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Identification and Developmental Profiling of microRNAs
in Diamondback Moth, Plutellaxylostella (L.)
Pei Liang1., Bing Feng1., Xuguo Zhou2*, Xiwu Gao1*

1 Department of Entomology, China Agricultural University, Beijing, P. R. China, 2 Department of Entomology, University of Kentucky, Lexington, Kentucky, United

States of America

Abstract

MicroRNAs (miRNAs) are a group of small RNAs involved in various biological processes through negative regulation of
mRNAs at the post-transcriptional level. Although miRNA profiles have been documented in over two dozen insect species,
few are agricultural pests. In this study, both conserved and novel miRNAs in the diamondback moth, Plutella xylostella L., a
devastating insect pest of cruciferous crops worldwide, were documented. High-throughput sequencing of a small RNA
library constructed from a mixed life stages of P. xylostella, including eggs, 1st to 4th (last) instar larvae, pupae and adults,
identified 384 miRNAs, of which 174 were P. xylostella specific. In addition, temporal expressions of 234 miRNAs at various
developmental stages were investigated using a customized microarray analysis. Among the 91 differentially expressed
miRNAs, qRT-PCR analysis was used to validate highly expressed miRNAs at each stage. The combined results not only
systematically document miRNA profiles in an agriculturally important insect pest, but also provide molecular targets for
future functional analysis and, ultimately, genetic-based pest control practice.
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Introduction

MicroRNAs (miRNAs) are small (18–24 nucleotides, nt)

genome-encoded non-coding RNAs (ncRNAs) and play crucial

roles during the post-transcriptional gene expression in eukaryotes.

By guiding the RNA-induced silencing complex (RISC) to bind to

target ‘‘seed match’’ sites within the 39 untranslated region (UTR)

of mRNAs, miRNAs can suppress the translation of its target

mRNA and hence silence its expression [1,2]. Evidence showed

that some miRNAs can also suppress the expression of its target

mRNA by binding to the 59UTR [3] or open reading frame [4,5]

of the mRNAs. It is estimated that though only 1% of the genomic

transcripts in mammalian cells encode miRNA [6], nearly 50% of

the encoded genes are regulated by miRNAs [7]. There is

mounting evidence suggests that almost all known physiological

and pathophysiological processes are negatively regulated by

miRNAs, such as insect development (including cell development,

wing development, muscle development, neurogenesis and cell

apoptosis), host-pathogen interactions and immunity [8,9].

Since the first miRNA was discovered in Caenorhabditis elegans in

1993 [1,2], miRNAs have been identified in insects, vertebrates,

plants and virus. To date, a total of 25141 mature miRNAs have

been documented in 193 species, of which 25 species belong to the

6 insect orders, including Diptera (15 species), Hymenoptera (4

species), Homoptera (1 species), Lepidoptera (3 species), Coleop-

tera (1 species) and Orthoptera (1 species).

The diammondback moth, Plutella xylostella (L.), is a devastating

lepidopteran pest of cruciferous crops worldwide, and the damage

and management costs are estimated at $4–5 billion annually [10].

Extensive studies on the ecology and management of P. xylostella

have been reviewed by Furlong, et al [11]. Recent transcriptome

analyses and genome sequencing provide a unique opportunity to

gain a molecular understanding of its adaptations to stressed

environments [12–14]. Although Etebari, et al [15] identified a

subset of miRNAs from the second instar larvae under parasitic

stress; a comprehensive inventory of miRNAs in P. xylostella is

lacking. In this study, conserved and novel miRNAs from all

developmental stages in P. xylostella were inventoried systematically.

Materials and Methods

Ethics statement
Plutella xylostella strains used in this study were initially collected

in Beijing in 2000, and have been maintained in our laboratory at

the China Agricultural University for over 120 generations. No

specific permit was required for the described field collections, and

the location is not privately-owned or protected in any way. The

species in the genus of Plutella are common agricultural pests and

are not included in the ‘‘List of Endangered and Protected

Animals in China’’.

RNA isolation and sequencing
Plutella xylostella larvae and adults were reared at 2761uC,

70610% RH, and a 16:8 L: D photoperiod, as described

previously [16]. Total RNA was isolated from the whole body

homogenates of a sample mix, contained 50 mg of eggs, 1st to 4th

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e78787



instar larvae, pupae and adults, respectively, using TRIzol reagent

(Invitrogen, Carlsbad CA, USA) following the manufacturer’s

instructions. Thirty five micrograms of total RNA were size-

fractionated on a 15% TBE-Urea polyacrylamide gel. Small RNA

populations of 18–28 nt were extracted, purified, and ligated to a

39 linker and a 59 linker using T4 RNA ligase (Ambion), and

ligation products were used for SuperScript II reverse transcription

(Invitrogen). PCR reactions were carried out using the RT primer

and 59 PCR primer. Linker and primer sequences are provided in

additional file, Table S1. Amplified cDNA products were gel-

purified and sent to BerryGenomics (Beijing) for high-throughput

sequencing on an Illumina Hiseq2000.

Bioinformatics analysis
A proprietary software package, ACGT101-miR v3.5 (LC

Sciences, Huston, USA), was used for analyzing sequencing data

generated. Reads with no matches to the proximal 11 nt of the 59-

adaptor were removed. Then the Reads mapped to the RepBase

(v17, http://www.girinst.org) and Rfam (http://www.sanger.ac.

uk/Software/Rfam/ftp.shtml) were removed before further analy-

sis.

For the remaining unique sequences, various ‘‘mappings’’ were

performed against pre-miRNA and mature miRNA sequences

listed in the miRBase (v18, http://www.miRBase.org/) or B. mori

genome (http://silkworm.genomics.org.cn/). First, unique se-

quences which mapped to insect pre-miRNAs in miRBase and

Table 1. Primers used for qRT-PCR analysis.

Gene name Forward Primer Sequence (59-39)

Selected miRNAs bmo-miR-989_R+1 GTGTGATGTGACGTAGTGGAAG

bmo-miR-210_L+1R+2 CTTGTGCGTGTGACAGCGGCTAT

bmo-miR-307_R+3 TCACAACCTCCTTGAGTGAGCGA

bmo-let-7_R21 TGAGGTAGTAGGTTGTATAG

bmo-miR-100 AACCCGTAGATCCGAACTTGTG

bmo-miR-750_R+210TA CCAGATCTAACTTTCCAGCTCA

PC-5p-3130 ATCCTGGCAGGGTCGCCA

PN-cqu-miR-279_21AT TGACTAGATCCACACTCATTTA

bmo-miR-92b AATTGCACCAATCCCGGCCTGC

PN-api-miR-2c-3p TCACAGCCAGCTTTGATGAGCAA

Reference miRNAs PN-isc-miR-276_R+1 GCTGTCCGTTAGGAACTTCATAC

PN-api-miR-9a_L+1 CCAGGATCTTTGGTTATCTAGC

PN-bmo-miR-279d_L-117TC GACGGGACTAGATTTTCACTCA

doi:10.1371/journal.pone.0078787.t001

Table 2. Summary of P. xylostella small RNA data analysis.

Group of reads Number of sequences Mappable seq.(%)

Raw 4,620,660 100

Mapped to mRNA 802,454 17.4

Mapped to other RNAs (Rfam: rRNA, tRNA, snRNA, snoRNA and other) 410,350 8.9

Mapped to Repbase 433,743 9.4

Total mappable for miRNA 1,450,828 31.4

Mapped to miRBase (including nohit 1) 330,080 7.1

Mapped to Bombyx mori pre and mature miRNAs in miRBase and mapped to B. mori genome 300,679 6.5

Mapped to other insects pre and mature miRNAs in miRBase but not mapped to B. mori genome 102 0.0

Mapped to B. mori and other insects pre and mature miRNAs in miRBase but with new B. mori genome
locations

10 0.0

Mapped to known other insects pre miRNAs and B. mori genome, within hairpins 2,585 0.1

Nohit 1 3,488 0.1

Unmapped to miRBase 1,143,974 24.8

Mapped to known other insects mature miRNAs but unmapped to B. mori genome 23,226 0.5

Unmapped to known other insects mature miRNAs but mapped to B. mori genome and within hairpins 4,523 0.1

Nohit 2 1,116,225 24.2

Mapped total 331,115 7.2

Nohit (including nohit 1 and nohit 2 1,119,713 24.2

doi:10.1371/journal.pone.0078787.t002

miRNAs in Diamondback Moth
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these pre-miRNAs mapped to B. mori genome were identified as

conserved mature miRNA. Second, for the unique sequences

mapped to insect pre-miRNAs but the pre-miRNAs did not map

to B. mori genome, if the unique sequences mapped to the B. mori

genome and their extended sequences potentially formed hairpins,

or if the unique sequences did not map to B. mori genome but

mapped to known insect miRNAs, they were considered as

potential miRNAs of P. xylostella. The unique sequences un-

mapped to insect pre-miRNAs but mapped to B. mori genome and

their extended sequences potentially formed hairpins were also

considered as potential miRNAs. The second structures of selected

pre-miRNAs were predicted by using RNAfold [17].

mParafloTM miRNA microarray
To validate the predicted miRNAs, microarray was performed

using a service provider (LC Sciences). The assay started from

2 mg total RNA samples which were 39-extended with a poly (A)

tail using poly (A) polymerase. An oligonucleotide tag was then

ligated to the poly (A) tail for later fluorescent dye staining; two

different tags were used for the two RNA samples in jual-sample

experiments. Hybridization was performed overnight on a

mParaflo microfluidic chip using a micro-circulation pump (Atactic

Technologies) [18,19]. On the microfluidic chip, each detection

probe consisted of a chemically modified nucleotide coding

segment complementary to conserved or predicted novel P.

xylostella miRNA and a spacer segment of polyethylene glycol to

extend the coding segment away from the substrate. The detection

probes were made by in situ synthesis using synthesis using PGR

(photogenerated reagent) chemistry. The hybridization melting

temperatures were balanced by chemical modifications of the

detection probes. Hybridization used 100 mL 66SSPE buffer

(0.90M NaCl, 60 mM Na2HPO4, 6 mM EDTA, pH 6.8)

containing 25% formamide at 34uC. After RNA hybridization,

tag-conjugation Cy3 and Cy5 dyes were circulated through the

microfluidic chip for dye staining. Fluorescence images were

collected using a laser scanner (GenePix 4000B, Molecular Device)

and digitized using Array-Pro image analysis software (Media

Cybernetics). Data were analyzed by first subtracting the

background and then normalizing the signals using a LOWESS

filter (Locally-weighted Regression) [20]. For two color experi-

ments, the ratio of the two sets of detected signals (log2

transformed, balanced) and p-values of the t-test were calculated;

differentially detected signals were those with less than 0.01 p-

values. Hierarchical clustering was carried out using the TIGR

MeV (MultiExperiment Viewer) v4.1 software, http://www.tm4.

org/mev.html [21].

Quantitative RT-PCR
Twelve differently expressed miRNAs at various developmental

stages were selected according to the initial microarray results and

further verified using quantitative RT-PCR (qRT-PCR). Total

RNA was extracted from 50 mg of eggs, 1st to 4th instar larvae,

pupae and adults, respectively using TRIzol reagent as described

previously. First strand cDNA was synthesized from 2 mg of total

RNA using miScript II RT kit (Qiagen) following manufacturer’s

instructions. The qRT-PCR reaction consisted of 1 mL of diluted

cDNA, 10 mL of SYBR Green Master Mix (miScript SYBR Green

PCR Kit, Qiagen, USA) and1 mL of 10 mM of forward and

reverse primer in 20 mL total volume. The forward primers were

listed in table 1, and the universal reverse primer was supplied in

miScript SYBR Green PCR Kit (Qiagen). The PCR reaction was

conducted on an Applied Biosystems 7500HT Real-Time PCR

System under the following conditions: 15 min template denatur-

ation at 95uC, followed by 40 cycles of 94uC for 15 s, 55uC for

30 s, and 60uC for 34 s followed by the melting curve

(68uC295uC). Melting curves for each sample were analyzed

after each run to check the specificity of amplifications. Three

biological replicates with three technical replications were

conducted for each qRT-PCR. A combination of three selected

most stable miRNAs PN-isc-miR-276_R+1, PN-api-miR-9a_L+1

and PN-bmo-miR-279d_L-117TC (unpublished data) were used

as endogenous references for normalization (Table 1).

Results

Predicted P. xylostella miRNAs using B. mori genome as a
reference

Solexa sequencing technology was used to identify miRNAs in

the P. xylostella. A pooled small RNA library was constructed from

the entire developmental stages of the insect (from eggs to adults).

Sequencing yielded 4,620,660 reads, of which the reads without 39

adaptor, or reads less than three copies or the length less than 15

Figure 1. Length distribution of mappable reads obtained from
P. xylostella deep sequencing. Reads with length .25nt were
excluded from miRNA mapping.
doi:10.1371/journal.pone.0078787.g001

Table 3. Length distribution and copy number of the P.
xylostella miRNAs.

miRNA
Length

Number of
miRNAs % Copy number %

16 1 0.43 5 0.00

17 3 1.28 20 0.01

18 3 1.28 126 0.06

19 6 2.56 24 0.01

20 30 12.82 6575 2.95

21 24 10.26 6406 2.88

22 72 30.77 142775 64.12

23 62 26.50 59445 26.69

24 20 8.55 6332 2.84

25 13 5.56 1015 0.46

Total 234 100.00 222723 100.00

doi:10.1371/journal.pone.0078787.t003

miRNAs in Diamondback Moth
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nt after adaptor removal were all discarded (32.9%), and then the

reads mapped to Rfam (8.9%) and Repbase (9.4%), as well as

those mapped to B. mori mRNA (17.4%) were also filtered, leaving

1,450,828 (31.4%) reads were used for miRNA identification

(Table 2). After various mapping, a total of 234 conserved and

potential candidate miRNAs were identified (Table S2), of which

105 miRNAs were known ones from B. mori and other insects. The

rest newly isolated ones considered novel miRNAs of P. xylostella

were divided into two groups, prefixed with ‘‘PN-’’ and ‘‘PC-’’,

where ‘‘PN-’’ denotes sequences that mapped to pre-miRNA

sequences from miRBase and ‘‘PC-’’ denotes sequences that

mapped to B. mori genomic sequences with hairpin formation.

As shown in Fig. 1, the length distribution of total mappable

reads showed a peak at 22 nt which is the typical length of a

mature miRNA, and the second peak appeared at 24–25 nt (Fig. 1).

The length and copy number distribution of predicted miRNAs

showed that more than 30% of miRNAs is 22 nt in length with the

highest copy number (64.1%) among other miRNAs, and the

miRNAs with 22–23 in length possessed more than 90% of reads.

While the number of miRNAs with length 24–25 nt is less than

14.2% with even less copy number (,3.3%) (Table 3). According

to the copy number, the five most abundant miRNAs were bmo-

miR-1a, bmo-miR-8, bmo-miR-308, bmo-miR-100 and PN-bmo-

miR-276*. A total of thirty three of most highly expressed miRNAs

with copy number .1000 were listed in Table 4.

Temporal expression of P. xylostella miRNAs at various
developmental stages

The expression profiles of all 234 predicted miRNAs at various

developmental stages were investigated using a customized

microarray analysis. Among all the tested miRNAs, 143 miRNAs

Table 4. The most abundant miRNAs in P. xylostella small RNA libraries.

miRNA Sequence Length
Copy
Number CG (%) MFEI*

bmo-miR-1a TGGAATGTAAAGAAGTATGGAG 22 36568 48.2 1

bmo-miR-8 TAATACTGTCAGGTAAAGATGTC 23 24384 50.0 0.7

bmo-miR-308 AATCACAGGATAATACTGCGAG 22 20786 44.7 0.9

bmo-miR-100 AACCCGTAGATCCGAACTTGTG 22 14286 45.8 0.5

PN-bmo-miR-276* TAGGAACTTCATACCGTGCTCT 22 13433 43.7 0.7

bmo-miR-9a TCTTTGGTTATCTAGCTGTATGA 23 6904 37.8 1.1

bmo-miR-277 TAAATGCACTATCTGGTACGACA 23 6725 50.8 1

bmo-let-7_R21 TGAGGTAGTAGGTTGTATAG 20 6097 48.1 1

bmo-miR-279b TGACTAGATCTACACTCATTGA 22 6049 41.6 1

bmo-miR-278 TCGGTGGGATCTTCGTCCGTTT 22 5612 56.3 0.8

bmo-miR-79_L-3R21 ATAAAGCTAGATTACCAAAGCA 22 5093 59.0 0.8

bmo-miR-279a_R+3 TGACTAGATCCACACTCATCCA 22 5092 41.2 1

PN-tca-miR-3477-5p_R21 TAATCTCATTTGGTAACTGTGAG 23 4796 39.6 0.9

bmo-miR-279c_R+1 TGACTAGATCCATACTCGTCTGC 23 4502 40.0 1

bmo-miR-750_R+210TA CCAGATCTAACTTTCCAGCTCA 22 4077 50.6 0.8

bmo-miR-184_L22 TGGACGGAGAACTGATAAGGGC 22 3540 52.4 0.8

bmo-miR-8* CATCTTACCGGGCAGCATTAGA 22 3239 50.0 0.7

bmo-miR-14_R+1 TCAGTCTTTTTCTCTCTCCTAT 22 3193 40.0 1.2

bmo-miR-282_L-3R-2 TAGCCTCTCCTTGGCTTTGTCT 22 2655 48.2 0.9

bmo-miR-263a_R+3 AATGGCACTGGAAGAATTCACGGG 24 2610 48.4 0.8

bmo-miR-307_R+3 TCACAACCTCCTTGAGTGAGCGA 23 2292 56.3 0.8

PC-3p-68 TATTCGAGACCTCTGCTGATCC 22 2224 58.8 0.8

bmo-miR-12_R21 TGAGTATTACTTCAGGTACTGG 22 1946 30.0 0.4

bmo-miR-305_R+1 ATTGTACTTCATCAGGTGCTCTGG 24 1863 56.0 1

bmo-miR-9c*_R+3 TCTTTGGTATCCTAGCTGTAG 21 1776 61.1 0.8

bmo-miR-13b TATCACAGCCATTTTTGACGAGT 23 1761 50.0 1.1

bmo-miR-252 CTAAGTACTAGTGCCGCAGGAG 22 1545 43.5 0.9

bmo-miR-iab-4-5p ACGTATACTGAATGTATCCTGA 22 1529 46.6 0.9

bmo-miR-2765 TGGTAACTCCACCACCGTTGGC 22 1482 54.7 0.9

bmo-miR-10_L+1 TACCCTGTAGATCCGAATTTGT 22 1454 47.6 1

bmo-miR-124_R-2 TAAGGCACGCGGTGAATGCCA 21 1292 51.8 0.8

PN-dme-miR-31a-5p_R-21TA AGGCAAGATGTCGGCATAGCT 21 1209 53.3 1

bmo-miR-274_L-1R-2 TTTGTGACCGTCACTAACGGGCA 23 1144 49.5 0.8

*MFEI, minimum free energy index = -dG6100/length of the pre-miRNA sequence/GC%.
doi:10.1371/journal.pone.0078787.t004

miRNAs in Diamondback Moth
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expressed evenly in eggs, larvae, pupae and adults, while the

remaining 91 miRNAs were found differentially expressed at

different developmental stages (Fig. S1). Of which nine miRNAs

belong to four families, including miR-71, miR-11, miR-279 and

miR-92, were highly expressed in eggs (Fig. 2A), and sixteen

miRNAs from miR-1175, miR-750*, miR-281, miR-8 and four

other families showed a significantly higher expression level in

larvae stage but relatively lower expression level in eggs and pupae

(Fig. 2B). There were four novel miRNA candidates (PC-5p-3972,

PC-5p-13964, PC-5p-3130 and PC-5p-81253) and two miRNAs

(bmo-miR-989_R+1 and PN-dme-miR-277-3p_R+2) were highly

expressed in pupae and adults, respectively (Fig. 2C, 2D). A total

Figure 2. Microarray analysis of expression profiles of selected P. xylostella miRNAs at different developmental stages. After
microarray hybridization and statistical analyses, a set of P. xylostella miRNAs differentially expressed in eggs, larvae, pupae and adults was identified.
Two replicates and profiles clustering are presented for miRNAs significantly expressed among developmental stages. Microarray data were analyzed
using the TIGR MeV (MultiExperiment Viewer) v4.1 software, http://www.tm4.org/mev.html, and one-way ANOVA. Color coding: red, up-regulated;
black, mean; green, down-regulated.
doi:10.1371/journal.pone.0078787.g002

miRNAs in Diamondback Moth
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of seven miRNAs were found highly expressed in both the eggs

and the pupae, of which three miRNAs from miR-71 family and

three from miR-2 family (Fig. 2E). In both pupae and adults, five

miRNAs from both miR-210 and miR-307 families were found

showed high expression level (Fig. 2F). There were six miRNAs

increasingly expressed from eggs to adults, of which three belong

to let-7 family and three miR-100 family (Fig. 2G).

To verify the microarray results described above, the relative

expression levels of 12 differentially expressed miRNAs were

further measured by qRT-PCR. Ten miRNAs showed similar

expression patterns as those revealed by our microarray analysis.

Figure 3. qRT-PCR analysis of differentially expressed P. xylostella miRNAs at various developmental stages. The expression of each
miRNA was normalized to a panel of the three most stable miRNAs (Table 1, unpublished data). The relative miRNA expression at each
developmental stage was normalized to the fourth instar larvae. Lowercase letters (a and b) represent significant differences (P,0.05).
doi:10.1371/journal.pone.0078787.g003

miRNAs in Diamondback Moth
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For example, the microarray showed that PN-cqu-miR-279_21AT

and bmo-miR-92b were highly expressed in eggs, and the results

of qRT-PCR showed that these two miRNAs were exclusively

high expressed in eggs with 5.1- and 8.2-fold higher than that of in

the fourth instar larvae, respectively (Fig. 3A, 3B). Similarly, the

expression of bmo-miR-750_R+210TA in first to fourth instar

larvae were 6.9- to 11.2-fold higher than that in eggs, and the

expression of this miRNA in eggs showed no difference with that

in pupae or adults (Fig. 3C). And the PC-5p-3130 and bmo-miR-

989_R+1exclusively high expressed in pupae and adults respec-

tively, and the expression level were 3.93- and 26.1-fold higher

than that of in fourth instar larvae, respectively (Fig. 3D, 3E).

While the PN-api-miR-2c-3p highly expressed in both eggs and

pupae rather than in other stages (Fig. 3F), and both bmo-miR-

210_L+1R+2 and bmo-miR-307_R+3 showed higher expression

level in pupae (39.5- and 3.9-fold higher than that in 4th instar

larvae) and adults (42.9- and 4.2-fold higher than that in 4th instar

larvae) (Fig. 3G, 3H). Both the bmo-let-7_R21 and bmo-miR-100

showed a increased expression from eggs to adults with significant

difference in pupae and adults (Fig. 3I, 3J). The expression levels of

miRNAs PN-bmo-miR-10*_R+1 and PN-aae-miR-87 detected by

qRT-PCR inconsistent with that of the microarray results due to

unknown reasons.

Predicted P. xylostella miRNAs using its own genome as a
reference

Most recently, the genome sequences of P. xylostella was

released [14], and subsequently the P. xylostella miRNAs were

predicted again based on its own genome sequences (http://iae.

fafu.edu.cn/DBM/download.php). After mapping to the P.

xylostella genome and miRBase (2012 August Release 19,

http://www.mirbase.org/) using a software package ACGT101-

miR v4.2 (LC Sciences, Houston, USA), a total of 348 miRNAs

were identified (Table 5, Table S2). The majority of these

miRNAs were conserved across insects, in which 222 miRNAs

were found in other insects, including 189 in B. mori. The

remaining 126 miRNAs were considered P. xylostella specific and

prefixed with ‘‘PC’’ in their names, indicating they could map to

the genome of P. xylostella within hairpin but they are not

homologous to any known insect miRNAs. To validate these

predications, eleven miRNAs including 5 novel and 6 conserved,

were subjected to qRT-PCR analysis (Table S3). All of the

predicted miRNAs were amplified using a cDNA template

extracted from the fourth instar larvae (Fig. 4).

Up to date, miRNAs have been indentified and studied in 25

insect species. Plutella xylostella miRNAs are highly homologous to

those of B. mori and two other lepidoprerans, Manduca sexta and

Heliconius melpomene (Fig. 5). The most conserved region between P.

xylostella pre-miRNA and other insects is the mature sequence and

follows by the complementary sequence, whereas sequence far

away from the mature region is highly varied. For example, mir-1a

and mir-307 of P. xylostella showed very high identity to that of

other insects, respectively, both at the mature and complementary

regions (Fig S2, S3).

Discussion

It has been demonstrated that miRNAs can affect almost all

biological processes in insects [8]. The initial discovery of miRNAs

in insects would lay the foundation for future functional

characterization of these negative regulators. With the advent of

the whole genome sequencing, miRNAs have been inventoried in

25 insect species including 12 Drosophila species [22], three

Figure 4. Comparative analysis of miRNA sequence similarity between P. xylostella and other insect species. As expected, P. xylostella
miRNAs have the highest sequence similarity with Lepidoptera insects.
doi:10.1371/journal.pone.0078787.g004

Table 5. Known and predicted P. xylostella miRNAs referencing to its own genome.

miRNA Group No. Unique miRNAs

Known miRNAs

of P. xylostella in miRBase Group 1a 0

of other insects, but novel to P. xylostella Group 1b 31

Predicted miRNAs

Mapped to known pre-miRNAs of other insects and P. xylostella genome; within hairpins Group 2a 32

Mapped to known pre-miRNAs of other insects and P. xylostella genome; no hairpins Group 2b 85

Mapped to known pre-miRNAs and miRNAs of other insects but unmapped to P. xylostella
genome

Group 3a 70

Mapped to known pre-miRNAs of other insects but unmapped to P. xylostella genome Group 3b 4

Unmapped to known miRNAs but mapped to P. xylostella genome and within hairpins Group 4a 126

Total (Unique miRNAs) 348

doi:10.1371/journal.pone.0078787.t005
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mosquitos (Anopheles gambiae, Aedes albopictus and Culex quinquefascia-

tus) [23,24], four hymenopterans (Ahis mellifera, Nasonia virtipennis, N.

giraulti, and N. longicornis) [25,26], three lepidopterans (B. mori, M.

sexta and Heliconius melpomene) [27–29], one coleopteran (T.

castaneum) [30,31] and one hemipteran (Acyrthosiphon pisum) [32].

miRNAs in Locusta migratoria [33] and Blattella germanica [34] have

also been documented. Most recently, miRNAs associated with

parasitization by Diadegma semiclausum was reported in P. xylostella

larvae [15]. These miRNAs were identified from the second instar

larvae, and B. mori was used as a reference due to the lack of P.

xylostella genome sequences.

In this study, a pooled small RNA library prepared from

different development stages of P. xylostella (from eggs to adults) was

sequenced. When using B. mori genome sequence as reference, a

total of 234 miRNAs was identified, and when using the P.

xylostella’s own genome data as reference, 348 miRNAs were

identified, among which 120 miRNAs are overlapped. As a result,

a total of 462 miRNAs were identified from various developmental

stages in P. xylostella, of which 69 has been reported previously by

Etebari, et al [15]. 174 miRNAs from the remaining 383 novel

miRNAs were P. xylostella specific. These combined results are the

first step toward understanding the roles of miRNAs in P. xylostella

metamorphosis, physiological and behavioral adaptations to the

environment.

To provide a fine-tuning of target gene expression, information

regarding the temporal and spatial expression profiles of miRNAs

is essential [35]. In B. mori, the dynamics of miRNA expression

profiles in different tissues and developmental stages have been

resolved, respectively [26,36,38]. Here, the temporal expressions

of P. xylostella miRNAs were investigated using a microarray

analysis. Among the 234 miRNAs tested, 143 were expressed

evenly in eggs, larvae, pupae and adults, while the remaining 91

were differentially expressed. For example, a total of nine miRNAs

from four families (miR-71, miR-11, miR-279 and miR-92) were

highly expressed in eggs, suggesting their specific functions in

regulating the embryogenesis and metamorphosis of P. xylostella. It

has been reported that miR-11 regulate the apoptosis during

embryogenesis [38,39], while miR-279 determines olfactory

neuron fate [40] in Drosophila. Similarly, miR-92 and miR-279

were found specifically expressed in the later embryos in B. mori

[37]. During larval stage (from 1st to 4th instar), 16 miRNAs were

significantly up-regulated, whereas, they were down-regulated in

eggs and pupae, indicating that these miRNAs may be involved in

the larvae-pupae transition. In B. mori, miR-8 and miR-281 were

also highly expressed at larval stage [37]. As a highly conserved

miRNA, miR-8 is associated with the neurodegeneration, wingless

signaling, growth control and neuromuscular junction develop-

ment [41]. High expressions of four novel miRNAs (PC-5p-3972,

PC-5p-13964, PC-5p-3130 and PC-5p-81253) in pupae suggested

that they may play important roles in metamorphosis from pupae

to adult, while bmo-miR-989_R+1 and PN-dme-miR-277-

3p_R+2 may have specific functions in adults because of their

significantly elevated expression levels in adults. Similar to B. mori,

both let-7 and miR-100 were up-regulated and gradually

accumulated from eggs to adults in P. xylostella,

In total, there are 16, 16, 16, and 7 P. xylostella miRNAs

specifically expressed in eggs, larvae, pupae, and adults,

respectively. Zhang, et al [36] found that 106 of 354 validated

miRNAs were expressed in all stages of B. mori, while the

remaining miRNAs were egg- and pupa-specific, suggesting that

insect miRNAs play a significant role in embryogenesis and

metamorphosis.

Both microarray and qRT-PCR analyses have been used

extensively to quantify miRNA expression. Results, however, are

not always consistent. In this study, qRT-PCR analysis validated 10

out of 12 differentially expressed P. xylostella miRNAs identified by

microarray analysis. Similarly, qRT-PCR analysis confirmed 6 out of

8 microarray-determined differentially expressed miRNAs in B. mori

[36], suggesting that multiple tools, especially qRT-PCR analysis,

should be used to accurately assess the expression level of miRNA.

Supporting Information

Figure S1 Microarray analysis of expression profiles of
predicted P. xylostella miRNAs at different developmen-
tal stages. After microarray hybridization and statistical

analyses, all detectable P. xylostella miRNAs differentially expressed

in eggs, larvae, pupae and adults were subjected to one-way

ANOVA at P = 0.01 and the hierarchical clustering using the

TIGR MeV (MultiExperiment Viewer) v4.1 software, http://

www.tm4.org/mev.html. Two replicates were performed. Color

coding: red, up-regulated; black, mean; green, down-regulated.

(TIF)

Figure S2 Alignment of identified pxy-mir-1c with other
insect mir-1 registered in the miRBase. The conserved

mature miRNA sequences are highlighted in black.

(TIF)

Figure S3 Alignment of identified pxy-mir-307 with
other insect mir-307 registered in the miRBase. The

conserved mature miRNA sequences are highlighted in black.

(TIF)

Table S1 Predicted P. xylostella miRNAs using Bombyx
mori genome data as reference.
(XLS)

Table S2 Predicted P. xylostella miRNAs using its own
genome data as reference.
(XLS)

Figure 5. qRT-PCR validation of miRNAs predicted by the P.
xylostella genome. cDNAs from the fourth instar larvae were used as
the template. M: DNA marker. Lane 1: PC-5p-52_2942. Lane 2: bmo-miR-
2755-3p. Lane 3: dme-miR-2a-3p_3ss18AT22GC23CT. Lane 4: dpu-
bantam_R21. Lane 5: PC-3p-174_795. Lane 6: bmo-miR-306a-
5p_1ss1TC. Lane 7: bmo-miR-281-3p_L-2R+2. Lane 8: PC-3p-63_2387.
Lane 9: PC-3p-61_2483. Lane 10: bmo-mir-6497-p5_1ss10CG. Lane 11:
PC-5p-82_1775.
doi:10.1371/journal.pone.0078787.g005
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Table S3 Primers used for qRT-PCR analysis of 11
miRNAs predicted based on P. xylostella genome data.

(DOC)
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