
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2014

Search Queries in an Information Retrieval System for Arabic-Search Queries in an Information Retrieval System for Arabic-

Language Texts Language Texts

Zainab Majeed Albujasim
University of Kentucky, zalb222@g.uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Albujasim, Zainab Majeed, "Search Queries in an Information Retrieval System for Arabic-Language Texts"
(2014). Theses and Dissertations--Computer Science. 23.
https://uknowledge.uky.edu/cs_etds/23

This Master's Thesis is brought to you for free and open access by the Computer Science at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Zainab Majeed Albujasim, Student

Dr. Jerzy W. Jaromczyk, Major Professor

Dr. Mirosław Truszczyński, Director of Graduate Studies

SEARCH QUERIES IN AN INFORMATION RETRIEVAL SYSTEM FOR ARABIC-

LANGUAGE TEXTS

THESIS

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in the

College of Engineering

at the University of Kentucky

By Zainab, M. Albujasim

Lexington, Kentucky

Director: Dr. Jerzy W. Jaromczyk Associate Professor of Computer Science

Lexington, Kentucky

2014

Copyright
©

, Zainab,Albujasim 2014

ABSTRACT OF THE THESIS

SEARCH QUERIES IN AN INFORMATION RETRIEVAL SYSTEM FOR ARABIC-

LANGUAGE TEXTS

Information retrieval aims to extract from a large collection of data a subset of

information that is relevant to user‘s needs. In this study, we are interested in information

retrieval in Arabic-Language text documents. We focus on the Arabic language, its

morphological features that potentially impact the implementation and performance of an

information retrieval system and its unique characters that are absent in the Latin

alphabet and require specialized approaches. Specifically, we report on the design,

implementation and evaluation of the search functionality using the Vector Space Model

with several weighting schemes. Our implementation uses the ISRI stemming algorithms

as the underlying stemming technique and the general Arabic stop word list for building

inverted indices for Arabic-language documents. We evaluate our implementation on a

corpus consisting of selected technical papers published in Arabic-language journals. We

use the Open Journal Systems (OJS) from the Public Knowledge Project as a repository

for the corpus used in the evaluation. We evaluate the performance of our implementation

of the search using a classic recall/precision approach and compare it to one of the default

multilingual search functions supported in the OJS. Our experimental analysis suggests

that stemming is an effective technique for searches in Arabic-language texts that

improves the quality of the information retrieval system.

Keywords: Open Journal, Arabic language, Vector Space Model, Information retrieval,

Ranking schemes

Zainab, M. Albujasim

30/July 2014

SEARCH QUERIES IN AN INFORMATION RETRIEVAL SYSTEM FOR ARABIC-

LANGUAGE TEXTS

By

ZAINAB ALBUJASIM

Dr.Jerzy W. Jaromczyk______________

 Director of Thesis

Dr. Mirosław Truszczyński_________

 Director of Graduate Studies

 7/ 30 /2014

 Data

To my husband and family

iii

Acknowledgments

I would like to express my deepest appreciation to my adviser, Dr. Jerzy, Jaromczyk, for

his persistent support since I first joined the Department of Computer Science. I could not

have finished this work without his guidance and encouragement. Secondly, I would like

to thank my committee members, Dr. Mirosław Truszczyński and Dr. Zomming,Fei for

their dedication.

I would like to thank my family and my friends, for their support and prayers, and

especially my caring husband Akram for his endless devotion, enthusiasm, and patience.

Without his unconditional support and love, I could not have completed this study. Thank

you.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS... III

TABLE OF CONTENTS ... IV

LIST OF FIGURES ... VI

LIST OF TABLES .. VIII

1 CHAPTER ONE: INTRODUCTION ... 1

1.1 THE CHARACTERISTICS OF THE ARABIC LANGUAGE .. 2

1.2 ARABIC IR CHALLENGES AND TECHNIQUES. ... 7

2 CHAPTER TWO: INFORMATION RETRIEVAL MODELS 9

2.1 THE DEFINITION OF INFORMATION RETRIEVAL .. 9

2.2 INFORMATION RETRIEVAL MODELS .. 11

2.2.1 The Boolean Model ... 11

2.2.2 The Probabilistic Model ... 12

2.2.3 The Language Model .. 13

2.2.4 The Vector Space Model ... 13

3 CHAPTER THREE: IMPLEMENTATION OF IR SYSTEM USING VECTOR

SPACE MODEL .. 18

3.1 TOOLS .. 19

3.1.1 The Programming Language .. 19

3.1.2 Arabic Keyboards ... 20

3.2 DATA SET COLLECTION ... 21

3.3 LEXICAL PROCESSING ... 22

3.3.1 Tokenization .. 22

3.3.2 Text Normalization ... 22

3.3.3 Stop Word Removal... 23

3.3.4 Stemming Process ... 24

3.4 DATA AND FILE STRUCTURE OF INFORMATION RETRIEVAL 26

v

3.4.1 Inverted Index ... 27

3.5 QUERY PROCESSING .. 29

3.6 PHRASE QUERY ... 29

4 CHAPTER 4: EXPERIMENT AND EVALUATION .. 30

4.1 BUILDING THE INVERTED INDEX .. 30

4.2 EVALUATION METHODOLOGY ... 31

4.3 RESULTS ... 32

4.3.1 Precision – Recall Percentage Tables .. 32

4.3.2 The Effect of Stemming Vs. Non- Stemming.. 35

5 CHAPTER FIVE: THE DEFAULT SEARCH IN OPEN JOURNAL SYSTEM . 38

5.1 PUBLIC KNOWLEDGE PROJECT (PKP) ... 38

5.2 OPEN JOURNAL SYSTEMS (OJS) ... 38

5.3 OPEN JOURNAL SYSTEMS AS REPOSITORY ... 39

5.3.1 OJS Submission and Editorial Process... 40

5.4 THE DEFAULT SEARCH OF OPEN JOURNAL SYSTEM .. 41

5.5 EXPERIMENT ... 43

6 CHAPTER SIX: CONCLUSION AND FUTURE WORKS 46

6.1 CONCLUSION AND SUMMARY OF THE EXPERIMENTAL RESULTS 46

6.2 FUTURE WORKS... 47

REFERENCES .. 49

APPENDIX .. 52

VITA ... 65

vi

List of Figures

FIGURE 1-1 MODERN STANDARD ARABIC TEXT WITH WRITING DIRECTION INDICATED. 4

FIGURE 1-2 THE ENGLISH TRANSLATION OF THE TEXT IN FIGURES 1-1 AND FIGURE 1-3 5

FIGURE 1-3 THE SAME TEXT IN FIGURE 1-1 BUT WITH VOCALIZATION (CLASSIC ARABIC). .. 5

FIGURE 2-1 GENERAL INFORMATION RETRIEVAL PROCESS. ... 11

FIGURE 2-2 REPRESENTATION OF A QUERY AND DOCUMENT IN THE VECTOR SPACE MODEL.

... 14

FIGURE 3-1 THE ARCHITECTURE DESIGN OF THE INDEXING PROCESS 18

FIGURE 3-2 THE ARCHITECTURE DESIGN OF QUERY PROCESSING AND DOCUMENT RANKING.

... 19

FIGURE 3-3 OUR ARABIC KEYBOARD. ON EACH KEY IS MARKED TWO CHARACTERS: AN

ARABIC LETTER AND A ROMAN LETTER. .. 21

FIGURE 3-4 INVERTED INDEX OF TWO ARABIC DOCUMENTS. .. 28

FIGURE 4-1 TIME FOR INDEXING 100 DOCUMENTS WITH DIFFERENT INDEXING TECHNIQUES

... 30

FIGURE 4-2 THE PERCENTAGE OF REDUCTION IN THE NUMBER OF ENTRIES FOR THE

INVERTED INDEX FOR 100 DOCUMENTS USING DIFFERENT INDEXING TECHNIQUES. 31

FIGURE 4-3 THE NUMBER OF RETRIEVED DOCUMENTS FOR THE SAME QUERIES WITH

STEMMING AND WITHOUT STEMMING. .. 36

FIGURE 4-4 THE AVERAGE RECALL AND PRECISION OF THE DIFFERENT RANKING SCHEMES

WITH A COMBINATION OF DIFFERENT INDEXING TECHNIQUES (BASIC, STEMMING, STOP

WORD REMOVAL). .. 37

FIGURE 5-1 THE HOME PAGE OF OPEN JOURNAL SYSTEM .. 39

FIGURE 5-2 THE HOME PAGE OF OUR JOURNAL .. 40

FIGURE 5-3 A NUMBER OF PUBLISHED ARTICLES IN OUR JOURNAL 41

FIGURE 5-4 CONFIGURATION SETTING FOR OJS SEARCH IN (CONFIG.INC.PHP) 43

FIGURE 5-5 THE PRECISION/RECALL FUNCTION FOR THE DEFAULT SEARCH OF OJS 44

vii

FIGURE 5-6 THE NUMBER OF RETRIEVED DOCUMENTS FOR THE SAME QUERIES WITH

STEMMING, WITHOUT STEMMING, AND WITH THE OJS DEFAULT SEARCH. 45

FIGURE 5-7 AVERAGE RECALL AND PRECISION FOR OJS- SEARCH AND OUR THREE SCHEMES

... 45

viii

List of tables

TABLE 1-1 THE ARABIC LETTERS AND THEIR NAMES AND THE RESPECTIVE ENGLISH

LETTER. .. 4

TABLE 3-1 AFFIX SETS .. 26

TABLE 3-2 ARABIC PATTERNS AND ROOTS .. 26

TABLE 4-1 SHOWS PRECISION AND RECALL PERCENTAGE FOR TF WEIGHTING SCHEME

(WITHOUT STOP WORD REMOVAL / STEMMING) .. 32

TABLE 4-2 SHOWS PRECISION AND RECALL PERCENTAGE FOR TF WEIGHTING SCHEME

(WITH STOP WORD REMOVAL/STEMMING). ... 33

TABLE 4-3 SHOWS PRECISION AND RECALL PERCENTAGE FOR TF-IDF WEIGHTING SCHEME

(WITHOUT STOP WORD REMOVAL/STEMMING). ... 33

TABLE 4-4 SHOWS PRECISION AND RECALL PERCENTAGE FOR TF-IDF WEIGHTING SCHEME

(WITH STEMMING/STOP WORD INDEXING). ... 34

TABLE 4-5 SHOWS PRECISION AND RECALL PERCENTAGE FOR TF-IDF BASED ON

NORMALIZATION WEIGHTING SCHEME (WITHOUT STEMMING/STOP WORD INDEXING) 34

TABLE 4-6 SHOWS PRECISION AND RECALL PERCENTAGE FOR TF-IDF BASED ON

NORMALIZATION WEIGHTING SCHEME (WITH STEMMING/STOP WORD INDEXING). 35

TABLE 4-7 SHOWS A NUMBER OF ARABIC WORDS THAT HAVE DIFFERENT DENOTATIONS,

EVEN THOUGH THEY STEM FROM THE SAME ROOT, WHICH IS ―جمع‖(―ADD‖). 36

TABLE 5-1 PRECISION AND RECALL PERCENTAGE FOR OJS DEFAULT SEARCH. 44

1

1 Chapter One: Introduction

This study is concerned with the search component of Information Retrieval (IR) systems

for Arabic texts. Finding relevant information in an ever-growing amount of Arabic data

is important, but this process presents unique challenges that IR systems based on other

languages have not addressed. One of the goals of all IR systems is to make locating

relevant information as accurate and efficient a process as possible. The existing

solutions depend on the data collection‘s character (structured or unstructured), type

(text, image, video, music), format (digital or non-digital, alphabet, encoding, language),

volume (artifact, document, journal, library or the Internet), and purpose (information

that provides evidence, relations and context, or data used in inference).

Research in IR has intensified over the last three decades. A lot of researchers‘ efforts

have been devoted to developing more powerful IR models. The focus on IR has become

even more prominent since the arrival of the Internet, which led to an exponential growth

in the sheer amount of digital documents. Many of these studies, however, have focused

exclusively on English documents, while IR that focuses on Arabic documents has

remained a relatively neglected field. In the last decade, however, interest in Arabic IR

has grown tremendously, leading to the development of new techniques and algorithms.

Several factors have contributed to this recent interest in supporting technologies for the

Arabic Language. Arabic is a major world language: it is the official language for twenty

countries and the mother language of more than 300 million people [Farghaly, and

Khaled ,Shaalan,2009]. For that reason, IT companies are interested in attracting Arabic

users to help build a global online communication environment that supports

multilingualism. Clearly, economic, cultural and security issues are all contributing to the

international interest in the development of Arabic-related technologies.

The general goal of this thesis is to compare a stemming-based approach to search

queries with the language-agnostic search tools that are available in the Open Journal

System (OJS) Project, the open source system for collecting and editing scientific

journals. Our hope is that this research will lead to better methods of organizing

2

collections of articles written in the Arabic language and will provide users with the best

utilities for building inverted indexes for search queries.

We build a search and indexing component for an IR system for Arabic-language texts

using the vector space model. We use the inverted index technique that is useful in

several other techniques such as stemming and stop word removal. We use the

Information Science Research Institute‘s (ISRI) stemmer module to stem the Arabic

words. Finally, we evaluate the proposed system using the precision and recall method,

and we compare these results to those of the OJS‘s default search function for Arabic

content.

In our development, we have used Python version 3.3 as the programming language.

Python is an open source and general purpose language that has many modules that

support the specific tasks of our study. We use UTF_8 encoding for our dataset and

queries. The Python environment (version 3 and above) supports UTF_8 encoding. In

our implementation we have used the default dictionary data structure for building the

inverted index. (defaultdict) is a specialized data type container in the collection

module. (defultdic t) is a hash table data structure. We have also used the

nltk.stem.isri stemming module in Python as an Arabic stemmer. The

nltk.stem.isri module is one of the nltk package modules. We have used the

regular expression module (re) for the normalization process (removing vowel signs

from an Arabic word).

The following section starts with a brief description of the Arabic language and focuses

especially on features of the language that are potentially relevant to information retrieval

systems. We then describe the basic models for supporting search queries.

1.1 The Characteristics of the Arabic Language

Arabic is one of the most ancient languages in the world and remains a major language

today. It belongs to the Semitic language family, which includes Akkadian, Aramaic,

Ethiopic, Hebrew, Phoenician, Syriac, and Ugaritic [Moukdad, 2004]. Arabic is the

3

official language in the Arab world as well as the religious language for Muslims

throughout the globe, since it is the language of Islam‘s holy book, the Quran. In

addition, it is one of six major languages represented by the United Nations.

 The Arabic language can be classified into Classical Arabic (CA) and Modern Standard

Arabic (MSA). CA refers to the ancient form of Arabic used in the Quran and other

religious books. MSA is the common writing form and the official language for

communication in the Arab world today. It is used in schools, media, magazines,

scholarly journals, and newspapers [Al-Maimani, Naamany, and Abu Bakar, 2011]. CA

is a stable language that has its own style and vocabulary and has proven immune to

major changes for over fifteen centuries. Arabic people can comprehend CA with relative

ease [Farghaly and Khaled, 2009]. At the same time, Arabic is highly diglossic: each

Arabic country has three or more variants of spoken Arabic that are used in informal

situations. Each informal dialect has its own word pronunciations and vocabularies

[Albalooshi, , Nader, and Al-Jaroodi, 2011].

The Arabic Alphabet contains 29 letters counting ―Alhmeza‖ (pronounced like the ―a‖

in‖ apple‖), which, in some cases, behaves as a diacritic. Table 1-1 shows the Arabic

letters and their names. An Arabic text is written horizontally from right to left; however,

numbers in Arabic are written from left to right as shown in figure 1-1 below. Arabic

letters undergo slight modifications when they are combined within a word. Some letters

may have one or more written forms depending on its position within a word, while other

letters may have only one form. For example, ―Alhmza‖ is written in the same form

regardless of its position in a word. Some letters have two, three, or four forms. For

instance, the letter ―ع‖ has four forms (عـــ, عع, ـع,) [Molijy, Ismail, and Izzat, 2011].

The Arabic alphabet primarily consists of consonants. Vowel signs are written above or

under the consonant letters. The diacritic characters such as ―Damma,‖ ―Fathah,‖ ‖kasra,‖

and ―shaddah‖ control the pronunciation of a word. Any misuse of these diacritics can

produce a word with a different denotation. The process of writing a vowel sign over or

under a consonant letter to indicate the correct pronunciation is called vocalization. In

4

Modern Standard Arabic, vocalization is dropped from text, because an Arab reader can

easily understand the meaning of a word based on the context. Figure 1-1 shows an

example of MSA, figure 1-3 shows an example of Arabic text with vocalization (classical

Arabic), and figure 1-2 shows the English translation of the text in figure 1-1 and figure

1-3.

Table 1-1 The Arabic letters and their names and the respective English letter.

(Notice: some letters have the same shape but are distinguished by dots.)

 أ ب ت ث ج ح خ د ذ ر
/raa/ /thal/ /dal/ /khaa/ /haa/ /jeem/ /thaa/ /taa/ /baa/ /alif/

r th D kh h j th t b a

 ز س ش ص ض ط ظ ع غ ف
/faa/ /ghain/ /`ain/ /thaa/ /taa/ /thad/ /sahad/ /sheen/ /seen/ /zaa/

f gh ` d t d s sh s z

 ق ك ل م ن ه و ي ء

 /a/ /yaa/ /waw/ /haa/ /noon/ /meem/ /laam/ /kaaf/ /qaaf/

 a Y o h n m l k q

Figure 1-1 Modern Standard Arabic text with writing direction indicated.

(Note: the direction of the written text moves from right to left, while numbers are written

from left to right.

5

Figure 1-2 The English translation of the text in figures 1-1 and figure 1-3

Figure 1-3 The same text in figure 1-1 but with vocalization (Classic Arabic).

Arabic is a rich and flexible language. Due to the morphological characteristics, tens or

hundreds of words can be derived from the same root. This is why Arabic has three times

as many words as English, with approximately five million words that originate from

6

around 11,400 roots. However, only 1,200 roots are typically used in Modern Standard

Arabic (MSA) [Al-Maimani, Naamany, and Abu Bakar, 2011].

Arabic speech mainly consists of verbs and nouns, with the verb typically coming before

the noun. Arabic verbs have two tenses, past and non-past, and two voices, active and

passive. Nouns in Arabic have three grammatical cases (nominative, genitive and

accusative) and two genders (feminine and masculine). For example, the feminine form

of the Arabic word for teacher is ― المعلمة― or ―mualma,‖ and the masculine word for

teacher is ―المعلم‖ or ‖mualm.‖ Nouns also have three numbers: singular, dual and plural.

These and other characteristics of Arabic pose new challenges that demand new solutions

for information retrieval systems and applications. For example, conjunctions and

prepositions are written as a continuous stream and linked to a word. The Arabic phrase

for ―and she said,‖ for instance, is indexed as a one string: ― ,or "wa kalt.‖ Ideally ― وقالت

the prepositional letter (―و‖) (―waw‖) should be treated as a stop word and removed from

the text, but due to the continuous Arabic script, it is considered one string [Mukdad,

2001]. Likewise, articles, like the definite article ― الـ " or ―al,‖ are often combined with

other words.

Another difficulty with the Arabic language is that most nouns do not follow the basic

rules for pluralization, which are adding the suffix (―ون‖) (ūn) for a masculine noun or

the suffix (―ات‖) (―āt‖) for a feminine noun. Many plural nouns are irregular, and some

words are reshaped to assume the plural form. The plural form can be derived by adding

or removing letters from words or by adding suffixes and prefixes. For example, the

plural form of ―كتاب‖ (book) is ―كتب‖. Note that the third letter ("ا") (―alif‖) is removed in

the plural form. In another example, the plural form of the word ―قلب‖ (heart) is ―قلوب.‖

Note that a letter (―و"((―waw‖) is added after the second letter to make the word plural.

The Arabic language has its own character set; these characters can be represented using

several encodings such as ISO-8859-6, Windows-1256, and Unicode. Diacritics may be

encoded as a letter in an integrated encoding, which can be difficult to handle, or as a

separated encoding, which is considerably easier to manage. However, the encoding

http://en.wikipedia.org/wiki/ISO-8859-6
http://en.wikipedia.org/wiki/Windows-1256
http://en.wikipedia.org/wiki/Unicode

7

alone does not solve the issues that accompany valid representations of Arabic text,

because the form of each letter changes with regard to its position within a word due to

the direction of the text and the glyph phenomenon. The digital appearance of Arabic text

is determined by the ―engine rendering‖ used to display the appropriate format

[Wikipedia].

1.2 Arabic IR Challenges and Techniques.

Several IR techniques have been developed over the last three decades. This section gives

a brief description of some of the challenges that face Arabic IR and techniques that

could improve the output of Arabic IR.

One of the challenges that researchers face when they deal with Arabic text is

normalization. MAS has some inconsistency regarding diacritics within a word. A word

may have one or two vocalization marks. In the past, the placement of these diacritics

was inconsistent with no set standard. Thus, it has become necessary to convert the

processed text into a united form [Farghaly, and Khaled, 2009]. For example, the letter

―Alif‖ has different forms (―آ‖,‖إ‖,‖أ‖) based on the ―Alhmza‖ mark‘s position below or

above the letter. Without normalization, these forms are treated differently within a word,

especially in information retrieval models with different text formats. Some text uses the

verb for ―read‖ (―أقزا‖ ―aqraa‖) in different formats: ―اقزا‖, ‖إقزأ", ‖أقزأ.‖ Without

normalization, an IR system is unable to retrieve all of the different formats of the same

word. The result will only match the format of the user‘s query. This could lessen the

accuracy of an IR system. On the other hand, normalization increases the level of

ambiguity. For instance, with normalization, a lot of words are treated the same, even if

they hold totally different meanings [Farghaly and Khaled, 2009]. The word ―انشَعز‖ or

―alshaar‖ (―hair‖), for instance, is difficult to distinguish from the word ―انشِعز ‖ or

―alshiru‘‘ (―poem‖). IR systems that implement normalization will retrieve all documents

that contain this ambiguous word, regardless of its meaning. In another example, the

word ―كتت‖ or ―katab‖ holds two meanings. It could be the past tense of the verb ―write,‖

or it could be the plural form of the noun ―book.‖ As a result, the ambiguity of many

Arabic words poses a difficult challenge to IR systems. Still, the meaning of normalized

8

words can be inferred from the context. One of the techniques that has been proposed to

help solve the problem of ambiguity is the Word Sense Disambiguation technique. This

technique uses dictionaries and synonyms to extract meaning from surrounding words

[Al-Maimani, Naamany, and Abu Bakar, 2011].

Secondly, Arabic is regulated by a complex morphology that has a significant effect on

the performance of an IR system. Therefore, stemming must be implemented in every

Arabic IR system [Darwish, and Douglas, 2007]. Stemming simplifies a word‘s format

by removing prefixes and suffixes and mapping a word to its root. Basically, there are

four types of roots in the Arabic language: tri-literal, quad-literal, penta-literal, and hexa-

literal roots. Several stemming Algorithms have been proposed. Light stemming and

root-based stemming (called aggressive stemming) [Al-Maimani, Naamany, and Abu

Bakar, 2011] are the most popular algorithms. The light stemming approach works by

eliminating prefixes and suffixes from a word, while root-based stemming maps a word

to its root. For instance, the word ― لاستعمبلاتٍم‖, which means ―for usage,‖ is mapped to

the root ―استعمم‖, which means ―used,‖ by using light stemming; however, aggressive

stemming maps it to the root ―عمم‖, which means ―to do‖ [Al-Maimani, Naamany, and

Abu Bakar, 2011].

Stop word removal is another technique that may be used with an IR system. Stop words

are generally common words that appear most frequently in texts. They don‘t usually add

significant meaning to the user‘s query and are thus considered irrelevant to the search.

Stop word classification is based on the characteristics of a language; usually, articles,

prepositions, and adverbs are considered stop words. Generally, removing stop words

reduces the size of the index by 20% -30%. Removing stop words could also improve

the performance of the retrieval process [El-Khair, 2006]. Stop word lists can be

classified into two groups: dependent and independent. There are three ways to create a

stop word list: by basing the list on the characteristics of the language, by using

statistical information about the corpus at hand (dependent approach), or by a

combination of the two means. The first stop word list, created by Fox, includes 421

words that were suggested based on English word usage [Fox, 1995]. Stop words should

http://www.wordhippo.com/what-is/another-word-for/nominated.html

9

not be selected randomly; they should be selected based on an intimate knowledge of the

language.

2 Chapter Two: Information Retrieval Models

2.1 The Definition of Information Retrieval

Information retrieval refers to the extraction of user-specified information from

documents and files, ranging from books to online blogs, journals, and academic

articles[Manning, Prabhakar, and Hinrich 2008]. The primary objective of IR is

quickly and precisely retrieving from a collection a subset of information related to

the user‘s interests [Pierre, Paolo and Padhraic, 2003]. According to Hiemstra, IR

technology is a ―combination of experiments and theory.‖ Experiments are required

to assess how the technology deals with the rapid growth of information and

documents, and theoretical models help researchers avoid deductive reasoning during

such experiments.

The importance of information retrieval has vastly increased since the appearance of

the World Wide Web (www) and its expansive volume of electronic documents. IR

has become a part of many people‘s daily lives. While ordinary users may not be

familiar with the term IR, they are certainly well-acquainted with web-based search

engines like Google, Yahoo, Ask, etc. Today, IR is very prominent, and it has become

an exciting research field because of its pervasive presence in day-to-day life. [Liddy,

2005].

The goal of any IR system is to respond to user-requested information by providing

reference documents that meet the desired criteria. Different factors determine

whether or not a document is relevant to a user‘s query. One of these factors is the

documents themselves—the scope of their content, how they are written, etc. The

user is also an important factor (e.g. user knowledge, the reason for the search, etc.)

[Raghavan, and Michael, 1986]. Because a document‘s relevance to a user‘s interest

is subjective and depends solely on the user‘s judgment, IR systems may not be 100

10

percent accurate. What an IR system can do, however, is propose methods that can

estimate the efficiency of the results and whether they meet the user‘s information

needs based on his or her query [Raghavan, and Michael, 1986]. Relevancy is

difficult to measure. Many factors can determine a result‘s relevance, but one of the

most important factors is user satisfaction. If the user ―likes‖ a document, the

document will be considered relevant; if not, it will be considered irrelevant.

Therefore, researchers are constantly trying to find new methods for defining the

relevance of documents to a user‘s query. There are many theories related to

document relevance called formal models (Hiemstra, Djoerd 2009). IR models differ

from one another based on the various ways they compute the weight of matching

documents. Each IR model serves some purposes better than others. Despite these

differences, every IR system should maintain three basic operations: document

representation, query formulation, and a process for matching queries with documents

[Hiemstra, Djoerd 2009]. Figure 2-1 illustrates the basic operation of IR. The square

shapes represent data, and the oval shapes represent processes.

First, the process for document representation is known as the indexing process.

Typically, the indexing process runs offline, and it does not require user interaction.

Second, the query formulation process transforms a user‘s information needs into a

format that is recognized by the system (Boolean format, free text format, etc.). A

user may try several queries until he/she gets satisfactory results. This process is

called feedback. Finally, the matching process finds and ranks documents that contain

the user‘s query terms. Usually, statistical information is used to rank documents

from the highest to the lowest matching score, hopefully reducing the time that the

user spends sifting through all of the returned documents [Hiemstra, Djoerd, 2009].

11

Figure 2-1 General information retrieval process. (Hiemstra, Djoerd, 2009)

2.2 Information Retrieval Models

In this section we give a brief description of well-known information retrieval models.

2.2.1 The Boolean Model

The Boolean model is the first IR model that requires structural language for a query. It

uses the logical operations ―AND,‖ ―OR,‖ and ―NOT.‖ The Boolean model is categorized

as an exact matching model. An exact matching model retrieves either all matching

documents or no matching documents. In a large document collection the results might

exceed one thousand documents, or there might be zero results if no matching documents

12

are found [Manning, Prabhakar, and Hinrich 2008]. The Boolean model requires that the

user have some knowledge of Boolean operations; therefore, not all users are able to

attain satisfying results with this model. Additionally, the Boolean model has no way of

favoring one document over another. In other words, it does not support document

ranking. For that reason, it is less popular than other models. It is also time consuming,

since it retrieves all matching documents, which in a large data collection could mean

thousands of results. On the contrary, statistical models provide a score that indicates

how well a document matches a query. In essence, the Boolean model builds a matrix;

the rows of the matrix are the key terms, and the columns are the documents themselves.

Each cell in the matrix contains either a zero or a one. Zero indicates that the term does

not occur in the specified document, and one indicates that the term is present [Signal,

2001].

2.2.2 The Probabilistic Model

The Probabilistic model was originally proposed by Maron and Kuhans in 1960 [Baldi,

Paolo, and Padhraic, 2003]. Since then, the proposed model has undergone several

improvements and refinements. Today, several versions of the probabilistic model are

available. The first version of the model, BM1 , was introduced by Robertson-Sparck

Jones in 1976. In 1998, version BM5 was proposed by Robertson et al as a refinement of

the first version [Baldi, Paolo, and Padhraic, 2003]. The basic idea of this approach is to

define the question of a document‘s relevance to a query as a probabilistic problem. The

model uses query terms and documents to measure relevance. Bayes‘ theory is used to

compute the probability of a document‘s relevance or irrelevance. This requires an initial

set of predetermined relevant and non-relevant documents to calculate the probability of a

new document‘s relevance; thus, it treats relevancy as an a priori problem. Estimating the

probability of a document‘s relevance using a set of predefined documents, however, is

not a practical solution, since these predefined sets may not adapt well to the demands of

new queries. Therefore, computing the occurrence of query terms is important to

estimating the probability of a retrieved document‘s relevance. [Baldi, Paolo, and

Padhraic, 2003].

13

 The measure of probability can be defined as query q containing words and

document d.

 .. 2-1)

In the probabilistic model, the parameter needs to be enumerated. There are two

ways of estimating the p quantity. The first method is to use a large data collection that

includes millions of queries and millions of documents in order to compute the

probability of each term occurring in a relevant document. The other method is to

estimate the probability for a particular query based on which document is relevant and

which one is not.

The positive aspects of this model are its strong theoretical foundation and its ability to

rank documents by their probable relevance. On the other hand, the negative aspects of

the model are that it treats probability as a binary condition, its term independency

assumption is abstract, and it initially lacks relevance data [Liddy, 2005].

2.2.3 The Language Model

The language model was proposed by Ponte & Croft in 1998. The basic idea of this

model is that it estimates a document‘s probability of generating a query instead of

estimating the probability of a document‘s relevance. This model is also known as the

Likelihood retrieval model. The language model uses other IR models and techniques

such as probabilistic models and n-gram analysis. Over the years, several refinements

and improvements have been developed to support and enrich the language model

[Liddy, 2005].

2.2.4 The Vector Space Model

Salton (1971) proposed a new statistical model that has proven more effective and

flexible than other IR models in some regards. In this model, a voluminous collection of

documents is represented in multi-dimensional space, with thousands or millions of

dimensions for a large collection. The terms of the documents become the dimensions,

while the documents themselves are represented by points in space [Singh and Sanjay,

14

2012]. A document and a user‘s query are together represented as vectors (see figure 2-

2). Since the number of terms in a document is limited, the vector of the documents can

be very sparse. This sparseness helps reduce memory storage. Using the cosine similarity

measurement of the angle between query and document vectors, this model measures the

similarity between a query and a document. Experiments prove that the cosine similarity

measurement is the optimal coefficient when compared to other similarity measurements

such as Euclidean distance [Manning, Prabhakar, and Hinrich 2008] which could

generate long distances between document vectors of different lengths, even if they share

the same terms. On the contrary, the similarity in a cosine measurement is 1.0 for

identical vectors and 0.0 for orthogonal vectors. Thus, the cosine is the best fit for

measuring the similarity between two vectors. In addition, we could use the inner product

of two vectors as another similarity measurement, but this would require that all vectors

have identical lengths. The inner product of vectors of the same length is the same as the

cosine measurement [Singhal, 2003].

Figure 2-2 Representation of a query and document in the vector space model.

 (Hiemstra, Djoerd, 2009).

15

2.2.4.1 Assigning Term Weight in the Vector Space Model

The term-weighted vector space model computes the frequency of a term within a document.

Several weighting schemas have been developed to compute the weight of terms in a

document.

 Term – count model (TF only) (naïve approach).

 TF-IDF (term frequency-inverse document frequency).

 Vector space model based on normalization.

2.2.4.1.1 Term – Count Model (TF Only) (Naïve Approach)

In Boolean vector space, a term in a document vector is represented as a 1 if it is

present in a document; otherwise it is represented as a 0. But this approach to vector

representation does not take into account the fact that some terms appear more frequently

in a document than others. If a query term appears multiple times in a document, then it

can be assumed that this document is more relevant to a user‘s query than others. For this

reason, term frequency (TF) is important in the representation of a document vector. TF

helps rank a document with multiple occurrences of a query term over a document with a

single occurrence. A document with 10 occurrences of the term is more relevant than a

document with one occurrence of the same term. However, it is not simply ten times

more relevant; therefore, various methods have been used to modify TF [Manning,

Prabhakar, and Hinrich 2008]

 {

………… (2-1)

where the (t,dw) is the weight of a term t in a document d.

2.2.4.1.2 IDF: Inverse Document Frequency

Inverse document frequency (IDF) was introduced to solve the problem of term

equivalence. IDF is the proportion of the total number of documents in a collection over

the number of documents containing a term [Manning, Prabhakar, and Hinrich 2008].

Naturally, not all terms in a document have the same importance regarding a user‘s

16

query. Common words, for example, are usually excluded from a user‘s query. On the

other hand, rare terms in a query are considered very important. IDF solves the problem

of term equivalence by giving a higher weight to more meaningful words and a lower

weight to more common words. For instance, a weight of 0 might be given to a stop

word. As a result, IDF offers another potential advantage, in that it can be used as a filter

for stop words in a document collection [Manning, Prabhakar, and Hinrich 2008].

 ………………………….. (2-2)

Where df is the document frequency

N is the number of document in the collection

df <=N.

2.2.4.1.3 TF-IDF

TF-IDF combines two quantities: the document frequency (df) (the number of documents

in which a specified term appears) and the inverse document frequency. IDF gives more

attention to rare terms than to common words. Combining TF and IDF, therefore,

increases the weight of the common terms in a document, while at the same time

increasing the weight of rare terms in the collection. IDF decreases as the number of

documents that contain a specified term increases [Manning, Prabhakar, and Hinrich

2008].

 ∑ . …………….(2-3)

 ………………… (2-4)

17

2.2.4.1.4 Vector Space Model Based on Normalization

Salton and McGill (1983) first proposed a vector space model that is based on

normalization [Pierre B., F. Paolo and S. Padhraic, 2003]. This model

measures the cosine of the angle between two vectors in m-dimensional space. A vector

can be normalized (given a length of 1) by dividing each of its components by its length.

Here we use the L2 norm.

 √∑

 ………………… (2-5)

 .

∑

√∑

√∑

 …………….. (2-6)

18

3 Chapter Three: Implementation of IR System Using Vector Space Model

In the previous chapter, we described the vector space model and the possible weighting

schemes that we can use as a similarity measurement in implementing our IR system.

Figures 3-1and 3-2 show the architecture of our implementation. In the next sections, we

describe the elements of our design. Section 3.1 describes the steps of Arabic text

processing; Section 3.1.1 describes the tokenization process; Section 3.1.2 describes the

normalization process; Section 3.1.3 describes the general Arabic stop list, its content,

and the stop word removal process; Section 3.1.4 goes through the stemming process;

Section 3.1.4.1 gives a brief description of the available Arabic stemming techniques and

algorithms; Section 3.1.4.2 provides details about the ISRI stemming algorithm; Section

3.2 describes indexing data structures; Section 3.5.1 describes the inverted indexing

technique; Section 3.6 describes query processing; and Section 3.6.1 describes the type

phase query that works with the vector space model.

Figure (3-1) The architecture design of the indexing process

Figure 3-1 The architecture design of indexing process.

19

Figure 3-2 The architecture design of query processing and document ranking.

(Note: we do not draw the index process steps for the user‘s query, since it is the same in

the indexing process figure 3-1)

3.1 Tools

3.1.1 The Programming Language

We use Python as the programming language because of its outstanding support for

natural language processing (NLP). Python has a variety of packages and models that

support our specific tasks. For example, the Natural Language Toolkit (NLTK) is one of

the packages that supports NLP with various functions, from tokenization to advanced

NLP techniques like clustering and textual classification. The NLTK was originally

20

developed by the Department of Information Science at the University of Pennsylvania

and has been further developed by many other contributors. Python (version 3 and above)

is also ideal for our project because it supports Unicode encoding for the ―str‖ type

container and uses Unicode in its source code. These features make Python more suitable

for representing Arabic characters. Unicode assigns a number called a ―code point‖ to

each character. In Python, each code point is represented as ―/uxxxx‖, where ―xxxx‖ is a

four digit hexadecimal number [Bird, Ewan, and Edward, 2009].

Despite the fact that the Unicode string in Python is manipulated, storing the Unicode

string in a text file or displaying it on a terminal requires that it be encoded as a stream of

bytes. There are two ways of encoding a stream of bytes in Python. The first involves

ASCII and Latin2, but this method can only cover a small range of Unicode characters.

The other way to encode a string of bytes in Python is to use a multibyte method, such as

UTF_8, which covers a full range of Unicode characters. This creates an additional

problem when we try to process an Arabic string using different Python models: we

cannot get the original format of the string. Some models display the string as Unicode

numbers, while others display a string in an invalid format [Bird, Ewan, and Edward,

2009].

Python provides two mechanisms for decoding and encoding that help deal with text files

and terminals. Each text file has its own encoding; in the decoding process, Python

converts text file encoding to Unicode, while the encoding process converts Unicode to

the proper encoding when the text is stored in a text file.

3.1.2 Arabic Keyboards

Arabic keyboards support both Arabic and Roman characters. Each key controls two

characters: an Arabic letter and a Roman letter. Figure 3-3 shows an Arabic keyboard.

21

Figure 3-3 Our Arabic keyboard. On each key is marked two characters: an Arabic letter

and a Roman letter.

3.2 Data Set Collection

The dataset we have used in our implementation of the Arabic IR is a collection of 100

Arabic documents with an average size of 12 KB and an average number of 5 pages. The

articles were collected from three different Arabic magazines. They are mainly academic

articles that cover several disciplines, including Arabic literature, philosophy,

psychology, engineering, biology, art, geography and physics.

The name and the websites for these magazines are:

1- Babylon Journal of Applied and Pure Sciences.

Link: http://repository.uobabylon.edu.iq/applicable.aspx

2- Babylon Journal for Humanities.

Link: http://repository.uobabylon.edu.iq/humanities.aspx

3- Lisaan Al-Arab Magazine

 http://lisaanularab.blogspot.com/.

http://repository.uobabylon.edu.iq/applicable.aspx
http://repository.uobabylon.edu.iq/humanities.aspx
http://lisaanularab.blogspot.com/

22

3.3 Lexical Processing

In this section we describe the steps for indexing the document collection and storing the

indexer as an inverted index

 in a text file. Let D= {d1, d2, d3…, dn} be the collection of the documents, where N is the

number of documents in the collection. Documents are stored as text files using UTF_8

encoding.

3.3.1 Tokenization

Tokenization is the process of extracting terms and keywords from documents,

eliminating punctuation and special characters. In Arabic, a word is a set of characters

that are linked together through complex mutation and are separated from other words by

a white space [Manning, Prabhakar, and Hinrich 2008]. Although white spaces are

generally used as string separators within an Arabic text, they also carry other

implications, because prepositions and pronouns are written in a continuous string with

the words they modify, producing complex tokens. This problem could be solved using a

good stemming algorithm.

3.3.2 Text Normalization

 Normalization is a preprocessing stage that employs NLP. The general aim is to clean up

a text by removing punctuation and numbers. In English documents, normalization

converts capital letters to lowercase letters. Therefore, normalization in English is

relatively easy, especially considering how many packages and tools there are that

support English and are available in most programming languages. Unfortunately, this is

not the case for Arabic. In Arabic, normalization eliminates vocalization marks and

converts the text into a more unified form. There are few premade tools available that

support Arabic normalization.

In our implementation we have used the regular expression (re) Python model to remove

the vocalization marks from the text. We have tried to normalize the different forms (,إ, أ

 Also, the final letter‖ِ‖ is changed .)‖ا―) alif‖ to the standard form― "ا" of the letter (ٱ, آ, ا

to the form (―ي‖ (and the letter ("ي") to (―ح‖).

23

3.3.3 Stop Word Removal

In our implementation we have used the Arabic general stop list without any additions.

The Arabic general list was created by Abu El-khair (2006) and is based on the structure

and characteristics of the Arabic language. It contains all possible words and articles that

may be considered stop words. The list also contains many categories: adverbs,

conditional pronouns, interrogative pronouns, prepositions, referral names, relative

pronouns, transformative verbs, verbal pronouns, and others. Due to Arabic‘s rich

morphological characteristics, the general Arabic stop word list is triple the size of the

English stop word list [El-Khair, 2006]. In Arabic, pronouns may have more than one

form, whether it is feminine, masculine, singular, dual, or plural. For example, the

pronoun ―these‖ has six forms in Arabic: ― انهات ‖ ―hatan‖ for feminine nominative, ‖هاتين‖

―hatean‖ for feminine genitive, ‖ٌذيه‖ ―hethan‖ for masculine nominative, ―ٌذان‖ for

masculine genitive/accusative, and either ‖ٌؤلاء‖ ―haa'ulaa‖ or ―اَنئك‖‖ uulaa'ika‖ for

feminine-masculine. Secondly, pronouns and prepositions are combined [Chen, and

Fredric, 2002]. Another example of a stop word in Arabic is the Arabic phrase for ―on

you,‖ which in Arabic is ―عهيك‖; this phrase is one string, and it too has several forms

based on the pronoun being used: the form ―عهيك‖ ‖aluka‖ for the singular masculine, the

form ―عهيكي‖ ‖alukee‖ for the singular feminine, the form ―عهيكمب‖ ‖alukma‖ for the dual

masculine, the form ―عهيكم‖ ―alukm‖ for the plural masculine, and the form ―عهيكه‖ ‖alukn‖

for the plural feminine.

The high frequency of Arabic stop words can adversely affect the weighting process,

which makes the removal of stop words all the more critical. Stop word removal

significantly reduces document length, which is reflected in the weighting scheme [El-

Khair, 2006]. According to El-Khair, removing Arabic stop words could reduce the

indexing process by 30-50% in a large collection. Therefore, using stop word removal in

the indexing process is an essential step in any Arabic IR system.

24

3.3.4 Stemming Process

Stemming is a technique that is common to most search engines. Stemming is the process

whereby morphological variants of words are mapped onto a single root. In the early days

of IR, when memory was more limited, stemming helped reduce the size of an index. To

this day, stemming continues to prove its effectiveness on the performance of IR systems

[Liddy, 2005].

3.3.4.1 Arabic Stemming Algorithms

Unlike the English language, which has straightforward stemming rules that are easily

implemented, the Arabic language is morphologically complex, with many suffixes,

infixes, and prefixes that are difficult to remove. Indeed, removing suffixes has proven

unhelpful in Arabic stemming algorithms. Arabic stemming is a challenging issue, due to

the language‘s complex morphological rules. Words in Arabic are derived from roots. For

example, the root verb ―كتت‖ ‖katab‖ (―wrote‖) has a long list of derivatives. The word

 maktop‖ (―letter‖), and― ‖مكتُة― ,katb‖ (―writer‖)― ‖كبتت‖ ,maktaba‖ (―library‖)― ‖مكتجخ―

 kotop‖ (books) are all based on the same root word. Therefore, it is important that― ‖كتت―

any Arabic IR system includes a stemming algorithm that maps these different word

forms to one indexing entry. Several stemming algorithms have been proposed to

accomplish this, each using different approaches such as manual stemming, which uses

dictionaries, light stemming, which is based on removing suffixes and prefixes,

aggressive stemming, which is based on morphological analyses of root words, and the

clustering approach, which groups similar words in one cluster [Atwan, Ghassan, and,

2013]. In our implementation we have used The ISRI stemming method, which is part of

nltk.stem package from the Python distributions.

3.3.4.2 The ISRI Arabic Stemming Algorithms

The IRSI Arabic stemmer is an Arabic stemmer algorithm that was developed by Taghva,

Elkoury, and Coombs (2005) at the Information Science Research Institute at the

University of Nevada. It follows the strategy of Khojo‘s Arabic stemmer, with one

important exception: it does not map the obtained root to the dictionary of existing Arabic

25

roots. Because several modifications have been developed to improve this particular

algorithm, ISRI is considered a refinement of Khojo‘s original stemmer.

In short, the ISRI Arabic stemmer works as follows:

As a preprocessing step, two tables are defined; Table 3-1 shows the affixes and diacritics

that need to be removed from a word as preprocessing steps. The algorithm also works on

normalized ―alhamza‖ and ―Alalf‖ letters, since these two letters have different written

forms based on their position in a word. All of these letter forms ("أ ―,‖ئ―,‖ء―,"ئـ‖)

normalize to one form, which is)―أ‖(. In addition, the letter ―َ‖ ―waw‖ is removed if it

precedes a word. After these preprocessing steps, the algorithm stems a word to its two

or three roots. Figure 3-1 shows the Arabic word patterns and roots with some examples

of the each pattern. The algorithm follows a particular procedure on finding a word‘s root

based on a word‘s length. The algorithm then tries to match a word with a pattern (shown

in Table 3-1 using the length of a word as a key. If the pattern matches the word, the

relevant root will be returned. If the algorithm does not recognize the pattern of the word,

it will try to eliminate suffixes or prefixes, one character at a time, and repeat the

matching procedure until a matching pattern is found. The algorithm attempts to return a

root with a length of at least three characters. Although the algorithm works well, it fails

to find the correct roots for some words, especially words that have been adopted from

other languages and thus do not have an Arabic root. In these cases, the algorithm still

tries to find a root.

26

Table 3-1 Affix sets (Taghva, Elkoury, and Coombs (2005))

 (Note: This table shows the diacritic marks and affix characters that are removed in the

preprocessing stages of the IRSI algorithm. The letter ―ص‖ in the first row of the table is

not a diacritic sign; however, it is written as an example of a consonant letter that has a

diacritic mark on it [Taghva, Elkoury, and Coombs 2005].

Table 3-2 Arabic patterns and roots (Taghva, Elkoury, and Coombs (2005))

Set Description Examples

PR4 Length four patterns فبعم,فعُل,فعهخ,فعبل,فعيم,مفعم

PR53 Length five pattern and length four

roots

تفبعم,افتعم,افعبل,فعبنخ,فعلان,فعُنخ,تفعهخ,تفعيم,مفعهخ

 ,مفعُل,فبعُل,فُاعم,مفعبل,مفعيم,افعهً

فتعم,ف,فعبئم,مىفعم,مفتعم,فبعهخ,مفبعم,فملاع,ثفتعم,ت

 عبني,اوفعم

PR54 Length five pattern and length four

roots

 تفعهم,افعهم,مفعهم,فعههً,فعلان,فعبنم

PR63 Length six pattern and length three

roots

 استفعم,مفعبنً,افتعبل,افعُعم,اوفعم,مستفعم

PR64 Length six pattern

Length four roots

 افىهم,افعلال,متفعم

3.4 Data and File Structure of Information Retrieval

The effectiveness of text retrieval depends largely on having the appropriate data

structure in which to store a text [Baldi, Paolo, and Padhraic, 2003]. Different methods

have been proposed, including clustering (Salton 1971) and signature files (Faloutsos and

Set Description Examples

D Vocalizations ٍصُ,صَ,صّ,صِ,صْ,صٌ,صً,ص

P3 Prefixes of length three َنم,َال,كبل,ثبل

P2 Prefixes of length two ال,نم

P1 Prefix of length one َ,د,ن,ا,ل,ة,ف,س,ِ

S3 suffixes of length three تمم,ٌمم,تبن,تيه,كمم

S2 suffixes of length two َ,ن,اد,ان,يه,ته,كم,ٌه,وب,يب,ٌب,تم,كهوي,َا,مب,ٌم

S1 Suffixes of length one ح,ي,ي,كـ,د,ا,ن

27

Christodoulakis 1984). The Suffix tree and suffix array were introduced by Manber and

Myers (1990), but these were not capable of storing a large document collection. The

method that has proven most successful in IR systems uses a data structure called an

inverted index. The inverted index was proposed by Berry and Browne (1999) and Witten

et al. (1999) (Baldi, Paolo, and Padhraic, 2003). In this method, each term in a collection

is mapped to its occurrences in the collection. The set of terms is called a vocabulary (V).

Each term (t) in the inverted index has a pointer p (t) that points to the posting list or

bucket, which is a list of all the occurrences of a term (t). The size of the inverted index is

Ω (|V |), and it can be stored in the main memory [Baldi, Paolo, and Padhraic, 2003]. An

inverted index can be implemented using a hash table; in this case, the expected time is

independent of the size of the vocabulary. Posting lists and documents should be stored

on disk. After obtaining the posting lists for each term, we can combine the posting

lists using one of the set operations corresponding to the Boolean operation in the query.

In free text query, the intersection set operation is used to obtain a final posting list for all

query terms [Manning, Prabhakar, and Hinrich 2008].

3.4.1 Inverted Index

An inverted index is an optimized data structure that can be used for information

retrieval. An inverted index is like a conventional index found in the back of a book that

maps a key term to a page number [Manning, Prabhakar, and Hinrich 2008]. The basic

idea for building an inverted index is to keep a dictionary of the unique terms in the

collection. For each term in the collection, we maintain a list of documents (by document

IDs) in which the term occurs as well as a number for the term‘s frequency in the

specified document. This list is called a posting list. The posting list is stored in the

secondary storage, while the dictionary is stored in main memory [Manning, Prabhakar,

and Hinrich 2008]. Figure 3-4 shows the structure of an inverted index of two documents.

In this study we use a Python data structure called defaultdict to store the dictionary, and

we use Python‘s default dictionary as a data structure for storing the posting list. The

28

Python dictionary is a hash table data structure, which means the lookup operation in the

Python dictionary is O (1).

The text should undergo several preprocessing operations before it can be stored in an

inverted index. Text is typically stored as bytes in a digital document, and bytes need to

have the correct encoding schemas. For example, the typical encoding schema for

English text is ASCII; however, Arabic encoding is more complicated. Arabic text thus

requires multibyte encoding like Unicode UTF-8 [Manning, Prabhakar, and Hinrich

2008].

Figure 3-4 Inverted Index of two Arabic documents.

As shown in Figure 3-4, the terms ―ثروة‖,‖الاهوار‖,‖العراق‖appear in both documents.

Also, the stop word ―في‖is removed, and the other words ‖هائلة" ,‖طبيعية"appear in doc1;

only ―حضاري‖,‖معلم‖ appear in doc2. Other useful information may be extracted from an

29

inverted index. For example, the number of documents that contain a term is the size of

the posting list for a term.

3.5 Query Processing

Most IR systems redo all document indexing steps for each user query, including

tokenization, stop word removal, and stemming. The only difference between document

indexing and query indexing is that query indexing should be run in real time while a user

is waiting for the results [Liddy, 2005].

3.6 Phrase Query

The vector space model, by definition, does not support bi-word queries, because it

represents documents as vectors, which in turn causes the relative order of terms within a

document to be lost. The computing of the IDF quantity should therefore be extended to

include bi-word queries. Since indexing cannot be used for phrase query, the vector space

model offers an alternative for accurately identifying a document with frequently

occurring terms, only it does not retain the sequential order of the terms [Manning,

Prabhakar, and Hinrich 2008].

30

4 Chapter 4: Experiment and Evaluation

4.1 Building the Inverted Index

In our implementation we provide several options for building the inverted index: the

basic (without stemming and stop word removal), with stemming (stm), with stop word

removal (rsw), and with stemming and stop word removal (rsw-stm). The goal of having

different indexing options is to explore the effect of these indexing techniques on the

indexing process in terms of time and space. Further, we investigate their effects on the

retrieval process.

Figure 4-1 shows the running time for indexing 100 documents with approximately

91,900 strings. The basic method (without stemming and stop word removal) was the

fastest one; it took 2.5 minutes to build the inverted index for the data sets, while the rsw-

stm took 3.6 minutes for the same data sets.

Figure 4-1 Time for indexing 100 documents with different indexing techniques

.

0

0.5

1

1.5

2

2.5

3

3.5

4

basic stm rsw rsw-stm

Time in ms

Indexing techniques

Indexing Time

Time

31

Figure 4-2 The percentage of reduction in the number of entries for the inverted index for

100 documents using different indexing techniques.

The experiment shows that the stemming technique reduces the size of the inverted index

by approximately 40%. The stop word removal technique reduces the size by 20 %.

Using both techniques reduces the size to less than half of the original number of entities.

4.2 Evaluation methodology

In this study we use a traditional precision /recall method of evaluation. Precision is the

number of relevant documents retrieved divided by the total number of retrieved

documents. Recall is the number of relevant documents retrieved divided by the total

number relevant documents in the database [M.Greenwood, 2001].

…………… (4-1)

……………… (4-2)

In this method, we use the relevance and non-relevance notation to evaluate the

performance of the system [M.Greenwood, 2001]. The relevance notation plays a central

role in the evaluation of the IR system [Teufel, Simone, 2007]. IR system evaluation is

called ―laboratory style‖ in most modern IR systems. This style of performance is easy to

0%

10%

20%

30%

40%

50%

60%

basic rsw stm rsw-stm

Entities

percentage

Indexing techniques

Percentage of reducing the size of the Inverted index

Percentage of reducing

the size of the Inverted

index

32

control. It consists of three main components: dataset, relevance decision, and queries

[Teufel, Simone, 2007]. Usually, the document is considered relevant to the query if it

contains more occurrences of the user‘s query terms, but in reality the document should

be considered relevant if it satisfies a user‘s information needs.

In the evaluation of our experiment we used free text query (query with two words or

more). One word query makes the output ambiguous, especially with a morphologically

complex language like Arabic. We prefer free text because it helps eliminate some of the

unexpected results that are not related to the query search. Free text query also makes it

easier for the system to determine the user‘s information needs. We evaluated the system

with different weighting schemes and different indexing options.

4.3 Results

In the experiment we use nine queries that have a number of relevant documents in our

data collections. We calculate the percentage of recall and precision for each output. In

the next sections we list the results as tables for each approach.

4.3.1 Precision – Recall Percentage Tables

 Term-count (TF) (Term Frequency) method (without stop word removal and stemming).

Table 4-1 Shows precision and recall percentage for TF weighting scheme (without stop

word removal / stemming)

Query Precision Recall
 %20 %50 انجيئخ انصحيخ

 %20 %100 انفهسفخ انُاقعيخ
 %30 %100 انفطزيبد انمزضيخ

 %40 %60 انشعز انحز
 %40 %70 انتهُث انجيئي

 %50 %100 انمسزح انقُمي
 %100 %70 سكبن الاٌُار

 %50 %20 عهم انىفس
 %100 %70 مسجد انزسُل

33

 Term – count (TF) method with (stop word removal /stemming) indexing.

Table 4-2 Shows precision and recall percentage for TF weighting scheme (with stop

word removal/stemming).

Query Precision Recall
 %90 %70 انجيئخ انصحيخ

 %100 %30 انفهسفخ انُاقعيخ
 %100 %100 انفطزيبد انمزضيخ

 %90 %50 انشعز انحز
 %70 %80 انتهُث انجيئي

 %60 %80 نقُمي انمسزح ا
 %100 %50 سكبن الاٌُار

 %80 %40 عهم انىفس
 %100 %100 مسجد انزسُل

 (TF-IDF-basic) method without stemming /stop word removal.

Table 4-3 Shows precision and recall percentage for TF-IDF weighting scheme (without

stop word removal/stemming).

Query Precision Recall
 %50 %70 انجيئخ انصحيخ

 %20 %100 انفهسفخ انُاقعيخ
 %30 %50 انفطزيبد انمزضيخ

 %40 %60 انشعز انحز
 %50 %100 انتهُث انجيئي

 %50 %100 انمسزح انقُمي
 %50 %50 سكبن الاٌُار

 %70 %30 م انىفسعه
 %100 %70 مسجد انزسُل

34

 TF-IDF method with stemming /stop word removal indexing.

Table 4-4 Shows precision and recall percentage for TF-IDF weighting scheme (with

stemming/stop word indexing).

Query Precision Recall
 %60 %70 انجيئخ انصحيخ

 %100 %30 انفهسفخ انُاقعيخ
 %100 %100 انفطزيبد انمزضيخ

 %90 %50 انشعز انحز
 %70 %50 انتهُث انجيئي

 %90 %80 انمسزح انقُمي
 %100 %50 سكبن الاٌُار

 %100 %10 عهم انىفس
 %100 %100 مسجد انزسُل

 TF-IDF based on normalization method without stemming /stops word removal indexing.

Table 4-5 Shows precision and recall percentage for TF-IDF based on normalization

weighting scheme (without stemming/stop word indexing)

Query Precision Recall
 %30 %50 انجيئخ انصحيخ

 %20 %100 انفهسفخ انُاقعيخ
 %30 %60 انفطزيبد انمزضيخ

 %40 %60 انشعز انحز
 %40 %60 انتهُث انجيئي

 %80 %100 انمسزح انقُمي
 %50 %100 سكبن الاٌُار

 %80 %40 عهم انىفس
 %100 %70 مسجد انزسُل

35

 TF-IDF based on normalization method with stemming /stops word removal indexing.

Table 4-6 Shows precision and recall percentage for TF-IDF based on normalization

weighting scheme (with stemming/stop word indexing).

Query Precision Recall
 %60 %70 انجيئخ انصحيخ

 %100 %100 انفهسفخ انُاقعيخ
 %100 %100 انفطزيبد انمزضيخ

 %100 %50 انشعز انحز
 %70 %100 انتهُث انجيئي

 %90 %80 انمسزح انقُمي
 %50 %50 سكبن الاٌُار

 %100 %20 عهم انىفس
 %100 %100 مسجد انزسُل

4.3.2 The Effect of Stemming Vs. Non- Stemming

Figure 4-3 shows the number of retrieved documents with stemming and without

stemming for the same queries. The stemming technique significantly increases the

number of retrieved document. At the same time, the number of irrelevant documents

also increases, since Arabic words that are derived from the same root often hold

different meanings. For example, the word ―الجامعة‖ ―aljamcka‖ (―university‖) stems from

the root ―جمع‖ (―add‖). Several other words are likewise derived from this root. Therefore,

when a user tries to search for the term ―aljamcka,‖ a long list of documents is returned.

Table 4-7 shows a sample of the Arabic words that stem from the root "جمع". When the

recall increases, the ambiguity of the output increases as well, which leads to unexpected

and often irrelevant results for the user. This is the only negative aspect of using the

stemming technique; otherwise, the experiment proves that stemming improves the

performance of the Arabic IR system. We observed, however, that the ISRI stemming

algorithm is not always accurate. There are some cases in which the algorithm fails to

find the valid Arabic root. In particular, the ISRI tends to suggest incorrect roots for

borrowed words.

36

Table 4-7 shows a number of Arabic words that have different denotations, even though

they stem from the same root, which is ―جمع”(―add‖).

The Arabic word Meaning (in English) Root (in Arabic) Meaning (in

English)

 add(v) جمع university جبمعخ

 add(v) جمع set مجمُعخ

 add(v) جمع composed مجمع

 add(v) جمع be accumulated تجمع

 add(v) جمع meeting اجتمبع

 add(v) جمع socially اجتمبعي

 add(v) جمع group اجمبع

 add(v) جمع Team جمبعخ

 add(v) جمع assembly تجميعي

 add(v) جمع mosque جبمع

 add(v) جمع agreed اجمع

 add(v) جمع add جمع

 add(v) جمع Friday جمعخ

 add(v) جمع institution جمعيخ

Figure 4-3 The number of retrieved documents for the same queries with stemming and

without stemming.

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9

NO.of retrived
documents

NO.of queries

Stemming vs no stemming in IR output

without stemming

with stemming

37

Figure 4-4 The average recall and precision of the different ranking schemes with a

combination of different indexing techniques (basic, stemming, stop word removal).

The above figure shows that the three (TF-basic, TF_IDF-basic, TF_IDF_basic)

weighting schemes have a high precision, while the average recall is low for the three

methods. On the other hand, the figure shows an increase in the recall for the TF-rsw-stm,

TF-IDF_rsw-stm, and TF_IDF-N-rsw-stm schemes. The TF-IDF-N-rsw-stm method

seems to produce the optimal result, yielding both a high recall and a high precision. The

TF-IDF-N method outperforms the other methods with different indexing options.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Recall and
Precision

percentage

Method

The Average Recall and Precision

Recall

Precision

38

5 Chapter Five: The Default Search in Open Journal System

5.1 Public Knowledge Project (PKP)

The Public Knowledge Project (PKP) is a non-profit organization devoted to

investigating how technology can help develop professional and public knowledge. PKP

was founded by Dr. Jhon Willinsky in 1998 through his work in education and publishing

in the College of Education at the University of British Columbia. PKP attempts to make

scholarly knowledge available to the public through online access. The aim is to connect

scholars in different fields with public librarians in order to enhance the quality of

education using technology and online environments [Smecher, Alec, 2008].

5.2 Open Journal Systems (OJS)

Open Journal Systems (OJS) is one of PKP‘s open access management systems

developed at the University of British Columbia. The main goal of OJS is to make

academic knowledge available to the public through online environments. OJS provides

support throughout the entire editorial process, from uploading submissions, to editing, to

peer reviewing, to publishing. This comprehensive tool saves precious time and energy

for users [Smecher, Alec, 2008]. OJS is a multilingual system and is used to publish

journals in several languages. Originally, OJS only supported English, French, Spanish

and Portuguese, but it now supports more than 33 languages according to the PKP

website. OJS translations are provided by the community of developers. Because OJS

designers try to separate the translation process from the source code, all text in OJS is

extracted and stored in XML files called locale files. OJS was built using model-view -

controller software architecture. This model gives OJS more security and flexibility at the

same time. Also, the design of OJS provides a rich online reading environment by

supporting tools that improve active reading. More than 5,000 journals have used OJS

since it launched in 2002 [Smecher, Alec, 2008].

39

5.3 Open Journal Systems as Repository

Open Journal Systems (OJS) is an open source publishing and management system. The

goal of OJS and other PKP projects is to enhance the quality of public education and

knowledge through online environments. Figure 5-1 shows the main OJS webpage, and

figure 5-2 shows our OJS journal.

OJS can be downloaded for free from the PKP website (All OJS downloads can be found

at http://pkp.sfu.ca/ojs_download, and detailed installation steps can be found at

http://pkp.sfu.ca/ojs/docs/userguide/2.3.1/systemAdministrationInstallProcess.html. OJS

provides the facilities to create multiple journals with one installation.

Figure 5-1 The home page of Open Journal System

40

Figure 5-2 The home page of our journal

5.3.1 OJS Submission and Editorial Process

OJS is designed to streamline the editorial process for journals, from the uploading of

submissions to the publishing stage. OJS can be used by journal managers, editors,

authors, reviewers, copy editors, section editors, proofreaders, and layout editors. Each

user can be assigned multiple roles, and each role carries a corresponding set of

administrative tasks and permissions. When a user is assigned the role of journal

manager, for instance, he or she has the authority to assign various roles to other users.

The editor, on the other hand, is in charge of accepting or rejecting a submission.

A user with the role of author can submit articles to the journal. The submission process

can be done in a number of steps. Firstly, the user has to select one of the journal sections

for his/her article based on the article type (book review, etc.). Before submitting an

article, the author must agree to the journal‘s policies for publishing in journals. In the

next step the author provides personal information and information about the article,

including title, abstract, and indexing terms. OJS also allows the author to upload any

supplementary files to his/her article such as data set, pictures, graphs, etc. The final step

41

is confirming submission. Additionally, OJS supports tracking the status of one‘s

submission. Figure 5-3 shows a number of our published article in our journal.

Figure 5-3 A number of published articles in our journal

In The next sections we will introduce the Default search function in Open Journal

system and how it works with the Arabic language texts.

5.4 The Default Search of Open Journal System

The default search engine of OJS uses an inverted Index stored in a MYSQL relation

database with the following tables:

article_search_keyword_list<keyword_id, keyword_text>

article_search_object_keywords<object_id, keyword_id, pos

42

 article_search_objects<object_id, article_id, type, assoc_id>

Simply put, the algorithm starts with the tokenization of all text by using ―whitespace‖ as

a separator and by removing punctuation and stop words. It then stores the keywords in

the MYSQL search tables. OJS provides full-text indexing for different file formats

including HTML, PDF, PS, and MS Word. OJS uses external tools to convert PDF,

PostScript, and Microsoft Word files into text files. OJS uses external tools that are

available by default in most UNIX distributions to extract text from the files. The system

uses the pdftotext tool to extract text from pdf files, postotext to extract text

from PostScript files, and the HTML tokenizer to extract text from HTML files. These

tools are configured in the OJS configuration file (Config.inc.php). Figure 5-4 shows the

search configuration part in the Config.inc.php file. The OJS search provides several

search categories, including author, abstract, discipline, index-term, subject,

supplementary file, title, and type. By default, the search retrieval system in OJS retrieves

all documents using the ―AND‖ operation, but the user can choose to change this to ―OR‖

or ―NOT.‖ In addition, ―*‖ can be used as a wildcard query, and quotes can be used with

a phrase query.

OJS is a multilingual system. Therefore, OJS features a general search function that

supports multiple languages and provides a basic search function. As a general search

function, the OJS search function does not support the morphological characteristics of

Arabic, because it is not programmed to support stemming. Furthermore, the OJS search

function does not have a means of normalizing Arabic text. The absence of these two

techniques affects the performance of OJS‘s native search engine. As a result, some

Arabic queries in OJS yield few, if any, matching documents. The OJS search function is

thus unable to find all relevant documents. On the other hand, the OJS search function

treats all returned results as if they were equally relevant to the user‘s query, because it

does not weight or rank the retrieved documents by their similarity to the user‘s criteria.

43

Figure (5-4) Configuration setting for OJS search in (Config.inc.php)

5.5 Experiment

Researchers over the years have tried to understand how efficient general search engines

are at handling different languages. Mukdad, for instance, discusses whether or not a

general search engine like Alti Vista can effectively handle a language with a complex

morphology like Arabic.

The goal of our evaluation is to investigate how a multilingual search engine performs

when both the data collection and the query are in Arabic. The OJS search algorithm is a

; Minimum indexed word length

min_word_length = 3

; The maximum number of search results fetched per keyword. These results

; are fetched and merged to provide results for searches with several keywords.

results_per_keyword = 500

; The number of hours for which keyword search results are cached.

result_cache_hours = 1

; Paths to helper programs for indexing non-text files.

; Programs are assumed to output the converted text to stdout, and "%s" is

; replaced by the file argument.

; Note that using full paths to the binaries is recommended.

; Uncomment applicable lines to enable (at most one per file type).

; Additional "index[MIME_TYPE]" lines can be added for any mime type to be

; indexed.

; PDF

; index[application/pdf] = "/usr/bin/pstotext -enc UTF-8 -nopgbrk %s - | /usr/bin/tr '[:cn

trl:]' ' '"

; index[application/pdf] = "/usr/bin/pdftotext -enc UTF-8 -nopgbrk %s - | /usr/bin/tr '[:c

ntrl:]' ' '"

; PostScript

; index[application/postscript] = "/usr/bin/pstotext -enc UTF-8 -nopgbrk %s - | /usr/bin/t

r '[:cntrl:]' ' '"

; index[application/postscript] = "/usr/bin/ps2ascii %s | /usr/bin/tr '[:cntrl:]' ' '"

; Microsoft Word

; index[application/msword] = "/usr/bin/antiword %s"

; index[application/msword] = "/usr/bin/catdoc %s"

44

basic algorithm with no ranking. The precision /recall evaluation method works perfectly

with such algorithms.

Figure 5-2 shows that for some queries there is no matching result. Therefore, the

precision and recall are zero, and even though there are a number of documents that are

related to the user‘s queries in the corpus, the search function fails to locate any matching

documents.

Table 5-1 precision and recall percentage for OJS default search.

Query Recall Precision

 %0 %0 انشعز انحز

 %100 %20 ثكتزيب عىقُديخ

 %0 %0 بد انمزضيخ يانفطز

 %0 %0 مسجد انزسُل

 %100 %10 انمسزح انقُمي

 %100 %10 انجيئخ انصحيخ

 %100 %10 سكبن الاٌُار

 %100 %30 انتهُث انجيئي

 %100 %50 عهم انىفس

Figure 5-5 The precision/recall function for the default search of OJS

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Precision

Recall

Precision-Recall function

OJS Defailt Search

45

Figure 5-6 The number of retrieved documents for the same queries with stemming,

without stemming, and with the OJS default search.

Figure 5-7 Average recall and precision for OJS- search and our three schemes

Figure 5-7 shows low recall of the default OJS search function. The average recall is only

10%. Our proposed IR system has a comparatively high recall, between 40% and 60%

without stemming and between 70% and 90% with stemming.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

1 2 3 4 5 6 7 8 9

NO.of retrived

documents

NO.of queries

 Number of retrived doument for OJS-search ,stemming ,non-stemming

without stemming

with stemming

OJS-search

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Recall and
Precision

percentage

Method

The Average Recall and Precision

Recall

Precision

46

6 Chapter Six: Conclusion and Future Works

6.1 Conclusion and Summary of the Experimental Results

 Arabic requires tools that support the encoding of its unique character sets, its writing

script and the direction of the text. Using UTF_8 or another Arabic encoding does not

ensure that a valid Arabic script is displayed, specifically with regard to the direction

of the text (from right to left for text and left to right for numbers). If Arabic is not

supported by system software and an application that can display a valid Arabic

script, then the scripts will be displayed in an invalid format.

 Support of Arabic text requires such techniques as normalization, which eliminates

inconsistencies in Modern Standard Arabic. By doing so, normalization maximizes

the number of matching documents, thus improving recall and precision.

 The stemming technique significantly increases the number of documents that match

a user‘s query. Stemming algorithms analyze words and remove elements like

prefixes, prepositions, pronouns, and the definite article ―انـ‖―al,‖ all of which are

connected to other words. However, stemming produces some unexpected results.

Due to complex Arabic morphological rules, many words with different denotations

can be derived from the same root. As a result, the ISRI stemming algorithm is not

fully accurate, because it fails to find valid roots for some Arabic words. One possible

reason might be a lack of valid roots in the dictionary that the algorithm uses. In

addition, the ISRI stemming algorithm tries in vain to find Arabic roots for words

adopted from other languages.

 Lexical processing helps reduce the size of the inverted index. Removing stop words

can reduce the size of the inverted index by 20%, and stemming reduces the number

of inverted index entities by approximately 40%.

 The vector space model successfully supports free text queries by accurately

identifying a user‘s query terms and their occurrences in a document collection.

However, the vector space model does not support the sequential order of query

terms, because it represents a document as a vector of terms regardless of the order in

which the terms appear within a document.

47

 The vector space model weighting schemes have different ranking preferences. The

term frequency (TF) weighting schemes always assign the highest score to a

document with the highest occurrence of a queried term, but this favors long

documents over short ones. TF_IDF weighting gives good results for queries that

include rare terms such as scientific terms. TF_IDF is based on normalization and

outperforms the other weighting schemes

 The evaluation of the default search function of OJS proves that without

normalization and stemming the number of retrieved documents is minimized. OJS‘s

default search function retrieves matching results for some queries, but for others the

output is zero results, because the default search function of OJS is a general search

engine that does not acclimate to Arabic character sets and scripts.

6.2 Future works

IR technology is an ever-growing area of research, especially with regard to Arabic text

and the unique challenges presented by the complex characteristics of the language. We

can extend this thesis to the following inquiries:

 This thesis focuses on the evaluation of IR systems using the traditional

precision/recall method; however, there are several strategies that could be used to

evaluate the system. In particular, multi-grade strategies could be effective at ranking

IR systems. We plan to evaluate the output of our system using different strategies

such as mean average precision.

 Clustering techniques can be used to reduce the ambiguity of retrieved documents by

grouping similar documents into one cluster. We want to explore how clustering

could improve the output of our IR system.

 In this work we rely on the inverted index technique, but there are other indexing

techniques and architectures that could be used to expedite document retrieval and

reduce the size of the index. For example, compression techniques use customized

architectures to store the inverted index more efficiently. The distributed indexing

technique can be used to store the inverted index for a large document collection,

48

increasing the effectiveness of the inverted index. We plan to explore techniques that

could lead to faster indexing and smaller storage sizes.

 Stemming techniques are very important for morphological languages like Arabic.

Several Arabic stemming algorithms have been proposed. We plan to explore how the

designs of these algorithms have been adopted to build the Arabic stemmer.

The importance of IR has increased tremendously since the creation of the World Web

Wide. The Internet adds totally new dimensions to the IR process that go far beyond text-

based searches. It would be interesting to see how these experiments with more

traditional IR systems may be adapted to different kinds of data.

49

References

[1] Albalooshi, Noora, Nader Mohamed, and Jameela Al-Jaroodi. "The challenges of

Arabic language use on the Internet." Internet Technology and Secured Transactions

(ICITST), 2011 International Conference for. IEEE, 2011.

[2] Al-Taani, Ahmad T., Ahmed S. Ghorab, and Hazem M. Al-Najjar. "AN

ARABIC-ENGLISH INDEXING SYSTEM USING INVERTED INDEX

ALGORITHM."

[3] Al-Maimani, Maqbool R., A. A. Naamany, and Ahmed Zaki Abu Bakar. "Arabic

information retrieval: techniques, tools and challenges." GCC Conference and Exhibition

(GCC), 2011 IEEE. IEEE, 2011.

[4] Atwan, Jaffar, Masnizah Mohd, and Ghassan Kanaan. "Enhanced Arabic

Information Retrieval: Light Stemming and Stop Words." Soft Computing Applications

and Intelligent Systems.‖ Springer Berlin Heidelberg, 2013. 219-228.

[5] Baldi, Pierre, Paolo Frasconi, and Padhraic Smyth. "Modeling the Internet and the

Web." Probabilistic methods and algorithms (2003).

[6] Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language

Processing with Python. O‘Reilly Media Inc.

[7] Fox,Christopher ,‖ A Stop List for General Text‖. SIGIR Forum, Vol. 24, No. 1-

2, 1990, pp.19-35.

[8] Chen, Aitao, and Fredric C. Gey. "Building an Arabic Stemmer for Information

Retrieval." TREC. Vol. 2002. 2002.

[9] Faloutsos, Christos, and Douglas W. Oard. "A survey of information retrieval and

filtering methods." (1998).

[10] D.L. Lee, H. Chuang, and K. Seamons. Document ranking and the vector space

model. IEEE Transactions on Software, 14(2): 1997.

[11] Hiemstra, Djoerd. "Information retrieval models." Information Retrieval:

searching in the 21st Century (2009): 1-19.

50

[12] El-Khair, Ibrahim Abu. "Effects of stop words elimination for Arabic information

retrieval: a comparative study." International Journal of Computing & Information

Sciences 4.3 (2006): 119-133.

[13] Hariguna, Taqwa, and Fandy Setyo Utomo. "Implementation of Information

Retrieval Indonesian Text Documents Using the Vector Space Model." ICSIIT 2012

(2012): 145.

[14] Liddy, Elizabeth D. "Document retrieval, automatic." (2005).

[15] Larkey, Leah S., Lisa Ballesteros, and Margaret E. Connell. "Improving

stemming for Arabic information retrieval: light stemming and co-occurrence analysis."

Proceedings of the 25th annual international ACM SIGIR conference on Research and

development in information retrieval. ACM, 2002.

[16] M.Greenwood ‗IMPLEMENTING A VECTOR SPACE DOCUMENT

RETRIEVAL SYSTEM‘,Dept. of Computer Science, University of Sheffield Regents

Court, 211 Portobello St, Sheffield,2001 .

[17] Moukdad, Haidar, and Andrew Large. "Information retrieval from full-text Arabic

databases: can search engines designed for English do the job?." Libri 51.2 (2001): 63-

74.

[18] Moukdad, H., ―Lost In Cyberspace: How Do Search Engines Handle Arabic

Queries?‖ In: Access to Information: Technologies, Skills, and Socio-Political Context.

University of Manitoba, Winnipeg, Manitoba. June 3 - 5, 2004.

[19] MUNTEANU, Dan. "VECTOR SPACE MODEL FOR DOCUMENT

REPRESENTATION IN INFORMATION RETRIEVAL."

[20] Smecher, Alec. "OJS Technical Reference." (2008).

[21] Ramos, Juan. "Using tf-idf to determine word relevance in document

queries."Proceedings of the First Instructional Conference on Machine Learning. 2003.

[22] Raghavan, Vijay V., and SK Michael Wong. "A critical analysis of vector space

model for information retrieval." Journal of the American Society for information

Science 37.5 (1986): 279-287.

51

[23] Singhal, Amit. "Modern information retrieval: A brief overview." IEEE Data Eng.

Bull. 24.4 (2001)

[24] Salton, Gerard, and Michael J. McGill. "Introduction to modern information

retrieval." (1983).

[25] Singh, Jitendra Nath, and Sanjay Kumar Dwivedi. "Analysis of Vector Space

Model in Information Retrieval." IJCA Proceedings on National Conference on

Communication Technologies & its impact on Next Generation Computing 2012. No. 2.

Foundation of Computer Science (FCS), 2012.

[26] Sparck Jones, Karen, Steve Walker, and Stephen E. Robertson. "A probabilistic

model of information retrieval: development and comparative experiments: Part 1."

Information Processing & Management 36.6 (2000): 779-808.

[27] Taghva, Kazem, Rania Elkhoury, and Jeffrey S. Coombs. "Arabic Stemming

Without A Root Dictionary." ITCC (1). 2005.

[28] Teufel, Simone. "An overview of evaluation methods in TREC ad hoc

information retrieval and TREC question answering." Evaluation of text and speech

systems. Springer Netherlands, 2007. 163-186.

[29] Zobel, Justin, Alistair Moffat, and Ron Sacks-Davis. "An efficient indexing

technique for full-text database systems." PROCEEDINGS OF THE INTERNATIONAL

CONFERENCE ON VERY LARGE DATA BASES. INSTITUTE OF ELECTRICAL &

ELECTRONICS ENGINEERS (IEEE), 1992.

[30] Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze.Introduction

to information retrieval. Vol. 1. Cambridge: Cambridge university press, 2008.

[31] Bird, Steven, Ewan Klein, and Edward Loper. Natural language processing with

Python. " O'Reilly Media, Inc.", 2009.

52

Appendix

SEARCH QUERIES FOR AN INFORMATION RETRIVAL SYSTEM FOR

ARABIC LANGUAGE

#the project is divided in two parts with two files

• Indexing Processprogram :

#indexing processing for the corpus and building the

inverted index file

#Author: Zaianb Albujasim.

#Date: 5/5/2014.

#Description:

#input: A list of Arabic document in text file format with

encoding UTF_8.

#the output is an inverted index text file.

"""

Methods: the program starts by Indexing processing steps

which includes

1- Normalization (clean text from Arabic Vowel signs. for

example: input: زَيْنَب ,output: زينب)

2- Tokenization (split text into tokens using white space

as a separator)

3- Stop word removal (remove the common words which don’t

consider relevant to user's query

4- Stemming (using ISRIStemmer)(find roots for Arabic

words)

5- Inverted index: is a dictionary includes all distinct

terms in the corpus with their docid and a number of

occurrences)

Options:

 We have implements 4 ways of building the inverted index

('basic: without stemming/stop word removal)')

53

('-rsw: (stop word removal only)')

('-stm: without (stemming only)')

('-rsw-stm: with(stemming/stop word removal')

Limitation:

1-In the inverted index file we store only the number of

term occurrence within a document with docid ,We don’t have

a mean to store term positions within a document

2- The directory of document files should be in a specific

location and the inverted file also """

CODE:

import glob

from collections import defaultdict

from functools import reduce

from nltk.stem.isri import ISRIStemmer

import re

import math

import sys

import pickle

import time

import unicodedata

posting=defaultdict(dict)

stopword=[]

Q_terms=[]

totalterms=[]

query=''

files_dict={}

start_time=time.clock()

filename=''

def normalization(text):

 """Cleaning text by removing vocalization marks"""

 Return ''.join ([word for word in

unicodedata.normalize('NFD', text) \

 if unicodedata.category(word) != 'Mn'])

#---

def stem(word):

 # returns the root of a word using ISRI stemmer.

 st = ISRIStemmer()

 stem_w=st.stem(word)

54

 return (stem_w)

def tokenization(text):

 cleanterms=[]

 punctuation='-_.,!#$%^&*();:\n\t\\"?{}[]<>+=|/؟.'

 text=normalization(text)

 # we have used Regular expressions module to process

text

 text=re.sub(r'[a-zA-Z0-9]','',text) # remove letters

and numbers

 text = re.sub(r'[^\w\s]','',text)

 text= re.sub(" \d+", "", text)

 #x=re.sub (r'[-_.,!#$%^&*();:\n\t\\\"?{}[]<>]','',term)

 Text = re.sub("[ا" ,"]إأٱآا", text) # normalize "أ"

forms

 text = re.sub("ى", "ي", text) # normalize "ي" forms

 text = re.sub("ه", "ة", text) # normalize "ة" forms

 terms = text.split() # split text into a lists of

strings

 for term in terms:

 x=term.strip(punctuation)

 cleanterms.append(x)

 return cleanterms

def stopwordlist():

 """upload stop word from text file to a list"""

 global stopword

 stop_wordfile=open('stop.txt','r',encoding='utf_8')

 for line in stop_wordfile.readlines():

 for sw in line.split():

 sw=sw.strip('\n')

 stopword.append(sw)

 stop_wordfile.close()

 return stopword

#-------------------------------------

def removestopword(keywordsindex):

 global stopword

 i=1

55

 """ Remove stop word """

 for word in keywordsindex:

 if len(word)<=2 or word in stopword:

 #print(word)

 i=i+1

 keywordsindex.remove(word)

 #print ('i=',i)

 return keywordsindex

 #-----------------------------------

def inial_indexing():

 global filename

 i=0

 print(' Indexing Process:: Create the

inverted index')

 print('\n')

 filename=input('enter a name for the inverted index ::

')

 print('select the indexing method: ')

 print('basic: without stemming/stopwordremoval)')

 print('-rsw: (stop word removal only)')

 print('-stm: without (stemming only)')

 print('-rsw-stm: with(stemming/stop word removal')

 print('\n')

 method=input("select -rsw,-stm ,-rsw-stm or

none(without):")

 print('\n')

 print(' creating index......................')

 print('\n')

list_of_files=glob.glob('vsm-dir/*.txt')

 for file_name in list_of_files:

 file1=open(file_name ,'r',encoding='utf_8')

 i=i+1

 docID=i

 files_dict[docID]=file_name

 line =file1.read()

 index =tokenization(line)

 if method=="-rsw":

 termsw=removestopword(terms)

56

 #termsw=terms

 keywords=(termsw)

 index =keywords

 elif method=="-stm":

 stem_terms=[stem(x) for x in terms]

 keywords=(stem_terms)

 index =keywords

 elif method=="-rsw-stm":

 termsw=removestopword(terms)

 stem_terms=list([stem(x) for x in termsw])

 keywords=(stem_terms)

 index =keywords

 else:

 keywords=index

 totalterms.extend(terms)

 for term in totalterms:

 posting[term][docID]=index.count(term)

#--

def writing_filenames():

 """store document information in a binary file"""

 file3=open('info.txt','wb')

 pickle.dump(files_dict,file3)

 file3.close()

#--

def writing_inverted_index():

 global filename

 file2=open(filename,'w',encoding='utf_8')

 for term in posting.keys():

 post_file=[]

 for post in posting[term].items():

 docid=str(post[0])

 tf=str(post[1])

57

 x=docid+':'+tf

 post_file.append(x)

 xxx=(term,'#',';'.join(post_file))

 file2.writelines(xxx)

 file2.write('\n')

 file2.close()

def main():

 global filename

 stopwordlist()

 print(time.clock()- start_time,"seconds")

 inial_indexing()

 print(time.clock()- start_time,"seconds")

 writing_filenames()

 print(time.clock()- start_time,"seconds")

 print('The inverted index has been created with

name:',filename)

if __name__ == "__main__":

 main()

• Query and Document Retrieval (Second file)

#indexing processing for the corpus and building the

inverted index file

#Author: Zaianb Albujasim.

#Date: 5/5/2014.

#Description:

#input: An inverted index file and a user's query

A list of document relevant document

"""

Methods: firstly: the program starts by uploading the

inverted index.

Secondly: apply indexing process to a user's query

1- Tokenization (split text into tokens using white space

as a separator)

2- Stop word removal (remove the common words which don’t

consider relevant to user's query

3- Stemming (using ISRIStemmer) (find roots for Arabic

words)

4- Inverted index: is a dictionary includes all distinct

terms in the corpus with their docid and a number of

occurrences)

58

3- User should select one of the weighting methods to rank

the return document by their similarity from highest to

lowest one.

Options:

 We have implements 3 weighting method to rank the out put

 ("Choose one of the ranking methods to ranking the

retrieved result"

 "1:TF(term frequency)"

 2:TF_IDF"

 3:TF_IDF based on normalization"

Limitation:

1- The location of the inverted is hardcoded.

2- The program does not provide a way to display the text

of relevant file. It only provides a list of document that

contain the user’s query terms.

"""

files_dict={}

posting=defaultdict(dict)

index=defaultdict(dict)

stopword=[]

Q_terms=[]

query=''

ranking_method=0

def tokenization(text):

 cleanterms=[]

 punctuation='-_.,!#$%^&*();:\n\t\\"?{}[]<>+=|/؟.'

 text=normalization(text)

 # we have used Regular expressions module to process

text

 text=re.sub(r'[a-zA-Z0-9]','',text) # remove letters

and numbers

 text = re.sub(r'[^\w\s]','',text)

 text= re.sub(" \d+", "", text)

 #x=re.sub (r'[-_.,!#$%^&*();:\n\t\\\"?{}[]<>]','',term)

 Text = re.sub("[[", "اآاٱإأ ", text) # normalize "أ"

forms

 text = re.sub("ى", "ي", text) # normalize "ي" forms

 text = re.sub("ه", "ة", text) # normalize "ة" forms

 terms = text.split() # split text into a lists of

strings

 for term in terms:

 x=term.strip(punctuation)

 cleanterms.append(x)

59

def stem(word):

 """the function function uses IRSI stemmer to stem

word"""

 st = ISRIStemmer()

 stem_w=st.stem(word)

 return(stem_w)

#--

def stopwordlist():

 """this function for loading stop word list form stop

word file and stored as a list"""

 global stopword

 stop_wordfile=open('stop.txt','r',encoding='utf_8')

 for line in stop_wordfile.readlines():

 for sw in line.split():

 sw=sw.strip('\n')

 stopword.append(sw)

 stop_wordfile.close()

 return stopword

#--

def indexing_query(q):

 global stemming

 #split the terms of the query using defualt spliter

(white spaces)

 q_terms=tokenization(q)

 print(q_terms)

 if(stemming =='2'):

 q_terms=list(stem(t) for t in q_terms)

 return q_termsdef readinginvertedindex():

#--------------------------------------

def reading_files_info():

60

uploading document information such as docid, doc_title

 global n

 global files_dict

 file1=open('D:\Python33\info.txt','rb')

 files_dict=pickle.load(file1)

 n=len(files_dict)

 print('n=',n)

 file1.close()

#--

def readinginverted_index():

 dictinteger={}

 global inverted_file

reading the inverted index to dictionary

 file2=open('D:\Python33\ invertedindex-

basic.txt','r',encoding='utf_8')

 for line in file2:

 postlist=[]

 dictlist={}

 dictinteger={}

 line=line.rstrip()

 term, postlist = line.split('#')

#term|postinglist

 #print('term:',term,'postlist:',postlist)

 postlist=postlist.split(';')

#postings={'docId1:tf,docid2:tf}

 dictlist=dict([x.split(':')for x in postlist])

#postings={'docId1', 'pos1,pos2'}

 #print(dictlist)

 for key, value in dictlist.items():

 key1=int(key)

 value1=int(value)

 #print(term,key,value)

 dictinteger[key1]=value1

 #print(dictinteger)

 index[term]=dictinteger

 return index

 file2.close()

#-------------------------------------

def term_weight(term,docid):

 global posting

61

 """return the weight of a term within a document

 if the term is not found in the document return 0"""

 if docid in posting[term]

 tw=math.log10(posting[term][docid])

 else:

 tw=0

 return tw

#--

def term_frequency(term,docid):

 global posting

 """return the term frequency """

 if docid in posting[term]

 tf=posting[term][docid]

 else:

 tf=0

return tf

#--

def doc_frequency_per_term():

 """for each term in the index ,count the number. Of

documents that contain the term and store the value a

doc_frequency[term]."""

 global df

 for term in posting:

 lenght=len(posting[term])

 df[term]=lenght

def TF(query,docid):

 global norm

 global posting

 sum1=0.0

 for term in query:

 if term in posting:

 sum1+=term_weight(term,docid)

 Relevance=sum1

 return Relevance

#***method2********

def TF_IDF(query,docid):

 global length

62

 global posting

 sum1=0.0

 for term in query:

 if term in posting:

 df1=df[term]

 sum1+=IDF(term)*term_weight(term,docid)

 Relevance =sum1

 return Relevance

#*************************************method3**************

def TF_IDF_NORM(query,docid):

 global length

 global posting

 """Return the cosine similarity between query and

document id"""

 sum1=0

 for term in query:

 if term in posting:

 df1=df[term]

 sum1+=IDF(term)*term_weight(term,docid)

 Relevance =sum1

 Relevance =math.cos(Relevance/norm[docid])

 return Relevance

 #--

def IDF(term,df1):

 '''compute the inverse document frequency of term

 if term in posting:

 t_idf=math.log10(n/df1)

 else:

 t_idf=0

return t_idf

#--

def search_VSM(q_terms,postinglist):

63

 #global Q_terms

 global ranking_method

 global rank_documens

 relevant={}

 """the user enter the query in a textbox and search

function return a list of document

 in decreasing order"""

 """find the document Id containing all query terms by

intersect the posting list for

 each term and return a postinglist for all term in a

query"""

 print(postinglist[term].keys() for term in q_terms)

 rel_IDs =reduce(end_[set(postinglist[term].keys()) for

term in q_terms])

 print('The result in decreasing order::')

 print('ranking_method:',ranking_method)

 if not rel_IDs:

 print("Sorry,We couldn't find a matching document

for your query")

 else:

 print(rel_IDs)

 if(ranking_method=='1'):

 for docid in rel_IDs:

 relevent[docid]=TF(q_terms,docid)

 rank_documens=sorted(rel.items(),key=lambda

t:t[1],reverse=True

 elif (ranking_method=='2'):

 for docid in relevant_doc_IDs

 relevent[docid]=TF_IDF(q_terms,docid)

 rank_documens=sorted(rel.items(),key=lambda

t:t[1],reverse=True)

 elif (ranking_method=='3'):

 for docid in relevant_doc_IDs

 relevent[docid]=TF_IDF_NORM(q_terms,docid)

 rank_documens=sorted(rel.items(),key=lambda

t:t[1],reverse=True)

 print_result(rank_documens)

 def main():

64

 df= defaultdict(float)

 global posting

 global ranking_method

 print('enter the inverted index file')

 inverted_file=input('enter the inverted index file:')

 stemming=input('Select 1 or 2 for inverted index method

:1 basic 2: with indexing : ')

 print("Choose one of the ranking methods to ranking the

retrived result")

 print("1:TF(term frequency)")

 print("2:TF_IDF")

 print("3:TF_IDF based on normalization")

 ranking_method=input("Select the number of the ranking

method:")

 # uploading the Inverted Index to Posting list

 posting=reading_inverted_index()

 #uploading the document collection information such as

the name and DOCID

 reading_files_info()

 while(1):

 text=input('what you would like to

search:')

 Q_terms=indexing_query(text)

 #print the number of documents in the collections

 print('the number of documents in the courpous:',n)

 doc_frequency_per_term()

 if(ranking_method=='3'):

 #call norm function to find the length for

documents in the courpus

 norm(files_dict,posting)

 search_VSM(Q_terms,posting)

 if __name__ == "__main__":

 main()

65

Vita

Name: Zainab Majeed Albujasim

Place of Birth: Iraq, Babylon

Education: University of Babylon

 Iraq, Babylon

 B.Sc. in Computer Science (2003-2007)

 University Of Kentucky

 Lexington, Kentucky

 Master in Computer Science (2012-2014)

Professional: University of Babylon

 Assistant Programmer (2007-2010)

	Search Queries in an Information Retrieval System for Arabic-Language Texts
	Recommended Citation

	Acknowledgments
	TABLE OF CONTENTS
	List of Figures
	List of tables
	1 Chapter One: Introduction
	1.1 The Characteristics of the Arabic Language
	1.2 Arabic IR Challenges and Techniques.

	2 Chapter Two: Information Retrieval Models
	2.1 The Definition of Information Retrieval
	2.2 Information Retrieval Models
	2.2.1 The Boolean Model
	2.2.2 The Probabilistic Model
	2.2.3 The Language Model
	2.2.4 The Vector Space Model
	2.2.4.1 Assigning Term Weight in the Vector Space Model
	2.2.4.1.1 Term – Count Model (TF Only) (Naïve Approach)

	where the () is the weight of a term t in a document d.
	2.2.4.1.2 IDF: Inverse Document Frequency
	2.2.4.1.3 TF-IDF
	2.2.4.1.4 Vector Space Model Based on Normalization

	3 Chapter Three: Implementation of IR System Using Vector Space Model
	3.1 Tools
	3.1.1 The Programming Language
	3.1.2 Arabic Keyboards

	3.2 Data Set Collection
	3.3 Lexical Processing
	3.3.1 Tokenization
	3.3.2 Text Normalization
	3.3.3 Stop Word Removal
	3.3.4 Stemming Process
	3.3.4.1 Arabic Stemming Algorithms
	3.3.4.2 The ISRI Arabic Stemming Algorithms

	3.4 Data and File Structure of Information Retrieval
	3.4.1 Inverted Index

	3.5 Query Processing
	3.6 Phrase Query

	4 Chapter 4: Experiment and Evaluation
	4.1 Building the Inverted Index
	4.2 Evaluation methodology
	4.3 Results
	4.3.1 Precision – Recall Percentage Tables
	4.3.2 The Effect of Stemming Vs. Non- Stemming

	5 Chapter Five: The Default Search in Open Journal System
	5.1 Public Knowledge Project (PKP)
	5.2 Open Journal Systems (OJS)
	5.3 Open Journal Systems as Repository
	5.3.1 OJS Submission and Editorial Process

	5.4 The Default Search of Open Journal System
	5.5 Experiment

	6 Chapter Six: Conclusion and Future Works
	6.1 Conclusion and Summary of the Experimental Results
	6.2 Future works

	References
	Appendix
	Vita

