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� 2013 by the Ecological Society of America

Population impacts of Wolbachia on Aedes albopictus

JAMES W. MAINS,1 COREY L. BRELSFOARD,1 PHILIP R. CRAIN,1 YUNXIN HUANG,2 AND STEPHEN L. DOBSON
1,3

1Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546-0091 USA
2Hubei University, School of Resource and Environmental Science, Wuhan 430062, Hubei, People’s Republic of China

Abstract. Prior studies have demonstrated that Wolbachia, a commonly occurring
bacterium capable of manipulating host reproduction, can affect life history traits in insect
hosts, which in turn can have population-level effects. Effects on hosts at the individual level
are predicted to impact population dynamics, but the latter has not been examined
empirically. Here, we describe a biological model system based on Aedes albopictus (Asian
tiger mosquito) that allows for measurement of population dynamics, which has not been
accomplished in prior field trials or laboratory designs. The results demonstrate the studied
populations to be robust and allow for persistent, closed populations with overlapping
generations, which are regulated solely through density-dependent, intraspecific competition
for limited resources. Using a novel experimental design, we compare populations that are
either uninfected or infected with Wolbachia. The results show differences that include
population size, eclosion rates, adult survivorship, and fecundity. The aposymbiotic
populations were generally larger and adults longer lived relative to the infected populations.
The outcome is discussed in context with naturally occurring Wolbachia invasions, proposed
autocidal strategies, and the utility of the developed system as a biological platform for
hypothesis testing and improved parameterization.

Key words: Aedes albopictus; cytoplasmic incompatibility; dengue virus; endosymbiont; genetic
control; mosquito control; population replacement; sterile insect technique; vector control; Wolbachia
pipientis.

INTRODUCTION

The intracellular, maternally inherited a-proteobac-
teria Wolbachia pipientis is one of the most widespread

animal endosymbionts and is estimated to infect a

majority of insect species (Hilgenboecker et al. 2008). In

arthropods, Wolbachia behaves as a reproductive

parasite by manipulating host reproduction to enhance

its vertical transmission (Werren et al. 2008). The most

common reproductive modification caused by Wolba-

chia in insects is cytoplasmic incompatibility (CI). CI

occurs when a Wolbachia-infected male mates with an

uninfected female, causing developmental arrest of the

embryo. In contrast, Wolbachia-infected females can

mate with either an uninfected male or a male infected

with the same Wolbachia strain. This pattern of

incompatibility can provide Wolbachia-infected females

with a reproductive advantage because they can mate

with all males in the population, leading to Wolbachia

spread (Turelli and Hoffmann 1991, Werren 1997,

Dobson et al. 2002a, Xi et al. 2005, Werren et al. 2008).

Prior studies show that Wolbachia can affect the

fitness of its host, including examples that range from

minor fitness costs (Calvitti et al. 2009, 2010, Brelsfoard

and Dobson 2011) to fitness benefits (Hedges et al. 2008,

Teixeira et al. 2008) to strongly maladaptive effects on

host fitness (Fry et al. 2004, Suh et al. 2009, Yeap et al.

2011, Graham et al. 2012). Models predict conditions

under which fitness-decreasing infections can invade and

stably persist within an insect population (Crain et al.

2011, Hancock et al. 2011). Population-level impacts

such as carrying capacity (maximum sustained popula-

tion size due to limiting factors) and adult sex ratios are

predicted following the invasion ofWolbachia that affect

host fitness, but there has not been a method to

empirically examine model predictions (Dobson et al.

2002a, Hancock et al. 2011).

Here, we examine laboratory populations of Aedes

albopictus Skuse (Asian tiger mosquito), a medically and

economically important, globally invasive pest and

disease vector (Gratz 2004, Benedict et al. 2007). The

goals of this work are (1) to test whether density-

dependent regulation occurring at the larval stage of A.

albopictus populations would allow for persistent closed

populations, without the direct regulation of population

size, and (2) to examine for predicted population-level

effects of Wolbachia in A. albopictus mosquitoes.

While the study of field populations is unarguably the

golden standard, there are valid reasons not to rely upon

natural populations for early hypothesis testing. For

example, there may be regulatory, ethical, or community

concerns that discourage open release experiments
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(Benedict et al. 2008, Lavery et al. 2008, Beech et al.

2009). Additionally, it can be difficult to distinguish the

source of variation in natural populations, since the

dynamics observed are driven by both exogenous and

endogenous factors (Turchin 1991, Turchin and Taylor

1992). Furthermore, the containment provided by

artificial systems allows a level of measurement and

testing of scenarios that would not be feasible to test in

the field.

With mosquitoes, larval survival and development are

directly affected by density-dependent intraspecific

competition (Seawright et al. 1977). In contrast,

density-dependent effects are less obvious at the

mosquito adult stage. Models predict that density-

dependent effects at the immature stages can impact

the resulting adults in the population, and this has the

potential to affect pathogen transmission. For example,

reduced intraspecific competition, such as that resulting

from an autocidal suppression approach, may result in

an increase in fitness or longevity (Dobson et al. 2002a).

More robust, longer-lived female mosquitoes can

increase pathogen transmission rates, since females are

more likely to accomplish the extrinsic incubation

period required for transmission. But the hypothesized

effects should be examined empirically.

Systems for studying closed populations with over-

lapping generations have been developed for other

insects; however, until recently, mosquito population

cage studies have dealt with discrete cohorts (James et

al. 2011). Nicholson pioneered the idea that negative

feedback or density-dependent regulation can play an

important role in population stability (Nicholson 1933).

The persistence of a closed population implies a balance

between reproduction and mortality, which can be

affected by biotic (e.g., competition, predation) and

abiotic factors. The importance of understanding these

relationships in mosquitoes is heightened with the

prospect of new autocidal approaches. For example,

empirical tests can examine for predicted potential

population-level effects of applied strategies that intro-

duce fitness load, sterilize the population, abbreviate

longevity, and/or manipulate symbiotic associations.

Here we examine for potential population-level effects of

a CI-inducing Wolbachia infection, including impacts on

the host carrying capacity, sex ratio, and longevity.

MATERIALS AND METHODS

Population cage procedures

Four separate populations of A. albopictus were

maintained, based on a dual cage design. Two of the

populations (IHA and IHB) consisted of a wild-type A.

albopictus strain that is naturally infected (wAlbA and

wAlbB) with Wolbachia (IH), while the remaining two

populations (UTA and UTB) consisted of an aposym-

biotic strain (UT) in which the Wolbachia infection was

removed by tetracycline treatment (Dobson and Ratta-

nadechakul 2001). Both the IH and UT strains share a

similar genetic background (Dobson et al. 2004).

Each population consisted of two cages: an adult cage

and an eclosion cage for immature development (Fig. 1).

Both the adult and eclosion cages had volumes of 30 cm3

and were lined with lumite mesh (Bioquip Products,

Rancho Cominguez, California, USA). One side of each

cage consisted of a stockinette cotton sleeve that allowed

for manipulations within the cage, while preventing

escapes. Each adult cage contained three 20-mL glass

vials containing a cotton wick and a 10% sucrose

solution for adult nutrition. A 120-mL specimen cup

lined with heavy seed germination paper and 60 mL of

distilled water (Anchor Hocking Paper, St. Paul,

Minnesota, USA) was provided for female oviposition.

Eclosion cages consisted of four plastic pans (10.5 3 7.5

3 4.5 cm) containing 200 mL of distilled water.

Environmental conditions were maintained at 288 6

28C, 75% 6 3% relative humidity and 16:8 light : dark

cycle throughout the experiment.

Populations were initiated by introducing 100 female

and 100 male adults into each of the adult cages.

Weekly, an anesthetized mouse was placed inside the

adult cage for 20 minutes for female blood feeding

(following Institutional Animal Care and Use Commit-

tee [IACUC] No. 00905A2005). Sucrose bottles and

oviposition cups were replaced weekly. Three times per

week dead adults were removed from the cage, counted,

and identified to sex.

FIG. 1. (A) Schematic of the population cage design
utilizing dual cages for Aedes albopictus, the Asian tiger
mosquito. (B) Rotation pattern for the system of four larval
pans within the eclosion cage, with levels of organic matter
symbolized by pan shading. Darker colors represent increasing
age of the pans and higher levels of pollution.
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Eggs removed from the adult cage were allowed to

embryonate for seven days. Prior to hatching, the number

of eggs was estimated by digital analysis using ImageJ

1.37v software (available online)4 (Mains et al. 2008). In

brief, a linear regression based on prior correlations

between the area (pixels squared) taken up by oviposited

eggs estimated by ImageJ and the number of manually

counted eggs was used to estimate egg number.

To estimate the number of eggs oviposited per female,

the number of estimated eggs was divided by the number

of females present in the adult cage five days prior to

oviposition cup removal. A period of five days was

chosen since most A. albopictus females oviposit between

three and five days following a blood meal (Hawley

1988). Prior to hatching, each egg paper was divided into

three sections, based upon egg number. The eggs were

then submerged in larval pans 1–3 (Fig. 1), which

exposed newly hatched larvae to a varying range of

immature environments. After five days, egg papers were

removed from the larval pans and egg hatch was

estimated. To estimate egg hatch, a method of ‘‘patch

counting’’ was used in which hatched and unhatched

eggs were counted using a dissecting microscope (Leica

MZ75) from three randomly selected fields of view

(44.17 mm2). Fields with ,20 eggs were not counted,

and a new random field was selected. The ‘‘patch count’’

method was used since it was less time intensive and

remained predictive of whole-egg paper counts. Hatched

eggs were defined based upon the appearance of the

operculum. The portion of egg paper used for hatch rate

estimation was selected at random from the three

sections previously defined.

Three times per week (Monday, Wednesday, and

Friday), each of the four pans was provided with 0.6 mL

of liver powder solution (60g/L) (ICN Biomedicals,

Aurora, Ohio, USA) for larval development. Newly

eclosed adults in the eclosion cage were collected using a

hand-held aspirator (Clarke Mosquito, Roselle, Illinois,

USA) and immobilized by chilling on wet ice, identified

to sex, counted and released into the adult cage.

As diagrammed in Fig. 1, larval pans were rotated

each Wednesday. The fourth larval pan (Pan 4) was

removed from the eclosion cage, and the remaining pans

were reassigned (e.g., Pan 1 becomes Pan 2, etc.). A new

pan was introduced and assigned as the new Pan 1. At

the same time, deionized water was added to offset

evaporation in the older three pans.

For all populations, the initial period following the

start of populations has been excluded from analyses,

due to changes made to the food amount, which resulted

in variation in the population size.

Population cage monitoring

The number of adults within the adult cage was mon-

itored using a running population count calculated by:

Ft ¼ Ft�1 þ Ef ;t � Df ;t

where the number of females (Ft) at time t was

calculated from the number of females in the previous

count (Ft�1), the number of newly eclosed females (Ef,t),
and the number of dead females (Df,t). A similar formula

was used to monitor the number of adult males (Mt):

Mt ¼ Mt�1 þ Em;t � Dm;t:

The total number of adults in the adult cage (At) was
calculated as

At ¼ Ft þMt:

To periodically calibrate and prevent the accumulation

of counting errors, a full count of the entire adult
population within the adult cage was conducted every

third week. Adults were aspirated in groups of ;50,
immobilized on wet ice, and then counted and the sex

determined under a dissecting microscope. Total counts

were then used to recalibrate the running counts.

Estimates for weekly survival rates (S ) were calculat-
ed using the ‘‘running count’’ method as

S ¼ 1� ðG jHÞ

based upon the mean number of adults in the population
(H ) and the mean number of newly eclosed adults (G).

Population dynamics

To predict population dynamic parameters of both

infected and aposymbiotic cages, we fit our data to a

previously published model by Dye for mosquito
population dynamics (Dye 1984):

A* ¼ ½lnðP=dÞ=a�
1=b

E
:

Estimates for three of the six parameters were derived.
Per capita daily mortality (d) was calculated by

dividing estimated weekly survival by seven. Adult
egg production rate (E) was calculated by dividing the

number of adults at time t � 1 by the number of eggs

oviposited at time t. New adult production rate (P) was
calculated by dividing the average number of newly

eclosed adults by the average adult population size.

The larval survival coefficient and exponent (a, b)
could not be estimated from the data collected, but was

estimated using data from a previously published

report using the same mosquito strains (Gavotte et
al. 2009). Each of the parameters was used to estimate

the equilibrium adult population size (A*). To estimate
A*, we assumed that the average standing adult

population was the equilibrium population size. The

predicted values for model parameters were calculated
by solving the equilibrium expression (Dye 1984) using

the values defined in Table 1. In this analysis, we did

not estimate generation time (T ), but instead used a
constant defined in previous work (Yakob et al. 2008).

Importantly, changes to generation time estimates do

not affect A* (Dye 1984).4 http://rsbweb.nih.gov/ij/
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Wolbachia confirmation

PCR assays to confirm the presence ofWolbachia in the

populations were conducted at least every 20 weeks. The

general Wolbachia primers 438F (50-CATACCTATTC-

GAAGGGATAG-30) and 438R (50-AGCTTCGAGT-

GAAACCAATTC-30) were used to test for infection

status. PCR conditions were as previously described

(Dobson et al. 2004). The presence of Wolbachia was

not detected in adults from aposymbiotic populations. All

adults tested from the infected populations were Wolba-

chia positive. Thus, the infection status of each population

did not change over the course of the experiment.

Statistical analysis

All statistical analysis was performed using JMP

9.0.016 (SAS Institute 2010). The normality of the life

history traits was tested using a Shapiro-Wilk test.

Proportional data (i.e., hatch rate, survival rate) were

transformed using an arcsine square-root transforma-

tion to insure normality. Comparisons between and

among infection types were performed using a repeated-

measures, one-way analysis of variance (ANOVA).

When appropriate, data were characterized by two

factors (i.e., infection status and sex) and a full-factorial,

repeated-measures ANOVA design. The full factorial

design was used to analyze adult populations, eclosing

adults, dead adults, adult net change, and estimated

adult survival. Sex ratio was analyzed by a full-factorial,

repeated-measures ANOVA design with infection status

and adult stage (i.e., adult, eclosion, dead) as factors.

For all other parameters (i.e., egg number, fecundity,

hatch rate, hatching larvae and fourth pans), infection

status was the only factor. A t test was used to compare

net change from a theoretical mean of zero. To compare

whether the population dynamic parameter values

reported here were equal to predictions made using

Dye’s model (Dye 1984), we performed a one-sample t

test. For each parameter, the predicted parameter value

taken from the population cage data was compared to

the model’s predicted value (i.e., a constant).

RESULTS

Population cage results

Four A. albopictus populations were studied in

parallel to test for an ability of populations to persist,

to assess replicability and to compare the dynamics of A.

albopictus populations that differ in their Wolbachia

infection type. The dampening effect of density depen-

dence on exponential growth does not always result in

stable populations, and possible outcomes included: (A)

fluctuations in population size would lead to periodic

extinctions, or (B) large variation between replicate

populations would occur, which could complicate

downstream comparisons. With the experimental design

described, we did not observe extinction for any of the

populations. Each population was maintained for more

than one year prior to stopping the experiment. Due to

fluctuations resulting from protocol changes early in the

experiment, statistical comparisons were made using

only data from the final 45 weeks of the experiment,

which were designated as Weeks 1–45 in our analysis.

During the 45-week period illustrated in Fig. 2, we

observed a stable number of adults in each population,

varying around a point of equilibrium. For stable

populations, the net change (i.e., adult eclosion minus

adult mortality) should be approximately zero. Analysis

of each population demonstrated that the net change for

females and males do not differ significantly from zero

(t(42), P . 0.21) (Tables 2 and 3). Comparisons between

the four populations demonstrate that the net change

does not differ for sex, infection type, or their

interaction.

Comparisons of the additional population dynamics

demonstrate significant differences between the infected

and uninfected populations. Significantly more adults

were observed in the aposymbiotic populations (Fig. 3,

Table 2), and while the adult sex ratio (i.e., percent

female) was female biased in all populations, aposym-

biotic populations had a significantly higher sex ratio,

relative to infected populations (Table 2). Higher

numbers of eclosing and dying adults were observed

TABLE 1. Comparison of empirical results from populations and predictions of the Dye model
(Dye 1984), showing score (t) and P value.

Parameter

Aposymbiotic Infected

Empirical
estimate

Model
prediction t test P

Empirical
estimate

Model
prediction t test P

d 0.0572 0.0442 �5.52 0.1141 0.0710 0.0682 2.44 0.248
P 0.3967 0.5133 �10.64 0.0596 0.4978 0.5184 �2.42 0.2498
T 27 27
a 0.06564 0.05793 0.06564 0.06430
b 0.4308 0.4155 0.4308 0.4282
E 13.1 9.8 9.53 0.0666 17.4 16.6 1.96 0.3008
A* 263.4 197.1 3.51 0.1767 157.7 150.3 1.12 0.465

Notes: Parameters are per capita mortality (d), new adult production rate (P), generation time
(T ), larval survival coefficient (a), larval survival exponent (b), adult egg production rate (E), and
adult population size equilibrium (A*).
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for aposymbiotic populations (Table 2). Compared to

the sex ratio of the standing adult population, the sex

ratios of both eclosing and dying adults differed

significantly and were male biased (Table 2). Interac-

tions between infection type and sex were not observed

for standing adult populations, adult eclosion, and adult

mortality. Interactions between infection type and adult

stage were not observed for sex ratio. The estimated

survival probability differed significantly between the

populations, for both infection type and sex but not

their interaction (Table 3). Specifically, females were

longer lived than males, and longer survivorship was

estimated in aposymbiotic populations.

The mean egg number per week was observed to differ

significantly between the infection types (Table 4), with

the aposymbiotic populations producing a greater

number of eggs relative to the infected populations.

Since the aposymbiotic populations had significantly

more adult females, the number of eggs per adult female

was estimated. Females from the infected populations

were calculated to produce significantly more eggs per

female relative to aposymbiotic populations (Table 4).

FIG. 2. Weekly mean values for adult eclosion, mortality (i.e., removed adults), and net change for each sex and Wolbachia
bacterial infection type (aposymbiotic vs. infected). Eclosion and mortality rates are displayed as gray bars (above and below the x-
axis) and net change is shown as a black trace extending from left to right.

TABLE 2. Adult population dynamics within replicate biolog-
ical model systems.

Population
dynamic

Population type

Sex Aposymbiotic Infected

Standing adult
population

Female 151.8 6 30 86.7 6 18
Male 110.5 6 21 71.5 6 16
Total 263.4 6 43 157.7 6 29

Adult eclosion
per week

Female 46.8 6 9 33.9 6 10
Male 57.7 6 12 44.6 6 10
Total 104.5 6 14 78.6 6 17

Adult mortality
per week

Female 45.1 6 11 33.5 6 10
Male 56.1 6 15 43.5 6 10
Total 101.2 6 24 77.0 6 21

Sex ratio Adult 57.5% 6 5% 55.0% 6 6%
Eclosion 44.9% 6 7% 42.7% 6 8%
Mortality 44.8% 6 5% 43.3% 6 5%

Net change Female 1.6 6 16 0.4 6 15
Male 1.5 6 23 1.1 6 16
Total 3.2 6 34 1.5 6 27

Weekly survival
probability (%)

Female 69.1 6 1 60.9 6 2
Male 47.6 6 2 37.4 6 1
Total 60.2 6 1 50.2 6 1

Notes: All values are mean 6 SD per week. Sex ratio is the
number of females/total number of adults. Net change is the
adult population size (adult eclosion� adult mortality).
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The observed hatch rates did not differ between

uninfected and infected populations (Table 4). The

estimated number of first-instar larvae was calculated as

a multiple of the egg number and hatch rate. No

difference was observed between infection types in the

estimated first-instar larval numbers (Table 4). Similar-

ly, no differences were observed in comparisons of older

immatures (i.e., larvae and pupae in Pan 4).

Population dynamics

Parameter estimates from empirical data were com-

pared to predictions of the Dye model (Dye 1984),

showing similar population dynamics (Table 1). For

each parameter, model-derived estimates did not differ

significantly from predictions of the Dye model. For

both aposymbiotic and infected populations, our

estimates of adult numbers were similar to the predicted

equilibrium size. Likewise, parameter estimates for adult

mortality, fecundity, and population growth were

similar to the predicted values. The overall population

dynamics are summarized in Fig. 4.

DISCUSSION

With a renewed interest in autocidal control measures,

it is important to develop tools to empirically examine

for population-level effects. Here we have examined

Wolbachia endosymbionts using a laboratory-based

model system, but the system can be used for additional

measures (e.g., traditional SIT and more recent trans-

genic strategies). Overall, the empirical findings here are

consistent with mathematical predictions and show the

populations to differ significantly in density and

longevity. As an example, a prior model predicts that

the carrying capacity of an uninfected population can be

higher than that of an identical population infected with

Wolbachia (Dobson et al. 2002a). Improved models that

include more detail (e.g., simulating immature dynam-

ics) are now available, including models with a focus on

Wolbachia infections in mosquitoes (Bossan et al. 2011,

Crain et al. 2011, Hancock et al. 2011).

Consistent with model predictions, the population

dynamics differ significantly between the infected and

uninfected populations. The number of female and male

adults is higher for the aposymbiotic populations, which

corresponds with lower eclosion and adult survival rates

for the Wolbachia-infected populations (Fig. 4). Despite

the difference between population types, the eclosion

and mortality rates were balanced within populations,

resulting in stable, standing populations, with no net

change over time.

The ratio of female to male adults (sex ratio) did not

differ between aposymbiotic and infected populations.

TABLE 3. ANOVA results for adult population dynamics within replicate biological model systems, using values in Table 2.

Population dynamic

Infection Sex
Infection

3 sex
Life stage

(adult vs. eclosion)
Infection

3 life stage

F P F P F P F P F P

Standing adult population 14.0 ,0.001 4.1 ,0.02 0.8 0.1
Adult eclosion per week 6.2 ,0.007 4.3 ,0.02 0.0002 0.9
Adult mortality per week 7.1 ,0.006 5.3 ,0.01 0.009 0.8
Sex ratio 1.3 ,0.02 34.7 ,0.0001 0.1 0.7
Net change 0.2 0.3 0.03 0.7 0.05 0.6
Weekly survival probability 52.7 ,0.002 307.6 ,0.0001 0.4 0.5

Note: For all ANOVAs, df¼ 1, 42, except for sex ratio, where df¼ 2, 42 for the factors life stage and the interaction of infection
status and life stage.

FIG. 3. Total adults (mean 6 SD) for each of the replicate
population types (aposymbiotic and Wolbachia infected)
maintained using a model laboratory system with overlapping
generations. The number of adults differed significantly (F1,42¼
14.01, P , 0.001) between the population types during the 45-
week experiment.

TABLE 4. Population dynamics of immatures within replicate
biological model systems.

Parameter

Population type
Statistical
analysis

Aposymbiotic Infected F P

Egg number 2072.6 6 464 1444.8 6 390 86.7 ,0.01
Eggs per female 13.1 6 2 16.7 6 3 11.6 ,0.01
Egg hatch (%) 66.5 6 14 60.3 6 17 7.07 0.06
First-instar
larvae

1346.3 6 353 863.9 6 380 0.5 0.4

Fourth pan 199.2 6 56 200.4 6 48 ,0.01 0.9

Notes: All values are mean per week 6 SD. For all F tests, df
¼ 1, 42.
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However, the male bias observed in newly eclosed and

dying adults differed significantly from the female bias

observed in the standing population. This contrast

reflects the greater female longevity, which is consistent

with observations in both laboratory and field studies

(Hawley 1988, Dobson et al. 2004). Based upon the

standing adult population size and the eclosion/mortal-

ity rates, adult survivorship was estimated for females

and males of each population type. Females are longer

lived than males in both population types, and aposym-

biotic adults were longer lived than individuals of the

same sex in the infected populations. This result differs

from prior reports that show longer-lived, infected A.

albopictus females (Dobson and Rattanadechakul 2001,

Dobson et al. 2004), which may reflect differences

between the experiments in the immature developmental

conditions. Specifically, in the prior studies, tests were of

adults reared under optimal conditions of low density

and excess food. Thus, additional experiments are

required to examine for an interaction between imma-

ture stress and Wolbachia infection type in the longevity

of the resulting adults.

Significantly more eggs were produced from the

aposymbiotic populations. However, when considered

on a per capita basis, females from infected populations

were estimated to produce significantly more eggs

relative to females from aposymbiotic populations. This

observation is consistent with those from prior empirical

studies showing higher egg production by infected A.

albopictus females (Dobson et al. 2002b). No difference

was observed in egg hatch rates, which differs from prior

studies that have shown higher hatch from Wolbachia-

infected individuals (Dobson et al. 2002b, 2004). In a

similar way, this difference may reflect the impact of

elevated competition levels, which represents a future

area of study. While the greater number of eggs from

aposymbiotic populations were estimated to result in

more larvae, the differences were nonsignificant. This is

consistent with expectations for a hypothesized carrying

capacity for the immature number, which results from

density-dependent effects as larvae compete for limited

resources. Based upon the average weekly egg number

and eclosing adults, an approximate 5% immature

survival rate is estimated for both the aposymbiotic

and infected populations.

Aposymbiotic populations generally experienced

greater or equal numbers through all life stages relative

to infected populations (Fig. 4). An exception is the

estimated per capita egg production, which was signif-

icantly higher in the infected populations. This differ-

ence in egg production could result from an overall

younger age of females in the infected cages. As

previously shown, older females produce fewer eggs

(Hawley 1988). An additional explanation may be that

infected females are more fecund, relative to uninfected

females (Dobson and Rattanadechakul 2001, Dobson et

al. 2004). Regardless, prior models demonstrate the

importance of fecundity to the ability of Wolbachia to

establish and invade naive populations (Egas et al. 2002,

Crain et al. 2011). In the work described here, cages were

uniformly infected/uninfected. Thus, the ability of

Wolbachia to invade under these conditions and the

FIG. 4. Summary comparison of mean values of measured parameters for both infection types (Apo, aposymbiotic; Inf,
Wolbachia infected) for parameters collected during the 45-week experiment. Single asterisks indicate significant differences (P ,
0.05) between some infected and uninfected populations.
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population dynamics that result during an invasion

should be a focus of future experiments.

Using a previously published mosquito population

dynamics model, we determined that the populations

were at equilibrium, which is supported by a zero net

change in each population (Fig. 2). Furthermore,

parameters derived from the model system did not

differ significantly from predictions made in a prior

model (Dye 1984). For example, consistent with

observations here, the Dye model predicts that aposym-

biotic populations should have a larger population

equilibrium compared to infected cages, due to lower

daily mortality (d, Table 1).

Of the two population types, Dye’s predictions best fit

with the dynamics observed in the infected populations,

which is the natural state of A. albopictus populations

(Dobson and Rattanadechakul 2001). While the ob-

served dynamics do not differ significantly, the model’s

predictions for aposymbiotic cages were less accurate

(Table 1). The parameter that most influences the adult

population equilibrium in the Dye model is the larval

survival exponent b, and an intriguing potential

explanation is that Wolbachia affects larval responses

to competition. This would be consistent with results

from a previous study that reported significant differ-

ences in larval responses to differing levels of competi-

tion between aposymbiotic and infected individuals

(Gavotte et al. 2010).

APPLICATIONS FOR INSECT MANAGEMENT

The need to study and discuss population-level

impacts is made even more urgent by proposed and

ongoing open-release field trials of autocidal strategies

against mosquitoes. This new technology is drawing

attention from industry, public health policy makers,

environmental regulators, and scientists. For example,

some models predict that strategies designed to suppress

and replace vector populations may reduce intraspecific

competition levels, resulting in more robust, longer-lived

mosquitoes, which could have an undesired impact on

pathogen transmission. In addition to the results

presented here, the demonstrated system provides a

platform by which additional population-level hypoth-

eses and applied strategies (e.g., female killing) can be

tested and contrasted.

A key design difference between prior model systems

and that described here is our reliance on density

dependence as the sole regulator of population size.

Prior studies are based upon discrete generations or the

artificial control of the population size by the experi-

menter (Xi et al. 2005, James et al. 2011). A concern of

autocidal approaches, such as Sterile Insect Technique,

is that compensatory density-dependent effects will

mitigate and complicate the strategies (Alphey et al.

2010). The design described here can be used for tests of

autocidal approaches and measuring for resulting

changes in the dynamics of the treated population.

Given that multiple groups are targeting A. albopictus

and that systems are available for classical sterilization

via irradiation (Bellini et al. 2007), new transgenic

approaches (Alphey and Andreasen 2002, James et al.

2011), and Wolbachia-based suppression (Brelsfoard et

al. 2008), the system can be used as a common platform

to compare each of these approaches and the response of

the targeted population.

Lower adult numbers and abbreviated longevity of

the infected populations could lend support to the

strategy of Wolbachia-based population replacement.

Specifically, reduced disease transmission is anticipated

if there are fewer vectors and if these females have a

reduced life expectancy. However, prior studies demon-

strate that differentWolbachia types can induce different

individual-level effects, and that these can vary depend-

ing upon host species (Dobson et al. 2004, Engelstadter

et al. 2004). Thus, the results here are not necessarily

indicative of all Wolbachia infections and mosquitoes.

Downstream experiments should include examining

additional species and infection types using a similar

model system. Since A. albopictus populations are

naturally infected with Wolbachia (Armbruster et al.

2003), applied strategies for Wolbachia-based replace-

ment and suppression would be based upon populations

of differing infection types (i.e., not an aposymbiotic

population), which provides another example of a

needed downstream test.
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