNALS 

The term endocrine disruption refers to the interference with proper functioning of the 
endocrine system due to exposure to exogenous compounds. Common types of EDCs include 
organochlorides, organophosphates, polychlorinated biphenyls (PCBs), phthalates, synthetic 
hormones and hormone-blockers, and phytoestrogens. These enter the natural environment via 
such sources as pesticides, industrial effluents, pulp mill effluents, plastics and sewage. 
Significant routes of exposure include direct exposures from living in contaminated soil or water, 
as well as indirect exposures through eating contaminated prey (Markman et al. 2007; Markman 
et al. 2008; Park et al. 2009; Walters et al. 2010). It is important to note that EDCs are often 
irregularly distributed along a landscape, exposing individuals differentially within a population.    

Many ecological stressors that are not endocrine disruptors by definition also alter mating 
signals (acidification: Lorenz and Taylor 1992; hypoxia: Abrahams et al. 2005; heavy metals: 
Gorissen et al. 2005; Kuperberg et al. 2009; Ortiz-Santaliestra et al. 2009; Hallinger et al. 2010). 
Exploring these mechanisms is beyond the scope of this review. Here I restrict my discussion to 
EDCs, but note some effects of non-EDC contaminants and stressors (along with EDCs) on 
mating signals in Table 2.1.   

Goksoyr et al. (2003) list the mechanisms by which EDCs can alter the natural functioning 
of hormones: (i) agonistically, by binding to hormone receptors and mimicking natural 
hormones; (ii) antagonistically, by blocking or altering the binding of natural hormones to 
hormone receptors; (iii) altering production and breakdown of natural hormones; and (iv) altering 
production and function of hormone receptors. 

Estrogenic EDCs are agonistic and compete with estradiol to bind to estrogen receptors 
(ER-α or -β) (Kuiper et al. 1998), or increase endogenous estrogens by inducing aromatization 
(Fan et al. 2007). Exposure to estrogenic EDCs is associated with decreased circulating 
testosterone levels in male vertebrates (e.g. 4-tert-octylphenol (OP): Blake and Boockfor 1997; 
bisphenol-A: Takao et al. 1999; o,p’-DDT: Mills et al. 2001; endosulfan: Saiyed et al. 2003; Kim 
et al. 2007; atrazine: Hayes et al. 2010; Nakamura et al. 2010; Victor-Costa et al. 2010), thereby 
altering androgen-regulated mating signals. The mechanism by which estrogenic EDCs 
decrease testosterone production in testes appears to be via the reduced expression of 
steroidogenic enzymes (estadiol and diethylstilbestrol: Bartke et al. 1977; di(n-butyl) phthalate: 
Thompson et al. 2004a; OP: Kim et al. 2007; PCB: Murugesan et al. 2008) and altered 
cholesterol metabolism and transport (di(n-butyl) phthalate: Thompson et al. 2004a; OP: Kim et 
al. 2007) in Leydig cells.  

EDCs that have anti-androgenic effects in vertebrates prevent the binding of androgen with 
the androgen receptor (AR), thereby inhibiting transcription of AR-dependent genes. Binding of 
androgen to AR causes a conformational change in AR that is required for stabilization against 
proteolytic degradation, and for the AR dimerization necessary for transcriptional activation 
(Quigley et al. 1995; Zhou et al. 1995). Mechanisms by which anti-androgens inhibit the 
functioning of AR-dependent gene transcription are by preventing AR binding to DNA or by 
preventing initiation of transcription (Truss et al. 1994); most of the studied environmental anti-
androgens function by the former mechanism (Kelce and Wilson 1997). This disruption of AR-
dependent gene transcription can interfere with sex differentiation, development of sexually 
dimorphic anatomies, morphologies and behaviors, production of sperm, and maintenance of 
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sexually dimorphic morphologies and behaviors (as illustrated in Table 2.1), ultimately affecting 
the individual’s reproductive success.  

Evidence of contaminant induced alteration of male mating signals is seen in various taxa 
exposed to a range of chemicals. Table 2.1 lists examples of altered expression of male mating 
signals by exposure to various EDCs as well as non-endocrine contaminants. In most cases, 
exposure to the contaminant reduced the expression of the signal compared to the controls. 
Edwards and Guillette (2007) suggest that the increased gonopodial length of nitrate-exposed 
mosquitofish could be due to the inhibition of steroid synthesis because of the deactivation of 
P450 enzymes by nitrates. Of special interest is the paradoxical positive effect of EDCs on song 
characteristics accompanied by increased HVC volume, the brain region involved in singing, in 
the case of European starlings (Sturnus vulgaris), which increased their attractiveness to female 
starlings (Markman et al. 2008). These results are supported by evidence for the role of 
estrogens in the development of male-specific song nuclei in the brain of songbirds (Schlinger 
1997; Holloway and Clayton 2001). However the increased song complexity was accompanied 
by reduced immunocompetence, which has implications for fitness (Markman et al. 2008). It is 
not clear whether the increased song complexity was proportional to mate quality in this study. 
But if immunocompetence can be considered a measure of mate quality, then the increased 
song complexity and decreased immune responses as a result of EDC-exposure only blurs the 
correlation between signal and quality, leading to females being attracted to individuals of 
perhaps lower quality than expected. However, these results are not consistent with other 
studies; Iwaniuk et al. (2006) showed a decreased volume of brain regions involved in singing 
and sexual activities in American robins (Turdus migratorius) that came from nests with eggs 
containing high DDT levels. Heavy metals also appear to negatively affect song characteristics 
(see Table 2.1 for details). Hence the effects of EDCs on birdsong appear to depend on the 
particular pollutant, and the exact mechanisms of action are not clear. The effects of various 
pollutants on reproductive behaviors of fish including courtship behaviors, parental care and 
aggression have been reviewed in Jones and Reynolds (1997).  

 

ECOLOGICAL IMPLICATIONS OF ALTERED MALE MATING SIGNALS 

Signal disruption due to feminization of males exposed to EDCs can have significant 
ecological effects, if the contaminant affects a large section of the population. Altered mating 
signals can include size of ornaments, intensity of colored signals, pheromonal production, and 
courtship behaviors such as displays, nest building, and competitiveness (reviewed in Clotfelter 
et al. 2004). Females discriminate against males with EDC-altered mating signals (e.g. Arellano-
Aguilar and Garcia 2008; Secondi et al. 2009), thus directly affecting the males’ fitness. Altered 
demographics, and local extinctions in extreme cases, are possible if females do not adapt or 
otherwise adjust to the altered signals soon enough. If the altered signal is not reliable, both 
males and females incur higher costs that reduce reproductive success. Costs to males include 
reduced mating opportunities; costs to females include possible reductions in offspring number 
and quality. Similar costs also arise for females if endocrine disruption renders them less 
choosy; in this case it is also unduly costly for males to have discriminable signals. If however, 
females are rendered more choosy, they incur heavier costs by depending on unreliable signals. 
Increased choosiness can increase the frequency of extra-pair copulations (EPCs) in species 
where this occurs (Kempenaers et al. 1997). Increased mating frequency increases fitness 
costs such as predation risks, energy costs, the risk of pathogen transfer, and so forth (Keller 
and Reeve 1995). Increased EPCs can further alter demographics by decreasing effective 
population sizes. Fitness costs to females and propagation of lower quality individuals as a 
result of signal mis-communication have consequences for population persistence (Kokko and 
Brooks 2003).The effects on individuals have obvious links to population level effects via 
reduced reproductive success resulting from signal mis-communication and supernormal clutch 
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sizes (with reduced success) from female-female pairs as a result of reduced availability of male 
partners (Hunt and Hunt 1977; Ryder and Somppi 1979; Fox 1992).  

The effects of mate choice on population dynamics have been reviewed by Quader (2005), 
and the implications are relevant to altered mating signals. It has been suggested by several 
authors that environmental changes are more threatening to species with higher degrees of 
sexual selection (Kokko and Brooks 2003; Morrow and Pitcher 2003); altered mating signals in 
such species could affect population viability. The resulting low fitness of individuals in these 
contaminated habitats can produce ecological sinks (Matson et al. 2006). Sex ratios can be 
skewed due to decreased predatory risks for males as a result of less obvious ornaments. This 
can also have community and ecosystem level effects if population sizes fluctuate 
uncharacteristically (e.g. Whiles et al. 2006; Brown and Lawson 2010). Altered mating signals 
can affect parasite-host relationships where parasites detect hosts by their mating signals (Zuk 
and Kolluru 1998).  

Gomulkiewicz and Holt (1995) developed a population growth model to predict when 
populations would avoid extinctions in novel environments that reduce fitness. They defined a 
species-specific critical threshold level of population size, Nc, below which the population is at 
risk of extinction due to demographic stochasticity. Reduced reliability of signals under severely 
altered environmental conditions could trigger a decline below Nc. In this case natural selection 
will drive altered female preferences to the extent that these are genetic; sexual selection on 
males may produce greater investment in signaling to increase signal expression despite 
endocrine disruption, potentially causing population size to increase above Nc. In the model, the 
degree of initial maladaptation to the novel environment β0 depends directly on the difference 
between the initial mean trait value and the optimal trait value for the altered environment.  Initial 
maladaptation also depends inversely on the variance in the trait value about the mean.  
Assume the trait is female responsiveness, the ability to correctly assess male quality and 
respond accordingly. Altered signals might require females to alter their responses (as in Figure 
2.2). Hence their original responsiveness will be a maladaptation. The farther this is from the 
responsiveness required to maximize fitness in the face of altered male signals, and the lower 
the original variation in this trait was, the higher the degree of maladaptation. If β0 is very high 
as a result of strong coevolution between the trait and female responsiveness over the years, 
then there is a higher chance of local extinctions. The assessability lag (during which females 
shift their response curve to adapt to the new trait values) will be a crucial factor in determining 
whether the population will be able to rise above Nc before stochasticity eliminates it. 

Exposure to EDCs can have physiological implications that might be important for 
carotenoid-based signal expression. The carotenoid allocation trade-off between mating signal 
and immunocompetence plays an important role in the evolution of many mating systems (Hill 
1991; Folstad and Karter 1992; Zuk 1992; Lozano 1994); disruption of this relationship can have 
ecological and evolutionary implications. Elevated androgen levels retard an individual’s 
immune response (Folstad and Karter 1992), leading to the honesty of androgen-regulated 
signals (Immunocompetence Handicap Hypothesis: Folstad and Karter 1992). Carotenoids can 
function as immunoenhancers (McGraw and Ardia 2003; Grether et al. 2004; but see also 
Kolluru et al. 2006). Also androgens are thought to have a positive effect on bioavailability of 
plasma carotenoids because of increased dietary intake due to elevated androgens, increased 
mobilization of carotenoids from body stores, or increased absorption efficiency of ingested 
carotenoids as a result of elevated androgen levels (Blas et al. 2006). Most carotenoid-based 
signals are believed to be truthful signals because a high quality individual (defined by his 
immunocompetence) can allocate more carotenoids to the signal and less to his immune 
system (Faivre et al. 2003; Alonso-Alvarez et al. 2004). Besides affecting androgen levels, 
EDCs can directly or indirectly impact immunocompetence (reviewed in Ahmed 2000; Ndebele 
et al. 2003; Hayes et al. 2006b; Inadera 2006; Brodkin et al. 2007; Filby et al. 2007), circulating 
plasma carotenoid levels, and consequently the allocation of carotenoids to the different 
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functions. Altered immune responses are crucial to population dynamics especially in 
environments with high pathogen and parasite densities. Thus understanding how EDCs might 
affect immune responses and allocation of carotenoids can be of ecological importance.  
 

EVOLUTIONARY IMPLICATIONS OF ALTERED MATING SIGNALS 

Evolved resistance to pollutants in target and non-target species has been documented; a 
large body of literature exists on this topic (reviews: Dover and Croft 1986; Roush and 
McKenzie 1987; Croft and van de Baan 1988; Leibee and Capinera 1995; Bard 2000; here I cite 
a few examples: Hemingway and Ranson 2000; Twigg et al. 2002; Brammell et al. 2004; Lopes 
et al. 2008; Brausch and Smith 2009; Arzuaga and Elskus 2010). If individuals develop 
resistance to EDCs, their mating signals may not alter. However, there are bound to be 
differential levels of resistance within a population with some individuals being better able to 
resist the pollutant than others; hence the degree of signal alteration will differ accordingly. 
Whether this will correlate with quality cannot be predicted. If resistance correlates with quality, 
then the altered signal may also correlate with quality, maintaining signal reliability; otherwise, 
signals may become less reliable. Further, some populations may evolve resistance, while 
others may not. This is an important topic that cannot be addressed within the scope of his 
article. I restrict my discussion to situations where signals are subject to being altered by EDCs.  

Altered signals in local populations due to persistent multi-generational exposure to EDCs 
can have significant evolutionary implications. Genetic divergence in the form of resistance to 
EDCs has been detected (Elskus et al. 1999; Crews et al. 2000). Divergence as a result of 
sexual selection in altered habitats has been documented (Seehausen et al. 1997; Craig and 
Foote 2001). However, divergence due to selection on altered signals resulting from EDCs has 
not been examined. Vertebrate and invertebrate traits can evolve rapidly across a few 
generations (Thompson 1998; Lande et al. 2001), notably including reproductive proteins (Clark 
et al. 2006). Labonne and Henry (2010) showed with a simulation model that phenotypic 
divergence in response to natural and sexual selection can occur within twenty generations; the 
simultaneous evolution of female preference is somewhat slower, taking upto two hundred 
generations or longer. It is worth examining whether these anthropogenic factors can lead to 
varied responses of females to male signals, disappearance of signals in some populations, or 
evolution of novel signals in others. 

Many ecological and behavioral factors can cause or facilitate disruptive selection and 
ultimately speciation. The most common of these factors are female preference for male 
phenotypes (Seehausen et al. 1999; Ptacek 2000) and environmental changes (passerine birds: 
Barraclough et al. 1995; mouse subspecies, Mus musculus domesticus and M. m. musculus: 
Laukaitis et al. 1997; cichlid fishes: Seehausen et al. 1997; anurans: Ptacek 2000; Little 
Greenbul, Andropadus virens: Slabbekoorn and Smith 2002). Craig et al.(2001) discovered a 
polymorphism in sockeye salmon (Oncorhynchus nerka) as a response to altered environment. 
Anadromous sockeye landlocked in freshwater lakes are nonanadromous and are called 
kokanee. Both sexes of sockeye and kokanee turn bright red at maturation. However, fresh 
water systems are poor in nutritional resources and should provide relatively low levels of 
carotenoids. Sockeye bred in fresh water remain green due to a lack of carotenoids. Apparently 
because of a sexual preference for the color red, kokanee evolved more efficient mechanisms 
of carotenoid utilization, thus diverging genetically from the ancestral sockeye (Craig and Foote 
2001). This is a clear example of genetic divergence driven by selection on a signal altered due 
to habitat modification. 

Male signal production and female response to the received signal have coevolved 
(Arnqvist and Rowe. 2005) such that females can adjust their response to varying levels of 
signal quality. In recent decades, rapid environmental changes have lead to drastic alterations 
of habitats of many animals, with important implications for mating interactions. For example, 
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turbidity reduces perceptivity of visual signals in aquatic species (Seehausen et al. 1997), 
structural modifications of habitats alter perception of auditory signals (Telford et al. 1989; 
Gerhardt 1992), and noisy environments cause animals to vocalize less (Lengagne 2008). If 
novel environmental changes prevent the signal perceived by the female from reliably reflecting 
quality, will female responses shift accordingly? A different disruption of these signaling systems 
can occur when environmental changes affect the male trait, causing him to alter the transmitted 
signal. In this case, females perceive signals as they are produced, but it is the production that 
is disrupted. But female perception of signals can also be altered by EDC-exposure, as 
discussed above. In any case, environmental changes are causing a discrepancy between male 
traits and female assessment of male quality.  

 Female responses to male signals can be a strong driving force for genetic divergence. 
In a population where sufficient numbers of individuals are exposed to endocrine disruptors, the 
exposed males may no longer be able to produce signals that correspond to their quality. There 
may be reduced discriminability as well as reliability (Figure 2.2). Such ideas have been 
suggested by other authors (Secondi et al. 2009) but remain to be tested. Females should 
rapidly lose the preference across generations if the trait no longer signals true quality. This 
process should be hastened by altered female choosiness (Figs 3 and 5). 

Males of several swordtail fish species of the genus Xiphophorus have tails with long 
swords apparently to indicate larger body size to females (Basolo 1998a, b; Rosenthal and 
Evans 1998). Females of the descendent species X. nigrensis have lost their preference for the 
sword, yet the males have not lost their swordtails. Basolo (1998a) and Rosenthal, Wagner and 
Ryan (2002) postulate that increased predation risks of associating with sword-bearing males, 
or scarcity of heterospecifics reducing the need for strong species recognition, may have 
undermined preference for the ornament. If production and maintenance of the sword were 
expensive, there would be natural selection pressures on males to lose the sword. Though the 
sword is a relatively inexpensive ornament with regard to metabolism (Rosenthal et al. 2002), 
predation risks associated with a conspicuous ornament are high, and the persistence of the 
trait is perplexing (Rosenthal et al. 2002). It is possible that the sword has other purposes, such 
as determining dominance in intraspecific competition (Rosenthal et al. 2002). 

But sexually selected male traits can be lost (reviewed in Wiens 2001). Swordtail fish 
species show a range of morphological and behavioral signals. Males of the species X. 
continens do not have any of the reproductive characteristics that other swordtail males exhibit 
as mating signals (Morris et al. 2005). These males are small and lack swords and color 
patterns (vertical bars). A lack of female preference for large males and low male-male- 
competition may account for the loss of large body size in these males, but the loss of vertical 
bars and swords remain unexplained (Morris et al. 2005).  

How do females then assess mate quality? A mutant female may use a different indicator 
to assess male quality that may not require androgens for maintenance. The cichlid fishes of the 
eutrophic Lake Victoria use body size to assess mates, whereas they were using color before 
the disruption of visual signals by increasing turbidity (Seehausen et al. 1997). There is a higher 
rate of hybridization in these lakes, leading to the loss of species and possibly emergence of 
new ones if hybridized fishes persist. Such situations may lead to the evolution of a new signal 
of quality that females use for mate assessment by starting a whole new sequence of 
coevolutionary signal production and response between males and females (as illustrated in 
Figure 2.5). Conversely, decreased female choosiness might lead to a scramble-competition 
mating system where females bias male mating success through resistance and cryptic choice 
(Dunn et al. 1999; Blanckenhorn et al. 2001; Nahrung and Allen 2004), with sexual selection 
acting more on male traits enabling better access to females (Dunn et al. 1999; Bertin and 
Cezilly 2003; Alcock and Kemp 2005; Bertin and Cézilly 2005; Greene and Funk 2009; Lu et al. 
2010). 



 

14 
 

If the effects of EDCs span many generations, there is the possibility of a mutation in 
female preference that can be heritable. Female preferences for certain male traits are believed 
to be heritable (Lande 1981; Kirkpatrick 1982; Pomiankowski 1988; Haesler and Seehausen 
2005). Labonne and Hendry’s (2010) simulation of guppy evolution suggested two hundred 
generations or more for detectable changes in female preference; for guppies, this can translate 
to about seventy years. Certain chemicals are extremely persistent in the environment. DDT, 
one of the most persistent organic pollutants, has a half-life in soil of upto 15 years, depending 
on the type of soil (HSDB http://toxnet.nlm.nih.gov/). This means that a hundred years later 
approximately 1% of the current amount of DDT will still be present in the soil. This may be 
significant in areas of intense use of the chemical. Further, some chemicals may continue to be 
used by humans for many years. Can this time frame be enough to produce genetic 
divergence? Also, would genetic changes persist in an environment free of endocrine 
disruptors?  

With this in mind, I expect a population of animals exposed to endocrine disruptors to alter 
their mating systems relative to unexposed populations. Evolution of resistance should not 
affect this prediction due to differential degrees of resistance within a population. Females may 
be less choosy with less discriminable mating signals, or females may rely on different 
indicators of male quality. It is also possible that females could evolve more astute sensory 
systems. In extreme cases where signals become totally unreliable, a new system of mate 
quality assessment may evolve – a system different from that of conspecifics not exposed to 
endocrine disruptors. If the original male trait was based on pre-existing sensory biases, the 
female preference may re-establish in the population, leading to the reemergence of that trait as 
a signal. Otherwise, in rare cases, this genetic divergence might lead to speciation if the new 
male trait used for quality assessment becomes elaborated under selection associated with 
refocused female preference. To my knowledge, speciation as a result of EDC-exposure has 
not been documented, but genetic divergence in the form of resistance has been observed 
(Elskus et al. 1999; Crews et al. 2000). EDCs often do not affect entire populations due to their 
irregular distribution in the environment; further there is usually gene flow between exposed and 
unexposed groups. However, when large amounts of persistent EDCs cover an extensive area 
(e.g. Lake Apopka: Woodward et al. 1993), animal populations inhabiting these places might 
diverge from their unexposed relatives after multiple generations of exposure and relative 
isolation.  

 
FUTURE DIRECTIONS 

Field studies on altered male reproductive characteristics have been conducted in EDC 
contaminated habitats (reviewed in Rattner 2009). Of further interest would be to study whether 
endocrine disruption alters female responses to EDC-exposed and unexposed males, and to 
quantify fitness costs of these altered responses. To understand the evolutionary implications of 
endocrine disruption, we need data on whether the relationship between a male mating signal 
and the measure of quality for that species is comparable in contaminated versus 
uncontaminated habitats. Quantifying the allocation of dietary pigments like carotenoids, as well 
as those synthesized de novo like melanin and pterins, to various physiological and 
reproductive functions, would provide insights into the effects of endocrine disruption on the 
value of these pigments as mediators of honest signals. Mathematical models could be 
developed to project the fate of a signal in disrupted environments. Long term mesocosm 
experiments using species with short generation times might provide better insights into these 
questions. Larger variances in measured traits as a response to EDCs might imply variance 
within the population in resistance to the contaminant, raising questions about the mechanics of 
differential development of resistance to EDCs among individuals.  



 

15 
 

Genetic divergence, and perhaps speciation could be extreme results of persistent 
exposure of local populations to endocrine disruptors; however, there is no direct empirical 
evidence of such phenomena. When responses occur on evolutionary time scales, experiments 
to test these hypotheses might be unrealistic in many systems. Comparative genomic studies of 
species in contaminated and un-contaminated areas could provide us with information on 
genetic divergence between endocrine disrupted and non-disrupted populations. Mathematical 
models could project the fate of populations with disrupted signaling systems. While ecological 
and physiological implications of EDCs have received scientific focus, it is now necessary to 
divert these efforts to the understanding of rapid evolutionary changes in local populations 
exposed to EDCs over several generations.  
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Table 2.1. Empirical studies showing altered reproductive traits in male vertebrates after contaminant-exposure. The arrows indicate 
the direction of change compared to controls. See Jones et al. (1997) for a review of the effects of pollutants on reproductive 
behaviors in various fish species. 
 
Species Trait disrupted  EDC Reference 
Guppy 
(Poecilia reticulata) 

Sigmoid display rate   Flutamide, DDE, Viclozolin (Baatrup and Junge 2001) 

Time spent in mating behaviors  Flutamide, DDE, Viclozolin (Baatrup and Junge 2001) 

Area of orange color spots 
 

 Viclozolin, Flutamide  
4-tert-Octylphenol 

(Baatrup and Junge 2001) 
(Toft and Baatrup 2001) 

Gonopodium length  Vinclozolin (Bayley et al. 2002) 

Three-spined 
stickleback 
(Gasterosteus 
aculeatus) 

Nest building behavior, courtship 
behavior 

 Fenitrothion 
 

(Sebire et al. 2009) 

Courtship behavior  Perchlorate (Bernhardt and von Hippel 2008) 

Atlantic salmon 
(Salmo salar) 

Olfactory response to female 
pheremones 

 Atrazine 
Atrazine, simazine 

(Moore and Waring 1998) 
(Moore and Lower 2001) 

Medaka 
(Oryzias latipes) 

Courtship behavior  Tributyltin, mixture of 
tributyltin + PCBs 

(Nakayama et al. 2004) 

Amarillo fish 
(Girardinichthys 
multiradiatus) 

Median fins  Methyl parathion (Arellano-Aguilar and Garcia 
2008) 

Courtship behaviors  Methyl parathion (Arellano-Aguilar and Garcia 
2008) 

Sand goby 
(Pomatoschistus 
minutus) 

Courtship  17α-ethynyl estradiol (Saaristo et al. 2009) 
Leading female to nest  17α-ethynyl estradiol (Saaristo et al. 2009) 
Completion for nesting sites  17α-ethynyl estradiol (Saaristo et al. 2009) 

Mosquitofish 
(Gambusia holbrooki) 

Gonopodium length  Nitrate (Edwards and Guillette 2007) 

Fighting fish 
(Betta splendens) 

Opercular display  Hypoxia (Abrahams et al. 2005; Kuperberg 
et al. 2009) 
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Table 2.1, continued 
Palmate newt (Triturus 
helveticus) 

Secondary sexual traits 
(combination of filament length, 
tail height, hind foot web area) 

 Nitrate 
 

(Secondi et al. 2009) 

Olfactory cues  Nitrate (Secondi et al. 2009) 

Iberian newt 
(Lissotriton boscai) 

Total courtship time  Acidification (Ortiz-Santaliestra et al. 2009) 
Persuasion index  Acidification (Ortiz-Santaliestra et al. 2009) 
Time to begin courtship  Acidification (Ortiz-Santaliestra et al. 2009) 

Table 2.1, continued 
African clawed frog  
(Xenopus laevis) 

Larynx size  Atrazine (Hayes et al. 2002a) 
Size of nuptial pads  Atrazine (Hayes et al. 2010) 
Size of breeding glands  Atrazine (Hayes et al. 2010) 
Larynx structure resembled female 
larynges 

     Atrazine (Hayes et al. 2010) 

Alligator (Alligator 
mississippiensis) 

Penis size  pp-DDE1 (Guillette et al. 1996; Guillette et 
al. 1999) 

Japanese quail 
(Coturnix  coturnix 
japonica) 

Strutting and copulatory behavior  Flutamide (Adkins-Regan and Garcia 1986) 
Reproductive behaviors  Ethinylestradiol, 

diethylstilbestrol 
(Halldin 2005) 

European starling 
(Sturnus vulgaris) 

Song characteristics (time spent 
singing, number of song bouts, 
song bout duration, repertoire 
size) 

 mixture of estradiol + 
dioctylphthalate + 
bisphenolA + 
dibutylphthalate 

(Markman et al. 2008) 

HVC (brain area controlling song)  mixture of estradiol + 
dioctylphthalate +  

(Markman et al. 2008) 

   bisphenolA + 
dibutylphthalate 

 

American robin 
(Turdus migratorius) 

Brain regions involved in singing 
and sexual behavior 

 DDT (Iwaniuk et al. 2006) 

Carolina Wren  
(Tryothorus  

Song characteristics (tonal 
frequency, note types per song,  

 Mercury (Hallinger et al. 2010) 

                                                
1 Note: These studies were conducted on alligators inhabiting contaminated lakes. The contaminant is suspected to be pp-DDE, but it is possible 
that other contaminants might have induced the change in the measured trait. 
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Table 2.1, continued 
ludovicianus),  
House Wren 
(Troglodytes aedon) 

average strophe length, peak 
frequency of most repeated 
element) 

   

Song sparrow 
(Melospiza melodia) 

Song characteristics (tonal 
frequency, peak frequency and 
bandwidth of buzz notes, number 
of note types per song) 

 Mercury (Hallinger et al. 2010) 

Great tit 
(Parsus major) 

Amount of song, repertoire size   Lead (Gorissen et al. 2005) 
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Figure 2.1. Discriminability between signal trait values represented by individuals of two 
differing quality values. The solid curve represents the trait value (TH) produced by the high 
quality male (QH) while the broken curve represents the trait value (TL) produced by the low 
quality male (QL). The means are represented by T�H and T�L respectively. Discriminability is a 
function of the difference between high and low-quality trait means, divided by their common 
standard deviation (effect size: Cohen 1969). The higher the discriminability, the greater is the 
probability that the high trait stands out distinctly from the low trait. The overlapping areas allow 
for incorrectly identifying the low trait as being produced by the high quality male or vice versa.  
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Figure 2.2. Female responses to the altered male signals. The solid line represents original 
female responsiveness to unaltered signals. (A) After endocrine disruption, females respond RH

′  
and RL

′  respectively to the altered mean trait values T�H′  and T�L′, which is a lower than RH 
(response to T�H) and RL (response to T�L). This reduced response increases fitness costs to both 
males and females, imposing selection pressures on females to alter their responses. Hence, 
across generations, female responses should adjust to the altered signals such that a strong 
response (RH) should now match the altered mean high trait value T�H′  and the weak response 
(RL) should match T�L′. The time taken for this shift is the assessability lag. (B) After endocrine 
disruption, both high quality and low quality males signal lower than their original means. 
Females will associate these lowered trait values with lower quality and respond more weakly 
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leading to a shallower response curve (broken line). Hence there is a shift in female responses 
to male quality, which follows the shift (solid arrow) in female responses to trait values. 
Eventually, females adapt to the altered trait values and their responses to quality shift back to 
the original (broken arrows).  
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Figure 2.3. Altered female responses to male traits as a result of endocrine disruption. (A) 
Exogenous estrogens increase female responses to displaying males, which moves the female 
response curve to the left (dashed line). Hence for the same male trait value, females respond 
more strongly. This also reduces the difference in response to a high trait value versus a low 
trait value, thereby reducing female discrimination between two trait values. Female choosiness 
(i.e. discrimination between high and low trait values) is depicted by the solid and dashed 
double ended arrows between the high and low responses, before and after EDC exposure 
respectively. Note that this reduced discrimination is particularly clear when the two male traits 
are somewhat symmetrical on either side of the inflexion point. (B) Exogenous estrogens could 
alter the response curve by shifting it about the inflexion point with a steeper slope. This would 
produce choosier responses to the same male traits.    
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Figure 2.4. Characteristics of altered male signals after exposure to EDCs. High quality males 
(QH) produce a mean trait value T�H before disruption and T�H′  after disruption. Low quality males 
(QL) produce a mean trait value T�L before disruption and T�L′ after disruption. Panels on the left 
associate male trait value with male quality. Regressions will generally have variation around 
the lines, but this has not been shown (except in panel C) for clarity’s sake. Panels on the right 
are frequency density plots of male trait values in the population expressed by high quality and 
low quality males. Solid lines represent trait values before endocrine disruption and broken lines 
after endocrine disruption. In the frequency density plots, black curves represent high trait 
values, and gray curves represent low trait values. (A) The slope of the regression line after 
disruption may be the same as that of the regression line before disruption; in this case the 
signal will continue to be reliable (same slope) and discriminable (same d). (B) If exposure to 
EDC causes a proportional reduction in trait values, then the slope will become lower, reducing 
reliability as well as discriminability (by reducing the mean between TH′  and TL′ curves).  (C) 
Response to the endocrine disruptor will not be similar by all individuals of a given quality in the 
population. This will increase the variance of the frequency density curves. The slope may or 
may not remain the same after disruption (for simplicity’s sake, it has been depicted as 
unchanged in this figure). Increased variance will reduce discriminability, as well as the reliability 
(by a reduction in correlation between trait value and quality). If this is combined with a reduced 
slope, then the outcome will be an even less discriminable and reliable signal.  
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Figure 2.5. Mechanism by which a trait might evolve into a signal or be lost. If there is a positive 
correlation between the male trait and male quality within the population, the trait has a stronger 
probability of becoming reliable as a signal of true quality. The more reliable a trait is as a 
signal, the stronger the selection on females to discriminate between high and low signalers, 
thereby strengthening female preference. As female preference strengthens, there is selection 
on the male trait to become more distinctive, discriminable, and increase specificity to be 
received by desired receivers only. There are generally costs associated with improving these 
traits, and high quality males are able to afford these costs better than low quality males (Grafen 
1990; Moller & Lope 1994). This feeds back into further strengthening the correlation between 
variation in the trait and variation in male quality in the population. Conversely, if the correlation 
between trait and male quality is reduced (due to exposure to EDCs) as in Figure 4, there will be 
subsequent negative impacts at all stages of the chain causing a weakening of the male trait 
properties and a further weakening of the correlation between trait and quality. Lowered female 
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choosiness (due to EDC exposure) as in Figure 2.3A can also lead to the same result. This 
process is expedited when both males and females are affected by EDCs. Increased 
choosiness increases costs to females if males, due to endocrine disruption, are unable to make 
their signals more discriminable; hence this too leads to a similar outcome. 
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CHAPTER THREE. ENVIRONMENTALLY REALISTIC EXPOSURE TO THE HERBICIDE ATRAZINE ALTERS 
SOME SEXUALLY SELECTED TRAITS IN MALE GUPPIES 
 
SUMMARY 

Male mating signals, including ornaments and courtship displays, and other sexually selected 
traits, like male-male aggression, are largely controlled by sex hormones. Environmental 
pollutants, notably endocrine disrupting compounds, can interfere with the proper functioning of 
hormones, thereby impacting the expression of hormonally regulated traits. Atrazine, one of the 
most widely used herbicides, can alter sex hormone levels in exposed animals. I tested the 
effects of environmentally relevant atrazine exposures on mating signals and behaviors in 
guppies, a sexually dimorphic freshwater fish. Prolonged atrazine exposure reduced the 
expression of two honest signals: the area of orange spots (ornaments) and the number of 
courtship displays performed. Atrazine exposure also reduced aggression towards competing 
males in the context of mate competition. In the wild, exposure levels vary among individuals 
because of differential distribution of the pollutants across habitats; hence, differently impacted 
males often compete for the same mates. Disrupted mating signals can reduce reproductive 
success as females avoid mating with perceptibly suboptimal males. Less aggressive males are 
at a competitive disadvantage and lose access to females. This study highlights the effects of 
atrazine on ecologically relevant mating signals and behaviors in exposed wildlife. Altered 
reproductive traits have important implications for population dynamics, evolutionary patterns, 
and conservation of wildlife species. 
 
 

INTRODUCTION 

The role of sex hormones in the expression of sexually selected traits has been established 
in many vertebrate species, especially in males (examples: Zuk et al. 1995; Hillgarth and 
Wingfield 1997; Peters et al. 2001; Jayasooriya et al. 2002; McGraw et al. 2006). Disruption of 
the expression or perception of such traits can influence mate choice and evolutionary patterns 
(Seehausen et al. 1997; Seehausen and van Alphen 1998; Slabbekoorn and Ripmeester 2008; 
reviewed in Shenoy and Crowley 2011). The increase in various forms of pollution is becoming 
an important factor in such disruptions (Seehausen et al. 1997; Mockford and Marshall 2009) 
and is hence instrumental in shaping evolutionary trajectories. A common form of pollution is 
caused by endocrine disrupting compounds (EDCs), which interfere with proper hormonal 
functioning. These compounds can be natural or synthetic in origin, including organochlorines, 
organophosphates, polychlorinated biphenyls (PCBs), phthalates, synthetic hormones and 
hormone-blockers, and phytoestrogens. Many of them have anthropogenic sources such as 
pesticides, industrial effluents, pulp mill effluents, plastics and sewage. Significant routes of 
exposure include direct exposures from living in contaminated soil or water, as well as indirect 
exposures through eating contaminated prey (Markman et al. 2007; Markman et al. 2008; Park 
et al. 2009; Walters et al. 2010). EDCs can alter reproductive success by affecting all aspects of 
the reproductive system, including gonadal formation, production of hormones and gametes, 
sex determination (Basrur 2006), formation of egg shells (Porter and Wiemeyer 1969), and 
production (Kelce and Wilson 1997; Basrur 2006) and maintenance of mating signals and 
behaviors  (Palanza and vom Saal 2002; Milnes et al. 2006).  

The effects of EDCs on wildlife have been receiving increasing attention in the literature in 
recent years. While earlier toxicological studies focused on mortality effects from acute 
exposures, ecotoxicologists are now focusing on sub-lethal effects of more realistic exposures. 
Sub-lethal effects can be subtle yet far-reaching by influencing population and community 
dynamics through cascading effects. Population level effects may include altered demographics 
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(Willingham 2005; Kidd et al. 2007; Kristensen et al. 2007; Cotton and Wedekind 2009) and 
mating systems (Hunt and Hunt 1977; Saaristo et al. 2009; Secondi et al. 2009; Partridge et al. 
2010). This can affect community dynamics by impacting species closely associated with the 
focal species. Multi-generational effects due to persistence of pollutants in the environment 
across generations, or via maternal transfer, can affect evolutionary trajectories of these species 
as a result of altered sex ratios and mating systems.  

The current study focused on the effects of atrazine, a widely used triazine herbicide. 
Atrazine is the second most commonly used pesticide in the US (Grube et al. 2011). It is 
resistant to degradation, and its half-life in surface waters can be over 700 days (Solomon et al. 
1996; Comber 1999). Many animal species that spend all or part of their life cycle in water can 
be exposed to significant levels of the chemical for a considerable part of their life. 
Concentrations of atrazine in water bodies around agricultural fields are expected to be in the 
range of 19-194 ppb (90 day average) depending on the type of crop and application rate 
(USEPA 2006a). Non-target species inhabiting water bodies around agricultural fields are 
particularly at risk for exposure to atrazine. Atrazine induces aromatization of testosterone to 
estradiol (Hayes 2005; but see Hecker et al. 2005; Fan et al. 2007), thereby causing an 
estrogenic effect in exposed individuals. Several studies have demonstrated the feminizing 
effects of atrazine in amphibians (Hayes et al. 2002b; Hayes et al. 2002c, 2003; Hayes et al. 
2010), yet the number of studies with ambiguous and conflicting results (Solomon et al. 2008; 
Rohr and McCoy 2010) contributes to preventing policy changes regarding the use of this 
pesticide.  

Here, I tested whether prolonged exposure to atrazine can alter male mating signal 
expression, including ornamentation and mating behaviors. I used guppies (Poecilia reticulata) 
as a model organism to test these questions, as guppies have distinct sexual dimorphism, their 
mating signals and behaviors have been well characterized (Houde 1997), and the role of sex 
hormones in the expression of these traits has been explored (Jayasooriya et al. 2002; Hallgren 
et al. 2006). Further, guppies have been used for testing similar questions in other 
ecotoxicological studies (Baatrup and Junge 2001; Toft and Baatrup 2001; Kristensen et al. 
2005). Guppies are small tropical fish native to Trinidad and parts of South America. They are 
especially useful for testing hypotheses related to sexual selection. Males have different colored 
spots on their body and fins (Houde 1997); they perform characteristic courtship displays (called 
“sigmoid” displays) and attempt forced copulations. Mating is predominantly through female 
mate choice; females respond to courtship displays and to males with larger and brighter 
orange spots (Houde 1997; Kodric-Brown and Nicoletto 2001), but avoid forced copulatory 
attempts (Houde 1997; Evans et al. 2003).  

Although the pattern and intensity of orange spots are mostly governed by genetics 
(Haskins et al. 1961; Houde 1992), there is indication that androgens are required for their 
expression (Haskins et al. 1961; Baatrup and Junge 2001; Toft and Baatrup 2001; Bayley et al. 
2002; Devasurendra et al. 2007; Gordon et al. 2011), as well as for performing courtship 
displays (Baatrup and Junge 2001; Bayley et al. 2002; Bayley et al. 2003). Shenoy and Crowley 
(Shenoy and Crowley 2011) discuss in detail how hormones may be involved in the expression 
of sexual signals. An aromatase inducer like atrazine can alter hormonal balances by (1) 
increasing the estradiol concentrations, which would increase the estradiol: testosterone ratio, 
and directly reduce the production of testosterone (Bartke et al. 1977; Kim et al. 2007), and by 
(2) reducing the concentration of testosterone available for conversion to 11-keto testosterone 
(Ankley et al. 2002; Ankley et al. 2005), an important teleost androgen required for the 
expression of secondary sexual characteristics. 

I hypothesized that prolonged exposure to environmentally relevant doses of atrazine 
would (1) reduce the area and intensity of orange color spots, which are the primary male 
mating signals in guppies; (2) reduce the frequency of mating behaviors such as courtship 
displays and forced copulatory attempts (these were considered behaviors related to mating 
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effort); and (3) in the presence of competing males, reduce the frequency of behaviors related to 
mating effort and those related to male-male aggression. The third hypothesis was tested 
because male-male competition is high in many animal species, including guppies, and 
examining behaviors in the context of mate competition is ecologically relevant. Further, 
contaminants are often differentially distributed in the landscape, and different individuals in a 
population may be exposed unequally. Since individuals impacted to varying degrees would be 
competing together within a population, I tested the third hypothesis by pairing treated males 
with those that were not exposed to the contaminants. This also standardized the condition of 
each experimental male’s opponent. 
 

METHODS 

Ethics statement: The experimental protocol for this study was approved by the University 
of Kentucky Institutional Animal Care and Use Committee (protocol number 2007-0137). 

Treatments: 85 guppies were randomly assigned to one of five treatments at 17 fish per 
treatment. The treatments included a control (no treatment), dimethylsulfoxide (DMSO, 62.5 
μl/L) as the solvent control, atrazine low-dose (1 μg/L), atrazine high-dose (15 μg/L), and 
ethynyl estradiol (2 μg/L) as the estrogenic positive control. A solvent control was used because 
atrazine and ethynyl estradiol were dissolved in DMSO; all treatments received the same 
concentration of DMSO. Atrazine concentrations used were based on USEPA estimated 
environmental concentrations (USEPA 2006a). Pilot experiments helped determine sublethal 
ethynyl estradiol concentrations. Concentration of atrazine in the water column in three 
randomly selected jars per treatment was ascertained by liquid phase extraction with methylene 
chloride following an adaptation of USEPA Method 619 (USEPA 1993)--which produced 95% 
recovery of the target compound--and analyzed by gas chromatography/mass spectrometry. 
The average concentration at the end of one week was determined to be 0.26 ppb and 12.98 
ppb for the low- and high-dose respectively, with negligible loss over the 7 days. No atrazine 
was detected in the control samples. Atrazine (98% purity) was purchased from Chem Service, 
Inc., through Fisher Scientific, and 17 α-ethynylestradiol (98% purity) was purchased from 
Sigma-Aldrich. Treatments continued for 16 weeks to simulate a long-term exposure.  

Animals: Adult male guppies used for this study were descendants of wild-caught guppies 
from Trinidad. Three populations—Aripo Upper River, Aripo Lower River, Guanapo Upper 
River—were equally represented in all treatments to account for geographic and genetic 
variation. All males included showed clear color patterns and gonopodium development (Houde 
1997), indicating sexual maturity. During the period of the study, all fish were housed separately 
in individual glass jars with 1.6 L of aged, pre-aerated, carbon filtered, conditioned water. 
Tropical fish flake food was fed once each day in ad libitum quantities. Room temperature was 
maintained at an average of 25 °C; the light:dark cycle was set to 12:12 hours. Water was 
changed once weekly with static renewal of chemical treatments. Mortality was recorded every 
day.  

Color measurements: All fish were photographed once before the start of treatments and 
once after treatments stopped with a Nikon D50 digital SLR camera with a 55 mm telephoto 
lens and Nikon SB-400 AF Speedlight flash. The shutter speed was set to 1/60 s, aperture to 22 
F and film speed to 200 ISO. The flash speed was set to 1/16 s and power to -0.7, and was 
covered with a single sheet of tissue paper to diffuse the light. All fish were photographed on the 
left side in the same position relative to the lens and flash. ImageJ 1.43u (Rasband 1997-2011) 
was used to measure the area of orange spots and body area of each fish. An average value of 
the red (R), green (G) and blue (B) channels of each orange spot was also measured. Each fish 
was photographed along with an orange color standard, which was placed in the same position 
in every picture. Colors were standardized across all pictures by applying a correction factor to 
each of the average R, G, B values, such that the corrected R value of the fish in the picture to 
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be measured, Ri’ = Ri * RSr/RSi, where Ri is the average R value of the fish in the picture to be 
measured, RSr is the average R value of the color standard on one picture chosen to be the 
reference picture; RSi is the average R value of the color standard on the picture to be 
measured. Similarly, Gi’ and Bi’ were calculated for each picture. A dark orange spot would have 
a high R' measure, and lower G' and B' measures; on the other hand, a pale orange spot would 
have a high R', G' and B' measure. The repeatabilities of the corrected R’, G’ and B’ values 
were r = 0.98, r = 0.95 and r = 0.96, respectively. Further, a single composite variable 
comprising of all three color channels was created by inputting the corrected R’, G’, B’ values in 
a Principal Components Analysis and extracting one variable. The repeatability of this 
composite variable was found to be r = 0.98.  

Behavior trials: At the end of the 16 week treatment period, the fish were subjected to two 
sets of behavior trials: the first set assessed behavior of the males towards a female in the 
absence of competition from another male, and the second set of trials assessed mating 
behaviors in the presence of a competing male. All trials were conducted within the first four 
hours after lights turned on and during the last four hours before lights turned off. All trials were 
conducted blind: the observer did not know the treatment that any of the fish had received and 
identified males by their color patterns only. Data were recorded in real time. Trial tanks were 
illuminated with full spectrum light to ensure that all colors were perceived naturally by the other 
fish in the trial (Endler 1991, 1993). The observer sat in darkness, 1 m away from the tank, to 
avoid startling the fish; the fish did not appear to notice or be disturbed by the presence of the 
observer. 

Trials without competing males: each male was placed in a trial tank of dimensions 30 x 20 
x 15 cm (height x length x width) and 7.5 L of water, with one virgin female from the same 
population. Water used was aged, pre-aerated, carbon filtered, and conditioned, and water 
temperature was maintained between 23-25 °C. After a 5 minute acclimation period, the fish 
were observed for 10 minutes. The total number of sigmoid courtship displays, gonopodium 
swings and copulatory attempts were recorded throughout the trial period. Males frequently 
swing their gonopodium forward, and this appears to increase in frequency during mating or 
aggressive interactions; any gonopodium swing greater than 90° was counted.  

Trials with competing males: These trials were conducted to test whether treatments 
altered male behaviors compared to an untreated male in the context of competition. Males 
were paired in the following fashion—each pair consisted of one male from the control group 
(opponent) and one male (focal male) from one of the other four treatment groups: DMSO, 
atrazine low-dose, atrazine high-dose, or ethynyl estradiol. Control group males were used in 
multiple pairs as there were not enough males to be used only once. Control group males were 
paired with each of the different treatment group males in random order. Males of a pair 
belonged to the same population. Pairs could not be size matched after matching for population; 
treatment group males were on average 14% of body area larger or smaller than paired control 
group males. Each pair was placed in a trial tank of dimensions 30 x 20 x 15 cm (height x length 
x width) and 7.5 L of water, with a virgin female from the same population. After a 5 minute 
acclimation period, behaviors were recorded for 10 minutes. At each 10s point, I recorded which 
male was closer to the female. A male had to be more than one body length ahead of the other 
male to be “closer”, and received 1 point in such cases. If both males were within one body 
length of each other, and within at least two body lengths of the female’s vent, they were both 
recorded as being equally close; in such cases both males received 0.5 points. If both males 
were further than two body lengths from the female’s vent, they were both recorded as being far 
from the female and received 0 points for that event. At the end of the 10 minute trial period, 
each male’s “closeness” points were summed and its ratio to the total number of events gave a 
measure of proximity. Throughout the whole trial period, I counted for each male the total 
number of sigmoid courtship displays, copulatory attempts, aggressive displays to the rival 
male, and attacks on the other male. The number of gonopodium swings was not recorded, as 
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these happened in quick succession, and the observer could not keep a reliable count for both 
males. 

Data Analyses: All data were analyzed in SAS 9.2 (SAS-Institute-Inc 2002-2009). All 
statistical procedures refer to SAS procedures.  

Mortality: Univariate survival analyses (LIFETEST procedure) were first used to test which 
variables (among treatment and population of origin) were to be included in the final model to 
test for effects on mortality. Based on the log-rank test of equality over strata, population of 
origin was not included in the model (χ2 = 3.096, p = 0.38). Difference in mortality between 
treatments was then analyzed using regression analysis of survival data based on the Cox 
proportional hazards model (PHREG procedure).  

Area of Orange Spots, Intensity of Orange Spots, and Mating Behaviors in the Absence of 
Competition: The dependent variables were appropriately transformed to meet the assumptions 
of parametric tests wherever required. Pearson's product-moment correlations between the 
measures of color and mating behaviors were analyzed using the CORR procedure. A mixed 
model ANOVA (MIXED procedure) was used to analyze the treatment effects on (1) Area of 
orange spots: the change in proportion of orange between initial and final readings, (2) Intensity 
of orange spots: the change between initial and final readings of corrected R’, G’, and B’ values, 
and the composite variable, and (3) Mating behaviors in the absence of competition: the number 
of courtship displays and number of copulatory attempts. The correlation coefficients revealed 
that the number of gonopodium swings was correlated strongly with the number of courtship 
displays (r = 0.62, P < 0.0001) and weakly with the number of mating attempts (r = 0.26, P = 
0.04), and so this variable was eliminated from further analyses. A mixed model ANOVA using 
the MIXED procedure allows the use of fixed and random factors in the model; the effect of 
random factors, wherever included in the model, is removed and results are based on least 
square means that are adjusted for this effect.  

Preliminary analyses determined that the control group and solvent control group did not 
significantly different from each other for all variables and so the two groups were pooled as a 
common control group (area of orange spots, P = 0.9; R’, P = 0.22; G’, P = 0.22; B’, P = 0.81; 
composite variable, P = 0.27; number of courtship displays, P = 0.9; number of mating attempts, 
P = 0.08). Population of origin was input as the random effect wherever it improved the fit of the 
model as determined by significantly lower Akaike Information Criteria values (henceforth AIC 
statistics). For behavioral responses in the absence of competition, the identity of the female 
used for the trial (because females were used in multiple trials) was also included as a random 
factors, and time of day that the trial was conducted was included as a covariate, wherever 
these improved the fit of the model as determined by AIC statistics. Planned orthogonal 
contrasts were used to test whether (1) the atrazine low-dose and high-dose had similar effects 
on the response variables, (2) the two atrazine groups had significantly different effects on the 
response variables compared to the pooled control group, and (3) ethynyl estradiol had the 
strongest effect on the response variables compared to the other groups. One-tailed p-values 
were reported for these tests because of the clear directionality of the hypotheses. Further, 
Tukey’s post-hoc tests were used to see which groups differed significantly from each other. 
Effect sizes with 95% confidence intervals of the differences between each of the treatment 
groups and the pooled control group were calculated as per Nakagawa and Cuthill (2007).  

Mating behaviors in the presence of competition: The dependent variables were 
appropriately transformed to meet the assumptions of parametric tests wherever required. 
Pearson's product-moment correlations between all variables were analyzed using the CORR 
procedure. Due to the moderate correlations between some of the response variables (see 
Table 3.1 for correlations), and because all behaviors recorded on a pair of fish occurred during 
the same trial period, a MANOVA was conducted with the GLM procedure using the focal male’s 
responses from each pair. Covariates and random effects were not included as the GLM 
procedure is not equipped to handle these additional effects. Each response variable was then 
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analyzed separately. Since males were paired, and their behaviors were dependent on each 
other, an ANCOVA was performed with the MIXED procedure to analyze the effect of the 
treatments on the focal male’s behavior in response to his paired opponent’s behavior, which 
was included as the covariate. Covariates were mean-centered within treatments so that mean 
estimates for each treatment corresponded with the mean value of the covariate. I specifically 
tested for differences between treatment intercepts (seen by a significant effect of the treatment) 
and slopes (seen by a significant interaction of treatment by covariate). A negative effect of the 
treatments on competitiveness would be indicated by a reduced slope and intercept of the 
relationship described above, compared to the DMSO (solvent control) group. The difference 
between the competing males in body size (measured by area of body) and proportion of body 
area covered by orange were input as additional covariates if they improved the fit of the model 
as determined by AIC statistics. Similarly, population of origin and control male’s identity 
(because males from the control group were used in multiple pairs) were input as random 
effects wherever they improved the fit of the model. Further, each treatment-control paired data 
set was analyzed separately for each treatment (DMSO, atrazine low-dose, atrazine high-dose 
or ethynyl estradiol) with a paired design to test whether the treatment male consistently 
behaved differently from his paired control opponent, depending on what the treatment was. A 
mixed model ANOVA (MIXED procedure) was used to test this, with the pair identity input as a 
random effect with compound symmetry as the covariance structure. Population of origin was 
also input as a random effect wherever it improved the fit of the model as determined by AIC 
statistics. Time of day that the trial was conducted, the control male’s trial number, the 
difference in body size and proportion of body area covered by orange between the competing 
males were input as covariates if they significantly improved the fit of the model.  
 

RESULTS 

Mortality: There were no significant effects of the treatments on mortality rate (likelihood 
ratio test: χ2 = 6.87, df = 4, P = 0.14). The ethynyl estradiol group had the highest mortality over 
the 16 week period (47.06%) but the hazard ratio was not significantly higher than the control 
group (Hazard ratio = 3.38, P = 0.07). The mortality in the other groups was as follows: control 
17.65%, DMSO 29.41%, atrazine low-dose 23.53%, and atrazine high-dose 11.76%. At the end 
of the exposure period, the number of surviving fish in each of the groups was: control = 14, 
DMSO = 12, atrazine low dose = 13, atrazine high dose = 15, ethynyl estradiol = 9.  

Color: The treatments had a significant effect on the change in body area covered by 
orange (F3, 58 = 14.19, P < 0.0001; Figure 3.1). This effect was mainly driven by the ethynyl 
estradiol group, which had a significantly lower proportional area of orange than the pooled 
controls (P < 0.0001, effect size ± 95% confidence interval [d ± 95% CI] = -2.27 ± 0.89), and all 
the other groups combined (planned orthogonal contrasts, p < 0.0001). The atrazine high-dose 
appeared to reduce the area of orange (d ± 95% CI = -0.76 ± 0.68, Figure 3.1), but this was not 
statistically significant (P = 0.098).The atrazine low-dose did not reduce the area of orange (d ± 
95% CI = -0.12 ± 0.65), and the two atrazine groups differed from each other (planned 
orthogonal contrasts, P = 0.055, Figure 3.1). Because of the difference between the two 
atrazine groups, they did not collectively reduce the area of orange compared to the pooled 
control group (planned orthogonal contrasts, P = 0.15). The Tukey’s post-hoc tests brought out 
significant differences only between the ethynyl estradiol group and each of the other groups. 
The loss of power resulting from all pair-wise comparisons lead to a lack of statistical evidence 
for a difference between the atrazine high-dose and pooled control groups (unadjusted P = 
0.04, Tukey’s adjusted P = 0.14). The treatments did not affect the change in corrected R’ (F3, 57 
= 0.29, P = 0.83), G’ (F3, 57 = 0.53, P = 0.67), and B’ (F3, 57 = 0.19, P = 0.90) values, or the 
composite variable (F3, 57 = 0.31, P = 0.82). The planned orthogonal contrasts did not reveal any 
significant patterns. Population of origin failed to improve the fit of the model for explaining the 
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variation in body area covered by orange or corrected R’, G’, B’ and the composite variable, 
suggesting that this factor was not important in explaining the change in color over the study 
period. 

Mating behaviors in the absence of competing males: The number of copulatory 
attempts was weakly but negatively related to the proportion of body area covered by orange (r 
= -0.25, P = 0.046); there were no other significant correlations between any of the other 
measures of color and behavioral variables. The number of courtship displays differed 
significantly between treatments (F3, 61 = 9.79, P < 0.0001; Figure 3.2). The planned orthogonal 
contrasts determined that the ethynyl estradiol group displayed significantly less than the other 
groups (P < 0.0001). The two atrazine groups displayed similarly to each other (P = 0.40), and 
together they displayed significantly less than the pooled controls (P = 0.01). The effect sizes 
showed that the ethynyl estradiol group displayed less than the pooled control group (d ± 95% 
CI = -2.15 ± 0.65), as did the atrazine high-dose group (d ± 95% CI = -0.64 ± 0.64), but the 
atrazine low-dose group did not display less than the pooled control group (d ± 95% CI = -0.56 ± 
0.65). The Tukey’s post-hoc tests revealed similar trends, though the lack of power weakened 
some of these results. The number of mating attempts did not differ between groups (F3, 58.1 = 
2.01, P = 0.12), and none of the planned orthogonal contrasts showed significant differences. 
Population of origin improved the fit of the model to explain variation in courtship display rates, 
but not the number of mating attempts.  

Mating behaviors in the presence of competing males: The measures of mating effort 
were all moderately correlated with each other (proximity to the female and number of courtship 
displays: r = 0.51, P = 0.0002, number of courtship displays and number of forced copulatory 
attempts: r = 0.40, P = 0.0056, proximity to the female and number of forced copulatory 
attempts: r = 0.40, P = 0.0059; Table 3.1), and the measures of aggression were also 
moderately associated with each other (the number of aggressive displays and the number of 
attacks on paired male: r = 0.41, P = 0.004; Table 3.1). Further, the proximity to a female was 
negatively associated with the number of aggressive displays (r = -0.37, P = 0.01; Table 3.1), 
and this is because males do not focus on the female during aggressive interactions and can 
often be far from her. The treatments had a significant effect on the focal males’ responses as a 
whole (Wilks’ λ = 0.42, F15, 119.11 = 2.95, P = 0.0005). The treatments did not have significant 
effects on the proximity or number of mating attempts, or their interaction with their opponent’s 
behaviors;  the treatments significantly influenced the number of displays, but this was driven by 
the effect of ethynyl estradiol rather than either of the atrazine groups (Figure 3.3a-c; Table 3.2). 
Population of origin improved the fit of the model explaining variation in proximity and number of 
courtship displays, but not the number of mating attempts. The number of mating attempts was 
influenced by the difference in body size between the competing males (P = 0.04); the larger the 
focal male was compared to his paired control opponent, the more forced copulatory attempts 
he made. There was a significant effect of the treatment (F3, 28.9 = 8.25, P = 0.0004) and the 
interaction of treatment and covariate (F3, 28.4 = 10.37, P < 0.0001) on the number of attacks on 
the competing male (Figure 3.3d). The atrazine high-dose and ethynyl estradiol treatments 
significantly reduced the slopes and intercepts of the regression lines between the focal male’s 
behavior and the paired control male’s behavior (Table 3.2) compared to the DMSO group. 
Treatments also affected the number of aggressive displays made to the rival male (F3, 30 = 4.1, 
P = 0.015; Figure 3.3e) but had no effect on the interaction of treatment and covariate as there 
was no significant effect of the covariate itself. Both these variables were also influenced by the 
identity of the paired control male. The analyses of the effects of treatments within pairs showed 
that the solvent control males did not differ from control males with regard to any of the 
variables tested (proximity,  F1,24 = 0.33, P = 0.57; courtship displays,  F1,24 = 0.61, P = 0.44; 
mating attempts,  F1,12 = 0.31, P = 0.59; attacks,  F1,12 = 0.02, P = 0.89; aggressive displays, 
F1,21 = 0.00, P = 0.94), and neither did the atrazine low-dose males (proximity,  F1,22 = 2.97, P = 
0.10; courtship displays,  F1,21 = 0.51, P = 0.48; mating attempts,  F1,11 = 0.04, P = 0.85; attacks,  
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F1,11 = 0.40, P = 0.54; aggressive displays, F1,22 = 0.01, P = 0.93). The atrazine high-dose males 
showed lower responses than their paired control males with respect to variables of aggression 
(attacks,  F1,23.4 = 5.41, P = 0.03; aggressive displays, F1,26 = 11.15, P = 0.0025) but not the 
variables of mating effort (proximity,  F1,26 = 0.34, P = 0.56; courtship displays,  F1,26 = 0.83, P = 
0.37; mating attempts,  F1,13 = 0.04, P = 0.84). The ethynyl estradiol males showed lower 
responses than their paired control males for almost all variables measured (proximity,  F1,13 = 
3.50, P = 0.08; courtship displays,  F1,12 = 47.56, P < 0.0001; mating attempts,  F1,10.5 = 4.96, P 
= 0.05; attacks,  F1,13 = 13.22, P = 0.003; aggressive displays, F1,12 = 31.74, P = 0.0001).  

 

DISCUSSION 

Differential susceptibility to atrazine: Population of origin did not affect mortality rates, 
suggesting that guppies from the different populations were not differentially impacted. Atrazine 
treatments did not influence mortality rates. However, estradiol can be toxic (Herman and 
Kincaid 1988; Krisfalusi et al. 1998; Robinson et al. 2007), and ethynyl estradiol may have 
moderately increased mortality in this study, though the trend was not statistically significant.  

Although the different populations would vary naturally in the intensity and area of orange 
(Houde 1997), it is not surprising that they did not respond differently to the treatments, because 
the response variable analyzed was the change in these variables over the exposure period. On 
the other hand, the number of courtship displays was influenced by population of origin; it is well 
known that guppies from different populations display at different rates (Luyten and Liley 1985; 
Godin 1995; Houde 1997). Similarly, display rates and proximity of the focal male in relation to 
that of the paired control male were influenced by population of origin. This appears to be an 
artifact of the inherent difference in courtship intensity between high predation and low predation 
sites (Luyten and Liley 1985; Godin 1995; Houde 1997). Possibly, in the low predation sites, 
individuals are more conspicuous in their competitiveness and respond to high displaying 
competitors by also displaying more. But in high predation sites, individuals may be more 
cautious in responding similarly. Interestingly, the number of mating attempts in the presence or 
absence of competitors was not influenced by population of origin; perhaps because sneak 
copulations are less conspicuous than courtship displays (Luyten and Liley 1985), males in any 
predation regime would perform these at comparable rates (but see Godin 1995). But it must be 
noted that the fish in this study had been raised in the absence of predators for a few 
generations, and some plasticity may account for the lack of anti-predatory behaviors.  

Impaired mating signals and implications for sexual selection: As seen in other studies 
examining the effects of EDCs on sexual traits (Baatrup and Junge 2001; Toft and Baatrup 
2001; Bayley et al. 2002; Bayley et al. 2003; Bortolotti et al. 2003; Nakayama et al. 2004; 
Arellano-Aguilar and Garcia 2008; Bernhardt and von Hippel 2008; Larsen et al. 2008; Saaristo 
et al. 2009), prolonged atrazine exposure reduced courtship display rates, and there was a 
trend for reduced expression of ornament size. The high dose of atrazine reduced the area of 
orange by 1%; this can alter female responses to male displays (Long and Houde 1989) such 
that his reproductive success is significantly reduced by two matings (Houde 1988). Area of 
orange is a highly heritable trait in guppies (Houde 1997), and any reduction in the area must be 
due to reduced allocation of carotenoids to the orange spots. Though the preference for orange 
color varies across populations (Endler and Houde 1995), female guppies generally show a 
preference for brighter males performing more courtship displays (Houde 1997; Kodric-Brown 
and Nicoletto 2001; Rodd et al. 2002), and these appear to be honest signals of mate quality 
(Houde and Torio 1992; Lopez 1998; Grether 2000; Karino et al. 2005). In this study, the 
number of courtship displays was not related to the proportion of body area covered by orange; 
but color was associated with mating behaviors in other ways (results not shown): a composite 
variable including the number of courtship displays and gonopodium swings was moderately 
correlated with the corrected blue channel, B', a measure of intensity of the orange spots, 
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indicating that color intensity was associated with displays. The number of mating attempts was 
negatively, albeit weakly, related to the proportion of body area covered by orange, suggesting 
that less colorful males tended to use sneaker strategies more frequently than more colorful 
males.  

It is particularly interesting that the behavior most affected by atrazine exposure was one 
believed to be an honest mating signal. Several studies indicate that hormones play an 
important role in maintaining the honesty of such signals via immuno-suppressing mechanisms: 
increased testosterone required for the maintenance of sexual signals can damage the immune 
system, and individuals with an already compromised immunocompetence would be unable to 
signal effectively (Folstad and Karter 1992; some recent examples: Bókony et al. 2008; Setchell 
et al. 2008; Mougeot et al. 2009). Other mating strategies like forced and sneaky copulations 
may be governed more by factors such as population sex ratios (Evans and Magurran 1999; 
Jirotkul 1999a), predation risk (Magurran and Seghers 1990) and dominance hierarchies (Soltis 
et al. 2001) and are not under selection via hormonal pathways. In this study, the number of 
forced copulatory attempts was not affected by atrazine exposure. Forced copulatory attempts 
in guppies are not always successful (Evans et al. 2003) and are under selection pressure via 
male-male competition (Evans and Magurran 1999) and predation (Magurran and Seghers 
1990). It is unclear whether hormones play a role in the expression of this behavior in any 
species (but see Davis 2002). These patterns then raise the question whether environmentally 
altered hormone levels could affect the honesty of mating signals, and whether alternate mating 
strategies might become more dominant in populations impacted by EDCs (Shenoy and 
Crowley 2011). Experiments testing such ideas would be valuable contributions to the fields of 
ecotoxicology and evolutionary biology.  

A few studies have analyzed the effects of EDCs on male competitive behaviors (Jaeger et 
al. 1999; Bell 2001; Majewski et al. 2002; Palanza et al. 2002). Male-male competition is high in 
many species, and an individual’s aggression levels can influence his access to mates 
(Andersson 1994; Earley and Dugatkin 2005). Pollutants are often unequally distributed across 
landscapes and within habitats. It is thus reasonable to expect individuals who have been 
impacted differently to compete against each other, especially in species that are migratory or 
that converge at breeding sites. The results of this study show that atrazine-impaired males in 
such cases may be at a mating disadvantage compared to those exposed less or not at all. 
Interestingly, in the presence of a rival male, the measures of mating effort (proximity to the 
female, number of courtship displays and number of forced copulatory attempts) were altered 
relatively little by atrazine exposure, but aggression was strongly reduced. I observed that when 
competing, the two males focused more on aggression and less on mating effort; as a result, 
treatment effects were stronger for the variables of aggression than for the variables of mating 
effort. It is pertinent to note that the difference between competing males in body area covered 
by orange did not influence any competitive behaviors, while differences in body size influenced 
only the number of mating attempts.  

Aggressive displays are employed by animals to discourage the rival from attacking or 
competing for the resource, thereby circumventing active combat (Maynard Smith and Harper 
2003). During behavioral trials, I observed that aggressive displays by one individual did not 
necessarily provoke aggressive displays by the other; however, attacks by one individual 
provoked a responding attack from the other, resulting in active fighting. Thus, I did not find a 
relationship between the number of aggressive displays by the focal and opponent males, but I 
did detect this relationship in the case of attacks, and atrazine exposure reduced the strength of 
the relationship. The paired control male's identity influenced the focal male's responses, 
suggesting that some individuals elicited stronger aggression than others. Despite this effect, 
the treatments had a significant effect on aggression levels. Further experiments testing 
whether the reduced aggression translates to reduced reproductive success would be 
informative. Also, it is important to know whether the EDC-altered aggression levels affect 
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stress of exposed individuals (Earley and Hsu 2008), thereby influencing survival and self 
maintenance.  

Altered mating signals and behaviors can influence population dynamics in many ways. An 
increased number of unattractive males in the population would alter the effective sex ratio, as 
females of many species, including guppies, exercise strong mate preference for sexual traits. A 
reduction in attractive males can also influence extra-pair mating rates (Kempenaers et al. 
1997), which can in turn alter offspring quality, disease transmission rates and predation risk 
(Quader 2005). EDC-altered sexual traits may not correlate with mate quality thus blurring the 
relationship between mate quality and signal; this can lead to females making “incorrect” mate 
choices that reduce their offspring quality and number (Shenoy and Crowley 2011). These and 
other impacts of altered mate choice on population dynamics have been reviewed by Quader 
(2005).  

Understanding the population level effects of EDC-altered mating signals is important to 
conservation biology. Many contaminants are persistent and remain in the environment at 
substantial concentrations for several years (USEPA 2009), spanning multiple generations of 
short-lived species. Multi-generational disruption of sexual traits can alter evolutionary 
trajectories (reviewed in Shenoy and Crowley 2011). Future studies that aim to assess the 
evolutionary effects of altered sexual traits as a result of pollution must evaluate the longterm 
ecological consequences of chronic and persistent contamination. 

Atrazine: Several studies of sub-lethal effects of atrazine have demonstrated estrogenic 
effects (Hayes et al. 2006b; Fan et al. 2007) and negative impacts on measures of reproduction, 
including fecundity, gonadal morphology, sperm counts, and hormone production (Hayes et al. 
2002b; Hayes et al. 2003; Hayes et al. 2006b; Abarikwu et al. 2010; Hayes et al. 2010; Tillitt et 
al. 2010; also see Rohr and McCoy 2010). A few studies have also examined the effects of 
atrazine exposure on secondary sexual traits: Hayes and colleagues found that larval exposure 
to low doses of atrazine reduced larynx size (Hayes et al. 2002b) and structure (Hayes et al. 
2010) in African clawed frogs. The larynx is important for vocalization, the primary mating signal 
in many anuran species; males with smaller larynxes produce suboptimal calls. However, there 
is still a dearth of literature on the effects of atrazine on sexual traits. The current study 
advances this issue and should encourage further focus on these key effects.  

The low dose of atrazine affected only courtship display rates, and not any of the other 
variables measured, indicating that at this concentration (a minimum of 0.26 ppb), not all mating 
signals are impaired in guppies. Whether this concentration may affect mating signals in other 
species remains to be tested; for example, African clawed frog larvae exposed to atrazine 
concentrations ranging from 1-200 ppb showed reduced larynges at metamorphosis (Hayes et 
al. 2002). Where there was an effect of atrazine, especially the high dose, the direction of the 
effect was similar to that of ethynyl estradiol suggesting that at higher doses clear estrogenic 
patterns may have arisen. It must be kept in mind that non-sexual behaviors were not measured 
in this study and so it is possible that the effects of atrazine on sexual behaviors may be due to 
poor health in general. Regardless, the impacts on sexual traits seen here are significant 
enough to be of concern. Dose-response studies with a larger range of atrazine concentrations 
would help determine the concentrations and exposures influencing different end-points in 
wildlife species. Understanding the effects on sexual traits is especially important because of 
their subtle yet crucial implications for reproduction and populations dynamics. More studies 
along these lines will highlight the negative impacts of atrazine on wildlife reproduction. There 
may be similar effects on human health as well, because the mechanism of action of atrazine is 
similar across most vertebrate taxa, including humans (Hayes et al. 2006b).   
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Table 3.1. Pearson's correlation coefficients between variables of mating behavior in the 
presence of competing males. 
 
 Proximity Courtship 

displays 
Mating 
attempts 

Attacks 

Courtship 
displays 

r = 0.512 
P = 0.0002 

   

Mating 
attempts 

r = 0.396 
P = 0.0059 

r = 0.398 
P = 0.0056 

  

Attacks r = -0.129 
P = 0.3874 

r = -0.081 
P = 0.5887 

r = 0.134 
P = 0.3676 

 

Aggressive 
displays 

r = -0.368 
P = 0.0110 

r = 0.170 
P = 0.2522 

r = 0.0341 
P = 0.8196 

r = 0.411 
P = 0.0041 
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Table 3.2. Intercept and slope estimates of each treatment group from the ancova of the effects 
of treatments on mating behaviors in the presence of competing males. Intercepts and slopes of 
treatment groups that are significantly different (P < 0.05) from those of the DMSO group are 
marked with an asterisk (*). 
 
Treatment group Intercept ± SE Slope ± SE 
(A) Proximity 

DMSO 0.40 ± 0.061 -0.42 ± 0.20 
Atrazine low-dose 0.53 ± 0.063 -0.76 ± 0.30 
Atrazine high-dose 0.41 ± 0.060 -0.46 ± 0.26 
Ethynyl estradiol 0.29 ± 0.071 0.05 ± 0.45 

(B) Number of courtship displays/ 10 min trial (log10 transformed) 
DMSO 0.79 ± 0.11 -0.02 ± 0.27 
Atrazine low-dose 0.62 ± 0.11 0.17 ± 0.30 
Atrazine high-dose 0.76 ± 0.10 -0.21 ± 0.29 
Ethynyl estradiol 0.13 ± 0.14* -0.02 ± 0.50 

(C) Number of mating attempts/ 10 min trial (square root transformed) 
DMSO 2.37 ± 0.24 0.63 ± 0.17 
Atrazine low-dose 2.77 ± 0.25 0.78 ± 0.18 
Atrazine high-dose 2.56 ± 0.23 0.72 ± 0.14 
Ethynyl estradiol 1.11 ± 0.30* 0.47 ± 0.45 

(D) Number of attacks/ 10 min trial (square root transformed) 
DMSO 1.77 ± 0.22 0.65 ± 0.15 
Atrazine low-dose 1.86 ± 0.23 0.87 ± 0.12 
Atrazine high-dose 1.07 ± 0.22* 0.06 ± 0.14* 
Ethynyl estradiol 0.96 ± 0.26* -0.17 ± 0.18* 

(E) Number of aggressive displays/ 10 min trial (square root transformed) 
DMSO 2.21 ± 0.27 0.12 ± 0.17 
Atrazine low-dose 1.38 ± 0.28 0.24 ± 0.34 
Atrazine high-dose 1.33 ± 0.27* 0.04 ± 0.26 
Ethynyl estradiol 1.02 ± 0.34* 0.15 ± 0.33 
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Figure 3.1. Treatment effects on change in proportion of body area covered by orange. 
Negative numbers suggest reduction in area of orange, while positive numbers suggest 
increase in area of orange. Treatments are labeled as follows: pooled control + DMSO group = 
“controls”, atrazine low-dose = “AtzL”, atrazine high-dose = “AtzH”, ethynyl estradiol = “EE”. 
Arrows between groups denote planned orthogonal contrasts. 
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Figure 3.2. Treatment effects on mating behaviors: (A) the number of courtship displays 
performed to a female per 10 minute trial, and (B) the number of mating attempts per 10 minute 
trial. Treatments are labeled as follows: pooled control + DMSO group = “controls”, atrazine low-
dose = “AtzL”, atrazine high-dose = “AtzH”, ethynyl estradiol = “EE”. Arrows between groups in 
panel A denote planned orthogonal contrasts. These are not shown for panel B because none 
of the contrasts were significantly different.  
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Figure 3.3. Treated males’ behaviors in relation to paired control males’ behaviors for each 
response variable measured. Treated males--those belonging to DMSO, atrazine low-dose, 
atrazine high-dose and ethynyl estradiol groups--were the focals, while the paired male from the 
control group was the opponent. For each response variable, the x- and y-axes have the same 
measure and units. Results of the ANCOVA corresponding to each panel: (A) Proximity: 
treatment, F3, 36.7 = 2.71, P = 0.059; opponent’s response, F1, 37.1 = 5.47, P = 0.025; treatment x 
opponent’s response, F3, 36.9 = 0.65, P = 0.59; (B) number of courtship displays: treatment, F3, 39 
= 4.71, P = 0.007; opponent’s response, F1, 39 = 0.01, P = 0.92; treatment x opponent’s 
response, F3, 39 = 0.23, P = 0.88; (C) number of mating attempts: treatment, F3, 39 = 5.63, P = 
0.0026; opponent’s response, F1, 39 = 19.97, P < 0.0001; treatment x opponent’s response, F3, 39 
= 0.18, P = 0.91; (D) number of attacks: treatment, F3, 28.9 = 8.25, P = 0.0004; opponent’s 
response, F1, 33.1 = 14.41, P = 0.0006; treatment x opponent’s response, F3, 28.4 = 10.37, P < 
0.0001; (E) number of aggressive displays: treatment, F3, 30 = 4.10, P = 0.015; opponent’s 
response, F1, 34.9 = 0.72, P = 0.40; treatment x opponent’s response, F3, 32.4 = 0.06, P = 0.98. 
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CHAPTER FOUR. THE EFFECTS OF PRENATAL EXPOSURE TO ATRAZINE ON BROOD CHARACTERISTICS 
AND MALE SECONDARY SEXUAL TRAITS IN GUPPIES  
 

SUMMARY 

Exposure to endocrine disrupting compounds during early life stages can have lasting effects in 
animals. Of particular interest are effects on the development of male sexual characteristics that 
have important implications for reproductive success. I examined the effects of prenatal 
exposure to the herbicide atrazine on male secondary sexual characteristics in guppies. 
Atrazine is estrogenic, possibly by inducing aromatization of testosterone to estradiol, though 
other mechanisms have also been suggested. I exposed mated adult female guppies to two 
environmentally relevant doses of atrazine (1 and 13 μg/L), a solvent control (DMSO), and a 
negative control; exposure lasted throughout the gestation period. I first tested for the effects of 
the treatment on survival, brood size and sex ratios of offspring produced. The offspring were 
raised to adulthood with no further treatment. Throughout development and at adulthood, I 
measured the following end-points: the age at which male specific morphologies appeared, 
including orange spots (sexual ornaments in guppies) and gonopodia (a modified anal fin used 
as a copulatory organ), and the size of these traits. Survival until the end of the experiment and 
sex ratio of broods were not affected by atrazine exposure. Exposure to the low dose of atrazine 
increased brood sizes significantly. The time taken to develop either trait was influenced by 
DMSO, but not by the atrazine treatments. The length of the gonopodium was not reduced by 
prenatal atrazine exposure, but the area of the orange spot was increased. I suggest that the 
increased fecundity may be a result of modest increases in estrogen levels. Increased brood 
sizes, though a seemingly positive effect at the organismal level, may have little effect at the 
population level if juvenile survival is density-dependent or if reproductive competence is 
compromised. The effects on gonopodium length were inconclusive, and I recommend more 
rigorous testing with larger sample sizes to determine whether atrazine exposure can affect this 
trait, as reported in other studies on xenoestrogens. The unexpected increase in the size of 
orange spots may be attributed to slight immune-enhancement as a result of small increments 
in estrogen levels; this may have allowed the fish to allocate more carotenoids to their ornament 
rather than to immunocompetence. I recommend studying a suite of end-points relating to 
reproductive success to completely realize the effects of a contaminant; behavioral and 
paternity assays would help understand whether the effects translate to loss of reproductive 
success and population changes. 
 

INTRODUCTION 

Endocrine disrupting compounds (EDCs), which interfere with hormonal functioning in 
exposed animals, are ubiquitous in the environment and impact wildlife health in many ways 
(reviewed in: Colborn et al. 1993a; Fox 2001; Hamlin and Guillette 2011). Common types of 
EDCs include organochlorines, organophosphates, polychlorinated biphenyls (PCBs), 
phthalates, synthetic hormones and hormone-blockers, and phytoestrogens. These enter the 
natural environment through sources such as pesticides, industrial effluents, pulp mill effluents, 
plastics and sewage. Significant routes of exposure include direct exposures from living in 
contaminated soil or water, as well as indirect exposures through eating contaminated prey 
(Markman et al. 2007; Markman et al. 2008; Park et al. 2009; Walters et al. 2010). Some well 
documented effects of EDCs include gonadal malformations (Toft and Baatrup 2001; Hayes et 
al. 2002c, 2003; Kinnberg and Toft 2003; Hayes et al. 2006a), sex reversal and skewed sex 
ratios (Bayley et al. 2002; Teather et al. 2005; Örn et al. 2006; Pettersson et al. 2006), altered 
hormone concentrations (Guillette et al. 1999a; Hayes et al. 2002c; Saiyed et al. 2003; Toft et 
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al. 2003; Gunderson et al. 2004), reduced sperm counts (Baatrup and Junge 2001; Toft and 
Guillette 2005), reduced fecundity (Ankley et al. 2003; Kristensen et al. 2007), smaller 
copulatory organs (Batty and Lim 1999; Guillette et al. 1999a; Guillette et al. 1999b; Bayley et 
al. 2002; Gunderson et al. 2004), and altered sexual ornaments and behaviors (Baatrup and 
Junge 2001; Bayley et al. 2002; Arellano-Aguilar and Garcia 2008; Ottinger et al. 2008; Secondi 
et al. 2009; Shenoy 2012, Chapter 3). All of these effects have implications for reproductive 
success. 

Many animal species are exposed to contaminants only during short time intervals 
corresponding to application of agrochemicals, heavy rains, outflux of effluents, and so forth. 
These exposure periods could coincide with crucial developmental periods in the animal's life, 
disrupting key physiological processes. Disruption of the endocrine system during development 
can delay sexual maturation and result in altered morphologies at adulthood, which can have 
serious effects on reproduction. In male vertebrates, androgens like testosterone, 5α-
dihydrotestosterone (DHT) and 11-ketotestosterone (KT) play important roles in the 
development and expression of secondary sexual characteristics (Borg 1994; Catz et al. 1995; 
Zuk et al. 1995; Gong et al. 1999; Jayasooriya et al. 2002; McGraw et al. 2006). Empirical 
evidence indicates that androgen levels can directly impact the timing of sexual maturation 
(Bayley et al. 2002; Saiyed et al. 2003), and the development and expression of male-specific 
morphologies, such as ornaments (Zuk et al. 1995; Potter et al. 2005; McGraw et al. 2006) and 
copulatory organs (Guillette et al. 1999b; Bayley et al. 2002; Gunderson et al. 2004; Ogino et al. 
2004). Individuals that attain sexual maturity later than average incur loss of life-time 
reproductive success. In species with specific breeding seasons, delayed sexual maturity could 
lead to greatly reduced reproductive success due to loss of mating opportunities early in the 
breeding season. This could yield significant loss of life-time reproductive success. Mating 
signals and ornaments convey mate quality information about the bearer; in most species, it is 
the males that produce the signal, and females choose mates based on the strength of the 
signal. Males with weaker signals are less likely to obtain matings. In species with internal 
fertilization, the size of the male's intromittent organ may play a role in fertilization success. In 
some species the intromittent organ also acts as an indicator of mate quality (Langerhans et al. 
2005; Kahn et al. 2010). 

In this study, I focused on the effects of the triazine herbicide atrazine, the second most 
used pesticide in the US (Grube et al. 2011). Some research suggests that atrazine upregulates 
the enzyme aromatase (Sanderson et al. 2002; Hayes 2005; Fan et al. 2007), which is 
responsible for converting testosterone to estradiol, and androstenedione to estrone; however, 
some debate exists over this mechanism (Hecker et al. 2005). Alternative mechanisms 
suggested for the endocrine disruption by atrazine are direct inhibition of testosterone 
production from the Leydig cells (Friedmann 2002) and reduced levels of 5α-reductase, the 
enzyme that converts testosterone to DHT (Kniewald et al. 1979; Babic-Gojmerac et al. 1989). 
Greater aromatase activity can increase estradiol levels in exposed individuals, and decrease 
testosterone levels either via aromatization to estradiol, or directly by the action of estradiol on 
the testes (Bartke et al. 1977; Kim et al. 2007). Lower testosterone levels will result in less 
production of DHT and KT, which are important for the expression of secondary sexual 
characteristics (Hews and Moore 1995; Angus et al. 2001). Atrazine has a half-life of 700 days 
in surface waters (Solomon et al. 1996; Comber 1999). The United States Environmental 
Protection Agency (USEPA) estimates the concentrations of atrazine in water bodies around 
agricultural fields to be in the range of 19-194 ppb over a 90 day period, depending upon the 
type of crop and application regime (USEPA 2006). Wildlife inhabiting water bodies close to 
agricultural fields are especially at risk for exposure to atrazine. Atrazine exposure has been 
shown to induce hermaphroditism and intersex, reduce testosterone levels, increase estradiol 
levels, and alter the expression of secondary sexual traits and mating behaviors (Hayes et al. 
2002b; Hayes et al. 2002c, 2003; Hayes et al. 2010; Shenoy 2012, Chapter 3). 
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I tested the effects of prenatal exposure to atrazine on development of secondary sexual 
traits in male guppies (Poecilia reticulata). Guppies are a freshwater fish, native to Trinidad and 
parts of South America. The males have brightly colored spots on their body and fins; the 
orange colored carotenoid-based spots are ornaments that females use to assess mate quality 
and choose mates (Houde 1997). Because fertilization is internal, males have a modified anal 
fin called the gonopodium, which is used as an intromittent organ. Guppies are viviparous; I 
tested for the effects of atrazine exposure on response variables in the offspring of exposed 
mothers. I hypothesized that prenatal exposure to atrazine would affect (1) brood sizes, sex-
ratios and survival of offspring, (2) the timing of appearance of male-specific morphologies, such 
as the gonopodium and orange spot, and (3) the size of these traits at adulthood. 
 

METHODS 

Study System: I used guppies as a model organism to test my hypotheses. Guppies have 
distinct sexual dimorphism, their mating signals and behaviors have been well characterized 
(Houde 1997), and the role of sex hormones in the expression of these traits has been explored 
(Jayasooriya et al. 2002; Hallgren et al. 2006). Further, guppies have been used for testing 
similar questions in other ecotoxicological studies (Baatrup and Junge 2001; Toft and Baatrup 
2001; Kristensen et al. 2005; Baatrup 2009). Guppies are small tropical fish native to Trinidad 
and parts of South America. They are especially useful for testing hypotheses related to sexual 
selection. Males have different colored spots on their body and fins (Houde 1997); they perform 
characteristic courtship displays (called “sigmoid” displays) and attempt forced copulations. 
Mating is predominantly through female mate choice: females respond to courtship displays and 
to males with larger and brighter orange spots (Houde 1997; Kodric-Brown and Nicoletto 2001), 
but avoid forced copulatory attempts (Houde 1997; Evans et al. 2003). The orange spots and 
sigmoid displays are considered honest mating signals, and correlate with immunocompetence 
(Houde and Torio 1992; Lopez 1998). Guppies are viviparous, and hence suited for testing the 
effects of maternal exposures.  

Animal care: The experimental protocol for this study was approved by the University of 
Kentucky Institutional Animal Care and Use Committee (protocol number 2007-0137). 

Adult female guppies used for this study were descendants of wild-caught guppies from 
Trinidad. Three populations—Aripo Upper River, Aripo Lower River, Guanapo Upper River—
were equally represented in all treatment levels to account for geographic and genetic variation. 
During the period of the study, all fish were housed separately in individual glass bowls with 3 L 
of aged, pre-aerated, carbon filtered, conditioned water (conditioned with AmQuel® and 
NovAqua® by Kordon, LLC). Fish were fed with ad libitum quantities of tropical flake food once 
each day and brine shrimp nauplii once each day. Room temperature was maintained at an 
average of 25 °C; the light: dark cycle was 12:12 hours. Water was changed twice weekly with 
static renewal of chemical treatment. Mortality was recorded every day. Bowls were checked 
twice daily for offspring.  

Offspring born to treated females were immediately removed from the mother's bowl. Each 
brood was housed together in a plastic tank with 6 L of aged, pre-aerated, carbon filtered, 
conditioned water, as before. All fish were fed with ad libitum quantities of tropical fish flake food 
four days per week, and ad libitum quantities of brine shrimp nauplii three days per week. All 
fish were checked daily for development of male specific morphologies: any fish that developed 
a gonopodium or color spot was immediately removed into another container to separate the 
sexes. Males and females of a brood were then housed in sex-specific tanks with not more than 
4 fish per tank. All tanks contained gravel and were aerated continuously. Room temperature 
was maintained at an average of 25 °C; the light: dark cycle was 12:12 hours. Mortality was 
recorded every day. 
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Experimental Treatment: 40 adult female guppies were randomly assigned to one of the 
four treatment levels at 10 fish per treatment. Before the treatment was administered, each 
female was housed with a separate male on each of four consecutive days to improve brood 
quality (Evans and Magurran 2000). The treatment levels included a negative control (no 
manipulation), dimethylsulfoxide (DMSO, 83.3 μL/L) as the solvent control, atrazine low-dose (1 
μg/L), atrazine high-dose (15 μg/L). A solvent control was used because atrazine and ethynyl 
estradiol were dissolved in DMSO; all treatment levels included the same concentration of 
DMSO. Atrazine concentrations used were based on USEPA estimated environmental 
concentrations (USEPA 2006b). Concentration of atrazine in the water column in three 
randomly selected jars per treatment was ascertained by liquid phase extraction with methylene 
chloride following an adaptation of USEPA Method 619 (USEPA 1993)—which produced 95% 
recovery of the target compound—and analyzed by gas chromatography/mass spectrometry. 
The average concentration at the end of 4 days was determined to be 13.56 μg/L for the high-
dose with negligible loss over 4 days. In previous experiments, I have found there to be 
negligible loss over 4 days for the low concentration as well (Shenoy 2012, Chapter 3). No 
atrazine was detected in the control samples. Atrazine (98% purity) was purchased from Chem 
Service, Inc., through Fisher Scientific. Treatment continued until a brood was produced to 
simulate a long-term exposure. Offspring born to treated females were raised to adulthood with 
no further treatment.  

Measurements: Brood sizes and sex ratios of all broods were recorded. The date on which 
a fish developed a gonopodium and orange spot were also recorded to test for treatment effects 
on the age at which these male specific traits developed. At the average age of 13.7 months (± 
0.75 months, standard deviation), all fish were anesthetized in neutral buffered MS-222 solution 
and photographed with Canon Eos 5D Mark II camera, with a Canon 100mm macro lens. I used 
two White Lightning x 1600 studio lights placed opposite to each other, and dorso-ventral to the 
fish to minimize glare; the lights were diffused with translucent white scrims.ImageJ1.43u 
(Rasband 1997-2011)was used to measure the length of body and length of gonopodium in 
mm, and area of body and area of orange spots in mm2.  

Data Analyses: All data were analyzed with SAS 9.3 (SAS-Institute-Inc 2002-2009). 
Because males within a brood are correlated, and the number of males per brood varied from 1 
to 7 (mean = 2.96 ± 1.7 standard deviation), I used generalized estimating equations (GEE; 
PROC GENMOD in SAS) for all generalized linear models (GLMs) that used data from individual 
fish, by grouping individuals within broods (Hanley et al. 2003). GEE uses a quasi-likelihood 
approach to analyzing GLMs (Zeger and Liang 1986; Hanley et al. 2003), including ANOVAs, 
ANCOVAs, logistic regressions, and so forth. GEE focuses on within-cluster similarity of the 
residuals, and this estimated correlation is used to calculate regression parameters and 
standard errors (Hanley et al. 2003; Hubbard et al. 2010). Statistics reported for fixed effects are 
Wald χ2 statistics for Type III GEE (the Wald statistic has a χ2 distribution). 

I tested for the effects of the treatment on the probability of a fish surviving until the end of 
the experiment using logistic regression (using GEE as described above), with brood identity as 
the cluster. Population of origin was included as a covariate, as it improved the fit of the model 
(as determined by QIC statistics). I also tested specific null hypotheses regarding the proportion 
of fish that were alive at the end of the experiment using a-priori planned orthogonal contrasts: 
(1) the control and DMSO groups will not differ from each other, (2) the two atrazine groups will 
not differ from each other, and (3) the atrazine groups will not differ from the control groups. The 
effect of the treatment on brood sizes was tested with a mixed model ANOVA, with population of 
origin as the random effect and treatment as the fixed effect. Population of origin did not 
significantly improve the fit of the model (as determined by QIC statistics), and so was removed. 
I also tested specific hypotheses using a-priori planned orthogonal contrasts as before. The 
effect of the treatment on sex ratio of each brood was tested with logistic regressions.  
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The effect of the treatment on the development of orange spots and gonopodium were 
analyzed using survival analyses: I used the Cox Proportional Hazards model to test the effects 
of the treatment on the time taken to produce each trait. The brood identity was included as a 
random effect. Population of origin was included as a covariate. To understand which treatment 
groups differed from which, I also used a GLM (using GEE as described above) to test for the 
effects of the treatment on the average age at which each trait developed. The age at 
gonopodium development (AGD) and the age at orange-spot development (AOD) were both log 
transformed to meet the assumptions of parametric statistics. I used a-priori planned orthogonal 
contrasts to test specific hypotheses as before. Both, the AGD and the AOD, were log 
transformed to meet the assumptions of parametric analyses. 

The effects of the treatment on the adjusted gonopodium length (adjusted for body length), 
and adjusted orange-spot area (adjusted for body area), were also tested using GLM. Again, I 
used a-priori planned orthogonal contrasts to test specific hypotheses. Population of origin did 
not significantly affect either trait and so was not included in the models.  

 

RESULTS 

Mortality, Brood Size and Sex Ratios: The treatment did not significantly affect the 
probability of a fish surviving until the end of the experiment (χ2= 6.69, df = 3, P = 0.08; Figure 
4.1), though there was a non-significant trend for the atrazine groups to have a lower survival 
probability than the control groups (P = 0.055), mainly driven by the atrazine low-dose group 
having a non-significantly higher mortality than the control group (post hoc comparisons, Tukey-
Kramer adjusted P = 0.055).The control groups did not differ from each other (P = 0.46), and 
neither did the atrazine groups (P = 0.56). Population of origin, though not significant in the 
model (χ2 = 2.29, df = 2, P = 0.32), improved the fit as determined by QIC statistics, and so was 
retained in the model. At the end of the experiment, the proportion of fish that survived in each 
treatment group was as follows: control = 97.5%, DMSO = 88%, atrazine low-dose = 72%, 
atrazine high-dose = 82% (Figure 4.1). 

The treatment had a significant effect on brood size (F3,34 = 3.23, P = 0.03; Figure 4.2). This 
effect was mostly driven by the atrazine low-dose group that had significantly larger broods than 
the control group (post hoc comparisons, Tukey-Kramer adjusted P = 0.027). The planned 
contrasts showed that the two control groups had statistically indistinguishable brood sizes (P = 
0.68), but the atrazine low-dose group had a significantly higher broods size than the atrazine 
high-dose group (P = 0.02). This effect was apparently the driver for the significant difference 
between the control groups and atrazine groups (P = 0.02). The sex-ratios of broods did not 
differ between treatment groups (χ2 = 1.28, df = 2, P = 0.53), and the average sex-ratio 
(proportion of males per brood) was 0.42. 

Development of male-specific traits: The treatment significantly influenced the time taken 
to develop a gonopodium (χ2 = 8.78, df = 1.4, P = 0.006), as did the brood identity (χ2 = 19.18, 
df = 10.18, P = 0.04); the population of origin did not significantly affect the time taken to 
develop a gonopodium (χ2 = 3.0, df = 0.87, P = 0.07). The DMSO group had a low hazard ratio 
(HR = 0.29, P = 0.03), as did the atrazine low-dose group (HR = 0.23, P = 0.009). Because the 
hazard ratio compares the instantaneous rate of development of the gonopodium of a treatment 
group compared with the control group, the survival analyses did not reveal whether either of 
the atrazine groups differed from the DMSO group. The results of the GLM testing the effects of 
the treatment on the average age at gonopodium development (AGD) brought out clearer 
results. The treatment had a significant effect on the AGD (χ2 = 9.06, df = 3, P = 0.03; Figure 
4.3A); the DMSO group had a significantly higher AGD than the control group (P = 0.01), but 
AGD did not differ between the two atrazine groups (P = 0.16), and was not significantly higher 
in the atrazine groups compared to the control groups (P = 0.43).  
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The treatment significantly affected the time taken to develop an orange spot (χ2 = 9.7, df = 
3, P = 0.003), as did the brood identity (χ2 = 27.6, df = 12.38, P = 0.008).The population of origin 
did not have a significant effect on the time taken to develop an orange spot (χ2 = 1.37, df = 
0.78, P = 0.18). Again, the DMSO group and the atrazine low-dose group had significantly low 
hazard ratios (DMSO: HR = 0.26, P = 0.02; atrazine low-dose: HR = 0.18, P = 0.004). However, 
the average age at orange-spot development (AOD) was not affected by the treatment (χ2 = 
5.78, df = 3, P = 0.12; Figure 4.3B), and population of origin did not have a significant effect on 
the model. Planned orthogonal contrasts showed that the controls had significantly different 
AOD (P = 0.049), but AOD did not differ between atrazine groups (P = 0.12), or between the 
atrazine and control groups (P = 0.13). 

Size of gonopodium and orange spots: The treatment did not significantly affect the 
adjusted gonopodium length (χ2 = 4.86, df = 3, P = 0.18; Figure 4.4A). The two control groups 
did not differ from each other (P = 0.82) nor did the two atrazine groups (P = 0.47), as 
determined by the planned orthogonal contrasts. Also the atrazine groups did not differ from the 
control groups (P = 0.11). 

The treatment significantly affected the adjusted orange-spot area (χ2 = 8.93, df = 3, P = 
0.03; Figure 4.4B), though the patterns were opposite to what I had predicted. The a-priori 
planned orthogonal contrasts indicated that the atrazine groups had a non-significant trend for 
higher adjusted orange-spot area than the control groups (P = 0.06); the two control groups did 
not differ from each other (P = 0.42) nor did the two atrazine groups (P = 0.20). Because the 
overall model showed a significant effect of the treatment, and the planned orthogonal contrasts 
did not clearly indicate whether the atrazine groups were significantly different from the control 
groups, I conducted all pair-wise post hoc comparisons: the atrazine high-dose group had a 
higher area of orange than the control groups (Tukey-Kramer adjusted P = 0.02). 

 

DISCUSSION 

Overall, the effects of prenatal exposure to atrazine were contrary to predictions: exposure 
to the low dose of atrazine increased brood sizes and exposure to the high dose of atrazine 
increased the area of orange spot (ornament size) in male guppies. There were no significant 
effects on mortality, development of male specific traits or the size of the copulatory organ. In 
most cases (all response variables except ornament size), a non-monotonic trend was 
observed, though this pattern could not be detected statistically.  

In most studies of estrogenic compounds, exposure has an adverse effect on brood sizes 
(Ankley et al. 2003; Robinson et al. 2003; Nash et al. 2004; Fusani et al. 2007); increased 
estrogen levels causes the hypothalamus to reduce production of follicle stimulating hormone 
(FSH), which regulates ovulation, via a negative feedback loop. However, there have been a 
few cases of increased egg production as a result of EDC exposure (Edwards 2005; but see 
opposite trends in a follow-up study: Kristensen et al. 2007), and nonmonotonic responses 
(Giesy et al. 2000; Pawlowski et al. 2004), as in the current study. Some studies have indicated 
that estradiol can trigger meiosis and oogonial proliferation (Miura et al. 2007; reviewed by 
Jalabert et al. 2000; Lubzens et al. 2010), suggesting that estradiol, within a range of 
concentrations, can actually have a positive effect on fecundity (Weltje et al. 2005). While an 
increased brood size may be beneficial to individual fitness, unprecedented increases can 
disrupt population dynamics and have community-level effects by influencing species that are 
closely allied with the focal species. Further, long-term effects must also be considered, such as 
reproductive success, health and viability of these offspring.  

Exposure to contaminants during early life stages has been linked to developmental 
disorders and abnormalities that appear at adulthood, including the following examples. African 
clawed frog (Xenopus laevis) exposed to atrazine throughout larval development had 
demasculinized larynxes at metamorphosis (Hayes et al. 2002b; Hayes et al. 2010). Male 
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American alligators living in contaminated lakes in Florida were found to have reduced phallus 
sizes (Guillette et al. 1999b; Pickford et al. 2000). Male guppies exposed to antiandrogenic 
chemicals during juvenile development had smaller orange spots and gonopodia, reduced 
sperm counts and suppressed courtship behaviors (Bayley et al. 2002). Copulatory behavior of 
male Japanese quails exposed to xenoestrogens during embryonic development was 
completely suppressed at maturation (Panzica et al. 2005). 

In my study, the area of orange-spot responded to atrazine exposure in a manner contrary 
to predictions, albeit moderately, and this effect was more pronounced for the atrazine high-
dose group than the low-dose group. The mechanism for this pattern is perplexing. It is possible 
that atrazine exposure may have increased estradiol, leading to upregulated immune function: 
small increases in estradiol have been shown to boost immune responses (Kenny et al. 1976; 
Bilbo and Nelson 2001; Knöferl et al. 2001), though higher concentrations of the hormone can 
be toxic (Herman and Kincaid 1988; Krisfalusi et al. 1998; Robinson et al. 2007). Individuals that 
can mount a better response to immune challenges can allocate more carotenoids to their 
ornaments (Hill 1991; Folstad and Karter 1992; Lozano 1994), and may thus produce a larger 
area of orange coloration. But this is not possible if the carotenoid allocation strategy is a non-
plastic trait.  

However, it is unclear whether the increased ornament size translates into better 
reproductive success. These same atrazine-exposed males performed fewer courtship displays 
and were not favored by females (Chapter 5). Most sexually selected traits are correlated, and 
this pattern has also been seen in guppies (Houde 1997; Kodric-Brown and Nicoletto 2001). 
Females have evolved to associate larger orange spots with higher display rates, and these 
traits correlate with better immunocompetence (Houde and Torio 1992; Lopez 1998). Edwards 
and Guillete (2007) reported a similar unexpected result of increased gonopodium lengths in 
mosquitofish inhabiting nitrate contaminated waters, while other testosterone-regulated traits 
were suppressed. The results of such studies underscore how contaminants can influence 
pathways differently producing contrasting outcomes. When there is a disconnect between the 
effects on different traits, and if this occurs across multiple generations through persistence of 
pollutants in the environment, or via maternal transfers, significant evolutionary changes can 
result in the mating systems of these populations (Shenoy and Crowley 2011, Chapter 2).  

Prenatal exposure to atrazine did not reduce the size of gonopodium in this study, though 
there appeared to be a trend in this direction. Several studies have reported smaller intromittent 
organs as a result of exposure to an endocrine disrupting compound (Guillette et al. 1996; 
Guillette et al. 1999b; Toft et al. 2003; Gunderson et al. 2004). I believe that a larger sample 
size in my study would have produced more robust results, encouraging the need for more 
research on the effects of atrazine on copulatory organs. Reduced gonopodia can influence 
reproductive success in multiple ways. Females of some poeciliid species prefer to mate with 
males that have longer gonopodia (Langerhans et al. 2005; Kahn et al. 2010). The size of the 
intromittent organ can influence successful sperm transfer during forced copulations, when the 
male has a split second to deliver the sperm before the female escapes (Kelly et al. 2000). Also, 
in highly competitive environments, males with longer intromittent organs will have an 
advantage when two or more males are simultaneously attempting to force copulation with a 
female (Kelly et al. 2000). All this highlights the need for more robust testing on the effects of 
EDCs on copulatory organs.  

Delayed sexual maturation has been observed in vertebrate species exposed to EDCs 
(Bayley et al. 2002; Stoker et al. 2002; Saiyed et al. 2003). I had hypothesized a similar 
phenomenon with the guppies, expecting a delayed development of the gonopodium and 
orange spot, but I failed to find such a trend. In fact, exposure to DMSO appeared to delay the 
development of these traits more than did atrazine, and this intriguing result highlights the 
importance of the effects of solvents and other inert ingredients in pesticide mixtures (Relyea 
2011). Though mostly nontoxic (Brayton 1986; Máchová et al. 2009), DMSO has been shown to 
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have some negative effects at the organismal (Máchová et al. 2009; Chen et al. 2011) and 
cellular (Pal et al. 2012) levels. However, I have failed to find an adverse effect of DMSO with 
regard to other end-points and exposures (Shenoy 2012, Chapter 3 and 5). 

Prenatal exposure to atrazine did not significantly impact survival, and most fish in all 
treatment levels survived until the end of the experiment. Early exposure to xenoestrogens has 
been shown to affect survival (Nimrod and Benson 1998; Carlson et al. 2000). Both males and 
females were included in this data set, as many of the fish that died were too young to be 
sexed. Atrazine exposure also did not affect sex ratios of guppies in this study. Many studies 
have reported skewed sex ratios as a result of exposure to EDCs (Bayley et al. 2002; Teather et 
al. 2005; Örn et al. 2006; Pettersson et al. 2006). Sex determination, the development of sex-
specific gonads from the bipolar primordial gonad, is genetically determined in many vertebrate 
taxa (amphibians: Hayes 1998; Wallace 1999; birds: Ellegren 2001; fish: Devlin and Nagahama 
2002; mammals: Basrur 2006), but environmental cues can play an important role in some 
animal species (Bull 1980; Pieau et al. 1999). Xenobiotic interference during this process can 
cause sex-reversal or intersex (Reeder et al. 1998; Stoker et al. 2003; Hayes et al. 2006a). The 
gonads then produce sex-specific hormones important for the differentiation of somatic cells into 
sex-specific structures (Piferrer et al. 1993; Gray et al. 1994). The Leydig cells produce 
testosterone, and abnormal Leydig cells can produce insufficient levels of the hormone. Further 
exposure to EDCs during sex differentiation can produce phenotypic sex-reversal (Willingham 
and Crews 1999). Sex differentiation in guppies occurs postnatally, and begins about 5-6 weeks 
after birth (Houde 1997).  

In the current study, exposure to atrazine was prenatal. Possibly, this early exposure did 
not alter gonadal hormone production enough to interfere with sex differentiation. Any atrazine 
stored in the body tissues was also probably not sufficient to disrupt the development of sex 
specific morphologies. However, it must be noted that wild guppies are not well suited for 
studying sex ratios; females from low predation sites have significantly smaller brood sizes than 
those from high predation sites (Reznick and Endler 1982), and in my study, brood sizes ranged 
from 1 to 16. Species that have consistently large brood sizes are more appropriate for testing 
predictions related to sex ratios.  

This study brings out the importance of low-dose exposures to atrazine during embryonic 
development on secondary sexual characteristics in guppies. In most cases (all variables except 
ornament size), a non-monotonic trend was observed. Such patterns, common in endocrinology 
and toxicology studies, are thought to be caused by oversaturation of hormone receptors 
(Welshons et al. 2003; Brodeur et al. 2009; Hamlin and Guillette 2011): increased hormone 
concentrations lead to reduced production of the hormones via a negative feedback loop, and 
this can lead to a removal of excess hormone receptors. These results can be extrapolated to 
other wildlife because steroid hormones are highly conserved across vertebrate taxa (Hamlin 
and Guillette 2011). Of interest are the unexpected results of increased brood sizes at low 
doses and increased area of orange spot at high doses. Ecotoxicology studies are fraught with 
conflicting results, where patterns are not consistent across species, or even within the same 
species (e.g. Edwards 2005 vs. Kristensen et al. 2007; reviewed in Solomon et al. 2008; Rohr 
and McCoy 2010). Timing of exposure, diet, age, strain of species, selection pressures, and so 
forth, could be important factors in influencing the measured end-points. In this study, 
population of origin had a significant effect on most end-points, indicating that genetic make-up 
has a considerable influence on the results. Because the mechanisms are complex and poorly 
understood, it is difficult to say why such inconsistencies arise. This only highlights the need for 
more in-depth research on the mechanisms of endocrine disruption. Also of importance are 
more studies across different taxa, and preferably in wild-caught species rather than inbred 
model organisms, and across a range of populations and genotypes, in order to extrapolate 
results confidently to other wildlife species.  
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I also point out with this study that the effects of contaminants cannot be declared 
unequivocally unless a suite of traits is examined. Studying only a small range of end-points 
may lead researchers to believe that a compound is non-toxic under the experimental 
conditions, while further examination of other end-points may reveal different patterns. The 
current study on the effects of prenatal atrazine exposure on morphological features showed no 
significant changes in gonopodium size and increased orange spot size, suggesting a nontoxic 
and perhaps beneficial effect of atrazine exposure. However, when taken in conjunction with 
results of a behavioral assay (Chapter 5), I find that prenatal exposure to atrazine can have 
definite adverse effects on reproduction of male guppies. Hence, I recommend that studies aim 
to use realistic exposures and measure all possible end-points that may be ecologically relevant 
to fitness. 
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Figure 4.1. Proportion of guppies surviving until the end of the experiment in each treatment 
group. Arrows between groups with P-values denote a-priori orthogonal contrasts. AtzL = 
atrazine low-dose, AtzH = atrazine high-dose.  
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Figure 4.2. Brood sizes of adult female guppies exposed to the treatment. Arrows between 
groups with P-values denote a-priori orthogonal contrasts. AtzL = atrazine low-dose, AtzH = 
atrazine high-dose. 
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Figure 4.3. Average age at development of secondary sexual characteristics of male guppies 
that were prenatally exposed to the treatment. The secondary sexual characteristics measured 
were (A) gonopodium, and (B) orange spot. Arrows between groups with P-values denote a-
priori orthogonal contrasts. AtzL = atrazine low-dose, AtzH = atrazine high-dose. 
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Figure 4.4. Size of secondary sexual characteristics of male guppies that were prenatally 
exposed to the treatment. The secondary sexual characteristics measured were (A) 
gonopodium, and (B) orange spot. Arrows between groups with P-values denote a-priori 
orthogonal contrasts. AtzL = atrazine low-dose, AtzH = atrazine high-dose. 
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CHAPTER FIVE. PRENATAL EXPOSURE TO LOW DOSES OF ATRAZINE AFFECTS MATING BEHAVIORS IN 
MALE GUPPIES 
 
SUMMARY 

Performing appropriate mating behaviors is crucial to male reproductive success, especially in 
species where mating is predominantly via female mate choice. In most cases, mating 
behaviors are hormonally regulated and may be sexually selected traits: courtship displays are 
selected via mate choice, while forced copulations and aggressive behaviors are selected for 
via intrasexual competition. Endocrine disrupting compounds (EDCs) interfere with proper 
hormonal functioning in exposed animals. Organisms living in water bodies around agricultural 
areas are at risk of exposure to such contaminants during part or all of their life. Exposures 
during developmentally crucial life stages can have irreversible effects lasting through 
adulthood. I tested the effects of prenatal exposure to environmentally relevant doses of a 
commonly used herbicide, atrazine (1 and 13.5 μg/L) on mating behaviors in male guppies. 
Guppies were used as a model organism to test the effects of atrazine exposure on wildlife 
reproductive health. Adult female guppies were mated and exposed to the treatments 
throughout the gestation period, and offspring born to these females were raised without any 
further treatment. At adulthood, the males were tested for the effects of prenatal exposure on 
their mating behaviors such as courtship displays, gonopodium swings, forced copulatory 
attempts, and competitive and aggressive behaviors towards rivals who were not exposed to 
atrazine. I also tested female preference for treated males compared to control males. Atrazine-
exposed males were less likely to perform the mating behaviors, and performed them less 
frequently, than control males. Atrazine exposure also made males less aggressive towards 
rivals. Females preferred untreated males over atrazine-treated males. These results have 
obvious implications for reproductive success. In all cases, a non-monotonic pattern was seen, 
highlighting the significance of low-dose exposures, which may often be neglected, or 
incorrectly considered safe for human or wildlife health.  
 

INTRODUCTION 

Mating behaviors can be characterized as any behaviors that influence an individual's 
reproductive success. In many animal species, females choose mates by assessing courtship 
behaviors (Lopez 1998; Sargent et al. 1998; Edvardsson and Arnqvist 2000; Rebar et al. 2009). 
Males may also gain some fertilizations by employing other tactics like forced copulations 
(Clutton-Brock and Parker 1995). In species with high male-male competition, aggression 
between competing males may be a factor influencing access to females and monopoly of 
fertilizations (Brown et al. 2007; Hurtado-Gonzales and Uy 2010; Bertram et al. 2011), and 
females may assess males by watching male-male contests (Doutrelant and McGregor 2000; 
Mennill et al. 2002). Males performing sub-optimally in any of these mating behaviors will suffer 
reduced mating and reproductive success. In most cases, mating behaviors are hormonally 
regulated, and are especially under the control of gonadal hormones (Balthazart et al. 1990; Bell 
2001; Ball and Balthazart 2004). Altered levels of gonadal hormones lead to altered expression 
of mating behaviors (Chapter 2, Shenoy and Crowley 2011).  

Endocrine disrupting compounds (EDCs) are a class of compounds that interfere with 
proper hormonal functioning in exposed animals. Common types of EDCs include 
organochlorides, organophosphates, polychlorinated biphenyls (PCBs), phthalates, synthetic 
hormones and hormone-blockers, and phytoestrogens; common sources of EDCs include 
pesticides, industrial effluents, pulp mill effluents, plastics and sewage. Animals may be 
exposed directly by living in contaminated soil or water, or indirectly by eating contaminated 
prey (Markman et al. 2007; Markman et al. 2008; Park et al. 2009; Walters et al. 2010). EDC 
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concentrations can differ temporally within a region, thus exposing animals only during certain 
life stages. Often, this can coincide with developmentally crucial periods, and the effects of 
disruption during these stages can be manifested at later life stages. Such sublethal and latent 
effects can often go undocumented, yet their effects on population dynamics can be significant. 

I tested the effects of prenatal exposure to atrazine on mating behaviors at adulthood in 
male guppies (Poecilia reticulata). Atrazine is the second most commonly used pesticide in the 
US (Grube et al. 2011). Its half-life in surface waters can be over 700 days (Solomon et al. 
1996; Comber 1999), an interval that can span a part or all of the life of many aquatic and semi-
aquatic animals. Depending on the type of crop and application rate, atrazine concentrations in 
water bodies around agricultural fields are expected to be in the range of 19-194 ppb over a 90 
day period (USEPA 2006). It has been hypothesized that atrazine induces aromatization of 
testosterone to estradiol (Hayes 2005; Fan et al. 2007), but this mechanism has been debated 
(Hecker et al. 2005). Several studies have demonstrated the feminizing effects of atrazine in 
amphibians (Hayes et al. 2002b; Hayes et al. 2002c, 2003; Hayes et al. 2010) and fish (Shenoy 
2012, Chapter 3), yet the number of studies with ambiguous and conflicting results (Solomon et 
al. 2008; Rohr and McCoy 2010) contributes to preventing policy changes regarding the use of 
this pesticide.  

I hypothesized that prenatal exposure to environmentally relevant doses of atrazine would 
(1) reduce the likelihood and frequency of males performing mating behaviors such as courtship 
displays, gonopodium swings and forced copulatory attempts (these were considered behaviors 
related to mating effort); (2) in the presence of competing males, reduce the frequency of 
behaviors related to mating effort and those related to male-male aggression; and (3) reduce 
the attractiveness of exposed males in the context of female mate choice. The second 
hypothesis was tested because male-male competition is high in many animal species, 
including guppies: examining behaviors in the context of mate competition is ecologically 
relevant. Contaminants are often differentially distributed in the landscape, and different 
individuals in a population may be exposed unequally. Often, populations that are migratory or 
that converge at breeding sites would contain differentially exposed individuals. Since 
individuals impacted to varying degrees would be competing with each other within a 
population, and females may choose between such individuals, I tested the second and third 
hypotheses by pairing treated males with those that were not exposed to the contaminants. This 
also standardized the condition of each experimental male’s opponent. These hypotheses test 
the effects of low dose exposures at early life stages on wildlife reproductive health. 
 

METHODS 

Study System: I used guppies (Poecilia reticulata) as a model organism to test my 
hypotheses. Guppies have distinct sexual dimorphism, their mating signals and behaviors have 
been well characterized (Houde 1997), and the role of sex hormones in the expression of these 
traits has been explored (Jayasooriya et al. 2002; Hallgren et al. 2006). Further, guppies have 
been used for testing similar questions in other ecotoxicological studies (Baatrup and Junge 
2001; Toft and Baatrup 2001; Kristensen et al. 2005).  

Guppies are especially useful for testing hypotheses related to sexual selection. Males 
have different colored spots on their body and fins (Houde 1997); they perform characteristic 
courtship displays (called “sigmoid” displays) and attempt forced copulations. Mating is 
predominantly through female mate choice: females respond to courtship displays and to males 
with larger and brighter orange spots (Houde 1997; Kodric-Brown and Nicoletto 2001), but avoid 
forced copulatory attempts (Houde 1997; Evans et al. 2003). Fertilization is internal, and males 
have a modified anal fin called the gonopodium, which is used as a copulatory organ. Males 
frequently swing their gonopodium forward, and this appears to increase in frequency during 
mating or aggressive interactions. Displaying the copulatory organ as an ornament is common 



 

58 
 

in poeciliids (Langerhans et al. 2005, Schlosberg et al. 1949, Basolo 1995). Females are 
viviparous and hence suited for testing the effects of maternal exposures.  

Guppies are small tropical fish native to Trinidad and parts of South America. Adult female 
guppies used for this study were descendants of wild-caught guppies from Trinidad. Three 
populations—Aripo Upper River, Aripo Lower River, Guanapo Upper River—were equally 
represented in all treatments to account for geographic and genetic variation.  

Treatments: 40 adult female guppies were randomly assigned to one of the four treatment 
levels at 10 fish per level. Before the treatment was administered, each female was housed with 
a separate male on each of four consecutive days to improve brood characteristics (Evans and 
Magurran 2000). The treatment levels included a negative control (no manipulation), 
dimethylsulfoxide (DMSO, 83.3 μl/L) as the solvent control, atrazine low-dose (1 μg/L), and 
atrazine high-dose (15 μg/L). A solvent control was used because atrazine and ethynyl estradiol 
were dissolved in DMSO; all treatments received the same concentration of DMSO. Atrazine 
concentrations used were based on USEPA estimated environmental concentrations (USEPA 
2006). Concentration of atrazine in the water column in three randomly selected jars per 
treatment was ascertained by liquid phase extraction with methylene chloride following an 
adaptation of USEPA Method 619 (USEPA 1993)—which produced 95% recovery of the target 
compound—and analyzed by gas chromatography/mass spectrometry. Water was changed 
twice a week with static renewal of chemicals. The average concentration at the end of 4 days 
was determined to be 13.56 μg/L for the high-dose with negligible loss over 4 days. In other 
experiments (Shenoy 2012, Chapter 3), I have found there to be negligible loss over 4 days for 
this concentration as well. No atrazine was detected in the control samples. Atrazine (98% 
purity) was purchased from Chem Service, Inc., through Fisher Scientific. Treatments continued 
until a brood was produced to simulate a long-term exposure. Offspring born to treated females 
were raised to adulthood with no further treatment.  

Animal Care: During the period of the study, all fish were housed separately in individual 
glass bowls with 3 L of aged (for at least 24 hours), pre-aerated, carbon filtered, conditioned 
water (conditioned with AmQuel® and NovAqua® by Kordon, LLC). Fish were fed with tropical 
fish flake food once each day and brine shrimp nauplii once each day in ad libitum quantities. 
Room temperature was maintained at an average of 25 °C; the light: dark cycle was set to 12:12 
hours. Mortality was recorded every day. Bowls were checked twice daily for offspring.  

Offspring born to treated females were immediately removed from the mother's bowl. Each 
brood was housed together in a plastic tank with 6 L of aged, pre-aerated, carbon filtered, 
conditioned water, as before. All fish were fed ad libitum quantities of tropical fish flake food four 
days per week, and ad libitum quantities of brine shrimp nauplii three days per week. All fish 
were checked daily for development of male-specific morphologies: any fish that developed a 
gonopodium or color spot was immediately transferred to another container to separate the 
sexes. Males and females of a brood were then housed in sex-specific tanks with no more than 
4 fish per tank. All tanks contained gravel and were aerated continuously. Room temperature 
was maintained at an average of 25 °C; the light: dark cycle was set to 12:12 hours. Mortality 
was recorded every day.  

The experimental protocol for this study was approved by the University of Kentucky 
Institutional Animal Care and Use Committee (protocol number 2007-0137). 

Behavior trials: At an average age of 13 months (± 0.75 months, standard deviation), the 
fish were subjected to three sets of behavior trials: (1) to assess behavior of the males towards 
a female in the absence of competition from another male, (2) to assess mating behaviors in the 
presence of a competing male, and (3) to assess male attractiveness to a female. All trials were 
conducted within the first four hours after lights turned on and during the last four hours before 
lights turned off. All trials were conducted blind: the observer did not know the treatment that 
any of the fish had received and identified males by their color patterns only. Data were 
recorded in real time. Trial tanks were illuminated with full-spectrum light including ultra violet 
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wavelengths to ensure that all colors were perceived naturally by the other fish in the trial 
(Endler 1991, 1993). The observer sat in darkness, 1 m away from the tank, to avoid startling 
the fish; the fish did not appear to notice or be disturbed by the presence of the observer. All 
behavioral observations were made using JWatcher v1.0 (Blumstein et al. 2000-2006). 

Trials without competing males: each male was placed in a trial tank of dimensions 30 x 20 
x 15 cm (height x length x width) and 7.5 L of water, with one virgin female from the same 
population. The water used was aged, pre-aerated, carbon filtered, and conditioned, as before, 
and water temperature was maintained between 23-25 °C. Three walls of the tank were lined 
with black landscape fabric on the inside to prevent reflections. After a 5 minute acclimation 
period, the fish were observed for 10 minutes. The total number of sigmoid courtship displays, 
gonopodium swings and copulatory attempts were recorded throughout the trial period. Only 
gonopodium swings greater than 90° were counted.  

Trials with competing males: These trials were conducted to test whether treatments 
altered male behaviors compared to an untreated male in the context of competition. Males 
were paired in the following fashion—each pair consisted of one male from the control group 
(opponent) and one male (focal male) from one of the other three treatment groups: DMSO, 
atrazine low-dose, or atrazine high-dose. Control-group males were used in multiple pairs, as 
there were not enough males to be used only once. Control-group males were paired with each 
of the different treatment group males in random order. As far as possible, focal males of a 
single brood were paired with control males of a single brood. Males of a pair belonged to the 
same population. Pairs could not be size-matched after matching for population and brood. 
Each pair was placed in a trial tank as described above, with a virgin female from the same 
population. After a 5 minute acclimation period, behaviors were recorded for 10 minutes. At 
each 10s point, the observer recorded which male was closer to the female. A male had to be 
more than one body length ahead of the other male to be “closer”, and received 1 point in such 
cases. If both males were within one body length of each other, and within at least two body 
lengths of the female’s vent, they were both recorded as being equally close; in such cases both 
males received 0.5 points. If both males were further than two body lengths from the female’s 
vent, they were both recorded as being far from the female and received 0 points for that event. 
At the end of the 10 minute trial period, each male’s “closeness” points were summed and its 
ratio to the total number of events gave a measure of proximity. Throughout the whole trial 
period, the observer counted for each male the total number of sigmoid courtship displays, 
forced copulatory attempts, aggressive displays to the rival male, and attacks on the other male. 
The number of gonopodium swings was not recorded, as these happened in quick succession, 
and the observer could not keep a reliable count for both males. 

 Attractiveness to females: These trials were conducted to test whether females had a 
stronger preference for control males when paired with a treated male. Males were paired as 
above. The trial tank 25.4 x 40.6 x 20.3 cm (height x length x width) was physically divided into 
three compartments with transparent plastic dividers; the compartments were adjacent to each 
other along the length of the tank: two compartments of 5 cm length on either end of the tank, 
and a central compartment where the virgin female was placed. Each male of a pair was 
randomly placed in one of the two end compartments. Males were identified by their color 
patterns and the observer did not know which treatment either male had received. The central 
compartment was further divided into three compartments by marking on the walls of the tank 
with a marker. The areas immediately adjacent to the male compartments were considered the 
“preference zone” where the female would spend time if she was interested in the male; these 
areas were 5 cm in length. Preliminary trials found that females interested in mating (determined 
by vigorous swimming against the partition or steadily watching the male) spent time in this 
region. The central portion of the tank was considered the “non-preference zone” where the 
female spent time if she was not interested in mating (again, determined from preliminary trials). 
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After 10 minutes of acclimation, observations of time spent by the female in each compartment 
were made for 10 minutes. 

Data Analyses: All data were analyzed with SAS 9.3 (SAS-Institute-Inc 2002-2009). 
Because males within a brood are correlated, and the number of males per brood varied from 1 
to 7 (mean = 2.96 ± 1.7 standard deviation), I used generalized estimating equations (GEE; 
PROC GENMOD in SAS) for all analyses, by grouping individuals within broods (Hanley et al. 
2003). GEE uses a quasi-likelihood approach to analyzing generalized linear models (GLMs), 
such as ANOVAs, ANCOVAs, logistic regressions, and so forth (Zeger and Liang 1986; Hanley 
et al. 2003). GEE focuses on within cluster similarity of the residuals, and this estimated 
correlation is used to calculate regression parameters and standard errors (Hanley et al. 2003; 
Hubbard et al. 2010). Statistics reported for fixed effects are Wald χ2 statistics for Type III GEE 
(the Wald statistics follows a χ2 distribution). 

Mating behaviors without competition: The response variables analyzed were the number 
of displays, the number of gonopodium swings, and the number of forced copulatory attempts, 
performed within the 10 minutes trial period. Pearson product-moment correlations between the 
variables were analyzed; the correlation coefficients indicated that the number of gonopodium 
swings was strongly correlated with the number courtship displays performed (r = 0.66, P < 
0.0001) and moderately with the number of forced copulatory attempts (r = 0.5, P < 0.0001), 
while the number of courtship displays and the number of copulatory attempts were more 
weakly correlated (r = 0.32, P = 0.003). No variables were eliminated from the analysis, 
because none of the correlations were extremely strong, and each was biologically meaningful. 

I tested for the effects of treatments on (i) the likelihood of performing mating behaviors 
using logistic regressions (with binary responses), and (ii) the frequency of mating behaviors 
performed using GLMs. For the GLMs I assumed negative-binomial error (number of courtship 
displays and number of gonopodium swings) or Poisson error (number of forced copulatory 
attempts), determined by lower quasi-likelihood under the independence model criterion (QIC) 
values. Since I had specific null hypotheses, I used a-prior planned orthogonal contrasts to test 
whether (1) the two control groups were similar to each other, (2) the two atrazine groups were 
simialr to each other, and (3) the atrazine groups were similar to the control groups, with respect 
to the likelihood of performing the behaviors and the frequency of the behaviors performed. 
Population of origin and the number of days that the fish received treatment gestationally were 
included as fixed effects, but these did not have a significant effect on the responses and so 
were removed. Because the data were over-dispersed to some extent, a scale correction factor 
was applied to the parameter covariance matrix and likelihood function (courtship displays: 
negative binomial dispersion parameter, k = 5.15; gonopodium swings: k = 3.67; forced 
copulation attempts: scale parameter, φ = 2.54). 

 Mating behaviors in the presence of competition: Pearson product-moment correlations 
between all variables were analyzed. The correlations between some of the response variables 
were moderate to strong (proximity and courtship displays: r = 0.43, P = 0.0007; proximity and 
forced copulatory attempts: r = 0.64, P < 0.0001; courtship displays and forced copulatory 
attempts: r = 0.38, P = 0.003; aggressive displays and attacks: r = 0.48, P < 0.0001), and low 
among others (r and P values not shown). I did not eliminate any variables from the analyses as 
none of the correlations were extremely strong, and all the variables were biologically 
meaningful. Since males were paired, and their behaviors were dependent on each other, an 
ANCOVA was performed to analyze the effect of the treatments on the focal male’s behavior in 
response to his paired opponent’s behavior, which was included as the covariate. Covariates 
were mean-centered within treatments so that mean estimates for each treatment corresponded 
with the mean value of the covariate. I specifically tested for differences between treatment 
means (seen by a significant effect of the treatment) and slopes (seen by a significant 
interaction of treatment by covariate). I performed a-priori planned orthogonal contrasts to test 
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whether (1) the means and slopes of the two atrazine groups were similar, and (2) the atrazine 
groups had similar means and slopes to the DMSO group.  

Proximity to the female was square-root transformed (for the focal males and paired control 
males), and the data fit a normal distribution. The underlying distributions for all variables 
(except proximity to female) were specified as Poisson or negative binomial, depending on 
which distribution improved the fit of the model. Population of origin and control male’s trial 
number (because males from the control group were used in multiple pairs) were included as 
additional fixed effects wherever they improved the fit of the model. The data were under- or 
over-dispersed to some extent, so a correction factor was applied to the parameter covariance 
matrix and likelihood function (proximity: k = 0.19; forced copulation attempts: k = 2.35; 
aggressive displays: k = 2.44; attacks: φ = 4.43). 

The number of courtship displays had a large number of zeroes and could not be analyzed 
quantitatively. Qualitatively, I reported for each treatment level, the proportion of pairs in which 
the focal male performed fewer displays than the paired control male, from amongst the pairs 
where at least one male performed at least one courtship display. 

 Attractiveness to females: The strength of the female's preference (henceforth SFP) for the 
treated male (belonging to DMSO, atrazine low-dose or atrazine high-dose group) over the 
paired control male was measured by the difference between time spent in the treated male's 
preference zone and the time spent in the paired control group male's preference zone, as a 
proportion of total time spent in either preference zone. A positive SFP would indicate a 
preference for the treated male over the paired control male, while a negative SFP would 
indicate a preference for the paired control male over the treated male. Preliminary analysis 
showed that there was no significant difference in time spent with a DMSO male compared to 
the paired control male (paired t-test, P = 0.51). I tested for the differences in SFP between 
groups using GLM, and the data fit a normal distribution. Population of origin was input as a 
fixed effect as it had a significant effect on the SFP. The data were somewhat under-dispersed, 
so a scale correction factor was applied to the parameter covariance matrix and likelihood 
function (φ = 0.46). 
 

RESULTS 

Behaviors in the absence of competitors: The treatment had a significant effect on the 
likelihood of performing any of the mating behaviors (courtship displays: χ2 = 13.65, df =3, P = 
0.0034; gonopodium swings: χ2 = 9.18, df = 3, P = 0.027; forced copulatory attempts: χ2 = 8.59, 
df = 3, P = 0.035; Figure 5.1). The atrazine low-dose group was significantly less likely to 
perform courtship displays compared to the control group (Tukey-Kramer post-hoc test, P = 
0.0035), and there was a tendency for a lower likelihood of performing gonopodium swings 
(Tukey-Kramer post-hoc test, P = 0.06) or forced copulatory attempts (Tukey-Kramer post-hoc 
test, P = 0.08). The atrazine high-dose group did not differ from the control group in their 
likelihood to perform any of the mating behaviors (Tukey-Kramer post-hoc test, courtship 
displays: P = 0.14; gonopodium swings: P = 0.09; forced copulatory attempts P = 0.37). The 
lack of power from performing all pair-wise comparisons prevented the detection of significant 
differences, which were brought out by planned orthogonal contrasts (Figure 5.1). The DMSO 
group was equally likely to perform mating behaviors compared to the control group (planned 
orthogonal contrasts: courtship displays: P = 0.81; gonopodium swings: P = 0.86; forced 
copulatory attempts: P = 0.92), The atrazine groups were also indistinguishable from each other 
(planned orthogonal contrasts: courtship displays: P = 0.17; gonopodium swings: P = 0.89; 
forced copulatory attempts: P = 0.2), but the atrazine groups were significantly less likely to 
perform any of the behaviors compared to the control groups (planned orthogonal contrasts: 
courtship displays: P = 0.002; gonopodium swings: P = 0.006; forced copulatory attempts: P = 
0.003).  
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The treatment had a significant effect on the frequency of some of the behaviors performed 
within the 10 minute trial period (courtship displays: χ2 = 5.73, df = 3, P = 0.13; gonopodium 
swings: χ2 = 10.55, df = 3, P = 0.014; forced copulatory attempts: χ2 = 16.93, df = 3, P = 0.0007; 
Figure 5.2), and the significant effect was driven by reduced behaviors of males from the 
atrazine low-dose group (significantly lower than control group, Tukey-Kramer post-hoc test: 
gonopodium swings, P = 0.03; forced copulations, P = 0.02). For all three behaviors, the two 
control groups responded similarly (planned orthogonal contrasts: courtship displays, P = 0.97; 
gonopodium swings, P = 0.91; forced copulations, P = 0.09), as did the two atrazine groups 
(planned orthogonal contrasts: courtship displays, P = 0.36; gonopodium swings, P = 0.25; 
forced copulations, P = 0.15). The atrazine groups together responded lower than the control 
groups with respect to gonopodium swings (planned orthogonal contrasts, P = 0.018) and 
forced copulations (planned orthogonal contrasts, P = 0.007), but not courtship displays 
(planned orthogonal contrasts, P = 0.06).  

 Behaviors in the presence of competitors: These data were analyzed using 
ANOCOVAs with the focal male’s behavior as the response variable and the paired control 
male’s behavior as the covariate; I tested for treatment effects on the mean behaviors (detected 
by a significant effect of the treatment) and the slopes of the behaviors in response to the 
covariate (detected by a significant interaction of the treatment and the covariate). The slopes 
indicate the focal male’s behavior in response to his paired control male’s behavior, which is 
indicative of competitiveness.  

Proximity to the female (Table 5.1) was not influenced by the treatment (χ2 = 0.86, df = 2, P 
= 0.65), or the interaction of treatment and paired control male's behavior (χ2 = 3.36, df = 2, P = 
0.19), but was influenced by the paired control male's proximity (χ2 = 17.74, df = 1, P < 0.001). 
The atrazine groups had similar means (planned orthogonal contrasts, P = 0.91) and slopes 
(planned orthogonal contrasts, P = 0.2), and did not differ from that of the DMSO group 
(planned orthogonal contrasts: mean, P = 0.38; slope, P = 0.37).  

The number of forced copulations (Table 5.1) was not influenced by the treatment (χ2 = 
1.06, df = 2, P = 0.59), and only slightly by the paired control male's behavior (χ2 = 3.24, df = 1, 
P = 0.07), but was strongly influenced by the interaction of treatment with the paired control 
male's behavior (χ2 = 11.84, df = 2, P = 0.0027). The means of the two atrazine groups were 
similar (planned orthogonal contrasts, P = 0.78), and did not differ from the mean of the DMSO 
group (planned orthogonal contrasts, P = 0.33). The slopes of the atrazine groups were also 
similar (planned orthogonal contrasts, P = 0.12) but were significantly lower than the slope of 
the DMSO group (planned orthogonal contrasts, P = 0.005).  

The number of aggressive displays to the rival male (Table 5.1) was influenced by the 
treatment (χ2 = 6.19, df = 2, P = 0.045), but not by the paired control male's behavior (χ2 = 2.20, 
df = 1, P = 0.14) or the interaction of the treatment with the covariate (χ2 = 3.98, df = 2, P = 
0.14). The atrazine groups had similar means (planned orthogonal contrasts, P = 0.51) and 
slopes (planned orthogonal contrasts, P = 0.26), but together had significantly lower mean 
(planned orthogonal contrasts, P = 0.02) and slope (planned orthogonal contrasts, P = 0.049) 
compared to the DMSO group.  

The number of attacks on the rival male (Table 5.1) was significantly influenced by the 
treatment (χ2 = 10.39, df = 2, P = 0.0055), but not by the paired control male's behavior (χ2 = 
1.99, df = 1, P = 0.16) or the interaction of the treatment with the covariate (χ2 = 0.5, df = 2, P = 
0.78). The atrazine groups did not differ from each other in means (planned orthogonal 
contrasts, P = 0.57) or slopes (planned orthogonal contrasts, P = 0.62), but together they had a 
significantly lower mean (planned orthogonal contrasts, P = 0.0017) than the DMSO group, 
though not a lower slope (planned orthogonal contrasts, P = 0.68).  

Population of origin had a significant effect on proximity to the female (χ2 = 6.47, df = 2, P = 
0.04), the number of forced copulation attempts (χ2 = 9.28, df = 2, P = 0.0097), and the number 
of attacks (χ2 = 7.4, df = 2, P = 0.02), while the paired control male's trial number (χ2 = 9.05, df = 
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1, P = 0.0026) significantly influenced the number of attacks. The latter result may be the result 
of winner-loser effects influencing a male’s propensity to attack his rival (Hsu and Wolf 1999; 
Dugatkin and Druen 2004).  

A qualitative examination of the number of courtship displays performed revealed that the 
proportion of pairs wherein the focal male performed fewer number of courtship displays than 
the paired control was approximately equal in all treatment levels (DMSO = 0.67, atrazine low-
dose = 0.67, atrazine high-dose = 0.75) suggesting that the treatment probably did not affect the 
frequency of courtship displays performed. 

Attractiveness to females: The strength of the female's preference for the control male 
over the treated male (SFP) was significantly influenced by the treatment (χ2 = 8.46, df = 2, P = 
0.015; Figure 5.3), and this effect was mainly driven by the atrazine low-dose group (Tukey-
Kramer post-hoc test, P = 0.02). Planned orthogonal contrasts brought out differences in the 
SFP of the atrazine groups (P = 0.03), yet together they had a lower SFP than the DMSO group 
(P = 0.035). Population of origin also influenced SFP (χ2 = 13.44, df = 2, P = 0.0012).  

 

DISCUSSION 

Prenatal exposure to atrazine reduced the likelihood that a male courted, the frequency of 
gonopodium swings, and the number of forced copulatory attempts performed. In the presence 
of a competing male, atrazine-exposed males performed fewer courtship displays, aggressive 
displays and attacks on the rival; their competitiveness, indicated by the slope of their behavior 
in response to the rival’s escalating behavior, was also reduced with regard to forced copulatory 
attempts and aggressive displays. Females had a greater strength of preference (SFP) for the 
control males over the atrazine low-dose males, compared to their SFP for control males over 
DMSO males or the atrazine high-dose males.   

The effects of atrazine on male sexual characteristics such as gonadal morphology, 
hormone production and sperm counts have been explored in amphibians and fish (Hayes et al. 
2002b; Hayes et al. 2003; Hayes et al. 2006b; Abarikwu et al. 2010; Hayes et al. 2010; Tillitt et 
al. 2010). Evidence for the effects of atrazine on sexual signals and behaviors are fewer. Effects 
of atrazine on larynx size (Hayes et al. 2002b) and structure (Hayes et al. 2010) of African 
clawed frog larvae exposed to atrazine have been reported. The larynx produces vocalization in 
anurans, their primary mating signal. Smaller larynxes produce suboptimal calls. Shenoy (2012) 
found that adult male guppies exposed to atrazine had a tendency toward reduced orange 
coloration and performed fewer courtship displays. This study adds to the literature on the 
effects of atrazine on sexual signaling, especially mating behaviors.  

Atrazine has been postulated to upregulate the production of the enzyme aromatase that is 
necessary for the conversion of testosterone to estradiol (Hayes 2005; Fan et al. 2007). This 
mechanism has been debated (Hecker et al. 2005). Alternative mechanisms suggested for the 
endocrine disruption by atrazine are direct inhibition of testosterone production from the Leydig 
cells (Friedman 2002) and reduced levels of 5α-reductase, the enzyme that converts 
testosterone to DHT (Kniewald et al. 1979; Babic-Gojmerac et al. 1989). If atrazine does 
upregulate aromatase production, then the increased rate of conversion of testosterone to 
estradiol would reduce available testosterone and increase estradiol concentrations. Increased 
estradiol can directly reduce testosterone production (Bartke et al. 1977; Kim et al. 2007). 
Further, a reduction in testosterone levels will affect the production of dihydrotestosterone and, 
in teleost fish, 11-ketotestosterone, hormones that are necessary for the development of 
secondary sexual traits (Ankley et al. 2002; Ankley et al. 2005). Aromatase also converts 
androstenedione to estrone; testosterone is produced from androstenedione, while estradiol is 
produced from estrone. Hence, increased aromatase can further alter testosterone:estradiol 
ratios. All of this would be instrumental in the development of sexual traits that are dependent 
on testosterone and estradiol balances.  
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The regions of the brain controlling sexual behaviors are larger in males and rich in 
androgen receptors (Ball and Balthazart 2004). Castration can shrink these regions with 
corresponding reduction in sexual behaviors, but implanting testosterone can restore behaviors 
to pre-castration levels (Ball and Balthazart 2004). 11-ketotestosterone is required for courtship 
behavior in male mosquitofish (Toft and Guillette 2005) and guppies (Baatrup and Junge 2001; 
Bayley et al. 2002) and for female recognition and courtship in male goldfish (Thompson et al. 
2004a). In this study, endocrine disruption during embryonic development may have impeded 
the development of the brain regions that respond to sexual stimuli or disrupted the 
development of the gonads, thereby affecting hormone production.  

Interestingly, the low dose of atrazine had consistently stronger effects on guppy behavior 
than the high dose of atrazine (though the differences were not always statistically significant); 
in many cases the effects of the high dose of atrazine were indistinguishable from the controls. 
Such nonmonotonic (inverted U-shaped) response curves are common in endocrinological 
studies and have been reported for EDCs (Welshons et al. 2003; Brodeur et al. 2009; Hamlin 
and Guillette 2011). This is mainly due to saturation of hormone receptors, and hence, the 
saturation of responses (Welshons et al. 2003): increased hormone concentrations can lead to 
removal of a negative feedback loop shutting down further hormone production, which in turn 
can lead to the removal of excess hormone receptors. This highlights the fact that low 
concentrations of contaminants are not negligible and can have profound effects on wildlife 
health, often more so than higher doses. However, higher doses of EDCs might affect other 
physiological systems and must not be considered harmless.  

Implications of altered mating behaviors: In this study, males that had been exposed to 
atrazine during embryonic development showed reduced interest in mating, as seen by a lower 
likelihood and frequency of performing mating behaviors. Altered mating behaviors as a result of 
contaminant exposure have been documented (Baatrup and Junge 2001; Toft and Baatrup 
2001; Bayley et al. 2002; Bayley et al. 2003; Bortolotti et al. 2003; Nakayama et al. 2004; 
Arellano-Aguilar and Garcia 2008; Bernhardt and von Hippel 2008; Larsen et al. 2008; Saaristo 
et al. 2009). In species where female mate choice predominates, performing appropriate mating 
behaviors is crucial to securing fertilizations. Male guppies that are unlikely to court females, or 
that perform few courtship displays, will not be favored by females (Houde 1997), and this is 
often the case in other species as well (Gerhardt 1994; Reynolds 1996; Talyn and Dowse 2004; 
Baird et al. 2007). Courtship displays are regulated by sex hormones in guppies (Baatrup and 
Junge 2001; Bayley et al. 2003; Hallgren et al. 2006; Baatrup 2009) and other vertebrates (Ball 
and Balthazart 2004; Adkins-Regan 2005, 2007); exposure to atrazine appears to have 
disrupted this pathway in the present study. Males of many species use multiple traits 
simultaneously or sequentially to attract females (Candolin 2003). The gonopodium swing 
appears to be a form of display; this variable was correlated with courtship displays in this study, 
and similar correlations have been found in previous studies (Schlosberg et al. 1949; Shenoy 
2012, Chapter 3). If courtship displays are regulated by sex hormones, it is reasonable to expect 
gonopodium swings to also be similarly controlled.  

Although females try to avoid forced copulations, males do attain some fertilizations 
through this strategy. In a highly competitive environment, males that do not attempt forced 
copulations are compromising their chances of obtaining fertilizations. So far there is little 
evidence to support the hypothesis  that forced copulations are controlled by sex hormones 
(Davis 2002). Shenoy (2012, Chapter 3) found that adult male guppies exposed to atrazine 
performed fewer courtship displays, but the exposure did not affect the number of forced 
copulations attempts. It is possible that the timing of exposure may have influenced the 
difference in these results.  

Mating signals in guppies consist of the orange colored spots on their bodies as well as 
courtship displays (Houde 1997) and possibly other behaviors like gonopodium swings. 
Females choose mates by assessing all these traits, which are often correlated (Nicoletto 1993) 
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(Kodric-Brown and Nicoletto 2001). Males with brighter and larger orange spots are preferred by 
females (Houde 1997; Rodd et al. 2002), as are males that display frequently (Kodric-Brown 
1993). Unexpectedly, atrazine exposure increased the area of orange spots in these males 
(Chapter 4), yet females showed a clear lack of preference for the atrazine treated males. Since 
these males performed courtship displays and gonopodium swings less frequently, it is 
reasonable to assume that females based their assessment on the behavioral traits. In guppies, 
as in many other animal species, males that are not preferred by females have little chance of 
obtaining matings except via sneaker strategies.  

Courtship displays in most animal species are considered signals of mate quality that 
females use to assess potential mates (Lopez 1998). If male mating signals are rendered 
unreliable as a result of contaminant exposure, females may not be able to accurately assess 
mate quality. If these effects last for multiple generations, either via persistence of the 
contaminants in the environment or through maternal transfer, it is possible that females may 
not rely on these signals leading to a loss of the signal from the population (Shenoy and 
Crowley 2011, Chapter 2). Altered mating signals reduce the availability of attractive mates in a 
population, thereby altering the effective sex ratio. Altered sex ratios can influence population 
dynamics, extra-pair copulation rates (Kempenaers et al. 1997) and subsequently, offspring sex 
ratios and qualities (Quader 2005). Altered mating signals as a result of contaminant exposure 
may not reflect mate quality, leading to "incorrect" female choices and resulting in lowered 
offspring number and quality (Shenoy and Crowley 2011, Chapter 2). Quader (2005) reviews 
other ecological implications of altered female mate choice.  

Male-male competition is high in many animal species, including guppies. EDCs are known 
to affect competitive behaviors in exposed animals (Jaeger et al. 1999; Bell 2001; Majewski et 
al. 2002; Palanza et al. 2002). When competing with a rival male that was not exposed to 
treatments, the atrazine exposed males escalated less in response to the paired control male's 
behavior compared to the DMSO treated males. These males are clearly at a mating 
disadvantage in the face of competition. When competition is high, males will indulge more in 
forced copulations (Jirotkul 1999b) and aggressive behaviors, and focus less on courtship; this 
was apparent from the low numbers of males that performed courtship displays in the presence 
of a rival male in this study.  

Aggression between rival males is an important factor in gaining fertilizations: first, winning 
contests allows access to females (Brown et al. 2007; Hurtado-Gonzales and Uy 2010; Bertram 
et al. 2011), and second, females often choose mates by watching contests (Doutrelant and 
McGregor 2000; Mennill et al. 2002). More aggressive males will also guard mates to prevent 
sperm competition (Bateman and Toms 1998; Watts 1998; van Dongen 2008). Hence reduced 
aggression towards rival males can lead to lowered reproductive success. In this study, atrazine 
exposed males performed fewer aggressive displays and attacks on rivals, which could result in 
significantly reduced mating success.  

Population of origin affected some of the behavioral variables. Guppy mating behaviors 
vary depending on the predation regime they originate from (Luyten and Liley 1985; Godin 
1995; Houde 1997). Males from high predation sites are less likely to perform courtship displays 
and attempt more forced copulations, while males from low predation sites will invest in 
courtship displays (Luyten and Liley 1985). Further, males from high predation sites may spend 
less time in aggressive acts as this can attract predators (Luyten and Liley 1985). The strength 
of female’s preference (SFP) was also influenced by population of origin. This could either be an 
artifact of the difference in male behavior patterns based on population of origin or a diminished 
inclination for female guppies from high predation sites to associate with very active males to 
reduce predation risk (Godin and Briggs 1996). Future studies testing the interactive effects of 
EDC-exposure and predation regimes would be important to understand how selection against 
a trait can be compounded by novel disruptors like contaminants.  
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Timing of exposure: An important highlight of the current study is the effects of exposure 
to a contaminant during embryonic development being manifested during adulthood, 13 months 
post parturition. Maternal exposure to contaminants has been shown to affect reproductive 
development in wildlife (reviewd in: Colborn et al. 1993a; Hamlin and Guillette 2011). Laboratory 
studies have shown that prenatal exposure to various contaminants affects reproductive 
behaviors at adulthood (e.g. Dalsenter et al. 1997, Veeramachaneni et al. 2001, Halldin et al. 
1999, Palanza et al. 1999). Atrazine is lipophilic (Matsui et al. 1995) and hence, can be stored in 
the yolk. Since the mothers of the exposed fish were living in atrazine-contaminated water 
throughout gestation, the embryos developing within them were also constantly exposed to 
atrazine. Disruption during key developmental stages has been shown to irreversibly interfere 
with hormone production (Guillette et al. 1994; Bigsby et al. 1999). Atrazine may also be stored 
in the developing embryos' fat tissues, and be released gradually during its lifetime.  

Contaminants may appear in environments in pulses during application periods or through 
run-off during heavy rains (Heckmann and Friberg 2005; Dueri et al. 2009). Many animals living 
in these environments may be exposed to the contaminants only during short periods, and this 
may coincide with developmentally crucial periods. As seen in this study and others (Guillette et 
al. 1994; Markey et al. 2005; Gore 2008; reviewed in Damgaard et al. 2002; Hamlin and 
Guillette 2011), no further exposure is required for clear reproductive abnormalities to be 
apparent at adulthood. These results have significant implications to wildlife reproduction as well 
as human health. 
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Table 5.1. Means and slopes for the focal males' behaviors regressed against the paired control 
group males' behaviors.  
 

 
Mean1 ± SE P2 Slope ± SE P2 

(A) Proximity to female (square root transformed) 
Atrazine high dose 0.351 ± 0.032 0.505 0.6776 ± 0.2525 0.974 
Atrazine low dose 0.3562 ± 0.0426 0.359 0.3719 ± 0.1828 0.089 
DMSO 0.3182 ± 0.0609  0.6854 ± 0.0959  
(B) Forced copulation attempts 
Atrazine high dose -1.0855 ± 0.8288 0.305 -0.0778 ± 0.0372 0.001 
Atrazine low dose -1.3664 ± 0.8668 0.424 0.0576 ± 0.0765 0.076 
DMSO -2.4697 ± 1.2612  0.2424 ± 0.0831  
(C) Aggressive displays to rival 
Atrazine high dose 0.2892 ± 0.3836 0.034 -0.0731 ± 0.0659 0.172 
Atrazine low dose -0.3456 ± 0.8864 0.065 -0.3114 ± 0.2019 0.085 
DMSO 1.4343 ± 0.3813  0.0545 ± 0.0662  
(D) Attacks on rival 
Atrazine high dose -1.9597 ± 0.8334 0.002 0.0179 ± 0.0495 0.510 
Atrazine low dose -1.574 ± 0.6155 0.010 0.0637 ± 0.0737 0.928 
DMSO 0.6708 ± 0.7141  0.0725 ± 0.0663  
  
1Means are least-squares estimates of the mean 
2P-values for the difference between the treated males and DMSO males 
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Figure 5.1. Likelihood of performing mating behaviors, depicted by the proportion of fish that 
performed at least one event of the mating behavior. Mating behaviors include (A) courtship 
displays, (B) gonopodium swings, (C) forced copulatory attempts. Arrows between bars indicate 
a-priori planned orthogonal contrasts. 
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Figure 5.2. The effect of treatments on the number of mating behaviors performed. Mating 
behaviors include (A) courtship displays, (B) gonopodium swings, (C) forced copulatory 
attempts. Arrows between bars indicate a-priori planned orthogonal contrasts.  
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Figure 5.3. Strength of the female's preference (SFP) for treated male compared to the paired 
control male. SFP was the ratio of the difference in time associated with the treated male and 
the time associated with the paired control male, to the total time associated with either male. 
Groups with similar letters were not significantly different from each other (P > 0.05), as 
determined by Tukey-Kramer post-hoc tests. 
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CHAPTER SIX. ENDOCRINE DISRUPTION AND THE CAROTENOID MODULATION OF THE 
IMMUNOCOMPETENCE HANDICAP HYPOTHESIS: AN EVOLUTIONARY MODEL 
 

SUMMARY 

Carotenoids are pigments that produce yellow, orange, and red colors. Animals obtain 
carotenoids from their diet to make colorful ornaments important for mate attraction. Males with 
elevated circulating testosterone levels to enhance ornament expression produce high levels of 
free radicals that damage cells of the immune system and cause oxidative stress. Carotenoids 
can be used to trap free radicals and thus enhance immunocompetence. Carotenoids are often 
a limited resource: allocation to ornament versus immunocompetence poses a trade-off. 
Endocrine disrupting compounds (EDCs) are ubiquitous in the environment and interfere with 
proper hormonal functioning in exposed animals. EDC-exposure can affect carotenoid-based 
ornaments and immunocompetence by disrupting the hormonal pathways involved in their 
expression. A mathematical model was used to simulate the carotenoid allocation strategy--
which is considered to be a non-plastic and heritable trait--that maximizes lifetime reproductive 
success by maximizing both mating success (via ornament expression) and survival (via 
immunocompetence). This model was used to ask (1) is there a loss of signal reliability in the 
presence of EDCs, (2) will there be an evolutionary shift in the allocation strategy under multi-
generational EDC-exposure, (3) will signal reliability be restored under the shifted allocation 
strategy, and (4) how is signal reliability impacted in the presence of additional selective 
pressures like predation, and its interaction with EDC-exposure? The model produced lower 
signal reliability in the presence of EDCs. Allocation to ornament was somewhat increased 
when populations adapted to EDCs under multi-generational exposure, but ornament 
expression, immunocompetence and signal reliability were not restored. Predation pressure 
further suppressed signal reliability and caused an increased allocation to immunocompetence.  

 

 

INTRODUCTION 

Mating signals are conspicuous morphological and behavioral traits used by animals to 
attract members of the opposite sex. In many animal species, males produce signals and 
females assess the signals to choose mates; in some species, females also produce mating 
signals – either females alone, or both sexes together (Amundsen 2000). Here, I focus only on 
male mating signals, specifically ornaments, which are color patterns or morphological traits that 
have arisen through sexual selection. Pigments used for coloration may be synthesized de novo 
or obtained through diet. Carotenoids are pigments that produce yellow, orange or red 
coloration and cannot be synthesized de novo by animals (Goodwin 1984), yet these pigments 
have very important roles in sexual signaling. Males of many species display carotenoid based 
ornaments using dietary carotenoids (e.g. guppies: Endler 1980; Houde 1997; red jungle fowl: 
Zuk et al. 1990; three-spined sticklebacks: Milinski and Bakker 1990; northern cardinals: 
Wolfenbarger 1999, zebra finches: McGraw and Ardia 2003), which may often be scarce in the 
environment (Grether et al. 1999). Hence, the size and color intensity of the ornament is often 
an indicator of the bearer's foraging ability (Endler 1980; Karino et al. 2005). 

Mating signals are reliable indicators of quality if the strength of the signal correlates with 
the measure of quality (Maynard Smith and Harper 2003). I use the term "quality" to indicate a 
trait that is beneficial to the mate, directly or indirectly. To reduce ambiguity, I use the term 
"mate quality" to indicate an individual’s quality as a mate. Mate quality can differ according to 
the species and the mating system peculiar to that species and could refer to direct benefits that 
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the male confers upon the female, such as nuptial gifts or access to high quality territory, or 
indirect benefits such as better parental care, more viable or more attractive offspring (Jennions 
and Petrie 2000). Foraging ability has been used to define quality in some species (Endler 
1980; Karino et al. 2005); this trait has obvious implications for fitness, is believed to be 
heritable, and is hence desirable in a mate. Signals such as carotenoid-based ornaments are 
obvious indicators of this measure of mate quality, as the ornament is partly dependent on the 
amount of carotenoids obtained through diet.  

Immunocompetence is another commonly used measure of mate quality (Hamilton and Zuk 
1982). Males with higher immunocompetence are less likely to have pathogens to transfer to the 
female mate and will pass on their immunocompetence to offspring. In many species, the 
expression of the ornament is closely associated with immune response to a challenge 
(Hamilton and Zuk 1982; Lozano 1994; Blount et al. 2003). The Immunocompetence Handicap 
Hypothesis (ICHH: Folstad and Karter 1992) states that increased testosterone levels required 
for breeding and maintaining ornaments create high levels of free radicals that are 
immunosuppressors. Individuals with especially effective immune systems are able to bear the 
burden of the enhanced testosterone levels and can thus employ more exaggerated mating 
signals (Figure 6.1). Carotenoids can neutralize the free radicals and thus alleviate the oxidative 
stress on the immune system (Lozano 1994; Alonso-Alvarez et al. 2008), but carotenoids must 
be allocated to the ornament to attract mates. This poses a trade-off in the optimal allocation of 
carotenoids between mating signal and immunocompetence (Figure 6.1). Again, individuals that 
can mount better immune responses will be able to allocate more carotenoids towards the 
mating signal rather than the immune system. Thus, individuals that mount higher immune 
responses generally have brighter carotenoid signals, while those that are unable to mount 
strong responses to immune challenges will display dull ornaments, thereby maintaining the 
honesty of the signal.  

Predation is an important selection pressure that also influences ornament expression 
((Reznick and Endler 1982; Godin and McDonough 2003). Populations that experience high 
predation pressures tend to have more modest ornaments compared to populations living under 
relatively low predation risk (Endler 1980; Endler 1993). However, within a population, the 
expression of an honest signal will correlate with mate quality, and females generally tend to 
show a preference for males with better signals (Jennions and Petrie 1997).  

The role of androgens in the expression of mating signals has been studied extensively. 
Carotenoid-based ornaments are no exception, and there is evidence indicating that the 
expression of the ornament is directly related to testosterone levels (e.g. red jungle fowl, combs: 
Zuk et al. 1995; superb fairy-wren, plumage: Peters et al. 2001; house sparrow badges: 
Gonzalez et al. 2001; Strasser and Schwabl 2004; guppy coloration: Jayasooriya et al. 2002; 
zebra finch beaks: McGraw et al. 2006; cichlid nuptial coloration: Dijkstra et al. 2007). Increased 
testosterone has been shown to increase circulating carotenoid levels (Blas et al. 2006), as well 
as lipoproteins required to transport the carotenoids (McGraw et al. 2006). Any disruption in the 
production or functioning of androgens has been shown to hamper the expression of carotenoid 
based ornaments.  

Endocrine disrupting compounds (EDCs) are a group of compounds, natural or synthetic, 
that interfere with proper hormonal functioning in exposed animals. Common types of EDCs 
include organochlorines, organophosphates, polychlorinated biphenyls (PCBs), phthalates, 
synthetic hormones and hormone-blockers, and phytoestrogens, and their sources include 
pesticides, industrial effluents, pulp mill effluents, plastics and sewage. Significant routes of 
exposure include direct exposures from living in contaminated soil or water, or indirect 
exposures through eating contaminated prey (Markman et al. 2007; Markman et al. 2008; Park 
et al. 2009; Walters et al. 2010). Many EDCs can be persistent in the environment, lasting for 
several years in low concentrations (USEPA 2009). Many animals are exposed to contaminants 
throughout their lives, while others are exposed during some life stages only, with significant 
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effects on reproductive characteristics (e.g. Porter and Wiemeyer 1969; Baatrup and Junge 
2001; Toft and Baatrup 2001; Bayley et al. 2002; Kristensen et al. 2005; Kristensen et al. 2007; 
Saaristo et al. 2009; Secondi et al. 2009; Hayes et al. 2010; Shenoy 2012).  

Most of the common EDCs are either estrogenic or anti-androgenic or both. Estrogenic 
EDCs either mimic estrogens or upregulate the production of estrogens, such that exposed 
animals have higher levels of circulating estradiol. Estrogenic EDCs can also suppress 
testosterone production (Blake and Boockfor 1997; Takao et al. 1999; Mills et al. 2001; Saiyed 
et al. 2003; Kim et al. 2007; Hayes et al. 2010; Nakamura et al. 2010; Victor-Costa et al. 2010) 
by influencing the expression of steroidogenic enzymes (Bartke et al. 1977; Thompson et al. 
2004a; Kim et al. 2007; Murugesan et al. 2008) and altering cholesterol metabolism and 
transport (Thompson et al. 2004a; Kim et al. 2007) in Leydig cells. Anti-androgens prevent the 
binding of androgen with the androgen receptor (AR), thereby inhibiting transcription of AR-
dependent genes (Quigley et al. 1995; Zhou et al. 1995), or prevent AR binding to DNA or the 
initiation of transcription (Truss et al. 1994; Kelce and Wilson 1997).  

In addition to their effects on ornaments, EDCs can reduce immunocompetence, directly or 
indirectly (Ndebele et al. 2003; Hayes et al. 2006a; Brodkin et al. 2007; Filby et al. 2007; 
reviewed in Ahmed 2000; Inadera 2006; Milla et al. 2011). However, it is unlikely that both 
immunocompetence and ornament expression will be impacted proportionately such that the 
correlation between them holds even after disruption. The disproportionate disruption of the two 
traits can prevent the ornament from indicating immunocompetence. It is unclear whether EDCs 
can impact foraging rates, but after a reduction ornament expression may no longer correlate 
with foraging ability. Thus, EDC-exposure has the potential to disrupt the relationship between 
ornaments and measures of mate quality, with implications for signal reliability and female mate 
choice (Shenoy and Crowley 2011).   

Here, I use a mathematical model to simulate the optimal allocation of carotenoids to a 
carotenoid-based ornament and to immunocompetence, and I ask the following questions: (1) 
does EDC-exposure reduce the reliability of a signal, determined by the correlation coefficient 
between signal size and immune response, (2) does the optimal allocation shift (evolutionarily or 
physiologically) under multi-generational EDC-exposure, and (3) is signal reliability restored 
under the new shifted allocation strategy. Since predation is an important selection pressure in 
many animal species, I then ask: (4) does the interaction of predation pressure and EDC-
exposure impact signal reliability, and (5) is there a shift in the allocation strategy that can 
restore signal reliability under long-term predation pressure and EDC-exposure? 

I used the guppy (Poecilia reticulata) as the study organism to conceptualize and 
parameterize the model. With this model, I make predictions that will encourage empirical 
studies to test whether long-term exposure to EDCs can alter evolutionary trajectories by 
altering signal reliability, especially for carotenoid-based ornaments, and whether allocation 
strategies are non-plastic or plastic, or can evolve. 
 

METHODS 

The Guppy System: The model was based on the guppy, a sexually dimorphic freshwater 
fish species native to Trinidad and parts of South America. Male guppies have different colored 
spots on their bodies and fins, which are used in conjunction with sigmoidal courtship displays 
to attract females (Houde 1997; Kodric-Brown and Nicoletto 2001). The expression of guppy 
mating signals, including sigmoid courtship displays and orange spots, have been associated 
with different traits such as immunocompetence (Houde and Torio 1992; Lopez 1998), foraging 
ability (Karino et al. 2005), and sperm characteristics (Evans and Magurran 2001; Pitcher et al. 
2007). Of chief importance are the orange colored spots which correlate with, and hence carry 
information about, dietary carotenoid intake (Grether et al. 1999; Karino et al. 2005) and 
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parasite resistance (Houde and Torio 1992). Both males and females of this species mate 
promiscuously, and males do not provide parental care or any form of direct benefits to females. 

Androgen levels have been linked to the expression of the mating signals, that is the size 
and intensity of orange spots (Baatrup and Junge 2001; Bayley et al. 2002; Jayasooriya et al. 
2002), and the frequency of courtship displays (Baatrup and Junge 2001; Bayley et al. 2003). 
Guppies are livebearers, and females can store sperm for several months. They are receptive to 
mating for a period of 3-5 days after producing a brood (Houde 1997). When receptive, females 
will respond to male courtship (Houde 1997) and show preference for males with larger and 
brighter orange spots, and who display more frequently (Houde 1997; Kodric-Brown and 
Nicoletto 2001). Males frequently attempt forced copulations, but are rarely successful (Evans et 
al. 2003). Sperm competition is high, and brighter males' sperm tends to have precedence over 
that of dull males via cryptic female choice (Pitcher et al. 2003; Pilastro et al. 2004; Locatello et 
al. 2006). I used guppies as the model organism because their mating system has been well 
studied and characterized (Houde 1997), and the link between carotenoids, immune responses, 
androgens and signals have been explored (Houde and Torio 1992; Baatrup and Junge 2001; 
Toft and Baatrup 2001; Jayasooriya et al. 2002; Grether et al. 2004; Kristensen et al. 2005; 
Kolluru et al. 2006).  

 
Model Overview: I used MATLAB® to develop and run the model. I used an optimality 

model to find the optimal allocation of carotenoids to ornaments. The model was built around 
the concept of a trade-off in allocation of carotenoid between the ornament and 
immunocomeptence, assuming that all carotenoids consumed through diet must be allocated to 
one component or the other and cannot be stored (see Table 6.1 for a comprehensive list of 
assumptions made in the model). Allocation to the ornament will enhance mating success, while 
allocation to immunocompetence will enhance survival. The optimal allocation strategy 
maximized fitness, defined as lifetime reproductive success, reflecting survival and mating 
success. I assumed that the allocation strategy is genetically determined and is an evolutionarily 
stable strategy (ESS), because the success of any given strategy depends on the frequency of 
other strategies in the population. The ESS allocation varies in a population depending upon an 
individual’s quality, because low quality individuals may need to allocate more carotenoids to 
immunocompetence compared to better quality individuals.  

The term quality may refer to different traits in different contexts. Here, two types of quality 
were defined: foraging ability and immunocompetence quality, which were assumed to be 
heritable and non-plastic traits. Foraging ability (expressed as the foraging exponent) was 
defined as the extent of an individual’s approach to the maximum foraging intake per unit 
increase in resource availability. To define immunocompetence quality, we must first define 
condition index and immune response. Condition index was defined as the proportion of fatty 
stores for an individual, measured as the mass of lipids stored per body mass. Immune 
response was defined as the resistance to an immune challenge. Because the model is based 
on the guppy system, the immune challenge was assumed to be infection by Gyrodactylus 
turnbulli, a ubiquitous ectoparasite that infects guppies in their natural habitat. 
Immunocompetence quality (expressed as the immunity exponent) determined how rapidly an 
individual approached the highest possible immune response per unit increase in condition. All 
pair-wise combinations of 15 levels each of the two quality types were used. 

A suite of physiological relationships ultimately determined fitness; this is outlined 
diagrammatically in Figure 6.1. Here I briefly describe some key causal relationships. An 
individual’s condition index determined his immune response (Houston et al. 2007; Martin II et 
al. 2008) and testosterone concentrations (Marler and Ryan 1996; Volek et al. 1997; Lovern and 
Adams 2008). Testosterone impacted condition index (Ketterson et al. 1991; Oppliger et al. 
2004) and immune response (Folstad and Karter 1992; Mougeot et al. 2004; Dijkstra et al. 
2007; Kurtz et al. 2007) negatively, but enhanced circulating carotenoids (McGraw et al. 2006) 
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which were obtained from resources consumed. Mounting an immune response was 
energetically costly and diminished the condition index (Eraud et al. 2005; Amat et al. 2007). 
Carotenoids could be allocated partly to enhancing the immunocompetence (Lozano 1994; 
Alonso-Alvarez et al. 2004) or to enhancing the ornament (McGraw et al. 2006; Mougeot et al. 
2007; Peters et al. 2007). Being able to mount a sufficient immune response determined 
whether the individual survived to the next day or not, and if condition index dropped to zero or 
below the individual was considered to have died of starvation. Testosterone was involved in 
ornament size via two pathways: (1) indirectly, through the bioavailability of plasma carotenoids, 
and (2) directly, by limiting the binding of androgen receptors necessary for signal production 
(Figure 6.1). The size of the ornament determined mating success (Houde 1997) and cryptic 
female preference (Pitcher et al. 2003; Pilastro et al. 2004). A preferred male fertilized a larger 
proportion of the female’s brood compared to other individuals siring a brood. Using the 
ornament expression and immune response values corresponding to the optimal allocation 
strategies, I determined signal reliability as the correlation between the two traits.  

I then introduced an estrogenic EDC into the environment. I assumed the EDC to be 
Ethynylestradiol (EE), as this is one of the most common contaminants of water bodies, 
especially around urban areas. EE disrupts hormonal pathways by mimicking estrogen and 
binding to estrogen receptors, thereby increasing estrogenecity in exposed individuals. In the 
model, EE reduced testosterone levels and suppressed immune functioning, thus impacting 
ornament expression, mating success and survival. I tested whether the exposure to the EDC 
reduced signal reliability. As I was interested in how populations might shift their allocation 
strategies through evolutionary or physiological (plastic) responses to multi-generational 
exposure to persistent EDCs, I developed a version of the model that incorporated EDC-
exposure into finding the optimal allocation and related variables of fitness. This allowed me to 
test whether signal reliability was restored under the shifted allocation strategy. 

Because predation is an important selection pressure in most environments, predation risk 
was incorporated into the model by making the probability of dying a function of immune 
response and ornament size. I used the model to predict how optimal allocation might shift 
under dual selection pressures (predation and EDC-exposure) and how signal reliability might 
be affected.  

 
Details of the model 

Quality: The definition of foraging ability (i.e. the foraging exponent) was based on the 
relationship in which resources consumed increased with diminishing returns to an upper 
asymptote with increasing resource availability (Appendix 6.1). In this relationship, the upper 
asymptote (the maximum amount of resources an individual can eat) could also be thought of 
as a measure of foraging ability, but I believe that this parameter depends on body size, which 
is assumed to be constant for all individuals in a population in this model. For simplicity, the 
resource landscape was assumed to be homogenous, and resources are replenished at the 
same rate that they are depleted. Individuals range from poor foragers (foraging exponent = 
0.05 mg-1) to good foragers (foraging exponent = 2.0 mg-1); the values used for this parameter 
encompass a range that produced reasonable variation in resources consumed for different 
amounts of resources available.  

Immune response was measured as susceptibility to the ectoparasite G. turnbulli. Parasite 
load was a measure of the individual's susceptibility. In the lab, guppies can harbor >100 
parasites (Scott 1985), but these heavily infected individuals do not survive (Scott 1985, KS 
personal observation). So I set the maximum parasite load to 100, at which an individual was 
considered to have zero resistance. I used a linear relationship to convert parasite load to 
resistance: I = IP0 - P, where IP0 was the immune response when susceptibility was zero, and P 
was the parasite load or susceptibility (Appendix 6.1), resulting in resistance values in the range 
0 - 100. Immune responses are known to depend upon condition (Martin II et al. 2008). Here, 
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immune response, a dimensionless variable, increased with diminishing returns to an upper 
asymptote with increasing condition (Appendix 6.1). Immunocompetence quality (qi, the 
immunity exponent, Table 6.2) was the exponential coefficient that determines how rapidly an 
individual approaches the highest possible immune response per unit increase in condition. 
Individuals ranged from poor immune responders (immunity exponent = 15) to good immune 
responders (immunity exponent = 50); the parameter values for immunity exponent spanned a 
range that produced natural variation in I.  

I incorporated this second influence via the exponential growth to a maximum of ornament 
size in response to increased carotenoid allocation; individuals with high concentrations of 
testosterone produced larger signals for a unit increase in carotenoid availability compared to 
individuals with lower concentrations of testosterone (see Appendix 6.1 for details). 

Finding the optimal allocation strategy: For each quality combination, a hill climbing 
technique was used to find the evolutionarily stable strategy (ESS) for x, the proportion of 
carotenoids allocated to the signal, such that 1-x was the ESS proportion of carotenoids 
allocated to immune function. The hill climbing technique found the optimal value of x (x*) in the 
following way: starting at any value of x, ranging from 0 to 1, the focal male’s fitness was 
calculated (as described below). The population and the focal male were assumed to be 
wildtype individuals who allocated the proportion xw of carotenoids to the ornament. A mutant 
male whose allocation proportion (xm) was very slightly different from that of the focal by an 
amount dx was introduced into the population. The mutant could take over the population and 
become the new wildtype if his fitness exceeded that of the original wildtype male. The hill 
climbing technique continued in this way to find the ESS allocation strategy (i.e. ESS value of x) 
that is non-invasible by a mutant allocating any other proportion of carotenoids to his signal. 
This optimal x value (henceforth x*) was then used to calculate the optimal ornament size and 
the fitness achieved at this x value. Allocation strategy was genetically inherited and non-plastic. 
Hence individuals that allocated suboptimally incurred fitness losses.  

Baseline runs of the model: For each combination of foraging ability and 
immunocompetence quality, I ran 100 simulations. Because of stochasticity introduced by the 
way I determined survival (i.e. if the probability of dying at the end of each day was lower than a 
random number, the focal lived to the next day), I obtained slightly different values for each 
variable in consecutive runs; hence, I used the mean values of x*, fitness, immune response 
and ornament size, averaged over 100 runs. The model generated values of x*, immune 
response, ornament size, and fitness at each combination of foraging ability and 
immunocompetent quality value. The correlation coefficient between immune response and 
ornament size was a measure of signal reliability, and this was also calculated after the 
introduction of the EDC. The mean difference in ornament size, immune response and fitness 
after the introduction of the EDC was computed.  

EDC: Using the already computed x*, the model incorporated the altered testosterone and 
immunocompetence value to obtain the altered ornament size and fitness values.  

 I again used the hill climbing technique to find a new x*, and corresponding ornament size, 
immune response and fitness. The model predicted whether signal reliability could be restored 
under the shifted allocation strategy. 

Predation: Predation risk was incorporated into the model by making the probability of 
dying a function of immune response and ornament size. To simulate different predation 
regimes, I used two values of DOU, the probability of dying due to predation alone for an 
individual expressing the largest possible ornament: DOU = 0.1 and DOU = 0.2. The x*, 
corresponding fitness and ornament size in the absence and presence of EDCs, and the shift in 
x* and corresponding variables as a result of physiological or evolved responses to EDC 
exposure, are calculated for each value of DOU.  
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Calculating fitness: Fitness (W) was measured as lifetime reproductive success, which 
was the accumulation of daily reproductive success (F) over an individual's life time. The 
probability of dying (D) determined whether an individual continued to live to the next day, up to 
a maximum lifetime of 365 days. D depended upon immunocompetence (I) and ornament size 
(O) and was calculated each day as:  

D = 1 - [(1-DI)(1-DO)]         (1) 
where DI was the probability of dying as a function of immune response alone, and DO was 

the probability of dying as a function of ornament size alone. DI and DO were mutually 
independent. D was set to 1 if the condition index C ≤ 0.  The relationships are described in 
Appendix 6.1, and parameters included in Table 6.2.  

Daily reproductive success (F) depended upon the proportion of body area covered by the 
orange spots (ornament size), which determined the success of courtship displays (Appendix 
6.1). Individuals with larger ornaments achieve greater mating success (d), defined as the 
proportion of all females courted that responded positively by mating with the focal individual 
(Table 6.3). The average number of receptive females (nf) in a population on any given day was 
5. This was based on the assumption that, on average, 10% of the females in a population were 
sexually receptive on any given day. The focal male could potentially court all receptive females. 
Ornament size influenced mating success and fertilization success of the focal male's sperm, as 
described in equation 4 below. The focal male’s sperm competed with the sperm of nm other 
males for fertilization of the brood. The number of competitors was calculated based upon a 
diminishing returns function increasing to an upper asymptote for the relationship between the 
number of males siring a brood and the number of males in a population (Appendix 6.1). Under 
the simplifying assumption that all males' sperm have equal fertilization efficiency (Table 6.1), 
and that fertilization is proportional to the amount of sperm present, the proportion of a brood 
that the focal male's sperm could fertilize was a proportion, pi, of the total number of males 
fertilizing a brood. In the following equations, the focal male’s phenotype is denoted by the 
subscript i, and the wildtype male’s phenotype is denoted by the subscript j. The focal male 
might be mutant or wildtype, but all males in the population were wildtype individuals. 

Daily reproductive success was given by:  
Fi = dinfpib           (2) 
where di was the success of courtship displays for the focal male (described above and in 

Appendix 6.1), nf was the number of receptive females, b was the average brood size, and pi 
was the proportion of the brood that the focal male sired, in competition for fertilizations with nm 
other males of phenotype j. The proportion of the brood sired by the focal male was given by: 

pi =         wi                   (3) 
         wi + nmwj 
where wi  was the focal male’s sperm precedence and wj  was the competitors’ sperm 

precedence; the sperm precedence added a preference weight to that individual’s sperm. The 
sperm precedence dependened on ornament size (O) in the manner described below (equation 
4), because female guppies use cryptic mate choice to give precedence to the brighter male’s 
sperm (Pitcher et al. 2003; Pilastro et al. 2004). For the sake of simplicity, I assumed that the 
order of mating does not affect sperm precedence (but see Pitcher et al. 2003).  

wi = s/(s + nm) and wj = 1/(s + nm)  if Oi > Oj and wi = swj   (4) 
where s was the value by which sperm precedence of the focal phenotype differed from 

that of the competing phenotype. The focal phenotype may be favored over the competitor (s > 
1), less preferred (0 < s < 1), or equally preferred (s = 1). Note that sperm precedence weights 
of all males sum to 1, such that wi + nmwj = 1.  

Carotenoids were sequestered to the ornament and the signal size refreshed each day 
(Table 6.1). Daily reproductive success accrued over an individual’s life to determine lifetime 
reproductive success.  
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RESULTS 

Optimal x: The optimal proportion of carotenoids allocated to the ornament (x*) ranged 
from 0.24 for the lowest quality males to 0.56 for the highest quality males (Figure 6.2A). 
Shifting the allocation strategy under long-term EDC-exposure produced a new x* of 0.22 for the 
lowest quality males and 0.58 for the highest quality males, increasing x* by an average of 
3.4%. Although the values of x* changed very slightly, the change in the allocation pattern was 
more apparent, with increasing x* along the foraging-ability gradient being more striking than the 
increase along the immunocompetence axis.  (Figure 6.2B). 

Ornament size: The ESS ornament size corresponding to x* ranged from 0.15 to 0.38 
(Figure 6.3A); this reflects the natural range of variation in ornament size for guppies (Houde 
1997). EDC-exposure reduced the ornament size to 0.023 for the lowest quality individual to 
0.083 for the highest quality individual (Figure 6.3B); this was an overall reduction in ornament 
size of 80.5%.  Empirical experiments using similar levels of EE produced a reduction of 55.7% 
in the ornament size of adult male guppies (Shenoy 2012, Chapter 2). Shifting the allocation 
strategy after multi-generational EDC-exposure only increased ornament size slightly (by 3.1%) 
compared to ornament size in the presence of EDCs; this is mainly because the presence of the 
EDC suppresses its expression. Ornament size under the shifted allocation was 0.021 for the 
lowest quality male and 0.086 for the highest quality male (Figure 6.3C), which is very close to 
the ornament size of males exposed to EDCs under the original allocation strategy. The 
patterns in ornament size along the two quality axes mirror the patterns in x* (Figure 6.3). 

Immune response: The immune response corresponding to x* ranged from 73.03 for the 
lowest quality individuals to 84.06 for the highest quality individuals (Figure 6.4A). EDC-
exposure reduced immune response by a modest 9% (Figure 6.4B). Interestingly, after EDC-
exposure, males that had lower immunocompetence quality produced higher responses than 
males with higher immunocompetence quality. Immune response under the shifted allocation 
only improved by 2.2% compared to the immune response of EDC-exposed males under the 
original allocation (Figure 6.4C), and was lower than immune responses in the absence of 
EDCs. 

Signal reliability: Signal reliability, measured by the correlation coefficient (r) between 
ornament size and immune response, was 0.63 (Figure 6.5). EDC-exposure reduced the signal 
reliability to r = -0.14, such that males that had higher immune responses had slightly smaller 
ornament sizes than males that mounted lower immune responses (Figure 6.5). This 
relationship was driven by the higher immune responses of lower quality males compared to 
higher quality males in the presence of EDC. Under the shifted allocation, signal reliability was 
increased to r = 0.14 and was not completely restored (Figure 6.5).  

Fitness: Fitness, measured by lifetime reproductive success, ranged from 1825 to 2817 
offspring sired in a lifetime (Figure 6.6A). EDC-exposure reduced fitness by 67% of the original 
number of offspring (Figure 6.6B). Shifted allocation increased fitness by 1.9% compared to the 
fitness in the presence of EDC (Figure 6.6C). It must be kept in mind that most fish species, 
especially those that do not invest in parental care, such as guppies, have high juvenile 
mortality. The number of offspring generated by the model only represents the number born; the 
majority of these are unlikely to survive past the juvenile stage, and even the adults are 
susceptible to mortality through predation.  

Predation pressure: Including predation risk into the model changed x* such that males 
with lower foraging ability allocated a greater proportion of carotenoids to the ornament than the 
males with better foraging ability. But immunocompetence quality did not affect x*. This was true 
for both predation regimes. However, ornament size (DOU = 0.1: lowest quality male O = 0.15, 
highest quality male O = 0.20; DOU = 0.2: lowest quality male O = 0.14, highest quality male O = 
0.19) and immune response (DOU = 0.1: lowest quality male I = 73.03, highest quality male I = 
96.56; DOU = 0.2: lowest quality male I = 74.6, highest quality male I = 96.9) corresponded to 
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both types of quality. Signal reliability decreased with increasing predation pressure (DOU = 0.1: 
r = 0.22; DOU = 0.2: r = 0.26). The reduced reliability was due to increased allocation to 
immunocompetence and a corresponding reduction in ornament size.  

Exposure to EDC further decreased ornament size (DOU = 0.1: lowest quality male O = 
0.023, highest quality male O = 0.031; DOU = 0.2: lowest quality male O = 0.021, highest quality 
male O = 0.028), but had a negligible effect on immune response (DOU = 0.1: lowest quality 
male I = 72.19, highest quality male I = 93.18; DOU = 0.2: lowest quality male I = 73.5, highest 
quality male I = 93.7). Interestingly, for both predation regimes, predation pressure did not 
produce the pattern of higher immune responses from lower quality males in the presence of 
EDC-exposure as was seen in the model with no predation risk. Signal reliability was not much 
affected, and in fact was slightly improved for the lowest predation regime (DOU = 0.1: r = 0.25 
and DOU = 0.2: r = 0.18). 

An evolutionary shift in allocation strategy as a result of multi-generational EDC exposure 
increased x*, making the shifted optimal allocation under predation pressure very similar to the 
shifted allocation without predation pressure. This was true for both predation regimes. 
However, this did not translate to as dramatic an increase in ornament size (DOU = 0.1: lowest 
quality male O = 0.021, highest quality male O = 0.075; DOU = 0.2: lowest quality male O = 0.02, 
highest quality male O = 0.09). The altered allocation of carotenoids to ornament affected 
immune responses, such that immune response no longer corresponded to quality in any 
obvious pattern. Signal reliability was not improved under the higher predation regime (r = 0.10) 
but was restored under the lower predation regime (r = 0.46).  

Important parameters: Changing EDC to 1 ng ml-1 and to 2.5 ng ml-1 produced patterns 
consistent with the default model. When I used E = 1 ng ml-1, signal reliability was -0.12 in the 
presence of EDC, and 0.21 under the shifted allocation. When E = 2.5 ng ml-1, signal reliability 
was -0.15 in the presence of EDC, and 0.48 under the shifted allocation. I feel that my model 
reflects estrogenic EDC-exposure reliably. 

Because the default value of s, the value by which the preferred male’s sperm had a 
greater precedence over the less preferred male’s sperm, had been chosen arbitrarily (s = 2), I 
changed the values of s to 3 and 5 to test if this affected any patterns. All patterns remained 
consistent with the default model. For s = 3, signal reliability in the absence of EDC was 0.71, 
signal reliability in the presence of EDC was -0.09, and signal reliability under the shifted 
allocation was 0.19. For s = 5, signal reliability in the absence of EDC was 0.75, signal reliability 
in the presence of EDC was -0.096, and signal reliability under the shifted allocation was 0.36. I 
feel that using the lowest value, s = 2 as the default value is reasonable in the absence of better 
data on sperm precedence. 

 

DISCUSSION 

It has been well established empirically with a number of species that exposure to EDCs 
can reduce the expression of a sexual ornament (Baatrup and Junge 2001; Toft and Baatrup 
2001; Hayes et al. 2002b; Arellano-Aguilar and Garcia 2008; Secondi et al. 2009; Hayes et al. 
2010; Shenoy 2012). The overall reduction in immune response as a result of EDC-exposure is 
also empirically supported (Christin et al. 2003; Brodkin et al. 2007; reviewed in Ahmed 2000), 
although low concentrations of estradiol can enhance immuncompetence (Kenny et al. 1976; 
Bilbo and Nelson 2001; Knöferl et al. 2001). This model reflects the patterns seen in laboratory 
and natural experiments testing the effects of EDCs on sexually selected traits and immune 
responses. However, what is unknown empirically is whether EDC-exposure has the potential to 
disrupt signal reliability. It is also unknown how animals allocate resources, particularly 
carotenoids, to different physiological functions. My model predicts the optimal allocation of 
carotenoids between two competing functions—sexual ornamentation and immunocompetence. 
Further, my model predicts how individuals of different quality respond to EDC-exposure. Most 



 

82 
 

importantly, my model predicts how allocation strategies might shift under long-term exposure to 
EDCs and the corresponding changes in ornamentation, immune response and lifetime 
reproductive success. The shift in allocation strategy may be an evolutionary shift if there was 
selection on the strategy itself, which can produce ecotypes that are especially suited for 
inhabiting contaminated habitats. Such evolutionary shifts have not been documented, but it is 
known that genetic divergence due to selection on other traits, such as resistance to pesticides, 
has occurred in populations exposed to contaminants over multiple generations (e.g. Bard 2000; 
Hemingway and Ranson 2000; Twigg et al. 2002; Lopes et al. 2008; Brausch and Smith 2009; 
Arzuaga and Elskus 2010).  

Patterns in immunocompetence: The model brought out some interesting patterns in the 
immune response of different quality individuals to EDC-exposure. Low quality individuals, 
defined by lower immunity exponent, mounted a higher immune response in the presence of 
EDCs than did the higher quality individuals (although this response was lower than the 
response mounted in the absence of EDCs).This was mainly because of assumption about the 
effect of EDCs on immune response: due to a lack of empirical evidence to the contrary, I 
assumed a linear and proportional decrease in immune response in the presence of EDCs. 
Hence, the higher-quality individuals mounting higher responses had a larger reduction in 
immune response than the low quality individuals. Whether this pattern might occur in nature 
must be tested, and such information is important to the understanding of how 
immunocompetence responds to EDC-exposure.  

Signal reliability: Reduced reliability of a signal has profound implications for the evolution 
of mating systems. When a mating signal ceases to correlate with a measure of mate quality, 
the signal no longer transmits information about the bearer. Male mating signals and female 
responses to the male signals have coevolved (Arnqvist and Rowe. 2005), such that females 
can adjust their response to varying levels of signal expression. Female responses to male 
signals can be a strong driving force for genetic divergence (Basolo 1998a), (Seehausen et al. 
1997; Rodd et al. 2002; Rosenthal et al. 2002). In a population where sufficient numbers of 
individuals produce mating signals that do not correspond to their true quality, females should 
rapidly lose the preference across generations (Shenoy and Crowley 2011). The loss of female 
preference can lead to the loss of the ornament from the population. However, in many animal 
species, female preferences are based on pre-existing sensory biases (Rodd et al. 2002; 
Maynard Smith and Harper 2003), and hence are unlikely to be lost. In such cases females may 
make "incorrect" mating choices and incur fitness losses (Ryder and Somppi 1979; Fox 1992; 
Kokko and Brooks 2003; Quader 2005). The reduction in signal reliability as a result of EDC-
exposure predicted by the model can be tested empirically. However, it would be more difficult 
to test whether long-term exposure to EDCs at the population level can lead to loss of the signal 
or of female preference for the signal in the populations. Field comparisons of animals living in 
habitats that have been contaminated for many years with conspecifics from pristine regions 
would allow us to understand whether signal reliability can be reduced in polluted habitats. But 
this would not inform us whether evolutionary shifts in allocation strategy, that can potentially 
improve signal reliability, have occurred. Long-term mesocosm experiments using species with 
relatively short reproductive cycles might help provide insights into these mechanisms.  

Shift in allocation strategy: It is possible that the shift in allocation strategy could be a 
physiological response. Plasticity of the allocation strategy is possible in populations that have 
experienced stochastic exposure to EDCs over multiple generations. In such populations, 
individuals that are able to shift their allocation in response to pollution will be at an advantage. I 
consider a strategy to be non-plastic or plastic for a given immune challenge. Greater immune 
challenges would have different allocation strategies to compensate for greater oxidative stress. 
Alonso-Alvarez and colleagues (2008) found that testosterone treatment of male red-legged 
partridges increased oxidative stress and this was presumably compensated for by increased 
allocation of carotenoids to anti-oxidative functions, such that signal coloration was 
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compromised. This suggests that perhaps animals can shift the allocation strategy flexibly. 
However, it is not clear whether low-quality and high-quality males compensated equally or not. 
McGraw and Toomer (2010) have quantified the concentrations of various carotenoids in the 
zebra finch ornaments and internal tissues. Similar approaches can be employed to 
understanding whether animals exposed to EDCs can shift the optimal allocation of carotenoids, 
and to understand the ways in which this trade-off is compromised under disturbance.  

The shift in optimal allocation of carotenoids to the ornament under multigenerational 
exposure to EDC increased the importance of foraging ability as a measure of quality; that is, 
allocation increased substantially along the foraging gradient, while the increase was much 
more gradual along the immunocompetence gradient. This is possibly because of the constraint 
on immunocompetence in the presence of EDCs causing fitness to be more dependent on the 
ability to acquire carotenoids. In such a situation, resource availability will become an important 
factor in ornament expression and immunocompetence, more than in the absence of EDCs.  

Predation: As expected, predation risk reduced the optimal allocation of carotenoids to the 
ornament, because males with larger ornaments incurred costs due to predation. Hence, these 
individuals were able to allocate more carotenoids to their immune system and mounted better 
immune responses. van Oosterhout and others (2003) found that male guppies from the low 
predation site, Upper Aripo drainage, were more susceptible to parasite infections than those 
from the high predation site, Lower Aripo drainage. A similar pattern was found for innate 
immunity, though not acquired immunity, in a follow up study by the same group (Cable and van 
Oosterhout 2007). But Martin and Johnsen (2007) found an opposite trend, with guppies from 
low predation sites harboring lower parasite loads than those from high predation sites. This 
was a field study, and various other factors might influence parasite loads in the field. Based on 
the ICHH, my model predicts that males from high predation sites will allocate more carotenoids 
towards supporting immune health, because allocating carotenoids to the ornament is counter-
productive in a predatory environment. In the context of benefits of allocating carotenoids 
towards immune health, I note that very high carotenoid levels can actually be detrimental to 
health (Kolluru et al. 2006). For the sake of simplicity, the model has not included this effect, 
and I have used carotenoid levels within the natural range available in diest to assess effects on 
ornaments and immune responses.  

Under predation pressure, males that were good foragers allocated less carotenoids 
towards the ornament than males who were poorer foragers. This is because males who are 
obtaining more carotenoids in their diet must nevertheless de-emphasize ornamentation, 
because enhanced ornaments would attract predators. On the other hand, poor foragers are 
obtaining fewer carotenoids and will not be colorful enough to attract predators. Hence, their 
allocation to ornaments will not be suppressed. Since there is already mortality stress due to 
poor immunocompetence, and a very low level of predation risk compounding it, these poor 
foragers have a shorter life span and must allocate as many carotenoids as possible towards 
ornamentation to attract mates.  

With these patterns in ornamentation and immune response under predation pressure, the 
reduction in signal reliability produced by the model seems rather intuitive. However, since there 
is no empirical evidence to support this, I recommend such studies to add to our understanding 
of the ICHH and its consequences. A corollary to this might be the effects of this reduced 
reliability on female mate choice: are females less choosy in high-predation sites in response to 
the lower reliability of signals? In general, female guppies from high-predation sites have a 
lower preference for brighter males than their counterparts from low predation sites (Stoner and 
Breden 1988). However, it is difficult to distinguish the effect of predation on female preference 
(e.g. an inclination to refrain from associating with highly ornamented males that may attract 
predators: Breden and Stoner 1987; Godin and Briggs 1996; Rosenthal et al. 2002) from the 
predation-risk effect of reduced signal reliability on female preferences.  
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An evolutionary shift in the allocation strategy under multi-generational exposure to EDC 
reduced signal reliability under the higher predation regime but was restored under the lower 
predation regime. In the higher predation regime, the pattern is mainly driven by the somewhat 
similar immune responses of all quality males, though they roughly followed the pattern of x*. In 
the lower predation regime, the immune response pattern was more similar to that of x* and 
ornament size distribution. The increased allocation to the ornament reduced the immune 
response under the new allocation strategy, tightening the correlation between ornament 
expression and immune response. The increased allocation is possibly driven by an attempt to 
improve reproductive success in a much shortened lifespan; this results from the increased 
mortality from predation and reduced immunocompetence in the presence of EDCs. The 
increased allocation, however, did not increase ornament size beyond the original ornament 
size in the absence of EDCs; this is because of the effect of the EDC on testosterone levels. 

 
Overall, the results of the model indicate the whenever there is a constraint on ornament 

size, there is an increased allocation to immunocompetence in a compensatory manner, thus 
reducing signal reliability. But reliability is somewhat restored under multi-generational EDC-
exposure because of a reduced spread in the range of immune responses. Will mating signals 
that have been disrupted by EDC-exposure become reliable to some extent in populations 
adapting to persistent EDC exposure? This is not known, and will be an important question to 
address in the field of evolutionary ecotoxicology. 

The ICHH has been debated for many years with many authors supporting it as well as 
refuting it (reviewed in Cotton et al. 2004; Roberts et al. 2004). Some field studies have failed to 
find a relationship, or found only a weak association, between ornament expression and some 
components of immunocompetence (Westneat et al. 2003; Martin and Johnsen 2007). It must 
be remembered that multiple selection pressures are often acting in tandem in natural 
populations, and it can be difficult to identify a particular suite of relationships dependent on a 
single source of selection pressure. Predation is a classic selection pressure that has been 
explored by ecologists in relation to the evolution of many traits. EDCs have been introduced 
into our environment very recently in evolutionary history, yet the impacts of EDCs are profound 
and far reaching (Colborn et al. 1993b; Fox 2001; Hayes 2004; Hamlin and Guillette 2011). 
Most importantly, we have a poor understanding of the actual biochemical trade-offs involved, 
and researchers are still trying to resolve this (Hill and Johnson 2012). Also yet to be 
considered, are other pigments occurring along with carotenoids in the ornaments, such as 
pterins, pteridines and melanin that can be synthesized de novo and are also antioxidants 
(Grether et al. 2001; McGraw 2005).  

To my knowledge this is the first attempt to examine the carotenoid modulation of the 
immunocompetence handicap hypothesis in the context of EDCs using a mechanistic model. By 
no means is this model a complete representation of the biochemical pathways and selection 
pressures involved in the complex tug-of-war between sexually selected traits and naturally 
selected traits; it is an initial attempt to address some basic questions about these complex 
relationships. But I hope that the predictions from this model will encourage a host of 
experiments, natural and controlled, to provide answers to many perplexing issues in the field of 
evolutionary ecotoxicology.  
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APPENDIX 6.1. RELATIONSHIPS BETWEEN VARIABLES.  
 
All variables have been defined in Table 6.3, and parameter values provided in Table 6.2. The 
functions described below are based primarily on reasonable estimates of the shapes of the 
relationships when depicted graphically. 
  
1. The relationship between resources consumed (r) and available resources (R): The more 
resources that are available to the animal, the more it can consume, but with diminishing returns 
, increasing from zero to an upper asymptote: 
𝑟 =  𝑟𝑚𝑎𝑥�1−  𝑒𝑞𝑓𝑅� 
where rmax is the maximum foraging intake of an individual, and qf is the foraging exponent. 
 
2. The influence of resources consumed (r) on condition index (C): Consuming resources will 
increase the individual's condition in a sigmoid fashion (Kieffer and Tufts 1998; Cook et al. 
2000).  

𝐶 =
𝐶𝑚𝑎𝑥

1 +  �𝐶𝑚𝑎𝑥
𝐶𝑚𝑖𝑛

−  1�
�1− 𝑟

𝑟𝐶/2
�
  

 
where is the maximum condition index, Cmin is the minimum condition index, and rC/2 is the 
amount of resources consumed to produce C = Cmax/2 
 
3. The relationship between resources consumed (r) and plasma carotenoid concentration (K): 
since animals obtain carotenoids through their diet, the more an individual eats, the higher will 
be the circulating carotenoid concentrations. I expect this relationship to be a diminishing 
returns curve increasing from zero to an upper asymptote. 
𝐾 =  𝐾𝑚𝑎𝑥�1−  𝑒−𝑘𝑟� 
where Kmax is the maximum plasma carotenoid concentration, k is the carotenoid exponent.  
 
4. The influence of condition (C) on testosterone concentrations (T): An individual can have high 
testosterone levels only if his body is in good condition (Marler and Ryan 1996; Volek et al. 
1997; Lovern and Adams 2008). A linear increasing relationship through the origin is assumed. 
𝑇 =  𝜀𝐶 
where ε is the condition-dependent testosterone increase. 
 
5. The impact of EDC (E) on testosterone concentrations (T): EE reduces testosterone levels 
exponentially (Watanabe et al. 2009). 
𝑇 =  𝑇𝐸0𝑒−𝛼𝐸 
where TE0 is the testosterone concentration before EDC-exposure, and α is the testosterone 
decay coefficient.   
 
6. Influence of testosterone concentrations (T) on condition (C): raising testosteorne levels is 
energetically costly, and individuals maintaining high testosterone concentrations suffer from 
decreased condition (Ketterson et al. 1991; Oppliger et al. 2004). The relationship is assumed to 
be linear decreasing. 
𝐶 =  𝐶𝑇0 − 𝜎𝑇 
where CT0 is the condition index before the impact of testosterone, and σ is the testosterone-
dependent condition coefficient.  
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7. The relationship between condition (C) and immune response (I): Animals in poor condition 
cannot mount a sufficient immune response (Houston et al. 2007; Martin II et al. 2008). The 
relationship is assumed to increase from zero up to an upper asymptote. 
𝐼 =  𝐼𝑚𝑎𝑥(1−  𝑒𝑞𝑖𝐶) 
where Imax is the maximum immune response mounted by an individual in high condition, and qi 
is the immunity exponent. 
 
8. The impact of mounting an immune response (I) on condition (C): Mounting an immune 
response is energetically costly (Eraud et al. 2005; Amat et al. 2007). I assumed this 
relationship to be linear decreasing. 
𝐶 =  𝐶𝐼0  −  𝜃𝐼 
where CI0 is the condition index when no immune response is mounted, and θ is the immunity-
dependent condition decline. 
 
9. The influence of testosterone concentrations (T) on plasma carotenoids (K): Testosterone 
upregulates lipoproteins associated with carotenoid transfer (McGraw et al. 2006). This 
relationship is assumed to increase from KT0 towards an upper asymptote at KT0 + ψ. 
𝐾 =  𝐾𝑇0 +  𝜓�1 −  𝑒−𝑗𝑇� 
where KT0 is the plasma carotenoid concentration before the influence of testosterone, ψ = Kmax 
- KT0, and j is the testosterone-dependent carotenoid increase.  
 
10. The influence of plasma carotenoids (K) on ornament size (O): There is a direct relationship 
between increased concentrations of circulating carotneoids and the individuals carotenoid-
based ornament expression (McGraw et al. 2006; Mougeot et al. 2007; Peters et al. 2007). I 
expect this relationship to increase from zero, with diminishing returns, towards an upper 
asymptote, passing through the origin. 
𝑂 =  𝑂𝑚𝑎𝑥(1−  𝑒−𝛺𝑥𝐾) 
where Omax is the maximum ornament size, Ω is the carotenoid-dependent increase in ornament 
size, x is the proportion of plasma carotenoids allocated to the ornament.  
 
11. The influence of testosterone concentrations (T) on carotenoid-dependent increase in 
ornament size (Ω): ornament expression is limited by testosterone concentrations because T 
must bind with androgen-receptors to make the ornament. To simulate this, I used a linear 
increasing relationship, passing through the origin, between T and Ω, which is involved in the 
relationship between ornament size and plasma carotenoid concentrations in 10 above. 
Ω =ZT 
where Z (ornament increaser) is the slope of the relationship between Ω and T. 
 
12. The relationship between testosterone concentrations (T) and immune response (I): 
Testosterone suppresses immunocompetence (Folstad and Karter 1992; Mougeot et al. 2004; 
Dijkstra et al. 2007; Kurtz et al. 2007). I assume a linear decreasing function here. 
𝐼 =  𝐼𝑇0  −  ρ𝑇 
where IT0 is the immune response that is unimpacted by testosterone, ρ is the testosterone-
dependent immunity decline. 
 
13. The impact of EDC (E) on immune response (I): estrogens can suppress immune 
functioning (Herman and Kincaid 1988; Robinson et al. 2007). I assume a linear decreasing 
relationship. 
𝐼 =  𝐼𝐸0 − 𝛽𝐼𝐸0 
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where IE0  is the immune response unimpacted by EDC-exposure, and β is the proportion by 
which I is reduced. 
β = PE, where P is the slope of the relationship between β and P such that at E = 3 ng ml-1, P is 
maximum, i.e. P = 0.99. 
 
14. The relationship between plasma carotenoid concentrations (K) and immune response (I): 
Carotenoids are immuno-enhancers and can be allocated towards immunocompetence and 
antioxidative functions (Lozano 1994; Alonso-Alvarez et al. 2004). I expect a sigmoid increasing 
relationship here. 

𝐼 =  
𝐼𝑚𝑎𝑥

1 +  �𝐼𝑚𝑎𝑥
𝐼𝑚𝑖𝑛

−  1�
�1− (1−𝑥)𝐾

𝐾𝐼/2
�
 

where Imax is the maximum immune response, Imin is the immune response when no carotenoids 
are allocated to immunocompetence, KI/2 is the carotenoid concentration when I = Imax/2 and x = 
0, and (1-x) is the proportion of carotenoids allocated to immunocompetence. 
 
15. The relationship between success of courtship displays (d) and ornament size (O): Males 
that express larger and more colorful ornaments are more successful at achieving matings 
(Houde 1997), but this relationship should have diminishing returns. So I assume an increasing 
relationship from zero with diminishing returns towards an upper asymptote.  
𝑑 =  𝑑𝑚𝑎𝑥�1−  𝑒−𝛿𝑂� 
where dmax is the maximum success of a courtship display where all females that were courted 
responded positively, and δ is the display exponent. 
 
16. The influence of ornament size (O) on sperm precedence (w): this is described in detail in 
the Methods section.  
 
17. Daily reproductive success (F) was calculated as: 
𝐹 =  𝑑𝑛𝑓𝑝𝑏 
where nf is the number of receptive females in the populations, p is the proportion of the brood 
that is fertilized by the focal male, and b is the average brood size. The calculation of p is 
provided in the Methods section.  
 
18. Calculating the number of males competing with the focal to sire a brood (nm): the number of 
males siring a brood is dependent upon the density of the population (Soucy and Travis 2003), 
in a diminishing returns relationship towards an upper asymptote. 
𝑛𝑚 =  𝑆𝑚𝑖𝑛 −  𝑆�1 −  𝑒−𝑉𝑀(𝑁−1)� 
where Smin is the minimum number of males siring a brood (i.e. 1), S = Smax - Smin, Smax is the 
maximum number of males that could sire a brood, V is the paternity exponent, M is the sex 
ratio and N is the population size.  
 
18. Relationship between immunocompetence (I) and probability of dying (D): Individuals that 
can mount a high immune response are unlikely die from a pathogen challenge, while those that 
are poor immune responders are more likely to die. I assume that all individuals in the 
population are challenged with the same level of pathogen infection. The relationship is 
assumed to be reverse sigmoid. 

𝐷𝐼 =  𝐷𝐼 −  
𝐷𝐼𝑈

1 +  �𝐷𝐼𝑈𝐷𝐼𝐿
−  1�

�1− 𝐼𝐼𝐹
�
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where DIU is the probability of dying when I = 0, DIL is the probability of dying when I is 
maximum, IF is the value of I corresponding to the inflection point of the sigmoid curve. 
 
19. The relationship between ornament size (O) and probability of dying (D): Males that have 
larger and more colorful ornaments are more likely to attract predators (Endler 1980; Godin and 
McDonough 2003). I expect this relationship to be sigmoid increasing. 

𝐷𝑂 =  
𝐷𝑂𝑈

1 + �𝐷𝑂𝑈𝐷𝑂𝐿
−  1�

�1− 𝑂
𝑂𝐷/2

�
 

where DOU is the probability of dying when O is maximum, DOL is the probability of dying when O 
= 0, OD/2 is the ornament size that corresponds to a probability of dying of 0.5DOU. 
 
20. Probability of dying was calculated as follows: 
𝐷 =  1 − (1 − 𝐷𝐼)(1− 𝐷𝑂)  
where DI is the immunocompetence death probability described in 18 above, DO is the predation 
death probability described in 19 above.  
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Table 6.1. Assumptions made in the model. 
 

Population demography  
• All individuals are sexually mature; they are of the same age and size. 

Females 
• All females produce broods of the same size. 
• The number of receptive females per day is constant. 
• Females do not use stored sperm. 

Pathogens 
• All individuals in the population have had similar infection histories. 
• Pathogen environment is constant: all individuals are challenged by a ubiquitous 

pathogen to the same extent every day. 
Condition index and other physiological variables 

• The condition index does not affect foraging rate. 
• The condition index from the previous day carries over to the next day. 
• All variables, except the condition index, are refreshed at the start of each day to 

account for dynamic changes in physiology throughout the day. 
Carotenoids and signal 

• All available carotenoids are used either for signal or immunocompetence. 
• The intensity of color in the ornament does not change, only the area of orange color 

changes. 
• Ornament size is refreshed each day. Ideally, carotenoids are added to and lost from 

the signal in a dynamic fashion. To simplify this, the model refreshes signal size each 
day, depending on resources consumed, testosterone levels, immune response and 
other physiological variables. 

Other male reproductive traits 
• All males have the same sperm count, regardless of other physiological variables. 
• Testosterone and other physiological variables do not affect the frequency of courtship 

displays. 
• Females choose mates only based on signal size; all males display at the same 

frequency. 
• Males do not indulge in forced copulations, or if they do, these are unsuccessful. 
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Table 6.2. Parameter names, symbols and definitions with units and default values. Parameters 
include derived parameters.  
 
Symbol Parameter Definition Default value 

with units 
R Resources 

available 
The amount of resources available to a fish 
at the start of each day. 

8 mg 

qf Foraging exponent Exponential coefficient that determines how 
close an individual is to consuming his 
maximal foraging intake per unit resources 
available; a measure of foraging ability. 

(0.05 - 0.19 mg-

1)* 

rmax Maximal foraging 
intake 

The maximum resources that an individual 
can consume.  

(8 mg)2 
 

Cmax Maximal condition Highest condition index of an individual in 
excellent health and vigor. See Table 5.3 
for the definition and measurement of 
condition. 

(0.08)3 
dimensionless 
 

Cmin Minimal condition Lowest body condition of an individual at 
the point of starvation; the individual is 
considered dead at this point. See Table 
5.1 for the definition and measurement of 
condition. 

0.001 
dimensionless 

k Carotenoid 
exponent 

Exponential coefficient that determines how 
close an individual is to accumulating his 
maximum possible carotenoids per unit 
resources available.  

(0.3 mg-1)* 

Kmax Maximal plasma 
carotenoids 

Maximum possible carotenoid 
concentration that an individual can 
accumulate. 

(0.8 μg ml-1)4 

ε Condition-
dependent 
testosterone 
increase 

Increase in testosterone concentration per 
unit increase in condition. 

(3500 ng ml-1)* 

E EDC Ethynyl estradiol concentration in water. (2 ng ml-1)5 
α Testosterone decay 

coefficient 
Exponential decay in testosterone 
concentration per unit increase in EDC 
concentration. 

(1 ml ng-1)* 

σ Testosterone-
dependent 
condition decline 

Decrease in condition per unit increase in 
testosterone concentration. 

(0.00005 ng-1)* 

                                                
*These parameter values generate the range of values of the dependent variable corresponding to the 
range of values of the independent variable in the relationship it is associated with. Ranges of values for 
variables are provided in Table 3. 
2KS personal observation 
3Neff B, Cargnelli L, 2004. Relationships between condition factors, parasite load and paternity in bluegill 
sunfish, Lepomis macrochirus. Environmental biology of fishes 71:297-304. 
4Amar EC, Kiron V, Satoh S, Watanabe T, 2004. Enhancement of innate immunity in rainbow trout 
(Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. 
Fish &amp; Shellfish Immunology 16:527-537. 
5Shenoy K, 2012. Environmentally realistic exposure to the herbicide atrazine alters some sexually 
selected traits in male guppies. PLoS ONE 7:e30611. 
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Table 6.2, continued 
qi Immunity exponent Exponential coefficient that determines how 

close an individual is to mounting the 
highest immune response possible per unit 
increase in condition; this is a measure of 
immunocompetence quality.  

(15 - 50)* 
dimensionless 

Imax Maximal immune 
response 

The maximum immune response mounted 
to completely clear a challenge infection. 
See Table 5.3 and Methods for the 
definition and measurement of immune 
response. 

100 
dimensionless 

θ Immunity-
dependent 
condition decline 

Decrease in condition index per unit 
increase in immune response. 

(0.0003)* 
dimensionless 

j Testosterone-
dependent 
carotenoid increase 

Exponential coefficient that determines how 
close an individual is to the maximum 
concentration of carotenoids per unit 
increase in testosterone. 

(0.001 ml ng-1)* 

ψ Plasma carotenoid 
difference 

Kmax - Ki, where Ki is the plasma carotenoid 
concentration if testosterone concentration 
was 0 ng ml-1 

Derived;  
μg ml-1 

Ω Carotenoid-
dependent increase 
in ornament size 
 

The exponential coefficient that determines 
how close an individual is to expressing the 
largest possible ornament per unit increase 
in plasma carotenoids allocated to the 
ornament. Because ornament expression 
also depends on testosterone 
concentration, as testosterone must bind to 
androgen receptors, Ω is dependent on 
testosterone concentrations in a linear 
manner. 

Ω = ZT 
(0 - 4 ml μg-1)* 

Z Ornament increaser increase in Ω per unit increase in T (0.012 ml2 μg-2)* 
Omax Maximum ornament 

size 
Maximum proportion of the body area 
covered by the ornament. 

(0.5)6 
dimensionless 

ρ Testosterone-
dependent 
immunity decline 

Decrease in testosterone concentration per 
unit increase in immune defense. 

(0.2 ml ng-1)* 

P Proportional 
immunity decreaser 

increase in the immunity decrease 
proportion per unit increase in EDC 
concentrations. 

(0.33 ml ng-1)* 

β Disruption-related 
immunity decline 

proportion by which immuen response 
decreases as a result of EDC-exposure; β = 
PE 

derived; 
dimensionless 

IK0 Unenhanced 
immunocompetence 

The immune response when no 
carotenoids are allocated to 
immunocompetence 

dimensionless 

 
 
                                                
6Houde A, 1997. Sex, color, and mate choice in guppies. Princeton, New Jersey: Princeton University 
Press. 
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Table 6.2, continued 
dmax Maximum display 

success 
The maximum proportion of displays that 
result in successful copulation 

1 
dimensionless 

δ Display exponent The exponential coefficient that determines 
how close to maximum display success an 
individual reaches per unit increase in  

(7)* 
dimensionless 

  ornament size.  
b Brood size Average brood size (5)7 

dimensionless 
p Brood proportion Proportion of a brood fertilized by the focal 

male 
derived; 
dimensionless 

M Sex ratio Proportion of males in population 0.5 
dimensionless 

w Sperm precedence Weighting that defines the focal male's 
sperm precedence; wi (sperm precedence 
of focal male) and wj (sperm precedence of 
competing males) is defined in the Methods 
section. 

derived; 
dimensionless 

N Population size Number of individuals in the population 100 
dimensionless 

nf Receptive females  Number of receptive females available per 
day; nf = y(1-M)N 

Derived; 
dimensionless 

y Receptive female 
ratio 

Proportion of females that are receptive per 
day 

0.1 
dimensionless 

nm Competing males number of males competing with the focal 
male for fertilizations of a brood 

derived; 
dimensionless 

Smax Sire maximum maximum number of sires per brood (8)8 
dimensionless 

Smin Sire minimum minimum number of sires per brood 1 
dimensionless 

V Sire exponent The exponential coefficient that determines 
how close the number of sires is to the sire 
maximum per unit increase in population 
size. 

(0.004)* 
dimensionless 

DIU Zero-immunity 
mortality probability 

Probability of death when I = 0 1 
dimensionless 

DIL Maximum-immunity 
mortality probability 

Probability of death when I is maximum 0.001 
dimensionless 

DOL Zero-ornament 
mortality probability 

Probability of death when O = 0 0.001 
dimensionless 

DOU Maximum-ornament 
mortality probability 

Probability of death when ornament 
expression is maximum 

0.1 
dimensionless 

 
  

                                                
7 KS personal observation 
8Neff BD, Pitcher TE, Ramnarine IW, 2008. Inter-population variation in multiple paternity and 
reproductive skew in the guppy. Molecular ecology 17:2975-2984. 
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Table 6.3. Variables, definitions, and their range of values. 
 
Variable  Definition Range and Units  
Carotenoid 
allocation 

x proportion of carotenoids allocated to the 
ornament, such that 1-x is the proportion 
allocated to immunocompetence 

0 - 1 
dimensionless 

Resources 
consumed 

r Amount of resources consumed per day. For 
simplicity, I assume that the individual 
consumes all resources at start of each day. 

(0 - 8 mg)9 

Condition index C Proportion of fatty stores per unit body mass; 
measured as mass (g) of lipids per mass (g) of 
body tissue 

(0.001 - 0.08)10  
dimensionless 

Plasma carotenoids K Plasma concentration of carotenoids  (0 - 0.8 µg ml-1)11 
Testosterone 
concentrations 

T Plasma concentration of testosterone  (0 - 280 ng ml-1)12 

Immune response I Resistance to parasite infection, a linear 
response to increasing susceptibility or parasite 
load 

1-100 
dimensionless 

Ornament size O Proportion of body area covered by carotenoid-
based ornament 

(0  - 0.5)13 
dimensionless 

Display success d Success of courtship displays measured as the 
proportion of matings achieved out of all the 
females courted 

0 - 1 
dimensionless 

Daily reproductive 
success 

F The number of offspring sired at the end of 
each day 

0 - ∞ 
dimensionless 

Fitness W lifetime reproductive success, calculated as the 
total reproductive success summed over the 
days that the individual lived 

0 - ∞ 
dimensionless 

Immunocompetence 
death probability 

DI Probability of dying at the end of the day 
because of insufficient immune response to a 
challenge 

0 - 1 
dimensionless 

Predation death 
probability 

DO Probability of dying at the end of the day 
because of predation 

0 - 1 
dimensionless 

  

                                                
9KS personal observation 
10Neff B, Cargnelli L, 2004. Relationships between condition factors, parasite load and paternity in bluegill 
sunfish, Lepomis macrochirus. Environmental biology of fishes 71:297-304. 
11Amar EC, Kiron V, Satoh S, Watanabe T, 2004. Enhancement of innate immunity in rainbow trout 
(Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. 
Fish &amp; Shellfish Immunology 16:527-537.  
12Toft G, Edwards TM, Baatrup E, Guillette LJ, 2003. Disturbed sexual characteristics in male 
mosquitofish (Gambusia holbrooki) from a lake contaminated with endocrine disruptors. Environmental 
Health Perspectives 111:695-701. 
13Houde A, 1997. Sex, color, and mate choice in guppies. Princeton, New Jersey: Princeton University 
Press. 
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Figure 6.1. The causal relationships between the variables that ultimately affect fitness. 
Symbols (+ or -) on arrows denote the qualitative nature of the relationship between the two 
variables. The amount of resources consumed depends upon the amount of resources 
available, and the efficiency of this relationship depends on foraging ability, qf. The amount of 
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resources consumed influences the concentration of plasma carotenoids, K, and the individuals 
condition index, C. C influences testosterone concentrations, T, and immune response, I, via 
immunocompetence quality, qi. Both of these variables negatively impact condition index, 
because mounting an immune response and raising testosterone levels are energetically costly. 
T also suppresses I but increases K by mobilizing carotenoids from stores. The concentration of 
EDC, E, negatively impacts T and I. K can be allocated to increasing ornament size, O, or 
enhancing immune response, I, and this poses a trade-off. T also influences the parameter Ω, 
which influences the relationship of O with K. O is involved in courtship success and sperm 
precedence, which directly influence reproductive success. O increases the probability of dying, 
D, as does I. The probability of dying and the reproductive success, F, together add to the 
individual’s fitness, W. All relationships are described in Appendix 6.1, parameters are defined 
in Table 6.2, and variables are defined in Table 6.3.  
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Figure 6.2. Optimal proportion of carotenoids (x) allocated to the ornament. (A) Optimal 
allocation under default conditions, and (B) shifted optimal allocation under long-term EDC-
exposure.  
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Figure 6.3. Ornament size, defined as the proportion of body area covered by orange spots, 
corresponding to the optimal allocation of carotenoids. (A) Ornament size under default 

20
30

40
50

0.05

0.1

0.15

0

0.1

0.2

0.3

0.4

0.5

immunocompetence quality

A. Ornament size in the absence of EDC

foraging quality

ar
ea

 o
ra

ng
e

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

20
30

40
50

0.05

0.1

0.15

0

0.1

0.2

0.3

0.4

0.5

immunocompetence quality

B. Ornament size in the presence of EDC

foraging quality

ar
ea

 o
ra

ng
e

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

20
30

40
50

0.05

0.1

0.15

0

0.1

0.2

0.3

0.4

0.5

immunocompetence quality

C. Ornament size after shifting optimal x

foraging quality

ar
ea

 o
ra

ng
e

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4



 

98 
 

conditions, (B) ornament size after EDC-exposure, and (C) ornament size corresponding to 
shifted optimal allocation under long-term EDC-exposure. 
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Figure 6.4. Immune response corresponding to the optimal allocation of carotenoids. (A) 
Immune response under default conditions, (B) immune response after EDC-exposure, and (C) 
immune response corresponding to shifted optimal allocation under long-term EDC-exposure. 
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Figure 6.5. Signal reliability, measured by the correlation coefficient between ornament size and 
immune response. 
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Figure 6.6. Fitness, as measured by lifetime reproductive success, corresponding to the optimal 
allocation of carotenoids. (A) Fitness under default conditions, (B) fitness after EDC-exposure, 
and (C) fitness corresponding to shifted optimal allocation under long-term EDC-exposure. 
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CHAPTER SEVEN. FUTURE DIRECTIONS 
 

My dissertation has laid the groundwork for a future career at the interface of 
ecotoxicology and sexual selection. Several intriguing hypotheses have been proposed and 
await testing. Here I describe some empirical studies that would test a few notable hypotheses 
and predictions that stem from this dissertation. I believe these studies will help further the field 
of evolutionary ecotoxicology.  

The most exciting hypothesis from this dissertation is the predicted loss of signal reliability 
as a result of EDC-exposure. I had designed an experiment to test this hypothesis, and had 
hoped to complete it as part of my dissertation. Unfortunately, the experiment failed because of 
unprecedented mortality in the study animals. In this study, signal reliability in male guppies was 
defined as the correlation between ornament size (area of orange spots) and acquired immunity 
to a common ectoparasite, Gyrodactylus turnbulli (parasite load was a measure of resistance), 
because literature indicated that the ornament size in guppies reflected immunity (Houde and 
Torio 1992). I predicted that control males would show a strong correlation between the 
ornament size and the immunity, while males exposed to the EDC would show a lower 
correlation between these two traits.  

In the unsuccessful study, adult male guppies were exposed to the treatment, and at the 
end of the exposure-period, all fish were challenge infected with G. turnbulli (following methods 
by Kolluru et al. 2006) to trigger an immune response, cleared of infection with Clout by 
Aquarium Products, and then re-infected after a recovery period. Unfortunately, 75% of the 
experimental fish died after the first infections. This was possibly because the fish were housed 
individually in 2 L jars without aeration, and the medication may have severely depleted oxygen. 
Having previously used Clout in 10 L aquaria with aeration, I had not anticipated the problem of 
oxygen depletion in the smaller containers as I had conducted all my experiments in such jars 
without negative effects. Despite the low samples sizes, I was able to detect a significant 
difference in the number of parasites on control fish versus atrazine-exposed fish (controls: 
mean = 2.06 ± 0.96, atrazine groups: mean = 6.2 ± 1.3, F1,24 = 6.75, P = 0.016). I also measured 
variables related to ornament expression such as area of orange spots (with a digital still 
camera), and spectral properties of the orange spots (with a spectrometer). These variables 
have not yet been analyzed. I plan to complete the color analyses so that I have preliminary 
information whether EDC-exposure can reduce signal reliability as predicted. 

I hope to conduct this experiment again in a more robust manner. In retrospect, I do not 
believe that acquired immunity is a better measure of immuncompetence. Guppies acquire 
immunity to the parasite after an infection, but lose this resistance as quickly as 6 weeks after 
the infection (Scott 1985). Perhaps measuring innate immunity to the parasite may be more 
relevant; some authors have tested innate immunity rather than acquired immunity (Houde and 
Torio 1992; Kolluru et al. 2006). In either case, it would be imperative to determine what 
measure of immunocomeptence is truly reflected by the area and intensity of the carotenoid-
based orange spots, because several authors have reported conflicting results (Houde and 
Torio 1992; Lopez 1998; Kolluru et al. 2006; Martin and Johnsen 2007). Perhaps this question 
could be tested better with an organism whose signal reliability is better established in the 
literature such as zebra finches.  

Also of interest is the proportion of carotenoids and other pigments allocated to the 
ornament, and the effect of EDC-exposure on these proportions. In particular, the orange spot 
ornament of guppies is composed of two pigments--carotenoids, which must be obtained by 
foraging on unicellular algae, and drosopterin, which is synthesized de novo. Grether and 
colleagues (2001) hypothesized that perhaps guppies can cheat by synthesizing more 
drosopetrins in habitats low in algal densities and thus appear equally colorful. However, they 
found that the proportions of the two pigments were correlated, and guppies in habitats lacking 
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sufficient algae did not produce drosopterins in larger concentrations to counter the lack of 
carotenoids.  

It is unclear what limits the production of drosopterins and other pigments, but this appears 
to be genetically determined (Grether et al. 2005). McGraw (2005) reviewed a host of pigments 
that animals use in their ornaments and suggested that they all act as antioxidants to relieve the 
body of oxidative stress. I believe that the fish in low carotenoid habitats must use up the 
synthesized drosopterins for antioxidative purposes and as immuno-enhancers and are thus 
unable to dishonestly signal their true condition. I propose testing whether EDC-exposure can 
alter pigment production by disrupting biochemical pathways involved in maintaining signal 
honesty, in light of the oxidation handicap hypothesis (Alonso-Alvarez et al. 2007). Guppies may 
be a suitable organism to test this if it can be established that integumentary pigment 
proportions are correlated to immune responses (a proxy for oxidative condition). However, 
other colorful animals like zebra finches and fighting fish could also be good candidates for this 
study. 

My dissertation focused mainly on the effects of EDC-exposure on male signals. However, 
in populations exposed to EDCs, females are also impacted, and their hormonal pathways are 
being disrupted as well. Female mating behaviors, such as receptivity and choosiness are 
modulated by gonadal hormones such as estradiol (Kelley 1982; Lynch et al. 2006; Vyas et al. 
2008; Chakraborty and Burmeister 2009; Vyas et al. 2009). Disrupting the production and 
functioning of key hormones can alter female mating behaviors, with important ecological and 
evolutionary implications.  

I conducted an experiment to test whether prolonged exposure to atrazine could alter the 
strength of a female guppy's preference between bright and dull guppies. Adult virgin female 
guppies were exposed to the treatment for a period of 8 weeks. Negligible mortality was 
recorded during the exposure period. At the end of the exposure, each female guppy was put 
through a choice test to choose between a brightly colored male and a dull male. I recorded the 
female’s movements in the tank to record where she spent the longest time: close to either 
male's compartment, or in the central neutral compartment indicating a lack of interest in either 
male. The data have not yet been analyzed. I plan to test for treatment effects on the strength of 
the female's preference for the bright male versus the dull male, and the degree of lack of 
interest in mating. I predict that atrazine and ethynylestradiol treated females will show a weaker 
strength of preference and greater lack of interest in mating compared to females in either 
control group. Females have been euthenized and preserved. I also plan to test for treatment 
effects on gonadosomatic index.  

In the future, some experiments worth conducting would be long-term EDC-exposures of 
fish or amphibian populations in mesocosms to understand population level effects of multi-
generational exposure to contaminants. Will there be overall loss of signal reliability in males 
and reduced choosiness in females? Can signal reliability and female choosiness be restored 
by removing the EDC? Are life-history traits such as brood sizes and sex ratios altered and is 
the overall population size reduced? Field studies comparing animal populations in 
contaminated habitats with those in pristine habitats would allow us to ascertain whether the 
effects seen in semi-natural set-ups can be extrapolated to natural populations. It would be 
especially interesting if the populations in contaminated habitats showed trends for altered 
mating systems and if these changes appeared to be non-plastic. These and other questions 
will shed light on the consequences of exposure to persistent contaminants to wildlife and 
ecosystem health. 
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