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ABSTRACT OF THE THESIS 

 

 

 

SEARCH QUERIES IN AN INFORMATION RETRIEVAL SYSTEM FOR ARABIC-

LANGUAGE TEXTS 

 

Information retrieval aims to extract from a large collection of data a subset of 

information that is relevant to user‘s needs. In this study, we are interested in information 

retrieval in Arabic-Language text documents. We focus on the Arabic language, its 

morphological features that potentially impact the implementation and performance of an 

information retrieval system and its unique characters that are absent in the Latin 

alphabet and require specialized approaches.  Specifically, we report on the design, 

implementation and evaluation of the search functionality using the Vector Space Model 

with several weighting schemes. Our implementation uses the ISRI stemming algorithms 

as the underlying stemming technique and the general Arabic stop word list for building 

inverted indices for Arabic-language documents. We evaluate our implementation on a 

corpus consisting of selected technical papers published in Arabic-language journals. We 

use the Open Journal Systems (OJS) from the Public Knowledge Project as a repository 

for the corpus used in the evaluation. We evaluate the performance of our implementation 

of the search using a classic recall/precision approach and compare it to one of the default 

multilingual search functions supported in the OJS.  Our experimental analysis suggests 

that stemming is an effective technique for searches in Arabic-language texts that 

improves the quality of the information retrieval system. 

 

Keywords: Open Journal, Arabic language, Vector Space Model, Information retrieval, 

Ranking schemes 
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1 Chapter One: Introduction 

This study is concerned with the search component of Information Retrieval (IR) systems 

for Arabic texts. Finding relevant information in an ever-growing amount of Arabic data 

is important, but this process presents unique challenges that IR systems based on other 

languages have not addressed. One of the goals of all IR systems is to make locating 

relevant information as accurate and efficient a process as possible.  The existing 

solutions depend on the data collection‘s character (structured or unstructured), type 

(text, image, video, music), format (digital or non-digital, alphabet, encoding, language), 

volume (artifact, document, journal, library or the Internet), and purpose (information 

that provides evidence, relations and context, or data used in inference). 

Research in IR has intensified over the last three decades. A lot of researchers‘ efforts 

have been devoted to developing more powerful IR models. The focus on IR has become 

even more prominent since the arrival of the Internet, which led to an exponential growth 

in the sheer amount of digital documents. Many of these studies, however, have focused 

exclusively on English documents, while IR that focuses on Arabic documents has 

remained a relatively neglected field. In the last decade, however, interest in Arabic IR 

has grown tremendously, leading to the development of new techniques and algorithms. 

Several factors have contributed to this recent interest in supporting technologies for the 

Arabic Language. Arabic is a major world language: it is the official language for twenty 

countries and the mother language of more than 300 million people [Farghaly, and 

Khaled ,Shaalan,2009].  For that reason, IT companies are interested in attracting Arabic 

users to help build a global online communication environment that supports 

multilingualism. Clearly, economic, cultural and security issues are all contributing to the 

international interest in the development of Arabic-related technologies.  

The general goal of this thesis is to compare a stemming-based approach to search 

queries with the language-agnostic search tools that are available in the Open Journal 

System (OJS) Project, the open source system for collecting and editing scientific 

journals. Our hope is that this research will lead to better methods of organizing 
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collections of articles written in the Arabic language and will provide users with the best 

utilities for building inverted indexes for search queries.   

We build a search and indexing component for an IR system for Arabic-language texts 

using the vector space model. We use the inverted index technique that is useful in 

several other techniques such as stemming and stop word removal. We use the 

Information Science Research Institute‘s (ISRI) stemmer module to stem the Arabic 

words. Finally, we evaluate the proposed system using the precision and recall method, 

and we compare these results to those of the OJS‘s default search function for Arabic 

content.   

In our development, we have used Python version 3.3 as the programming language. 

Python is an open source and general purpose language that has many modules that 

support the specific tasks of our study. We use UTF_8 encoding for our dataset and 

queries. The Python environment (version 3 and above) supports UTF_8 encoding.  In 

our implementation we have used the default dictionary data structure for building the 

inverted index. (defaultdict ) is a specialized data type container in the collection 

module. (defultdic t) is a hash table data structure.  We have also used the 

nltk.stem.isri  stemming module in Python as an Arabic stemmer. The 

nltk.stem.isri  module is one of the nltk  package modules.  We have used the 

regular expression module (re ) for the normalization process (removing vowel signs 

from an Arabic word). 

The following section starts with a brief description of the Arabic language and focuses 

especially on features of the language that are potentially relevant to information retrieval 

systems.  We then describe the basic models for supporting search queries.   

1.1 The Characteristics of the Arabic Language  

Arabic is one of the most ancient languages in the world and remains a major language 

today. It belongs to the Semitic language family, which includes Akkadian, Aramaic, 

Ethiopic, Hebrew, Phoenician, Syriac, and Ugaritic [Moukdad, 2004]. Arabic is the 
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official language in the Arab world as well as the religious language for Muslims 

throughout the globe, since it is the language of Islam‘s holy book, the Quran. In 

addition, it is one of six major languages represented by the United Nations. 

 The Arabic language can be classified into Classical Arabic (CA) and Modern Standard 

Arabic (MSA). CA refers to the ancient form of Arabic used in the Quran and other 

religious books. MSA is the common writing form and the official language for 

communication in the Arab world today. It is used in schools, media, magazines, 

scholarly journals, and newspapers [Al-Maimani, Naamany, and Abu Bakar, 2011]. CA 

is a stable language that has its own style and vocabulary and has proven immune to 

major changes for over fifteen centuries. Arabic people can comprehend CA with relative 

ease [Farghaly and Khaled, 2009]. At the same time, Arabic is highly diglossic: each 

Arabic country has three or more variants of spoken Arabic that are used in informal 

situations. Each informal dialect has its own word pronunciations and vocabularies 

[Albalooshi, , Nader, and Al-Jaroodi, 2011].  

The Arabic Alphabet contains 29 letters counting ―Alhmeza‖ (pronounced like the ―a‖ 

in‖ apple‖), which, in some cases, behaves as a diacritic. Table 1-1 shows the Arabic 

letters and their names. An Arabic text is written horizontally from right to left; however, 

numbers in Arabic are written from left to right as shown in figure 1-1 below. Arabic 

letters undergo slight modifications when they are combined within a word.  Some letters 

may have one or more written forms depending on its position within a word, while other 

letters may have only one form. For example, ―Alhmza‖ is written in the same form 

regardless of its position in a word. Some letters have two, three, or four forms. For 

instance, the letter ―ع‖ has four forms ( عـــ, عع, ـع,  ) [Molijy, Ismail, and Izzat, 2011]. 

The Arabic alphabet primarily consists of consonants. Vowel signs are written above or 

under the consonant letters. The diacritic characters such as ―Damma,‖ ―Fathah,‖ ‖kasra,‖ 

and ―shaddah‖ control the pronunciation of a word. Any misuse of these diacritics can 

produce a word with a different denotation. The process of writing a vowel sign over or 

under a consonant letter to indicate the correct pronunciation is called vocalization. In 
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Modern Standard Arabic, vocalization is dropped from text, because an Arab reader can 

easily understand the meaning of a word based on the context. Figure 1-1 shows an 

example of MSA, figure 1-3 shows an example of Arabic text with vocalization (classical 

Arabic), and figure 1-2 shows the English translation of the text in figure 1-1 and figure 

1-3.  

Table 1-1 The Arabic letters and their names and the respective English letter. 

(Notice: some letters have the same shape but are distinguished by dots.) 

 أ ب ت ث ج ح خ د ذ ر
/raa/ /thal/ /dal/ /khaa/ /haa/ /jeem/ /thaa/ /taa/ /baa/ /alif/ 

r th D kh h j th t b a 

 ز س ش ص ض ط ظ ع غ ف
/faa/ /ghain/ /`ain/ /thaa/ /taa/ /thad/ /sahad/ /sheen/ /seen/ /zaa/ 

f gh ` d t d s sh s z 

 ق ك ل م ن ه و ي ء 

 /a/ /yaa/ /waw/ /haa/ /noon/ /meem/ /laam/ /kaaf/ /qaaf/ 

 a Y o h n m l k q 

 

 

 

 

 

 

 

        

Figure 1-1 Modern Standard Arabic text with writing direction indicated. 

(Note: the direction of the written text moves from right to left, while numbers are written 

from left to right. 
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Figure 1-2 The English translation of the text in figures 1-1 and figure 1-3 

 

        

 

  

 

 

 

         

   

Figure 1-3 The same text in figure 1-1 but with vocalization (Classic Arabic). 

                                  

Arabic is a rich and flexible language. Due to the morphological characteristics, tens or 

hundreds of words can be derived from the same root. This is why Arabic has three times 

as many words as English, with approximately five million words that originate from 
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around 11,400 roots. However, only 1,200 roots are typically used in Modern Standard 

Arabic (MSA) [Al-Maimani, Naamany, and Abu Bakar, 2011]. 

Arabic speech mainly consists of verbs and nouns, with the verb typically coming before 

the noun. Arabic verbs have two tenses, past and non-past, and two voices, active and 

passive. Nouns in Arabic have three grammatical cases (nominative, genitive and 

accusative) and two genders (feminine and masculine). For example, the feminine form 

of the Arabic word for teacher is ― المعلمة― or ―mualma,‖ and the masculine word for 

teacher is ―المعلم‖ or ‖mualm.‖  Nouns also have three numbers: singular, dual and plural. 

These and other characteristics of Arabic pose new challenges that demand new solutions 

for information retrieval systems and applications. For example, conjunctions and 

prepositions are written as a continuous stream and linked to a word.  The Arabic phrase 

for ―and she said,‖ for instance, is indexed as a one string: ―  ,or "wa kalt.‖ Ideally ― وقالت

the prepositional letter (―و‖) (―waw‖) should be treated as a stop word and removed from 

the text, but due to the continuous Arabic script, it is considered one string [Mukdad, 

2001]. Likewise, articles, like the definite article ― الـ "  or ―al,‖ are often combined with 

other words.    

Another difficulty with the Arabic language is that most nouns do not follow the basic 

rules for pluralization, which are adding the suffix (―ون‖) (ūn) for a masculine noun or 

the suffix (―ات‖) (―āt‖) for a feminine noun. Many plural nouns are irregular, and some 

words are reshaped to assume the plural form. The plural form can be derived by adding 

or removing letters from words or by adding suffixes and prefixes. For example, the 

plural form of ―كتاب‖ (book) is ―كتب‖. Note that the third letter ("ا") (―alif‖) is removed in 

the plural form. In another example, the plural form of the word ―قلب‖ (heart) is ―قلوب.‖ 

Note that a letter (―و"( (―waw‖) is added after the second letter to make the word plural. 

 

The Arabic language has its own character set; these characters can be represented using 

several encodings such as ISO-8859-6, Windows-1256, and Unicode. Diacritics may be 

encoded as a letter in an integrated encoding, which can be difficult to handle, or as a 

separated encoding, which is considerably easier to manage. However, the encoding 

http://en.wikipedia.org/wiki/ISO-8859-6
http://en.wikipedia.org/wiki/Windows-1256
http://en.wikipedia.org/wiki/Unicode
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alone does not solve the issues that accompany valid representations of Arabic text, 

because the form of each letter changes with regard to its position within a word due to 

the direction of the text and the glyph phenomenon. The digital appearance of Arabic text 

is determined by the ―engine rendering‖ used to display the appropriate format 

[Wikipedia].   

1.2 Arabic IR Challenges and Techniques. 

Several IR techniques have been developed over the last three decades. This section gives 

a brief description of some of the challenges that face Arabic IR and techniques that 

could improve the output of Arabic IR. 

One of the challenges that researchers face when they deal with Arabic text is 

normalization. MAS has some inconsistency regarding diacritics within a word. A word 

may have one or two vocalization marks.  In the past, the placement of these diacritics 

was inconsistent with no set standard.  Thus, it has become necessary to convert the 

processed text into a united form [Farghaly, and Khaled, 2009]. For example, the letter 

―Alif‖ has different forms (―آ‖,‖إ‖,‖أ‖) based on the ―Alhmza‖ mark‘s position below or 

above the letter. Without normalization, these forms are treated differently within a word, 

especially in information retrieval models with different text formats. Some text uses the 

verb for ―read‖ (―أقزا‖ ―aqraa‖) in different formats: ―اقزا‖, ‖إقزأ", ‖أقزأ.‖ Without 

normalization, an IR system is unable to retrieve all of the different formats of the same 

word. The result will only match the format of the user‘s query. This could lessen the 

accuracy of an IR system. On the other hand, normalization increases the level of 

ambiguity. For instance, with normalization, a lot of words are treated the same, even if 

they hold totally different meanings [Farghaly and Khaled, 2009]. The word ―انشَعز‖ or 

―alshaar‖  (―hair‖), for instance, is difficult to distinguish from the word ―انشِعز ‖ or 

―alshiru‘‘ (―poem‖). IR systems that implement normalization will retrieve all documents 

that contain this ambiguous word, regardless of its meaning. In another example, the 

word ―كتت‖ or ―katab‖ holds two meanings. It could be the past tense of the verb ―write,‖ 

or it could be the plural form of the noun ―book.‖ As a result, the ambiguity of many 

Arabic words poses a difficult challenge to IR systems. Still, the meaning of normalized 
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words can be inferred from the context. One of the techniques that has been proposed to 

help solve the problem of ambiguity is the Word Sense Disambiguation technique. This 

technique uses dictionaries and synonyms to extract meaning from surrounding words 

[Al-Maimani, Naamany, and Abu Bakar, 2011]. 

Secondly, Arabic is regulated by a complex morphology that has a significant effect on 

the performance of an IR system. Therefore, stemming must be implemented in every 

Arabic IR system [Darwish, and Douglas, 2007]. Stemming simplifies a word‘s format 

by removing prefixes and suffixes and mapping a word to its root. Basically, there are 

four types of roots in the Arabic language: tri-literal, quad-literal, penta-literal, and hexa-

literal roots. Several stemming Algorithms have been proposed. Light stemming and 

root-based stemming (called aggressive stemming) [Al-Maimani, Naamany, and Abu 

Bakar, 2011] are the most popular algorithms. The light stemming approach works by 

eliminating prefixes and suffixes from a word, while root-based stemming maps a word 

to its root. For instance, the word ― لاستعمبلاتٍم‖, which  means ―for usage,‖ is mapped to 

the root ―استعمم‖, which means ―used,‖ by using light stemming; however, aggressive 

stemming maps it to the root ―عمم‖, which means ―to do‖ [Al-Maimani, Naamany, and 

Abu Bakar, 2011]. 

Stop word removal is another technique that may be used with an IR system. Stop words 

are generally common words that appear most frequently in texts. They don‘t usually add 

significant meaning to the user‘s query and are thus considered irrelevant to the search. 

Stop word classification is based on the characteristics of a language; usually, articles, 

prepositions, and adverbs are considered stop words. Generally, removing stop words 

reduces the size of the index by 20% -30%.  Removing stop words could also improve 

the performance of the retrieval process [El-Khair, 2006]. Stop word lists can be 

classified into two groups: dependent and independent. There are three ways to create a 

stop word list:  by basing the list on the characteristics of the language, by using 

statistical information about the corpus at hand (dependent approach), or by a 

combination of the two means. The first stop word list, created by Fox, includes 421 

words that were suggested based on English word usage [Fox, 1995]. Stop words should 

http://www.wordhippo.com/what-is/another-word-for/nominated.html
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not be selected randomly; they should be selected based on an intimate knowledge of the 

language.   

2 Chapter Two: Information Retrieval Models  

2.1 The Definition of Information Retrieval 

Information retrieval refers to the extraction of user-specified information from 

documents and files, ranging from books to online blogs, journals, and academic 

articles[Manning, Prabhakar, and Hinrich 2008]. The primary objective of IR is 

quickly and precisely retrieving from a collection a subset of information related to 

the user‘s interests [Pierre, Paolo and Padhraic, 2003]. According to Hiemstra, IR 

technology is a ―combination of experiments and theory.‖ Experiments are required 

to assess how the technology deals with the rapid growth of information and 

documents, and theoretical models help researchers avoid deductive reasoning during 

such experiments. 

The importance of information retrieval has vastly increased since the appearance of 

the World Wide Web (www) and its expansive volume of electronic documents. IR 

has become a part of many people‘s daily lives.  While ordinary users may not be 

familiar with the term IR, they are certainly well-acquainted with web-based search 

engines like Google, Yahoo, Ask, etc. Today, IR is very prominent, and it has become 

an exciting research field because of its pervasive presence in day-to-day life. [Liddy, 

2005]. 

The goal of any IR system is to respond to user-requested information by providing 

reference documents that meet the desired criteria. Different factors determine 

whether or not a document is relevant to a user‘s query. One of these factors is the 

documents themselves—the scope of their content, how they are written, etc.  The 

user is also an important factor (e.g. user knowledge, the reason for the search, etc.) 

[Raghavan, and Michael, 1986]. Because a document‘s relevance to a user‘s interest 

is subjective and depends solely on the user‘s judgment, IR systems may not be 100 
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percent accurate. What an IR system can do, however, is propose methods that can 

estimate the efficiency of the results and whether they meet the user‘s information 

needs based on his or her query [Raghavan, and Michael, 1986]. Relevancy is 

difficult to measure. Many factors can determine a result‘s relevance, but one of the 

most important factors is user satisfaction. If the user ―likes‖ a document, the 

document will be considered relevant; if not, it will be considered irrelevant. 

Therefore, researchers are constantly trying to find new methods for defining the 

relevance of documents to a user‘s query. There are many theories related to 

document relevance called formal models (Hiemstra, Djoerd 2009). IR models differ 

from one another based on the various ways they compute the weight of matching 

documents. Each IR model serves some purposes better than others. Despite these 

differences, every IR system should maintain three basic operations: document 

representation, query formulation, and a process for matching queries with documents 

[Hiemstra, Djoerd 2009]. Figure 2-1 illustrates the basic operation of IR. The square 

shapes represent data, and the oval shapes represent processes.  

First, the process for document representation is known as the indexing process. 

Typically, the indexing process runs offline, and it does not require user interaction. 

Second, the query formulation process transforms a user‘s information needs into a 

format that is recognized by the system (Boolean format, free text format, etc.). A 

user may try several queries until he/she gets satisfactory results. This process is 

called feedback. Finally, the matching process finds and ranks documents that contain 

the user‘s query terms. Usually, statistical information is used to rank documents 

from the highest to the lowest matching score, hopefully reducing the time that the 

user spends sifting through all of the returned documents [Hiemstra, Djoerd, 2009].   
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Figure 2-1 General information retrieval process. (Hiemstra, Djoerd, 2009) 

 

2.2 Information Retrieval Models  

In this section we give a brief description of well-known information retrieval models. 

2.2.1 The Boolean Model  

The Boolean model is the first IR model that requires structural language for a query.  It 

uses the logical operations ―AND,‖ ―OR,‖ and ―NOT.‖ The Boolean model is categorized 

as an exact matching model.  An exact matching model retrieves either all matching 

documents or no matching documents. In a large document collection the results might 

exceed one thousand documents, or there might be zero results if no matching documents 
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are found [Manning, Prabhakar, and Hinrich 2008]. The Boolean model requires that the 

user have some knowledge of Boolean operations; therefore, not all users are able to 

attain satisfying results with this model. Additionally, the Boolean model has no way of 

favoring one document over another. In other words, it does not support document 

ranking.  For that reason, it is less popular than other models.  It is also time consuming, 

since it retrieves all matching documents, which in a large data collection could mean 

thousands of results. On the contrary, statistical models provide a score that indicates 

how well a document matches a query. In essence, the Boolean model builds a matrix; 

the rows of the matrix are the key terms, and the columns are the documents themselves. 

Each cell in the matrix contains either a zero or a one. Zero indicates that the term does 

not occur in the specified document, and one indicates that the term is present [Signal, 

2001]. 

2.2.2 The Probabilistic Model  

The Probabilistic model was originally proposed by Maron and Kuhans in 1960 [Baldi, 

Paolo, and Padhraic, 2003]. Since then, the proposed model has undergone several 

improvements and refinements. Today, several versions of the probabilistic model are 

available. The first version of the model, BM1 , was introduced by Robertson-Sparck 

Jones in 1976. In 1998, version BM5  was proposed by Robertson et al as a refinement of 

the first version [Baldi, Paolo, and Padhraic, 2003]. The basic idea of this approach is to 

define the question of a document‘s relevance to a query as a probabilistic problem. The 

model uses query terms and documents to measure relevance. Bayes‘ theory is used to 

compute the probability of a document‘s relevance or irrelevance.  This requires an initial 

set of predetermined relevant and non-relevant documents to calculate the probability of a 

new document‘s relevance; thus, it treats relevancy as an a priori problem. Estimating the 

probability of a document‘s relevance using a set of predefined documents, however, is 

not a practical solution, since these predefined sets may not adapt well to the demands of 

new queries. Therefore, computing the occurrence of query terms is important to 

estimating the probability of a retrieved document‘s relevance. [Baldi, Paolo, and 

Padhraic, 2003].    
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 The measure of probability can be defined as query q containing            words and 

document d. 

                                                            ..   2-1) 

In the probabilistic model, the parameter          needs to be enumerated. There are two 

ways of estimating the p quantity. The first method is to use a large data collection that 

includes millions of queries and millions of documents in order to compute the 

probability of each term occurring in a relevant document. The other method is to 

estimate the probability for a particular query based on which document is relevant and 

which one is not. 

The positive aspects of this model are its strong theoretical foundation and its ability to 

rank documents by their probable relevance. On the other hand, the negative aspects of 

the model are that it treats probability as a binary condition, its term independency 

assumption is abstract, and it initially lacks relevance data [Liddy, 2005]. 

2.2.3 The Language Model  

The language model was proposed by Ponte & Croft in 1998.  The basic idea of this 

model is that it estimates a document‘s probability of generating a query instead of 

estimating the probability of a document‘s relevance. This model is also known as the 

Likelihood retrieval model. The language model uses other IR models and techniques 

such as probabilistic models and n-gram analysis. Over the years, several refinements 

and improvements have been developed to support and enrich the language model 

[Liddy, 2005]. 

2.2.4 The Vector Space Model  

Salton (1971) proposed a new statistical model that has proven more effective and 

flexible than other IR models in some regards. In this model, a voluminous collection of 

documents is represented in multi-dimensional space, with thousands or millions of 

dimensions for a large collection. The terms of the documents become the dimensions, 

while the documents themselves are represented by points in space [Singh and Sanjay, 



14 

 

2012]. A document and a user‘s query are together represented as vectors (see figure 2-

2). Since the number of terms in a document is limited, the vector of the documents can 

be very sparse. This sparseness helps reduce memory storage. Using the cosine similarity 

measurement of the angle between query and document vectors, this model measures the 

similarity between a query and a document. Experiments prove that the cosine similarity 

measurement is the optimal coefficient when compared to other similarity measurements 

such as Euclidean distance [Manning, Prabhakar, and Hinrich 2008] which could 

generate long distances between document vectors of different lengths, even if they share 

the same terms. On the contrary, the similarity in a cosine measurement is 1.0 for 

identical vectors and 0.0 for orthogonal vectors. Thus, the cosine is the best fit for 

measuring the similarity between two vectors. In addition, we could use the inner product 

of two vectors as another similarity measurement, but this would require that all vectors 

have identical lengths. The inner product of vectors of the same length is the same as the 

cosine measurement [Singhal, 2003]. 

 

 

 

 

 

 

 

 

Figure 2-2  Representation of a query and document in the vector space model. 

 (Hiemstra, Djoerd, 2009). 
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2.2.4.1 Assigning Term Weight in the Vector Space Model 

The term-weighted vector space model computes the frequency of a term within a document. 

Several weighting schemas have been developed to compute the weight of terms in a 

document. 

 Term – count model (TF only) (naïve approach). 

 TF-IDF (term frequency-inverse document frequency). 

 Vector space model based on normalization.  

2.2.4.1.1 Term – Count Model (TF Only) (Naïve Approach) 

In Boolean vector space, a term in a document vector is represented as a 1 if it is 

present in a document; otherwise it is represented as a 0. But this approach to vector 

representation does not take into account the fact that some terms appear more frequently 

in a document than others. If a query term appears multiple times in a document, then it 

can be assumed that this document is more relevant to a user‘s query than others.  For this 

reason, term frequency (TF) is important in the representation of a document vector. TF 

helps rank a document with multiple occurrences of a query term over a document with a 

single occurrence. A document with 10 occurrences of the term is more relevant than a 

document with one occurrence of the same term. However, it is not simply ten times 

more relevant; therefore, various methods have been used to modify TF [Manning, 

Prabhakar, and Hinrich 2008] 

     {
                         

 
                       

………… (2-1) 

where the ( t,dw  ) is the weight of a term t in a document d. 

 

2.2.4.1.2  IDF: Inverse Document Frequency 

Inverse document frequency (IDF) was introduced to solve the problem of term 

equivalence. IDF is the proportion of the total number of documents in a collection over 

the number of documents containing a term [Manning, Prabhakar, and Hinrich 2008]. 

Naturally, not all terms in a document have the same importance regarding a user‘s 
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query. Common words, for example, are usually excluded from a user‘s query. On the 

other hand, rare terms in a query are considered very important.  IDF solves the problem 

of term equivalence by giving a higher weight to more meaningful words and a lower 

weight to more common words.  For instance, a weight of 0 might be given to a stop 

word. As a result, IDF offers another potential advantage, in that it can be used as a filter 

for stop words in a document collection [Manning, Prabhakar, and Hinrich 2008]. 

         
 

   
  ………………………….. (2-2) 

 

Where df is the document frequency  

N is the number of document in the collection  

df <=N. 

 

2.2.4.1.3 TF-IDF 

TF-IDF combines two quantities: the document frequency (df) (the number of documents 

in which a specified term appears) and the inverse document frequency. IDF gives more 

attention to rare terms than to common words. Combining TF and IDF, therefore, 

increases the weight of the common terms in a document, while at the same time 

increasing the weight of rare terms in the collection. IDF decreases as the number of 

documents that contain a specified term increases [Manning, Prabhakar, and Hinrich 

2008]. 

 

         ∑    .            …………….(2-3) 

                             ………………… (2-4) 
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2.2.4.1.4 Vector Space Model Based on Normalization  

Salton and McGill (1983) first proposed a vector space model that is based on 

normalization [Pierre B., F. Paolo and S. Padhraic, 2003]. This model 

measures the cosine of the angle between two vectors in m-dimensional space.  A vector 

can be normalized (given a length of 1) by dividing each of its components by its length.  

Here we use the L2 norm. 

    √∑   
 

 ………………… (2-5) 
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3 Chapter Three: Implementation of IR System Using Vector Space Model 

In the previous chapter, we described the vector space model and the possible weighting 

schemes that we can use as a similarity measurement in implementing our IR system. 

Figures 3-1and 3-2 show the architecture of our implementation. In the next sections, we 

describe the elements of our design. Section 3.1 describes the steps of Arabic text 

processing; Section 3.1.1 describes the tokenization process; Section 3.1.2 describes the 

normalization process; Section 3.1.3 describes the general Arabic stop list, its content, 

and the stop word removal process; Section 3.1.4 goes through the stemming process; 

Section 3.1.4.1 gives a brief description of the available Arabic stemming techniques and 

algorithms; Section 3.1.4.2 provides details about the ISRI stemming algorithm; Section 

3.2 describes indexing data structures; Section 3.5.1 describes the inverted indexing 

technique; Section 3.6 describes query processing; and Section 3.6.1 describes the type 

phase query that works with the vector space model.    

 

 

 

 

 

 

Figure (3-1) The architecture design of the indexing process 

 

 

 

Figure 3-1 The architecture design of indexing process. 
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Figure 3-2 The architecture design of query processing and document ranking. 

(Note: we do not draw the index process steps for the user‘s query, since it is the same in 

the indexing process figure 3-1) 

 

3.1 Tools 

3.1.1  The Programming Language  

We use Python as the programming language because of its outstanding support for 

natural language processing (NLP). Python has a variety of packages and models that 

support our specific tasks. For example, the Natural Language Toolkit (NLTK ) is one of 

the packages that supports NLP with various functions, from tokenization to advanced 

NLP techniques like clustering and textual classification. The NLTK was originally 
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developed by the Department of Information Science at the University of Pennsylvania 

and has been further developed by many other contributors. Python (version 3 and above) 

is also ideal for our project because it supports Unicode encoding for the ―str‖ type 

container and uses Unicode in its source code. These features make Python more suitable 

for representing Arabic characters. Unicode assigns a number called a ―code point‖ to 

each character. In Python, each code point is represented as ―/uxxxx‖, where ―xxxx‖ is a 

four digit hexadecimal number [Bird, Ewan, and Edward, 2009].   

Despite the fact that the Unicode string in Python is manipulated, storing the Unicode 

string in a text file or displaying it on a terminal requires that it be encoded as a stream of 

bytes. There are two ways of encoding a stream of bytes in Python.  The first involves 

ASCII and Latin2, but this method can only cover a small range of Unicode characters.  

The other way to encode a string of bytes in Python is to use a multibyte method, such as 

UTF_8, which covers a full range of Unicode characters. This creates an additional 

problem when we try to process an Arabic string using different Python models: we 

cannot get the original format of the string. Some models display the string as Unicode 

numbers, while others display a string in an invalid format [Bird, Ewan, and Edward, 

2009]. 

Python provides two mechanisms for decoding and encoding that help deal with text files 

and terminals. Each text file has its own encoding; in the decoding process, Python 

converts text file encoding to Unicode, while the encoding process converts Unicode to 

the proper encoding when the text is stored in a text file. 

3.1.2 Arabic Keyboards 

Arabic keyboards support both Arabic and Roman characters. Each key controls two 

characters: an Arabic letter and a Roman letter. Figure 3-3 shows an Arabic keyboard. 
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Figure 3-3  Our Arabic keyboard. On each key is marked two characters: an Arabic letter 

and a Roman letter. 

3.2 Data Set Collection  

The dataset we have used in our implementation of the Arabic IR is a collection of 100 

Arabic documents with an average size of 12 KB and an average number of 5 pages. The 

articles were collected from three different Arabic magazines. They are mainly academic 

articles that cover several disciplines, including Arabic literature, philosophy, 

psychology, engineering, biology, art, geography and physics.  

The name and the websites for these magazines are: 

1- Babylon Journal of Applied and Pure Sciences. 

Link:  http://repository.uobabylon.edu.iq/applicable.aspx 

2- Babylon Journal for Humanities. 

Link: http://repository.uobabylon.edu.iq/humanities.aspx 

3- Lisaan Al-Arab Magazine 

   http://lisaanularab.blogspot.com/. 

 

 

http://repository.uobabylon.edu.iq/applicable.aspx
http://repository.uobabylon.edu.iq/humanities.aspx
http://lisaanularab.blogspot.com/


22 

 

3.3 Lexical Processing  

In this section we describe the steps for indexing the document collection and storing the 

indexer as an inverted index 

 in a text file. Let D= {d1, d2, d3…, dn} be the collection of the documents, where N is the 

number of documents in the collection. Documents are stored as text files using UTF_8 

encoding.  

3.3.1 Tokenization  

Tokenization is the process of extracting terms and keywords from documents, 

eliminating punctuation and special characters.  In Arabic, a word is a set of characters 

that are linked together through complex mutation and are separated from other words by 

a white space [Manning, Prabhakar, and Hinrich 2008]. Although white spaces are 

generally used as string separators within an Arabic text, they also carry other 

implications, because prepositions and pronouns are written in a continuous string with 

the words they modify, producing complex tokens. This problem could be solved using a 

good stemming algorithm.  

3.3.2  Text Normalization 

 Normalization is a preprocessing stage that employs NLP. The general aim is to clean up 

a text by removing punctuation and numbers. In English documents, normalization 

converts capital letters to lowercase letters. Therefore, normalization in English is 

relatively easy, especially considering how many packages and tools there are that 

support English and are available in most programming languages. Unfortunately, this is 

not the case for Arabic. In Arabic, normalization eliminates vocalization marks and 

converts the text into a more unified form. There are few premade tools available that 

support Arabic normalization.  

In our implementation we have used the regular expression (re) Python model to remove 

the vocalization marks from the text. We have tried to normalize the different forms ( ,إ, أ

 Also, the final letter‖ِ‖ is changed .)‖ا―) alif‖ to the standard form― "ا"  of the letter (ٱ, آ, ا

to the form (―ي‖  ( and the letter ( "ي")  to (―ح‖). 
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3.3.3 Stop Word Removal 

In our implementation we have used the Arabic general stop list without any additions. 

The Arabic general list was created by Abu El-khair (2006) and is based on the structure 

and characteristics of the Arabic language. It contains all possible words and articles that 

may be considered stop words. The list also contains many categories: adverbs, 

conditional pronouns, interrogative pronouns, prepositions, referral names, relative 

pronouns, transformative verbs, verbal pronouns, and others. Due to Arabic‘s rich 

morphological characteristics, the general Arabic stop word list is triple the size of the 

English stop word list [El-Khair, 2006]. In Arabic, pronouns may have more than one 

form, whether it is feminine, masculine, singular, dual, or plural. For example, the 

pronoun ―these‖ has six forms in Arabic: ― انهات ‖ ―hatan‖ for feminine nominative, ‖هاتين‖ 

―hatean‖ for feminine genitive, ‖ٌذيه‖ ―hethan‖ for masculine nominative, ―ٌذان‖ for 

masculine genitive/accusative, and either ‖ٌؤلاء‖ ―haa'ulaa‖ or  ―اَنئك‖‖ uulaa'ika‖ for 

feminine-masculine. Secondly, pronouns and prepositions are combined [Chen, and 

Fredric, 2002]. Another example of a stop word in Arabic is the Arabic phrase for ―on 

you,‖ which in Arabic is ―عهيك‖; this phrase is one string, and it too has several forms 

based on the pronoun being used: the form ―عهيك‖ ‖aluka‖ for the singular masculine, the 

form ―عهيكي‖ ‖alukee‖ for the singular feminine, the form ―عهيكمب‖ ‖alukma‖ for the dual 

masculine, the form ―عهيكم‖ ―alukm‖ for the plural masculine, and the form ―عهيكه‖ ‖alukn‖ 

for the plural feminine. 

The high frequency of Arabic stop words can adversely affect the weighting process, 

which makes the removal of stop words all the more critical. Stop word removal 

significantly reduces document length, which is reflected in the weighting scheme [El-

Khair, 2006]. According to El-Khair, removing Arabic stop words could reduce the 

indexing process by 30-50% in a large collection. Therefore, using stop word removal in 

the indexing process is an essential step in any Arabic IR system. 
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3.3.4 Stemming Process   

Stemming is a technique that is common to most search engines. Stemming is the process 

whereby morphological variants of words are mapped onto a single root. In the early days 

of IR, when memory was more limited, stemming helped reduce the size of an index. To 

this day, stemming continues to prove its effectiveness on the performance of IR systems 

[Liddy, 2005].   

3.3.4.1   Arabic Stemming Algorithms 

Unlike the English language, which has straightforward stemming rules that are easily 

implemented, the Arabic language is morphologically complex, with many suffixes, 

infixes, and prefixes that are difficult to remove. Indeed, removing suffixes has proven 

unhelpful in Arabic stemming algorithms. Arabic stemming is a challenging issue, due to 

the language‘s complex morphological rules. Words in Arabic are derived from roots. For 

example, the root verb ―كتت‖ ‖katab‖ (―wrote‖) has a long list of derivatives. The word 

 maktop‖ (―letter‖), and― ‖مكتُة― ,katb‖ (―writer‖)― ‖كبتت‖ ,maktaba‖ ( ―library‖)― ‖مكتجخ―

 kotop‖ (books) are all based on the same root word. Therefore, it is important that― ‖كتت―

any Arabic IR system includes a stemming algorithm that maps these different word 

forms to one indexing entry. Several stemming algorithms have been proposed to 

accomplish this, each using different approaches such as manual stemming, which uses 

dictionaries, light stemming, which is based on removing suffixes and prefixes, 

aggressive stemming, which is based on morphological analyses of root words, and the 

clustering approach, which groups similar words in one cluster [Atwan, Ghassan, and, 

2013]. In our implementation we have used The ISRI stemming method, which is part of 

nltk.stem  package from the Python distributions.  

3.3.4.2  The ISRI Arabic Stemming Algorithms 

The IRSI Arabic stemmer is an Arabic stemmer algorithm that was developed by Taghva, 

Elkoury, and Coombs (2005) at the Information Science Research Institute at the 

University of Nevada. It follows the strategy of Khojo‘s Arabic stemmer, with one 

important exception: it does not map the obtained root to the dictionary of existing Arabic 
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roots. Because several modifications have been developed to improve this particular 

algorithm, ISRI  is considered a refinement of Khojo‘s original stemmer.  

In short, the ISRI  Arabic stemmer works as follows:   

As a preprocessing step, two tables are defined; Table 3-1 shows the affixes and diacritics 

that need to be removed from a word as preprocessing steps. The algorithm also works on 

normalized ―alhamza‖ and ―Alalf‖ letters, since these two letters have different written 

forms based on their position in a word. All of these letter forms ("أ ―,‖ئ―,‖ء―,"ئـ‖) 

normalize to one form, which is )―أ‖(. In addition, the letter ―َ‖  ―waw‖ is removed if it 

precedes a word.  After these preprocessing steps, the algorithm stems a word to its two 

or three roots. Figure 3-1 shows the Arabic word patterns and roots with some examples 

of the each pattern. The algorithm follows a particular procedure on finding a word‘s root 

based on a word‘s length. The algorithm then tries to match a word with a pattern (shown 

in Table  3-1 using the length of a word as a key. If the pattern matches the word, the 

relevant root will be returned. If the algorithm does not recognize the pattern of the word, 

it will try to eliminate suffixes or prefixes, one character at a time, and repeat the 

matching procedure until a matching pattern is found. The algorithm attempts to return a 

root with a length of at least three characters. Although the algorithm works well, it fails 

to find the correct roots for some words, especially words that have been adopted from 

other languages and thus do not have an Arabic root. In these cases, the algorithm still 

tries to find a root.  
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Table 3-1 Affix sets   (Taghva, Elkoury, and Coombs (2005)) 

 

 (Note: This table shows the diacritic marks and affix characters that are removed in the 

preprocessing stages of the IRSI algorithm. The letter ―ص‖ in the first row of the table is 

not a diacritic sign; however, it is written as an example of a consonant letter that has a 

diacritic mark on it [Taghva, Elkoury, and Coombs 2005]. 

 

Table 3-2 Arabic patterns and roots (Taghva, Elkoury, and Coombs (2005)) 

Set Description  Examples 

PR4 Length four patterns  فبعم,فعُل,فعهخ,فعبل,فعيم,مفعم 

PR53 Length five pattern and length four 

roots 

تفبعم,افتعم,افعبل,فعبنخ,فعلان,فعُنخ,تفعهخ,تفعيم,مفعهخ

 ,مفعُل,فبعُل,فُاعم,مفعبل,مفعيم,افعهً

فتعم,ف,فعبئم,مىفعم,مفتعم,فبعهخ,مفبعم,فملاع,ثفتعم,ت

 عبني,اوفعم

PR54 Length five pattern and length four 

roots 

 تفعهم,افعهم,مفعهم,فعههً,فعلان,فعبنم

PR63 Length six pattern and length three 

roots 

 استفعم,مفعبنً,افتعبل,افعُعم,اوفعم,مستفعم

PR64 Length six pattern  

Length four roots 

 افىهم,افعلال,متفعم

 

  

3.4 Data and File Structure of Information Retrieval  

The effectiveness of text retrieval depends largely on having the appropriate data 

structure in which to store a text [Baldi, Paolo, and Padhraic, 2003]. Different methods 

have been proposed, including clustering (Salton 1971) and signature files (Faloutsos and 

Set  Description Examples 

D Vocalizations  ٍصُ,صَ,صّ,صِ,صْ,صٌ,صً,ص 

P3 Prefixes of length three  َنم,َال,كبل,ثبل 

P2 Prefixes of length two ال,نم 

P1 Prefix of length one َ,د,ن,ا,ل,ة,ف,س,ِ 

S3 suffixes of length three تمم,ٌمم,تبن,تيه,كمم 

S2 suffixes of length two َ,ن,اد,ان,يه,ته,كم,ٌه,وب,يب,ٌب,تم,كهوي,َا,مب,ٌم  

S1 Suffixes of length one ح,ي,ي,كـ,د,ا,ن 
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Christodoulakis 1984). The Suffix tree and suffix array were introduced by Manber and 

Myers (1990), but these were not capable of storing a large document collection. The 

method that has proven most successful in IR systems uses a data structure called an 

inverted index. The inverted index was proposed by Berry and Browne (1999) and Witten 

et al. (1999) (Baldi, Paolo, and Padhraic, 2003). In this method, each term in a collection 

is mapped to its occurrences in the collection. The set of terms is called a vocabulary (V). 

Each term (t) in the inverted index has a pointer p (t) that points to the posting list or 

bucket, which is a list of all the occurrences of a term (t). The size of the inverted index is 

Ω (|V |), and it can be stored in the main memory [Baldi, Paolo, and Padhraic, 2003]. An 

inverted index can be implemented using a hash table; in this case, the expected time is 

independent of the size of the vocabulary. Posting lists and documents should be stored 

on disk. After obtaining the posting lists for each term, we can combine the posting 

lists using one of the set operations corresponding to the Boolean operation in the query. 

In free text query, the intersection set operation is used to obtain a final posting list for all 

query terms [Manning, Prabhakar, and Hinrich 2008]. 

 

3.4.1 Inverted Index 

An inverted index is an optimized data structure that can be used for information 

retrieval. An inverted index is like a conventional index found in the back of a book that 

maps a key term to a page number [Manning, Prabhakar, and Hinrich 2008]. The basic 

idea for building an inverted index is to keep a dictionary of the unique terms in the 

collection. For each term in the collection, we maintain a list of documents (by document 

IDs) in which the term occurs as well as a number for the term‘s frequency in the 

specified document. This list is called a posting list. The posting list is stored in the 

secondary storage, while the dictionary is stored in main memory [Manning, Prabhakar, 

and Hinrich 2008]. Figure 3-4 shows the structure of an inverted index of two documents. 

In this study we use a Python data structure called defaultdict to store the dictionary, and 

we use Python‘s default dictionary as a data structure for storing the posting list. The 
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Python dictionary is a hash table data structure, which means the lookup operation in the 

Python dictionary is O (1). 

The text should undergo several preprocessing operations before it can be stored in an 

inverted index. Text is typically stored as bytes in a digital document, and bytes need to 

have the correct encoding schemas. For example, the typical encoding schema for 

English text is ASCII; however, Arabic encoding is more complicated.  Arabic text thus 

requires multibyte encoding like Unicode UTF-8 [Manning, Prabhakar, and Hinrich 

2008]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4  Inverted Index of two Arabic documents. 

As shown in Figure 3-4, the terms ―ثروة‖,‖الاهوار‖,‖العراق‖appear in both documents.  

Also, the stop word ―في‖is removed, and the other words ‖هائلة" ,‖طبيعية"appear in doc1; 

only  ―حضاري‖,‖معلم‖ appear in doc2. Other useful information may be extracted from an 
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inverted index. For example, the number of documents that contain a term is the size of 

the posting list for a term. 

 

3.5 Query Processing  

Most IR systems redo all document indexing steps for each user query, including 

tokenization, stop word removal, and stemming. The only difference between document 

indexing and query indexing is that query indexing should be run in real time while a user 

is waiting for the results [Liddy, 2005]. 

3.6  Phrase Query 

The vector space model, by definition, does not support bi-word queries, because it 

represents documents as vectors, which in turn causes the relative order of terms within a 

document to be lost. The computing of the IDF quantity should therefore be extended to 

include bi-word queries. Since indexing cannot be used for phrase query, the vector space 

model offers an alternative for accurately identifying a document with frequently 

occurring terms, only it does not retain the sequential order of the terms [Manning, 

Prabhakar, and Hinrich 2008].  
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4 Chapter 4: Experiment and Evaluation  

4.1 Building the Inverted Index  

In our implementation we provide several options for building the inverted index: the 

basic (without stemming and stop word removal), with stemming (stm), with stop word 

removal (rsw), and with stemming and stop word removal (rsw-stm). The goal of having 

different indexing options is to explore the effect of these indexing techniques on the 

indexing process in terms of time and space.  Further, we investigate their effects on the 

retrieval process. 

Figure 4-1 shows the running time for indexing 100 documents with approximately 

91,900 strings. The basic method (without stemming and stop word removal) was the 

fastest one; it took 2.5 minutes to build the inverted index for the data sets, while the rsw-

stm  took 3.6 minutes for the same data sets.  

 

Figure 4-1 Time for indexing 100 documents with different indexing techniques 
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Figure 4-2 The percentage of reduction in the number of entries for the inverted index for 

100 documents using different indexing techniques. 

The experiment shows that the stemming technique reduces the size of the inverted index 

by approximately 40%. The stop word removal technique reduces the size by 20 %. 

Using both techniques reduces the size to less than half of the original number of entities. 

4.2 Evaluation methodology   

In this study we use a traditional precision /recall method of evaluation. Precision is the 

number of relevant documents retrieved divided by the total number of retrieved 

documents. Recall is the number of relevant documents retrieved divided by the total 

number relevant documents in the database [M.Greenwood, 2001]. 

          
                                    

                                    
…………… (4-1) 

       
                                    

                                       
……………… (4-2) 

In this method, we use the relevance and non-relevance notation to evaluate the 

performance of the system [M.Greenwood, 2001]. The relevance notation plays a central 

role in the evaluation of the IR system [Teufel, Simone, 2007]. IR system evaluation is 

called ―laboratory style‖ in most modern IR systems. This style of performance is easy to 
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control. It consists of three main components:  dataset, relevance decision, and queries 

[Teufel, Simone, 2007]. Usually, the document is considered relevant to the query if it 

contains more occurrences of the user‘s query terms, but in reality the document should 

be considered relevant if it satisfies a user‘s information needs.  

In the evaluation of our experiment we used free text query (query with two words or 

more). One word query makes the output ambiguous, especially with a morphologically 

complex language like Arabic. We prefer free text because it helps eliminate some of the 

unexpected results that are not related to the query search. Free text query also makes it 

easier for the system to determine the user‘s information needs. We evaluated the system 

with different weighting schemes and different indexing options. 

4.3  Results  

In the experiment we use nine queries that have a number of relevant documents in our 

data collections. We calculate the percentage of recall and precision for each output. In 

the next sections we list the results as tables for each approach. 

4.3.1 Precision – Recall Percentage Tables  

 Term-count (TF) (Term Frequency) method (without stop word removal and stemming). 

 

Table 4-1 Shows precision and recall percentage for TF weighting scheme (without stop 

word removal / stemming) 

Query  Precision  Recall 
 %20 %50 انجيئخ انصحيخ  

 %20 %100 انفهسفخ انُاقعيخ  
 %30 %100 انفطزيبد انمزضيخ 

 %40 %60 انشعز انحز
 %40 %70 انتهُث انجيئي 

 %50 %100 انمسزح انقُمي 
 %100 %70 سكبن الاٌُار  

 %50 %20 عهم انىفس
 %100 %70 مسجد انزسُل 
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 Term – count (TF) method with (stop word removal /stemming) indexing. 

 

Table 4-2 Shows precision and recall percentage for TF weighting scheme (with stop 

word removal/stemming). 

 

Query Precision  Recall 
 %90 %70 انجيئخ انصحيخ  

 %100 %30 انفهسفخ انُاقعيخ  
 %100 %100 انفطزيبد انمزضيخ 

 %90 %50 انشعز انحز
 %70 %80 انتهُث انجيئي 

 %60 %80 نقُمي انمسزح ا
 %100 %50 سكبن الاٌُار  

 %80 %40 عهم انىفس
 %100 %100 مسجد انزسُل 

 

 

 (TF-IDF-basic) method without stemming /stop word removal. 

 

Table 4-3  Shows precision and recall percentage for TF-IDF weighting scheme (without 

stop word removal/stemming). 

 

Query Precision  Recall 
 %50 %70 انجيئخ انصحيخ  

 %20 %100 انفهسفخ انُاقعيخ  
 %30 %50 انفطزيبد انمزضيخ 

 %40 %60 انشعز انحز
 %50 %100 انتهُث انجيئي 

 %50 %100 انمسزح انقُمي 
 %50 %50 سكبن الاٌُار  

 %70 %30 م انىفسعه
 %100 %70 مسجد انزسُل 
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 TF-IDF method with stemming /stop word removal indexing. 

Table 4-4 Shows precision and recall percentage for TF-IDF weighting scheme (with 

stemming/stop word indexing). 

 

Query Precision  Recall 
 %60 %70 انجيئخ انصحيخ  

 %100 %30 انفهسفخ انُاقعيخ  
 %100 %100 انفطزيبد انمزضيخ 

 %90 %50 انشعز انحز
 %70 %50 انتهُث انجيئي 

 %90 %80 انمسزح انقُمي 
 %100 %50 سكبن الاٌُار  

 %100 %10 عهم انىفس
 %100 %100 مسجد انزسُل 

 

 

 TF-IDF based on normalization method without stemming /stops word removal indexing. 

 

Table 4-5 Shows precision and recall percentage for TF-IDF based on normalization 

weighting scheme (without stemming/stop word indexing) 

Query Precision  Recall 
 %30 %50 انجيئخ انصحيخ

 %20 %100 انفهسفخ انُاقعيخ
 %30 %60 انفطزيبد انمزضيخ

 %40 %60 انشعز انحز
 %40 %60 انتهُث انجيئي

 %80 %100 انمسزح انقُمي
 %50 %100 سكبن الاٌُار

 %80 %40 عهم انىفس
 %100 %70 مسجد انزسُل
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 TF-IDF based on normalization method with stemming /stops word removal indexing. 

 

Table 4-6  Shows precision and recall percentage for TF-IDF based on normalization 

weighting scheme (with stemming/stop word indexing). 

 

Query Precision  Recall 
 %60 %70 انجيئخ انصحيخ  

 %100 %100 انفهسفخ انُاقعيخ  
 %100 %100 انفطزيبد انمزضيخ 

 %100 %50 انشعز انحز
 %70 %100 انتهُث انجيئي 

 %90 %80 انمسزح انقُمي 
 %50 %50 سكبن الاٌُار  

 %100 %20 عهم انىفس
 %100 %100 مسجد انزسُل 

 

4.3.2 The Effect of Stemming Vs. Non- Stemming  

Figure 4-3 shows the number of retrieved documents with stemming and without 

stemming for the same queries. The stemming technique significantly increases the 

number of retrieved document. At the same time, the number of irrelevant documents 

also increases, since Arabic words that are derived from the same root often hold 

different meanings. For example, the word ―الجامعة‖  ―aljamcka‖ (―university‖) stems from 

the root ―جمع‖ (―add‖). Several other words are likewise derived from this root. Therefore, 

when a user tries to search for the term ―aljamcka,‖ a long list of documents is returned. 

Table 4-7 shows a sample of the Arabic words that stem from the root "جمع". When the 

recall increases, the ambiguity of the output increases as well, which leads to unexpected 

and often irrelevant results for the user. This is the only negative aspect of using the 

stemming technique; otherwise, the experiment proves that stemming improves the 

performance of the Arabic IR system. We observed, however, that the ISRI stemming 

algorithm is not always accurate. There are some cases in which the algorithm fails to 

find the valid Arabic root. In particular, the ISRI tends to suggest incorrect roots for 

borrowed words.   
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Table 4-7 shows a number of Arabic words that have different denotations, even though 

they stem from the same root, which is ―جمع”(―add‖). 

The Arabic word  Meaning (in English)  Root (in Arabic) Meaning (in 

English ) 

 add(v) جمع university جبمعخ 

 add(v) جمع set مجمُعخ

 add(v) جمع composed مجمع

 add(v) جمع be accumulated       تجمع

 add(v) جمع meeting اجتمبع

 add(v) جمع socially اجتمبعي

 add(v) جمع group اجمبع

 add(v) جمع Team جمبعخ

 add(v) جمع assembly تجميعي 

 add(v) جمع mosque جبمع

 add(v) جمع  agreed اجمع

 add(v) جمع add جمع

 add(v) جمع  Friday جمعخ

 add(v) جمع institution جمعيخ 

 

 

 

Figure 4-3 The number of retrieved documents for the same queries with stemming and 

without stemming. 
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Figure 4-4 The average recall and precision of the different ranking schemes with a 

combination of different indexing techniques (basic, stemming, stop word removal). 

 

The above figure shows that the three (TF-basic, TF_IDF-basic, TF_IDF_basic) 

weighting schemes have a high precision, while the average recall is low for the three 

methods. On the other hand, the figure shows an increase in the recall for the TF-rsw-stm, 

TF-IDF_rsw-stm, and TF_IDF-N-rsw-stm schemes. The TF-IDF-N-rsw-stm method 

seems to produce the optimal result, yielding both a high recall and a high precision. The 

TF-IDF-N method outperforms the other methods with different indexing options.  
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5 Chapter Five: The Default Search in Open Journal System 

5.1 Public Knowledge Project (PKP) 

The Public Knowledge Project (PKP) is a non-profit organization devoted to 

investigating how technology can help develop professional and public knowledge.  PKP 

was founded by Dr. Jhon Willinsky in 1998 through his work in education and publishing 

in the College of Education at the University of British Columbia. PKP attempts to make 

scholarly knowledge available to the public through online access. The aim is to connect 

scholars in different fields with public librarians in order to enhance the quality of 

education using technology and online environments [Smecher, Alec, 2008].  

5.2 Open Journal Systems (OJS)  

Open Journal Systems (OJS) is one of PKP‘s open access management systems 

developed at the University of British Columbia. The main goal of OJS is to make 

academic knowledge available to the public through online environments. OJS provides 

support throughout the entire editorial process, from uploading submissions, to editing, to 

peer reviewing, to publishing.  This comprehensive tool saves precious time and energy 

for users [Smecher, Alec, 2008]. OJS is a multilingual system and is used to publish 

journals in several languages. Originally, OJS only supported English, French, Spanish 

and Portuguese, but it now supports more than 33 languages according to the PKP 

website. OJS translations are provided by the community of developers. Because OJS 

designers try to separate the translation process from the source code, all text in OJS is 

extracted and stored in XML files called locale files. OJS was built using model-view -

controller software architecture. This model gives OJS more security and flexibility at the 

same time. Also, the design of OJS provides a rich online reading environment by 

supporting tools that improve active reading. More than 5,000 journals have used OJS 

since it launched in 2002 [Smecher, Alec, 2008].  
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5.3 Open Journal Systems as Repository  

Open Journal Systems (OJS) is an open source publishing and management system. The 

goal of OJS and other PKP projects is to enhance the quality of public education and 

knowledge through online environments. Figure 5-1 shows the main OJS webpage, and 

figure 5-2 shows our OJS journal.  

OJS can be downloaded for free from the PKP website (All OJS downloads can be found 

at http://pkp.sfu.ca/ojs_download, and detailed installation steps can be found at 

http://pkp.sfu.ca/ojs/docs/userguide/2.3.1/systemAdministrationInstallProcess.html. OJS 

provides the facilities to create multiple journals with one installation. 

 

 

 

 

 

 

 

 

 

Figure 5-1 The home page of Open Journal System 
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Figure 5-2  The home page of our journal 

 

5.3.1 OJS Submission and Editorial Process 

OJS is designed to streamline the editorial process for journals, from the uploading of 

submissions to the publishing stage. OJS can be used by journal managers, editors, 

authors, reviewers, copy editors, section editors, proofreaders, and layout editors. Each 

user can be assigned multiple roles, and each role carries a corresponding set of 

administrative tasks and permissions. When a user is assigned the role of journal 

manager, for instance, he or she has the authority to assign various roles to other users.  

The editor, on the other hand, is in charge of accepting or rejecting a submission.  

A user with the role of author can submit articles to the journal. The submission process 

can be done in a number of steps. Firstly, the user has to select one of the journal sections 

for his/her article based on the article type (book review, etc.).  Before submitting an 

article, the author must agree to the journal‘s policies for publishing in journals. In the 

next step the author provides personal information and information about the article, 

including title, abstract, and indexing terms. OJS also allows the author to upload any 

supplementary files to his/her article such as data set, pictures, graphs, etc. The final step 
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is confirming submission. Additionally, OJS supports tracking the status of one‘s 

submission. Figure 5-3 shows a number of our published article in our journal. 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5-3 A number of published articles in our journal 

In The next sections we will introduce the Default search function in Open Journal 

system and how it works with the Arabic language texts.  

5.4 The Default Search of Open Journal System 

The default search engine of OJS uses an inverted Index stored in a MYSQL relation 

database with the following tables: 

article_search_keyword_list<keyword_id, keyword_text> 

article_search_object_keywords<object_id, keyword_id, pos    
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 article_search_objects<object_id, article_id, type, assoc_id> 

Simply put, the algorithm starts with the tokenization of all text by using ―whitespace‖ as 

a separator and by removing punctuation and stop words.  It then stores the keywords in 

the MYSQL search tables. OJS provides full-text indexing for different file formats 

including HTML, PDF, PS, and MS Word. OJS uses external tools to convert PDF, 

PostScript, and Microsoft Word files into text files. OJS uses external tools that are 

available by default in most UNIX distributions to extract text from the files. The system 

uses the pdftotext  tool to extract text from pdf files, postotext to extract text 

from PostScript files, and the HTML tokenizer to extract text from HTML files. These 

tools are configured in the OJS configuration file (Config.inc.php). Figure 5-4 shows the 

search configuration part in the Config.inc.php file. The OJS search provides several 

search categories, including author, abstract, discipline, index-term, subject, 

supplementary file, title, and type. By default, the search retrieval system in OJS retrieves 

all documents using the ―AND‖ operation, but the user can choose to change this to ―OR‖ 

or ―NOT.‖  In addition, ―*‖ can be used as a wildcard query, and quotes can be used with 

a phrase query. 

OJS is a multilingual system. Therefore, OJS features a general search function that 

supports multiple languages and provides a basic search function. As a general search 

function, the OJS search function does not support the morphological characteristics of 

Arabic, because it is not programmed to support stemming. Furthermore, the OJS search 

function does not have a means of normalizing Arabic text. The absence of these two 

techniques affects the performance of OJS‘s native search engine. As a result, some 

Arabic queries in OJS yield few, if any, matching documents. The OJS search function is 

thus unable to find all relevant documents. On the other hand, the OJS search function 

treats all returned results as if they were equally relevant to the user‘s query, because it 

does not weight or rank the retrieved documents by their similarity to the user‘s criteria. 
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Figure (5-4) Configuration setting for OJS search in (Config.inc.php) 

 

5.5 Experiment 

Researchers over the years have tried to understand how efficient general search engines 

are at handling different languages. Mukdad, for instance, discusses whether or not a 

general search engine like Alti Vista can effectively handle a language with a complex 

morphology like Arabic. 

The goal of our evaluation is to investigate how a multilingual search engine performs 

when both the data collection and the query are in Arabic. The OJS search algorithm is a 

; Minimum indexed word length 

min_word_length = 3 

 

; The maximum number of search results fetched per keyword. These results 

; are fetched and merged to provide results for searches with several keywords. 

results_per_keyword = 500 

; The number of hours for which keyword search results are cached. 

result_cache_hours = 1 

 

; Paths to helper programs for indexing non-text files. 

; Programs are assumed to output the converted text to stdout, and "%s" is 

; replaced by the file argument. 

; Note that using full paths to the binaries is recommended. 

; Uncomment applicable lines to enable (at most one per file type). 

; Additional "index[MIME_TYPE]" lines can be added for any mime type to be 

; indexed. 

; PDF 

; index[application/pdf] = "/usr/bin/pstotext -enc UTF-8 -nopgbrk %s - | /usr/bin/tr '[:cn 

trl:]' ' '" 

; index[application/pdf] = "/usr/bin/pdftotext -enc UTF-8 -nopgbrk %s - | /usr/bin/tr '[:c 

ntrl:]' ' '" 

 

; PostScript 

; index[application/postscript] = "/usr/bin/pstotext -enc UTF-8 -nopgbrk %s - | /usr/bin/t 

r '[:cntrl:]' ' '" 

; index[application/postscript] = "/usr/bin/ps2ascii %s | /usr/bin/tr '[:cntrl:]' ' '" 

; Microsoft Word 

; index[application/msword] = "/usr/bin/antiword %s" 

; index[application/msword] = "/usr/bin/catdoc %s" 
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basic algorithm with no ranking. The precision /recall evaluation method works perfectly 

with such algorithms.  

Figure 5-2 shows that for some queries there is no matching result. Therefore, the 

precision and recall are zero, and even though there are a number of documents that are 

related to the user‘s queries in the corpus, the search function fails to locate any matching 

documents.  

Table 5-1 precision and recall percentage for OJS default search. 

Query Recall Precision 

 %0 %0 انشعز انحز

 %100 %20 ثكتزيب  عىقُديخ 

 %0 %0 بد انمزضيخ يانفطز

 %0 %0 مسجد انزسُل 

 %100 %10 انمسزح  انقُمي 

 %100 %10 انجيئخ انصحيخ 

 %100 %10 سكبن الاٌُار

 %100 %30 انتهُث انجيئي 

 %100 %50 عهم انىفس 

 

 

Figure 5-5 The precision/recall function for the default search of OJS 
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Figure 5-6  The number of retrieved documents for the same queries with stemming, 

without stemming, and with the OJS default search. 

 

Figure 5-7 Average recall and precision for OJS- search and our three schemes 

 

Figure 5-7 shows low recall of the default OJS search function. The average recall is only 

10%.  Our proposed IR system has a comparatively high recall, between 40% and 60% 

without stemming and between 70% and 90% with stemming.   
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6 Chapter Six:  Conclusion and Future Works 

6.1 Conclusion and Summary of the Experimental Results  

 Arabic requires tools that support the encoding of its unique character sets, its writing 

script and the direction of the text. Using UTF_8 or another Arabic encoding does not 

ensure that a valid Arabic script is displayed, specifically with regard to the direction 

of the text (from right to left for text and left to right for numbers). If Arabic is not 

supported by system software and an application that can display a valid Arabic 

script, then the scripts will be displayed in an invalid format. 

 Support of Arabic text requires such techniques as normalization, which eliminates 

inconsistencies in Modern Standard Arabic. By doing so, normalization maximizes 

the number of matching documents, thus improving recall and precision.  

 The stemming technique significantly increases the number of documents that match 

a user‘s query. Stemming algorithms analyze words and remove elements like 

prefixes, prepositions, pronouns, and the definite article ―انـ‖―al,‖ all of which are 

connected to other words. However, stemming produces some unexpected results. 

Due to complex Arabic morphological rules, many words with different denotations 

can be derived from the same root. As a result, the ISRI stemming algorithm is not 

fully accurate, because it fails to find valid roots for some Arabic words. One possible 

reason might be a lack of valid roots in the dictionary that the algorithm uses.  In 

addition, the ISRI stemming algorithm tries in vain to find Arabic roots for words 

adopted from other languages.  

 Lexical processing helps reduce the size of the inverted index. Removing stop words 

can reduce the size of the inverted index by 20%, and stemming reduces the number 

of inverted index entities by approximately 40%. 

 The vector space model successfully supports free text queries by accurately 

identifying a user‘s query terms and their occurrences in a document collection. 

However, the vector space model does not support the sequential order of query 

terms, because it represents a document as a vector of terms regardless of the order in 

which the terms appear within a document. 
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 The vector space model weighting schemes have different ranking preferences. The 

term frequency (TF) weighting schemes always assign the highest score to a 

document with the highest occurrence of a queried term, but this favors long 

documents over short ones. TF_IDF weighting gives good results for queries that 

include rare terms such as scientific terms. TF_IDF is based on normalization and 

outperforms the other weighting schemes  

 The evaluation of the default search function of OJS proves that without 

normalization and stemming the number of retrieved documents is minimized. OJS‘s 

default search function retrieves matching results for some queries, but for others the 

output is zero results, because the default search function of OJS is a general search 

engine that does not acclimate to Arabic character sets and scripts.   

6.2 Future works 

IR technology is an ever-growing area of research, especially with regard to Arabic text 

and the unique challenges presented by the complex characteristics of the language. We 

can extend this thesis to the following inquiries:   

  This thesis focuses on the evaluation of IR systems using the traditional 

precision/recall method; however, there are several strategies that could be used to 

evaluate the system.  In particular, multi-grade strategies could be effective at ranking 

IR systems. We plan to evaluate the output of our system using different strategies 

such as mean average precision.   

 Clustering techniques can be used to reduce the ambiguity of retrieved documents by 

grouping similar documents into one cluster.  We want to explore how clustering 

could improve the output of our IR system. 

 In this work we rely on the inverted index technique, but there are other indexing 

techniques and architectures that could be used to expedite document retrieval and 

reduce the size of the index. For example, compression techniques use customized 

architectures to store the inverted index more efficiently. The distributed indexing 

technique can be used to store the inverted index for a large document collection, 
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increasing the effectiveness of the inverted index. We plan to explore techniques that 

could lead to faster indexing and smaller storage sizes. 

 Stemming techniques are very important for morphological languages like Arabic. 

Several Arabic stemming algorithms have been proposed. We plan to explore how the 

designs of these algorithms have been adopted to build the Arabic stemmer.   

 

The importance of IR has increased tremendously since the creation of the World Web 

Wide. The Internet adds totally new dimensions to the IR process that go far beyond text-

based searches. It would be interesting to see how these experiments with more 

traditional IR systems may be adapted to different kinds of data. 
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Appendix 

SEARCH QUERIES FOR AN INFORMATION RETRIVAL SYSTEM FOR 

ARABIC LANGUAGE  

#the project is divided in two parts with two files  

• Indexing Processprogram : 

#indexing processing for the corpus and building the 

inverted index file 

#Author: Zaianb Albujasim. 

#Date: 5/5/2014. 

#Description: 

#input: A list of Arabic document in text file format with 

encoding UTF_8. 

#the output is an inverted index text file. 

""" 

Methods: the program starts by Indexing processing steps 

which  includes 

1- Normalization (clean text from Arabic Vowel signs. for 

example: input: زَيْنَب  ,output: زينب ) 

2- Tokenization (split text into tokens using white space 

as a separator) 

3- Stop word removal (remove the common words which don’t 

consider relevant to user's query 

4- Stemming (using ISRIStemmer)(find roots for Arabic 

words)  

5- Inverted index: is a dictionary includes all distinct 

terms in the corpus with their docid and a number of 

occurrences) 

Options: 

 We have implements 4 ways of building the inverted index 

('basic: without stemming/stop word removal)') 
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('-rsw:  (stop word removal only)') 

( '-stm: without (stemming only)') 

( '-rsw-stm: with(stemming/stop word removal' ) 

Limitation: 

1-In the inverted index file we store only the number of 

term occurrence within a document with docid ,We don’t have 

a mean to store term positions within a document   

2- The directory of document files should be in a specific 

location and the inverted file also """ 

CODE: 

import glob 

from collections import defaultdict 

from functools import reduce 

from nltk.stem.isri import ISRIStemmer 

import re 

import math 

import sys 

import pickle 

import time 

import unicodedata 

posting=defaultdict(dict) 

stopword=[] 

Q_terms=[] 

totalterms=[] 

query='' 

files_dict={} 

start_time=time.clock() 

filename='' 

def normalization(text): 

    """Cleaning text by removing vocalization marks""" 

    Return ''.join ([word for word in 

unicodedata.normalize('NFD', text) \ 

        if unicodedata.category(word) != 'Mn']) 

 

#------------------------------------------- 

def stem(word): 

   # returns the root of a word using ISRI stemmer. 

     

   st = ISRIStemmer() 

   stem_w=st.stem(word) 
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   return (stem_w) 

 

def tokenization(text): 

    cleanterms=[]  

    punctuation='-_.,!#$%^&*();:\n\t\\"?{}[]<>+=|/؟.' 

    text=normalization(text) 

    # we have used Regular expressions module to process 

text  

    text=re.sub(r'[a-zA-Z0-9]','',text) # remove letters 

and numbers 

    text = re.sub(r'[^\w\s]','',text) 

    text= re.sub(" \d+", "", text) 

    #x=re.sub (r'[-_.,!#$%^&*();:\n\t\\\"?{}[]<>]','',term) 

    Text = re.sub("[ا" ,"]إأٱآا", text) # normalize "أ" 

forms 

    text = re.sub("ى", "ي", text) # normalize "ي"  forms 

    text = re.sub("ه", "ة", text) # normalize "ة" forms 

    terms = text.split()  # split text into a lists of 

strings 

    for term in terms: 

        x=term.strip(punctuation)        

        cleanterms.append(x) 

     

  return cleanterms 

 

def stopwordlist(): 

    

    """upload stop word from text file to a list""" 

     

    global stopword 

     

    stop_wordfile=open('stop.txt','r',encoding='utf_8') 

    for line in stop_wordfile.readlines(): 

        for sw in line.split(): 

            sw=sw.strip('\n') 

            stopword.append(sw)             

             

     

    stop_wordfile.close() 

    return stopword 

 

#------------------------------------- 

def removestopword(keywordsindex): 

    global stopword 

    i=1 



55 

 

    """ Remove stop word """ 

    for word in keywordsindex: 

        if len(word )<=2 or word in stopword: 

                     

           #print(word) 

           i=i+1 

           keywordsindex.remove(word) 

            

    #print ('i=',i)         

    return keywordsindex 

     #----------------------------------- 

 

def inial_indexing(): 

    global filename 

    i=0 

    print('           Indexing Process::    Create the 

inverted index') 

    print('\n') 

    filename=input('enter a name for the inverted index ::    

') 

     

    print('select  the indexing  method:     ') 

    print('basic: without stemming/stopwordremoval)') 

    print('-rsw:  (stop word removal only)') 

    print('-stm: without (stemming only)') 

    print('-rsw-stm: with(stemming/stop word removal' ) 

    print('\n') 

    method=input("select -rsw,-stm ,-rsw-stm or 

none(without):") 

    print('\n') 

    print('         creating index......................') 

    

    print('\n') 

list_of_files=glob.glob('vsm-dir/*.txt') 

    for file_name in list_of_files: 

        file1=open(file_name ,'r',encoding='utf_8') 

         

        i=i+1 

        docID=i 

        files_dict[docID]=file_name 

        line =file1.read() 

        index =tokenization(line) 

            

        if method=="-rsw": 

           termsw=removestopword(terms)          
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           #termsw=terms    

           keywords=(termsw) 

           index =keywords 

            

        elif method=="-stm": 

          stem_terms=[stem(x) for x in terms ] 

          keywords=(stem_terms) 

          index =keywords 

              

        elif method=="-rsw-stm":     

          termsw=removestopword(terms) 

          stem_terms=list([stem(x) for x in termsw ]) 

          keywords=(stem_terms) 

          index =keywords 

                             

        else: 

            keywords=index 

        totalterms.extend(terms) 

              

         for term in totalterms: 

           posting[term][docID]=index.count(term) 

 

 

#------------------------------------------------------ 

    

def writing_filenames(): 

    """store document information in a binary file""" 

     

    file3=open('info.txt','wb') 

    pickle.dump(files_dict,file3) 

    file3.close() 

     

#------------------------------------------------------ 

def writing_inverted_index(): 

    global filename 

 

    file2=open(filename,'w',encoding='utf_8') 

     

    for term in posting.keys(): 

        post_file=[] 

                

        for post in posting[term].items(): 

             

            docid=str(post[0]) 

            tf=str(post[1]) 



57 

 

            x=docid+':'+tf 

            post_file.append(x) 

        xxx=(term,'#',';'.join(post_file)) 

        file2.writelines(xxx) 

        file2.write('\n') 

                 

    file2.close() 

 

def main(): 

    global filename 

    stopwordlist() 

    print(time.clock()- start_time,"seconds") 

    inial_indexing() 

    print(time.clock()- start_time,"seconds") 

    writing_filenames() 

    print(time.clock()- start_time,"seconds") 

    print('The inverted index has been created with 

name:',filename) 

       

    

if __name__ == "__main__": 

    main() 

   

 

• Query and Document Retrieval (Second file) 

#indexing processing for the corpus and building the 

inverted index file 

#Author: Zaianb Albujasim. 

#Date: 5/5/2014. 

#Description: 

#input: An inverted index file and a user's query 

# A list of document relevant document 

""" 

Methods:  firstly: the program starts by uploading the 

inverted index. 

Secondly: apply indexing process to a user's query  

1- Tokenization (split text into tokens using white space 

as a separator) 

2- Stop word removal (remove the common words which don’t 

consider relevant to user's query 

3- Stemming (using ISRIStemmer) (find roots for Arabic 

words)  

4- Inverted index: is a dictionary includes all distinct 

terms in the corpus with their docid and a number of 

occurrences) 
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3- User should select one of the weighting methods to rank 

the return document by their similarity from highest to 

lowest one. 

Options: 

 We have implements 3 weighting method to rank the out put  

 ("Choose one of the ranking methods to ranking the 

retrieved result" 

 "1:TF(term frequency)" 

  2:TF_IDF" 

  3:TF_IDF based on normalization" 

 

Limitation:  

1- The location of the inverted is hardcoded. 

2- The program does not provide a way to display the text 

of relevant file. It only provides a list of document that 

contain the user’s query terms.  

""" 

 

files_dict={} 

posting=defaultdict(dict) 

index=defaultdict(dict) 

stopword=[] 

Q_terms=[] 

query='' 

ranking_method=0 

def tokenization(text): 

    cleanterms=[]  

    punctuation='-_.,!#$%^&*();:\n\t\\"?{}[]<>+=|/؟.' 

    text=normalization(text) 

    # we have used Regular expressions module to process 

text  

    text=re.sub(r'[a-zA-Z0-9]','',text) # remove letters 

and numbers 

    text = re.sub(r'[^\w\s]','',text) 

    text= re.sub(" \d+", "", text) 

    #x=re.sub (r'[-_.,!#$%^&*();:\n\t\\\"?{}[]<>]','',term) 

    Text = re.sub("[ [", "اآاٱإأ ", text) # normalize "أ" 

forms 

    text = re.sub("ى", "ي", text) # normalize "ي"  forms 

    text = re.sub("ه", "ة", text) # normalize "ة" forms 

    terms = text.split()  # split text into a lists of 

strings 

    for term in terms: 

        x=term.strip(punctuation)        

        cleanterms.append(x) 
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def stem(word): 

   """the function function uses IRSI stemmer to stem 

word""" 

     

   st = ISRIStemmer() 

   stem_w=st.stem(word) 

   return(stem_w)  

 

#---------------------------------------------------------- 

def stopwordlist(): 

    """this function for loading stop word list form stop 

word file and stored as a list""" 

     

    global stopword 

     

    stop_wordfile=open('stop.txt','r',encoding='utf_8') 

    for line in stop_wordfile.readlines(): 

        for sw in line.split(): 

            sw=sw.strip('\n') 

            stopword.append(sw)             

             

     

    stop_wordfile.close() 

         

    return stopword 

 

 

#------------------------------------------------------ 

 

def indexing_query(q): 

     global stemming 

     #split the terms of the query using defualt spliter 

(white spaces) 

     q_terms=tokenization(q) 

     print(q_terms) 

     if(stemming =='2'): 

          

         q_terms=list(stem(t) for t in q_terms) 

     return q_termsdef readinginvertedindex(): 

     

     

#-------------------------------------- 

def reading_files_info(): 
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# uploading document information such as docid, doc_title 

    global n 

    global files_dict 

    file1=open('D:\Python33\info.txt','rb') 

    files_dict=pickle.load(file1) 

    n=len(files_dict) 

    print('n=',n) 

    file1.close() 

#-------------------------------------------- 

def readinginverted_index(): 

   dictinteger={} 

   global inverted_file 

# reading the inverted index to dictionary 

    

   file2=open('D:\Python33\ invertedindex-

basic.txt','r',encoding='utf_8') 

   for line in file2: 

          postlist=[] 

          dictlist={} 

          dictinteger={} 

          line=line.rstrip() 

          term, postlist = line.split('#')    

#term|postinglist 

         

          #print('term:',term,'postlist:',postlist) 

          postlist=postlist.split(';')        

#postings={'docId1:tf,docid2:tf} 

          dictlist=dict([x.split(':')for x in postlist ]) 

#postings={'docId1', 'pos1,pos2'} 

          #print(dictlist) 

          for key, value in dictlist.items(): 

                key1=int(key) 

                value1=int(value) 

               #print(term,key,value) 

                dictinteger[key1]=value1 

          #print(dictinteger)      

          index[term]=dictinteger 

         

                 

   return index 

   file2.close() 

#------------------------------------- 

 

def term_weight(term,docid): 

    global posting         
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    """return the weight of a term within a document 

    if the term is not found in the document return 0""" 

    if docid in posting[term]                           

        tw=math.log10(posting[term][docid]) 

    else:       

       tw=0 

   return tw               

        

#---------------------------------------- 

def term_frequency(term,docid): 

    global posting         

    """return the term frequency """ 

    if docid in posting[term]                            

        tf=posting[term][docid] 

    else:                      

       tf=0 

return tf   

#------------------------------------------ 

     

def doc_frequency_per_term(): 

 

     """for each term in the index ,count the number. Of 

documents that contain the term and store the value a 

doc_frequency[term].""" 

     global df 

     for term in posting:                     

        lenght=len(posting[term]) 

        df[term]=lenght  

def TF(query,docid): 

    global norm 

    global posting 

    sum1=0.0 

    for term in query: 

        if term in posting:             

           sum1+=term_weight(term,docid) 

 

    Relevance=sum1 

    return Relevance  

       

    

 

#*******************************************method2********

********************************* 

def TF_IDF(query,docid): 

    global length 
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    global posting 

    

        sum1=0.0 

    for term in query: 

        if term in posting: 

         df1=df[term]            

           sum1+=IDF(term)*term_weight(term,docid) 

 

    Relevance =sum1 

    return Relevance  

         

         

#*************************************method3**************

*************************************** 

def TF_IDF_NORM(query,docid): 

     

    global length 

    global posting 

     

    """Return the cosine similarity between query and 

document id""" 

    sum1=0 

    for term in query: 

        if term in posting: 

            df1=df[term]            

            sum1+=IDF(term)*term_weight(term,docid) 

             

        Relevance =sum1 

           Relevance =math.cos(Relevance/norm[docid]) 

            return Relevance 

         

        

   #---------------------------------------- 

     

def IDF(term,df1): 

     

    '''compute the inverse document frequency of term       

    if term in posting: 

                

        t_idf=math.log10(n/df1) 

    else:                       

        t_idf=0 

return t_idf           

#----------------------------------------     

def search_VSM(q_terms,postinglist): 
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    #global Q_terms 

    global ranking_method 

    global  rank_documens 

    relevant={} 

             

    """the user enter the query  in a textbox and search 

function return a list of document 

    in decreasing order""" 

    """find the document Id containing all query terms by 

intersect the posting list for 

    each term and return a postinglist for all term in a 

query""" 

    print(postinglist[term].keys() for term in q_terms) 

     

    rel_IDs =reduce(end_[set(postinglist[term].keys()) for 

term in q_terms]) 

    print('The result in decreasing order::') 

    print('ranking_method:',ranking_method) 

    if not rel_IDs: 

        print("Sorry,We couldn't find a matching document 

for your query") 

 

    else:  

        print(rel_IDs)  

         

        if(ranking_method=='1'): 

           for docid in rel_IDs: 

                               

              relevent[docid]=TF(q_terms,docid) 

           rank_documens=sorted(rel.items(),key=lambda 

t:t[1],reverse=True        

        elif (ranking_method=='2'): 

           for docid in relevant_doc_IDs  

              relevent[docid]=TF_IDF(q_terms,docid) 

           rank_documens=sorted(rel.items(),key=lambda 

t:t[1],reverse=True)                   

                                 

        elif (ranking_method=='3'): 

            for docid in relevant_doc_IDs           

              relevent[docid]=TF_IDF_NORM(q_terms,docid) 

            rank_documens=sorted(rel.items(),key=lambda 

t:t[1],reverse=True)                         

        print_result( rank_documens)     

           def main(): 
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    df= defaultdict(float) 

    global posting 

    global ranking_method 

    print('enter the inverted index file') 

    inverted_file=input('enter the inverted index file:') 

    stemming=input('Select 1 or 2 for inverted index method 

:1 basic  2: with indexing  : ') 

    print("Choose one of the ranking methods to ranking the 

retrived result") 

    print("1:TF(term frequency)") 

    print("2:TF_IDF") 

    print("3:TF_IDF based on normalization") 

    ranking_method=input("Select the number of the ranking 

method:") 

         # uploading the Inverted Index to Posting list 

    posting=reading_inverted_index() 

    

    #uploading the document collection information such as 

the name and DOCID 

    reading_files_info() 

    

    while(1):    

                text=input('what you would like to 

search:')  

        Q_terms=indexing_query(text) 

         

        #print the number of documents in the collections 

        print('the number of documents in the courpous:',n) 

        doc_frequency_per_term() 

        if(ranking_method=='3'): 

            #call norm function to find the length for 

documents in the courpus 

            norm(files_dict,posting) 

        search_VSM(Q_terms,posting)         

                     

    if __name__ == "__main__": 

 

    main() 
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