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Abstract 
 
The aim of this paper is to assess the adequacy of the data infrastructure in the United States to 
meet future research and policy evaluation needs as it pertains to income, program participation, 
poverty, and financial vulnerability.  I first discuss some major research themes that are likely to 
dominate policy and scientific discussions in the coming decade.  This list includes research on 
the long-term consequences of income inequality and mobility, issues of transfer-program 
participation and intergenerational dependence, challenges with poverty measurement and 
poverty persistence, and material deprivation.  I then summarize what information we currently 
collect in the U.S. that is used to address these issues, with particular focus on ten national panel 
datasets that cover these domains and continue to be fielded by the various federal agencies.  
Included in this section is a discussion of challenges posed by rising income nonresponse and 
underreporting in many panel surveys.  I then conclude with a discussion of how the current 
panel surveys can be improved to address growing need for social science research on inequality, 
poverty, and material well being.     
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The availability of household panel data over the past four decades provided the means 

for a great leap forward in social science research on scores of issues related to income, transfer 

program participation, poverty, and financial vulnerability in the United States.  This long list 

includes, among others, research on the entry into and exit out of poverty and/or transfer-

program participation (Bane and Ellwood 1986; Katz and Meyer 1990; Blank and Ruggles 1996; 

Stevens 1999); intergenerational transmission of economic status (Duncan, Hill, and Hoffman 

1988; Solon 1992); earnings dynamics (Lillard and Willis 1978; MaCurdy 1982; Abowd and 

Card 1989; Gottschalk and Moffitt 1994; Meghir and Pistaferri 2004); the wage returns to 

education, experience, industry, union status, job safety, and job training (Chamberlain 1978; 

Brown 1980; Hausman and Taylor 1981; Freeman 1984; Card 1986; Lalonde 1986; Altonji and 

Shakotko 1987; Krueger and Summers 1988; Heckman, Ichimura, and Todd 1997; Keane and 

Wolpin 1997; Kniesner, et al. 2012); the income-smoothing benefits of extended families, taxes, 

and transfers (Hall and Mishkin 1982; Cochrane 1991; Hayashi, Altonji, and Kotlikoff 1996; 

Dynarski and Gruber 1997; Kniesner and Ziliak 2002; Blundell, Pistaferri, and Preston 2008); 

and more recently, the long-term effects of early childhood interventions (Garces, Thomas, and 

Currie 2002; Heckman, Stixrud, and Urzua 2006; Hoynes, Schanzenbach, and Almond 2013).  

Much of this research included methodological innovations on the econometrics of panel data, 

along with crucial insights on the role of public policies in shaping household decision making. 

Are current data sufficient to foster the next 40 years of social science research?  Or is it time for 

the nation to embark on a new data collection enterprise?   

The aim of this paper is to assess the adequacy of the data infrastructure in the U.S. to 

meet future research and policy evaluation needs as it pertains to income, program participation, 

poverty, and financial vulnerability.  Any assessment of data must first be motivated by the 
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questions being posed, and thus the paper opens with a discussion of some major research 

themes that are likely to dominate policy and scientific discussions in the coming decade.  By no 

means is the list intended to be exhaustive, and in part reflects personal research biases. 

Attention is necessarily confined to those topics best addressed with longitudinal data, though 

key (repeated) cross-sectional datasets are referenced to the extent that they provide relevant 

benchmarks to anchor a possible new panel.  This is then followed with an accounting of current 

longitudinal surveys.  Included here is a discussion of measurement issues, both the construction 

of current and potentially new measures of income, poverty, and vulnerability, as well as data 

quality such as survey nonresponse and underreporting.  The final section contains a discussion 

of whether a new longitudinal panel is needed in the United States in the domain of income, 

poverty, and financial hardship. The prospects of linking administrative data with survey data are 

also explored.  Indeed, one of the remarkable feats of the first wave of longitudinal research was 

that it was conducted during the early stages of computing architecture.  New data storage and 

processing power make feasible the analysis of massive data sets, which characterizes many 

administrative data sources such as tax records or welfare programs.   

II. What Do We Need to Know about Income, Program Participation, Poverty, and 

Financial Vulnerability?    

A. Consequences of Income Inequality 

 With little risk of hyperbole, the defining economic trend of our time is rising income 

inequality.  Figure 1 depicts trends in household income shares by quintile of the distribution 

from the Annual Social and Economic Supplement of the Current Population Survey (CPS).1  

The figure shows that over the past four decades the share of income accruing to the top fifth of  

                                                 
1 Data obtained from Table H-2 at http://www.census.gov/hhes/www/income/data/historical/household/  

http://www.census.gov/hhes/www/income/data/historical/household/
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the income distribution has been increasing at the expense of the bottom four-fifths, rising from 

43.6 percent of total income in 1967 to 51 percent in 2012.  The declines in shares cut across  

both the lower and middle income classes, resulting in a “polarization” of incomes (Autor, Katz, 

and Kearney 2008). 

Figure 2 presents a more stark portrait of what is happening at the top of the income 

distribution, utilizing tax return data from Piketty and Saez (2003) updated to the 2012 tax year.2  

The figure presents trends in the share of income among the top 1% , both with and without  

capital gains income. The share at the top reached just over 20 percent of all income in the late 

1920s, and then there was a four decade long decline down to about 8 percent of income in the  

   

                                                 
2 Data obtained from http://elsa.berkeley.edu/users/saez/TabFig2012prel.xls  
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mid 1970s.  Since that time the top 1% share of income has climbed back up to once again 

exceed 20 percent.  A distinguishing feature of the trends in Figure 2 is that the decades in both  

the early and latter part of the sample period were characterized by significant volatility at the 

top, compared to relative stability in the middle decades of the 20th century. 

There have been scores of studies documenting trends in income inequality and volatility, 

as well as its causes, and this remains an active area of inquiry.3  One of the key distinctions in  

the most recent work on this topic is whether it is based on household survey data (e.g. 

Burkhauser, et al. 2012), on tax return data (e.g. Piketty and Saez 2003), or some combination of 

                                                 
3 For examples of income inequality and volatility research over the last decade see Haider 2001; Piketty and Saez 
2003; Lemieux 2006; Hacker 2006; Western 2007; Autor, et al. 2008; Parker and Vissing-Jorgenson 2010; Dahl, 
Deleire, and Schwabish 2011; Ziliak, Hardy, and Bollinger 2011; Burkhauser, et al. 2012; Dynan, Elmendorf, and 
Sichel 2012; Gottschalk and Moffitt 2012; Weeden and Grusky 2012; Alvaredo, et al. 2013; Attanasio, Hurst, and 
Pistaferri Forthcoming. 
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survey and administrative data (Dahl, et al. 2011).  For the better part of three decades, repeated 

cross section samples from the CPS have been used to document inequality trends owing to the 

relatively large and national representativeness of the survey.  Piketty and Saez (2003) were 

innovative in their use of tax return data for inequality research, arguing that it is advantageous 

both because it is possible to go back much further in time than any household survey (compare 

Figure 2 to Figure 1 above) and for the better coverage of incomes at the top of the distribution.  

A challenge facing all household surveys is capturing incomes at the top of the distribution as 

these families are less likely to participate in surveys. Moreover, in a bid to preserve respondent 

confidentiality, inequality researchers face the additional challenge of income top-coding in 

public use data.  This has the effect of masking what is happening in the upper tail of the 

distribution, which, as Piketty and Saez (2003) highlight, misses the main story over the last few 

decades.  A careful study by Burkhauser, et al. (2012) shows that versions of the CPS held 

internally at the Census Bureau (which are also top-coded, but at a higher level) track inequality 

trends in tax return data, but come close to matching the levels only after making adjustments to 

the data above the top code.  For example, in a follow-up paper, Armour, Burkhauser, and 

Larrimore (2014) show that once one corrects for top coding by incorporating a cell-mean series 

based on the Pareto distribution inequality levels and trends from the CPS track administrative 

data.  As inequality trends will continue to be an important barometer of the economy in the 

coming years, in the next section I discuss in greater detail issues of survey nonresponse at both 

the top and bottom of the distribution, and the implications for inequality research.   

In contradistinction to the voluminous literature on trends in and causes of inequality, 

there has been much less research on the potential long-term consequences of inequality.4  Most 

                                                 
4 There has, however, been many studies on the long-term consequences of growing up in poverty. See, for example, 
McLanahan and Sandefur (1994) and Duncan and Brooks-Gunn (1999). 
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inequality research is based on income snapshots at a point-in-time, and inequality across the 

lifecourse may be less severe, unless part of rising inequality owes to reduced upward mobility 

(or increased downward mobility) across the distribution.5  In this case, we need to move beyond 

inequality to income mobility (Corak 2013; Kenworthy 2013).  Does cross sectional inequality 

reduce upward mobility? And if so, is reduced mobility exacerbating lifetime inequality in 

incomes and financial well being?  To answer these questions it is necessary to follow 

individuals and families over time.  For example, new research on the geography of inequality by 

Chetty, et al. (2014a) using earnings from longitudinal tax return data suggests that children 

growing up in more unequal communities experience less upward mobility.  This work, along 

with their compendium piece on trends in mobility (Chetty, et al. 2014b), is very impressive in 

part owing to the scale of the tax data by fine geographic regions.  Indeed, Grusky and 

Cumberworth (2010) make a case that going forward intergenerational mobility research would 

be best served utilizing administrative tax records, or at least for measuring trends, in part 

because of the challenges of estimating integenerational correlations with precision in currently 

available panel surveys (Aaronson and Mazumder 2008; Lee and Solon 2009). 

However, there are several reasons why tax data should be viewed as a complement and 

not a substitute for longitudinal survey data for research on the causal mechanisms underlying 

inequality and mobility.  First, demographics, especially household family structure, race, and 

education attainment are not recorded in U.S. tax data.  This means it is not possible to identify 

resource sharing among cohabiting partners, multigenerational families, and multi-family 

households, or differences in outcomes by race and ethnicity.  It also means that it is not possible 

to relate skill formation with economic opportunity.  Recent work by Heckman, Stixrud, and 

                                                 
5 Unlike inequality, research on earnings and income volatility is the near exclusive domain of longitudinal surveys, 
especially the Panel Study of Income Dynamics (Gottschalk and Moffitt 1994, 2012; Haider 2001; Meghir and 
Pistaferri 2004; Hacker 2006; Dynan, et al. 2012). 
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Urzua (2006) points to the important role of early cognitive and noncognitive skill formation on 

later-life earnings, while Greenwood, et al. (2014) emphasize how the rise in assortative mating, 

as measured by adults with similar education levels, leads to higher inequality, and thus the 

prospect for reduced intergenerational mobility.  Second, there is evidence that tax data tends to 

understate earnings at the bottom of the distribution (Hokayem, et al. 2014), and incomes more 

generally.  Some earnings are “under the table” and not reported to tax and welfare authorities 

(Edin and Lein 1997; Venkatesh 2006), and many sources of income such as cash and in-kind 

welfare payments are not taxable and thus not available in tax panels.  Third, tax data are not in 

the public domain and thus exclusive reliance will relegate this research to those in government 

agencies or fortunate enough to gain access.  However, this recent work does point to the need to 

enhance linked tax, transfer, and survey data as discussed below.  

 B. Program Participation and Intergenerational Dependence 

 There has been a dramatic expansion of the social safety net in the U.S. over the past 30 

years.  Table 1 shows that from 1980 to 2010 real spending on the Earned Income Tax Credit 

increased nearly 1300 percent, Medicare and Medicaid increased 500 percent or more, spending 

on Disability Insurance, Unemployment Insurance, and food stamps have each increased over 

200 percent, and there was a more than doubling of spending on Social Security retirement 

(OASI), Supplemental Security Income, and Housing Assistance.  The only program exhibiting 

minimal change in expenditure is AFDC/TANF. 

The reasons for this growth in safety net spending vary by program, but generally involve 

some combination of changing demographics, business cycles, and direct policy reforms (Moffitt 

and Scholz 2010; Ziliak 2011).  For example, the aging of the U.S. population has fueled real 

growth in Social Security, Medicare, and Medicaid, though the latter two programs also  
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Table 1.  Trends in Real Spending on Selected Social Insurance and Means-Tested Transfer 
Programs 

  1980  1990  2000  2010 

Social Insurance        
OASI 256.3  354.0  452.2  550.4 
Medicare 89.8  176.2  284.4  535.7 
Disability Insurance 37.8  39.4  70.4  130.7 
Workers Compensation 33.2  60.6  61.2  61.3 
Unemployment Insurance 39.3  29.0  26.8  145.9 

Veterans Benefits 35.9  28.1  32.1  54.1 

Means-Tested Transfers         

 
  

Medicaid 56.8  103.0  215.9  356.6 
Supplemental Security Income 18.8  25.6  39.4  50.7 
AFDC/TANF 32.7  35.1  36.3  37.7 
Food Stamps/SNAP 21.2  24.4  21.9  71.9 
Housing Assistance 
Earned Income Tax Credit 

22.2 
4.6 

 28.7 
11.9 

 41.9 
41.4 

 

44.4 
64.1 

        Note: Expenditures are in 2013 dollars based on the personal consumption expenditure deflator. 
Sources: 2013 Annual Statistical Supplement to the Social Security Bulletin (OASI and DI from Table 7.A.4;  
Medicare is the sum of Table 8.A.1 & 8.A.2; Medicaid from Table 8.E2 (1980 value from the 2000 supplement); 
SSI from Table 7.A.4; Workers Compensation from Table 9.B1); UI data includes extended benefits and was 
obtained from https://workforcesecurity.doleta.gov/unemploy/Chartbook/b1.asp; Veterans Benefits for 1980 from 
Table 518 at  https://www.census.gov/prod/2002pubs/01statab/socinsur.pdf; Veterans Benefits for 1990, 2000, 2009 
from Table 540 at https://www.census.gov/compendia/statab/2012/tables/12s0540.pdf ; AFDC for 1980 from Table 
8-22 of 1996 Green Book at http://www.gpo.gov/fdsys/pkg/GPO-CPRT-104WPRT23609/pdf/GPO-CPRT-
104WPRT23609-2-8.pdf ; AFDC for 1990 and TANF for 2000 and 2010 from Table 7-2 of 2012 Green Book at 
http://greenbook.waysandmeans.house.gov/sites/greenbook.waysandmeans.house.gov/files/2012/documents/Table%
207-2%20TANF_0.pdf ; Food Stamps/SNAP from http://www.fns.usda.gov/pd/SNAPsummary.htm; Housing 
Assistance for 1980, 1990, 2000 from Table 15.2 from 
http://democrats.waysandmeans.house.gov/sites/democrats.waysandmeans.house.gov/files/documents/hap.pdf; 
Housing Assistance for 2011 from Table A.1 of 
http://greenbook.waysandmeans.house.gov/sites/greenbook.waysandmeans.house.gov/files/2012/documents/RL418
23_gb.pdf .    
 

experienced supernumerary medical-cost inflation and programmatic expansions (Part D 

prescription drug benefits in 2004 for Medicare, and both SCHIP and higher income eligibility 

for Medicaid in the 1990s).  The growth in Unemployment Insurance occurred with the Great 

Recession of 2008 and the subsequent adoption of extended benefits that enabled some workers 

to receive UI for up to 73 weeks beyond the usual 26 weeks.  The rise in disability reflects 

changes in the implementation of program rules and a greater fraction of the population applying 

for benefits.  Autor and Duggan (2006) argue the latter stems from a secular decline in 

https://workforcesecurity.doleta.gov/unemploy/Chartbook/b1.asp
https://www.census.gov/prod/2002pubs/01statab/socinsur.pdf
https://www.census.gov/compendia/statab/2012/tables/12s0540.pdf
http://www.gpo.gov/fdsys/pkg/GPO-CPRT-104WPRT23609/pdf/GPO-CPRT-104WPRT23609-2-8.pdf
http://www.gpo.gov/fdsys/pkg/GPO-CPRT-104WPRT23609/pdf/GPO-CPRT-104WPRT23609-2-8.pdf
http://greenbook.waysandmeans.house.gov/sites/greenbook.waysandmeans.house.gov/files/2012/documents/Table%207-2%20TANF_0.pdf
http://greenbook.waysandmeans.house.gov/sites/greenbook.waysandmeans.house.gov/files/2012/documents/Table%207-2%20TANF_0.pdf
http://www.fns.usda.gov/pd/SNAPsummary.htm
http://democrats.waysandmeans.house.gov/sites/democrats.waysandmeans.house.gov/files/documents/hap.pdf
http://greenbook.waysandmeans.house.gov/sites/greenbook.waysandmeans.house.gov/files/2012/documents/RL41823_gb.pdf
http://greenbook.waysandmeans.house.gov/sites/greenbook.waysandmeans.house.gov/files/2012/documents/RL41823_gb.pdf
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employment and a larger pool of potential workers due to the increase in female labor force 

participation post 1970.  The growth in the EITC coincided with increases in benefit generosity 

starting in 1993 along with the 1996 welfare reform that moved many single mothers into work 

(Meyer and Rosenbaum 2001).  Meanwhile, the surge in food stamp spending is almost solely 

due to the weak labor market since 2000 along with policy liberalization for eligibility (Ganong 

and Liebman 2013; Ziliak 2013).  

Some of these programs have received substantial investigation by the research 

community, especially the EITC and AFDC/TANF programs, and to a lesser extent, food stamps 

(Haveman, Danziger, and Plotnick 1981; Moffitt 1992, 2003; Currie 2003; Hotz and Scholz 

2003; Blank 2009).  Historically this research focused on the determinants of participation and 

the associated work (dis)incentive effects of the programs, usually in a static, cross-sectional 

setting.  In recent years attention has extended to other outcomes, including marriage, fertility, 

health, and consumption.  Research exploiting longitudinal data traditionally focused on the 

dynamics of entry and exit onto programs (Hutchens 1981; Bane and Ellwood 1994; Blank and 

Ruggles 1996; Hoynes 2000; Gittleman 2001), though newer work has also examined the 

potential of the programs to smooth incomes over time (Dynarski and Gruber 1997; Blundell and 

Pistaferri 2003; Gundersen and Ziliak 2003; Blundell, et al. 2008).  But there has been 

comparatively much less research on other programs such as Disability Insurance, Supplemental 

Security Income, Housing Assistance, Workers Compensation, and Veterans Benefits despite 

expenditures being on par or larger than the more heavily studied programs in the safety net.  

And research on multiple program participation is rare, including basic research on turnover in 

programs over time and the business cycle (Weinberg 1985; Blank and Ruggles 1996; Keane and 
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Moffitt 1998; Moffitt 2014).  These are significant gaps in our knowledge base, and in crucial 

need of filling.  

Another area ripe for new research and ideally suited for longitudinal data is 

intergenerational transmission of welfare use.  In the U.S. intergenerational dependence has with 

few exceptions referred to the welfare program AFDC (Gottschalk 1990; Pepper 2000; Page 

2004).  However, to my knowledge there has been no work on whether or not there has been a 

change in that link after passage of welfare reform, despite one of the stated goals of the TANF 

program “to end the dependency of needy parents on government benefits ....”6  Moreover, there 

is no research on the transmission of “new” welfare such as the EITC, SNAP, DI, or SSI.  Recent 

work by Dahl, et al. (2013) has used Norwegian administrative data to document a strong 

intergenerational transmission of disability.  Current spending on DI and SSI in the U.S. is in 

excess of $180 billion, and while there are some conjectures in the popular press about disability 

cultures (e.g. Kristof 2012), no such link has been established in the U.S.  Identifying whether 

such transmission exists seems high priority, not least of which because disability tends to be an 

absorbing state, i.e., once one qualifies for benefits, exits from the program are highly unlikely. 

 C. Poverty Measurement and Poverty Persistence 

 Was the War on Poverty won?  This has been an oft-raised question recently by scholars, 

journalists, and policymakers alike on the 50th anniversary of President Johnson’s declaration of 

an “unconditional war on poverty” in January of 1964 (Meyer and Sullivan 2012; Ziliak 2012; 

Bailey and Danziger 2013; Council of Economic Advisers 2014; House Budget Committee 

2014; Lowrey 2014) .  To some, the answer to the question is no, quite simply because the 

poverty rate today stands at 15 percent of the population, which is no different than the rate in 

1964.  However, a closer look at the data reveals that the safety net has had a significant  
                                                 
6 “What is TANF?” U.S. Department of Health and Human Services, http://answers.hhs.gov/questions/4482 . 

http://answers.hhs.gov/questions/4482
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effect on reducing the both rate and depth of poverty in America (Ziliak 2006, 2011; Moffitt and 

Scholz 2010; Wimer, et al. 2013).   

Figure 3 shows poverty rates by county from the 1960 Decennial Census, where poverty 

rates in excess of 50 percent were the norm in much of the South.  By the 2000 Census, however, 

extreme North-South differences in poverty rates were all but eliminated as seen in Figure 4.  

Moreover, these poverty rates are based on the official Census Bureau definition of income, 

which does not include the cash value of in-kind transfers such as food stamps and housing 

assistance, nor tax credits like the EITC, and does not subtract tax payments.  Recent estimates in  
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Ziliak (2011) using data from the CPS suggests that these latter adjustments alone reduced the 

level of poverty by about 16 percent in a typical year over the last decade, and the safety net 

overall reduced pre-tax and pre-transfer poverty by at least two-thirds.  Moffitt and Scholz 

(2010) reach similar conclusions using data from the SIPP.   

Wimer, et al. (2013) go further by backcasting the Census Bureau’s Supplemental 

Poverty Measure (SPM) to the beginning of the War on Poverty programs in 1967.  The SPM, 

building off the recommendations of a National Academy of Sciences panel recommendation 

(Citro and Michael 1995), differs in several ways from the current official measure, both in how 
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the poverty line is constructed and how resources are defined (Short 2013).  The official poverty 

line is set at three times the level of expenditure necessary to attain the USDA’s economy food 

plan in 1963 and updated annually by changes in the Consumer Price Index.  The SPM line, on 

the other hand, is set at the 33rd percentile of the distribution of spending on food, clothing, 

shelter, and utilities (and a little extra) based on a five-year moving average of data from the 

Consumer Expenditure Survey.  Moreover, the official line is fixed across the 50 states and 

District of Columbia; whereas, the SPM line is adjusted for geographic differences in housing 

prices both within and between states.  Thus, the data needed to construct the SPM line are much 

more extensive.  The definition of resources in the official measure includes most forms of 

realized private income (except capital gains and losses), along with cash transfers from the 

government.  The SPM includes all these factors plus the value of food assistance, housing 

assistance, and the EITC, less out-of-pocket spending on child care and other work expenses, 

child support, medical expenses, and tax payments.  Wimer, et al. show that the SPM fell from 

26 percent in 1967 to 16 percent in 2012, a period when the official rate was little changed, 

providing compelling descriptive evidence that the wider safety net has reduced poverty over the 

last 50 years.  Collectively, this literature suggests that how one measures poverty has a 

substantive effect on the evaluation of the safety net; that is, it is crucial to incorporate in-kind 

transfers and tax credits, and to look at alternative measures of poverty.   

  Even with the expansion of the safety net, however, poverty rates have remained 

stubbornly high nationally, and especially so in certain regions of the country.  For example, in 

Figure 4 one sees poverty rates in excess of 20 or 30 percent clustered in five subregions—

Central Appalachia (especially Eastern Kentucky), the Southern Black Belt (the Carolinas to 

central Mississippi), the Mississippi Delta, the Texas ‘colonias’ (counties on the Rio Grande 
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River), and Native American reservations.  These areas, while different in terms of geography, 

culture, and economic specialization, share the common feature of being rural.  However, with 

finer gradation of geographic space, one would also uncover similar patterns of concentrated 

poverty within certain metropolitan areas (Wilson 1987; Jargowsky 1997; Kneebone, Nadeau, 

and Berube 2011; Gennetian, et al. 2013).   

Concentration of poverty generates concerns over poverty persistence and its underlying 

causes, and indeed the possible emergence of poverty traps.  Traditionally, individuals, and not 

regions per se, are the unit of analysis for poverty traps.  In this vein, Durlauf (2012) defines a 

poverty trap as a situation where poverty is (i) persistent, (ii) perpetuated across an individual’s 

life or across generations, and (iii) perpetuated by socioeconomic features outside of the 

individual’s control.  By construction, research on lifecycle or dynastic poverty requires rich 

longitudinal data that links not only extended families but also aspects of the local community 

such as political institutions and other environmental factors.  Sawhill (1988, p. 1085) lamented 

26 years ago that  

“Few researchers have approached the task of analyzing the effects of different variables 

on the poverty rate in the context of a coherent overall model of the process by which 

income is generated..... We are swamped with facts about people’s incomes and about the 

number and composition of people who inhabit the lower tail, but we don't know very 

much about the process that generates these results.”  

Sawhill was actually commenting on the lack of theoretical foundations underlying the income 

generation process.  Perhaps ironically, a decade and a half later Moffitt (2004, p. 75) concluded 

that “In the literature on social interactions, theory has run considerably ahead of empirical 

testing, the development of policy interventions that work through social interactions, and the 



15 
 

evaluation of such interventions.”  In other words, theorists implicitly rose to the challenge posed 

by Sawhill, but empirical researchers, beyond the many works on peer effects in schooling and 

neighborhood effects, have not made significant strides in estimating models of lifecourse 

poverty persistence even though transitional matrices of intergenerational income mobility 

suggest that the odds of being poor as an adult are substantially greater if the person was poor in 

childhood.  The new analysis by Chetty, et al. (2014) on the geography of immobility hints that 

the local environment is strongly correlated with this outcome, and future empirical research 

needs to delve deeper into whether causal mechanisms are at work here.      

 D. Financial Vulnerability and Material Hardship 

 Some have argued that income poverty overstates the situation facing the poor today 

because most have access to basic amenities such as air conditioning, automobiles, cell phones, 

microwave ovens, TVs, VCRs, etc...; in other words, they are not experiencing “material 

hardship” (Rector 2007).  Still others claim that underreporting of transfer income exacerbates 

income poverty, and that measuring nondurable consumption provides a more accurate portrait 

of the poverty status of families (Meyer and Sullivan 2012).  Both of these critiques raise valid 

concerns, and suggest that in order to better assess well-being it is necessary to collect and 

measure other indicators of hardship.  Indeed, Mayer and Jencks (1989) argued that measures of 

material hardship are materially and conceptually distinct from income poverty, and that both 

measures should be collected regularly.  This leads more broadly into calls for a move away 

from a single poverty index, whether it be income or consumption, to multidimensional measures 

of poverty (Sen 1993; Bourguignon and Chakravarty 2003; Stiglitz, Sen, Fitoussi 2009).  

The focus on basic material goods as argued by Rector (2007), however, overlooks other 

potential dimensions of financial and material vulnerability such as reliance on payday lending, 
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check-cashing stores, pawn shops, and other financial instruments that often require extreme 

repayment conditions and usurious interest rates.  Moreover, while the poor have greater access 

to any single household appliance than in the past, it is still the case that the majority of them do 

not have access to the full set of washer, dryer, dishwasher, refrigerator, stove, and phone 

(Siebens 2013).  In addition, during 2011 over 12 percent of households in the first income 

quintile faced three or more hardships such as trouble paying rent or utilities, or seeing a doctor, 

compared to 6 percent of all households (Siebens 2013).   

This points to additional concerns about household economic security among the poor, 

whether it be in earnings, income, or the acquisition of food.  The trends in higher inequality 

discussed previously could be due to a rise in overall earnings and income instability, a shift in 

permanent incomes, or both. However, if there is little corroborative evidence of a rise in 

instability then widening inequality is the likely outcome of lifetime changes in the distribution 

of earnings and income, the latter of which could have negative consequences for long-term 

economic mobility.  Gottschalk and Moffitt (1994) pioneered research on documenting trends in 

earnings instability, and in particular on using longitudinal data from the PSID to decompose the 

trends into their permanent and transitory components. This decomposition is illustrative because 

it permits identification of temporary deviations of earnings from long-term trends, as well as 

identification of structural changes in long-term trends. They found that transitory earnings 

instability rose by over 40 percent from 1970 through the mid 1980s, and then more or less 

stabilized thereafter, while permanent variance rose primarily in the 1980s.  More recent 

estimates by Gottschalk and Moffitt (2012) point to continued increased in permanent variance 

through 2004.  Keys (2008) found that this basic pattern of earnings instability held across race, 

gender, education, and family structure in the PSID.  Dynan, et al. (2012), using the PSID, and 
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Hardy and Ziliak (2014), using matched panels from the CPS, focus on trends in total income 

volatility, finding that it rose through the 1990s and has remained at that higher level through the 

first decade of the 2000s.   

While there are many papers documenting trends in earnings and income instability there 

is comparatively much less research on underlying mechanisms for the changes in volatility, and 

the attendant consequences.  In particular, research is needed on life cycle patterns of volatility, 

especially the role of labor-force transitions. As emphasized by many in the literature the 

presence of rising volatility does not necessarily imply increased economic risk.  Thus, research 

is needed on whether the labor force transitions leading to higher volatility are voluntary or 

involuntary, what role the business cycle has played, as well as changes in tax and transfer 

policies.  Research is also needed on the effects of income instability on family and child well 

being, material and otherwise.  Has the rise in permanent earnings instability increased family 

exposure to material hardships such as falling behind on rent or utilities disconnected? Work by 

Heflin and Butler (2013) and Heflin (2014) suggests that factors that affect material hardship are 

not the same as those that affect income changes, pointing to a greater role for household 

composition and disability status on material hardship.  This work has been conducted on a 

limited sample in the Women’s Employment Study, and needs to be extended to national 

samples. In addition, does growing up in a family with unstable incomes affect long-term 

outcomes of the children? New evidence from Hardy (forthcoming) suggests that family income 

volatility has modest negative consequences for education attainment of the child, controlling for 

the level of parent income.  More research along these lines is needed exploiting the rich context 

of longitudinal data.   

Beyond earnings and income security, much attention has been placed on food insecurity  



18 
 

 

   

in recent years.  The Life Sciences Research Office defined food insecurity as a situation that 

“exists whenever the availability of nutritionally adequate and safe foods or the ability to acquire 

acceptable foods in socially acceptable ways is limited or uncertain” (Anderson 1990).  Socially 

acceptable means that it is not necessary to resort to emergency food supplies (food banks or 

pantries), scavenging, stealing, or other coping strategies.  Starting in 1995 the U.S. Department 

of Agriculture began fielding the Core Food Security Supplement (CFSM) as part of the CPS, 

and since 2001 this has been a part of the December CPS.  The CFSM is a series of 18 questions 

(10 if there are no children living in the household) that asks whether the household faced 

difficulties feeding themselves over the prior 12 months because of lack of money. (They also 

ask separately about the prior 30 days)  These difficulties range from worry about running out of 

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

12.00 

14.00 

16.00 

19
95

 

19
96

 

19
97

 

19
98

 

19
99

 

20
00

 

20
01

 

20
02

 

20
03

 

20
04

 

20
05

 

20
06

 

20
07

 

20
08

 

20
09

 

20
10

 

20
11

 

20
12

 

Pe
rc

en
t 

Year 

Figure 5. Trends in Food Insecurity in the United States 

Food insecurity Very low food security 



19 
 

money to actually skipping meals for a whole day or more for a lack of money.  Figure 5 depicts 

trends in the fraction of households facing food insecurity (=1 if at least 3 affirmative answers in 

the CFSM) and very low food security (=1 if at least 8 affirmative answers (6 if no children 

present)) from 1995 to 2012.  Rates of food insecurity hovered in the 10-12 percent range until 

2007 when they shot up 30 percent with the onset of the Great Recession and have remained 

elevated thereafter.  At nearly 15 percent of the population in 2012, this means that about 50 

million Americans are living in households facing food insecurity.  A similar pattern held for 

very low food security, though the level of this severe hardship is less than half the overall rate 

of food insecurity. 

 Unlike the volatility and hardship literatures, there have been many studies documenting 

the determinants of food insecurity (see the survey by Gundersen, Kreider, and Pepper 2011).  

This work shows that families are at increased risk if they are poor, have low education, are 

African American (relative to white), are disabled, and are not married.  However, what is also 

surprising is that half of the poor do not report problems with food security, suggesting that there 

are other mechanisms at work affecting food insecurity, and more research is needed on these 

factors, especially at the intersection of food insecurity, financial management skills, and 

material hardship.7  Additionally, we have little research on longitudinal aspects of food 

insecurity.  Is it transmitted across generations?  Does growing up as a child in a food insecure 

household have long-term consequences?  Work by Hoynes, et al. (2013) showing that children 

with early exposure to the Food Stamp Program in the late 1960s and early 1970s experience 

better health outcomes as adults suggests that food insecurity does have negative consequences 

over time on child development, but direct evidence on this issue is highly needed given current 

rates of food insecurity in the United States. 
                                                 
7 See Levy (2009) for an initial look at this issue among seniors age 65 and older in the HRS. 
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III. What Information Do We Collect on Income, Program Participation, Poverty, and 

Financial Vulnerability?  

 This section presents a overview of national longitudinal datasets that are the primary 

survey-based resources for research on income, poverty, program participation, and financial 

vulnerability in the United States: the Consumer Expenditure Survey (CE); the Current 

Population Survey Annual Social and Economic Supplement (CPS ASEC); the Early Childhood 

Longitudinal Study Kindergarten Class of 2010-11 (ECLS-K: 2011); the Health and Retirement 

Study (HRS); the Medical Expenditure Panel Study (MEPS); the National Longitudinal Study of 

Youth 1979 (NLSY79); the National Longitudinal Study of Youth 1997 (NLSY97); the Panel 

Study of Income Dynamics (PSID); the Survey of Consumer Finances (SCF); and the Survey of 

Income and Program Participation (SIPP).  The focus here is restricted to those surveys that aim 

to be nationally representative, whether of the whole population or certain subsets such as 

children (e.g. ECLS and NLSY) or older adults (e.g. HRS), and to those that are continuing data 

collection in the field.  Consequently, certain panels such as the ECLS-K (Kindergarten Class of 

1998-99) and ECLS-B (Birth Cohort of 2001), National Longitudinal Study of Adolescent 

Health (Add Health), Fragile Families and Child Well Being Study, and the Three-City Study, 

are not discussed because they are no longer in the field (or are not national in scope as in the 

Three-City Study), though they each continue to be heavily used datasets for research on family 

and child well being.   

Table 2 summarizes the key features of these ten major panel datasets.  The first panel 

contains basic information on survey design such as target population and sampling frequency; 

the second panel covers wage and family income information, including whether the data are 

top-coded; the third panel covers the range of transfer income information; the fourth panel 
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covers variables related to material hardship; and the fifth panel of Table 2 covers household 

assets.  Full treatment of each of these categories is beyond the scope of this paper, and the 

interested reader is referred to the respective website of each panel for more information.8 

A. Survey Design 

 The longitudinal datasets are funded by a wide array of federal agencies— Agency for 

Healthcare Research and Quality, Bureau of Labor Statistics, Census Bureau, Federal Reserve 

Board, Department of Education, Department of Agriculture, National Institute of Health, 

National Institute on Aging, National Institute of Child Health and Human Development, 

National Science Foundation, and Social Security Administration—and the survey designs often 

reflect the aims and scopes of the agencies.  As such, six of the panels use the full civilian 

noninstitutionalized population ages 15 (or 16) and older as the population of interest (CE, CPS 

ASEC, MEPS, PSID, SCF, and SIPP), three focus on specific cohorts of children (ECLS-

K:2011, NLSY79, NLSY97), and one on older Americans (HRS).9  In addition, most of the 

panels include an oversample of a specific demographic group or groups, usually by income (e.g. 

PSID, SCF, and SIPP), race (e.g. ECLS, HRS, MEPS, NLSY), or ethnicity (CPS, HRS, NLSY), 

and therefore adjust survey weights to account for this oversample.  The stark implication is that 

because of their limited focus 40 percent of the panel surveys are categorically ruled out as 

potential resources for population-wide national income and poverty estimates. 

 The sampling frequency is very heterogeneous across the ten panels, as is the maximum 

number of periods in sample.  Strictly the CE and CPS ASEC are not designed as panel surveys, 

                                                 
8 See also the excellent surveys on key challenges facing panel surveys in Kasprzyk, et al. (1989), Citro and Michael 
(1995, especially Appendix B), Bound, Brown, and Mathiowetz (2001), and Groves (2001). 
9 The surveys of the entire civilian population generally include members of the Armed Forces who reside in non-
base housing. 
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Table 2.  National Household Panels in the United States: Design 

Panel   Start Date 
of Survey Target Population Oversample Sampling Frequency Max T Follows Respondents that Move 

within US 

Consumer Expenditure Survey 
(Interview Survey) 1980 U.S. civilian noninstitutional population None  Quarterly  (with 

monthly rotation groups) 5 quarters No 

Current Population Survey 
(Annual Social and Economic 

Supplement) 
1948 U.S. civilian noninstitutional population Hispanics  Annual 2 yrs No 

Early Childhood Longitudinal 
Study (ECLS-K:2011) 2010 

Nationally representative sample selected 
from both public and private schools 
attending both full-day and part-day 

kindergarten in 2010-11 

Twins, Chinese, Other Asian and 
Pacific Islander, Indian/Alaskan, low 

birth weight children 

Biannual (fall and 
spring) for 2010-11, 
2011-12, 2012-13; 

Annual for spring of 
2014, 2015, 2016  

6 yrs Yes, but only a random subsample 
of movers 

Health and Retirement Study 1992 Individuals Aged 50+ Black, 
Hispanics, and Floridians  Biennial NA Yes 

Medical Expenditure Panel 
Survey  1996 U.S. civilian noninstitutional population 

Blacks, Hispanics, and starting in 
2006 Asians.  Also sub-groups such 

as low income 
Biannual 2.5 yrs Yes 

National Longitudinal Survey 
1979  1979 Individuals aged 14-21 by December 31, 

1978 

Blacks, Hispanics, economically 
disadvantaged 

nonblacks and non-Hispanics, and 
youths in the military for certain years 

Annual;   Biennially 
after 1994 NA Yes 

National Longitudinal Survey 
1997 1997 12 to 16 years old as of December 31, 1996 Black and Hispanics  Annual; Biennial after 

2012 NA Yes 

Panel Study of Income 
Dynamics (PSID) 1968 U.S. Population excluding oversample Low-income families Annual; Biennial after 

1997  NA Yes 

Survey of Consumer Finances 1946 U.S. Population excluding oversample Wealthy families  Triennial 2 yrs Panel for  1983–1989 and 2007–
2009 periods 

Survey of Income and Program 
Participation  1984 U.S. Population excluding oversample Oversampling  of low-income 

families in 1990 & 1996 
Triannual; Annual 

starting in 2014 

13 waves for 
2008; 4 yrs 

for SIPP 
2014 

Yes 
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Table 2 Continued: Wage and Family Income 

Panel Individual Wage Income Family Income Top Code Limit 

Consumer Expenditure Survey (Interview Survey) Yes for members of consumer unit Yes for consumer unit over prior 12 months (may or may be 
related persons) 

150,000 for wage income 

Current Population Survey (Annual Social and 
Economic Supplement) 

Yes Yes for prior calendar year $250,000 earnings from longest job. Rank 
swapping above top code as of 2011 

Early Childhood Longitudinal Study (ECLS-
K:2011) 

No Total household income in prior calendar year household income > $200,000 

Health and Retirement Study Yes for both respondent and spouse Yes for prior calendar year earnings are top-coded at the Social Security 
maximum taxable wage for each year 

Medical Expenditure Panel Survey Yes Yes, by summing up all family members for prior calendar 
year 

Hourly wage > $75.75 

National Longitudinal Survey 1979 Wage Income for all observations since 1978.  
Includes salary, wages and tips 

Yes for prior calendar year Beginning in 1996, the algorithm takes the top 
two percent of respondents with valid values 

and averages them.  That averaged value 
replaces the values for all cases in the top 

range 

National Longitudinal Survey 1997 The NLSY97 collects gross wage and salary 
data for the past calendar year from all 

respondents 

Total household income in the prior calendar year For income variables, the top 2 percent of 
reported values are topcoded and replaced with 

the mean of the high values 

Panel Study of Income Dynamics (PSID) Yes for head, spouse, and other family unit 
members 

Yes for the prior calendar year Wages and salaries top coded at $9,999,997 

Survey of Consumer Finances Yes Yes for prior calendar year (based on Primary Economic Unit, 
which may be larger or smaller than the family) 

Very limited top-coding; Excludes individuals 
on Forbes 400 list 

Survey of Income and Program Participation Monthly Individual Earned Income Monthly family income 150,000 for individuals (or 50,000 per month, 
although the latter is rarely used) 
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Table 2 Continued: Transfer Income 

Panel Social 
Security $ 

Food 
Stamps $ SSI  $ DI $ TANF  $ EITC $ Free/Reduced 

Lunch Medicaid WIC Unemployment 
$  Public Housing  

Consumer Expenditure 
Survey (Interview 

Survey) 
Yes Yes Yes No 

Total value 
of all welfare 

received  
No No Yes  No Yes Yes 

Current Population 
Survey (Annual Social 

and Economic 
Supplement) 

Yes Yes  Yes  Yes Yes Yes 
(Simulated) Yes (Simulated) Yes Whether 

Received Yes Yes 

Early Childhood 
Longitudinal Study 

(ECLS-K:2011) 
No Yes. No No Yes No Yes No Yes No Yes (in future) 

Health and Retirement 
Study 

Both 
Respondent 
and Spouse 

Yes  
HH Amount 

and who 
received it  

Yes Welfare 
Question No No Yes  No Yes Yes 

Medical Expenditure 
Panel Survey  Yes  Yes Yes Yes 

Some 
measures 

about receipt. 

Whether 
Received No 

Monthly 
Medicaid 
coverage 
combined 
with CHIP 

No Yes No 

National Longitudinal 
Survey 1979  Yes 

Yes, except 
1979-1982 

basic 
questions  

Yes 

Yes, 
combined 

with 
veteran's 
payments 
in earlier 

waves 

Yes, except 
1979-1982 

basic 
questions  

No No Yes Yes Every period  
except 1979 

Rent Subsidy 
questions 1979-
2010 also public 

housing except 1985 

National Longitudinal 
Survey 1997 

Question on 
"other" 
welfare 

Yes 
Question on 

"other" 
welfare 

Question 
on "other" 

welfare 

Yes, but 
jointly with 

spouse 

Whether 
Received 

Question on 
"other" welfare 

Might be able 
to identify in 

healthcare 
coverage 
section 

Joint 
question 

on 
coverage 

Yes Yes 

Panel Study of Income 
Dynamics (PSID) Yes  Yes Yes Yes Yes No Whether 

Received  Yes  
Question 

about 
receipt 

Yes Yes  

Survey of Consumer 
Finances Yes 

Combined 
variable for 

TANF, Food 
Stamps, SSI, 

and other 
welfare  

Combined 
variable for 

TANF, Food 
Stamps, SSI, 

and other 
welfare  

Yes 

Combined 
variable for 

TANF, Food 
Stamps, SSI, 

and other 
welfare  

No  No Yes  No 

Combined 
variable for 

Unemployment 
and worker 

compensation  

Yes 

Survey of Income and 
Program Participation  Yes Yes  Yes Yes Yes  Yes Whether 

Received Yes Yes Yes Yes 
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Table 2 Continued: Material Hardship 

 Panel  Expenditure Data Poverty 
Indicator  

Has Health 
Insurance Disability  

Electricity or 
Heating Shut 

Off 

Evicted from 
Home /Late 
on Payments  

Telephone 
Shut Off Food Insecurity  Notes  

Consumer Expenditure Survey 
(Interview Survey) Yes Yes Yes Yes No  No No No 

Finance and 
Late 

Charges 

Current Population Survey 
(Annual Social and Economic 

Supplement) 

Out of pocket childcare and 
medical expenses starting in 

2011 
Yes Yes  Yes No  No No  No (but in December 

Supplement)  

Early Childhood Longitudinal 
Study (ECLS-K:2011) 

Some expenditures related to 
child  Yes Yes Yes, for 

child 

Question about 
not being able to 

pay bills 
Yes 

Question about 
not being able to 

pay bills 

Yes, in first Spring 
Parent Interview  

Health and Retirement Study Yes, total spending Yes Yes Yes No No No Yes  

Medical Expenditure Panel 
Survey  Healthcare expenditure Yes Yes Yes  No No No No  

National Longitudinal Survey 
1979  No Yes Yes Yes No No No No  

National Longitudinal Survey 
1997 Child care spending No Yes , after 

round 6 Yes No No No No  

Panel Study of Income 
Dynamics (PSID) 

Yes (only food/housing prior 
to 1999) Yes Yes Yes  No Yes No 

Yes, in 1999-2003 
surveys, and 1997 
Child Supplement 

Has loans 
from 

relatives  

Survey of Consumer Finances No No Yes Yes No No No  No 

Payday loan 
variable 

with reason 
for loan 

Survey of Income and Program 
Participation  

Some measures in topical 
modules such as work-

related, medical, and child 
related expenses 

Poverty Line for 
Family in dollars 

per month 
Yes Yes Yes Yes Yes Yes    
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Table 2 Continued: Assets 

Panel   Frequency Observed Net Worth 
Variable  

Home 
Ownership 

Car 
Ownership 

Cash Holdings 
($) CDs Common Stock  IRA 401K/403B 

Consumer Expenditure 
Survey (Interview 

Survey) 
Some Measures Can generate  Yes Yes Yes No 

Includes mutual 
funds, private 

bonds, 
government 

bonds 
and Treasury 

notes 

No No 

Current Population 
Survey (Annual Social 

and Economic 
Supplement) 

No No No No No No No No No 

Early Childhood 
Longitudinal Study 

(ECLS-K:2011) 

None in first 2 parent 
interviews  

None in first 2 
parent 

interviews  

None in first 2 
parent 

interviews  

None in first 2 
parent 

interviews  

None in first 2 
parent 

interviews  

None in first 2 parent 
interviews  

None in first 2 
parent 

interviews  

None in first 2 
parent 

interviews  

None in first 2 
parent 

interviews  

Health and Retirement 
Study Each Survey  Yes Yes 

Total value of  
cars, trucks, 

trailers,  motor 
homes , boats, 
and airplanes. 

Yes 

Includes CDs, 
Government Savings 
Bonds, and Treasury 

Bills 

Yes Yes Some 
questions  

Medical Expenditure 
Panel Survey  Not in Public Use Files Not in Public 

Use Files 
Not in Public 

Use Files 
Not in Public 

Use Files 
Not in Public 

Use Files Not in Public Use Files Not in Public 
Use Files 

Not in Public 
Use Files 

Not in Public 
Use Files 

National Longitudinal 
Survey 1979  

Asset Questions Asked 1985-
1990, 1992-1994, 1996, 1998, 
2000, 2004, 2008.  No asset 

questions were included in the 
1991, 2002, 2006 and 2010 

surveys (also 1983-1984 
except home ownership) 

Yes, generated 
from income 
and liability 

variables 

Yes for each 
survey that asset 

questions are 
asked.  Also 

includes value 
and amount 

owed on 
property 

Yes for each 
survey that 

asset questions 
are asked.  

Also includes 
value and 

amount owed 
on car 

Yes for each 
survey that 

asset questions 
are asked 

Each Survey 1994-
2008 

Each Survey 
1988-2008 

Each Survey 
1994-2008 

Each Survey 
1994-2008 
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Table 2 Continued: Assets 

Panel   Frequency Observed Net Worth 
Variable  

Home 
Ownership 

Car 
Ownership 

Cash 
Holdings ($) CDs Common 

Stock  IRA 401K/403B 

National Longitudinal 
Survey 1997 

Rounds 1-3.  Respondents were 
asked assets questions if they 
were age 18 as of the previous 
calendar year reference date 

(12/31/1998 for round 3), or if 
they met one of the other 

independence criteria.  Rounds 4 
and up. Respondents were asked 

assets questions if they were 
newly independent or if they 

were age 18 as of the interview 
date.  In addition, respondents 
were asked assets questions 

again in the first interview after 
they turned age 20. A similar 
series of asset questions are 

asked again when the respondent 
is 25. However, in rounds 9 and 
up these are asked of the birth 

cohort rather than relying on age 
as of interview date. 

Yes 

Yes, since the 
assets section of 
the questionnaire 
first determines if 
respondents rent 

or own their 
dwelling place 

Yes,  when 
asset questions 

asked 

Yes,  when 
asset questions 

asked. 

Yes,  when asset 
questions asked. 

Yes,  when 
asset questions 

asked. 

Combined 
with Other 

Assets 

Combined 
with Other 

Assets 

Panel Study of Income 
Dynamics (PSID) 

1984, 1989, 1994, each wave 
since 1999 Yes Yes  Yes Yes  Yes, combined with 

checking, savings Yes  Yes Yes 

Survey of Consumer 
Finances Each Survey  Yes, but must 

be generated Yes    Yes 

Yes for both 
checking and 

savings 
accounts 

Yes   Yes  Yes 
Can identify if 
have not sure 
about amount  

Survey of Income and 
Program Participation  Usually twice per survey Yes 

Yes, and equity 
asked in A&L 

modules 
Yes  

In checking 
and savings 

accounts  
  Yes Yes Yes 
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but there is a longitudinal dimension to each.  In the case of the CE the consumer unit (which 

may or may not contain related individuals) is interviewed for five quarters, though the first 

quarter is generally used for anchoring purposes only, and then the unit is rotated out of the panel 

which means there is a maximum of four quarters of complete data.  If the consumer unit moves 

during the sample period they are not followed and instead the CE interviews the new resident. 

The rotation of the CPS is that a respondent is in sample four months, out for eight months, and 

back in for another four months.  This means that it is possible to link upwards of 50 percent of 

the CPS ASEC respondents from one March to the next, creating a series of two-year panels.  

Like the CE, if a respondent moves they are not followed and instead the new resident is 

interviewed.  In both cases, great caution is required to guarantee that a longitudinal link is with 

the same unit, and associated attention to potential attrition bias from changes in sample 

composition.  Bollinger and Hirsch (2013) suggest that matched CPS panels actually reduce 

measurement error in annual earnings reports compared to the cross-sections, which is beneficial 

for research on earnings dynamics. 

 Of the remaining eight surveys, only four have open-ended time horizons—HRS, 

NLSY79, NLSY97, and PSID—and the other four are time limited.  The ECLS-K:2011 is 

scheduled to end in 2016 when the kindergarten cohort of 2010-11 reaches the 5th grade, the 

MEPS rotates survey respondents out after five interviews over a two and a half year horizon, the 

SIPP 2008 followed respondents for thirteen waves ending in 2014 and the SIPP 2014 is slated to 

be a four-year panel through 2018, and finally the SCF is a cross-section fielded every three 

years that on two occasions has been extended into a two-year panel and as of this writing it is 

unknown whether another panel will be fielded.  It is included in this review because of its 

unique status of being population wide and with an oversample of wealthy persons. 
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 Three of the four open-ended panels are fielded biennially (HRS, NLSY79, and PSID), 

though of these only the HRS was designed initially with this sampling horizon.  The NLSY79 

switched to every-other-year interviews in 1994 and the PSID in 1997, both the result of budget 

cuts from funding agencies.  This means that the only open-ended panel with annual 

interviewing is the NLSY97.  In general this does not pose a challenge for most panel analyses 

assuming the one-year gap is missing at random, and in fact in some cases may reduce 

measurement error (Griliches and Hausman 1986), though it does impose some limits on the 

types of dynamic models that can be identified (Holtz-Eakin, Newey, and Rosen 1988).  Most of 

the questions in the biennial panels focus on the current and prior year, with some two-year 

recall on select outcomes.  Starting in 1984 the PSID added an event history calendar of monthly 

dating for select labor-market outcomes and transfer-income data, which permits research on 

within-year dynamics.  The SIPP was designed as a monthly panel for this purpose, and the 

triannual interviews were an attempt to minimize recall error.  However the redesigned SIPP 

2014 is now a once-a-year interview with a detailed event history calendar across a wide domain 

of family structure, economic, and health outcomes.   

The PSID and NLSY79 follow children as they age out of the household to form their 

own units and thus are amenable to intergenerational analyses.10  The PSID has followed 

splitoffs from the inception of the panel, and in 1986 the Bureau of Labor Statistics started 

following the children of the NLSY79 to form the NLSY79 Child/Young Adult Sample.  

Because of the limitation of the NLSY79 to the cohort of 14-21 year olds at the end of 1978, the 

PSID is the only population-wide panel survey for intergenerational research, making it uniquely 

                                                 
10 The HRS, however, does collect information on intervivos transfers of time and money that permit some analyses 
across generations. 



30 
 

situated to address many of the questions raised above on intergenerational mobility, poverty 

persistence, and intergenerational dependence. 

B. Wage Income, Nonresponse, and Top Coding 

 Beyond basic demographics, perhaps the two most heavily utilized variables in any panel 

survey are the individual’s wage income and a summary measure of family or household income.  

Most of the surveys collect earnings data for the head of the unit as well as the spouse, and in 

some cases include individualized earnings for the whole roster of persons of age in the unit (e.g. 

CE, SIPP) or a combined measure of other family members (e.g. PSID).  With the exception of 

the SIPP, the earnings and income data refer to the prior calendar year (or 12 months in the case 

of the CE).  Because the focal unit of analysis varies across the surveys—family, consumer unit, 

household—some of the surveys provide an aggregated measure total income for the unit and 

some require the researcher to combine earnings and incomes from individual measures.  In a 

few cases, it is not possible to separately identify family income (only members related by birth, 

marriage, or adoption) from a household income (incomes of those related or not).  This can limit 

those panels for certain analyses, in particular where the focus is strictly on related persons in the 

nuclear family. 

 Two significant challenges face panel surveys of earnings and income, nonresponse and 

top-coding.  Nonresponse can be in the form of initial survey nonresponse (i.e. refuse to 

participate in the survey or unable to contact), wave nonresponse (i.e. refuse or fail to locate the 

respondent for follow-up interviews), or item nonresponse (i.e. the respondent either refuses to 

provide data, or does not know the answer) (Groves 2001).  Initial survey nonresponse can be as 

low as 10 percent in the CPS ASEC and NLSY79 to as high as 25 percent in the CE, PSID, and 

SIPP (Frankel, McWilliams, and Spencer 1983 ; Hill 1992; Johnson-Herring and Krieger 2008; 
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Hokayem, Bollinger, and Ziliak 2014).  Wave nonresponse is much less severe for most of the 

panels, roughly 2-3 percent per year, though cumulative attrition can be quite significant for long 

panels (Schoeni, et al. 2013).  Likewise, wave nonresponse is higher for those few panels that do 

not follow sample members and instead survey household addresses (CE, CPS ASEC, ECLS-K: 

2011).  Moreover, the panels also differ on whether they admit wave nonresponders who do not 

die in between waves back into the panel (e.g. NLSY) or they do not (e.g. PSID, though starting 

in 1993 the PSID started recontacting attriters).  Item nonresponse, especially as it pertains to 

earnings and income, can be quite high.  For example, Figure 6, which is reproduced from 

Hokayem, Bollinger, and Ziliak (2014), shows that earnings nonresponse in the CPS ASEC has 

trended upward significantly since 1990, from just under 20 percent of all cases to about 33 

percent each year since 2000.  About two-thirds of the earnings nonresponse is on the earnings 

questions (mostly as it pertains to the longest job) and the other one-third is wave nonresponse.  

These rates of item nonresponse on earnings tend to be only half as large in the SIPP, and lower 

still in the PSID.  It is generally believed that the worse response rates in the CPS ASEC stems 

from the fact that the primary mission of the CPS is as a monthly employment survey and not an 

income survey like SIPP, PSID, and NLSY.   

 Whether and to what extent earnings and income nonresponse is of concern depends on 

the relationship between the reason the variable is missing and the earnings/income level.  If the 

earnings are missing completely at random (MCAR), which means the missing data are unrelated 

to both observable and unobservable factors, or missing at random (MAR), which means the 

missing data are unrelated to unobservables but are related to observables (but not the variable of 

interest), then nonresponse will impart no bias in estimates of population statistics, though it can 

reduce their efficiency.  If, however, the data are missing nonrandomly (MNR) because it is  
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 Source: Hokayem, Bollinger, and Ziliak (2014) 

 
related to unobservables, then estimates may be biased.  Virtually all the panels assume 

nonresponse is MAR by adjusting initial survey and panel-wave weights for differential 

nonresponse, and by utilizing a so-called hot deck or related imputation procedure for item 

nonresponse (and in some cases, wave nonresponse as in CPS ASEC).  Little is known about 

bias from initial survey nonresponse, at least compared to wave and item nonresponse, and the 

MAR assumption may or may not be reasonable.  While cumulative wave-to-wave attrition in 

the NLSY79, PSID, and SIPP is large, the series of papers in a special issue of Journal of Human 

Resources suggest that little bias is imparted on regression analyses of wages, hours of work, 

marriage, and other outcomes in these panels (Fitzgerald, Gottschalk, and Moffitt 1998; 
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MaCurdy, Mroz, and Gritz 1998; Lillard and Panis 1998; Zabel 1998; Ziliak and Kniesner 1998).  

Fitzgerald (2011) finds that intergenerational correlations in earnings and health are little 

affected by attrition in the PSID, suggesting that the PSID maintains representativeness over time 

in this important research domain. 

Hokayem, et al. (2014), using CPS ASEC data matched to Social Security Detailed 

Earnings Records (DER), show that nonresponse in the residual earnings distribution is U-

shaped—high in both the lower and upper tails.  This suggests that unobservables are at work 

and may lead to potentially confounding estimates of poverty in the left tail and inequality in the 

right tail that could be exacerbated in the initial stages of data collection.  Moreover, their 

analysis, and that in Bollinger and Hirsch (2013), calls into question whether hot deck imputation 

procedures utilized by Census, BLS, and other agencies to assign missing earnings data under the 

MAR assumption is correct.  Hirsch and Shumacher (2004) and Bollinger and Hirsch (2006) 

study the hot deck procedure in both the CPS ASEC and the CPS Outgoing Rotation Group, and 

show the hot deck procedure causes earnings regression parameters to be biased, sometimes by 

as much as 25 percent (e.g. the union wage differential).  They recommend dropping 

observations with imputed earnings, or to possibly supplement that by estimating a saturated 

model of the probability of nonresponse and applying an inverse probability weighting estimator.  

How earnings imputations are handled in the wider literature varies considerably.  Even within 

the inequality literature there is no stated consensus, e.g. Lemieux (2006) and Autor, Katz, and 

Kearney (2008) drop imputed earners, but Burkhauser, et al. (2012) retains those observations.  

 In addition to nonresponse, an issue that poses substantive challenges for inequality 

research is top-coding of incomes.  For example, the CE and SIPP top code wage income at 

$150,000, the HRS at the maximum ceiling for Social Security payroll taxes ($117,000 in 2014), 
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and the CPS ASEC at $250,000.11  On the other hand, the PSID has a comparatively high top 

code of $9,999,997 for wages and salaries, the NLSY averages the top two percent of reported 

earnings and replaces the actual values with the mean, and the SCF has essentially a non-binding 

top code at a dollar below $10 billion.   

As the workhorse of inequality research in the U.S., top coding in the CPS ASEC has 

taken on a significant role.  Until 1995 the Census Bureau used a fixed top code value, but from 

1996-2010 they replaced the fixed constant with the cell mean of actual income above the top 

code based on a set of characteristics.  Starting in 2011 they replaced the cell mean with a 

procedure known as “rank proximity swapping,” which ranks incomes from lowest to highest 

above the top code and randomly swap actual values within a bounded range.  The constraint of 

top codes in the CPS ASEC has led some to eschew the survey altogether in favor of tax return 

data (Piketty and Saez 2003; Chetty, et al. 2014).  To see why, Figure 7 presents trends from 

1997-2008 in the 99th percentile of earnings among full-time, full-year workers in data that 

matches the internal CPS ASEC to tax return data in the DER.  In the figure p99 refers to the 99th 

percentile in the CPS ASEC, p99_noimputes drops those observations with imputed earnings in 

the ASEC, and p99_der replaces all CPS earnings data with earnings from the DER when a 

match is possible (and retains CPS data when no match is possible).  Two observations are worth 

noting here: first, the CPS hot deck procedure seems to be improving estimates of earnings in the 

right tail since the 99th percentile is everywhere higher than when imputes are dropped; second, 

in most years, especially in the second half of the sample, the ASEC, even with the hot deck, 

seems to substantively underestimate the high earners relative to the DER ($50,000 gap in 2008).  

As this comparison is with the internal CPS ASEC with a top code four times higher than in the  

                                                 
11 The CPS ASEC top code is $1.1 million for researchers using “internal” data at Census or one of the Research 
Data Centers. 
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public release version of the data, the gap is likely more extreme than presented for most 

researchers.  

 The most common work-around for top coding in the CPS is to assume that the 

distribution of income above the top code follows a Pareto distribution, and to inflate the 

earnings values by a factor of 1.4 or 1.5 (Lemieux 2006; Autor, et al. 2008).  This helps, but as 

Armour, et al. (2014) recently show, it does not go quite far enough.  They instead use internal 

CPS ASEC data to estimate the Pareto parameter, and then to construct a top-code cell mean 

series to use in place of the top code produced by Census for the public release version of the 

data.  They find this new series tracks the level and trend of inequality in tax return data better 

than the fixed-multiple adjustment of 1.4.  As their data end in 2007, it is not known whether the 

rank proximity swapping procedure is now doing a more effective job at the top. 
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 C. Transfer Income and Underreporting   

       The three panel surveys that clearly stand out in terms of coverage of various transfer 

programs are the SIPP, the PSID, and the CPS ASEC.  Each of these surveys provide indicators 

for whether a transfer was received and in most cases the dollar amount received.  The SIPP  

provides the income information monthly, while the CPS ASEC and PSID for the prior calendar 

year.  However, the PSID does ask respondents which months they (or someone in the home) 

participated in the program, permitting estimation of more dynamic models of transfers.  The 

new SIPP 2014 panel will be more like the PSID with the move to once a year interviewing and 

collecting monthly recall information on program participation.  The difference is that the PSID 

simply asks a roster of months and the SIPP 2014 will utilize an event history calendar (EHC) 

approach based on “event prompts” that is supposed to add precision to when a spell starts and 

stops.12  Even though coverage of the panoply of programs is impressive in these three panels, 

they are still are lacking in some areas.  For example, actual receipt of the EITC (participation 

and dollar amount) is missing in both the PSID and CPS ASEC, though there is a simulated 

value in the CPS, and disability income is pooled with other Social Security income 

(retirement,survivors) in the SIPP and PSID, making it a challenge to isolate DI receipt.  While it 

ultimately is possible to identify DI income in the CPS ASEC, it requires several variables to 

disentangle from other Social Security sources.  Given the size of the DI and EITC programs this 

is a clear shortcoming in these three panels.   

 Perhaps the overarching concern over the past two decades about transfer programs in 

household surveys is underreporting of receipt, and conditional on receipt, underreporting of 

                                                 
12 The PSID uses an EHC for employment, housing, and migration topics.  See Beaule, Leissou, and Lui (2007) for a 
discussion of the PSID experience with EHCs. The NLSY97 also uses a similar, but more structured, event history 
data (EHD) approach for transfer programs and a host of other demographic variables (Pierret, et al. 2007).  The 
distinction is that the NLSY97 does not use events across domains as “triggers” to assist in dating events. 
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dollar amount of assistance.  Wheaton (1997) reports that the fraction of AFDC/TANF caseload 

captured in the CPS ASEC compared to administrative totals fell from 74 percent in 1993 to 59 

percent in 2005; food stamps from 67 percent to 57 percent; SSI from 83 percent to 74 percent; 

and Medicaid/SCHIP from 87 percent to 72 percent.  The rates of annual dollar benefits captured 

in the CPS ASEC is similar to the caseload rates.  She also examines underreporting in the SIPP 

for calendar years 1997 and 2002, and finds that the SIPP does much better than the CPS ASEC 

in terms of dollars captured for both food stamps and SSI (actually SIPP is little different than 

admin totals for SSI), but does equally bad for AFDC/TANF.  Meyer, Mok, and Sullivan (2009) 

add to Wheaton’s work by examining ten transfer programs and five surveys—CPS ASEC, 

SIPP, PSID, CE, and the American Community Survey (ACS).  They show that in recent years 

the CPS ASEC, PSID, and CE captured less than half of TANF dollars, but this number rises to 

about 60 percent in the SIPP, and 80 percent in the ACS.  The PSID and SIPP capture about 80 

percent of food stamps, but the other surveys only capture about 60 percent.  On the other hand, 

all the surveys cover Social Security well, including disability insurance (to the extent it can be 

identified), but SSI less well (except for SSI in the SIPP).  Rates of UI coverage hover around 70 

percent in most of the surveys, except the CE where it is closer to 50 percent.  There is no 

discernible trend in reporting rates for Social Security, DI, SSI, or UI.  Reporting rates for 

Workers Comp is poor in all surveys.  

This underreporting has implications for both the official and supplemental poverty 

measures, inequality estimates, and intergenerational dependence; in short, it negatively affects 

all the major research domains raised earlier.  To give one basic example, much attention has 

been given to the rise of “disconnected” mothers after welfare reform, i.e. those single mothers 

who are neither in work nor on welfare (usually defined as AFDC/TANF and food stamps), 
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raising alarms as to how they are making ends meet (Blank and Kovak 2008).  A confounding 

factor is that the increase in the rate of disconnectedness coincides with an increasing rate of 

underreporting in surveys, so that some of this trend could be a spurious result of misreporting in 

household panels.   

The reasons for underreporting are not well understood.  It could come in part from 

stigma, recall error, and confusion over program names.  A good example of the latter is the 

AFDC/TANF program.  Prior to the 1996 welfare reform the name AFDC was ubiquitous across 

the states, though sometimes paired with General Assistance or Emergency Assistance programs.  

With the establishment of TANF, only 9 states along with the District of Columbia actually call 

the program TANF.  Alternative program names include EMPOWER (Arizona), ABC 

(Delaware), Work First (North Carolina), and W-2 (Wisconsin).  Disability is another area where 

there can be confusion: DI, SSI, Workers Comp, employer-provided etc...  And in 2008 after 

forty-four years the Food Stamp Program was renamed the Supplemental Nutrition Assistance 

Program (SNAP).  But again states were given the option to adopt the SNAP name and only half 

chose to do so; others kept the name food stamps, while some others went a different direction 

altogether such as 3SquaresVT in Vermont.  Although survey interviewers are usually prompted 

to use the local name, it is not known how systematic this is across surveys and over time.  

Another possible reason for the rise in underreporting, at least as it applies to TANF, is 

the fact that today only about 30 percent of TANF appropriations are delivered in the form of 

cash assistance. The remaining 70 percent includes expenditures on child care, workforce 

development, and various programs designed to improve family structure and family life such as 

reduced out-of-wedlock childbearing, early childhood investments, and substance abuse 

treatment, among others. These percentages are exactly reversed from the typical allocation of 
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funds in the pre-welfare reform era.  If a welfare client does not receive cash but only in-kind 

transfers from the TANF office it is not obvious whether or not they would be recorded as a 

welfare recipient in the survey.  For example, the TANF question in the CPS ASEC reads “At 

any time during [19xx/20xx] (last year) even for one month did anyone in this household receive: 

Any public assistance or welfare payments from the State or local welfare office?”  The wording 

seems to preclude in-kind assistance from TANF.  However, it may capture other forms of 

welfare assistance such as “diversion” payments, which are made in several states to potential 

welfare recipients in lieu of registering the client on the welfare caseload. 

A broader concern for survey measurement of transfer programs is the fact that valuing 

in-kind transfers is a significant challenge, and the importance of such transfers has only grown 

in proportion to total expenditures on relief over the past two decades making such valuation 

even more critical.  At the time of Smeeding’s (1982) report for the Census Bureau, expenditures 

on in-kind transfers outnumbered cash transfers by 2 to 1; today, in-kind transfers exceed cash 

transfers by a factor closer to 10 to 1.  This list includes Medicaid, Medicare, food stamps, 

school breakfast and lunch, WIC, public housing and Section 8 vouchers, Head Start, and now 

TANF.  Research on how effective we capture in-kind transfers is scant, and whether the growth 

of in-kind transfers has had a negative spillover on transfer reporting as a whole, even for cash 

programs, is not known but seems critical for a more accurate assessment of the safety net.    

D. Material Hardship and Wealth 

 The remaining three panels of Table 2 summarize measures of material hardship and 

assets collected in the ten major panel surveys.  In the case of material hardship the coverage is 

considerably more sparse than the various measures of income, both earned and unearned.  The 

broadest measure of material well being in the panels is a summary of total expenditures.  In this 
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regard there have been some positive developments.  The CE has long been the main source of 

consumption spending in the U.S., serving the primary purpose of constructing household budget 

shares used in the construction of the Consumer Price Index (CPI).  There has been concern 

raised in recent years about the CE as it continued to fall behind National Income and Product 

Accounts, and the BLS is actively working on a redesign of the CE (Dillman and House 2013).  

In addition to a potential deterioration of estimates of the CPI, the CE is used by BLS and 

Census to construct the poverty thresholds for the SPM, and if the CE coverage of consumption 

is declining over time it will introduce a new source of bias in the alternative poverty measure. 

Starting in 1999 the PSID expanded the set of consumption spending collected beyond 

food and housing to include healthcare, transportation, and other goods and services, and this 

data captures about 70-75 percent of nondurable spending in NIPA and has not trended 

downward over the decade like the CE (Blundell, Pistaferri, Saporta-Eksten 2012; Creech 2014). 

In addition to the PSID, starting in 2001 the HRS collected total spending and detailed 

subcomponents via the Consumption and Activities Mail Survey (CAMS).  The MEPS has 

continuously collected healthcare spending throughout the panel’s history, and the SIPP has 

collected work-related, medical, and child-care expenses in various topical modules.  And in  

2011 Census added questions on out-of-pocket spending on childcare and medical care to the 

CPS ASEC.  This is to aid in the construction of the SPM, which deducts these expenditures 

from gross income. 

Among other measures of hardship, all the panels collect information on health insurance 

coverage, and disability status.  In the area of disability the most comprehensive treatment is 

found in MEPS, HRS, PSID, and SIPP.  But among the more acute measures of hardship—

having heat, air conditioning, water, or phone shut off; being evicted from a home or having the 
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mortgage foreclosed; being food insecure; and facing excessive cumulative interest rates via 

payday lending—coverage is considerably limited.  The SIPP has been the primary source for 

nation-wide research on material hardship as it covers many of the acute hardship measures. On 

the other hand, the PSID measured food insecurity in the 1999-2003 waves, and in recent waves 

collected information on mortgage foreclosure, but does not have other measures of acute 

hardship.  The new ECLS-K: 2011 has added questions about foreclosure, utility disconnect, and 

food insecurity, but beyond these three surveys the panels are largely silent on acute material 

hardship.    

In contradistinction, nine of the ten panels collect fairly comprehensive information on 

household assets, including home and auto, cash holdings, CDs, stocks, bonds, IRAs, 401Ks, real 

estate, and overall net worth.  The exception to this is the CPS ASEC, which does not collect 

wealth data.  The gold standard for assets in the U.S. is the SCF and all other panels are 

measured against it.  On this score, the PSID does fairly well, followed by HRS and SIPP, over 

much of the distribution, but all fall short in the upper decile (Czajka, Jacobson, and Cody 

2003/2004; Ratcliffe, et al. 2007; Sierminska, Michaud, and Rohwedder 2008).  The NLSY79 

and 97 also contain extensive wealth information.  Early assessments indicated that wealth in 

NLSY79 fell short of the PSID and SIPP, but Zagorsky (1999) proposed a cleaned-up net asset 

series that replaced top coded values with original values among other fixes that resulted in a net 

wealth series more similar to PSID and SIPP.  This breadth of wealth data across the various 

surveys has surprisingly been utilized much less than the income data, even though assets form 

the foundation of life-cycle models in the social sciences. 
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IV. What Information Do We Need to Collect on Income, Program Participation, 

Poverty, and Financial Vulnerability? 

 The United States currently collects a rich array of longitudinal data across the domains 

of income, poverty, program participation, and financial vulnerability.  This data forms the 

foundation of social science research on income inequality and mobility, the dynamics of poverty 

and transfer program participation, and child and family well being.  Returning to the questions 

posed in the Introduction: Is this data adequate to meet the scientific and policy needs in the 

coming decades?  Do we need to embark in the collection of a new household panel?  Or are we 

better served by simply improving upon what we already have in the field?   

 A. Data Quality and Linked Survey-Administrative Data 

 Nonresponse rates of earnings in excess of 30 percent in the CPS ASEC are clearly 

troubling and raise substantive concerns about the dataset in measuring levels and trends in 

poverty and inequality.  These rates are ten times greater than those in the PSID, SIPP, and 

NLSY (Killewald, Andreski, and Schoeni 2011; Hedengren and Stratmann 2013), placing in 

stark relief the differences in the quality of earnings measured depending on whether the survey 

focus is on income.13  Moreover, the top-coding of earnings at $250,000 in the public release 

version of the CPS ASEC inhibits the ability to conduct research in the upper tail of the income 

distribution.  This concern is mitigated to some extent in the PSID and NLSY because of the 

much higher top codes, but here the worry is that the rich, and especially the super rich, are 

missing from the surveys altogether.  The SCF, with the oversample of the rich and non-binding 

top codes, averts the problem of the missing rich, but only twice in the survey’s history has a 

panel of two years been fielded.  At the other end of the distribution, the problem is the 

                                                 
13 Likewise earnings imputations rates in the CE are on par to those in the CPS ASEC, consistent with the CE focus 
on expenditures (Passero 2009). 
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underreporting of transfers, not earnings, which jeopardizes not only our understanding of the 

antipoverty effectiveness of the safety net but also threatens to disrupt the flow of 

intergovernmental transfers owing that nearly 40 federal programs are tied to the poverty rate 

(Gabe 2007).  

It is glib to simply exclaim “We need better data!” But in reality, we need better data.  

Unfortunately, embarking on a new household panel will not in and of itself solve the problem.  

Instead, it seems that there are two, complementary, paths going forward to improve survey 

collection of income data.  First, adopting more uniform “best practices” for eliciting accurate 

income reporting across surveys would clearly be beneficial.  For example, the PSID and HRS in 

the last decade began using EHCs for a number of domains based on evidence that this method 

reduces nonresponse and underreporting compared to the standard questionnaire.14 A recent 

experiment with EHC methods in the SIPP showed that item nonresponse in SNAP participation 

fell 20 percent (Kim and O’Donnell 2012).  This is suggestive that the EHC may be a mechanism 

to shore up leakage in survey measurement of transfer income.  Neither the PSID or HRS use the 

EHC for transfer programs, but the NLSY97 uses the related event history data method.  To my 

knowledge there has been no analysis of how effective the NLSY97 is in collecting transfers 

relative to administrative aggregates along the lines performed by Meyer, Mok, and Sullivan 

(2009) for the ACS, CPS ASEC, SIPP, PSID, and CE.  Another approach that has yielded some 

success in the HRS and PSID in the collection of wealth data is to use “unfolding brackets” 

(Heeringa, Hill, and Howell 1995; Juster, et al. 2006); that is, if the respondent cannot (or will 

not) report the actual dollar amount, the interviewer follows up with a series of dollar intervals 

that are asked in a sequential fashion.15  There is reason to believe that such an approach might 

                                                 
14 See the review of research on the EHC approach in Fields and Callagaro (2007). 
15 The PSID also uses unfolding brackets in the collection of expenditure data. 
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be useful for the collection of transfer income (and perhaps all income sources), and research is 

needed on this issue. 

The second path to improve our household panel surveys is to expand the number of 

panels that link to administrative data, and to expand the number of programs that can be linked.  

The administrative data needed includes tax data as well as transfer program data.  Linking to tax 

data has the potential to ameliorate three challenges facing current panel surveys:  (1) income 

nonresponse; (2) income topcoding; and (3) income tax payments (including EITC) that are not 

currently collected in most panels.  The clear advantage of linking to transfer program data is to 

address nonresponse and underreporting.  There has been some progress on both of these fronts.  

The HRS links to both Social Security Detailed Earnings Records and to Medicare Claims data; 

the SIPP links to both the DER and Social Security retirement and disability data; CPS ASEC 

links to the DER, EITC, and 1040 files; and the PSID links to Medicare claims data.  Because of 

the need to protect respondent confidentiality, access to these linked data are highly restricted.  

The applicant must demonstrate a “need to know,” i.e. must write a proposal explaining how the 

linked data are fundamental to the project, and they must conduct the research in a secure data 

site.  Access to the latter has improved in recent years with the expansion of Census Research 

Data Centers that provide secure access points, though it still can be a costly enterprise for those 

researchers who must travel to the sites.16  These efforts at linking to administrative data need to 

be expanded.  With the exception of the CPS ASEC, none of the datasets currently are linked to 

tax return data.  This has the advantage of both improved modeling of programs such as the 

EITC and Child Tax Credit, and more broadly to research on the incentive effects of the tax 

code.  Efforts to link to major transfer programs such as SNAP, UI, TANF, SSI, DI, Medicaid, 

                                                 
16 The newly released FoodAPS data produced by the USDA Economic Research Service has data linked to 
administrative SNAP records, access of which is gained via a “thin client” software from the researchers home 
location to the secure server at NORC. 
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and Housing would offer the opportunity to better quantify the effect of transfers on the level and 

trend in poverty, and also provide new research into issues related to intergenerational 

transmission of receipt.  The challenges associated with linking to admin data cannot be 

overstated, both legal and methodological, but they are surmountable as has been demonstrated 

in a few of the surveys. On the legal front, the main issue is that states administer programs like 

SNAP, TANF, and UI, and because there is no federal mandate to cooperate in the collection of 

data linking as a condition of receiving federal funds, it then becomes necessary to sign 

agreements with all state and tribal governments.  That said, the Scandinavian countries are well 

ahead of the U.S. on the data-linkage front, and as such many scholars are turning to these data 

to conduct frontier research.  We risk losing a competitive research edge if we remain on the 

sidelines, and importantly, will not be adequately equipped to address pressing policy issues. 

B. Survey Content 

Beyond data quality, there are some significant needs in terms of survey content.  Given 

the size and growth of the program, we do not adequately collect information about disability 

income, especially isolating Social Security Disability Insurance from other Social Security 

programs or private disability insurance.  Moreover, providing information on which household 

member is receiving assistance is needed to better model programmatic incentives and behaviors.  

The same is true with SSI (only the SIPP identifies the recipient, e.g. child or adult).  With the 

exception of the SIPP, none of the panels collect dollar amounts of the EITC, and more 

generally, information on tax payments.  Most researchers rely on the NBER TAXSIM program 

for tax research, and while this is a very valuable resource, it is a simulation module and 

therefore introduces measurement error into empirical models.  
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A further challenge and need in terms of transfer program data is how we modify our 

surveys to acknowledge that a very large fraction of social safety net spending is in the form of 

in-kind transfers.  For example, nearly two decades after passage of welfare reform, our ability to 

identify who receives assistance from TANF and how much is unknown.  Most of the surveys 

are designed to ask for dollar amount of cash TANF, but this only captures 30 percent of total 

spending.  By my reckoning, in the SIPP 2014 panel, TANF shows up in at least 3 separate 

modules, but with the exception of the questions dealing with cash assistance, one would not be 

able to assign the assistance to TANF because the source of help is not asked (e.g. subsidized 

child care).  Moreover, with the rollout of the Affordable Care Act we will need to collect 

improved information on Medicaid, and also the value of health insurance subsidies to be used in 

health exchanges.        

In the domain of material hardship, none of the panels collect the USDA’s preferred 

measure of food insecurity utilizing the 18 item scale.  Today 1 in 7 Americans face food 

insecurity and yet we are not equipped to answer questions on the long term or intergenerational 

consequences of this unmet food need for children and families.17  We also do an inadequate job 

of collecting information on measures of acute material hardship—utility shutoff, repossession, 

home eviction, homelessness, and debt spirals such as repeated payday loans and rent-to-own 

goods.  With many challenging the notion that the poor in America are materially poor relative to 

a generation or two ago, or relative to the poor in developing nations, it will be crucial to 

document a number of material hardships to assess whether “possession” of the goods is a short-

run or long-run state, i.e. how much instability and inequality exists in material well being.  

While beyond the scope of this paper, incarceration and drug and alcohol addiction have very 

                                                 
17 The Food and Nutrition Service in the USDA recently announced that they will fund the food security module in 
the PSID starting in 2015. 
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real consequences for material well being.  The NLSY is the only panel survey to collect this 

information, which means none of the population-wide surveys can address this wider social 

trend.  

C. A New Panel? 

In light of the issues of data quality and topical coverage, is it time for the U.S. to field a 

new panel?  While the concerns with current panels are significant, my own assessment is that a 

higher priority is to improve upon the current panels before embarking on a completely new 

survey.  This includes incorporating the more innovative survey methods such as EHC and 

unfolding brackets to elicit higher-quality responses to earnings and transfer-income questions, 

while simultaneously expanding the linkages to tax return (e.g. Social Security earnings and 

EITC) and transfer-program data (e.g. UI, SNAP, TANF).  With the inclusion of consumption 

and health data to the PSID, consumption data to the HRS, and the redesigns of the SIPP and CE, 

great strides have been made over the past decade to improve the capacity to conduct social 

science research on poverty and inequality.  I believe that these surveys will continue to serve the 

nation’s needs well in the domain of income, poverty, and financial vulnerability.  

 If there is one apprehension, it is that the lone population-wide panel equipped to address 

issues of intergenerational mobility and dependence is the PSID.  On the plus side, wave-to-wave 

dropout is low, data quality and topical coverage is high in general, and importantly, by 2018 the 

PSID will be 50 years running and in a position to examine how families are faring across three 

generations, and maybe four.  This will continue to be a crucial data resource to learn how major 

changes in economic policy and family structure have affected the extended American family.  

On the down side, it is a heavy burden for a single dataset to shoulder, especially in light of 

changing demographics of the nation since the panel began in 1968.  While evaluations of the 
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PSID show that attrition has not had negative effects on parameter estimates of most longitudinal 

and intergenerational models, in its current form it will miss the demographic influx of Hispanics 

and Asians, who are projected to grow to 30 percent and 8 percent of the U.S. population by 

2050, respectively (Ortman and Guarneri 2009).  Moreover, the PSID is a comparatively small 

panel in terms of the number of individuals, which limits the extent of subnational analyses.  

Much of nonexperimental evaluation of public policies is conducted by utilizing cross-state over 

time variation in employment and unemployment, along with welfare/tax/criminal justice 

policies and programs, and the power to detect effect sizes hinges crucially on adequate sample 

sizes within states.   

For example, consider the simple two-period difference-in-difference exercise where we 

are interested in using cross-state over time variation in adoption of re-employment bonuses to 

estimate the probability an unemployed worker returns to employment (see the Appendix for the 

Stata program).  Assume a PSID-size sample of 23,000 individuals, which is roughly the size of 

the panel today, and of that 70 percent are between the ages of 16 and 65 and in the labor force.  

Further, let 5 percent of the labor force be unemployed, and of the unemployed, 50 percent are 

eligible for re-employment bonuses (this is akin to current eligibility for UI benefits).  Suppose 

that half the states adopt the bonus policy, and this has a treatment effect size of 10 percentage 

points (from a re-employment probability of roughly 50 percent without treatment).  The power 

to detect such an effect assuming a 0.05 test size and 10,000 simulations is 30 percent.  Now 

suppose we use SIPP 2014 with roughly 35,000 households and 87,500 individuals (assuming 

2.5 persons per household).  The power to detect that 10 percentage point effect size is now 81 

percent.  Power calculations are of course sensitive to the experimental parameters of interest 

(e.g. power falls to 11 and 29 percent in each of the PSID and SIPP-like samples, respectively, if 
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we lower the treatment effect to 5 percentage points), and thus this exercise is simply illustrative.  

However, it does highlight the need to keep power in mind when deliberating the prospect of a 

new panel. 

It seems that one direction to turn is to follow the lead of the United Kingdom by 

combining the PSID with a new, larger nationwide panel.  Specifically, in 2009 the UK folded 

the British Household Panel Survey (BHPS) into the wider Understanding Society panel. The 

BHPS was started in 1991 with 5,500 households, and eventually expanded to 10,500 

households.18  Of these, 8,000 BHPS households were invited (6,700 accepted) to join the new 

40,000 household Understanding Society panel, comprised of 100,000 individuals.  Both panels 

are managed by the Institute for Social and Economic Measurement at University of Essex.  The 

clear advantage of retaining the BHPS in Understanding Society is both the quality and scope of 

the data, along with the ability to continue tracking families across a generation.  An even more 

compelling argument can be made for retaining the PSID in a scaled-up household panel owing 

to its ability to span multiple generations.   

A second option, and from my perspective, a preferred approach, is to continue the PSID, 

ideally with a refresher sample of Hispanics and Asians added in, and to launch a separate, stand-

alone annual open-ended panel that is larger in sample size.  A possible springboard for a 

separate panel is the redesigned SIPP with its projected sample size of about 35,000 households.  

Even though the panel is switching from triannual to annual interviewing, it is only scheduled to 

run four years from 2014 to 2018.  A solution would be to follow those households and their 

splitoffs beyond 2018 to serve as the basis for a new long-term panel to complement the PSID.  

The advantage of this second approach is that it retains the integrity of the PSID design and 

expansive content, the latter of which might be streamlined to control costs if pooled together 
                                                 
18 See https://www.understandingsociety.ac.uk/about/bhps-in-understanding-society for details. 

https://www.understandingsociety.ac.uk/about/bhps-in-understanding-society
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within a larger panel, while simultaneously improving power for nonexperimental analyses to 

inform present and future policy.   
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Appendix:  Simulation Program to Compute Power 
 
Note:  This program was written by Lewis Warren to simulate power in the context of a two-
period panel data setting with no attrition.  It is provided to the user community for replication 
and extension to other setting.  Please acknowledge Lewis Warren and University of Kentucky 
Center for Poverty Research.  All risk lies with the user. 
 
** Computes Power for a Simulated Re-Employment Bonus Program for Unemployed Workers 
 
clear  
program drop _all 
program PANELPOWER, rclass 
drop _all 
 
** For Below: 
** Approximately 9,000 families in PSID  
** Avg. Family has 2.55 persons, so approximately 23,000 individuals 
** Assume that policy is only for unemployed workers age 16-65.  Assume that 70% of sample 
is between 16-65 and in labor force 
** Treatment group is Unemployed which we assume is 5% of total working age population. 
**Treatment is a re-employment bonus.  If untreated, re-employment probability is just over 
50% 
** Assume 50% of Unemployed are not eligible for treatment even if live in eligible state (this 
could be like not being eligible for a program such as UI) 
** Observe for 2 Periods   
** Percentage of states offering Treatment is 50 percent 
 
global I=23000    /* Number of Individuals in Sample */ 
global A=.70      /* Percentage of Sample Aged 16-65 and in Labor Force */ 
global U=.05      /* Percentage of Labor Force that is Unemployed */ 
global E =.50     /* Percentage Eligible for Treatment */ 
global T=2        /* Observe for 2 Periods */  
global S=.5       /* Percentage of States Offering Treatment */ 
global J=.1       /* Treatment Effect Size */ 
global G=0    /* Test if effect is different from this value */ 
 
 
** Number of Observations  
global N= round($I*$A*$U*$E*$T,2)  
set obs $N 
 
gen n=_n 
gen Person_ID = round(n,$T) 
replace Person_ID = Person_ID/$T 
sort Person_ID 
by Person_ID: gen t=_n 
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** Generate Period 
gen Period=. 
replace Period=t 
replace Period = (Period-1) 
 
** Generate Treated 
gen Treated=1 
replace Treated =0 if Person_ID<=(1-$S)*($N/2)  
 
gen TxP = Treated*Period 
 
gen  x1 = rchi2(1)+3 
gen  x2 = rbeta(1,2)+2 
gen  y = runiform()  
replace y = (y+$J)  if TxP==1  
replace y = (y+ .05*ln(x1)) 
gen ReEmployed = round(y,1) 
 
*replace ReEmployed =  
 
reg ReEmployed Period Treated TxP x1 x2, cluster(Person_ID) 
return scalar b = _b[TxP] 
return scalar se = _se[TxP] 
test TxP=$G 
return scalar r = (r(p)<.05) 
end 
 
simulate b_SIM=r(b) se_SIM=r(se) Power=r(r), reps(10000) nolegend nodots: PANELPOWER 
mean b_SIM se_SIM Power 


