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ABSTRACT OF DISSERTATION 
 
 
 
 

REGULATION OF GLUCOSE HOMEOSTASIS BY THE PHLPP1 PHOSPHATASE 
 

 Type 2 Diabetes Mellitus is a metabolic disease that affects one in ten people in 
the United States.  It is caused by a combination of genetics and lifestyle factors.  
Disease progression begins with insulin resistance in peripheral tissues followed by 
pancreatic beta-cell failure.  The mechanisms behind disease progression are not 
completely understood.  PH domain leucine rich repeat protein phosphatase 1 (PHLPP1) 
is a known regulator of Akt and other members of the AGC kinase family.  Akt has been 
established to play a role in numerous metabolic signaling pathways, including insulin 
action.  It is hypothesized that as a regulator of Akt, PHLPP1 would have an important 
function in glucose homeostasis.  Glucose tolerance tests performed on 8-week old 
Phlpp1-/- mice revealed no significant difference in glucose tolerance compared to wild 
type, however these mice did exhibit increased fasting blood glucose levels.  Glucose 
tolerance tests were repeated at 20 weeks on the same mice and, interestingly, they 
displayed impaired glucose tolerance compared to wild type.  Insulin tolerance tests 
showed that 8-week old mice have increased insulin sensitivity, however, the 20-week 
old mice were insulin-resistant compared to control animals. The 20-week old knockout 
mice also had significantly higher fasting blood glucose levels compared to 8-week old 
mice.  To determine if the increased fasting blood glucose levels are due to increased 
hepatic glucose output, pyruvate tolerance tests were performed on both the 8 & 20 
week old mice.  Old mice displayed significantly increased hepatic glucose production 
compared to wild type.  Echo-MRI done on 24-week old mice showed significantly 
increased fat mass and decreased lean mass in the Phlpp1-/- mice compared to wild type 
littermates.  Western blot analysis of liver samples from 32-week old Phlpp1-/- mice 
indicates loss of Akt signaling accompanied by a decrease in IRS2 protein levels, a 
common indicator of insulin resistance.  These data suggest that Phlpp1-/- mice mimic 
the development of type 2 diabetes in humans, and provide a unique animal model to 
study the progression of type 2 diabetes and diabetes-associated complications. 

 

KEYWORDS:  Type 2 diabetes mellitus, PHLPP, Akt, glucose, animal model 
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Chapter 1 

Introduction 

 

Maintaining normoglycemia and proper energy balance 

 

For proper function and survival it is necessary to maintain normal glucose 

homeostasis and energy balance.  To do this, organisms employ a tightly-regulated 

network of various organs, tissues, and cell types to meet energy demand and utilize 

energy supply.  Glucose is typically the main source of energy and is used for the 

production of ATP.  For mammals, the interaction between cells in the pancreas, liver, 

skeletal muscle, brain, and adipose tissue via the secretion and uptake of various 

hormones is what regulates this energy balance (Figure 1.1).  These hormones, when 

bound to receptors in the target tissues, communicate the storage or utilization of 

glucose to meet the demands of the organism.  It is necessary to maintain a narrow 

range of blood glucose levels (80-120 mg/dL), and to do this the body fluctuates 

between glucose storage, utilization, and production [1].  This process is particularly 

crucial for the brain as it cannot metabolize other forms of energy, and cannot function 

correctly when blood glucose levels fall too low [2].  Dysregulation of the processes 

necessary for maintaining glucose homeostasis can lead to the development of various 

metabolic disorders including type 2 diabetes mellitus [3]. 

 

The role of the endocrine pancreas in regulating glucose homeostasis 

The pancreas is the key regulator in glucose metabolism.  It contains two types 

of tissue: exocrine and endocrine, with endocrine tissue being important for glucose 

homeostasis.  Pancreatic endocrine tissue is made up of cells clusters called Islets of  
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Figure 1.1: Regulation of Glucose Homeostasis 

When blood glucose levels are high, pancreatic beta cells release insulin into the 

bloodstream where it travels to the peripheral tissues.  In the muscle, insulin promotes 

muscle glucose uptake and turns on glycogen synthesis.  Insulin also promotes glucose 

uptake and turns on glycogen synthesis in the liver as well as inhibits gluconeogenesis.  

This results in the overall lowering of blood glucose levels.  Conversely, when blood 

glucose levels are low, pancreatic alpha-cells secrete glucagon, which travels to the liver 

where it turns on glycogenolysis, or the breakdown of glycogen to glucose.  When 

glycogen stores are depleted, gluconeogenesis is turned on.  Gluconeogenesis is the 

production of glucose from pyruvate, glycerol, lactate, or certain amino acids.  Hepatic 

glucose production is necessary to maintain blood glucose levels during times of fasting. 
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Langerhans.  Islets make up about 2-3% of the total pancreas and are found uniformly 

dispersed throughout the exocrine tissue.  Islets themselves consist of five different cell 

types with each cell type responsible for the secretion of a different hormone.  Epsilon 

cells, PP cells, and delta cells combine to compose up to 16% of the total islet.  These 

three cell types are responsible for the secretion of ghrelin, somatostatin, and pancreatic 

polypeptide, respectively.  These hormones are involved in promoting hunger (ghrelin) 

and regulating the release of other pancreatic and gastrointestinal hormones 

(somatostatin and pancreatic polypeptide).  The other two cell types, alpha cells and 

beta cells, are the most important for the regulation of blood glucose levels and overall 

glucose homeostasis.   

 

Alpha cells make up a large portion of the islet at 15-20%.  Alpha cells secrete 

the hormone glucagon to stimulate the release of glucose stores in the liver.  This is 

done during times of fasting when glucose is scarce.  Glucagon travels to the liver where 

it promotes glycogenolysis or gluconeogenesis, which is the production of glucose from 

either glycogen or pyruvate. Glucagon can also promote the production of ketone bodies 

when carbohydrate stores are exhausted.   

 

65-80% of the islet is made up of beta cells [4].  Their primary function is the 

production and secretion of insulin.  Insulin is the hormone responsible for lowering 

blood glucose levels during post-prandial increases.  The beta cell is able to quickly take 

up glucose and release insulin into the bloodstream [5, 6].  Insulin then travels to the 

peripheral tissues where it signals for the uptake of glucose thus lowering blood glucose 

levels.  It also signals to turn off hepatic glucose production, as it is unnecessary to 

produce glucose when blood glucose levels are already elevated.  While many 
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hormones are necessary for the maintenance of glucose homeostasis, insulin is typically 

considered the most important. 

 

Muscle Glucose Uptake 

 

 Once in the bloodstream, insulin travels to various tissues including skeletal 

muscle.  It binds to the insulin receptor in the cell membrane, which then sets of a 

signaling cascade that ends in the rapid translocation of the glucose transporter, GLUT4, 

to the plasma membrane.  Under conditions of low insulin, GLUT4 is sequestered in 

intracellular vesicles, however, upon insulin binding to the insulin receptor, vesicles 

containing GLUT4 fuse with the plasma membrane effectively inserting the transporter 

into the membrane [7, 8].  This allows for the facilitated diffusion of circulating glucose in 

the bloodstream to enter the muscle cell down its concentration gradient [9, 10].  Once in 

the cell, glucose is converted to glucose-6-phosphate (G6P) via hexokinase.  G6P then 

enters glycolysis for the purpose of ATP production or is used for synthesis of glycogen, 

a storage form of glucose that acts as an immediate reserve source of energy for the 

muscle cell in times of need. 

 

Hepatic Glucose Metabolism 

 

 The liver plays multiple roles in maintaining normal glucose homeostasis.  During 

the postabsorptive state, when blood glucose levels are low and insulin secretion is at 

basal levels, liver glucose uptake is almost completely abolished.  This is true for other 

insulin-sensitive tissues as well.  During this time the majority of glucose is taken up by 

the brain.  In order to maintain normal blood glucose levels, and therefore healthy brain 

function during this circumstance, the liver produces and releases glucose through the 
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processes of glycogenolysis and gluconeogenesis.  Glucose production in liver is 

triggered by a combination of the fall of insulin levels as well as the secretion of 

glucagon from pancreatic alpha cells [11].  Glycogenolysis is the production of glucose 

from glycogen, a polymeric storage form of glucose.  Glycogen breakdown is the primary 

method of energy production during times of fasting.  Once glycogen stores run low, the 

liver switches to gluconeogenesis, the production of glucose from various carbon 

substrates including lactate, glycerol, and certain amino acids. 

 

 Conversely, when blood glucose levels are high, the liver acts as the principle 

site of glucose deposition absorbing up to one third of an oral glucose load [12].  Insulin 

is secreted from the pancreatic beta cell into the bloodstream where it first meets the 

liver.  Insulin binding to its receptor promotes glucose conversion to glucose-6-

phosphate (G6P) effectively trapping glucose within the hepatocyte [13].  Similarly to 

muscle, G6P can then be used for the production of ATP via glycolysis or for glycogen 

production.  Concurrently, insulin signaling in the liver attenuates glucose production so 

as to reduce post-prandial rises in blood glucose levels. 

   

Type 2 Diabetes Mellitus 

 

 Type 2 diabetes mellitus is a metabolic disease characterized by hyperglycemia 

resulting from defects in insulin secretion and insulin action.  It is currently estimated to 

affect almost 30 million people in the United States and up to 350 million worldwide and 

will likely reach pandemic levels by the year 2030 [14, 15].  Many complications and 

conditions are associated with type 2 diabetes including high blood pressure, high 

cholesterol, heart disease, blindness, kidney disease, nerve damage, amputations, and 

pregnancy complications.  Treatment costs for diabetes and its related complications 
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topped $245 billion dollars in the United States in 2012 [14].  Taken together, these facts 

indicate a need for a better understanding of the disease in order to facilitate the 

discovery of novel treatments and preventions. 

There is an established progression in the development of type 2 diabetes 

mellitus in patients.  The disease is caused by a combination of genetic factors as well 

as lifestyle choices.  A diet high in fat and carbohydrates maintained over a long period 

of time is typically associated with the development of diabetes.  The disease begins 

with the onset of insulin resistance, which occurs when tissues that are typically 

responsive to insulin become insensitive to its effects. This means that muscle and liver 

cells are no longer able to take up glucose and that hepatic glucose production cannot 

be suppressed.  The loss of insulin signaling in these tissues can be compensated for a 

period of time through an increase in beta-cell mass and function resulting in an increase 

in insulin production and secretion [16].  However, prolonged exposure to high glucose 

causes a decline in beta-cell function and number [17].  Loss of beta-cell compensation 

results in uncontrolled hyperglycemia due to a combination of insulin resistance and 

hypoinsulinemia [18]. 

 

Pleckstrin Homology Domain Leucine-Rich Repeat Protein Phosphatase 

 

 Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) is 

a serine-threonine protein phosphatase in the PP2C-type family that exhibits tumor 

suppressor function in many cancers [19].  It was named for its protein domains as it 

contains a PH domain, a leucine-rich repeat region, a phosphatase domain, and a PDZ 

domain (Figure 1.2).  PHLPP was initially discovered as being regulated in a circadian 

manner in the suprachiasmatic nucleus and was named SCOP or suprachiasmatic 

nucleus circadian oscillatory protein.  It was later determined to play a role in the light- 
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Figure 1.2: PHLPP domain structure 

There are two PHLPP isoforms:  PHLPP1 and PHLPP2.  PHLPP1 consists of two 

different splice variants.  All PHLPP proteins contain a pleckstrin homology (PH) domain, 

a leucine rich repeat region (LRR), a PP2C phosphatase domain, and a PDZ binding 

motif.  PHLPP1β and PHLPP2 also contain a Ras association (RA) domain.  (Modified 

from [20]) 
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induced resetting of the circadian clock [21, 22].  PHLPP has been found to be a 

regulator of three different AGC kinases.  It was uncovered as a phosphatase for Akt 

through a rational search for a protein containing both a PH domain as well as a 

phosphatase domain.  It was shown to dephosphorylate Akt at serine 473 reducing its 

catalytic activity thereby reducing proliferation and promoting apoptosis.  The second 

AGC kinase it was found to dephosphorylate is PKCβII at serine 660.  This causes the 

destabilization of PKC which shunts the kinase to degradation pathways [23].  Lastly, it 

negatively regulates S6K through dephosphorylation of threonine 389, reducing its 

activity and thereby reducing overall protein translation [24].  Outside of AGC kinases, 

PHLPP has been shown to regulate Mst1 and Raf1.  Mst1 is proapototic and when 

dephosphorylated at threonine 387 by Akt is inactivated.  PHLPP dephosphorylates this 

site inducing apoptosis and arresting cell growth.  Mst1 activation is further enhanced by 

PHLPP as PHLPP inactivates Akt thus reducing Akt’s inhibitory effects on Mst1 [25].  

Most recently, PHLPP has been shown to regulate Raf1, a downstream effector of the 

ERK pathway.  PHLPP dephosphorylation of Raf1 reduces its activity causing an 

increase in the invasive and migratory abilities of cells as well as activates the epithelial-

mesenchymal transition, an important process in cancer metastasis [26].  These are the 

only confirmed targets of PHLPP, but seeing as how there are more than 100,000 

phosphorylated serine and threonine sequences in cells, and fewer than 40 known 

Ser/Thr phosphatases it is highly likely that PHLPP has other targets [27]. 

 

While it is known that PHLPP is a regulator of several proteins, it has primarily 

been studied as a negative regulator of Akt.  Akt, also known as protein kinase B, is a 

central signaling molecule in many cellular processes including glucose metabolism, 

apoptosis, and cell proliferation.  Akt is a part of the PI3K cascade, which is activated 

when a growth factor binds to a receptor tyrosine kinase at the cell surface.  The 
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receptor activates PI3K, which then converts phosphatidyl inositol 4,5-bisphosphate 

(PIP2) to phosphatidyl inositol 1,4,5-triphosphate (PIP3).  This lipid recruits PDK1 and Akt 

to the plasma membrane.  PDK1 phosphorylates Akt at threonine 308 and the mTORC2 

complex phosphorylates Akt at serine 473, a key residue in its catalytic domain.  Until 

the discovery of PHLPP it was unknown how Akt was dephosphorylated and therefore 

negatively regulated.  It was later determined that there are two PHLPP isoforms, and 

that PHLPP1 differentially regulates Akt2 and Akt3 whereas PHLPP2 regulates Akt1 and 

Akt3 [28].  PHLPP1 was further determined to consist of two splice variants: PHLPP1α 

and PHLPP1β with PHLPP1β corresponding to the original SCOP protein discovered in 

the brain.   

 

 PHLPP1/2 have been principally studied for their role in cancer.  PHLPP1 is 

found at a locus that frequently undergoes a loss of heterozygosity in colon cancer and 

PHLPP2 is at a locus that undergoes a loss of heterozygosity in breast, ovarian, 

prostate, and hepatocellular cancers [29].  PHLPP overexpression has been 

demonstrated to increase apoptosis in non-small cell lung cancer and breast cancer 

cells and to inhibit tumor growth in glioblastoma and colon cancer cells in xenografted 

nude mice [19, 28, 30].  Conversely, decreased expression of PHLPP has been linked to 

the metastatic potential of breast cancer cells [31]. 

 

PHLPP and Type 2 Diabetes Mellitus 

 

As PHLPP has mainly been studied for its role in cancer, not much is known 

about its function in metabolism and type 2 diabetes.  There have only been two studies 

looking at a connection between PHLPP expression and diabetes or obesity in human 

patients.  The first study found that Akt serine 473 phosphorylation was decreased after 
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insulin stimulation in muscle cells of type 2 diabetic patients versus non-diabetic 

patients.  PHLPP1 mRNA expression levels were increased in these patients suggesting 

that the increase in PHLPP1 is the likely reason for the decrease in Akt phosphorylation 

and subsequent inactivation [32].  A second study found that PHLPP1 protein levels 

were increased in the adipose tissue of obese patients compared to non-obese patients 

and that PHLPP1 abundance positively correlated with BMI.  This correlated with a 

decrease in basal Akt Ser473 phosphorylation levels.  Furthermore, a twofold increase in 

PHLPP1 levels were found in the skeletal muscle of obese patients, however, there were 

no differences between obese patients that had normal fasting glucose versus impaired 

fasting glucose.  Lastly, they determined that PHLPP1 protein levels were increased 

upon insulin treatment in HepG2 cells and that overexpressing PHLPP1 in HepG2 cells 

reduces insulin-stimulated glycogen content compared to control cells [33]. 

 

Akt signaling in the pancreatic beta- cell, muscle, and liver 

 

Since not a great deal is known about PHLPP and its role in glucose 

homeostasis, it is important to look at Akt to determine what function PHLPP may be 

playing through its negative regulation of Akt.  In all gluco-regulatory tissues Akt is 

downstream of the insulin receptor in the PI3K cascade.  When insulin binds to the 

insulin receptor (IR) at the cell membrane, IRS proteins binds to the IR, which act as an 

adaptor molecule for PI3K. Upon activation, PI3K phosphorylates PIP2 to PIP3.  The PH 

domains in Akt and PDK1 bind to PIP3 at the plasma membrane.  Akt is activated 

through phosphorylation, and it then moves throughout the cell to mediate downstream 

signaling which can vary depending on the cell type.  In the muscle, Akt activation leads 

to the translocation of GLUT4 to the plasma membrane allowing for glucose uptake [34].  

Therefore, insulin signaling activates Akt, increasing muscle glucose uptake thereby 
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lowering blood glucose levels (Figure 1.3).  In the liver, Akt activation leads to 

phosphorylation and inactivation of Foxo1.  Foxo1 is a transcription factor that when not 

phosphorylated, is active and present in the nucleus where it is responsible for the 

transcription of genes necessary for gluconeogenesis.  When Foxo1 is phosphorylated it 

is unable to enter the nucleus and therefore gluconeogenic gene transcription is turned 

off leading to suppression of gluconeogenesis [35].  Therefore, upon insulin signaling, 

Akt is activated and gluconeogenesis is suppressed.  At the same time, Akt 

phosphorylation and inactivation of GSK3β promotes glycogen synthesis effectively 

shunting the glucose taken up by the hepatocyte towards storage as glycogen (Figure 

1.4) [36].  The role of Akt in the beta-cell is less clear.  It has been shown to play a role 

in cell size, cell survival, and proliferation which can be important for expanding beta-cell 

mass during times of increasing insulin resistance [37].  Additionally, there have been 

studies suggesting that Akt plays a role in glucose stimulated insulin secretion.  

Transgenic mice overexpressing Akt had a six times higher beta-cell mass and   

increased  insulin secretion [38].  Conversely, transgenic mice expressing a kinase-dead 

mutant of Akt exhibited a decrease in glucose-stimulated insulin secretion (Figure 1.5) 

[39]. 
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Figure 1.3: Akt signaling in the muscle cell 

Insulin binds to and activates the insulin receptor (IR), which causes tyrosine 

phosphorylation of IRS protein. The IRS proteins act as adaptor molecules for PI3K.  

Once PI3K is bound, it converts PIP2 to PIP3.  PDK1 and Akt bind to PIP3 through their 

PH domains.  Akt is phosphorylated and activated resulting in the subsequent 

translocation of GLUT4 to the plasma membrane.  GLUT4 takes up glucose from the 

bloodstream thereby lowering blood glucose levels. 
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Figure 1.4: Akt signaling in the liver 

Activation of the insulin signaling pathway in liver Ieads to phosphorylation of Foxo1 by 

Akt.  Foxo1 is a transcription factor that normally translocates to the nucleus and 

activates the transcription of gluconeogenic genes.  Upon phosphorylation by Akt, Foxo1 

is excluded from the nucleus thus leading to suppression of gluconeogenesis.  

Concurrently, Akt phosphorylates GSK3β, which is an inhibitor of glycogen synthesis.  

Upon phosphorylation, it is inactivated allowing for glycogen synthesis to take place. 
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Figure 1.5: Akt signaling in the pancreatic beta-cell 

Insulin signaling in the pancreatic beta cell leads to activation of Akt, which has been 

shown to promote cell survival and to increase cell size as well play a role in glucose 

stimulated insulin secretion. 
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Feedback Regulation of PHLPP via Akt and S6K 

 

 There are two known feedback loops that regulate PHLPP.  The first is a 

feedback loop from Akt that controls PHLPP degradation.  GSK3β is a kinase inhibited 

via phosphorylation by Akt.  GSK3β phosphorylates PHLPP1 targeting it for 

ubiquitination and degradation.  Therefore, if PHLPP1 levels are low, Akt will be highly 

active causing a decrease in GSK3β activity leading to decreased PHLPP1 degradation 

subsequently increasing PHLPP1 activity.  This negative feedback loop is lost in many 

cancer cell lines.  In cancer cells, PHLPP1 is still phosphorylated by GSK3β, however, it 

can no longer interact with the E3 ligase necessary for ubiquitination due to 

mislocalization of the ligase, thus Akt can no longer regulate PHLPP1 protein levels [40]. 

 

There is a second feedback loop involving the direct dephosphorylation of S6K 

by PHLPP.  It is well established that there is a negative feedback loop from S6K to 

IRS1 (insulin receptor substrate 1), an adaptor protein involved in the insulin receptor-

PI3K-Akt pathway.  S6K phosphorylates IRS1 targeting it for degradation and 

attenuating signaling through this pathway.  This negative feedback loop between S6K 

and the IRS proteins has been shown to play a role in insulin resistance as prolonged 

insulin signaling highly activates S6K resulting in degradation of the IRS proteins [41].  

This uncouples the insulin receptor (IR) from PI3K signaling rendering a cell unable to 

respond to insulin signal.  When PHLPP activity is high, S6K activity is decreased 

resulting in a decrease of IRS1 degradation (Figure 1.6).  This activates PI3K signaling, 

increasing flux through the insulin receptor pathway.  However, loss of PHLPP 

expression has a similar effect to prolonged insulin signaling.  Low PHLPP activity 

results in high S6K activation which decreases IRS1 protein levels and decreases 
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insulin-dependent activation of Akt thus promoting the uncoupling of the IR from the 

PI3K pathway [24].  
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Figure 1.6: Feedback regulation between S6K and IRS 

Basal insulin signaling results in activation of the PI3K pathway.  However, during 

instances of prolonged insulin action, such as when a patient is developing type 2 

diabetes, S6K is highly activated resulting in the phosphorylation of the IRS proteins 

targeting them for degradation by the proteasome.  This effectively uncouples IR 

activation from PI3K signaling.  This feedback regulation between S6K and IRS has 

been indicated to play role in insulin resistance.  Loss of PHLPP signaling has been 

shown to play a similar role as prolonged insulin action, resulting in high S6K activation 

and the degradation of IRS. (Modified from [41]) 
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Akt and Type 2 Diabetes Mellitus 

 

 As Akt is downstream of the insulin receptor it has been found to play a role in 

many processes important for glucose metabolism including GLUT4 translocation, 

stimulation of glycogen synthesis, increasing the rate of glycolysis, and inhibiting 

gluconeogenesis [42].  There are three Akt isoforms all exhibiting non-redundancy in 

their function and expression.  Akt1 is ubiquitously expressed and has been indicated in 

controlling organism size, adipogenesis, and skeletal muscle differentiation.  Akt3 is 

mainly expressed in neurons and is required for normal brain size.  Akt2 has been found 

to have increased expression in insulin-responsive tissues, and is required for 

maintaining glucose homeostasis [43].   

 

There have been two studies looking at the effects of the loss of Akt2 expression 

in mice.  The first study determined that Akt2 deficient mice exhibited fasting and fed 

hyperglycemia with compensatory hyperinsulinemia.  These mice displayed both 

glucose and insulin intolerance with an inability to suppress hepatic glucose production.  

These mice also exhibited an increase in islet mass and number but the increase was 

not as dramatic as what has been seen in other mouse models of insulin resistance 

possibly due to the disruption in Akt2 signaling.  This resulted in an inadequate 

compensatory hyperinsulinemia in response to the hyperglycemia [44]. 

 

 The second study used a different Akt2 knockout mouse model.  Similarly to the 

first study, the mice exhibited fasting and fed hyperglycemia and glucose intolerance.  

Unlike the previous study, these mice displayed growth deficiency along with lipoatrophy 

that progressed with age.  Interestingly, the male mice exhibited three different 

phenotypes when it came to plasma insulin levels.  One subset were found to be 
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hyperinsulinemic followed by a decline in insulin levels with corresponding 

hyperglycemia.  A second subset exhibited steadily rising hyperinsulinemia 

corresponding with steadily rising hyperglycemia.  Meanwhile, a third subset displayed 

hypoinsulinemia along with extreme hyperglycemia.  Ultimately, 75% of males displayed 

an extreme diabetic phenotype by 5-8 months of age [45]. 

 

 Loss of Akt2 activity has also been found to lead to severe type 2 diabetes 

mellitus in humans.  During a screen for gene mutations in patients with severe insulin 

resistance, one patient was found to have a missense mutation in the catalytic domain of 

Akt2.  The patient, along with three relatives, was found to be heterozygous for the 

mutation.  All exhibited extreme hyperinsulinema and three of the four developed 

diabetes in their thirties.  The original patient was found to have severe insulin resistance 

in both the muscle and the liver.  Similarly to the Akt2 knockout mice, the patient also 

had  decreased  body fat compared to predicted total body fat for her height and weight 

[46].  

 

Significance of this Study 

 

 PHLPP phosphatase has been demonstrated to function as a tumor suppressor 

in many cancers through its negative regulation of Akt, however, PHLPP’s role in other 

disease states is mostly unknown.  We know that Akt is upstream of GLUT4 in the 

IR/PI3K pathway in muscle promoting glucose uptake upon insulin stimulation.  In the 

liver, Akt is responsible for turning off glucose production via the inactivation of Foxo1 as 

well as for promotion of glycogen storage through phosphorylation of GSK3β.  In the 

pancreatic beta-cell Akt plays a role in cell size and proliferation in response to 

increasing hyperglycemia as well as a role in promoting insulin secretion.  Based on 
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these data combined with the effects seen upon disruption of Akt expression in both 

mice and humans, we hypothesize that PHLPP also functions in the regulation of 

glucose metabolism.  As Akt2 is the isoform necessary to maintain normoglycemia, we 

focused on PHLPP1 as it specifically targets Akt2.  We used Phlpp1 whole body 

knockout mice to study its role in glucose homeostasis.  The obtained data suggest that 

that loss of Phlpp1 expression in mice leads to development of type 2 diabetes mellitus. 
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Chapter 2 

Materials and Methods 

 

Animals:  All animals were housed in a specific pathogen-free animal facility at the 

University of Kentucky with 12-hour light-dark cycle.  All animal procedures were 

reviewed and approved by the University of Kentucky Institutional Animal Care and Use 

Committee.  Phlpp1 null mice on 129Sv/C57BL6 background as described previously 

[22] were backcrossed with C57BL/6NJ mice (Jackson Laboratories, Bar Harbor, ME) for 

five generations.  Heterozygous mating pairs were used to generate Phlpp1-/- and wild 

type animals.  

 

Genotyping:  All animals were genotyped by taking tail snips at 21 days old.  Tail snips 

were put into 300μL DNA extraction buffer (10mM NaOH, 0.1mM EDTA) and heated for 

10 minutes at 95°C.  6μL of each sample were combined with 10μL GoTaq® Green 

Master Mix 2x (Promega), 2μL forward primer, 1μL reverse primer 1, and 1μL reverse 

primer 2.  (All primer sequences are listed in Table 2.1).  Samples were run on a 

Stratagene Robocycler 96.  Cycling conditions are as follows: 

 1 cycle  1 minute at 95°C 

 35 cycles 30 seconds at 95°C 

   1 minute at 54°C 

   1 minute at 72°C 

 1 cycle  5 minutes at 72°C 

All samples were visualized on a 2% agarose gel with EZ-Vision® Three DNA Dye & 

Buffer, 6x (Amresco). 
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Tolerance Tests:  All tolerance tests were carried out with males and followed the 

standard operating procedures established previously [47].  For the glucose tolerance 

tests (GTT), mice were fasted for 6 hours, weighed, and then i.p. injected with glucose 

(2g/kg, Sigma).  For the insulin tolerance tests (ITT) mice were fasted for 4 hours, 

weighed and then i.p. injected with insulin (0.75units/kg, Humulin R, Eli Lilly).  For the 

pyruvate tolerance tests (PTT), mice were fasted for 16 hours, weighed, and then i.p. 

injected with pyruvate (2g/kg, Thermo Scientific).  All blood was collected via the tail vein 

and blood glucose levels were measured using a NovaMax Plus glucometer post-

injection at the times indicated.   

 

Measurement of Insulin Secretion:  To measure glucose stimulated insulin secretion, 

blood was collected from male mice via the tail vein into microvette lithium-heparin tubes 

(Sarstedt) at time 0 and 15 minutes post glucose injection (2g/kg).  Blood samples were 

mixed with 50μL of 50mM EDTA in 1x PBS and centrifuged for 5 minutes at 5000 rpm at 

4°C.  The supernatant (plasma) was removed and kept for insulin measurement.  To 

determine plasma insulin concentrations, insulin ELISAs were performed according to 

manufacturer’s instructions (Ultra-sensitive Mouse Insulin ELISA Kit, Crystal Chem).  

ELISAs were read on the μQuant spectrophotometer (Bio-Tek Instruments) at an 

absorbance of 450nm. 

 

Measurement of Pancreatic Beta-Cell Mass:  Beta-cell mass and islet area were 

measured in four non-consecutive pancreas sections per mouse stained for insulin using 

Image J (National Institutes of Health, Bethesda, MD) as described previously [48].  

Pancreata were removed, weighed, fixed in Bouin’s solution and embedded in paraffin.  

Islet number was quantified manually in insulin stained sections in a blinded fashion 

using an Olympus CH2 upright microscope with an intraocular calibrated grid.  Beta-cell 
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mass was estimated as the product of the relative cross-sectional area of beta-cell per 

total pancreas, and the weight of the pancreas by examining pancreata from five wild 

type and Phlpp1-/- animals. 

 

Echo-MRI:  To determine body composition, live, unanesthetized mice were measured 

using an EchoMRI-5000 whole-body composition analyzer (Echo Medical System, 

Houston, TX).  The machine uses magnetic resonance relaxometry. 

 

Indirect Calorimetry:  Food consumption, body temperature, animal activity, O2 

consumption, and CO2 production was measured using the TSE LabMaster system by 

the staff of the COBRE Metabolic Core at the University of Kentucky.  Echo-MRI was 

performed before and after putting the animals into the cages for measurement of lean 

and fat mass in order to monitor changes in body composition during indirect 

calorimetry. 

 

Isolation and Purification of Islets:  Pancreatic islets were isolated from mice for 

making protein extracts.  Mice were euthanized via CO2 followed by cervical dislocation.  

Pancreata were removed aseptically via injection of Hank’s Balanced Salt Solution 

(HBSS, Lonza) containing 0.5mg/mL collagenase type V (Sigma).  Pancreata were 

separated from the stomach and duodenum and immediately placed in a solution of 

0.5mg/mL collagenase in HBSS.  They were then incubated at 37°C with frequent 

agitation to facilitate digestion.  Digestion was stopped by adding chilled HBSS with 10% 

fetal bovine serum (FBS).  Samples were then centrifuged at 1000 rpm at room 

temperature for 2 minutes.  The supernatant was aspirated away and the pellet was 

resuspended in 20mL HBSS with 10% FBS.  After resuspension samples were spun 

again at 1000 rpm at room temperature for 2 minutes.  This was repeated two more 
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times.  The pellet was resuspended in 20mL HBSS.  An equal volume of room 

temperature histopaque-1077 (Sigma) was gently underlaid beneath the resuspended 

islets.  This was centrifuged for 10 minutes at 1800 rpm at room temperature with the 

centrifuge brake turned off.  The islet layer (interphase) was transferred to a new tube. 

10mL of HBSS with 10% FBS was added to the tube containing the histopaque layer.  

Both tubes were then centrifuged at 1800 rpm for 2 minutes at room temperature.  The 

supernatant was aspirated away, and the pellets were resuspended in 20mL HBSS with 

10% FBS.  The samples were centrifuged at 1800 rpm for 2 minutes at room 

temperature.  The supernatant was aspirated away and the pellets were used for protein 

extract preparation. 

 

Liver collection:  Mice were euthanized using CO2 followed by cervical dislocation.  

Livers were removed aseptically, cut into thirds, wrapped in foil, and flash frozen in liquid 

nitrogen.  They were stored at -80°C until used for protein extracts or RNA isolation.  For 

staining, the isolated livers were immediately put into 10% formalin, incubated overnight 

at room temperature, and then paraffin embedded. 

 

Western Blot Analysis:  For islet samples, lysis buffer (50mM Tris, 20% glycerol, 

150mM NaCl, 0.5% NP-40, 5mM MgCl2, and 0.2mM EDTA) containing 1mM PMSF, 

5μg/mL aprotinin, 1μg/mL leupeptin, 1μg/mL pepstatin, 1μL/mL phosphatase inhibitor 

cocktail #1 and #2 (Sigma) was added to pelleted islets, vortexed and incubated on ice 

for 30 minutes.  For liver samples, pieces of liver were added to a Dounce homogenizer 

containing 3mL of the above-described lysis buffer and homogenized until completely 

liquefied.  Lysates were then transferred to microcentrifuge tubes and incubated on ice 

for 30 minutes.  After incubation all samples were centrifuged for 15 minutes at 10,000 

rpm at 4°C.  Supernatants were transferred to new tubes and pellets were discarded.  All 
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samples were subject to BCA analysis for determination of protein concentration.  Most 

tissue samples had to be diluted (1:3 for islets, 1:5 for liver) in lysis buffer before BCA 

measurement.  100μg of protein sample were boiled at 100°C  for 10 minutes in 4x SDS 

sample buffer (200mM Tris-Cl pH 6.8, 400mM DTT, 8% SDS, 0.4% bromophenol blue, 

40% glycerol) and 0.4M DTT.  Proteins were separated using 8% SDS-PAGE .  Protein 

was transferred to nitrocellulose at 30 volts overnight at 4°C.  The nitrocellulose 

membrane was stained with Ponceau red for protein visualization, washed with 1x TTBS 

(20mM Tris pH 7.4, 150mM NaCl, 0.1 % Triton X-100), blocked with blocking buffer 

(1xTTBS supplemented with 5% milk or 5% BSA), and incubated in primary antibody 

(diluted in blocking buffer) overnight at 4°C.  After washing in 1X TTBS three times for 5 

minutes each, the membrane was incubated with secondary antibody (anti-mouse or 

anti-rabbit) conjugated with horseradish peroxidase (diluted in blocking buffer) for 2 

hours at room temperature.  After washing with 1X TTBS for 15 minutes four times, the 

membrane was exposed to ECL reagent (Dura, Thermo Scientific) and film for various 

time points.  β-Actin was used as loading control.  All antibodies, along with supplier, 

catalog number, species, and dilution are listed in Table 2.2. 

 

Bicinchoninic Acid (BCA) Assay:  BCA assays were carried out according to 

manufacturer’s specifications (Pierce).  All samples were diluted in water and run as 

triplicate.  BSA protein standard (0, 1, 2, 4, 8, and 16 μg/μL) was used to construct a 

linear standard curve and equation which was used to determine concentration using 

optical density (OD) at 562nM using the μQuant Spectrophotometer (Bio-Tek 

Instruments).  

 

RNA Extraction from Liver:  For 1 g of tissue, use 10-20 mL Trizol (Life Technologies).  

Sample volume should not exceed 10% of the volume of Trizol being used.  The 
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samples were incubated in Trizol for 5 minutes at room temperature after 

homogenization in a Dounce homogenizer.  0.2mL chloroform was added for every 1mL 

of Trizol used.  Samples were shaken vigorously for 15 seconds and incubated at room 

temperature for 2-3 minutes.  They were then centrifuged for 15 minutes at 12,000 x g at 

4°C.  The aqueous phase was transferred to a fresh microcentrifuge tube.  Since the 

liver has a high content of polysaccharides, 0.25mL isopropanol was added to the 

aqueous phase followed by 0.25mL high salt precipitation solution (0.8M sodium citrate 

and 1.2M NaCl) per 1mL Trizol used.  The resulting solution was mixed, incubated at 

room temperature for 10 minutes and centrifuged for 10 minutes at 12,000 x g at 4°C.  

The supernatant was removed and the pellet was washed with 1mL 75% ethanol for 

every 1mL Trizol.  The sample was mixed by flicking and inverting the tube and 

centrifuged at 7,500 x g for 5 minutes at 4°C.  The RNA was air dried and re-dissolved in 

RNase-free water.  Samples were sometimes incubated at 55-60°C for 10-15 minutes to 

dissolve RNA.  RNA concentration was measured using the NanoDrop 1000 

Spectrophotometer (Thermo Scientific). 

 

Periodic Acid Schiff Staining:  Paraffin embedded liver sections from randomly fed 

Phlpp1+/+ and Phlpp1-/- mice were stained for glycogen using the Periodic Acid Schiff 

Staining Kit (Sigma).  Slides were first deparaffinized and hydrated by immersing in: 

xylene for 6 minutes at room temperature (two times), absolute ethanol for 5 minutes at 

room temperature, 95% ethanol for 4 minutes at room temperature, 70% ethanol for 3 

minutes at room temperature and distilled water for 1 minute at room temperature (two 

times).  Periodic acid Schiff staining was then performed according to manufacturer’s 

specifications. Slides were then dehydrated and mounted by immersing in:  70% ethanol 

for 3 minutes at room temperature, 95% ethanol for 3 minutes at room temperature, 

absolute ethanol for 3 minutes at room temperature, and xylene for 3 minutes at room 
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temperature.  Two drops of mounting media (Gel/Mount Aqueous Mounting Medium, 

Biomeda Corporation) were placed on top of the tissue and coverslips were placed over 

each section.  The media was allowed to set for one hour and the edges of the 

coverslips were sealed with clear nail polish.  Staining was visualized using a Nikon 

Eclipse E600. 

 

Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR):  RNA (1μg) isolated 

from liver was treated with DNase I (Sigma) according to manufacturer’s specifications.  

cDNA was made by adding 4μL qScript cDNA SuperMix (Quanta Biosciences) and 5μL 

RNase/DNase-free water to the tubes containing the DNase treated RNA.  The reaction 

was then run on a Stratagene Robocycler 96 according to the qScript cDNA kit 

specifications. 

 

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR):  qRT-PCR was 

carried out using PowerSYBR® Green PCR Master Mix (Applied Biosystems) according 

to manufacturer’s specifications on a Stratagene Mx3005P machine (Agilent 

Technologies).  All samples were run in duplicate.  See Table 2.1 for all primer 

sequences.  Average Ct values were used to calculate relative levels of target genes 

between genotypes.  Rpl13a was used as a control and all target gene Ct values were 

normalized to Rpl13a transcript levels.  The delta-delta Ct method of quantitation was 

used to determine approximate fold difference [49]. 

 

Statistical Analysis:  All data was analyzed using the students paired t-test.  All 

experiments analyzed for significance were performed a minimum of three times.  A p-

value of < 0.05 was deemed statistically significant.  Error bars represent ± SD. 
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Table 2.1:  Primers used for genotyping and qRT-PCR 

 

Primer: Designation: Sequence: 
Phlpp1 KO43 
(forward) 

OS512 5’-TAGGAGAGACTAGTGACATC-3’ 

Phlpp1 KO44 
(reverse #1) 

OS513 5’-TGAGCTTATACGCTGTGATGC-3’ 

Phlpp1 KO56 
(reverse #2) 

OS514 5’-AGCCGATTGTCTGTTGTGC-3’ 

PEPCK (forward) Pck2F 5’-GTGGAAGGTCGAATGTGTGG-3’ 
PEPCK (reverse) Pck2R 5’-TAAACACCCCCATCGCTAGT-3’ 
Glucose-6-
phosphatase 
(forward) 

 
G6pc2F 

 
5’-GTGTTTGAACGTCATCTTGTG-3’ 

Glucose-6-
phosphatase 
(reverse) 

 
G6pc2R 

 
5’-TTAGTAGCAGGTAGAATCCAA-3’ 

Fructose-1,6-
bisphosphatase 
(forward) 

 
Fbp1F 

 
5’-GTAACATCTACAGCCTTAATGAG-3’ 

Fructose-1,6-
bisphosphatase 
(reverse) 

 
Fbp1R 

 
5’-CCAGAGTGCGGTGAATATC-3’ 

Glycogen Synthase 
(forward) 

Glycogen 
Synthase 

Forward Prim 

 
5’-ACCAAGGCCAAAACGACAG-3’ 

Glycogen Synthase 
(reverse) 

Glycogen 
Synthase 

Reverse Prim 

 
5’-GGGCTCACATTGTTCTACTTGA-3’ 

Glycogen 
Phosphorylase 
(forward) 

Glycogen 
Phosphorylase 

Forward 

 
5’-CACCTGCACTTCACTCTGGTC-3’ 

Glycogen 
Phosphorylase 
(reverse) 

Glycogen 
Phosphorylase 

Reverse 

 
5’-TTGGGACACTTGTCGTAGTAGT-3’ 

Rpl13a (forward) Rpl13a Forward 
primer 

5’-CTGTGAAGGCATCAACATTTCTG-3’ 

Rpl13a (reverse) Rpla13a 
Reverse primer 

 
5’-GACCACCATCCGCTTTTTCTT-3’ 
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Table 2.2:  Primary Antibodies 
 

Antibody: Type: Company and  
Catalog Number: 

Dilution: 

PHLPP1 Rabbit polyclonal Bethyl Labs, A300-660A 1:500 
PHLPP2 Rabbit polyclonal Bethyl Labs, A300-661A 1:1,000 

phospho-Akt 
(Ser473) 

Rabbit polyclonal Cell Signaling, 9271S 1:500 

Akt Rabbit polyclonal Cell Signaling, 9272S 1:1,000 
β-Actin Mouse monoclonal Sigma, A5441 1:10,000 
IRS2 Rabbit polyclonal Cell Signaling, 3089S 1:1,000 

phospho-p70S6K 
(Thr389) 

Rabbit polyclonal Cell Signaling, 9205S 1:500 

p70S6K Rabbit polyclonal Cell Signaling, 9202 1:1,000 
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Chapter 3 

The role of PHLPP1 in overall glucose homeostasis and energy balance 

 

Introduction 

 The PI3K/Akt pathway is extremely important in the maintenance of glucose 

homeostasis.  It is found downstream of the insulin receptor and so plays an essential 

role in insulin-sensitive tissues.  In the muscle, Akt is important for the translocation of 

GLUT4 to the plasma membrane to allow for muscle glucose uptake [34].  In the liver, 

Akt is responsible for turning off gluconeogenesis via Foxo1 and for activation of 

glycogen synthesis via downregulation of GSK3β [35, 36].  Additionally, in the 

pancreatic-beta cell, Akt plays a role in cell size and proliferation as well as in glucose-

stimulated insulin secretion [37-39].  Loss of Akt expression has been linked with a type 

2 diabetes phenotype in both mice and humans.  In mice, loss of Akt2 leads to 

hyperglycemia with compensatory hyperinsulinemia along with glucose and insulin 

intolerance [44].  Another study found that loss of Akt2 expression in mice caused 

glucose intolerance, lipoatrophy, and fed and fasting hyperglycemia.  A subset of these 

mice developed a decline in insulin secretion indicating beta-cell failure.  Overall 75% of 

the male mice in this study developed a severe diabetic phenotype [45].  In humans, a 

missense mutation in the catalytic domain of Akt2 found during a screen of diabetic 

patients was associated with severe insulin resistance, extreme hyperinsulinemia, and a 

decrease in body fat [46]. 

 

 Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) is 

a negative regulator of Akt via dephosphorylation of serine 473 in its catalytic domain.  

Loss of serine 473 phosphorylation attenuates Akt signaling.  PHLPP regulation of Akt 

has been highly studied in cancer as Akt is a central signaling molecule in preventing 
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apoptosis and promoting cell proliferation [19].  There are two PHLPP isoforms and both 

are found at loci frequently lost in cancers [29].  PHLPP’s role in other disease states is 

not well known.  There have been two studies looking at PHLPP expression in obese 

and/or diabetic patients.  The first found that Phlpp mRNA expression is increased in the 

muscle tissue of type 2 diabetic patients compared to non-diabetic patients with a 

concomitant decrease in Akt ser473 phosphorylation [32].  The second study determined 

that PHLPP1 protein levels are increased in adipose tissue of obese patients and that 

Phlpp1 expression positively correlates with BMI [33]. 

 

 We hypothesized that since Akt has been shown to play a role in blood glucose 

regulation and overall homeostasis, that PHLPP would also have a regulatory function in 

glucose homeostasis.  This study focused on the PHLPP1 isoform as it specifically 

regulates Akt2, which is important for blood glucose regulation [28].  All of the 

experiments were carried out using whole body Phlpp1 knockout mice.  All experimental 

details are described in Chapter 2. 

 

Results 

 

Phlpp1-/- mice display significantly reduced body weight when young and 

increased when older due to differences in fat mass 

 

 Phlpp1-/- mice were generated using heterozygous pairings to produce both wild 

type and null offspring.  When weaning at three weeks of age, we observed that the 

Phlpp1-/- mice were noticeably smaller than their wild type littermates.  We began 

measuring their body weight at four weeks of age and every four weeks thereafter to 

quantify any differences.  At four and eight weeks of age the Phlpp1-/- mice weighed 
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significantly less than their wild type counterparts.  Beginning at twelve weeks of age the 

weight of the Phlpp1-/- mice was not significantly different from wild type.  This remained 

true until 24 weeks of age when the Phlpp1-/- mice began to weigh significantly more 

than the control animals.  The increase in weight was sustained until 36 weeks when we 

discontinued measurement (Figure 3.1).   

 

 To determine whether the differences in weight between Phlpp1-/- and wild type 

mice were due to changes in fat mass we performed Echo-MRI.  Echo-MRI has the 

ability to measure fat and lean mass, as well as free and total water in live, 

unanesthetized mice.  Echo-MRI uses nuclear magnetic resonance (NMR) to measure 

the differences in proton spins in the various soft tissue environments.  The proton 

signals being measured are related to the properties of the material being scanned, 

therefore, the machine is able to tell the difference between fat and lean mass.  We 

performed Echo-MRI on 8-week old wild type and Phlpp1-/- mice.  As expected, the 

Phlpp1-/- mice had significantly decreased amounts of fat mass compared to wild type 

controls.  Interestingly, they also exhibited significantly decreased amounts of lean 

mass.  Since the Phlpp1-/- gained weight faster than their wild type littermates as they 

aged, we also measured lean and fat mass in 24-week old mice, the age at which the 

weight of the Phlpp1-/- mice began to increase.  The 24-week old Phlpp1-/- mice had 

significantly increased amounts of fat mass compared to wild type, however, they 

maintained their decrease in lean mass (Figure 3.2). 
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Figure 3.1:  Phlpp1-/- mice weigh significantly less when young and significantly 

more when old 

Wild type and Phlpp1-/- mice were weighed beginning at 4 weeks and every 4 weeks 

subsequently for 36 weeks.  The results are mean values (n=10) ± SD. *p < 0.05 
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Figure 3.2: Phlpp1-/- mice exhibit significantly decreased fat mass at 8 weeks and 

significantly increased fat mass at 24 weeks 

Echo-MRI was used to measure fat and lean mass of live, unanesthetized Phlpp1-/- and 

wild type mice at (A) 8 weeks old and (B) 24 weeks of age.  The results are mean values 

(n=14 for WT, n=12 for Phlpp1-/-) ± SD.  *p < 0.05 
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Phlpp1-/- mice have increased fasting blood glucose levels but normal glucose 

tolerance 

 

 Abnormal fasting blood glucose levels can be a good indicator of disruptions to 

overall glucose homeostasis.  Increased fasting blood glucose may not signify that a 

patient currently has type 2 diabetes, however it does predispose a patient to the 

disease.  The liver is mainly responsible for maintaining glucose levels during times of 

fasting, and it does this by producing glucose via glycogenolysis or gluconeogenesis.  

Hepatic glucose production is turned off by insulin, but if the liver becomes insulin 

resistant, then glucose production becomes uncontrolled, and fasting glucose levels are 

increased.  Since insulin resistance is a necessary step in the development of type 2 

diabetes, changes in fasting blood glucose levels can be an early indicator of the 

disease progression. 

  

 To determine if Phlpp1-/- mice display any changes in fasting blood glucose 

levels, we fasted eight week old wild type and Phlpp1-/- littermates overnight for 16 hours 

and measured blood glucose levels in the morning using a glucometer.  Interestingly, 

Phlpp1-/- mice displayed significantly increased fasting blood glucose levels compared to 

wild type.  We repeated the measurement using 24-week old mice and found that the 

Phlpp1-/- mice still exhibited a significant increase in fasting levels, and this increase was 

more pronounced compared to the 8-week old mice (Figure 3.3a).  To get a better idea 

of overall glucose homeostasis, we measured blood glucose levels of Phlpp1-/- mice and 

wild type controls fed ad libitum.  At eight weeks of age, there was no significant 

difference, however, 24-week old Phlpp1-/- displayed significantly increased blood 

glucose levels compared to wild type (Figure 3.3b.)    
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Figure 3.3: Phlpp1-/- mice display increased fasting blood glucose levels at both 8 

and 24 weeks and increased random blood glucose at only 24 weeks 

(A) Fasting blood glucose (n=10) and (B) blood glucose of animals fed ad libitum (n=10) 

was measured in 8- and 24-week old Phlpp1-/- and wild type mice using blood collected 

via the tail vein.  Results are mean values ± SD. *p < 0.05 
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 A glucose tolerance test is used to measure glucose clearance from the 

bloodstream.  Once a glucose load has been either ingested or injected, blood glucose 

levels are measured for up to two hours.  If blood glucose levels do not return to normal 

levels after the two-hour period, then this indicates impaired glucose tolerance (IGT).  

IGT can be an indicator of reduced glucose uptake due to insulin resistance, impaired 

glucose-stimulated insulin secretion, or hepatic insulin resistance causing uncontrolled 

glucose output.  IGT typically prefaces the onset of type 2 diabetes. 

 

 To determine if the Phlpp1-/- mice had impaired glucose tolerance, we performed 

glucose tolerance tests (GTT) on 8-week old Phlpp1-/- and wild type littermates.  Mice 

were fasted overnight for 16 hours, weighed, and then i.p. injected with 2 g/kg glucose.  

Fasting glucose was measured at time 0, and blood glucose levels were measured 

every 15 minutes post-injection for two hours.  Despite the differences in fasting glucose 

levels, the Phlpp1 null mice showed a slight increase in glucose tolerance, however, this 

was not statistically significant (Figure 3.4). 
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Figure 3.4: Phlpp1-/- mice display normal glucose tolerance 

8-week old wild type and Phlpp1-/- mice were fasted overnight and then weighed.  Blood 

glucose was measured at time 0, and mice were injected with 2g/kg glucose.  Blood 

glucose was measured every 15 minutes post-injection for 2 hours.  Blood was collected 

via the tail vein and measured using a glucometer.  The results are mean values (n= 10) 

± SD.   
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Phlpp1 null mice have slightly increased insulin tolerance and hepatic glucose 

production 

 

 An insulin tolerance test (ITT) is similar to a glucose tolerance test in that it 

measures glucose clearance over time.  In an ITT, however, insulin is injected rather 

than glucose, and it is used to measure insulin sensitivity.  When injected with an insulin 

bolus, blood glucose levels should decrease until counter-regulatory responses begin.  If 

blood glucose levels do not decrease normally, it can be inferred that the organism has 

changes in insulin sensitivity.  If blood glucose levels decrease more quickly, then an 

organism is considered more sensitive to insulin.  Conversely, if blood glucose levels do 

not fall as quickly, an organism is likely insulin insensitive or insulin resistant whether in 

the muscle, liver, or both. 

 

 To measure insulin tolerance in Phlpp1 null mice, we fasted 8-week old mice for 

4 hours, weighed them, measured glucose levels at time 0, and then i.p. injected them 

with 0.75 units/kg insulin.  We measured blood glucose levels post-injection for two 

hours.  Phlpp1-/- mice have a slight increase in insulin sensitivity compared to wild type 

littermates, but the most striking differences occurred between 75 and 120 minutes post 

insulin injection (Figure 3.5a).  The half-life of insulin in mice is ten minutes, therefore 

differences after 30 minutes are likely not due to insulin action [50].  The differences 

seen in the latter half of the ITT are likely due to counter-regulatory responses.  In mice, 

once blood glucose levels fall to around 80 mg/dL, counter-regulatory hormones, 

including glucagon from the pancreas, are released [51].  Therefore, it is likely the 

differences seen 75 minutes and later are due to alterations in counter-regulation. 
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 Because the 8-week old mice exhibited increased fasting blood glucose levels 

we performed a pyruvate tolerance test (PTT) in order to determine if the mice had 

increased rates of hepatic glucose production.  The liver is responsible for maintaining 

blood glucose levels during times of fasting via glycogenolysis and gluconeogenesis to 

produce glucose.  Pyruvate is the starting material for gluconeogenesis.  Injection of 

pyruvate and then measurement of the increase of blood glucose levels post-injection 

can indicate the flux through the gluconeogenic pathway.  If blood glucose levels 

increase quickly, that is suggestive of increased rates of hepatic glucose production via 

gluconeogenesis. 

  

To perform the PTT, we fasted 8-week old Phlpp1-/- and wild type mice overnight 

for 16 hours to deplete glycogen stores.  We weighed the mice, measured fasting 

glucose levels, and then i.p. injected with 2 g/kg pyruvate.  We then measured blood 

glucose levels every 15 minutes post-injection for 90 minutes.  Phlpp1 null mice had 

slightly increased glucose production compared to wild type controls.  This could be 

contributing factor to the increased fasting blood glucose levels seen in the Phlpp1-/- 

mice (Figure 3.5b). 
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Figure 3.5: 8-week old Phlpp1-/- mice exhibit slightly increased insulin sensitivity 

and glucose production 

(A) 8-week old wild type and Phlpp1-/- mice were fasted for 4 hours and then weighed.  

Basal glucose levels were measured at time 0, and then mice were injected with 

0.75u/kg insulin.  Glucose levels were measured every 15 minutes post-injection for 2 

hours.  (B)  Mice were fasted for 16 hours and then weighed.  Basal glucose levels were 

measured at time 0, and then injected with 2 g/kg pyruvate.  Glucose levels were 

measured every 15 minutes post-injection for 90 minutes.  Blood was collected via the 

tail vein using a glucometer.  The results are mean values (n=14 for WT, n=12 for 

Phlpp1-/-) ± SD.  *p < 0.05 
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Young Phlpp1-/- mice compensate for insulin resistance with hyperinsulinemia 

 

 Akt has been indicated to play a role in insulin secretion as well as beta-cell 

expansion.  This idea, along with our previous data that Phlpp1 null mice exhibit 

increased fasting blood glucose but normal glucose tolerance led us to determine 

whether insulin secretion and beta-cell mass is affected in the Phlpp1-/- mice.  To 

measure glucose stimulated insulin secretion in eight week old mice, we collected blood 

samples from 16 hour fasted Phlpp1-/- and wild type mice at baseline (time 0) and 15 

minutes after injection with glucose.  Plasma was separated from the whole blood and 

insulin levels were measured using an insulin ELISA.  Phlpp1 null mice exhibited 

significantly increased plasma insulin levels compared to control mice.  Wild type mice 

displayed a four-fold increase in plasma insulin levels 15 minutes post glucose injection.  

Phlpp1-/- mice exhibited an eight fold increase in plasma insulin levels at baseline 

compared to wild type (Figure 3.6).  While the Phlpp1-/- mice did exhibit an increase in 

plasma insulin levels after injection with the glucose bolus, it was not significantly higher 

compared to control.  This is likely due to the already high baseline levels of insulin 

leaving less insulin available for secretion upon glucose stimulation. 

 

 One cause of increased insulin secretion is an increase in beta-cell mass and 

islet number.  This typically happens in response to developing insulin resistance in the 

peripheral tissues.  Increasing beta-cell mass in the pancreas can help to overcome 

insulin insensitivity as an increased number of beta cells will produce and secrete higher 

amounts of insulin.  To measure beta-cell mass and islet area, pancreata from ten week 

old Phlpp1-/- and wild type mice were fixed, paraffin-embedded, and sectioned.  Sections 

were stained for insulin and beta-cell mass was estimated. Phlpp1-/- displayed a modest 
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but significant increase in both beta-cell mass and islet area (Figures 3.7a & 3.7b).  

(Insulin staining and measurement of beta-cell mass and islet area was done by Juan 

Carlos Alvarez-Perez in the laboratory of Adolfo Garcia-Ocaña, Icahn School of 

Medicine at Mount Sinai, New York)  This corresponds well with the increase in glucose 

stimulated insulin secretion seen in Figure 3.5.  Considering the increased fasting blood 

glucose levels along with hyperinsulinemia, the data so far suggests that the Phlpp1-/- 

mice are insulin resistant, but are able to compensate in part through increased insulin 

secretion.   

 

 

 

 

 

 

 

 

 

. 
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Figure 3.6:  Basal plasma insulin levels are significantly increased in Phlpp1-/- 

mice 

Wild type and Phlpp1-/- mice were fasted for 16 hours, weighed, and then injected with 2 

g/kg glucose.  Blood samples were taken via tail vein before glucose injection and 15 

minutes post-injection.  Plasma was separated from whole blood through centrifugation.  

Insulin levels were measured with ELISA.  The results are mean values (n=5) ± SD.*p < 

0.05. 
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Figure 3.7: 10-week old Phlpp1-/- mice exhibit increased beta-cell mass and islet 

area 

Pancreata were isolated from 10-week old wild type and Phlpp1-/- mice, paraffin 

embedded, sectioned, and stained for insulin.  Beta-cell mass was measured in four 

non-consecutive pancreas sections per mouse.  Islet number was manually quantified 

and beta-cell mass was measured using ImageJ.  (Staining and determination of beta-

cell mass was done by Juan Carlos Alvarez-Perez in the laboratory of Adolfo Garcia-

Ocaña, Icahn School of Medicine at Mount Sinai, New York.)   The results are mean 

values (n=5) ± SD.  *p < 0.05 
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Phlpp1-/- mice become glucose-intolerant as they age 

 

 The development of diabetes begins with insulin resistance in the peripheral 

tissues.  This means that the muscle and liver are unable to respond to insulin normally 

and therefore, muscle is unable to take up glucose as efficiently leaving blood glucose 

levels increased.  Insulin resistance in liver causes uncontrolled glucose production and 

output, which also causes blood glucose levels to increase.  However, this can be 

overcome with amplified insulin secretion from the beta cells, and an organism will 

present with normal glucose tolerance.  Our previous data indicated that the Phlpp1 null 

mice had increased fasting blood glucose levels, but normal glucose tolerance.  They 

also exhibited increased plasma insulin levels correlated with increased beta-cell mass 

leading to the conclusion that the Phlpp1-/- mice were insulin resistant but compensated 

with hyperinsulinemia.  We saw that the 24-week old Phlpp1-/- mice not only maintained 

increased fasting glucose levels, but they were more pronounced compared to the 8- 

week old mice.  As aging is a cause of type 2 diabetes, it is highly probable that the 

Phlpp1 null mice were developing uncontrolled blood glucose levels due to increasing 

insulin resistance and failing beta-cell compensation. 

 

 To determine if the Phlpp1-/- mice develop glucose intolerance as they age, we 

repeated the glucose tolerance test (GTT) on 20-week old mice.  In contrast to the 8-

week old mice, the Phlpp1-/- mice exhibited decreased glucose tolerance and had 

increased area under the curve (AUC) for glucose compared to wild type (Figures 3.8a 

& 3.8b).  This suggested that while these mice could compensate for insulin resistance 

when they were young through hyperinsulinemia resulting in normal glucose tolerance,  
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Figure 3.8:  20-week old Phlpp1-/- mice exhibit impaired glucose tolerance 

(A) A glucose tolerance test was performed on 20-week old wild type and Phlpp1-/- mice.  

Mice were fasted overnight and then weighed.  Basal glucose levels were measured at 

time 0, and then mice were injected with 2 g/kg glucose.  Blood glucose levels were 

measured every 15 minutes post-injection for 2 hours.  Blood was collected via the tail 

vein and measured with a glucometer.  (B) AUC glucose was calculated for the GTT.  

The results are mean values (n = 14 for WT, n = 12 for Phlpp1-/-) ± SD.  *p < 0.05 
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as they aged, they were no longer able to normally regulate blood glucose levels 

resulting in glucose intolerance. 

 

To determine if the changes in glucose tolerance in the 20-week old Phlpp1-/- 

mice were due to changes in glucose stimulated insulin secretion from the pancreatic-

beta cells, plasma insulin was measured at basal levels (time 0) and 15 minutes after 

injection of a glucose bolus.  Basal plasma insulin levels were similar between Phlpp1-/- 

and wild type mice (Figure 3.9).  In response to a glucose bolus, control mice exhibited 

a fourfold increase in plasma insulin levels, whereas Phlpp1-/- displayed only a twofold 

increase.  Compared to the 8-week old mice, the 20-week old mice had reduced plasma 

insulin levels (Figure 3.5 vs. Figure 3.9).  This indicates that the Phlpp1 null mice are 

no longer able to compensate for insulin resistance due to insufficient insulin secretion.  

This accounts for the decreased glucose tolerance in the Phlpp1-/- mice.  Loss of beta-

cell compensation in response to insulin insensitivity is the final step in the development 

of type 2 diabetes mellitus. 
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Figure 3.9:  Plasma insulin is decreased in 22-week old Phlpp1-/- mice 

22-week old wild type and Phlpp1-/- mice were fasted for 16 hours, weighed, and then 

injected with 2 g/kg glucose.  Blood samples were taken via tail vein before glucose 

injection and 15 minutes post-injection.  Plasma was separated from whole blood 

through centrifugation.  Insulin levels were measured with ELISA.  The results are mean 

values (n=5) ± SD.*p < 0.05. 
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24-week old Phlpp1 null mice are insulin resistant and exhibit increased rates of 

glucose production 

 

 The loss of glucose tolerance in the aged Phlpp1-/- suggests that they had 

become insulin resistant.  To determine if they had lost the ability to respond to insulin 

we performed an insulin tolerance test on 20-week old Phlpp1-/- and wild type controls. 

The mice displayed significantly increased blood glucose levels and decreased insulin 

sensitivity with an increased AUC for insulin suggesting that these mice are insulin 

resistant (Figures 3.10a & 3.10b).  Insulin resistance is a hallmark of type 2 diabetes. 

 

To determine if the aged mice had changes in glucose production during fasting, 24- 

week old Phlpp1-/- and wild type controls were fasted overnight for 16 hours and injected 

with 2 g/kg pyruvate, the substrate for gluconeogenesis.  Phlpp1-/- mice exhibited 

increased rates of glucose production and increased AUC compared to wild type mice 

(Figures 3.11a & 3.11b).  Since fasting glucose levels were already significantly 

increased for the Phlpp1-/- mice, it is important to look at the rate of glucose production, 

which can be represented as the slope between time 0 and time 15.  Phlpp1-/- mice 

produced glucose at a rate of 4.6 mg/dL min-1 while the wild type mice produced glucose 

at a rate of 3.26 mg/dL min-1.  This increase in glucose production correlates with the 

increased fasting blood glucose levels seen in the 24-week old Phlpp1-/- mice. 
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Figure 3.10: 20-week old Phlpp1-/- mice exhibit decreased insulin tolerance 

(A) 20-week old wild type and Phlpp1-/- mice were fasted for four hours and then 

weighed.  Basal glucose levels were measured at time 0, and then mice were injected 

with 0.75u/kg insulin.  Glucose levels were measured every 15 minutes post-injection for 

2 hours.  (B)  Area under the curve was calculated.  The results are mean values (n = 14 

for WT, n = 12 for Phlpp1-/-) ± SD.  *p < 0.05 
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Figure 3.11:  24-week old Phlpp1-/- mice display increased glucose production 

24-week old mice were fasted for 16 hours and then weighed.  Basal glucose levels 

were measured at time 0, and then injected with 2 g/kg pyruvate.  Glucose levels were 

measured via the tail vein using a glucometer.  The results are mean values (n=14 for 

WT, n=12 for Phlpp1-/-) ± SD.  *p < 0.05 
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Phlpp1-/- mice lose less body weight during an overnight fast compared to wild 

type mice 

 

 It has been indicated in previous studies that overnight fasting in mice promotes 

glucose utilization.  This is different from in humans where overnight fasting has been 

shown to impair glucose utilization.  This difference is likely due to the fact that mice are 

most active at night, and it is the time when food intake is highest  [47].  Therefore, 

overnight fasting in mice is useful for determining changes in glucose utilization.  

Because a long fast leads to such an increase in glucose utilization, mice that have been 

fasted overnight have been shown to lose up to 15% of their body weight [47].  When 

measuring Phlpp1-/- and wild type mice after an overnight fast, it was noticed that 

Phlpp1-/- lost less weight than their wild type littermates.  In fact, the Phlpp1-/- lost only 

5% of their body weight while the wild type mice lost over 10% (Figure 3.12).  This 

suggests that the Phlpp1-/- mice have decreased insulin-stimulated glucose utilization.  

This new data supports our previous data suggesting that the Phlpp1-/- suffer from insulin 

resistance.  Insulin resistance would cause a loss of insulin-stimulated glucose utilization 

thus leading to a smaller loss of body weight when fasted overnight. 
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Figure 3.12:  Phlpp1-/- mice lose less body weight during a long fast 

20-week old wild type and Phlpp1-/- mice were weighed, fasted for 16 hours, and then 

weighed again.  The results are mean values (n=10) ± SD.  *p < 0.05 
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Phlpp1-/- mice display no significant differences in food intake, activity, O2 

consumption, energy expenditure, or respiratory exchange rate 

 

Many of the differences seen in the Phlpp1-/- mice could be due to changes in food 

intake and activity rates.  In order to determine whether the Phlpp1 null mice displayed 

differences in these areas we used indirect calorimetry.  Indirect calorimetry 

measurements give a general metabolic phenotype of a set of mice.  To do the 

experiments, we used the TSE LabMaster system in the metabolic core at the University 

of Kentucky.  For this experiment, mice were put into individual cages with special food 

and watering systems that keep track of food and water intake in real time.  Mice were 

allowed to acclimate to the new cages for one week before measurements were taken.  

The cage system measures food intake, water intake, O2 consumption, CO2 production, 

and activity.  From those measurements, energy expenditure and the respiratory 

exchange ratio can be calculated [52].  For this experiment we used 16-week old  

Phlpp1-/- and wild type controls and took measurements for three full days.  There was 

no significant difference in cumulative food intake between wild type and Phlpp1 null 

mice (Figure 3.13a).  Nor was there any difference in the total activity of the mice 

(Figure 3.13b).  There was also no difference in O2 (vO2) consumption (Figures 3.13c). 

 

 Energy expenditure is calculated using vO2, vCO2, and various physiological 

constants.  The Phlpp1-/- mice exhibited no significant difference in energy expenditure 

compared to wild type mice in either the dark or light cycle (Figure 3.14a).  Respiratory 

exchange ratio (RER) is the ratio of vCO2 to vO2 and is a function of macronutrient 

utilization.  The closer an RER is to 0.7, the more lipid is being used for an energy 

source.  For example, during times of fasting, when carbohydrate stores are scarce, 

lipids become the energy source and RER drops to 0.7.  Phlpp1-/- mice exhibit no 
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difference in RER compared to wild type mice indicating that they have no change in 

macronutrient utilization (Figure 3.14b). 
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Figure 3.13: Phlpp1-/- mice exhibit no difference in food intake, activity, or O2 

production 

16-week old wild type and Phlpp1-/- mice were monitored in a TSE LabMaster system in 

order to obtain a broader metabolic phenotype of the null mice.  Phlpp1-/- mice exhibited 

no difference in (A) cumulative food intake, (B) total activity, or (C) oxygen consumption.  

The results are mean values (n=5 for WT, n=4 for Phlpp1-/-) ±SD. 
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Figure 3.14:  Phlpp1-/- mice exhibit no difference in energy expenditure or 

respiratory exchange ratio (RER) 

16-week old wild type and Phlpp1-/- mice were monitored in a TSE LabMaster system in 

order to obtain a broader metabolic phenotype of the null mice.  Phlpp1-/- mice exhibited 

no difference in (A) energy expenditure or (B) respiratory exchange ratio.  Both were 

calculated by the software using collected data and physiological constants.  The results 

are mean values (n=5 for WT, n=4 for Phlpp1-/-) ± SD. 
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Conclusions 

 

 We set out to determine if PHLPP1 plays a role in glucose homeostasis.  We 

hypothesized that due to PHLPP’s known regulation of Akt that it would likely function in 

regulating blood glucose levels.  Through the use of Phlpp1 null mice we determined 

that loss of Phlpp1 causes increased fasting blood glucose levels that become more 

pronounced through aging (Figure 3.1).  The young mice exhibit normal glucose 

tolerance (Figure 3.2) but display hyperinsulinemia suggesting that they are insulin 

resistant but compensate with increased glucose-stimulated insulin secretion from the 

pancreatic beta cells (Figure 3.6).  As the Phlpp1 null mice age, they become glucose 

intolerant (Figure 3.8) as well as insulin intolerant (Figure 3.10).  The old mice exhibit 

decreased plasma insulin (Figure 3.9) secretion indicating that the beta-cells can no 

longer compensate for the insulin resistance.  Our next step in this study was to 

determine the molecular mechanisms behind the physiological changes seen in the 

Phlpp1-/- mice. 
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Chapter 4 

The effects of the loss of Phlpp1 on the Akt signaling pathway 

 

Introduction 

 

 PHLPP1 dephosphorylates Akt causing attenuation of Akt signaling.  In all gluco-

regulatory tissues, Akt is downstream of the insulin receptor (IR) in the PI3K cascade.  

When insulin binds to the IR at the cell membrane, IRS proteins bind to the IR.  The IRS 

proteins act as adaptor molecules for PI3K.  Upon activation, PI3K phosphorylates PIP2 

to PIP3 which act as lipid second messengers recruiting PDK and Akt to the plasma 

membrane.  Once at the membrane, PDK and Akt are activated through 

phosphorylation.  Akt then moves throughout the cell to mediate downstream signaling.  

In the muscle, Akt activation leads to the translocation of GLUT4, a glucose transporter, 

to the plasma membrane allowing for glucose uptake (See figure 1.3).  Therefore, 

insulin binds to its receptor promoting glucose uptake out of the bloodstream thereby 

lowering blood glucose levels [34].  In the liver, Akt activation leads to phosphorylation 

and inactivation of Foxo1.  Foxo1 is a transcription factor responsible for the expression 

of key gluconeogenic genes.  When Foxo1 is non-phosphorylated, it is active and 

present inside the nucleus, turning on gene transcription, thus turning on 

gluconeogenesis.  When Akt is active, Foxo1 is phosphorylated and unable to enter the 

nucleus thereby gluconeogenesis is not activated.  Additionally, Akt signals through the 

inactivation of GSK3β to promote glycogen synthesis effectively shunting the glucose 

taken up by the hepatocyte towards storage as glycogen (See figure 1.4) [35, 36].  The 

role of Akt in the beta-cell is less clear.  It has been indicated to play a role in cell size, 

cell survival, and proliferation which are important for expanding beta-cell mass during 
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times of increasing insulin resistance [37].  There have also been studies indicating that 

Akt plays a role in glucose-stimulated insulin secretion (See figure 1.5) [38, 39].   

 

We would expect that a loss of Phlpp1 would lead to an increase of 

phosphorylated Akt leading to a subsequent increase in the downstream signaling 

effects of Akt.  As we saw with the data described in Chapter 3, this direct effect does 

not appear to be taking place in the Phlpp1 null mice.  The mice develop a type 2 

diabetes phenotype as they age, which is not what we would have expected if Akt 

signaling is enhanced.  The regulation of glucose homeostasis and the development of 

type 2 diabetes involves many cell and tissue types so it is necessary to look at the 

signaling mechanisms in each separately in order to get a better idea of what effects are 

caused by the loss of Phlpp1.  We focused on the liver and the pancreatic islets since 

from a young age, the Phlpp1-/- mice exhibited increased fasting blood glucose levels, 

typically attributed to the liver, and because the mice displayed hyperinsulinemia 

associated with an increase in beta-cell mass followed by a loss of glucose-stimulated 

insulin secretion. 

 

When examining PHLPP signaling it is important to remember that PHLPP has 

been implicated in certain feedback loops involving its direct targets and downstream 

effectors.  One of these feedback loops was hypothesized to have an effect in insulin 

signaling as it involves the degradation of IRS proteins.  PHLPP has been shown to 

directly dephosphorylate S6K [24].  S6K phosphorylates IRS targeting it for degradation 

by the proteasome [41].  High flux through S6K, as seen during prolonged insulin 

signaling, causes a loss of IRS expression leading to an uncoupling of the PI3K pathway 

from insulin signaling.  This leads to a loss of Akt activation [24, 41].  Loss of PHLPP has 
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been shown to have a similar effect as prolonged insulin signaling: increased S6K 

activation, IRS degradation, and dampening of Akt activation [29]. 

 

Results 

 

Akt phosphorylation is increased in Phlpp1-/- pancreatic islets compared to wild 

type but decreases during aging 

  

 To determine what effect the loss of Phlpp1 has on Akt phosphorylation, islets 

were isolated under basal conditions from 6-week old and 30-week old Phlpp1-/- and wild 

type mice.  Protein lysates were made and run on an SDS-PAGE gel.  Phosphorylated-

Akt (ser473) was measured using Western blotting.  In 6-week old mice, loss of Phlpp1 

led to an increase in phosphorylated Akt levels.  30-week old Phlpp1 null mice also 

exhibited an increase in Akt phosphorylation levels compared to wild type but a 40% 

decrease compared to 6-week old mice (Figure 4.1).  The increase in Akt 

phosphorylation is expected with the loss of Phlpp1 expression.  Additionally, Akt activity 

is frequently increased in beta cells during insulin resistance-induced beta-cell 

expansion [53]. 
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Figure 4.1:  Akt phosphorylation is increased in the islets of Phlpp1-/- mice 

Islets were purified from pancreata taken from 6-week old and 30-week old wild type and 

Phlpp1-/- mice.  Islets were pooled from 3-5 mice for preparation of lysates.  Lysates 

were run on an 8% SDS-PAGE gels and then used for Western blot analysis using 

antibodies for phosphorylated Akt (serine 473) and total Akt. 
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S6K phosphorylation is increased and IRS2 expression is decreased in aged 

Phlpp1-/- pancreatic islets  

 

 To determine if S6K phosphorylation and therefore IRS2 expression is affected, 

we blotted for both using the same islet lysates as used in Figure 4.1.  Phosphorylated 

S6K was increased in the Phlpp1-/- mice at both 6 and 30 weeks of age, with higher 

phosphorylation levels appearing in the aged mice (Figure 4.2).  IRS2 levels are 

unchanged between the 6-week old Phlpp1-/- and wild type mice, however, IRS2 is 

decreased in the 30-week old Phlpp1-/- compared to control.  This is likely due to the 

increase in S6K activation in these islets.  Since S6K is regulated directly by PHLPP1, 

but also is a downstream effector of Akt, the loss of Phlpp1 could be increasing S6K 

phosphorylation through either mechanism. 
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Figure 4.2:  S6K phosphorylation is increased in Phlpp1-/- 6- and 30-week old mice 

while IRS2 expression is decreased in 30-week old Phlpp1-/- mice 

Islets were purified from pancreata taken from 6- week old and 30-week old wild type 

and Phlpp1-/- mice.  Islets were pooled from 3-5 mice for preparation of lysates.  Lysates 

were run on an 8% SDS-PAGE gels and then used for Western blot analysis using 

antibodies for phosphorylated S6K (threonine 389), total S6K, and IRS2.  All samples 

were normalized to actin. 
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Akt phosphorylation decreases in livers of Phlpp1-/- mice with aging 

 

 Phlpp1-/- mice exhibited increased fasting blood glucose from a young age that 

became more pronounced through aging.  Fasting blood glucose is primarily maintained 

by the liver which produces glucose through glycogenolysis and gluconeogenesis.  

Because we saw such increases in fasting glucose levels, we focused on the liver to 

determine what may be causing these changes.  We isolated livers from 6- and 30- 

week old Phlpp1-/- and wild type mice that had been fasted for 16 hours.  Protein lysates 

were made and run on an SDS-PAGE gel.  Western blotting revealed that in the 6-week 

old mice, Akt phosphorylation was lower in the Phlpp1-/- compared to wild type mice, but 

it was not statistically significant (Figure 4.3a).  Interestingly, in the 30-week old Phlpp1-/- 

mice Akt ser473 phosphorylation was drastically downregulated compared to control 

mice (Figure 4.3b).  Using Image J for quantification it was determined that Akt 

phosphorylation was significantly decreased (Figure 4.3c).  With the loss of Phlpp1 we 

would have expected an increase in Akt phosphorylation rather than a decrease, 

however, it is possible that the feedback loop involving S6K and IRS2 is being induced 

thus dampening Akt activation (See Figure 1.6). 
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Figure 4.3:  Akt phosphorylation is decreased in the livers of 6-week and 30-week 

old Phlpp1-/- mice 

Livers were removed from (A) 6- and (B) 30-week old wild type and Phlpp1-/- mice that 

had been fasted for 16 hours.  Lysates were made from individual livers via 

homogenization.  3 samples for each genotype were run on 8% SDS-PAGE gels and 

transferred for Western blot analysis.  Samples were blotted for phosphorylated Akt 

(serine 473), total Akt, and Actin.  (C) Bands were quantified using Image J. 
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S6K activity is increased in aged Phlpp1-/- mice resulting in IRS2 degradation 

 

 To determine if the feedback loop between S6K and IRS2 is being induced 

causing the loss of Akt phosphorylation, Western blotting was performed using lysates 

from 30-week old Phlpp1-/- and wild-type livers under basal conditions.  S6K 

phosphorylation was increased in the Phlpp1 null mice compared to controls.  IRS2 

expression was decreased in these mice suggesting that an increase in S6K activity is 

causing the phosphorylation and degradation of IRS2 (Figure 4.4).  This would lead to a 

decoupling of the insulin receptor from the PI3K pathway causing a decrease in Akt 

phosphorylation and activation.  We hypothesized that this loss of Akt activation would 

lead to an increase in gluconeogenesis due to the loss of Akt’s inhibition on Foxo1, the 

transcription factor necessary for the expression of key gluconeogenic genes (see 

Figure 1.4).  Increased flux through Foxo1 would lead to an increase in hepatic glucose 

production, increasing fasting blood glucose levels just as is seen in the Phlpp1-/- mice. 
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Figure 4.4:  30-week old Phlpp1-/- mice display increased S6K phosphorylation and 

decreased IRS2 expression as part of a negative feedback loop 

Livers were removed from 30-week old wild type and Phlpp1-/- mice that had been fasted 

for 16 hours.  Lysates were made from individual livers via homogenization.  3 samples 

for each genotype were run on 8% SDS-PAGE gels and transferred for Western blot 

analysis.  Samples were blotted for phosphorylated S6K (threonine 389), total S6K, 

IRS2, and actin. 

 

 

 

 

 

 

 

 

 



70 
 

Increased fasting blood glucose levels in Phlpp1-/- mice is not due to changes in 

glycogen metabolism or transcriptional regulation of gluconeogenic genes 

 

 There are two modes through which the liver produces glucose during times of 

fasting.  The first is through glycogenolysis, or the breakdown of glycogen to glucose 

[54].  The second is through gluconeogenesis, or the conversion of pyruvate to glucose 

through several successive reactions.  In a mouse, glycogen stores are depleted after 4-

6 hours of fasting [47].  Once glycogen is gone, the liver switches to gluconeogenesis for 

glucose production.  The Phlpp1-/- mice exhibited increased fasting blood glucose levels 

after 16 hour fasts leading us to hypothesize that the increased glucose production was 

due to gluconeogenesis.  To confirm this, we fasted 6-week old Phlpp1-/- and wild type 

mice for four hours and 16 hours and then measured their blood glucose levels.  We 

found that there was no difference in blood glucose levels after four hours of fasting, 

however, just as we had seen previously there was a significant increase in Phlpp1-/- 

glucose levels after a 16 hour fast indicating that increased gluconeogenesis is 

responsible (Figure 4.5a).  To further confirm that glycogen metabolism is not affected in 

these mice, livers from Phlpp1-/- and wild type mice were paraffin embedded, sectioned, 

and stained using Periodic Acid Schiff staining in order to visualize glycogen content of 

the livers.  There was no obvious difference in glycogen levels between wild type and 

Phlpp1 null mice confirming the hypothesis that the changes in fasting blood glucose 

levels were not due to changes in glycogen metabolism (Figure 4.5b). 

 

 Foxo1 is a transcription factor that upregulates gluconeogenesis through the 

transcription of the gluconeogenic genes phosphoenolpyruvate carboxykinase (Pck1), 

fructose-1,6-bisphosphatase (Fbp1), and glucose-6-phosphatase (G6pc).  These genes 

are the typical regulatory points for gluconeogenesis.  To determine if fasting blood 
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glucose levels are increased in Phlpp1-/- mice due to increased expression of Pck1, 

Fbp1, and G6pc, RNA was extracted from 30-week old Phlpp1-/- and control livers.  The 

RNA was then converted to cDNA in a reverse transcriptase reaction and used in 

quantitative PCR to determine the relative expression levels of each gene.  We found 

that there was no significant difference in the expression in the Pck1, G6pc, or Fbp1 

genes (Figure 4.6).  We additionally examined the expression of the glycogen 

metabolism genes glycogen synthase (Gys2) and glycogen phosphorylase (Pygl) and 

found no significant difference compared to wild type (Figure 4.6).  This was surprising 

as the liver is the primary producer of glucose during times of fasting, however, it is not 

the only site of glucose production as the kidney has been shown to contribute 

substantially to glucose production [55].    
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Figure 4.5:  Fasting glucose in Phlpp1-/- mice is only increased after a 16-hour fast 

and is not due to changes in glycogen metabolism 

(A) 6-week old wild type and Phlpp1-/- mice were fasted for 4 hours, 16 hours, or allowed 

to feed ad libitum.  Blood was collected via the tail vein and glucose levels were 

measured using a glucometer.  The results are mean values (n= 14 for WT, n= 12 for 

Phlpp1-/-) ± SEM.  *p < 0.05  (B) Livers were removed from wild type and Phlpp1-/- mice, 

paraffin embedded, section and stained for glycogen using a Periodic acid Schiff staining 

kit (Sigma).  Images are representatives of stained sections (n=3). 
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Figure 4.6: Expression of genes required for gluconeogenesis and glycogenolysis 

is not altered in Phlpp1-/- versus wild type mice 

Livers were removed from 16 hour fasted 30-week old wild type and Phlpp1-/- mice.  

RNA was extracted from livers using Trizol.  RNA samples were used in reverse 

transcriptase and subsequent qPCR reactions.  Phosphoenolpyruvate carboxykinase 

(Pck1), glucose-6-phosphatase (G6pc), fructose-1,6-bisphosphatase (Fbp1) glycogen 

synthase (Gys2) and glycogen phosphorylase (Pygl) expression was measured. All gene 

expression was normalized to Rpl13a expression levels.  The results are mean values 

(n=5) ± SD.   
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Conclusions 

 

 We determined that the loss of Phlpp1 has different effects in islets versus liver.  

In islets, we saw an increase in Akt phosphorylation compared to wild type controls, 

however, the level of Akt phosphorylation did decrease during aging (Figure 4.1).  

Conversely, Akt phosphorylation was drastically reduced in the aged Phlpp1-/- livers 

compared to controls (Figure 4.3).  Furthermore, S6K activity was increased resulting in 

the loss of IRS2 expression as it has been shown that S6K phosphorylation of IRS2 

targets it for degradation (Figure 4.4).  The loss of IRS2 uncouples the PI3K/Akt 

pathway from insulin signaling resulting in an attenuation of Akt activity.  It has been 

shown in previous studies that prolonged insulin signaling causes this uncoupling effect, 

and that loss of Phlpp1 expression has a similar result [24, 41].  Therefore, we 

hypothesized that the loss of Phlpp1 in the livers of the null mice caused an increase in 

S6K activity resulting in IRS2 degradation and a decrease in Akt activity.  This decrease 

in activity would lead to an increase in hepatic glucose production.  However, upon 

examination of gluconeogenic gene expression using qPCR, we found that there were 

no significant differences between Phlpp1-/- and wild type mice (Figure 4.6) leading us to 

conclude that the increase in glucose production during times of fasting is coming from 

elsewhere, perhaps the kidney. 
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Chapter 5 

Discussion and Future Directions 

 

 Type 2 diabetes mellitus is a metabolic disease that develops through aging.  It 

begins with the onset of insulin resistance that is compensated for by increased insulin 

secretion from the pancreatic-beta cell resulting in normal glucose tolerance but 

hyperinsulinemia.  Eventually the beta-cells can no longer keep up with the increasing 

need for insulin and begin to fail.  Loss of beta-cell compensation leads to uncontrolled 

hyperglycemia due to a combination of insulin resistance and hypoinsulinemia.  Akt has 

been indicated in many studies to play a role in regulating glucose homeostasis via the 

insulin receptor-PI3K pathway.  Loss of Akt2 in mice leads to hyperglycemia, glucose 

intolerance, and in some mice, severe diabetes [44, 45].  PHLPP dephosphorylates Akt 

in its catalytic domain leading to attenuation of Akt signaling.  As Akt is a key regulator in 

cell proliferation and apoptosis pathways, PHLPP has been mainly studied for its role as 

a tumor suppressor in many cancers.  There have only been two studies examining the 

role of PHLPP in type 2 diabetes.  Both found that Phlpp expression is increased in the 

muscle of type 2 diabetic patients with a concomitant decrease in Akt ser473 

phosphorylation [32].  Additionally, it was found that Phlpp expression is increased in the 

adipose tissue of obese patients, and that its expression is positively correlated with BMI 

[33].  Considering that PHLPP is a known regulator of Akt, and that Akt plays such a role 

in regulating blood glucose levels, we hypothesized that PHLPP also functions in blood 

glucose homeostasis.  We utilized whole body Phlpp1-/- mice to determine the role of 

Phlpp1 in glucose homeostasis.  We metabolically characterized the Phlpp1 null mice 

and have determined that they develop type 2 diabetes as they age. 
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Loss of Phlpp1 causes increased fasting blood glucose levels  

 

 When we began our characterization of the Phlpp1-/- mice we discovered that at 

8 weeks of age they exhibited increased fasting blood glucose levels compared to their 

wild type littermates.  When we measured their fasting blood glucose levels again at 24 

weeks of age, we found that they maintained their increase in fasting blood glucose, and 

it was more pronounced compared to 8 weeks.  Interestingly, the 8-week old mice 

exhibited normal glucose tolerance despite the change in fasting blood glucose levels.  

By 24 weeks of age, however, the Phlpp1-/- mice exhibited impaired glucose tolerance 

along with decreased insulin sensitivity.  Pyruvate tolerance tests revealed a slight 

increase in glucose production in 8-week old Phlpp1-/- mice and a greater increase in the 

24-week old mice.  This led us to hypothesize that the increased fasting blood glucose 

levels were due to increased rates of hepatic glucose production as the liver is the 

central producer of glucose during times of fasting.  We concluded that the changes in 

fasting blood glucose levels were not due to changes in glycogen metabolism after 

observing that the fasting levels were only increased after a 16-hour fast, when glycogen 

stores are scarce and this was confirmed with PAS staining and qPCR analysis of the 

expression of glycogen synthase and glycogen phosphorylase.  During such a long fast, 

gluconeogenesis is responsible for glucose production.  The transcription of the 

gluconeogenic genes phosphoenolpyruvate carboxykinase (Pck1), glucose-6-

phosphatase (G6pc), and fructose-1,6-bisphosphatase (Fbp1) is a key regulatory point 

in turning gluconeogenesis on or off via the transcription factor Foxo1.  Akt is upstream 

of Foxo1, and when Akt is turned off, Foxo1 is present in the nucleus, turning on the 

transcription of Pck1, G6pc, and Fbp1, thus turning on gluconeogenesis.  Insulin signals 

through PI3K to activate Akt and turn off gluconeogenesis when blood glucose levels are 

high.  During type 2 diabetes this becomes misregulated leaving the transcription of 
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these genes on.  We hypothesized that the transcription of the gluconeogenic genes are 

upregulated in the livers of Phlpp1-/- mice.  We performed qPCR to quantitate the mRNA 

expression of these genes and found that there was no difference in expression between 

wild type and Phlpp1 null mice.  This indicates that the increase in fasting blood glucose 

levels seen in the Phlpp1-/- mice is not due to increased rates of hepatic 

gluconeogenesis. 

 

 It is possible that the increased fasting blood glucose levels are due to renal 

gluconeogenesis.  Glucose production in the kidney is important during prolonged 

fasting and has been shown to play an important role in the regulation of glucose 

homeostasis [56].  There is no consensus on the contribution of the kidney to total 

gluconeogenesis, likely due to the differences in methodologies used to measure renal 

glucose output, however, studies have indicated that the kidneys of patients undergoing 

liver transplantation can increase glucose release to compensate for 50-100% of normal 

hepatic glucose output [55].  Additionally, it is uncommon for patients with extreme 

hepatic malfunction to develop hypoglycemia, and this is attributed to increases in renal 

glucose output.  Therefore, it is possible that the increase in fasting blood glucose levels 

in the Phlpp1-/- mice is due to an increase in renal glucose output. 

 

 There was a recent study that looked at the expression levels of Pck1 and G6pc 

in rodent models of fasting hyperglycemia and in patients with type 2 diabetes mellitus.  

In the rodent models, they found that there was no change in the expression of Pck1 or 

G6pc despite having clear increases in fasting blood glucose levels.  They examined 

gluconeogenesis using radio-labeled alanine, a gluconeogenic precursor, and found that 

rate of gluconeogenesis was increased despite the lack of increase in gluconeogenic 

gene expression.  They also examined the expression of these genes in the livers of 
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type 2 diabetic patients.  They found that similarly to the rodent models, there was no 

change in the expression of the either Pck1 or G6pc despite the patients exhibiting 

fasting hyperglycemia.  There was no difference in expression between patients taking 

medication and those who weren’t [57].   

 

 Additionally, there are other modes in which the gluconeogenesis pathway may 

be regulated.  Pyruvate carboxylase (PC), and fructose-1,6-bisphosphatase (FBPase), 

other enzymes within the pathway, can be regulated allosterically.  PC is regulated by 

acetyl Co-A, whereas FBPase is subject to regulation by fructose-2,6-bisphosphatase 

and AMP [58, 59].  Furthermore, the flux through gluconeogenesis can be increased 

through an increase in substrates, such as glycerol and amino acids [60, 61].  Therefore, 

in the Phlpp1-/- animals, we are seeing an increase in gluconeogenesis causing an 

increase in fasting blood glucose levels.  This increase is not due to a change in the 

transcription of the key gluconeogenic genes Pck1, Fbp1, or G6pc, but may be caused 

by other means such as increased gluconeogenesis in the kidney, allosteric regulation of 

key gluconeogenic enzymes, or an increased flux through the pathway due to an 

increase in substrates.  Furthermore, it has been shown in various mouse models and in 

human T2DM patients that increases in fasting blood glucose levels are not always 

correlated with an increase in the expression of these genes suggesting there may be 

other regulatory mechanisms taking place that are as of yet, not understood.  

 

Akt phosphorylation is decreased in the livers of Phlpp1-/- mice 

 

 We examined the status of Akt phosphorylation in the livers of Phlpp1-/- mice in 

order to better understand the phenotype seen in these mice.  Western blot analysis of 

6-week old mice discovered that Phlpp1-/- mice had decreased Akt phosphorylation 
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compared to wild type controls.  PHLPP dephosphorylates Akt thus the loss of Phlpp1 

expression should lead to an increase in Akt phosphorylation and activation.  We 

examined Akt phosphorylation in 30-week old Phlpp1-/- mice and found that Akt 

phosphorylation was again decreased in these mice and the decrease was more 

pronounced in the older mice.  Therefore Akt phosphorylation and activation is deceased 

in the young Phlpp1-/- mice and it decreases even further as they age. 

 

 We hypothesized that the loss of Akt phosphorylation was due to the induction of 

a negative feedback loop that has been previously shown to cause a decrease in Akt 

phosphorylation.  During normal signaling, insulin binds to the insulin receptor (IR) 

activating the IRS proteins which serve as an adaptor protein for PI3K.  PI3K activation 

leads to the conversion of PIP1 to PIP2.  This lipid second messenger recruits PDK1 and 

Akt to the plasma membrane where Akt is phosphorylated and activated.  Akt activation 

leads to many downstream effects including the activation of mTOR kinase.  mTOR 

phosphorylates and activates S6K, a kinase important for protein synthesis and cell 

proliferation.  It is also known to phosphorylate the IRS proteins targeting them for 

degradation by the proteasome.  It has been shown that during times of prolonged 

signaling, such as in a hyperinsulinemic setting, S6K becomes highly activated leading 

to the loss of IRS protein levels.  Since the IRS proteins are upstream of the PI3K/Akt 

pathway, loss of IRS leads to a decrease in the activation of this pathway effectively 

uncoupling insulin signaling from the PI3K/Akt pathway.  This has been indicated as a 

main cause of insulin resistance in type 2 diabetes [41].  High insulin signaling over time 

would lead to a loss of Akt signaling thus attenuating any of its downstream effects, 

many of which have shown to be important for regulating blood glucose levels. 
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 Loss of Phlpp expression has been shown to have the same effect as prolonged 

insulin signaling.  PHLPP has been indicated to dephosphorylate and inactivate S6K 

directly and loss of PHLPP’s regulation of S6K leads to uncontrolled S6K activity 

inducing the negative feedback loop described above [24].  To determine if this negative 

feedback loop is being induced in the livers of the Phlpp1-/- mice, we performed Western 

blot analysis to look at S6K phosphorylation and IRS2 protein levels.  We found that S6K 

phosphorylation was increased in the Phlpp1-/- mice and that IRS2 protein levels were 

decreased leading us to believe that this negative feedback look was being induced.  

This led to a loss of PI3K activation thus leading to a decrease in Akt activation.  

Whether this is due to PHLPP’s direct regulation of S6K or through its dephosphorylation 

of Akt, as loss of Phlpp1 expression would increase the flux through S6K, is unknown. 

 

 This induction of the negative feedback loop and loss of Akt signaling would 

mean that the liver in the Phlpp1-/- mice is insulin resistant.  It appears that the feedback 

loop is induced at a young age which could be a cause of the increased fasting blood 

glucose levels if the liver is indeed the source of those increased levels, but as 

discussed above, that is unclear since there was no difference in the expression of key 

gluconeogenic genes.  The role of the liver in contributing to the disruptions to overall 

glucose homeostasis in these mice needs to be further investigated. 

 

Akt phosphorylation is increased in the islets of Phlpp1-/- mice 

 

 The Phlpp1-/- mice displayed normal glucose tolerance when they were young 

despite having increased fasting blood glucose levels.  This was attributed to an 

increase in glucose-stimulated insulin secretion from the pancreatic beta-cell.  When we 

measured plasma insulin levels in the 6-week old mice, the Phlpp1-/- mice exhibited an 



81 
 

8-fold increase in insulin levels at basal conditions.  Additionally, they exhibited a 

significant increase in beta-cell area and islet mass compared to control mice.  When 

they aged, however, their glucose tolerance decreased.  When plasma insulin levels 

were measured in the older mice, it was found that at basal levels, plasma insulin 

concentrations in the Phlpp1-/- mice were similar to that of wild type mice.  However, 

upon glucose stimulation, plasma insulin levels only increased by twofold in the Phlpp1 

null mice compared to a fourfold increase upon stimulation in the wild type mice.  This 

suggests that the Phlpp1-/- mice are no longer able to compensate for insulin resistance 

due to beta-cell failure. 

 

 In order to examine the signaling mechanisms promoting this phenotype, we 

looked at Akt phosphorylation levels in the islets of Phlpp1-/- and wild type mice.  In 6- 

week old mice, Akt phosphorylation was increased in the null mice compared to controls.  

This is expected as a loss of PHLPP signaling would increase Akt phosphorylation and 

activation.  In the islets of 30-week old mice we found that Akt phosphorylation was still 

increased in the Phlpp1-/- mice, but had declined by about 40% compared to the 6-week 

old mice.  To determine whether the S6K/IRS2 feedback loop was being induced in the 

Phlpp1-/- islets we blotted for phosphorylated S6K and IRS2 protein levels in islets from 

both 6-week old and 30-week old mice.  We found that S6K phosphorylation was 

increased in the Phlpp1-/- mice with a more pronounced increase appearing in the 30-

week old mice.  IRS2 protein levels were decreased in the 30-week old Phlpp1 null mice, 

but not the 6-week old mice.  This is likely due to the increase in S6K activity in those 

mice.  It does not appear, however, that the negative feedback loop is being fully 

induced in the Phlpp1-/- islets, as there is only a slight decrease in both IRS2 expression 

and Akt phosphorylation in the 30-week old null islets.   
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 The increase in Akt phosphorylation that is seen in the young mice likely 

contributes to the increase in beta-cell mass and subsequent increase in glucose-

stimulated insulin secretion seen in those mice.  The underlying mechanisms behind 

why glucose-stimulated insulin secretion is seemingly lost in the 30-week old mice needs 

to be further investigated including measuring beta-cell mass and islet area in those 

mice.  As to why the feedback loop is induced in the liver but not the islets is not known, 

however, it has been shown that the feedback loop is not always induced and depends 

on cell type [19, 24]. 

 

PHLPP1 is involved in the light- induced resetting of the circadian clock 

 

 PHLPP is most highly expressed in brain and was first discovered in the 

suprachiasmatic nucleus (SCN).  It was shown to be regulated in a circadian manner, 

and then was later discovered to play a role in the light-induced resetting of the circadian 

clock.  It was found that Phlpp1-/- mice display a delayed shortening of tau, or circadian 

period length, after a light stimulus.  Light is one of the many stimuli that can induce 

resetting of the circadian clock, and it was found that loss of PHLPP1 plays a role in 

adapting to these external cues.  It was suggested that PHLPP functions in the SCN 

where it fine tunes the circadian clock, allowing it to adapt to external cues.  Loss of 

Phlpp1 expression causes a disruption to the resetting that takes place after an external 

cue. 

 

 It has been established that disruptions to circadian rhythms are associated with 

metabolic syndrome, obesity, and diabetes.  Many studies have looked at the effects 

shiftwork has in humans and have found that workers develop increased body weight, 

hyperleptinemia, and elevated insulin secretion.  The clock genes Period, Clock, and 
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Bmal1 have been studied using transgenic mice, and all mouse models developed 

disruptions in metabolism including obesity, hyperglycemia, and disrupted insulin 

responsiveness.  Specifically, knockout of Bmal1 led to severe insulin resistance, 

hyperglycemia, and changes in fat accumulation.  Furthermore, it has been determined 

that mice exhibit a circadian rhythm of insulin action, specifically, that mice are most 

resistant to insulin during the phase of relative inactivity [62].  As PHLPP is a known 

regulator of the resetting of the circadian clock it is possible that the loss of Phlpp1 

expression promotes insulin resistance due to a disruption of proper circadian rhythms.  

This would need to be further studied in order to determine its contributions to the overall 

metabolic phenotype of the Phlpp1-/- mice. 

 

Conclusions 

 

 Phlpp1-/- mice exhibit increased fasting blood glucose levels from a young age 

but normal glucose tolerance due to an increase in glucose-stimulated insulin secretion.  

As they age, glucose-stimulated insulin secretion decreases due to beta-cell failure 

leading to a decrease in glucose tolerance.  Therefore, Phlpp1-/- mice develop type 2 

diabetes by progressing through steps similar to those as humans providing a unique 

animal model for studying the disease.  Further studies need to be carried out to obtain a 

better understanding of the contributions of individual tissues to the phenotype of the 

Phlpp1-/- mice and to understand the signaling mechanisms behind the development of 

type 2 diabetes.   Understanding how PHLPP1 contributes to regulation of glucose 

homeostasis may contribute to the development of novel treatments for the disease. 

 

 

Copyright © Kara L. Larson 2014  
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Appendix 

List of Abbreviations 

 

AGC: PKA, PKG, PKC kinase family 

AMP: Adenosine monophosphate 

ATP:  Adenosine triphosphate 

AUC: Area under the curve 

BCA: Bicinchoninic acid assay 

BMI: Body mass index 

cDNA: Complimentary deoxyribonucleic acid 

COBRE: Centers of biomedical research excellence 

Ct: Threshold cycle 

DNA: deoxyribonucleic acid 

DTT: Dithiothreitol 

ECL: Enhanced chemiluminescence 

EDTA: ethylenediaminetetraacetic acid 

ELISA: Enzyme-linked immunosorbent assay 

ERK: Extracellular-signal regulated kinase 

Fbp1: Fructose-1,6-bisphosphatase 1 

FBS: Fetal bovine serum albumin 

Foxo1: Forkhead box protein O1 
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GLUT4: Glucose transporter 4 

GSK3β: Glycogen synthase kinase β 

GTT: Glucose tolerance test 
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Gys2: Glycogen synthase 2 

IGT: Impaired glucose tolerance 

I.P.: Intraperitoneal 

IR: Insulin receptor 

IRS: Insulin receptor substrate 

ITT: Insulin tolerance test 

HBSS: Hank’s balanced salt solution 

LRR: Leucine rich repeat region 

Mst1: Macrophage stimulating 1 

mRNA: Messenger RNA 

MRI: Magnetic resonance imaging 

mTOR: Mammalian target of rapamycin 

mTORC2: Mammalian target of rapamycin complex 2 

OD: Optical density 

PAS: Periodic acid Schiff 

PBS: Phosphate buffered saline 

PC: Pyruvate carboxylase 

Pck1: Phosphoenolpyruvate carboxykinase 1 

PCR: Polymerase chain reaction 

PDK1: Pyruvate dehydrogenase kinase isozyme 1 

PDZ: PSD95, Dlg1, zo-1 

PH: pleckstrin homology 

PHLPP: Pleckstrin homology domain leucine rich repeat protein phosphatase 

PI3K: Phosphatidylinositol-4,5-bisphosphate 3-kinase 

PIP2: Phosphatidylinsolitol-4,5-bisphosphate 

PIP3: Phosphatidylinositol-3,4,5-triphosphate 
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PKB: protein kinase B 

PKC: protein kinase C 

PMSF: Phenylmethylsulfonylfluoride 

PP2C: Protein phosphatase 2C 

PTT: Pyruvate tolerance test 

Pygl: Glycogen phosphorylase, liver 

qPCR: quantitative polymerase chain reaction 

qRT-PCR: quantitative real time- polymerase chain reaction 

RA: Ras associated 

RER: Respiratory exchange ratio 

RNA: Ribonucleic acid 

Rpl13a: 60s ribosomal protein L13a 

RT-PCR: Reverse transcription- polymerase chain reaction 

S6K: Ribosomal protein S6 kinase 

SCN: Suprachiasmatic nucleus 

SD: Standard deviation 

SDS: Sodium dodecyl sulfate 

SDS-PAGE: Sodium dodecyl sulfate- polyacrylamide gel electrophoresis 

SEM: Standard error of the mean 

Ser: Serine 

SCOP: Suprachiasmatic nucleus oscillating protein 

T2DM: Type 2 diabetes mellitus 

Thr: Threonine 

TTBS: Tris buffered saline + 0.1% Tween 
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