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Surface structure of catalytically-active ceria nanoparticles

Xing. Huanga, Matthew J. Becka,∗∗

aDepartment of Chemical & Materials Engineering, University of Kentucky, Lexington,
KY 40506

Abstract

Catalytic mechanisms, and therefore activity, depend on the structure

of catalyst surfaces. In turn, surfaces may reconstruct and/or exhibit local

configurations that vary from bulk composition and structure. CeO2 (ceria)

is a redox catalyst of interest in numerous automotive, energy and, increas-

ingly, biomedical applications. Previous studies aimed at understanding

catalytic mechanisms on ceria have limited consideration to systems with

bulk-like stoichiometric or sub-stoichiometric surfaces. Here we summarize

previous computational studies on ceria surfaces, nanoclusters, and nanopar-

ticles, and highlight challenges in constructing physically-representative ce-

ria nanoparticle (CNP) structures. Setting aside assumptions of bulk-like

stoichiometric or sub-stoichiometric ceria surface terminations, we report

results of DFT + U calculations and show that sufficiently small CNPs

are not bulk-terminated, but rather are stabilized by the formation of Oq
x

groups (–2≤q≤0, x≤3) at corners, edges, and {100} facets. These surface

structures, not the annihilation and regeneration of O-vacancies, may di-

rectly control reduction/oxidation catalysis at CNPs below a critical size.

As anion groups other than Oq
x groups could be incorporated in stable CNP
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surfaces, this suggests the possibility of tailoring small CNP structures and

mechanisms for particular catalytic reactions.

Keywords: Ceria nanoparticles, Density functional theory, Surface

structure

1. Introduction

Catalysts are essential engineering materials used to promote specific

chemical reactions in a host of applications and processes. Typical cata-

lysts influence target reactions by enhancing the binding or localization of

reactant molecules at catalyst surfaces while lowering reaction barriers and

allowing desorption of product molecules. Ideal catalysts have high activity,

specificity and stability, as well as low contamination rates under operating

conditions. Various pure metals and, increasingly, metal oxides are widely

applied as catalysts. Reversible reduction/oxidation catalysts have particu-

lar technological value in energy, environmental and biomedical applications.

Cerium dioxide (CeO2, ceria) has served as an excellent reduction/oxidation

catalyst for 30 years. Ceria has been shown to have wide applications in en-

vironmental remediation, energy generation and biomedicine, in addition to

other important applications in microelectronics, optical films, gas sensors,

and polishing materials [? ? ? ? ? ? ? ? ? ? ? ? ? ].

The effects of a catalyst on a chemical reaction are necessarily surface

effects. That is, the physical and chemical action of a catalyst occurs at

the interface between the catalyst and its environment—namely, at the cat-

alyst’s surfaces. Enhancing or tailoring catalytic behavior, therefore, first

requires an understanding of the structure and properties of the catalyst’s

surfaces. In ceria or ceria-supported catalysis the discovery that bulk cu-

bic fluorite ceria can be reduced through the formation of O-vacancies and
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reversibly (re-)oxidized via the annihilation of O-vacancies has led to the

development of a general understanding that the presence of (or potential

to form) O-vacancies on ideal, bulk-terminated ceria surfaces drives the cat-

alytic activity of ceria in reduction/oxidation reactions. In fact, explanations

for the mechanism of ceria catalysis have, to date, assumed ideal, bulk-like

ceria surface structures, or minor perturbations thereof. But does this pic-

ture apply to ceria nanoparticle (CNP) systems? Do the catalytically active

surfaces of CNPs actually exhibit ideal, bulk-like surface terminations?

In this paper we report DFT + U calculation results demonstrating that

sufficiently small CNPs are not bulk-terminated, but instead exhibit stable

surface configurations characterized by the formation of chemically bound

Oq
x groups. In presenting these results we summarize previous computational

efforts to discern the detailed structures and properties of experimentally-

relevant ceria facets and CNPs. We highlight how previous studies have

generally limited consideration to structures with bulk-like surface termi-

nations and primarily focus on the potential role of lattice O-vacancies as

active surface sites for ceria catalysis. We discuss the inherent challenges in

constructing physically-representative structures for computing CNP surface

properties, and note that the complexity underlying these challenges moti-

vates an exploration of CNP structures that is not limited by assumptions

of bulk-like CNP surface terminations. We then give a detailed description

of our computational methods, including a discussion of how initial CNP

structures were generated and the computational tools and techniques used

to relax these structures to their ground state (lowest energy) configurations.

We derive a robust expression for the excess energy of formation capable of

characterizing—and allowing comparisons between—the stability of surface

configurations on CNPs of various shapes and sizes.
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The present DFT + U results show that sufficiently small CNPs are

stabilized by the formation of bound O pairs and triples at corners, edges

and {100} facets in both O-rich and O-lean environments. We further show

that a straightforward model accounting for formal charges and the non-

stoichiometry of CNP corners, edges and {100} facets predicts a transi-

tion from larger, net reduced (CeO2−x) particles which would exhibit bulk-

like surface terminations (as assumed by the present understanding of ceria

catalysts), to smaller, oxidized (CeO2+x) particles with Oq
x–based surface

terminations (shown to be stable here). The stability of Oq
x–terminated

CNPs demonstrates that, below a critical size, the catalytic activity and

O-storage capacity of CNPs is controlled not by the thermodynamics and

kinetics of O-vacancies, but rather directly by surface structures that incor-

porate molecular anions. In turn, the detailed structures of catalytically-

active CNP surfaces—specifically including the type and distribution of sur-

face anion groups—are controlled by surface chemistry, and therefore by

experimentally-controllable environmental conditions like solvent composi-

tion, pH, and CNP surface functionalization.

2. Background

2.1. Ceria catalysis

The excellent catalytic properties of ceria were first harnessed in the late

1970s when ceria was utilized for the treatment automobile exhaust, serving

as a key component in three-way catalysts (TWC) [? ? ]. During the

same time period, studies on the phase diagram of the cerium oxide system

were carried out. It was discovered that bulk ceria (cubic fluorite CeO2)

can be reduced at elevated temperatures to form a range of O-deficient,
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non-stoichiometric oxides (CeO2−x), referred to collectively as “reduced”

ceria. In addition, it was shown that ceria is able to reversibly transform

among these various reduced phases [? ? ? ]. Further studies [? ? ? ]

directly exploring these transformations found that bulk ceria retains a cubic

fluorite structure despite removal of 25% of lattice O atoms when subjected

to reduction below 900 K. While these studies noted an anomalous lattice

expansion during reduction, they found that O-vacancy-containing reduced

ceria could be completely recovered to stoichiometric CeO2 when exposed

to an oxidizing environment, even at room temperature.

These discoveries implied that ceria can store O by adsorbing it (via

the annihilation of O-vacancies) under O-rich conditions, and controllably

release it by (re-)forming O-vacancies under O-poor or reducing conditions.

The number of OII anions (per volume or unit mass) that can be reversibly

extracted and recovered during a particular reaction (e.g., oxidation or re-

duction of CO/CO2) is quantitatively characterized as the “oxygen storage

capacity” (OSC) of a ceria system [? ? ]. Hence, ceria has two related,

technologically important capabilities: the ability to strongly catalyze re-

dox reactions, and the ability to serve as a solid state oxygen buffer for

redox reactions.

Since the 1970s substantial experimental and computational effort has

been expended to understand, control, and ultimately optimize ceria’s nat-

ural ability to both support [? ? ] and directly catalyze [? ? ? ? ? ? ]

redox reactions. Over the course of these investigations the experimentally

measurable OSC of ceria and ceria-containing systems has become a kind of

litmus test for catalytic activity. That is, the realizable potential of a ceria

system to form and annihilate O-vacancies during reduction and oxidation

has become both the lens through which the general catalytic properties of
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all ceria-based materials are viewed, and the default basis for understanding

all reduction/oxidation mechanisms in such materials.

For bulk ceria systems, the existence of O-vacancy-containing cubic flu-

orite “reduced ceria” phases and low-barrier reversible transformation paths

between them (simply the formation/annihilation of O-vacancies) suggests

a straightforward, “four-step” mechanistic hypothesis explaining ceria’s ex-

cellent catalytic activity: (1) formation of bulk O-vacancies and associated

CeIII cations, (2) migration of bulk CeIII cations to a ceria surface, (3)

adsorption of O-molecules at surface CeIII cations, and (4) interaction of

reactant molecules with adsorbed O-molecules leading to catalyzed product

formation and (re-)oxidation of (surface) CeIII cations.

The above “four-step” mechanism assumes two key points: (i) that re-

active CeIII cations are present only in conjunction with vacant OII lattice

sites, and (ii) that the intrinsic ceria surface itself has no direct role in cat-

alytic reactions—that is, redox catalysis by ceria requires that a vacant O

lattice site must migrate, along with its concomitant CeIII cations, to the

surface, and that this (surface) defect structure, not any intrinsic feature

of the stable surface itself, is catalytically active. These assumptions have

important consequences, namely implying that optimizing the activity of

ceria catalysts requires increasing the concentration of surface O-vacancies

(e.g., by reducing surface O-vacancy formation energies, or increasing bulk

O-vacancy concentrations). Given that these implications have driven much

of the recent research on optimizing or enhancing ceria and ceria-supported

catalysts, it is worth considering under what conditions the assumptions

leading to the “four-step” mechanism are applicable.

The first assumption (that CeIII cations are present in conjunction with

O-vacancies) is well-justified in bulk ceria systems with fixed charge, where

6



reducing bulk ceria (that is, generating CeIII cations) while maintaining

charge neutrality requires the formation of one lattice O-vacancy for every

two CeIII cations. On this basis, it is a general practice to consider the

reduction of ceria, the creation of CeIII cations, and/or the creation of

lattice O-vacancies to be equivalent processes in bulk ceria. The existence

of large numbers of reactive CeIII cations in ceria systems is itself justified

by the existence of a range of sub-stoichiometric cubic fluorite reduced ceria

phases (CeO2−x) which can be reversibly oxidized or reduced [? ? ? ? ? ?

].

The second assumption upon which the “four-step” mechanism is based,

that catalytically-active surface sites are CeIII cations present as lattice

O-vacancies on ceria surfaces, implies by extension that stable ceria surface

structures do not intrinsically exhibit CeIII cations, and that no other stable

surface structures (other than surface CeIII cations) are catalytically active.

An argument can be made that this assumption is applicable for ideal, bulk-

terminated surfaces on semi-infinite ceria samples, particularly on the basis

of STM images of such surfaces revealing ideal, unreconstructed structures

populated with finite concentrations of vacant lattice O sites [? ]. The

“four-step” mechanism of ceria catalysis (and the assumptions it is based

upon) is therefore well-supported for bulk samples (or more correctly, for

structures with surfaces well-approximated as ideal, unreconstructed, semi-

infinite and stoichiometric bulk cuts). But the direct translation of the above

assumptions to nanoparticle structures ignores the possibility of completely

new atomic arrangements and catalytic mechanisms accessible only on the

surfaces of nanoscale systems.
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2.2. Previous computational results

2.2.1. Semi-infinite ceria surfaces

Given the critical role of O-vacancies enabling the catalysis by ceria, var-

ious computational studies aimed at understanding O-vacancy formation in

bulk ceria and at ideal bulk ceria surfaces have been carried out. In 1992,

Sayle et al. [? ? ] investigated the structures and energetics of O-vacancy

formation in stoichiometric bulk ceria, and on ideal, stoichiometric {111},

{110} and {310} ceria surfaces. Sayle found that O-vacancy formation was

energetically more favorable on ceria surfaces than in bulk, and more favor-

able on {110} and {310} surfaces than on {111} surfaces. Later, in addition

to confirming the 1992 Sayle results, Conesa [? ] studied the structure and

energetics of three other low-indexed ceria surfaces: stoichometric {211}

surface as well as non-stoichiometric {100} and {210} surfaces. This work

found that {211} surface relaxed into stepped {111} configuration. Besides

individual O-vacancies, O-vacancy pairs were found to be formed on low-

indexed ceria surfaces, and they were more stable on {111} surface than

{110} surface or {100} surface.

The results of Sayle et al. and Conesa were generated using empirical

interatomic potentials which required that the oxidation state of Ce cations

be assumed and fixed. That is, such methods could not be used to calculate

the low-energy distribution of electrons—as required to predict the distri-

bution of Ce oxidation states for a given atomic configuration. In 2002,

Skorodumova used DFT calculations to lift this limitation and directly ex-

plore the electronic structure of O-vacancies in ceria [? ]. Considering both

ceria and a cubic fluorite reduced ceria structure with Ce2O3 stoichiometry,

Skorodumova concluded that O-vacancies prefer to be located in the crystal
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bulk—in contrast to previous semi-empirical results [? ]. Importantly, they

also concluded that the two excess electrons associated with a lattice O atom

removed to form a vacancy localize into the 4f states of two of the four Ce

atoms nearest neighbor to the vacant O lattice site. Therefore, the redox

properties of ceria were found to depend upon electron transitions from de-

localized O 2p states to localized Ce 4f states that occur during O-vacancy

formation. In addition, these results imply that identifying and characteriz-

ing O-vacancies in ceria is equivalent to identifying and characterizing CeIII

cations. That is, because CeIII cations are preset in stoichiometric ceria

only if O-vacancies are present, and, when present, are physically adjacent

to an O-vacancy, the thermodynamics and kinetics of O-vacancies are the

thermodynamics and kinetics of CeIII cations.

2.2.2. Small ceria clusters and ceria nanoparticles (CNPs)

To explore whether nanoceria (broadly meaning ceria materials with one

or more dimension on the nanoscale) behaves similarly to larger ceria sam-

ples, computational studies have considered O-vacancy properties in small

ceria clusters and nanoparticles. In 1996 Cordatos et al.[? ], again employing

interatomic potentials, found that only large clusters formed fluorite crys-

tallites with well-defined facets. Smaller clusters tended to form spherical

agglomerations, while nanocrystals formed with {111} facets. Cluster stabil-

ity increased nonlinearly with cluster size. The reducibility of ceria clusters

was assessed based on the difference in lattice energy between CenO2n and

CenO2n−1 clusters, that is, by calculating an effective O-vacancy formation

energy. Reducibility (O-vacancy formation energy) was found to be struc-

ture sensitive, but generally decreased (increased) with increasing cluster

size. In 1998, Vyas et al. [? ] predicted that stoichiometric ceria crystallites
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exhibited an octahedral morphology with {111} facets, in agreement with

the Cordatos’ previous findings.

Using similar interatomic potentials, Sayle et al. [? ] conducted molec-

ular dynamics simulations of ceria nanoparticles as large as 10 nm. Despite

beginning with completely different initial shapes, all three CNPs considered

by Sayle et al., relaxed to similar shapes: truncated octahedrons comprised

of eight {111} facets and {100} mini-facets at the six corners. It is notable

that the {110} surfaces previously predicted [? ? ? ? ] in semi-infinite slab

calculations as more stable than {100} surfaces but less stable than {111}

surfaces disappeared in small CNPs, leaving behind only {111} and {100}

surfaces. The resulting {100}–truncated octahedral CNPs agreed well with

experimentally determined shapes of certain synthesized CNPs [? ].

As noted above, the use of empirical interatomic potentials requires the

oxidation state of Ce cations to be fixed a priori. Therefore, calculated

lattice energies of sub-stoichiometric (reduced) nanoparticles and calculated

reducibilities are constrained by an external assignment of CeIII cation loca-

tions. In reduced clusters, Cordatos placed CeIII cations at the nanoparticle

surfaces in generally unpaired arrangements, in contrast to Skorodumova’s

findings [? ] (reported six years after Cordatos’ study, see above). In 2006,

density functional theory (DFT) based calculations not requiring a priori

specification of the oxidation state of Ce cations were applied to study ceria

clusters. Tsunekawa et al. [? ], using GGA calculations, calculated the

electronic density of states (eDOS) and band structure of a fully oxidized

(CeO2)13 cluster and a fully reduced (CeO1.5)13 cluster. Subsequently, both

LDA + U and GGA + U calculations [? ? ? ] were employed to investi-

gate the geometric and electronic structures of small ceria clusters and their

reducibility. They found the O-vacancy formation energy to be much lower
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in ceria clusters than in the bulk ceria, implying higher concentrations of

CeIII cations, and therefore, according to the “four-step” mechanism, bet-

ter catalytic properties. The chemical reactivity of differently configured Ce

and O atoms was also examined, and variations in chemical reactivity were

found to be associated with dissimilar coordination states of various atoms

[? ].

In recent years, various authors have reported DFT-based studies of ceria

nanocrystals with distinct surface facets[? ? ? ? ? ? ? ]. These stud-

ies have been limited to {111}–terminated octahedral CNPs which are par-

tially reduced (CeO2−x) due to the sub-stoichiometric (meaning O-deficient)

nanoparticle edges and corners, as well as both reduced and stoichiometric

cuboctahedral CNPs with truncated corners consisting of small O-terminated

{100} facets. Of specific interest in these studies has been the formation

energy of O-vacancies as a function of CNP sizes and CeIII versus CeIV

cation ratios [? ? ? ? ]. The major conclusion drawn from these efforts

are that (1) it is easier to remove low-coordinated O atoms to form O-

vacancies, (2) CeIII cations (present due to non-stoichiometric CNP edges,

not as bulk O-vacancies) are located at the edges and corners of CNPs,

whereas CeIV cations are located at fully O-coordinated (bulk-like) sites,

and (3) the formation energy of O-vacancies decreased with increasing CNP

size and decreasing CeIII versus CeIV cation ratio. Taken together, this im-

plies that for a CNP of given size, there exists an equilibrium concentration

of O-vacancies at finite temperature, and that CNPs of a certain size are

expected to be most favorable for O-vacancy formation.

These studies have also sought to identify a “size-converged” model CNP,

that would be as small as possible to minimize computational cost, but large

enough to be representative of experimentally observed properties [? ]. Us-

11



Figure 1: Atomic structure of of {111}, {110} and {100} ceria surfaces. Purple balls

represent O atoms and yellow balls represent Ce atoms.

ing the adsorption energy of CO molecules on a CNP as a test observable

property, Migani et al. find that CNP properties become essentially in-

variant (variations within ≈0.1 eV) for CNPs with diameters of 1 nm and

greater. It is worth noting that only one study considers the energetics

of oxidized CNPs, and in that case considers only the addition of a small

number of single, isolated O atoms at cubic fluorite surface lattice sites [? ].

The authors conclude for the limited structures and compositions considered

that oxidized CNPs are less stable than partially reduced and stoichiometric

CNPs. They note that the oxidized nanoparticles (Ce13O32 and Ce38O80),

containing 6 and 4 excess O atoms respectively, exhibited isolated O−1 an-

ions (“peroxide-like O atoms”), whose instability is likely reflected in the

relative increase in the CNP formation energy.

2.2.3. Summary

Previous atomistic calculations have examined both semi-infinite ceria

surfaces and various ceria nanoclusters and nanocrystallites. These studies

have been limited to structures with bulk-like surface configurations (see

Fig. 1). Calculations on stoichiometric semi-infinite ceria surfaces (e.g.,

{111}, {110}, and {310}) have, in fact, assumed ideal bulk terminations.

Calculations on non-stoichiometric ceria surfaces (e.g., {100} and {211})
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were first conducted by enforcing net stoichiometry in the calculation cell

by constructing asymmetric slabs with differing top and bottom surfaces

(namely one O-terminated surface and an opposite Ce-terminated surface)

[? ? ]. The resulting asymmetric computational cells result in electronic

dipoles perpendicular to the slab surfaces. These dipoles distort the calcu-

lated electronic structure and give rise to errors in calculated surface and

O-vacancy formation energies. This issue has been addressed by assum-

ing symmetric slabs with model (top and bottom) surface structures com-

posed of arbitrarily assigned arrangements of vacant and filled surface O

lattice sites chosen to satisfy net stoichiometry (e.g., choosing half the sur-

face O lattice sites to be unoccupied). While this both avoids the issue of

CeIII cations present natively in systems with non-stoichiometric surfaces

(in contrast to their presence in reduced ceria as a result of O-vacancy for-

mation) and eliminates the problem of surface dipoles due to asymmetric

slabs, these structural models do not address the issue of possible surface

reconstructions, including those that may involve non-stiochiometric surface

terminations.

Atomistic calculations on ceria nanocrystals have focused on stoichiomet-

ric or near-stoichiometric (particularly partially-reduced) octahedral, cuboc-

tahedral and tetrahedral CNPs, again, with bulk-like surface terminations.

Calculated results show that CeIII cations, when present, are generally

under-coordinated Ce atoms (e.g., those neighboring discrete O-vacancies, or

those at under-coordinated surface, edge or corner sites) and that formation

of O-vacancies involves electron transfers from O 2p states to Ce 4f states.

Beyond this, calculations on faceted CNPs show that the O-vacancy forma-

tion energy, while generally lower at CNP surfaces than in bulk, is highly

dependent on the CNP shape and composition, and that surface composi-
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tion itself directly influences the number and distribution of CeIII cations.

While individual results suggest various low-energy overall configurations

(combinations of CNP size, shape and composition), no definitive consensus

has emerged to define a computational predicted configuration for actual

CNP catalysts. Critically, CNP calculations to date have not systematically

explored the possibility of non-bulk-like CNP surface terminations, and have

frequently limited consideration of possible CNP configurations on the basis

of bulk stoichiometry.

2.3. Challenges in computational modeling of ultra-small CNPs

Computing properties that are quantitatively comparable to experimen-

tal results requires the construction of realistic, physically-representative

structures as calculation inputs. For bulk crystalline systems this is rela-

tively straightforward as well-established experimental techniques have been

used to determine precise unit cell configurations for most common mate-

rials (including, of course, the two bulk structures of ceria [? ]). Systems

containing surfaces introduce the added complexity of determining (1) the

local (surface) concentration of atoms and (2) their local configuration at

the surface itself. For crystal facets, these complexities are somewhat miti-

gated by the availability of experimental techniques (e.g. LEEM) capable of

determining surface symmetry [? ? ]. Also, the contiguous nature of bulk

crystal facets generally constrains configurational complexity to identifiable

rearrangements of the underlying bulk structure. Even so, surface structure

(and composition) determination is an active and challenging research area

[? ? ? ].

For nanoparticles the complexities of bulk surface systems are only ex-

acerbated by the necessity of selecting the correct set of surfaces that define
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the three-dimensionally constrained structure. This, of course, translates

as needing to know the actual shape of a nanoparticle. As an extension,

not only must the local arrangements of atoms in surface facets be deter-

mined, but also the local arrangement and distribution of atoms at facet

intersections (edges and corners), and the changes in atomic configurations

on surface facets due to nearby edges. Finally, for small nanoparticles, large

surface-to-volume ratios can even cause changes in the internal bulk atomic

arrangement within the nanoparticle.

In CNPs, nanoparticle shape has been well-characterized experimentally,

with TEM and XRD studies reporting octahedral, cuboctahedral and cu-

biodal shapes [? ? ? ? ? ? ? ? ]. In addition, experimental studies

primarily report that such CNPs have {100} and/or {111} facets [? ? ? ?

? ? ? ? ]. In combination with calculated results for semi-infinite slabs

(which find that {111}, {110} and {100} surfaces have the lowest energy [?

? ? ? ]), this existing body of experimental work has motivated quantum

mechanical calculations of CNPs to focus on octahedral and cuboctahedral

CNPs similar to those observed experimentally [? ? ? ? ]. The availabil-

ity of experimental results to inform atomistic calculations with regards to

nanoparticle shape is in stark contrast to the lack of experimental results

addressing the question of the detailed atomic arrangements and relative

compositions of atoms at CNP surfaces.

The lack of experimental information regarding detailed arrangements of

atoms at CNP surfaces leads immediately to a key challenge in constructing

input atomic configurations for the computational modeling of CNPs. Con-

sider building a ∼1 nm {111}-terminated octahedral CNP, similar to those

observed experimentally [? ? ? ? ]. Beginning with a bulk cubic fluorite

ceria structure, we may cut eight intersecting {111} planes to form an octa-
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hedron with a diameter of ∼1 nm. The structure has 44 Ce atoms, and the

atomic arrangement internal to the CNP is stoichiometric (as these atoms

are simply arranged in the ideal bulk cubic fluorite structure). In addition,

the {111} surfaces themselves have a stoichiometric O-termination (as ob-

served via, e.g., STM [? ]). But, as shown in Figure 2f, the edges and corners

of the CNP are not stoichiometric, and require that a configurational choice

be made. If all edge and corner O sites are occupied (as shown in Figure 2f,

where blue balls are O atoms at facet, edge, and corner O lattice sites),

the structure contains eighty excess O atoms (Ce44O160). How do we best

model real {111}-terminated CNPs? Previous studies focusing on ideal,

bulk-terminated CNP surfaces and stoichiometric CNPs have removed all

surface O atoms (blue balls in Figure 2f) and four (of six) arbitrarily chosen

corner Ce atoms to force a stoichiometric Ce40O80 structure [? ? ]. While a

single result finds that CNPs with isolated excess O atoms at bulk O lattice

sites are energetically unfavorable [? ] and a number of calculations have

considered partially reduced CNPs [? ? ? ? ? ? ? ], no comprehensive ex-

ploration of the stability of CNPs versus O facet/edge/corner concentration

has been completed.

Beyond this (relatively) straightforward case of octahedral {111}-terminated

CNPs, we must also consider other CNP shapes that have been experimen-

tally observed, particularly those reported to have high catalytic activity.

CNP cubes, for example, are bounded by six {100} facets, have been ob-

served experimentally, and {100} surfaces are reported to have particularly

high activity [? ? ? ? ? ]. In this case the {100} surface itself does not have

a stoichiometric termination, and even greater configurational gymnastics

must be contemplated if we are to determine the stable CNP configuration.

For example, a ∼1 nm CNP cube with all surface O lattice sites occupied
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has composition Ce32O121. To construct a stoichiometric CNP requires the

removal of 57 O atoms. As there are an even number of facets, edges and

corners on a cubic CNP, there is no possible way to achieve stoichiometry

by removing O atoms evenly from facets, edges and/or corners!

Ultimately, as catalysis is a surface process, understanding the atomistic

concentrations and configurations at CNP surfaces is critical to accurately

modeling their catalytic mechanisms. In general, it is not possible to intuit

the stable concentration or configuration of surface species, as highlighted

by the challenges of constructing atomistic input structures. This is even

more an issue when it is noted that catalysts are both synthesized and ap-

plied in open systems where the environment the nanoparticle catalyst is in

can serve as a source and/or sink of atoms or molecules. Therefore, in the

absence of clear experimental information as to the detailed surface struc-

tures of real CNPs, computational attempts to characterize CNP properties

must systematically investigate CNP structures without assuming particular

concentrations or configurations of atoms at CNP surfaces. In the following

sections we directly address this challenge. While constraining the present

work to experimentally observed CNP shapes and considering only CNPs

in pure O environments, we systematically examine the structure and en-

ergy of ∼1–1.5 nm CNPs with unconstrained surface concentrations and

configurations of O atoms.

3. Computational details

3.1. Calculation methodology and settings

In the following we apply DFT + U calculations to explore the proper-

ties of faceted, nanometer-scale CNPs with various shapes similar to those
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observed experimentally. To accurately characterize relaxed atomic geome-

tries, valence electron charge densities, and total energies of CNPs with

various compositions and surface configurations, we apply DFT + U calcu-

lations as implemented in the VASP code [? ]. The accuracy and efficacy

of this method as applied to the structure and energetics of CNPs has been

previously demonstrated as discussed above.

For the present calculations, exchange and correlation were described

both at the level of local density approximation (LDA) using the Ceperley–

Alder functional [? ] as parametrized by Perdew and Zunger [? ], and at the

level of the generalized gradient approximation (GGA) using the Perdew–

Burke–Ernzerhof (PBE) formalism [? ]. The Ce 4f5s5p5d6s as well as O

2p2s electrons were treated as valence electrons, and core-electron interac-

tions were modeled using the projector-augmented wave method [? ]. The

Hubbard U correction as derived by Dudarev et al. [? ] was applied to the

Ce 4f electrons, with a range of Ueff values considered in order to examine

the effects of f -electron localization on the present results [? ? ]. Elec-

tronic wavefunctions were expanded in plane waves with a kinetic-energy

cutoff of 400 eV. Reciprocal-space summations were performed at the Γ–

point. Atomistic structures were constructed in a calculation supercell to

which periodic boundary conditions are applied. Each supercell contains

a nanoparticle structure surrounded by vacuum (empty space). The min-

imum separation between CNPs in neighboring supercells (due to periodic

boundary conditions) is ∼15 Å.

All results detailed below are for fully “relaxed” atomic structures. That

is, initial atomic geometries are evolved according to the calculated inter-

atomic forces seeking a minimum energy (instantaneous ground state) con-

figuration. This is functionally equivalent to minimizing the instantaneous
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forces, as forces are simply the set of derivatives of the total energy with

respect to each atomic degree of freedom. For the present calculations all

considered structures were relaxed without symmetry constraints until max-

imum residual atomic forces were less than 0.04 eV/Å and total energies were

converged to within 10−4 eV/atom.

3.2. Initial atomic geometries

Initial nanoparticle structures were constructed from cubic fluorite (space

group Fm3m) FCC unit cells containing 1 Ce atom at the unit cell corners

(where all eight cube corners are identical due to symmetry) and 3 Ce atoms

at the center of the unit cell faces (where each opposite pair of faces are iden-

tical due to symmetry). Eight O atoms are located at the FCC tetrahedral

interstitial sites, giving 4 Ce atoms and 8 O atoms in each unit cell (see

Figure 2a). Initial CNP structures with various sizes and shapes were con-

structed by repeating this unit cell in three dimensions (see, e.g., Figure 2b).

As we are focusing on the stability of O-terminated CNPs as a function

of surface O concentration, we take ideal, O-saturated CNPs as structural

baselines. That is, initial atomic geometries for CNPs with varying O con-

centrations are constructed as modifications of the appropriately shaped

baseline (fully O-terminated) structure. Examples of these baseline struc-

tures are shown in Figures 2c-2f. In these structures all O lattice sites are

occupied, including those that are symmetrically equivalent (e.g., O lattice

sites on opposite facets or on corners other than the origin). In contrast, sto-

ichiometric structures would have only the symmetrically distinct O lattice

sites occupied. Occupying all O lattice sites (as is shown in Figures 2c-2f)

results in super-stoichiometric structures. For example, the ideal (bulk-like)

∼1 nm {100}–terminated CNPs in Figures 2c and 2d with all O lattice
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Table 1: Calculated and experimental data used to determine µ∗
O. Experimental enthalpies

of formation are taken from reference [? ]. See text for details.

Calculation E(CeO2) E(Ce2O3) E(Ce) E(O2) ∆ E ∆ H(CeO2) ∆ H(Ce2O3)

LDA(np, U = 5 eV) -27.0182 -43.4676 -4.8469 -9.5548 0.77 -11.8465 -18.2866

GGA(np, U = 3 eV) -24.6554 -40.3456 -4.6046 -8.7796 -0.33 -11.6012 -18.4620

Experiment — — — — — -11.3010 -18.6530

sites occupied have the composition of Ce32O121—with 94 out of total 121

O atoms at the CNP surface. Straightforward mathematical rules for the

number of O and Ce lattice sites in CNPs of various shapes and arbitrary

sizes can be developed, and are reported in detail in Appendix A.

In searching for low-energy atomic configurations with varying numbers

of O atoms at CNP surfaces we have considered a wide range input O config-

urations beyond the baseline initial structures. In constructing input struc-

tures for relaxation calculations, O atoms have been placed in various con-

figurations at CNP surfaces, including at high-symmetry sites (e.g., atop Ce

atoms, or bridging two or three Ce atoms), as well as in positions selected

to mimic or perturb subsequent relaxation into structures involving pairs or

triples of O atoms. While it is not feasible to consider all possible initial

arrangements of surface O atoms, we have demonstrated the robustness of

our present results with respect to input O surface configurations by testing

whether the considered structures relaxed into local or global energy minima

using finite temperature molecular dynamics calculations on a subset of re-

laxed structures. In all cases structures resulting from MD calculations were

quantitatively similar to structures resulting from relaxation only, indicating

that the relaxed configurations are at worst deep local minima.
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3.2.1. {100}–terminated cubic CNPs

In the following we explicitly consider cubic {100}-terminated CNPs, in

addition to previously considered octahedral and cuboctahedral structures.

{100}-terminated CNPs are considered because such shapes have been ob-

served experimentally (see, e.g., Figure 3). In addition, previous experimen-

tal efforts have found that {100} facets exhibit greater catalytic activity then

other ceria surfaces, and represent the dominant active surface in a range of

nanometer scale geometries (e.g., nanoplates, nanorods, and nanowires) [?

? ? ? ? ]. This is supported by previous computational work showing that

{100} surfaces have lower formation energies of O-vacancies, and (following

the “four-step” hypothesis) are therefore expected to have greater activity

[? ? ? ]. In the present work, we consider ∼1 nm cubic CNPs that are

2 × 2 × 2 repeats of the bulk CeO2 unit cell (see Figures 2c and 2d). For

cubic CNPs, its six surfaces are terminated by {100} ceria facets. To ensure

that no interactions occur between any calculated CNP and minimize the

computation cost, the size of the supercell is set to 2.7 nm × 2.7 nm ×

2.7 nm so that neighboring CNPs are separated by at least 1.5 nm vacuum

space when periodic boundary condition is applied (see Figure 2c). The

ideal bulk-like ∼1 nm cubic CNP has the composition of Ce32O121, with 32

Ce atoms (yellow balls), 27 bulk O atoms (purple balls) and 94 surface O

atoms (blue balls).

3.2.2. {111}–terminated octahedral and cuboctahedral CNPs

For octahedral CNPs, all eight surfaces are terminated by {111} ceria

facets. The ∼1 nm octahedral CNP is obtained directly as eight intersecting

{111} bulk cuts through a 4 × 4 × 4 set of bulk CeO2 unit cells. The

eight {111} cuts then give a bulk-terminated CNP with a composition of
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Ce44O160. Of the 160 O atoms, 80 are fully-coordinated bulk O atoms

and 80 are under-coordinated surface O atoms (see Figures 2e and 2f). As

above, the supercell for ∼1 nm octahedral CNPs is constructed to have an

intraparticle seperation of at least 1.5 nm, and therefore is assigned a net

size of 3.8 nm × 3.8 nm × 3.8 nm (see Figure 2e). Cuboctahedral ∼1 nm

CNPs are modifications of octahedral CNPs and are constructed (following

reference [? ]) by deleting all 80 surface O atoms as well as an arbitrary

selection of four of the six corner Ce atoms. This gives a CNP with an

enforced stoichiometric composition of Ce40O80.

3.3. Excess energy of formation as a function of CNP size, shape and com-

position

To compare energies of CNPs with different compositions (and/or shapes,

surface configurations, etc.), we must define an energy of formation with a

common reference. Here we focus on the relative energy of CNPs with

varying numbers of surface O atoms. We therefore define an excess energy

of formation term, ∆ECNP
f (nO), as referenced to the energy of a reduced

∼1 nm CNP. Changes in the excess energy of formation therefore indicate

whether a particular CNP structure is more or less stable (has lower or

higher energy) than the reference (a reduced) CNP structure.

∆ECNP
f (nO) ≡ ECNP

tot − Eref
tot − (nO − nrefO )µO (1)

Here nO is the number of O atoms in the CNP of interest, and nrefO is

the number of O atoms in the reference CNP. µO is the chemical potential

of O (the chemical potential of O2 molecule per O atom). To facilitate

comparisons between CNPs of various sizes and shapes, we further write
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this excess energy of formation per Ce atom

∆eCNP
f (nO) ≡

∆ECNP
f

nCe
(2)

Equations 1 and 2 are direct measures of the relative energy of different

CNP configurations. The selection of the reference CNP is arbitrary, and

simply serves to set the zero of the energy scale. As a link to previous

calculations, which have primarily focused on partially reduced CNPs, we

select the reduced cubic CNP, Ce32O57, as the reference CNP structure for

the present calculations of the excess energies of formation. This structure

is constructed from the fully O-saturated baseline cubic CNP (Ce32O121,

see Figure 2d) by deleting all corner and edge O atoms, as well as 4 face O

atoms near each CNP corner on every {100} facet.

The chemical potential of O appearing in Eq. 1 characterizes the en-

ergy cost of additional O atoms, and allows the comparison of energies for

structures with varying numbers of O atoms. The energy cost of O atoms

in real systems is determined by the state of available O atoms from the

environment surrounding the CNP. For the present calculations, we take

pure O2 gas as the environmental reference state. This is a constraint on

real systems, where other atomic or molecular species are almost invariably

present, but defines a tractable scope for the present work and represents a

useful starting point for systematic consideration of CNP surface configura-

tions in open systems. Note that chemical potential is physically related to

the partial pressure, e.g. pO2 , and more negative values of µO correspond to

lower pO2 [? ]. Therefore the largest energy cost (µO = 1
2EO2 , where EO2 is

the calculated ground state energy of a single O2 molecule) for the addition

of an O atom occurs in the dilute gas limit, and this cost represents the

most negative physically-realizable value possible for µO.
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DFT calculations of metal oxide oxidation energies are known to exhibit

two separate errors: an error in the O2 intermolecular binding energy and

an error in the change in the energy upon transfer of electrons between O

2p orbitals and metal d or f orbitals [? ? ]. In addition, the spin state of O

atoms also appreciably affects DFT calculated energies of O2 molecules. By

fitting calculated oxidation energies to experimentally determined enthalpies

of formation, a net correction to the chemical potential of O that addresses

all of these issues has been calculated for a range of transition metal oxides

[? ]. Here we apply an analogous correction by referencing experimental

enthalpies of formation for CeO2 and Ce2O3 [? ] to determine a corrected

value for the chemical potential of O, µ∗O. Choosing µO ≡ µ∗O therefore

connects DFT calculations of CNP energies to experimentally-relevant ref-

erence values of the chemical potential of O and overcomes computational

challenges in directly calculating such values. In other words, correcting

DFT calculated reference energies of O by fitting experimental enthalpies

of formation for bulk cerium oxides gives a best-case representation of the

energy cost of O atoms from real O-containing environments in this study.

Following Wang et al. [? ], the appropriate value of µ∗O is found by first

calculating the energy of formation for O2 (E(O2)) with the same calcula-

tion methodology and settings as those used to calculate CNP energies. At

the same time, the energies of formation for bulk Ce (E(Ce)), bulk CeO2

(E(CeO2)) and bulk Ce2O3 (E(Ce2O3)) are calculated. The calculated en-

thalpies of formation for bulk CeO2 and Ce2O3 are then [? ]:

∆H(CeO2) = E(CeO2)− E(Ce)− E(O2) (3)

∆H(Ce2O3) =
2E(Ce2O3)− 3E(O2)

2
− 2E(Ce) (4)

A correction ∆E is applied to E(O2) so that the root mean square variation
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of the calculated enthalpies of formation for bulk CeO2 and Ce2O3 from

experimentally-measured values [? ] is minimized. Note that energies of

formation for O2, bulk Ce, bulk CeO2 and bulk Ce2O3 were calculated

using both LDA + U and GGA + U approaches ( Ueff = 5 eV for LDA

and Ueff = 3 eV for GGA). All the relevant data are summarized in Table 1.

The corrected chemical potential of O for gaseous O2, µ
∗
O, is evaluated via

µ∗O = 1
2(EO2 −∆E) as –5.16 eV for LDA and –4.23 eV for GGA.

4. Results

We now turn to the question of determining the stable structure of CNP

surfaces when the surface O concentration and configuration are allowed to

vary from that of the underlying bulk. Beginning with the initial atomic

structures described above, we have relaxed the atomic configurations of

cubic {100} CNPs with diameters of ∼1–1.5 nm and a range of surface O

concentrations as well as octahedral and cuboctahedral {111} CNPs with

diameters of ∼1 nm and a range of surface O concentrations. Using Equa-

tions 1 and 2, the excess energy of formation per Ce atom has been calculated

for each CNP structure. Figure 4 shows the results of these calculations in

the O-lean limit (that is, at the corrected chemical potential of O, µ∗O). For

all considered CNP shapes, Figure 4 shows that small CNPs can reduce

their excess energy of formation by increasing the O concentration at their

surfaces. Because the chemical potential of O only increases for increasing

partial pressures of O2—that is, the energy cost of O atoms decreases as

the environment moves from the O-lean limit towards the O-rich limit—

Figure 4 demonstrates that oxidized CNPs (CeO2+x) are stable in both

O-lean (µO ≡ µ∗O = –5.16 eV for LDA and –4.23 eV for GGA, excess ener-
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gies plotted in Figure 4) and O-rich (µO > –5.16 eV for LDA and –4.23 eV

for GGA) environments. In the latter case, O-enriched structures are even

more stable with respect to reduced CNPs, as the cost of the additional O

atoms is less. Note that both LDA and GGA results exhibit the same trend

in excess energy of formation as a function of nO/nCe for all considered

shapes. In addition, while Figure 4 only shows results for Ueff = 5 and 3 eV

(for LDA and GGA, respectively), calculations for Ueff = 1 and 3 eV (LDA)

and Ueff = 1 and 5 eV (GGA) also reveal the same trend: that increased

surface O concentration reduces CNP excess energy of formation.

Addressing the possible special case of exactly stoichiometric CNPs, the

excess energy of formation for the ∼1 nm cuboctahedral CNP with compo-

sition Ce40O80 is explicitly included in Figure 4. While the stoichiometric

cuboctahedral CNP does exhibit a local minimum in energy with respect to

O composition, numerous oxidized CNPs, including oxidized cuboctahedral

CNPs of the same shape and size, have lower excess energies of formation.

That is, even relative to exactly stoichiometric CNPs, oxidized CNPs with

enhanced surface O concentrations have lower excess energies of formation.

These results demonstrate that the thermodynamically stable configuration

that a sufficiently small CNP begins in and returns to before and after

catalyzing a redox reaction is not stoichiometric, rather the surfaces of ther-

modynamically stable CNPs that are sufficiently small are O-enriched.

Figure 5 shows the atomic structures of representative relaxed cubic,

octehedral and cuboctahedral CNPs with reduced (top left panel for each

shape) and oxidized net compositions (top right and bottom panels). Ex-

cess energies of formation for these structures are all included in Figure 4. It

is apparent that stoichiometrically “excess” O atoms in oxidized structures

appear at the CNP corners, edges and {100} facets in the form of either
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Table 2: Properties of O pairs and triples in representative oxidized CNPs.

System Bond length (Å) Bond angle (◦) Bader charge Molecule Assignment

Ce32O179

1.24 ± 0.00 — -0.18 ± 0.02 O2

1.31 ± 0.03 — -0.53 ± 0.16 O−
2

1.42 ± 0.02 — -1.07 ± 0.05 O2−
2

1.33 ± 0.02, 1.30 ± 0.01 111.96 ± 0.38 -0.39 ± 0.04 O3

1.40 ± 0.04, 1.31 ± 0.02 108.57 ± 1.55 -0.64 ± 0.10 O−
3

1.42 ± 0.03, 1.40 ± 0.02 105.36 ± 1.24 -1.11 ± 0.11 O2−
3

Ce44O152

1.25 ± 0.00 — -0.24 ± 0.03 O2

1.28 ± 0.01 — -0.39 ± 0.03 O−
2

Ce40O152

1.25 ± 0.00 — -0.19 ± 0.02 O2

1.27 ± 0.00 — -0.35 ± 0.01 O−
2

1.42 ± 0.02, 1.30 ± 0.01 110.97 ± 0.70 -0.76 ± 0.03 O−
3

O pairs or O triples. In Figure 5, Ce atoms are yellow, single (lattice) O

atoms are purple, and O atoms in pairs (triples) are indicated with warm

(cool) colors. The relaxed net oxidized CNP structures represent substantial

rearrangements of O atoms relative to the initial (input) structures, and O

pairs and triples formed spontaneously as a result of structural relaxations

minimizing the total CNP energy for all considered (oxidized) input struc-

tures. Only individual (crystalline) O lattice atoms appear in reduced CNP

structures, while O pairs and triples only appear in oxidized CNP struc-

tures. That is, while the assumption of bulk-like surface terminations is

valid for reduced ∼1–1.5 nm CNPs, thermodynamically stable ∼1–1.5 nm

CNPs in real O-containing environments are oxidized (see Figure 4) and do

not exhibit bulk-like arrangements of surface O atoms.

For every O pair or triple present on a relaxed (oxidized) CNP, the

distance between at least one O atom in each pair or triple and a Ce atom

is within the range of Ce–O bond lengths observed in bulk CeO2 or Ce2O3
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(that is, between 2.34 and 2.67 Å). This is highlighted in the lower panels

of Figure 5 which show the same view of each CNP shape as presented in

the upper right panels, but exposes the O–Ce and O–O binding networks.

In these images bonds are drawn for Ce–O distances less than 2.5 Åand for

O–O distances less than 1.5 Å.

The O–O binding configurations of O pairs and triples are consistent

with the bond lengths and angles of isolated Oq
2 and Oq

3 molecules for q =0,

–1 or –2. This is shown in Table 2, which reports calculated O–O bond

lengths, angles, and local charges (assigned per atom following the method of

Bader [? ], which provides a qualitative assignment of electrons to particular

atoms) for O pairs and triples on oxidized CNPs. Based on comparisons to

the Bader charge on lattice O atoms in bulk CeO2 (−1.18) which are formally

OII and the calculated bond lengths and angles of isolated Oq
x molecules,

we conclude that the excess O atoms present on oxidized CNPs are, in fact,

variously charged Oq
x groups chemically adsorbed at CNP corners, edges and

{100} facets.

For all studied oxidized CNP configurations, the removal of all O atoms

present after relaxation in the form of adsorbed molecular Oq
x groups leaves

net reduced CNPs. This suggests that low-energy ∼1–1.5 nm CNP config-

urations (all of which are oxidized, see Figure 4) can be considered reduced

CNPs passivated with surface adsorbed molecular Oq
x groups. This picture is

directly supported by a recent analysis by Preda et al. [? ], of the energetics

and electronic effects of the adsorption a single O2 molecule on the surface

of reduced CNPs and is consistent with previous experimental studies [? ]

reporting spectroscopic evidence for the adsorption of superoxo and peroxo

species on reduced ceria surfaces.

Since the CeIII–CeIV redox couple is the engine driving the catalytic
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properties of CNPs, the oxidation states of Ce cations in relaxed CNPs

have also been probed. As above, atomic charges are calculated via the

Bader procedure [? ]. Ce atoms in reduced CNPs exhibit a range of charge

states generally intermediate between the charge states of CeIII and CeIV

as determined from calculations of bulk Ce2O3 and CeO2. Lower Hubbard

U parameters (which reduce the U energy penalty against extended states)

decrease the net positive charge on each Ce atom, but do not change the

qualitative distribution of charges. Increased O concentration (from reduced

CeO2−x to super-oxidized CeO2+x structures) shifts the charge distribution

of Ce atoms in considered CNP structures towards CeIV, but produces

no Ce atoms with net charges significantly greater than CeIV. Table 3

summarizes calculated average Bader charges of Ce atoms in a set of cubic

CNP structures as an example, and their oxidation states can be analyzed

by comparing to the calculated average Bader charge of Ce atoms in bulk

CeO2 and Ce2O3.

We are now in a position to comment on why the formation of Oq
x surface

groups substantially reduces the excess energy of formation for sufficiently

small CNPs. As a rare earth oxide with negative enthalpy of formation (see

Table 1), we expect CeO2 to prefer O-terminated surfaces in O-containing

environments. This is supported by STM studies of the {111} CeO2 surface

[? ] and atomistic calculations [? ? ]. In fact, if this were not so, Ce metal

would be expected to be more stable relative to ceria in O environments.

While the ceria {111} surface has a stoichiometric O-terminated structure,

O-termination of CNP corners, edges and {100} facets requires a super-

saturation of O atoms. Therefore, for sufficiently small CNPs, O-termination

of CNP corners, edges and {100} facets implies that the overall CNP be

super-oxidized (CeO2+x). In turn, excess O implies either the presence of
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Table 3: Average Bader charge of Ce atoms in cubic CNPs with different O concentrations

obtained from LDA+U calculations with U = 5.

CNPs with different Average Bader charge CNP

O concentrations of Ce atoms type

Ce32O59 2.185 ± 0.067 reduced

Ce32O89 2.291 ± 0.032 oxidized

Ce32O101 2.302 ± 0.039 oxidized

Ce32O121 2.309 ± 0.038 oxidized

Ce32O147 2.314 ± 0.033 oxidized

Ce32O169 2.321 ± 0.028 oxidized

Ce32O179 2.331 ± 0.028 oxidized

bulk Ce2O3 ∼ 1.98 —

bulk CeO2 ∼ 2.35 —

Ce atoms oxidized beyond CeIV—a situation not observed in the present

study—or, that not all O atoms are doubly reduced. This last is the case

as observed here, as highlighted in Table 2. In a structure with excess O

atoms that have not relaxed to form Oq
x groups, individual O atoms that

are not doubly reduced (that is O−1
1 anions) are most likely to be under-

coordinated O atoms at the corners, edges or {100} facets of CNPs. An

under-coordinated corner/edge/facet O atom with unfilled p orbitals (that

is, not doubly reduced) is highly reactive. Interaction with other O atoms

allows reactive O−1
1 atoms to form more stable molecular O2/O−

2 /O2−
2 and

O3/O−
3 /O2−

3 groups. These then appear as adsorbed Oq
x groups on CNP

corners, edges and {100} facets.

For CNPs with bulk portions that are stoichiometric CeO2, this effect

30



(that excess O implies Ce atoms oxidized beyond CeIV or O atoms that are

not doubly reduced) would be present at all particle sizes. But as bulk ceria

prefers a partially reduced form (that is, some fraction of all Ce atoms are

CeIII at finite temperature) [? ], large enough particles (e.g., particles with

sufficient internal bulk volume) can sustain the additional O atoms necessary

to yield O-terminated surfaces while remaining net reduced (CeO2−x)—and

hence not requiring Ce atoms oxidized beyond CeIV or O atoms that are not

doubly reduced. For even larger ceria samples, sufficient O-vacancies exist

in the bulk that, via diffusion, an equilibrium concentration of surface O-

vacancies will appear at finite temperature. In this way, the present picture

is completely consistent with previous calculations and experiments showing

that large ceria particles (and bulk ceria) are partially reduced [? ].

Furthermore, by assuming a net bulk O-vacancy concentration of 5% [?

? ] and leveraging geometrical rules for the number of Ce and O atoms

present in CNPs of various shapes (see Appendix A), the net Ce/O ratio

can be estimated as a function of the size for O-terminated cubic and octa-

hedral CNPs. Figure 6 shows that the transition from larger, reduced (and

therefore bulk-terminated) CNPs to smaller, Oq
x group-terminated CNPs

occurs at critical sizes between 8 and 35 nm, depending on the CNP ge-

ometry. These critical sizes are the result of two competing effects—bulk

thermodynamic effects driving net reduction of ceria, and surface configu-

rations driving net oxidation of ceria. Decreases (or increases) in the net

O-vacancy concentration do not alter this qualitative result, but rather lead

to small increases (or decreases) in the critical size (e.g., from 25 to 15 nm

for {100}–terminated CNPs after a decrease in O-vacancy concentration to

3%).
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5. Discussion and conclusions

Ceria and ceria-based materials are widely applied as redox catalysts or

catalyst supports and have been extensively studied. The established picture

of catalysis (or catalysis support) by ceria is based on assumptions of bulk-

like ceria surface structures. While these assumptions are well-supported

for large ceria systems (e.g., semi-infinite ceria surfaces), we show here that,

below a critical size, CNPs in pure O environments do not exhibit bulk-like

surface terminations. Instead, they exhibit stable surface reconstructions

consisting of Oq
x (–2≤q≤0, x=2,3) groups chemically adsorbed at CNP cor-

ners, edges, and {100} facets. The formation of Oq
x groups reduces the

energy of small CNPs by increasing the coordination of near surface Ce

cations, while allowing for the formation of low-energy surface Oq
x groups in

a range of oxidation states.

The existence of this balance (increased cation coordination stabilized

by the formation of Oq
x groups in various oxidation states) is necessitated

by the non-stoichiometry of CNP corners, edges and (as considered here)

{100} facets. Assuming that no O vacancies are present within a CNP,

non-stoichiometric corners, edges, and/or facets imply either that underco-

ordinated Ce cations are exposed at CNP corners, edges and/or facets, or

that (in O environments) excess O anions are present on CNPs. If CNPs are

O-terminated then either not all O anions are doubly reduced, or some Ce

cations are oxidized beyond CeIV. Here we show that for experimentally-

relevant O chemical potentials, ∼1–1.5 nm CNPs have minimum energies

of formation when they are O-terminated with O anion groups that are not

doubly reduced. O that is not doubly reduced is more stable in the form

of molecular Oq
x groups, and, therefore, thermodynamically stable configu-
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rations of ∼1–1.5 nm CNPs in O environments are terminated with bound

Oq
x groups.

As bulk ceria is known to exhibit finite concentrations of lattice O vacan-

cies, there exists a critical size beyond which all near-surface Ce cations can

be fully O coordinated without requiring the presence of stoichiometrically

excess O atoms. That is, for sufficiently large CNPs, enough bulk vacancies

are present to offset the surface O atoms required to fully coordinate near-

surface Ce cations. This leads to a shape-dependent critical size (estimated

here as between 8 and 35 nm for {100}– and {111}–terminated CNPs) for

a transition from atomic-O (bulk-like) surface terminations to Oq
x surface

terminations. For this reason, large ceria systems are expected to exhibit

bulk-like O-terminations—as observed [? ]—while small nanoceria particles

are expected to exhibit a completely different class of surface terminations

characterized by the formation of surface anion groups that need not be

doubly oxidized.

It should be noted that the qualitative result that stoichiometrically ex-

cess surface O atoms form Oq
x groups at CNP surfaces is very robust with

respect to the input configuration of surface O atoms. While variations in

the arrangement of Oq
x groups themselves are possible (particularly at finite

temperature) and have not been considered in detail here, such variations

will not alter the core finding that Oq
x groups are expected be present on

sufficiently small CNPs. In addition, we note that the anion groups bound

to near-surface Ce cations need not be Oq
x groups. In fact, extending the

picture introduced above of stable, oxidized CNPs as reduced CNPs pas-

sivated with chemically adsorbed anion groups, we note that the adsorbed

surface groups themselves represent the interface between the CNP and its

environment. Therefore any environmental anion group could serve to sat-
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isfy near-surface Ce coordination requirements. In the present calculations,

we have considered only pure O environments, but CNPs are widely syn-

thesized and applied in either liquid or gas environments containing water.

In that case, surface-adsorbed –OH groups will substitute for Oq
x groups,

as we discuss in detail elsewhere [? ]. In environments containing other

species, any available anionic groups could potentially be directly bound at

the surfaces of sufficiently small CNPs.

That the intrinsic nature of CNP surfaces—for CNPs below a critical

size—is not bulk-like, but rather consists of environmentally-determined

configurations of variously reduced surface anion groups is a key insight

into catalysis by small CNPs. In CNP catalysis, the reactants and products

of any catalyzed reaction will be present as part of the environment sur-

rounding the CNP. In fact, many of the most important reactions in which

CNP catalysts are applied have Oq
x and/or –OH groups as important reac-

tants or products. As sufficiently small CNPs will intrinsically bind these

groups directly, we must consider the possibility of catalytic mechanisms at

small CNPs that do not involve the formation and/or migration of bulk O-

vacancies (that is, mechanisms that differ from the accepted picture of ceria

redox catalysis). Hence, for instance, reaction rates for catalytic oxidation

of CO or NO over small CNPs may not be limited by the thermodynamics

and kinetics of bulk and surface O-vacancies, but rather by the direct uptake

and release of variously oxidized molecular anion groups at CNP corners,

edges, and non-stiochiometric (e.g., {100}) facets.

This last point is dramatically highlighted by numerous reports in the lit-

erature of the enhanced catalytic properties of {100} facets in small CNPs

[? ? ? ? ? ? ? ? ]. The present results provide an elegant explana-

tion for these observations: in contrast to stiochiometric {111} facets, non-
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stiochiometric {100} facets on sufficiently small CNPs intrinsically adsorb

anionic reactants in various oxidation states. Therefore, redox reactions cat-

alyzed at {100} CNP facets need not wait for the thermally driven creation

of lattice O vacancies.

As a final note, the ability to tune what sufficiently small CNPs “look

like” during catalysis—that is, the ability to tune the anion surface group

“shell” by varying environmental parameters—suggests the possibility of

tailoring the catalytic mechanisms of sufficiently small CNPs for specific

reactions—e.g., stabilizing sufficiently small CNPs with –OH groups for ap-

plication in water splitting or the water–gas shift reaction. Such mechanisms

would represent direct reaction pathways that do not depend on the anni-

hilation and regeneration of O-vacancies as would be required in bulk ceria

or ceria samples exhibiting ideal, unreconstructed, stoichiometric bulk-like

surface terminations.
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Appendix A. Ce/O atomic ratios in various CNP geometries

For cubic {100}–terminated CNPs with N Ce atoms along each edge,

there are 4N3 Ce atoms and (2N−1)3 “bulk” O atoms internal to the CNP.

In the absence of additional O atoms (e.g., for a Ce–terminated CNP) the

ratio of Ce to O atoms, nCe/nO, is:

nCe

nO
=

4N3

(2N − 1)3
(A.1)
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If the CNP surface is fully O–terminated–that is, if every surface O lattice

site is occupied by one O atom–there are 4 additional O atoms at the corners,

12(2N − 1) at edges and 6(2N − 1)2 at facets. Thus, nCe/nO becomes

nCe

nO
=

4N3

(2N − 1)3 + 6(2N − 1)2 + 12(2N − 1) + 4
(A.2)

Figure A.7(a) plots nCe/nO as a function of CNP size for cubic {100}–

terminated CNPs with either Ce– or O–terminations. In both cases, CeO2

stoichiometry (that is nCe/nO ≡ 0.5) is a limiting case, and cannot be

achieved for cubic {100}–terminated CNPs of finite size. Constructing a fi-

nite, cubic {100}–terminated CNP with exact CeO2 stoichiometry therefore

requires either deleting some fraction of O atoms present in O–terminated

CNPs, or deleting Ce atoms from Ce–terminated CNPs.

For octahedral {111}–terminated with N Ce atoms along each edge,

there are N(2N2+1)/3 Ce atoms and 4N(N−1)(N+1)/3 “bulk” O atoms.

In this case “bulk” O atoms include those O atoms present as part of stoi-

chiometric {111} surfaces. Note that though {111} CNP facets are stoichio-

metric, their edges and corners are not. For octahedral {111}–terminated

CNPs with no additional O atoms at edges and corners (this is the Ce-

terminated case), the ratio of Ce to O atoms, nCe/nO, is:

nCe

nO
=

2N2 + 1

4(N2 − 1)
(A.3)

As above if every surface O lattice site is occupied by one O atom (the

O–terminated limit) there are 24 additional O atoms at the CNP corners,

24(N − 2) at edges and 4(N − 2)(N − 3) at facets. In this case the total

number of O atoms becomes

4N(N − 1)(N + 1)

3
+24(N−2)+24+4(N−2)(N−3) =

4N(N + 1)(N + 2)

3
(A.4)
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Thus, for octahedral {111}–terminated CNPs with all surface O lattice sites

occupied by O atoms (this is the O–terminated case), nCe/nO becomes

nCe

nO
=

2N2 + 1

4(N + 1)(N + 2)
(A.5)

Figure A.7(b) plots nCe/nO as a function of CNP size for octahedral {111}–

terminated CNPs with either Ce– or O–terminations. As for the {100}–

terminated CNPs discussed above, exactly stoichiometric finite-sized {111}–

terminated CNPs can only be constructed by removing O atoms or Ce atoms

from O–terminated or Ce–terminated CNPs, respectively.
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Figure 2: (a) Cubic unit cell of bulk ceria showing cubic fluorite structure. Purple balls

are bulk O atoms, yellow balls Ce atoms, and sticks highlight nearest neighbor coordina-

tions. (b) Schematic illustration of the first step in constructing various CNP structures:

the ceria bulk unit cell (highlighted with a black outline) is repeated in space to construct

an arbitrarily-sized Ce-terminated CNP. This serves as the basic bulk unit from which to

further construct initial CNP structures with different sizes, shapes, and surface configu-

rations. (c) and (d) An example initial structure constructed for ∼1 nm {100}-terminated

cubic CNPs. The supercell (c) is chosen to create vacuum separation between nanoparti-

cles when periodic boundary conditions are applied. This particular initial CNP structure

contains 32 Ce atoms shown as purple balls, 27 “bulk” O atoms shown as yellow balls, and

94 “surface” O atoms occupying every O lattice site at CNP facets, edged, and corners. (e)

and (f) An example initial structure constructed for ∼1 nm {111}-terminated octahedral

CNPs. This example initial CNP structure contains 44 Ce atoms shown as purple balls,

80 “bulk” O atoms shown as yellow balls, and 80 “surface” O atoms occupying every O

lattice site at facets, edged, and corners to fully coordinate all Ce atoms.
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Figure 3: (a) High resolution TEM image of {100}–terminated cubic CNP highlighting

(200) interplanar spacing of 0.27 nm, along with fast Fourier transform (FFT) analysis

(inset) showing single crystallinity [? ]. Reprinted with permission from reference [? ]. (b)

High resolution TEM image showing {100}–terminated cubic CNP and consistent (100)

lattice fringes spaced at 0.27 nm [? ]. Reprinted with permission from reference [? ].
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Figure 4: Calculated excess energy of formation per Ce atom (∆eCNP
f , see text for details)

for CNPs with various shapes, sizes and surface O concentrations as referenced to the

reduced CNP, Ce32O57 and at the corrected chemical potential of O, µ∗
O. LDA + U

results for U = 5 eV are connected by solid lines, while GGA + U results for U = 3

eV are connected with dashed lines. The most stable CNP structure for each series of

calculations is shown with a larger dot. These results demonstrate that sufficiently small

CNPs are strongly stabilized by the adsorption of stoichiometrically excess O atoms, even

in the O-lean limit.
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Figure 5: Atomic structures of CNPs with different shapes and compositions as calculated

with LDA+U for Ueff = 5 eV. Small yellow spheres are Ce atoms, purple spheres are

individual lattice O atoms, and blue/pink/green spheres are variously charged O pairs

and triples. The three lower panels are identical to the upper right panels for each shape,

but exposing the binding configuration of surface Oq
x groups. See text for details.
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Figure 6: Ratio of Ce to O atoms in cubic and octahedral CNPs as a function of CNP size.

Cubic CNP and octahedral CNPa structures are fully oxidized, while octahedral CNPb

structures exhibit stoichiometric {111} facets, but fully coordinated (oxidized) edges and

corners.
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Figure A.7: (a) n(Ce)/n(O) as a function of CNP size for Ce–terminated (blue) cubic

CNPs and O–terminated (red) cubic CNPs. (b) n(Ce)/n(O) as a function of CNP size

for Ce-terminated (blue) octahedral CNPs and O-terminated (red) octahedral CNPs.

43


	University of Kentucky
	UKnowledge
	8-2014

	Surface Structure of Catalytically-active Ceria Nanoparticles
	Xing Huang
	Matthew J. Beck
	Repository Citation
	Surface Structure of Catalytically-active Ceria Nanoparticles
	Notes/Citation Information
	Digital Object Identifier (DOI)


	tmp.1406676513.pdf.DF4el

