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ABSTRACT OF THESIS 
 
 
 
 

SMALL RNA EXPRESSION DURING  
PROGRAMMED REARRAGEMENT OF  

A VERTEBRATE GENOME 
 
 
 

The	
  sea	
  lamprey	
  (Petromyzon	
  marinus)	
  undergoes	
  programmed	
  genome	
  
rearrangements	
  (PGRs)	
  during	
  embryogenesis	
  that	
  results	
  in	
  the	
  deletion	
  of	
  ~0.5	
  
Gb	
  of	
  germline	
  DNA	
  from	
  the	
  somatic	
  lineage.	
  The	
  underlying	
  mechanism	
  of	
  these	
  
rearrangements	
  remains	
  largely	
  unknown.	
  miRNAs	
  (microRNAs)	
  and	
  piRNAs	
  (PIWI	
  
interacting	
  RNAs)	
  are	
  two	
  classes	
  of	
  small	
  noncoding	
  RNAs	
  that	
  play	
  important	
  
roles	
  in	
  early	
  vertebrate	
  development,	
  including	
  differentiation	
  of	
  cell	
  lineages,	
  
modulation	
  of	
  signaling	
  pathways,	
  and	
  clearing	
  of	
  maternal	
  transcripts.	
  Here,	
  I	
  
utilized	
  next	
  generation	
  sequencing	
  to	
  determine	
  the	
  temporal	
  expression	
  of	
  
miRNAs,	
  piRNAs,	
  and	
  other	
  small	
  noncoding	
  RNAs	
  during	
  the	
  first	
  five	
  days	
  of	
  
lamprey	
  embryogenesis,	
  a	
  time	
  series	
  that	
  spans	
  the	
  24-­‐32	
  cell	
  stage	
  to	
  the	
  
formation	
  of	
  the	
  neural	
  crest.	
  I	
  obtained	
  expression	
  patterns	
  for	
  thousands	
  of	
  

miRNA	
  and	
  piRNA	
  species.	
  These	
  studies	
  identified	
  several	
  thousand	
  small	
  RNAs	
  
that	
  are	
  expressed	
  immediately	
  before,	
  during,	
  and	
  immediately	
  after	
  PGR.	
  	
  

Significant	
  sequence	
  variation	
  was	
  observed	
  at	
  the	
  3’	
  end	
  of	
  miRNAs,	
  representing	
  
template-­‐independent	
  covalent	
  modifications.	
  Patterns	
  observed	
  in	
  lamprey	
  are	
  

consistent	
  with	
  expectations	
  that	
  the	
  addition	
  of	
  adenosine	
  and	
  uracil	
  residues	
  plays	
  
a	
  role	
  in	
  regulation	
  of	
  miRNA	
  stability	
  during	
  the	
  maternal-­‐zygotic	
  transition.	
  	
  We	
  

also	
  identified	
  a	
  conserved	
  motif	
  present	
  in	
  sequences	
  without	
  any	
  known	
  
annotation	
  that	
  is	
  expressed	
  exclusively	
  during	
  PGR.	
  This	
  motif	
  is	
  similar	
  to	
  binding	
  

motifs	
  of	
  known	
  DNA	
  binding	
  and	
  nuclear	
  export	
  factors,	
  and	
  our	
  data	
  could	
  
represent	
  a	
  novel	
  class	
  of	
  small	
  noncoding	
  RNAs	
  operating	
  in	
  lamprey.	
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  Small	
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  Lamprey,	
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  Bioinformatics	
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CHAPTER 1 

 
INTRODUCTION 

 
1.1 Programmed Genome Rearrangements in Lamprey 
 

The sea lamprey (Petromyzon marinus) undergoes developmentally programmed 

genome rearrangements (PGR) that mediate the loss of 20% (~0.5 Gb) of 

germline DNA from somatic cells during early embryogenesis. These deletions 

are reproducible across individuals, and occur 2.5 days post fertilization 

(corresponding to the mid blastula transition)1,58. The rearrangement event occurs 

when embryos are comprised of thousands of cells, indicating that a coordinated 

and complex mechanism is required to mediate these eliminations.  Further 

inquiry into the deleted fraction has shown it to be enriched with genes that 

mediate cell proliferation, oncogenesis, and pluripotency which if misexpressed 

have the potential to contribute to the development of diseases such as cancer1. 

Thus it is hypothesized that PGR in lamprey is acting as a biological strategy to 

prevent deleterious misexpression of germline-limited genes. The presence of 

predictable and extensive reorganizations in lamprey provides the unique 

opportunity to study the differential genomic requirements of fated somatic and 

pluripotent germ cells. Owing to the complexity and tight regulation of this event 

across a large number of cells, I hypothesize that several large scale global 

regulatory complexes must be acting in tandem to mediate these rearrangements. 	
  

The jawless vertebrates (e.g. lampreys and hagfish) are important 

comparative models for developmental biology, as they represent an ancient 

offshoot from the vertebrate lineage and can provide insight into the ancestral 

state of the vertebrate genome. Although most vertebrates undergo several small 
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local rearrangements during development, such as remodeling of immune receptor 

loci2, lamprey undergo large alterations that previously had not been observed in a 

vertebrate genome. Despite the drastic differences in genome biology, early 

lamprey development is largely conserved with that of higher vertebrates61,62. 

Although the pattern for loss across all somatic tissues is consistent, essentially 

nothing is known about the molecular mechanisms that control this programmed 

loss. Given our current understanding of similar rearrangements occurring in 

other systems (reviewed below) 3-5, I hypothesize that small RNAs play a role in 

mediating the fraction that is lost. Only a single study has been performed to 

characterize lamprey small RNAs63, and to the best of our knowledge none have 

been performed on developing embryos. Here, I characterize the dynamics of 

small RNA expression in early developing lamprey embryos and attempt to 

correlate changes in the expression of small noncoding RNAs with the 

rearrangement event.   

 
1.2 NGS and snRNA studies 

 
The introduction of high throughput next generation sequencing (NGS) 

technologies has revolutionized transcriptomics by allowing RNA analysis 

through cDNA sequencing at massive scales (RNA-seq). Recently, application of 

Illumina sequencing by synthesis technology has been used in wide range of 

organisms to study small non-coding RNA (snRNA) expression profiles6-8. This 

approach has also resulted in the discovery of several new classes of 

snRNAs6,20,32. Direct sequencing also offers the potential to detect variation in 

mature miRNA length, as well as enzymatic modifications of miRNAs such as 

nucleotide additions, which provide further insight into the biology and regulation 
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of miRNAs40. With the added depth of sequencing now possible, we have the 

opportunity to identify low abundance snRNAs or those exhibiting modest 

expression differences between samples. Next generation snRNA profiling has 

already been realized in several organisms3,10,18, and characterizing the small 

RNA state of the lamprey could help both in developing this organism as a 

genetic model of vertebrate development, and furthering our understanding of the 

epigenetic states and molecular pathways that underlie PGR.  

 

1.3 miRNAs 
 
miRNAs were first discovered from the observation in Caenorhabditis elegans 

that RNA from the lin-4 gene binds to the 3’ UTR of lin-14 mRNA and inhibits 

translation. Since then, thousands of miRNA families in a wide range of taxa have 

been identified9 and this number is predicted to increase with the current 

expansion of sequencing based experiments10. miRNAs are short (~22 nt) 

endogenously transcribed non-coding RNAs that post-transcriptionally control 

mRNA expression via either disruption of translation or degradation of the target 

transcript. miRNAs are thought to regulate more than half of all mRNAs in 

animals11 and have tightly regulated temporal and spatial expression patterns12. 

The regulatory activities of miRNAs are diverse and critical in controlling 

processes ranging from apoptosis (miR-25)56 to glucose homeostasis (miR-103)64. 

Likewise, miRNAs themselves and the cellular machinery that produce them are 

modulated by a wide variety of effectors13.  	
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Cleavage

Cleavage

miRNA	
  Gene

TranscripƟon

Nucleus
Cytoplasm

AGO2 RISC	
  FormaƟon

mRNA	
  DegradaƟon TranslaƟonal	
  Repression

DICER

Nuclear	
  Export

RNA	
  Pol	
  II/III

Fig 1: The miRNA biogenesis 
pathway. miRNAs are transcribed by 
RNA polymerase II as long primary 
transcripts (pri-miRNA). These 
transcripts are then processed in the 
nucleus by the RNase III enzyme 
Drosha into pre-miRNAs, which are 
exported into the cytoplasm by 
Exportin 5. Pre-miRNAs are 
processed by Dicer into a duplex 
consisting of a mature strand 
(miRNA) and passenger star strand 
(miRNA*). The mature miRNA is 
loaded into the RISC and acts as a 
guide that recognizes target mRNAs 
based on sequence complementarity. 
The RISC then represses targets by 
inhibiting translation or promoting 
degradation of target mRNAs. 

 Biogenesis of miRNAs has been reviewed extensively elsewhere14, but 

will be summarized briefly here (Fig 1). Genes encoding miRNAs are transcribed 

into long, primary transcripts (pri-miRNAs) by RNA polymerase II. These pri-

miRNAs fold into secondary “hairpin loop” structures which are recognized by 

the RNAse III enzyme Drosha and cleaved to produce precursor miRNAs (pre-

miRNAs). Pre-miRNAs are then transported out of the nucleus, and are processed 

by the RNAse III enzyme Dicer to yield a mature strand that targets mRNAs and 

a passenger strand that is normally degraded. The mature strand is loaded into a 

member of the Argonaut family of proteins within the RNA induced silencing 

complex (RISC). Through RISC, the mature miRNA acts as a guide strand and 

confers target specificity using the 2-7 nt “seed” strand and mediates the 

repression of targets. Because of their functional importance in target binding, 

miRNAs are grouped into 

families based on their seed sequences.  
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Previous work has shown that miRNAs are vital for cell specification and 

differentiation in vertebrates15-17. It has been documented that different tissues and 

developmental stages are characterized by their own unique miRNA expression 

patterns18. I reasoned that characterizing the expression patterns of small RNAs 

through early development of lamprey embryos will give us insight into the roles 

of small RNA regulation on the development of a basal vertebrate, and might 

reveal a correlation with PGR.  

 
1.4 miRNAs in PGR 

 
Previous work has shown that miRNAs play crucial roles during vertebrate cell 

specification including clearing of maternal transcripts42, modulation of 

embryonic signaling pathways43 and promotion of cell differentiation, including 

germ layer formation and maintenance of pluripotency44,75. Owing to the fact that 

previous analyses1,65 of the germline limited fraction in lamprey has shown an 

overrepresentation of gene ontologies associated with pluripotency factors, we 

hypothesize that miRNAs that contribute to germline pluripotency in lamprey 

might also be targeted for deletion in a manner similar to coding regions. Studies 

in human have shown that miRNA misexpression is a hallmark for many types of 

cancers20, and it has been proposed that the absence of these genes in soma could 

serve as an anti-oncogenic strategy. Additionally, as PGR is a complex event 

requiring precise targeting of sequences for elimination and coordinated 

regulation across thousands of cells, it seems likely that miRNAs are involved 

directly or indirectly in mediating the activity of the factors controlling these 

rearrangements. 

1.5 piRNAs 
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PIWI-interacting RNAs (piRNAs) are another subclass of snRNAs, named for 

their association with the Argonaute protein PIWI. piRNAs differ from other 

snRNAs in that they are typically longer (26-32 nt), and are generated in a RNAse 

III Dicer independent manner24. Similar to miRNAs, piRNAs have deep ancestry 

in Bilateria, and are expressed in a variety of totipotent or pluripotent cell 

populations to aid in defending genomic integrity from transposable elements36.  

The majority of piRNAs (85-95%) arise from intergeneic repetitive clusters in the 

genome called piRNA clusters21. piRNA clusters can span several hundred kb, 

and encompass many transposable DNA elements and their remnants. Most 

piRNAs are antisense to their target transposable element, and can induce 

silencing by hybridizing with them via their PIWI protein counterparts. 

Transcripts arising from piRNA clusters are processed into piRNA-like molecules 

and loaded in PIWI proteins. The factors mediating primary processing of 

piRNAs remain largely unknown22. Additionally, only select PIWI proteins 

associate with primary piRNA transcripts, and the mechanism underlying the 

selection of these proteins remains a mystery22.  
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piRNA	
  Cluster	
  Transcript

Transposon	
  mRNA

piRNA	
  Cluster

Fig 2: piRNA biogenesis and 
function. First, primary 
processing generates primary 
piRNAs in a Dicer 
independent manner. These 
piRNAs then guide PIWI to 
antisense transcripts from the 
same piRNA cluster. PIWI 
proteins use their slicer 
activity to cleave the target 
transcript and generate a new 
5’ end. This 5’ end is bound 
by another PIWI protein. The 
3’ end of this transcript is 
trimmed to the length of the 
mature piRNA, leading a 
mature secondary piRNA 
capable of targeting sense 
transcripts transcribed from 
the piRNA cluster. 

Primary piRNAs are then subject to a “Ping Pong” signal amplification 

cycle in germline to enforce high cellular copy number (Fig 2). In this system, 

Aubergine or PIWI-Like proteins associate with a primary piRNA transcript and 

cleave the target RNA via their Slicer activity23. This process produces the 5’ end 

of secondary piRNAs, which are then transferred to other members of the PIWI 

family to be trimmed at the 3’ end and give rise to new mature piRNAs. piRNAs 

produced via the Ping Pong amplification cycle show a bias for Uracil at the 5’ 

end, and Adenosine at the 10th nucleotide from the 5’ end23, which is highly 

conserved across animal species21,23-25.   
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piRNAs are primarily expressed in the ovaries/testes, and knockdowns of PIWI in 

flies, zebra fish, and mouse causes widespread apoptosis of germ cells and 

sterility22,25. This suggests an essential role of the PIWI-piRNA pathway in 

maintaining germline integrity. Sequencing of the lamprey genome has revealed 

homologs of the PIWI and Aubergine proteins, which is unsurprising given their 

deep ancestry in metazoans26. piRNAs have also been implicated in de novo 

methylation of DNA and histone modification in Drosophila, zebrafish, and 

ciliates27. Moreover, piRNAs have been implicated as mediators of DNA 

methylation, histone modification, and PGR in ciliates (reviewed below). Prior to 

targeted sequencing of lamprey miRNAs, I performed two preliminary studies 

aimed at understanding the epigenetic state of eliminated DNA in lamprey 

embryos. First, I performed an analyses of methylation state during lamprey 

embryogenesis, which suggest the methylated DNA (5-Methylcytosine) may be 

specifically targeted for elimination during PGR (Fig 3). I have also gathered 

preliminary immunohistochemistry data which is suggestive of H3K9me3 

(Histone H3 Lysine 9 trimethylation: a modification associated with gene 

silencing) bound DNA being expunged from the nuclei of sectioned rearranging 

lamprey embryos (Fig 4). Given the multiple complementary functions of 

piRNAs, I became particularly interested in understanding the dynamics of 
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Fig 3: Profile of global 5 cytosine methylation in lamprey, spanning the 
course of programmed genome rearrangement. Assayed using the 
MethylFlash assay (Epigentek). 

piRNA expression during genomic rearrangements in lamprey to attempt to 

capture any major differential expression of these snRNAs during embryogenesis. 

 

  

 

 

 

 

 

 

 

 

1.6 Small RNAs and PGR in Ciliates 
 

Evidence for programmed genome rearrangements in ciliates dates back to the 

1970s69, and much of the work done to understand PGR has been performed in 

these organisms. Several studies have demonstrated that small RNAs act as an 

epigenetic factor controlling programmed genome rearrangements in 

ciliates33,69,47. Ciliates are single celled organisms that exhibit nuclear 

Fig 4: H3K9me3 Staining of Rearranging Lamprey Embryo Sections. PFA fixed and 
sectioned lamprey embryos (day 2.5 post fertilization) were probed with antibodies for 
H3K9me3 to observe patterns of repressive histone modification during PGR. Pictured are 
two examples of a common pattern of modified DNA (green) just outside of nuclei (DAPI). 
(A) Embryo section under 40X magnification. (B) Embryo section under 100X 
magnification.  
	
  

A
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dimorphism. They have two distinct genomes: a somatic macronucleus that is 

polyploidy and actively transcribed, and a transcriptionally silent germline 

micronucleus that is used only during sexual reproduction. Following sexual 

conjugation, the newly formed zygotic genome of one of the nuclei is extensively 

edited to form the new macronucleus. Repetitive elements35, transposable 

elements33, and genes that could be deleterious if misexpressed in adults are all 

removed47; seemingly mirroring the logic in sequences removed from the lamprey 

somatic genome.  

Ciliates employ two functionally distinct mechanisms for somatic DNA 

elimination, both of which make use of piRNAs in unique ways 34 (Fig 5). In 

Tetrahymena, piRNAs provide sequence-specificity to target germline-restricted 

regions in the developing somatic macronucleus for elimination. Targeted regions 

are then flagged with a histone modification that groups these sequences for 

collective deletion. Long non-coding RNA transcribed from the paternal somatic 

macronucleus acts as a sponge against germline piRNAs. Germline derived 

piRNAs that are not “absorbed” by the parental somatic long non-coding RNA 

then specifically mark only non-somatic regions in the newly formed zygotic 

macronucleus for elimination. Conversely, Oxytrichia use piRNAs and a PIWI 

homolog to mark sequences for retention in the somatic macronucleus. piRNAs 

also impart epigenetic heritability in ciliates, demonstrated by experiments where 

injection of synthetic piRNA mimics that hybridize to genes marked for deletion 

resulted in the retention of these genes for several sexual generations35. As my 

preliminary analyses suggest the possibility that eliminated DNA in lamprey is 

marked by repressive DNA and histone modifications, it seems possible that 

piRNAs are involved in marking sequences for elimination by recruiting 
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Drosophila

Mammals
Tetrahymena

Paramecium
Oxytricha

Fig 5: Small RNA-Mediated Genome Defense. Foreign transposable and repetitive elements are 
represented by blue, green, and red. Mammals and Drosophila use piRNAs to silence transposable 
elements by DNA methylation or repressive histone modifications (gray circles). In Tetrahymena and 
Paramecium, piRNA homologs recognize IES sequences, and guide genomic excision by marking 
them with repressive histone modifications. Oxytricha eliminates IES sequences using an orthogonal 
mechanism; piRNAs correspond to retained sequences.  

chromatin remodeling proteins in a manner similar to that employed by 

Tetrahymena. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further justification for exploring small RNAs as a modulator of lamprey PGR 

comes from evidence gathered in my pilot study of small RNAs in D2.5 and D3 

embryos (Fig 6). Additionally, several recent studies utilizing NGS have been 

successful in elucidating novel small RNA species70. I identified a distribution of 
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reads between ~30-47 nucleotides that are not explained by any known RNA 

species, and contain a conserved sequence motif (discussed below).  Given the 

presence of this potentially novel class of small RNAs in actively rearranging 

embryos, we sought to further characterize this fraction and assess its presence in 

embryonic time points immediately before and after the rearrangement event.  

 

  

      
 
 
1.7 Scope of Thesis: 

 
In this study, I sought to perform initial characterization of the small RNA 

complement of lamprey embryos temporally across embryogenesis including 

PGR. It is my hypothesis that I will observe a shift in small RNA expression 

spanning the PGR event, and that some small RNAs will be eliminated from the 

somatic genome and maintained exclusively in the germline. Understanding the 

dynamics of small RNA expression in early lamprey embryos could shed light 

into regulation of PGR, and provide comparative perspective on the basal state of 

small RNA biology during the initial stages of vertebrate embryogenesis.  

Fig	
  6:	
  Size	
  Distribution	
  of	
  Unexplained	
  small	
  RNAs.	
  Non-­‐annotated	
  RNA	
  reads	
  from	
  D2.5	
  and	
  D3	
  embryos	
  are	
  
indicated	
  by	
  color.	
  The	
  size	
  distribution	
  and	
  abundance	
  of	
  the	
  reads	
  from	
  each	
  stage	
  are	
  indicated.	
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To accomplish this, I collected Illumina deep sequencing data from total 

RNA isolated from embryos day 1, 2, 2.5, 3, 4 and 5 (D1-D5) post fertilization. 

The first aim was to assess the dynamics of known small RNA expression using 

databases of known miRNAs from miRBase, known piRNAs using piRNABank 

and Repbase, and other known RNA species using the Rfam database. Expression 

levels of annotated families of the small RNAs can be tracked across early 

development and provide us with resolution into the dynamics of small RNA 

expression through embryogenesis. The second aim of the study was to identify 

novel miRNAs and piRNAs and their covalent modifications using several 

existing software pipelines. These analyses reveal previously non-annotated 

families of piRNAs and miRNAs in gnathostomes, and contribute to our 

understanding of the diversity of small RNA species present in the vertebrate 

clade. The third aim of the study was to characterize a distribution of reads 

between 30-45 nucleotides sampled in my pilot study of D2.5 and D3 embryos. 

These reads are not explained by any known small RNA species, but contain a 

specific motif that is similar to known binding domains of transcription factors. 

The fourth aim of my study was to identify any small RNAs that are deleted 

during PGR and only present in the germline genome. Initial candidates were 

identified computationally using the somatic and germline assemblies as 

background for prediction purposes, then a subset of these were verified for 

germline specificity using PCR on DNA derived from germline and somatic 

tissues. Altogether, these studies will further our understanding of the endogenous 

small RNA classes present in early embryogenesis of a basal vertebrate, and 

reveal the dynamics of small RNA expression associated with genomic 

rearrangements in lamprey.	
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CHAPTER 2 
 

MATERIALS AND METHODS 
 

 
 

2 Animals 
 

All animals were obtained from the Lake Michigan population, via the Great 

Lakes Fisheries Commission (GLFC) and maintained under University of 

Kentucky IACUC protocol number 2011-0848. Animals were euthanized by 

immersion in MS-222 (150 µg/mL), dissected, and tissues immediately were 

snap-frozen for the isolation of DNA from adult germline and somatic tissues. 

 
2.1 Lamprey Embryos 

 
In vitro fertilizations were performed with adult animals provided by the GLFC. 

Fertilizations were performed in vitro using 500 mL crystallization dishes. 

Females were processed to extract ~8,000 embryos per spawn by applying gentle 

pressure to the abdominal cavity and extruding eggs into artificial spring water 

([NaCl: 5.9x10-3M, NaHCO3: 7.75x10-4M, KCl: 3.3x10-4M, MgSO4: 1.7x10-4M, 

CaCl2: 1.8x10-4M, Amquel: 4.5x10-4M, Novaqua: 8.4x10-4M). Embryos were then 

fertilized by extracting ~1 mL of sperm from 1-3 males by applying gentle 

pressure to the abdominal cavity. The mixture was then gently swirled to disperse 

sperm over the eggs and allowed to sit at room temperature for 10 minutes. 

Following the 10 minute incubation embryos were washed once with DI water in 

order to remove remaining sperm, then immediately replaced with fresh spring 

water. These embryos were then incubated at 18C to the appropriate 

developmental stage. Embryos were collected in 1.7 mL centrifuge tubes and snap 
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frozen for subsequent RNA extractions. RNA was extracted from ~100 flash 

frozen lamprey embryos from D2 (initiation of mid-blastula transition) D2.5 

(mid-blastula transition), D3 (dorsal cone formation), D4 (beginning gastrulation), 

and D5 (neural groove formation), and ~200 embryos from D1 (24-32 cell 

stage)58. 

 
2.2 Small RNA Sequencing 

 
Total RNA from sampled embryonic time points was isolated using Trizol. RNAs 

were quality controlled for RIN (Agilent RNA 6000 Nano) and samples with RIN 

> 8 were sent to the Hudson Alpha Genomic Services Lab (HudsonAlpha, 

Huntsville AL) for sequencing on an Illumina platform. Initially, small RNAs 

(<200 nt) were purified from total RNA using the miRNeasy Mini Kit (Qiagen), 

which includes RNAs from approximately 18 nt and upwards. Libraries for 

Illumina sequencing were then prepared following the NEB Small RNA protocol 

(New England Biolabs). Finally, Pippin prep (Sage Science) was utilized to select 

fragments between 110-140 bp (including sequencing adapters, or 1–50 excluding 

adapters) for the pilot study, and between 110-190 bp in the follow up study. 

Generated libraries were purified by QiAquick column (Qiagen). Samples from 

the pilot study were submitted to a MiSeq flow cell, whereas the follow up study 

was sequenced on a HiSeq platform. Samples from the pilot study on D2.5 and 

D3 embryos produced 20.9 million and 17.4 million reads, respectively, and the 

following numbers of sequencing reads were obtained for each time point in the 

follow up study: D1: 17.8 million , D2 zero, D2.5: 32.7 million , D3: 36.7 million, 

and D4: 22.7 million, D5 zero. Time points yielding zero reads apparently 
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represent errors in library preparation, sequencing, or library pooling. These 

issues are the subject of ongoing investigations.   

	
  
 

2.3 Annotation of known miRNAs/piRNAs 
 
Initial reads were processed to remove adaptor sequences (Illumina miRNA 3'RC 

adapter: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT)	
  and	
  filter	
  for	
  high	
  

quality	
  reads	
  (qscore	
  >40)	
  using	
  the	
  fastx	
  toolkit39.	
  	
  

 

All small RNA alignments performed in this study done using the short read 

alignment algorithm Bowtie44. The output was composed of the first valid 

alignment bowtie encounters for a given sequence allowing for up to two 

mismatches in order to increase sensitivity. Initially, reads were processed to 

remove all degraded mRNAs, rRNAs, tRNAs, Rfam encoded snRNAs, 

mitochondrial reads, and bacterial contamination by alignment to these known 

classes. Next, miRNA reads were annotated based on a perfect match to the pre-

microRNA or mature miRNA sequence as reported on miRBase9. Small reads 

perfectly matching the stem regions of these hairpins or overlapping with known 

miRNA mature and passenger strands were retrieved using Bowtie with default 

parameters41. RNA secondary structures were predicted using RNAfold52. To 

identify miRNA reads with non-template directed nucleotide additions, reads with 

exactly one mismatch at the 3’ end were extracted from the dataset.	
  

To identify piRNAs, consensus sequences for vertebrate repetitive 

elements were retrieved from Repbase48, and consensus piRNA sequences were 

retrieved from piRNAbank49. Small RNAs mapping perfectly to these consensus 
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sequences and their genomic flanking regions were retrieved using Bowtie with 

default parameters, and sorted into piRNA libraries.  

 

2.4 Novel micro and PIWI Interacting RNA Prediction 
 
Predicted miRNAs were determined computationally with the algorithm 

miRDeep255, using filtered sequence data. To identify novel miRNAs, samples 

from all four developmental stages were submitted to miRDeep analysis with a 

cutoff score of 4. miRDeep also estimates false positives by random permutation 

of the signature and structure-pairings in the input dataset to test the hypothesis 

that the structure (hairpin) of true miRNAs is recognized by Dicer and causes the 

signature. In my study, the estimated incidence of false positives was below 4%, 

indicating that the vast majority of predicted miRNAs had corresponding 

sequences characteristic of Drosha/Dicer processing. Predicted miRNAs by 

miRDeep were further filtered by aligning to databases of known miRNAs, 

tRNAs, rRNAs, transposable elements, and other known small RNAs. 	
  

Predicted piRNAs were determined computationally with the algorithm 

piRNApredictor using default parameters50. piRNApredictor makes use of 

positional nucleotide bias resulting from piRNA biogenesis to annotate sequences 

as piRNAs. For prediction analyses, RNAs shorter than 25 nucleotides were 

excluded to increase accuracy as piRNAs are typically 26-32 nt in length. 

Predicted piRNAs by piRNApredictor were further filtered by aligning to known 

miRNAs, tRNAs, rRNAs, snRNAs, and other known small RNAs.  

 
2.5 Screening for Germline limited snRNAs 
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 Oligonucleotide primer pairs were designed to amplify miRNA or piRNA 

containing genomic regions that were present in the latest lamprey germline 

assembly but had no corresponding bowtie alignment to any sequence in the WGS 

dataset. Oligonucleotides were designed using Primer356 and used to prime PCR 

reactions under standard amplification conditions [2 ng of DNA, 50 ng of each 

primer, .3 U Taq polymerase, 1X PCR buffer, and 200 mM each of dATP, dCTP, 

dGTP, and dTTP; termal cycling at 94 C for 4 min; 33 cycles of 94 C for 15 s, 60 

C for 15 s, 72 C for 15 s; and 72 C for 5 min]. These reactions also included a 

second pair of oligonucleotides at ½ the concentration of target primers (25 nM) 

that were designed to amplify a single (gene-coding) region of the lamprey 

somatic genome [P. marinus Scaffold_ 256 (NCBI accession number 

GL476584): F, TCAACACCTACGGTTCACCA; R, CCTTAAAGGCAGCGC 

TATTG]. The DNAs used in these reactions were extracted from multiple tissues 

(testes, blood, liver, kidney, muscle, and tail fin) that were collected from two 

individuals (Animals 12 and 13), using standard phenol chloroform extraction57.   

 
 
 

2.6 Motif Identification 
 

 Motif discovery on the non-annotated fraction of reads between 30-49 

nucleotides was performed using the comparative algorithm MEME: Multiple Em 

for Motif Elicitation37. Motif identification for the unexplained distribution was 

performed on the non-redundant set of reads to avoid calling high copy number 

sequences as distinct motifs. Briefly, sequences were divided in the target and 

background groups for each application of the algorithm. Background sequences 

were derived from the germline genome assembly, and were selectively weighed 
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to equalize the distribution of G+C content to avoid comparing sequences of 

different general sequence content. Motifs between lengths of 8 and 50 

nucleotides were identified exhaustively by screening all oligonucleotides present 

in the dataset for enrichment in the target set compared to the background set 

using Bayes optimal classifier to score enrichment. Up to 2 mismatches were 

allowed to increase sensitivity of the method. Motifs representing >15% 

enrichment in the unexplained fraction compared to background were considered 

for further inquiry. Sequence logos were generated using WebLOGO38. 

 

CHAPTER 3 
 

RESULTS 
	
  

3 Small RNA Sequencing 
 

I isolated total RNA from lamprey embryos at six different developmental stages 

(1, 2, 2.5, 3, 4  and 5 days post fertilization) expanding on an experiment 

performed in D2.5 and D3 embryos. These time points correspond to the 24-32 

cell stage, the mid blastula transition, dorsal cone formation, beginning 

gastrulation, and development of the neural crest at day 558. We chose these 

stages because they represent key changes in expression patterns for vertebrate 

development, and encompass the rearrangement event which occurs during the 

mid blastula transition1. To examine gene expression patterns during these stages, 

small RNA libraries (15-50 nt) were prepared and sequenced with 50 bp single 

end sequencing on an Illumina HiSeq platform. Barcoded libraries were 

constructed and sequenced by the Genome Services Lab at  HudsonAlpha 

Institute for Biotechnology. Sampled from day 2 and day 5 yielded no reads, but 
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the remaining libraries yielded large numbers of reads that passed quality and 

vector filtering (Table 1) and capture critical time points that include and flank 

PGR. 

 
  

 
 
 
 
 
 

Table 1: Number of reads obtained from each library post-trimming.  

D1# D2.5# D3# D4#
17.8%million% 32.7%million% 36.7%million% 22.7%million%
PILOT%STUDY% 20.9%million% 17.4%million%
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Analysis of the size distribution of all the non-redundant reads within our libraries 

revealed at least two classes of snRNAs between 15-40 nucleotides. One size class 

peaked at ~22 nucleotides and a second at ~28 nucleotides, consistent with lengths of 

miRNAs and piRNA respectively  (Fig 7).  

Fig 7: Summary of short read sequences generated under this study: (A) Size distribution of all small 
RNAs between 18 and 47 nt. RNA reads derived from 4 developmental stages are indicated in 
different colors. The size distribution and abundance of the reads from each stage are as indicated. 
(B) Length distribution of reads annotated as miRNAs and piRNAs. (C) Read frequency for all 
sequences. The annotation and frequency for all small RNA reads from different developmental time 
points are as indicated. (D) Read frequency for unique sequences. Small RNAs composed of an 
identical sequence were grouped together as a single subset. This analysis shows the diversity of 
unique reads among annotated species.   

miRNA

piRNA

C 
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A 

miRNAs piRNAs
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3.1 miRNA expression analysis  
 

Analysis of small RNA reads identified 22,110 known miRNAs, which could be 

grouped into 9622 distinct families (Fig 7). Most of the reads detected were 

derived from the mature binding strand, with the star or passenger strands 

appearing at a much lower frequency. These observations are consistent with the 

standard miRNA biogenesis model21 (Fig 1). Previous studies have shown that 

miRNA read numbers reflect actual miRNA levels, although with a small amount 

of bias introduced by secondary structures and post-transcriptional 

modifications51. The read counts of miRNAs are also highly correlated with their 

activity in vivo, as miRNAs are simply the targeting mechanism of the 

endogenous RISC present in most eukaryotes. Changes in miRNA abundance 

across development were estimated by direct comparison of read counts for a 

given miRNA across sampled stages, a strategy that has proven successful in 

previous studies7,8,18. As an increase in the general amount of transcription occurs 

as development proceeds, the miRNA read numbers from each sampled time 

point were standardized to the read counts of let-7, which was expressed at levels 

near the average miRNA read count in all four libraries, divided by the total 

number of reads annotated as miRNAs in each library.	
   

In sequences generated from embryos at day 1 post-fertilization, I 

identified 9101 miRNAs belonging to 2401 families (Fig 8, 9). Because this early 

embryonic time point was sampled prior to the onset of zygotic transcription, it 

can be inferred that these miRNAs are maternally deposited. It is interesting to 

note that maternally deposited miRNAs are generally present at relatively high 

levels in lamprey embryos, suggesting they may play an important role during the 
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earliest stages of development17. I also observed that miR-430 was 

overwhelmingly the most abundant miRNA species expressed from D2.5 –D4. As 

miR-430 has been associated with clearing of maternally deposited transcripts in 

other species42,66, we believe the robust expression of miR-430 reflects the onset 

of the maternal-zygotic shift in lamprey embryogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: snRNA Expression Profiles. miRNA (22,110 sequences) and piRNA (30,078 sequences) expression was 
normalized to a moderately abundant species present in all libraries and compared across four developmental stages.  
Clustering was performed using JMP hierarchical clustering with default parameters. Red indicates high levels of 
expression and purple indicates low levels of expression  
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3.2 Identification of Novel miRNAs 
 

We next sought to identify and annotate novel miRNAs present in our raw 

sequencing data. To accomplish this, we analyzed all small RNA reads from each 

time point using the miRDeep2 algorithm55. The algorithm identified a total of 

398 candidate novel miRNAs. These predicted miRNAs were aligned to known 

metazoan miRNA sequences deposited on miRBase9, to remove predicted 

sequences that match previously annotated miRNAs. The set of putatively novel 

miRNAs was further filtered to remove tRNAs, rRNAs, transposable elements, 

other known small RNAs and reads that were not resampled in at least one 
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Fig 9: miRNA Expression Dynamics. (A) Read frequency of unique miRNA families and 
family variants previously reported on miRBase across four developmental stages. (B) Read 
frequencies for miRNA families reported on miRBase. All mature sequences containing the 
same 5’ seed sequence were grouped into a single family subset. (C) Abundance of miRNA 
species absent from the previous libraries across four developmental stages. (D) Number of 
novel miRNAs annotated by predictive software miRDeep2 across development. Predicted 
miRNAs had to be sampled at a minimum of twice per library, had a miRDeep cutoff score of 
4, and aligned to no known RNA species present in any queried database.   
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library. I also discarded 68 sequences where the mature form of the candidates 

was shorter than 18 nt and longer than 26 nt, as mature miRNAs are unlikely to 

deviate from that size distribution14. After filtering, 45 sequences were retained 

that may represent novel miRNAs in lamprey (Fig 10).  

 
 
 

3.3 miRNA Sequence Variation 
 
Sequence variations at the 3’ end of miRNAs have been reported following deep 

sequencing51,53,54. The type of nucleic acid added to a 3’ modification can result in 

the stabilization or degradation of the target miRNA42. A notable proportion of 

reads contained 3’ miRNA modification at all sampled stages of development, 

with 2.7% at D1, 3.8% at D2.5, 6.9% at D3, and 4.7% at D4. Variations were 

identified by mismatches between the reads and their corresponding genomic loci, 

with the majority of variations occurring at the 3’ end. In 56 cases out of 4,644, 

the additional nucleotides matched the sequence of the pre-miRNA, revealing a 

small degree of variation (~1%) in the precise location of cleavage sites during 

miRNA processing.  

Fig 10: Novel miRNA Expression Profile. Read counts of miRNAs identified as novel by 
miRDeep2 were compared across four developmental stages. Red indicates high levels of 
expression and purple indicates low levels of expression. Many novel miRNAs are expressed 
highly during the earliest stages of development and are likely maternally deposited.  
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The majority of sequence variation detected (96% averaged across 

sampled time points) resulted from the addition of uracil and adenine. Only a few 

families of miRNAs (18) had cytosine or guanine addition, and these 

modifications were never 

observed in more than one library. Our data shows increasing modification of a 

variety of families of miRNAs as embryogenesis proceeds (Fig 9), suggesting the 

activities of these miRNAs are being actively modulated. To further evaluate the 

effects of 3’ modifications, we assessed the abundance of uridylated and 

adenylated transcripts in the following time point. As shown in (Fig 13) miRNAs 

that have been uridylated are much less likely to be sampled in the following time 

point compared to miRNAs that have been adenylated. This observation is 

consistent with the idea that uridylation acts as a signal for destabilization 

whereas adenylation results in retention, and suggests that lamprey employ the 

same regulatory logic observed in other vertebrates7,67.  

 

Fig 11: miRNA Sequence Heterogeneity. (A) Abundance of reads with Uridylated or Adenylated 
3’ ends from four sampled time points. (B) The ratio of A or U tailed reads to the total number of 
reads containing those modifications at the previous sampled developmental stage.    
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Increased levels of uridylation were observed as development proceeded, 

suggesting a clearing of maternally deposited miRNAs. Interestingly, if we 

examine all the modifications of miRNAs across all sampled time points, we see 

the highest amount in D3, followed by D4 and D2.5. These data are consistent 

with the idea that there is active stabilization/destabilization of maternally 

deposited transcripts as zygotic expression initiates, as well as suggesting a shift 

in general modification levels associated with the midblastula transition and 

completion of genome rearrangement.  

 

3.4 Lamprey piRNA expression 
 
We observed a distinct distribution of reads between ~25-31 nt that map to either 

repetitive or unique genomic loci. Based on the size distribution of these reads, I 

inferred that many of these reads likely represent piRNAs. A subset of these reads 

mapped to known piRNAs as made available on piRNAbank. Further evidence 

that these are bona fide piRNAs is that 114,370 sequences mapped to known 

repetitive elements deposited on Repbase. Finally, piRNA prediction from this 

subset of reads was performed using the algorithm piRNA predictor, which makes 

use of a kmer scheme to call reads as potential piRNAs50. From among the 24,535 

piRNAs predicted by piRNA predictor, 9,077 had sufficient evidence to be 

annotated as piRNAs in lamprey. For the reads predicted to be derived from bona-

fide piRNAs, there was a strong preference for an A at position 10, and a U at 

position 1 (Fig 13). These data are consistent with the expectations given the 

parameters of the search algorithm and the canonical piRNA Ping-Pong 

biogenesis pathway (Fig 2). In general, piRNA family diversity increased through 

embryogenesis to a peak at D3, after which diversity decreased in D4 embryos 
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(Fig 12). Interestingly, piRNA abundance peaked at D4 (Fig 6). This suggests that 

the overall composition of piRNAs at D4 is more homogenous but total 

(normalized) transcription is increasing, possibly due to the increased diversity of 

cell types present at D4. As genomic rearrangements complete during D3, this 

signal of a drop in piRNA diversity may reflect a change in the small RNA state 

induced by the completion of genomic rearrangements. Alternatively, if PGR is 

targeting piRNAs, the observed drop could also reflect a decrease in piRNA 

diversity initiated by elimination from the somatic genome.  

 

 
3.5 Germline Specificity  

 
To test germline specificity of snRNAs, I performed alignments of miRNA and 

piRNA reads to sequences derived from sperm DNA and a large dataset of WGS 

sequences that were derived from the liver of the individual that was the subject 

of the current lamprey 

genome 
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Fig 12: piRNA Expression Dynamics. (A) Abundance of piRNA species absent from the 
previous library across four developmental stages. (B) Read frequency of unique piRNA species 
previously reported on piRNAbank across four developmental stages. (C) Read frequency of 
sequences annotated as piRNAs by predictive software piRNApredictor.  
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assembly68. These analyses identified a total of 4,664 germline-specific candidate 

miRNAs and 6,834 piRNAs (Table 2). 

Polymerase chain reaction primers were developed for 24 miRNA loci and 12 

piRNA loci that mapped to sperm derived reads but showed no strong alignment 

to the WGS database. One miRNA primer pair and one piRNA primer pair 

produced reproducible and correctly sized amplicons in germline (sperm or testes) 

but produced no amplicon in somatic tissues (blood, liver, kidney, muscle, or tail 

fin) from two different animals (Fig 15). The other primer pairs yielded a single 

strong fragment of expected size in DNA from all tissues, suggesting that these 

sequences were not germline specific. The lack of alignment to the somatic WGS 

dataset presumably reflects the fact that these sequences lie in gaps of coverage in 

somatic dataset. The validated germline specific miRNA is a member of the 

mir25-a family, which is known to be upregulated in several types of cancer59. 

The validated germline specific piRNA maps back to an RTE retrotransposon 

present in the lamprey genome. The logic underlying its removal from the somatic 

genome is less clear than mir25a.	
  	
  	
  

	
  

	
  

 

 
 
 

Table 2: Numbers of predicted germline specific miRNAs and piRNAs sampled in each library.  

snRNA& D1& D2.5& D3& D4&
miRNAs' 641' 911' 2,006' 1,106'
piRNAs' 1,349' 2,193' 2,152' 1,139'



	
   	
  

30	
   	
   [Type	
  text]	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 
 
3.6 Unexplained fraction 

 
When plotting the entire distribution of unique reads for a given length in our 

pilot study, we noticed a humped distribution of reads between 30-40 nucleotides 

(Fig 6). These reads are not explained by tRNA, rRNA, degraded mRNA, 

mitochondrial RNA, bacterial RNA, miRNAs, piRNAs, or any other annotated 

snRNA species. As such, we sought to characterize this fraction in an independent 

set of libraries (derived from different embryos and using an “updated” method 

for library preparation) to determine if this population of sequences was 

reproducible and if there were any shared sequence signatures among this 

potentially new class of small RNAs .  

Our follow up study did not recapitulate the humped distribution observed in our 

pilot study (Fig 12). However, these samples did contain a large fraction of reads 

in the 30-45 nt range and a large fraction of non-annotated reads (Table 3, Fig 
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Fig 13: Residue Composition of Predicted piRNAs. (A) % Composition of nucleotide residues 
present at the first bp from the 5’ end in piRNAs annotated computationally with 
piRNApredictor. (B) % composition of nucleotide residues present at the 10th bp from the 5’ end 
in piRNAs annotated computationally with piRNApredictor. These patterns of nucleotide 
enrichment are consistent with the algorithm and previously described Ping-Pong biogenesis 
pathway. 
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Fig 14: Size Distribution of Unexplained Fraction. All non-annotated small RNAs between 18 and 47 nt. 
RNA reads derived from 4 developmental stages are indicated in different colors. The size distribution 
and abundance of the reads from each stage are as indicated.  

14). In retrospect, it seems likely that the humped shape of the distribution 

observed in the pilot study was an artifact due to the library preparation and size 

selection method, which should have selected against the sequencing or RNAs  

greater that ~40bp.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Library' D2.5' D3'
Pilot&Study+ 23%+ 22%+
Follow&Up+ 21%+ 19%+

Table 3: Ratio of non-annotated reads between 30-45 nt to 
total non-annotated reads in the pilot and follow up study. 



	
   	
  

32	
   	
   [Type	
  text]	
  

IC

IC

Fig 15: Polymerase chain reaction validation for two germline-limited snRNAs that were identified in computational 
comparison between sperm and blood. Fragments were amplified from the DNA of several tissues [testes (T), blood (B), 
kidney (K), liver (L), muscle (M), and tail fin (F)] that were collected from two animals (Animals 12 and 13). Primers for 
internal control (IC) were included at ½ the concentration of target primers. The expected sizes of target and IC fragments 
are marked on the left by arrows. Presence of primers for miRNA-4 appears to produce fragments, which hybridize with IC 
fragments. However, no miRNA-4 fragments were seen in DNA sampled from somatic tissues, and miRNA-4 primer pairs 
run without an IC produce a single fragment of the expected size. Amplified fragments are flanked by size standards 
(asterisk, 100 bp plus DNA ladder, Invitrogen).  

 

 

 

 

 

 

 

3.7 Motif Analysis  
 

Motif discovery in the unexplained fraction was achieved using the MEME Suite. 

My dataset of unexplained reads was >100,000 sequences in each individual 

libraries, and as MEME employs an all by all comparison method, the 
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computational demands for searching the entire dataset as a whole were 

substantial. In order to reduce the machine run time to reasonable levels, all reads 

from the unexplained fraction at each time point were randomly subsampled into 

fifths and queried for conserved motifs using default parameters. All fractions 

from unexplained sequences contained in our D2.5 and D3 libraries returned a 

motif similar to one observed in a pilot study of the same time points (Fig 14). 

Interestingly, D1 returned a compositionally distinct motif, and only motifs 

associated with polyadenylation were detected at D4. As I was only able to detect 

this motif in sequences from the mid-blastula transition, I will notate it as Mid-

Blastula Limited Sequence (MBLS) for the purposes of this thesis. Although 

sequences containing MBLS motif were present at D1 and D4, the abundance of 

this motif in D1 and D4 was not significantly different from background sequence 

(<15% enrichment at both D1 and D4, Fig 17). The MBLS motif was queried 

against the Uniprot database of known DNA binding motifs to identify potential 

analogs. Our search indicates that MBLS is similar to a binding motif of 

Interferon regulatory factor 3 (IRF3), which contains several functional domains 

including a DNA binding domain and nuclear export signal68 (Fig 16). As small 

RNAs are responsible for guiding excisional machinery to the sequences 

eliminated in ciliate PGR, it is interesting to speculate that sequences containing 

this motif are mediating the nuclear export of material excised from the somatic 

genome using the nuclear export signal contained in IRF3.  
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Fig 16: Computationally Identified Sequence Motifs Enriched in Non-Annotated Reads. (A) Consensus 
motif computed from the averages of PSPM matrices found in non-annotated sequences sampled in 
D2.5 and D3 of pilot study. (B) Consensus motif computed from the average of PSPM matrices of D2.5 
and D3 samples of independently prepared libraries (the MBLS sequence). (C) Consensus motif in 
(B) was queried for homolog to known motifs in the JASPAR and UniPROBE vertebrate motif 
database using TOMTOM. The most significant hit returned matches a known DNA binding domain in 
IRF3.   
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Fig 17: Motif Distribution in Unexplained Sequences. The ratio of sequences 
containing the MBLS consensus motif relative to the total non-annotated reads 
in a given library.   
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3.7.1 Clustering in the genome 
 

 
We next sought to characterize the distribution of MBLS  motifs in the genome. 

We used FIMO60 to search for individual motif occurrences in both the lamprey 

somatic and germline assembly. Our search showed no bias in motif content of 

the somatic compared to the germline assembly, suggesting these sequences occur 

with equal frequency in both. As piRNAs and other snRNAs tend to cluster in the 

genome, we next queried our motif against the lamprey ENSEMBL genome using 

MCAST, a motif cluster identification software available through the MEME 

suite37. Our analyses showed that the MBLS motif clusters quite heavily in the 

genome, with 246 discreet loci with fewer than 50 bp between each occurrence of 

the motif (Fig 18). This organization suggests that large numbers of sequences 

with this motif can be transcribed en masse, which might be an important 

biological function for these RNAs during PGR. As robust expression of clustered 

snRNAs is vital for organizing PGR in ciliates, these sequences provide an 

enticing candidate for a similar regulatory mechanism operating in lamprey 

rearrangements.  

 

 

Fig 18: Representative MCAST Output. The lamprey germline genome was searched for statistically 
significant non-overlapping hits to the MBLS consensus motif. Only alignments that produced a p-
value <0.0005 were considered. The maximum distance allowed between the hits was 50 bp. This 
query identified 246 discreet loci that contained >100 instances of the consensus motif.    
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CHAPTER 4 
 

DISCUSSION 
 

In this study I characterized the small RNA profile of early P. marinus 

embryogenesis and analyze the temporal dynamics of snRNAs with high 

throughput sequencing. I isolated total RNA from D1, D2, D2.5, D3, D4, and D5 

lamprey embryos corresponding to the 24-32 cell stage through the mid blastula 

transition, dorsal cone formation, beginning gastrulation, and neural crest 

formation. To examine gene expression patterns during these stages, small RNA 

libraries were prepared for high throughput sequencing using the Illumina 

platform. In total, these RNAseq experiments yielded more than 100 million 

(109,897,951) sequence reads for our discreet embryonic stages. Analyses of 

these datasets reveal several salient aspects of small RNA biology during early 

embryogenesis and programmed genome rearrangement including 3’ modification 

of miRNAs, a novel class of sequences, and germline specific snRNAs; these are 

discussed in more detail below.  Finally, I speculate as to further lines of research 

that might advance our understanding of small RNA biology in the context of 

PGR and lamprey embryogenesis.  

 

4 A novel class of sequence upregulated during PGR 
 

Perhaps the most surprising (and perhaps mechanistically relevant) finding of the 

current study is the discovery of a novel class of small RNAs that is highly over-

represented in embryos that are actively undergoing programmed genome 

rearrangement. Sequencing of D2.5 and D3 embryos from a pilot study 

discovered a distribution of reads between 30-45 nucleotides that are not 
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explained by any known RNA species. Analysis of the composition of these 

sequences revealed a conserved motif that is similar to known DNA binding 

domains and clusters in large (several kb) stretches of the genome. Although our 

replicate study did not reproduce a comparable humped distribution of reads, 

motif analysis of 30-45 nt sequences revealed enrichment for a motif similar in 

composition, genomic clustering, and homology to known DNA binding motifs. 

Interestingly, this motif (MBLS) was only significantly enriched relative to 

background in libraries derived from D2.5 and D3 embryos. Over 30% of the 

sequences in D2.5 and D3 contain the MBLS motif, which corresponds to 

thousands of individual transcripts (19,225 and 20,047 respectively: Fig 15). The 

lack of significant enrichment after D3 suggests the intriguing possibility that 

sequences containing it could be related to the rearrangement process. As other 

taxa that undergo PGR use snRNAs to mediate targeting of rearrangements, the 

replication of a conserved DNA binding RNA motif expressed exclusively during 

PGR is enticing as a potential factor involved in lamprey PGR.  

 
4.1 miRNAs and piRNAs are germline specific 

 
Genomic DNAs from all somatic tissues surveyed showed a consistent pattern of 

loss for miRNA-25a and a piRNA targeting an RTE retrotransposon. These data 

are consistent with patterns of loss previously verified for the germline limited 

sequence Germ11 and a handful of protein coding genes65, and confirms that small 

RNAs are also targets of elimination during PGR. The primer pair miRNA-4 

corresponds to a lamprey homolog to miR-25a. As miR-25a desensitizes cells to 

induced apoptosis59, I hypothesize that its removal during PGR functions as a 

method for limiting the proliferation potential of somatic tissues compared to 



	
   	
  

38	
   	
   [Type	
  text]	
  

totipotent germ cells. The biological function of the removal of a piRNA locus 

from the somatic genome is less clear, but mirrors patterns of loss in other 

systems that undergo PGR3,34,47, and as is the case in the Oxytricha, could indicate 

a potential role of piRNAs in mediating PGR35. Alternatively, as piRNAs 

typically lie in repeat rich portions of the genome, piRNA-1’s absence in soma 

could be the result of the removal of its target repetitive sequences or an alternate 

regulatory role for this piRNA. Generally, validation of the elimination of snRNA 

sequences from somatic tissues could give us insight into the selection criteria for 

removal of germline-limited sequences from soma.  

	
  

4.2 Dynamics of small RNA expression across time points. 
 

4.2.1 miRNA expression 
 
miRNAs are thought to play a critical role during early development, where 

embryos must reprogram their transcriptional landscape as they continue to 

differentiate. Using deep sequencing, we obtained expression patterns for 9,622 

distinct miRNAs and identified 45 novel miRNAs expressed during early 

development (Figs 9, 10). Previous studies suggest that miRNA expression 

patterns become increasingly complex as development proceeds. Our results show 

that a large number of miRNAs are present at the earliest stages of development 

before zygotic transcription has begun (Fig 8). These miRNAs are likely 

maternally deposited and may either regulate the earliest stages of embryonic 

development or function similar to mir-430 in clearing maternal transcripts for 

degradation during the maternal-zygotic shift. We found that the most abundant 

miRNA species present are derived from the mir-430 family, highlighting the 
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importance and deep conservation of this family’s function in early 

embryogenesis (Fig 19).  

	
  

 

 

 

 

 

 

 

 

 

 

Interestingly, miRNA diversity increases as development proceeds, peaking at 

D3, after which both diversity and overall read count for miRNAs drops. Previous 

studies in vertebrates have reported an increase in the complexity of miRNA 

expression proceeding through equivalent stages of embryogenesis11,17,57. As the 

PGR event spans D2.5-D3 of development, it is possible that the discrepancy we 

see from this pattern is due to miRNAs being expressed to regulate activity of the 

machinery responsible for orchestrating genomic rearrangements. Alternatively, 

this incongruity could be explained by differences in sample/library preparation 

between D3 and D4; although it should be noted that these samples were prepared 

and sequenced at the same time and by the same facility. Based on the verification 

of a germline limited miRNA, and computational identification of thousands 

more, another possibility is that PGR could limit the number of miRNA species 

Fig 19: miR-430 Expression. Read counts of miR-430 from D1-
D4 of development. miR-430 was the most abundant miRNA 
family at all sampled time points.  
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available for somatic expression, and result in an embryo wide reduction in 

miRNA expression.  Future sequencing replicates of these time points should 

resolve the true dynamics of miRNA expression through these developmental 

stages. Additionally, sampling miRNA expression at stages later in 

embryogenesis could provide context for the reduction I see at D4, and give a 

more complete view of the small RNA complement of lamprey embryogenesis.  

 
4.2.2 piRNA expression 

 
Studies have reported several overlapping roles for piRNAs: first they are 

specifically expressed in the germline as a means of maintaining genomic 

integrity by destabilizing the transcripts of endogenous retroelements. Second, 

piRNAs can serve as an epigenetic signal of self vs non-self transcripts. Finally, 

they can act as mediators of genomic rearrangements in other model systems. We 

identified many piRNAs present in D1 embryos, which is consistent with 

maternal inheritance of this subset of RNAs and/or their expression in the 

maintenance of the genome integrity of oocytes. Sequences annotated as piRNAs 

by both alignment to known databases and using predictive software show a 

uniform bias for uracil at position one and adenine at position 10 (Fig 11). This is 

consistent with accepted models of piRNA biogenesis, and suggests that lamprey 

employ the Ping-Pong model described in other organisms. Temporally across 

embryogenesis, overall piRNA diversity peaked at D3, but the percentage of total 

reads attributed to piRNAs remained static from D1-D3 (Fig 6). During D4, 

however, we observed a dramatic expansion of the percent composition of reads 

annotated as piRNAs compared to other RNA species. The exact nature of this 

expansion is unclear, but it could reflect the endogenous piRNA/PIWI response to 
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increased transposable element activity as the germline differentiates. Another 

intriguing possibility is that piRNA expression is increased in a response to the 

completion of PGR, the function of which is uncertain. Future studies 

characterizing adult and later embryonic levels of piRNA expression should shed 

light on the nature of the expansion seen during D4 of embryogenesis. 

 
4.3 3’ end modifications associated with retention or clearing of miRNAs 

 
miRNA 3’ tailing and trimming has been previously reported in flies, mouse, 

human, and zebrafish cells40,44,45. As in other species, modifications detected in 

lamprey were primarily adenylation and uridylation, at the 3’ ends. The temporal 

patterns of adenylation versus uridylation addition suggests that the addition of 

adenosine residues might stabilize miRNA half-life, whereas uracil addition may 

promote degradation and clearing of transcripts. We detect the highest levels of 

modification during the D3, after which modification levels begin to drop. It 

seems likely that these modifications are related to mechanisms regulating 

miRNA half life during the maternal to zygotic transition and the differentiation 

of somatic cells types as is known for other species67,7.  

 

 

4.4 Future Directions 

A major question that goes unanswered is: What purpose do these DNA deletions 

serve in the lamprey? Discerning how lampreys regulate rearrangements will be 

fundamental in understanding the biological role that PGR plays in embryonic 

and adult lamprey. As ciliates use snRNAs to direct targeting of their 

rearrangements, characterizing the small RNA profile of rearranging embryos 
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provides a potential avenue to discover key processes associated with lamprey 

PGR. The studies presented here have uncovered several interesting patterns of 

small RNA expression correlated with PGR. Replication of these results in 

separately generated libraries will be critical to verify their relevance in the 

rearrangement process. Characterizing small RNA expression in an adult animal 

and comparing it to expression during embryogenesis could also present an 

interesting comparative framework for differential small RNA expression. A 

thorough examination of the adult snRNA complement would give us the ability 

to understand which genes are upregulated during development compared to adult 

expression, and allow us to more accurately discern which snRNAs, if any, are 

highly expressed solely during PGR. As I have identified a novel distribution of 

reads during early development, it would be interesting to investigate the 

expression of these sequences in adult lamprey. Germline specificity of sequences 

containing MBLS in adults would give substantial evidence to the possibility that 

the activity of these sequences is associated with germline biology.  

Another key study will be to determine if there is variation in the genomic 

snRNA content between somatic tissues resulting from lineage-specific 

rearrangement events. Cryptic variation between the genomic content of different 

tissues is still quite possible, and revealing these differences could be critical in 

elucidating the true regulatory function of PGR in lamprey. As many miRNAs 

show prominent tissue specificity in their expression73,74 and are targets of 

deletion during PGR, they provide an attractive avenue of study for identifying 

genomic tissue variation resulting from lineage specific rearrangements.  

Finally, future studies should seek to more thoroughly describe the novel class of 

small RNAs sampled from D2.5 and D3 embryos in both our pilot and follow up 
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study. Sampling of snRNAs from a wider temporal scale through development 

could permit higher resolution on the expression patterns of these sequences 

following key developmental stages. As mentioned above, understanding their 

expression patterns in adults would be critical in determining if these unexplained 

RNAs serve a biological function outside of PGR. As expression of these 

sequences could be germline limited (a la piRNAs), Locked Nucleic Acid probes 

could presumably be employed to track their expression in situ and ascertain 

expression patterns in different cell populations of rearranging embryos. 

Verification of a novel, germline limited class of snRNA expressed highly during 

PGR would be interesting considering regulation of PGR in the ciliate systems.  

Ultimately the work presented here provides an initial glimpse into the 

regulatory framework surrounding lamprey PGR. Although much work remains 

to be done, these approaches can improve our understanding of small RNAs in a 

basal vertebrate, and could reveal the purpose or method behind lamprey’s 

strategy of programmed genome rearrangement.     
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