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ABSTRACT OF THESIS 

 

 

COMBINING SUSTAINABLE VALUE STREAM MAPPING AND SIMULATION 

TO ASSESS MANUFACTURING SUPPLY CHAIN PERFORMANCE 

 

 Sustainable Value Stream Mapping (Sus-VSM) builds upon traditional VSM to 
capture additional sustainability aspects of the product flow, such as environmental and 
societal aspects.  This work presents research to expand the utility of Sus-VSM to supply 
chain networks, develop a general approach towards improving supply chain 
sustainability, and examine the benefits of implementing simulation and a design of 
experiments (DOE) style analysis.  Metrics are identified to assess economic, 
environmental, and societal sustainability for supply chain networks and visual symbols 
are developed for the Supply Chain Sus-VSM (SC Sus-VSM) to allow users to easily 
identify locations where sustainability can be improved.  A discrete event simulation 
(DES) model is developed to simulate the supply chain, allowing easier creation of future 
state maps, which are used to identify locations for sustainability improvement.  A 
scoring methodology and DOE-style analysis are developed to collect more information 
from the supply chain.  Results from the case study show that the SC Sus-VSM meets the 
goals desired, and that the DES model aids the goals of the map.  It is also indicated that 
interventions in the supply chain should first focus on economic improvements, followed 
by societal and then environmental improvements to achieve the greatest supply chain 
sustainability. 
 

KEYWORDS: Sustainable Manufacturing, Supply Chain Assessment, Value Stream 
Mapping, Sus-VSM, SC Sus-VSM 
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CHAPTER I  

Introduction 

 

 In manufacturing, there is a constant need and drive to improve production 

methods through new machining technology, processes that allow quicker production or 

new methods that improve the product safety and reliability.  Periodically, however, the 

development of machines or processes for production stagnates, but the need for 

improvement still exists.  In these instances, companies must seek other methods of 

improvement, such as through lean manufacturing.  Lean manufacturing is a philosophy 

of continuous improvement that seeks to identify and eliminate a number of different 

wastes in the manufacturing system.  The goal of eliminating these wastes is to reduce 

manufacturing costs, improve the quality of the product being manufactured, and to 

shorten the production lead time, allowing quicker delivery of the final product to the 

customer. 

 

 Lean manufacturing has become widespread throughout the manufacturing 

industry, and many lean tools have been developed to aid in creating this culture.  One of 

the main tools used in identifying waste in the manufacturing system is value stream 

mapping (VSM).  VSM is used to create a map of the manufacturing process line that 

captures important details, such as process cycle times, changeover times, uptime, value-

added time, and the amount of inventory waiting at each process.  The map also captures 

the production flow as well as the information flow through the manufacturing line.  

Once a map of the current state of the manufacturing line has been created using VSM, 
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areas for potential improvement can be easily identified, such as bottleneck locations, 

poor uptimes, high cycle times or high changeover times.  A future state map can then be 

developed using the potential improvements, thus visualizing the benefits that can be 

gained (Rother and Shook, 1999).  Once improvements were identified and the benefits 

visualized, other lean tools could be used to implement the improvements. 

 

 More recently, however, there has been a drive for further improvements beyond 

just economic aspects.  The National Council for Advanced Manufacturing expands the 

US Department of Commerce definition of sustainable manufacturing (US Department of 

Commerce, 2009) to include the manufacturing of "sustainable" products and the 

sustainable manufacturing of all products (NACFAM, 2014).  Sustainable manufacturing 

seeks to improve the manufacturing process in three different areas, economic, 

environmental, and societal, with the overall goal of improving manufacturing while not 

decreasing the ability of future generations to live and do the same.  As can be seen from 

growing environmental regulations, implementation of sustainable manufacturing is an 

increasing priority. 

 

 To successfully implement sustainable manufacturing, however, it is necessary to 

develop tools to evaluate the sustainability performance of a manufacturing system.  

Creating completely new evaluation tools can be costly and time consuming; but by 

adapting tools from other areas, such as lean manufacturing, an assessment tool can be 

created more easily.  As a lean manufacturing tool, VSM only considers the economic 

aspect of sustainability; but by adapting VSM, a visual tool called sustainable value 
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stream mapping (Sus-VSM) was developed to evaluate the sustainability performance of 

manufacturing systems (Faulkner et al., 2012).  This work introduced new metrics to 

VSM, such as energy and water consumption, and work environment hazard ratings to 

assess the environmental and societal aspects of sustainability.   

 

 While VSM has long since proved its value as a lean manufacturing tool, and Sus-

VSM is establishing its place in sustainability assessment, both possess the same 

limitation.  Both traditional VSM and Sus-VSM focus on the process level of 

manufacturing, and capture the production line within a single manufacturing plant.  

While Sus-VSM is still a relatively new tool, VSM has been in use longer, and so 

attempts have been made to adapt VSM to evaluate an entire supply chain in order to aid 

in establishment of a lean culture throughout (Dolcemascolo 2006).  These attempts at 

achieving supply chain leanness have met with varying degrees of success, but they all 

lack environmental and societal considerations, and the metrics used provide an amount 

of detail that is difficult to manage at the supply chain level.   

 

 Thus, as sustainable manufacturing begins to supersede lean manufacturing, it is 

important to develop tools that can assess the sustainability performance of a supply 

chain.  By assessing the sustainability of the supply chain and having all members of the 

supply chain work together to improve sustainability, substantial benefits can be 

recognized and the overall supply chain performance can be improved as much as 

possible.  As before, creating entirely new tools requires time and other resources, while 

adapting existing tools is far easier.  Sus-VSM is already capable of capturing 
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sustainability performance at the process level, and has the potential to be adapted for the 

supply chain level, similar to VSM.  The work presented in this thesis is the result of 

efforts to meet this growing need and develop a methodology and tool for sustainability 

assessment at the supply chain level.  Additionally, this work presents a general approach 

towards improving sustainability such that aspects that provide the greatest benefit to 

sustainability are prioritized first. 

  

 Adapting Sus-VSM to the supply chain level entails some unique challenges, one 

of which is the creation of future state maps.  Sus-VSM is a pencil and paper tool, where 

future state maps are developed using estimations from those knowledgeable of the 

manufacturing process.  Due to the complex nature of supply chains, however, it is 

difficult to estimate what effects changes will have, as a change in one branch of the 

supply chain can have an effect on a seemingly unrelated branch.  Another shortcoming 

of creating future state maps by hand is the time necessary to assess numerous potential 

future states, as estimates must be made and the map created for each scenario.  

Furthermore, the collection of data at the supply chain level presents a large difficulty, as 

supply chain members are likely unwilling to share operations information due to 

confidentiality concerns.  To counteract these three challenges, the implementation of a 

simulation model to aid the process presents significant potential.  Discrete event 

simulation (DES) in particular lends itself for use in evaluating manufacturing systems.  

Finally, given the high-level view required when evaluating the supply chain, the 

information provided by the adapted Sus-VSM can be somewhat lacking in detail, so a 

method of further analyzing the results of the adapted Sus-VSM, such as a design of 
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experiments (DOE) type analysis, could potentially increase the usefulness of the tool.  

Montevechi et al. (2012) present work that combines DOE with simulation to reduce the 

amount of trial and error needed with the simulation as well as to capture interactions 

between input variables that might be disregarded otherwise.   

   

 Based on the importance of evaluating the sustainability performance of supply 

chains, this thesis presents work that attempts to answer a number of research questions 

that would help overcome the challenges faced when trying to achieve sustainability. 

 

• How can Sus-VSM be adapted to the supply chain level to identify potential 

improvements to supply chain sustainability performance? 

• What general approach towards improving sustainability produces the greatest 

benefit in supply chain sustainability performance? 

• What advantage does the use of DES grant when used in conjunction with Sus-

VSM? 

• What advantage is gained by implementing a DOE style analysis with supply 

chain Sus-VSM? 

  

 The remainder of this thesis will be presented in the following manner.  Chapter II 

will provide a general literature review of research on traditional VSM and how it has 

been applied to the supply chain level.  It will also cover efforts that have been made to 

develop metrics that capture sustainability and how they have been implemented into 

assessment tools.  Finally, it will cover how simulation models have been used in 
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conjunction with traditional VSM to provide additional benefits.  Chapter III will entail a 

more detailed review of Sus-VSM, as this thesis largely builds upon standard Sus-VSM 

(Faulkner and Badurdeen, 2014).  It will discuss what metrics have been added to Sus-

VSM and how they are visualized for the value stream maps.  It also details what 

methods have been used to verify and validate Sus-VSM and what improvements to the 

methodology been developed. Chapter IV presents the proposed methodology and 

metrics for building a supply chain Sus-VSM (SC Sus-VSM) as well as an example of 

SC Sus-VSM.  The details of the simulation model developed to simulate the supply 

chain and create the SC Sus-VSM are also presented. Chapter V details the case study 

performed using the simulation and the different scenarios considered.  This chapter also 

details the sustainability index that was developed to measure the sustainability 

performance of the supply chain.  The DOE style analysis implemented to capture the 

sensitivity of the sustainability index to different interventions is also presented.  Chapter 

VI presents the results of all these case study efforts. Finally, conclusions and 

recommendations for future research will be presented in Chapter VII. 
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CHAPTER II  

Literature Review 

 

 By reviewing literature and previous works, it is possible to determine the 

strengths and weaknesses of various mapping and simulation methods.  Studying where 

and how these methods have succeeded and fallen short, efforts can be made to build 

upon successes of the past and avoid the shortcomings of previous works.  This literature 

review examines how VSM has been applied and expanded, how efforts have been made 

to assess sustainability for various manufacturing systems, how simulation has been 

integrated with VSM and how VSM has been applied at the supply chain level, and 

finally it examines different types of simulation and how they are used at the supply 

chain level. 

 

2.1 Value Stream Mapping and Expansion  

 VSM is a tool developed within the Toyota Production System by Rother and 

Shook (1999) that maps the "door-to-door" production flow inside a plant, from delivery 

of necessary parts and materials for production to final shipment to the customer.  VSM 

is first used to identify sources of waste in the value stream and then to develop a future 

state map of improvements that are then implemented, after which the process is repeated 

for continuous improvement.  Singh et al. (2011) provide a review of VSM, which has 

been applied extensively within manufacturing industries.  The primary shortcoming of 

traditional VSM, however, is the lack of metrics to assess environmental and societal 

aspects of sustainability performance. 
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 In efforts to build upon and improve traditional VSM and other lean techniques to 

consider more than economic aspects, the EPA in the US developed two toolkits: a lean 

and environmental toolkit (EPA 2007) and a lean and energy toolkit (EPA 2007).  The 

first EPA toolkit seeks to reduce environmental waste, which is defined to include 

materials and resources in excess of customer needs, pollutants released into the 

environment, and any hazardous materials used in production.  After defining metrics to 

capture these wastes, the toolkit proposes to record one or two of these metrics in a 

traditional VSM and to make use of EHS (Environmental, Health, and Safety) stamps to 

target lean improvements to the most beneficial areas.  The second EPA toolkit also 

builds upon traditional VSM, but instead seeks to monitor energy consumption for each 

process in the manufacturing system.  For each process, data is collected and the energy 

consumption is visualized using an energy dashboard. The energy dashboards can be 

used to evaluate the energy efficiency of the processes, allowing improvements to be 

targeted to necessary areas. However, while the energy dashboard provides useful 

information, it occupies a large area on the VSM, resulting in a cluttered map that is 

difficult to read.  Finally, neither EPA toolkit addresses societal aspects of sustainability 

in any form, nor is water usage considered in either toolkit. 

 

 Torres and Gatti (2009) developed a tool called environmental VSM (E-VSM) to 

monitor water usage using process data which is analyzed and divided into numerous 

categories. Those categories include: activated water, used water, water added to the 

product, latent loss, real loss, latent/real loss, and intrinsic functional loss.  While this 

8 
 



level of detail provides a large amount of information that can better target areas for 

improvement, the expenditure of time and resources in collecting the data hinders the 

quickness with which VSM can be applied.  Also, visualizing this level of detail in a 

VSM requires visual icons that are not fully compatible with standard VSM, and 

introduces a substantial amount of confusion. Work by Simons and Mason (2002) 

resulted in a tool called Sustainable Value Stream Mapping (SVSM), which captures 

GHG and CO2 emissions to evaluate and enhance sustainability.  While directly capturing 

economic and environmental metrics, they do not capture societal metrics; instead they 

assume that societal aspects will improve when economic and environmental 

improvements are made.  Building upon this work and previous work by Norton (2007) 

into sustainability metrics, a different tool called sustainable value chain mapping 

(SVCM) was developed by Fearne and Norton (2009) to combine sustainability and 

VSM.  A case study of the food industry in the UK was used to validate the SVCM 

methodology.  SVCM adds metrics for water and energy usage, but due to difficulties in 

capturing these metrics for each activity in the case study, they were estimated using the 

economic allocation method from life cycle assessment by Guinee (2002).  Societal 

improvements were assumed similar to Simons and Mason (2002). 

 

 Work by Braglia et al. (2006) sought to expand the use of VSM to more complex 

production systems with complex bills of material (BOM) using improved value stream 

mapping (IVSM). The IVSM procedure selects a product family, identifies machine 

sharing, identifies the main value stream, maps the critical path, identifies and analyzes 

wastes, maps the future state for critical/sub-critical path, identifies the new critical path 
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and iterates the procedure.  Also addressing the challenge of complex production 

systems, Irani and Zhou (2003) present value network mapping (VNM) to visualize and 

analyze interacting value streams within jobshops, where high variety and complex 

product flow mandate that VSM be altered.  Instead of identifying product families, Keil 

et al. (2011) first identify essential products and then build flow families. They define a 

flow family as a chain of consecutive single process steps which are similar within 

different product process of records.  By using flow families, entirely different products 

can be grouped based on their process steps. 

 

 Faulkner and Badurdeen (2012) present a methodology for capturing and 

visualizing sustainability at the manufacturing line level called Sustainable Value Stream 

Mapping (Sus-VSM).  Sus-VSM retains the functionality of traditional VSM, but adds 

metrics that capture environmental and societal aspects of sustainability. Additional work 

by Faulkner and Badurdeen (2014) details further refinement of Sus-VSM, and also 

provides a thorough review of other studies to expand VSM to include sustainability and 

discusses their shortcomings.  Subsequent work by Brown et al. (2014) explores the 

application of Sus-VSM to various manufacturing system configurations and how Sus-

VSM can be adapted to deal with challenges that arise in these configurations.  The work 

in these papers is discussed in greater detail in Chapter III. 

 

2.2 Sustainability Assessment  

 Barbosa-Póvoa (2009) identifies four key challenges that face sustainable supply 

chains, with determination of metrics to assess supply chain sustainability performance 
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being the most important.  Metrics need to adequately capture environmental impacts, 

consequences to the social well-being of the population caused by the supply chain, and 

have data easily accessible.  Other identified challenges include defining or redesigning 

supply chains to facilitate recycling and remanufacture of returned products, accounting 

for uncertainty within the supply chain, and how to balance the three aspects of 

sustainability. 

 

 Lainez et al. (2008) present a Life Cycle Assessment (LCA) based approach to 

evaluating environmental issues within a supply chain.  LCA involves an approach that 

captures all stages in the life cycle and places environmental impacts into a consistent 

framework, regardless of when or where these impacts occur.  A major drawback of LCA 

is the necessity of compiling a life cycle inventory (LCI) that contains data collected from 

every echelon of the supply chain.  Compiling data for the LCI would require prohibitive 

amounts of time and resources, making an LCA-based approach unsuited for quickly 

assessing supply chain sustainability performance. Further, the proposed approach fails to 

consider environmental aspects such as water usage as well as societal metrics in any 

form. 

 

 Potential metrics for assessing sustainability within a supply chain can be 

determined by examining methods of product life-cycle assessment.  Working together 

with the National Institute of Standards and Technology (NIST), Shuaib et al. (2014) 

present a methodology called the Product Sustainability Index (ProdSI) to assess a 

product's sustainability performance throughout all four stages of the product life-cycle.  
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This work builds upon the Product Sustainability Index (PSI) framework developed by 

Jawahir et al. (2006) which considers the total product life cycle and the triple bottom 

line (TBL). Although ProdSI and PSI both stand for Product Sustainability Index, 

different acronyms are used to differentiate between the two methods. Zhang et al. (2012) 

present an application of PSI, but for ProdSI, Shuaib et al. (2014) present a more 

systematic approach towards identifying a comprehensive list of economic, 

environmental, and societal metrics divided into clusters and sub-indices for assessing 

product sustainability. A numerical example of an automotive body-in-white (BIW) 

component was used to demonstrate the application of ProdSI.  Metric measurements 

were first normalized, and then weighted and aggregated to determine the ProdSI score.  

This ProdSI score can then be used to compare the product sustainability of different 

scenarios.  However, the normalization and weighting process is dependent on expert 

opinions, introducing subjectivity to the methodology, affecting the accuracy and 

sensitivity of the ProdSI assessment.  In related work, Feng et al. (2010) present an 

infrastructure to assess the sustainability of a product throughout the product life-cycle.  

The infrastructure includes a repository of sustainability metrics, methods and guidelines 

for the measurement process, and performance analysis and evaluation.  The authors also 

provide an overview of the strengths and weaknesses of various metric repositories, thus 

identifying areas requiring further metrics to properly assess sustainability.  

  

 Research by Wang et al. (2011) focuses on capturing societal aspects of 

sustainability and presents an interesting approach. Basic societal needs, such as housing, 

education, healthcare, and other basic needs are divided into units, such as a 'unit' of 
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healthcare.  The number of work hours to obtain each unit is then determined based on 

the geographic location being considered and the average wage in that location. By 

examining the number of work hours to produce a product, the number of units that can 

be purchased per product can be determined.  For example in Germany, purchase of a 

unit of housing may require 20,000 work hours at an average wage of 10€/hour.  If 7 

hours of work are required to make an ingredient for detergent, production of that 

detergent ingredient contributes to 0.00035 units of housing in Germany.  A case study 

considering traditional and modern manufacture of detergent was simulated to 

demonstrate the methodology.  One shortcoming of this work, however, is that the 

societal metrics consider only the employee, and ignore other potential stakeholders.  

 

2.3 VSM for Supply Chains  

 A number of studies investigate how to apply VSM at the supply chain level 

instead of the process level.  Dolcemascolo (2006) deals with the practical application of 

VSM to the supply chain or extended value stream, but only in regard to economical 

considerations.  The method, Extended VSM visualizes metrics and is performed 

similarly to standard VSM, however, standard VSM must be performed at each plant to 

collect the necessary data to create the extended VSM.  This means that for a supply 

chain with an established lean culture where traditional VSM has already been 

performed, extended VSM would be a useful extension.  However, for a supply chain that 

is just starting to attempt applying lean methods, extended VSM would be of very limited 

use in supply chain assessment.  Furthermore, this extended VSM focuses only on the 
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economic aspect of sustainability, and lacks any metrics to capture the environmental and 

societal aspects.   

 

 A different attempt at applying VSM at the supply chain level was made by Seth 

et al. (2008).  This work examines the cottonseed oil industry in India, and attempts to 

identify different types of waste that should be eliminated.  To collect the data necessary 

to build the VSM, a questionnaire was prepared and given to oil mill owners, traders and 

brokers, as well as machinery manufactures.  The goal of the questionnaire was to collect 

information regarding details such as plant processes, processing costs, machines, and the 

markets.  In order to map the supply chain, a modified version of VSM was used as 

shown in Figure 2.1.  This map loses significant details, such as cycle times for the 

processes inside the plants, but it does still capture inventory and transport lead times. 

 

 

Figure 2.1: Example of VSM application at the Supply Chain level (Seth et al., 2008) 
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 This modified VSM coupled with the questionnaire response allows many 

different waste types to be identified, including unnecessary transport and inappropriate 

processing caused by the use of outdated machinery.  While this methodology is capable 

of identifying most wastes within a supply chain relatively quickly, it fails to capture the 

information that is shown in a standard VSM, such as value-added time within the plants, 

and the total lead time for each plant.  Similar to Dolcemascolo (2006), this methodology 

captures only economic aspects of sustainability.  While a basic picture of the supply 

chain can be developed to identify major types of waste, this methodology is less useful 

in identifying more subtle forms of waste.  Work by Arbulu and Tommelein (2002) 

presents a VSM case study of a construction supply chain for pipe supports that captures 

each process in the supply chain and aids in waste identification.  Visuals identify which 

processes are performed by the engineering firm and which are performed by a supplier, 

as well as the value added time for each process in man-hours.  The VSM captures the 

total time spent between activities in the supply chain, allowing non value added time to 

be computed, but does not capture uptimes, changeover times, or any environmental or 

societal metrics.  The case study considers a linear supply chain, instead of a branching 

system, further limiting the usefulness of the application. 

  

 Folinas et al. (2013) present work to develop an adaptation of VSM to assess 

environmental aspects of a food supply chain.  This methodology does not propose a map 

that portrays the entire supply chain, but instead selects certain locations in the supply 

chain where VSM should be performed.  This selection process is based on processes that 

require significant amounts of input, amounts of output, processes that consistently cause 
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errors and delays, as well as processes that directly affect the customer or have high 

visibility.  The methodology also suggests metrics that should be integrated into the VSM 

to capture the environmental impact, such as pounds of material and hazardous materials 

used, gallons of water used and consumed, watts and BTUs of energy used, solid waste 

and hazardous waste generated, pounds of air pollution emitted, and gallons of 

wastewater treated.  However, the research does not suggest how these additional metrics 

could be visualized in the VSM.  Additionally, the research requires that VSM be applied 

at multiple locations, and does not propose a method of visually capturing the supply 

chain as a whole.  Further, while the proposed methodology would capture the 

environmental aspect of the supply chain, the societal aspect of sustainability is not 

considered.  Finally, while the research proposes a VSM methodology that can assess the 

environmental aspect of a supply chain, it does not present a case study to verify that the 

proposed method will function as desired at the supply chain level. 

 

2.4 DES and System Dynamics 

 The use of simulation to aid with the assessment and operation of manufacturing 

systems is by no means a new topic, with literature reviews on the topic containing vast 

amounts of material (Jahangirian et al. 2010). Two of the most popular types of modeling 

techniques are Discrete Event Simulation (DES) and System Dynamics (SD).  As the 

name implies, DES models the operation being considered as a sequence of individual 

events in time, and several events can occur simultaneously (Seleim et al. 2012). DES 

also models the system as a network consisting of queues and flows and entities such as 

objects and people individually (Tako and Robinson 2012).  SD, on the other hand, 
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models the system using stocks and flows while the state of the system is changing in a 

continuous manner (Forrester 1961).  Also, entities are not modeled individually, but as a 

continuous quantity within a stock.  Further, DES tends to be more stochastic in nature 

with variable randomness being introduced through statistical distributions, while SD 

tends to be more deterministic in nature, with variables being represented by average 

values (Tako and Robinson 2012).  Overall, both types of modeling are extremely useful, 

but one or the other will have an advantage, based on the situation.  Given how VSM is 

used to map the production flow of a manufacturing system, and how processes are 

shown as activities with queues of individual entities waiting to go through the process, 

the DES method of modeling a system as a network of queues and activities lends itself 

particularly well to use with VSM.  For example, entities do not arrive at processes in a 

continuous way, so there is a need to track individual entities and events in time, making 

DES better suited for modeling than SD.  DES also allows randomness of the variables 

that represent VSM metrics, providing a more realistic model. 

 

 Research by Herrmann et al. (2000) seeks to measure the adaptability of a DES 

model in manufacturing applications. An adaptable model should be capable of 

addressing any changes in requirements or answers to be provided, internal and external 

changes in the production environment, and updated data provided by related information 

systems.  Herrmann et al. (2000) propose to measure the adaptability of a new DES 

model using the ratio of the effort needed to upgrade from an existing model to the effort 

required to build the new model completely.  Persson (2002) investigates the impact of 

different levels of detail in simulation models using three different models of a single 
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manufacturing system.  The models showed significant discrepancies in line utilization 

and blockage times, and inventory levels, indicating the importance of model detail, 

which also affects the validation process.  Models should be validated using data for each 

output in the simulation, requiring expenditure of resources to collect data, meaning that 

selecting the appropriate level of model detail can result in less time required for data 

collection.  Models with too little detail are inaccurate while models with too much detail 

are time consuming to run, so a middle ground for the level of detail would provide the 

best results.  Negahban and Smith (2014) provide a comprehensive review of almost 300 

DES publications from 2002 to 2013 with a focus on manufacturing applications. 

 

 Zhang et al. (2013) present a conceptual SD model to facilitate decision-making 

for sustainable manufacturing systems by highlighting relationships between factors and 

by simulating current functioning of the system and potential improvements to the 

system.  The SD model would also provide a systems thinking approach to holistically 

solve problems in sustainable manufacturing.  While the conceptual SD model addresses 

the three aspects of sustainability, an actual model must be built and validated to ensure 

that all aspects are captured correctly.  While more detailed reviews of SD are available, 

they are not included, since DES is better suited for VSM simulation. 

 

2.5 Application of Simulation to Study VSM 

    When exploring the possibility of combining lean tools with simulation, Solding 

and Gullander (2009), recognize that simulation is partially counterintuitive to lean tools, 

as lean tools are supposed to be simple in their use, while simulation is more complex in 
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its application.  However, upon reviewing the arguments presented by Standridge and 

Marvel (2006) in favor of combining simulation and lean tools, Solding and Gullander 

(2009) developed Simulation Based Value Stream Mapping (SBVSM) in an attempt to 

capture the potential benefits of a simulation/VSM pairing.  SBVSM combines DES and 

VSM into a single tool, creating a dynamic VSM.  In an effort to manage map 

complexity, SBVSM uses traditional VSM icons and visualization wherever possible.  

However, improvements were made when feasible, so SBVSM is able to capture multiple 

products simultaneously instead of only one product at a time.  The results of these 

efforts can be seen in the SBVSM example shown in Figure 2.2.   

 

Figure 2.2: SBVSM representation with three products shown (Solding and Gullander, 
2009) 

  

 Some of the changes made in visualizing SBVSM will make reading the map 

more confusing, given that the majority of the visuals are the same as standard VSM; 

however, this is a relatively minor obstacle.  Also, this combination of DES and VSM 
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allows the process line to be examined over a period of time instead of only in snapshots.  

For example, Solding and Gullander (2009) present charts that capture inventory 

fluctuation and resource utilization with respect to time, providing very useful 

information for assessing the manufacturing system.  The setup used for the SBVSM 

process allows those familiar with lean concepts to quickly understand the process, even 

if they are not familiar with DES.  While standard VSM is relatively easy to understand 

and apply, the development of a DES model is more complex.  Thus, it requires someone 

who is knowledgeable in both VSM and DES to properly implement SBVSM.  

Furthermore, SBVSM was not developed for supply chains, and lacks environmental and 

societal indicators to assess sustainability.  

 

Paju et al. (2010) present an application of a VSM-based assessment called Sustainable 

Manufacturing Mapping (SMM) that considers selected sustainability indicators.  The 

methodology presented is also based on LCA and DES.  Table 2.1 summarizes how 

VSM, LCA, and DES provide complimenting features for assessing a manufacturing 

system.  The goal and scope definition in SMM is borrowed from LCA, the symbolic 

visualization is taken from VSM, and DES allows a dynamic assessment not based on 

average data. While SMM considers environmental indicators, no societal indicators are 

implemented, and while data is available for the environmental indicators, a lack of 

consistency in nomenclature and naming conventions is present.  A lack of case studies 

indicates that further validation of the methodology is required. 
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Table 2.1: Characteristics of VSM, LCA, and DES used in SMM, preferred features 

italicized (Paju et al., 2010) 

Feature VSM LCA DES 

Dynamic Assessment 
Deterministic, 

standard or 
average parameter 

Deterministic, 
standard or 

average parameter 

Dynamic event 
relationships, 

probabilistic parameters  
Publicly Available 

Data   Public LCA data 
available   

Visualization 2D process map Limited process 
view 

3D visualization and 
animation 

Simplified User-friendly tool Experts tool Experts tool 

Standardized 
Industrial de facto 
standard for lean 
manufacturing 

Standardized ISO 
14040, 14044 Partially 

Framework for 
environmental impact 

analysis 

Methodology has 
been presented The main tool 

Mostly research 
initiatives, also 

commercial solution 
entering the market 

 

 Research by Lian and Landeghem (2002) also seeks to improve on traditional 

VSM by introducing DES, and suggests four phases that can be used in the integration 

process.  The first phase consists of only using standard VSM to create the current and 

future state maps for a single product.  The DES model is introduced in the second phase 

where it is used to simulate the current and future state maps from the first phase.  

Comparing the DES model with the current state map validates the model and instills 

trust in the users.  For the third phase, Lian and Landghem (2002) suggest using the DES 

model to examine the use of VSM for multiple products, and also to investigate different 

conditions and operating parameters.  In the fourth and final phase, it is suggested that the 

DES model can be used for future state documentation and also as a training tool for 

operators.  A case study performed by Jarkko et al. (2013) on a small-sized enterprise in 

the construction field explores a similar framework for DES and VSM.  The DES model 
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is built and verified using the current state VSM, and then it is used to explore and 

simulate what will occur in future state maps.  The case study focuses on a small-sized 

enterprise because such companies often cannot economically afford to apply potential 

improvements through a trial and error method and need a more concrete confirmation 

the benefits of the proposed improvement.  However, utilizing DES requires the 

employment of personnel specialized in the use of simulation software, which could be 

prohibitively expensive for a small enterprise.  Abdulmalek and Rajgopal (2007) present 

another case study combining VSM and DES to highlight the ability to contrast before 

and after scenarios in detail to illustrate potential benefits to management.  

 

2.6 Simulation Modeling for Supply Chains  

 Fowler and Rose (2004) present research into 'grand challenges' faced when 

applying simulation models to supply chains.  A grand challenge is defined as a problem 

that is difficult with a solution that involves at least one order-of-magnitude improvement 

in capability along at least one dimension, is not provably unsolvable, and has a solution 

with significant economical or social impact.  The first grand challenge involves the 

shortening of problem solving cycles through model design, development, and 

deployment.  The second grand challenge concerns the development of real-time, 

simulation-based, problem-solving capability to assess the supply chain if sudden 

changes occur.  The third grand challenge addresses the interoperability of simulation 

models within a specific application domain.  A fourth challenge presented as a 'big' 

challenge is greater acceptance of simulation and modeling within industry. 
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 While creating future state VSM at the process level is not difficult, the 

interactions between facilities at the supply chain level add complexity.  According to an 

extensive review by Terzi and Cavalieri (2004), the use of simulation for supply chains 

allows what-if scenarios to be analyzed, facilitates comparison of alternatives without 

interrupting operations, and speeds the process through time compression.  They also 

note, however, that the communication needed to collect the data for the simulation can 

be greatly hindered by geographical distance and if independent enterprises are involved 

in a single supply chain.  Sarimveis et al. (2008) also provide a comprehensive review of 

various dynamic models for control of supply chains, citing almost 200 works from 

various areas. 

 

 Research by Higuchi and Troutt (2004) illustrates how an SD model could have 

prevented the manufacturer of the Tamagotchi digital pet suffering from the bullwhip 

effect.  The initial rate of production was unable to meet demands for the toy, so 

production facilities were expanded.  After expanding, however, demand declined 

sharply, leaving the manufacturer with large amounts of unsold inventory.  The SD 

model illustrated that the bullwhip effect was likely to occur, and that further analysis 

should have been performed, given the short life-cycle of the product.  Fleisch and 

Tellcamp (2005) use simulation to illustrate the effect of inventory inaccuracies caused 

by poor process quality, theft, and items becoming unsalable.  Even if the sources of 

inventory inaccuracy remain unchanged, reducing these inaccuracies using the simulation 

would result in reduced supply chain costs and the level of out-of-stock.  If the sources of 

inventory inaccuracies are also reduced, the benefits are even greater.  Fleisch's and 
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Tellcamp's (2005) research is limited to a supply chain with one-product, however, and 

uses specific parameter estimates, so further case studies are advised. 

 

 Wan et al. (2003) present a simulation based optimization framework that is used 

to investigate and analyze complex supply chains.  The framework uses deterministic 

math models that ignore randomness in the supply chain to provide efficient resource 

allocation across time and different products.  These results are used as guidelines for the 

simulation model, accounting for uncertainties and providing performance measure 

information for the stochastic optimization model, which seeks to optimize the 

performance of the entire supply chain.  The framework is general enough to be applied 

to varying supply chains with relative ease, but steps involved result in increased 

complexity.  

 

 Since supply chains are neither fully discrete nor continuous, Lee et al. (2002) 

present a combined discrete event and continuous simulation architecture to evaluate 

supply chains more accurately.  For exceedingly complex supply chains, DES requires 

large quantities of input data and application requires increasing amounts of time.  By 

introducing continuous components into the model, some supply chain features are 

simpler to express and model, reducing the amount of input data and time needed, 

without reducing the accuracy of the supply chain model.  Supply chain elements are 

classified as discrete or continuous based on their attributes, with the discrete-continuous 

combined model accounting for interactions between the elements.  A case study 
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comparing DES with the combined model resulted in higher inventory levels in the DES 

model, indicating that the DES model overestimated inventory levels. 

 

 There exists a large amount of research literature on the use of simulation for 

assessing and improving supply chains, as it has been a topic of interest for some time 

now.  Table 2.2 provides a partial summary of the literature reviewed in this section. 

 

 It should be noted that while many aspects such as applying VSM to supply 

chains, combining VSM and simulation, and developing methods to assess sustainability 

in different manufacturing systems have been studied previously, there has not been an 

effort to combine these tools.  Sus-VSM captures and visualizes the economic, 

environmental, and societal aspects of sustainability, but is not adapted for supply chain 

application and lacks a dynamic model.  Dynamic models that capture environmental 

aspects have been developed by combining VSM and DES, but societal metrics are 

difficult to capture and only the process level can be simulated.  Supply chains have been 

modeled using DES, but not all sustainability aspects are considered and visualization via 

mapping is lacking.  A tool that captures and visualizes supply chain sustainability 

performance using a DES model would meet many of these shortcomings. 
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Table 2.2: Partial Summary of Literature 

Topic Author(s) Title Year 
SC 

Assessment Barbosa-Póvoa Sustainable Supply Chains: Key Challenges 2009 

Sustainability 
Assessment Feng et al. Development Overview of Sustainable 

Manufacturing Metrics 2010 

VSM in SC 

Lainez et al. Mapping Environmental Issues within Supply 
Chains: a LCA based Approach  2008 

Arbulu and 
Tommelein 

Value Stream Analysis of Construction 
Supply Chains: Case Study on Pipe Supports 

Used in Power Plants 
2002 

DES and SD Seleim et al. Simulation Methods for Changeable 
Manufacturing 2012 

SD Zhang et al. A Conceptual Model for Assisting Sustainable 
Manufacturing Through System Dynamics 2013 

DES 

Herrmann et al. Adaptable Simulation Models for 
Manufacturing 2000 

Persson The Impact of Different Levels of Detail in 
Manufacturing Systems Simulation Models 2002 

Negahban and 
Smith 

Simulation for Manufacturing System Design 
and Operation: Literature Review and 

Analysis 
2014 

DES in SC Lee et al. Supply Chain Simulation with discrete-
continuous Combined Modeling 2002 

SD in SC Higuchi and 
Troutt 

Dynamic Simulation of the Supply Chain for a 
Short Life Cycle Product- Lessons from the 

Tamagotchi Case 
2004 

Simulation in 
SC 

Fleisch and 
Tellcamp 

Inventory Inaccuracy and Supply Chain 
Performance: a Simulation Study of a Retail 

Supply Chain 
2005 

Wan et al. 
A Simulation Based Optimization Framework 
to Analyze and Investigate Complex Supply 

Chains 
2003 

Fowler and Rose Grand Challenges in Modeling and Simulation 
of Complex Manufacturing Systems 2004 
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CHAPTER III  

Sustainable Value Stream Mapping (Sus-VSM) Review 

 

 SC Sus-VSM builds on traditional VSM and particularly Sus-VSM, so a more 

detailed examination will highlight the benefits and shortcomings of Sus-VSM that SC 

Sus-VSM builds upon and seeks to improve.  This chapter provides a review of the Sus-

VSM methodology as well as its application to different manufacturing system 

configurations based on Faulkner et al. (2012), Faulkner and Badurdeen (2014), and 

Brown et al. (2014). 

 

3.1 Sus-VSM Methodology 

 The Sus-VSM methodology extends traditional VSM by incorporating three 

metrics for environmental sustainability evaluation and two metrics for evaluating 

societal sustainability at the production line level (Faulkner and Badurdeen, 2014).  The 

addition of these metrics allows all three aspects of sustainability to be evaluated for the 

production line, and for potential improvements to sustainability performance to be 

identified. 

 

 One added metric to aid in environmental assessment is process water usage.  It 

was proposed that three aspects of process water usage be captured for each process: 

water needed, water used, and water lost.  Water lost is defined as water that is not used 

for another process or recycled within the plant; therefore, water that is treated and exits 

the plant after the process, water that is spilled and water lost to evaporation are all 
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included in the amount of water lost.  Recycling as much water as possible within the 

plant is the easiest way to reduce the amount of water lost, as spillage and evaporation are 

harder to address.  Faulkner et al. (2012) clarify that water added to the product itself is 

not captured by this metric, but is instead captured by the raw material usage metric, and 

although process water usage is defined for water, it can easily be used for oil or other 

coolants as well. 

 

 Another environmental metric introduced by Faulkner et al. (2012) is raw material 

usage which accounts for a large part of manufacturing costs and directly affects 

processing time, making it crucial to optimize the amount of material used.  This metric 

captures both the original and final material masses for the process line as well as the 

amount of raw material added or subtracted at each process in the line.  With only the 

original and final masses, it would be difficult to determine if material is being wasted, as 

one process could be adding material while another may be removing an equal amount, 

resulting in equal original and final masses for the production line.   

 

 The third environmental metric added is energy consumption, defined as the 

energy consumed by a process, not energy lost as heat or through machine inefficiencies.  

Faulkner et al. (2012) note that energy consumed by lights and environmental controls 

are not included in energy consumption, as they are independent of the process and the 

number of products made.  The energy consumed by transporting the product between 

processes and any special heating or cooling storage chambers for the product can be 
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determined using the energy density of the fuel used and converted to a common energy 

unit to visualize in the Sus-VSM. 

 Faulkner et al. (2012), also added metrics to assess societal sustainability of the 

process line in the Sus-VSM.  These metrics focus on employee health and safety and 

include a physical work metric and work environment metrics.  The physical work metric 

uses the Physical Load Index (PLI) introduced by Hollman et al. (1999) which has a 

score from 0-56 determined by a questionnaire which assesses factors such as different 

body positions, including arms, legs, and torso, and various loads lifted at those different 

body positions.  The frequency with which various combinations of load and body 

position occur is also captured and used to develop the PLI score.  This PLI score is 

captured for each process in the manufacturing line as well as between processes so that 

areas with a high score can be identified and evaluated for improvement efforts. 

 

 The work environment metrics focus on various hazards in the environment, such 

as Hazardous Chemicals/Materials Used (H), Electrical Systems (E), Pressurized Systems 

(P), and High-Speed Components (S).  These are all given a risk rating from 1-5, 

determined by the likelihood of occurrence and magnitude of impact, as shown in Table 

3.1.  The ratings are captured within a circular icon for each process in the manufacturing 

line, so that potential risks can be identified and measures taken to protect employees. 
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Table 3.1: Risk Rating for Work Environment Metrics (Faulkner et al., 2012) 

Potential 
Operator 

Risk 
Description 

-- Potential risk does not exist (DNE). 
1 Risk is present but has low impact and probability of occurring. 

2 Risk is present but has low impact and high probability or high impact and low 
probability of occurring. 

3 Risk is present but has medium impact and medium probability of occurring. 

4 Risk is present but has either medium impact and high probability of occurring or 
high impact and medium probability of occurring. 

5 Risk is present but has high impact and high probability of occurring. 
 

 Another work environment metric that is captured is the noise levels at each 

process.  Noise levels exceeding 80dBA pose a risk for operators, but lower noise levels 

for extended periods of time can also pose a hazard.  To monitor these risks, the noise 

dose is determined using the ratio of time spent at a given noise level to the maximum 

permissible time at that noise level.  Summing the partial doses allows the total daily dose 

to be determined.  Using the noise dose, a time weighted average is used to determine the 

equivalent noise exposure for employees over a full 8-hour shift.  This noise exposure is 

measured and recorded for each process in the manufacturing line, allowing noise 

cancellation or reduction measures to be put in place for processes that result in a high 

noise exposure for employees. 

 

 Overall, the addition of environmental and societal metrics to traditional VSM 

created a tool with much greater functionality.  SC Sus-VSM builds upon Sus-VSM and 

uses the environmental metrics and visual icons with minor modifications, as discussed in 

Chapter IV.  Sus-VSM retains all the capabilities of traditional VSM, but allows all 
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aspects of sustainability to be visualized and evaluated, without reducing the legibility of 

the map.   

 

3.2 Application Case Studies   

 A number of case studies with different manufacturing system configurations to 

further validate and assess the limitations of Sus-VSM have also been investigated 

(Falukner et al. 2012; Faulkner and Badurdeen, 2014; Brown et al. 2014).  Collectively, 

three different manufacturing case studies are presented: high-volume with low-variety, 

low-volume with high-variety, and medium-volume with low-variety.  Through cross-

examination, these case studies provide insights into how Sus-VSM can be applied to 

different manufacturing configurations.  

 

 The first case study by Faulkner et al. (2012) considered a satellite dish 

manufacturer that operates with a high-volume and low-variety scenario. Collecting the 

data necessary to build the Sus-VSM proved difficult for some metrics, as not all metrics 

could be directly observed.  For example, the authors detail how the energy usage per 

unit for an automated process where batches of the product travel along a conveyor belt 

was calculated using the rate of energy consumption, the length and speed of the 

conveyor belt, and the batch size.  Thus, despite a lack of observable data for some 

metrics, the authors were able to adapt Sus-VSM to the situation by observing other 

parameters and applying the appropriate equations to capture the data necessary to 

complete the Sus-VSM, as shown in Figure 3.1. 
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Figure 3.1: Example standard Sus-VSM for a Manufacturing Line (Faulkner et al. 2012) 
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 The second case study reported by Brown et al. (2014) covers a low-volume, 

high-variety scenario for a manufacturer of dispenser cathode assemblies.  This scenario 

is difficult to assess when using traditional VSM due to the high number of product types 

being manufactured and the often complex routing of the manufacturing line.  This 

difficulty is compounded for Sus-VSM due to additional environmental and societal 

metrics.  To solve this problem, Brown et al. (2014) focused the Sus-VSM application to 

areas of interest in the manufacturing line instead of capturing the entire complex system.  

While capturing the entire manufacturing line is desirable, the main goal of Sus-VSM is 

to identify opportunities for sustainability improvement in the system, which the authors 

still accomplish. 

 

 Another problem encountered by Brown et al. (2014) in this scenario is product 

variation and associated routing variation through the manufacturing line.  Capturing the 

variation in lead times and other metrics and mapping the different product routes within 

a single Sus-VSM is unfeasible.  To overcome this difficulty, Brown et al. (2014) 

designed three test parts of varying sizes that followed identical routes to represent 

product families that could be more easily evaluated, and suggested that metrics for a 

product family could be reported as averages if significant variation was present.  While 

the test parts were simplified from actual production parts, the authors sought to use the 

results as a basis for modeling metrics such as energy consumption and establish a 

relationship between part size and energy consumption.   
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 In this case study, Brown et al. (2014) also discovered that the PLI methodology 

was unable to accurately assess the physical strain on employee due to the fine, detailed 

nature of the work.  The authors suggest that substituting a different methodology better 

suited for this type of work would allow proper assessment.  Also, during discussions 

with the company, Brown et al. (2014) adapted the work environment metrics to be 

displayed as two ratings from 1-5, with the first rating assessing the likelihood of a risk 

event occurring, while the second rating evaluates the impact if that risk event occurs. 

 

 The third case study examined by Brown et al. (2014) focused on the 

manufacturing process for a contract to produce and deliver approximately 60,000 mortar 

fins, defined by the terms of the contract as a medium-volume with low-variety scenario.  

One obstacle encountered in this case study was the lack of inline flow meters to measure 

the water used and lost for the processes in the manufacturing line.  The authors solved 

this problem using equipment literature and frequency of water or cutting fluid 

replacement to estimate water usage.  Process energy consumption was determined from 

the machine power ratings, providing a high-end estimate of the actual energy 

consumption.   

 

 Another issue Brown et al. (2014) identified through direct observation was the 

PLI metric underestimating the physical strain experienced by employees during certain 

processes due to the nature of the PLI methodology.  If the PLI questionnaires had been 

completed without direct observation of the manufacturing line, this issue may not have 

been identified.  To correct this problem, the authors suggested that direct observation be 
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utilized with standard PLI to avoid the subjective nature of the PLI questionnaires, but 

this correction was not implemented due to time constraints during the case study. 

 

 A summary of the challenges encountered and information learned in the case 

studies investigated by Faulkner et al. (2012) and Brown et al. (2014) can be found in 

Table 3.2.   

 

Table 3.2: Summary of challenges encountered and information learned in case studies 
(Brown et al., 2014) 

 Case Study 1 Case Study 2 Case Study 3 

Manufacturing System 
Description 

High Volume, Low 
Variety 

Low Volume, High 
Variety 

Med.Volume, Low 
variety 

Challenges 
Encountered in 

Application of Sus-
VSM 

Allocation of water and 
energy consumption for 
continuous, automated 

process 

Complex part routings 
and configurations 

Unstable production 
schedule due to contract 
delays; limited number 
of team members for 

data collection 

Relevance of Sus-VSM 
Metrics  All metrics were relevant 

PLI metric could be 
replaced due to relative 

prevalence of small, 
tedious work 

Additional metrics could 
highlight other 

ergonomic improvement 
opportunities 

Key Learning 

Sus-VSM is easily 
adapted to processes 

with continuous 
automated sections 

Engineered parts can 
provide a baseline for 

systems with high levels 
of complexity 

Sus-VSM is easily 
adapted to contracted 

manufacturing scenarios 

 

 In relation to SC Sus-VSM, the case studies examined by Faulkner and 

Badurdeen (2014) and Brown et al. (2014) for Sus-VSM highlight different methods for 

overcoming challenges faced when applying Sus-VSM.  The first and third case studies 

illustrated different ways to calculate metric values when direct observation is not 

feasible; these methods can be useful when applying SC Sus-VSM, as direct observation 

and data collection becomes more difficult at the supply chain level.  The second case 
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study used methods for mitigating the complexity of the considered manufacturing line 

while still achieving the Sus-VSM goal of identifying locations for sustainability 

improvements.  Due to the often complex nature of supply chains and the possibility of 

numerous branches, these methods can bring significant benefit to SC Sus-VSM by 

allowing simplifications to the map while still identifying potential improvements to 

supply chain sustainability performance. 

 

 Overall, the case studies examined by Faulkner and Badurdeen (2014) and Brown 

et al. (2014) highlight the use of different methods to adapt Sus-VSM to a range of 

different manufacturing system configurations.  With some alterations, these methods can 

be applied when applying SC Sus-VSM, allowing for a wider range of supply chain 

configurations to be considered, increasing the usefulness of the tool.  
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CHAPTER IV  

Methodology 

 

 This chapter details the methodology used in addressing the research questions 

considered in this thesis.  The process followed has numerous steps which can be divided 

into four different phases.  The first phase details the methods used to research potential 

metrics for SC Sus-VSM, and how those potential metrics were screened to identify the 

final metrics for inclusion in the SC Sus-VSM.  Phase 2 discusses the creation of visuals 

to represent each of the metrics in the SC Sus-VSM and how they were incorporated to 

build the overall map.  Phase 3 details the development of a DES model to simulate the 

SC Sus-VSM.  The approach used to develop each plant model in the supply chain, 

model transportation between plants, as well as data collection for SC Sus-VSM 

development is discussed.  Phase 4 consists of the development of a DES simulation 

model for the case study, identifying scenarios for future state map development and the 

analysis and comparison of the results.  The methodology framework in Figure 4.1 shows 

the overall flow of the development process. 
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Figure 4.1: Methodology Framework 
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PHASE 1: Sustainability Metric Selection  

 Traditional VSM is used to quickly identify opportunities for kaizen, while 

standard Sus-VSM incorporates additional metrics to visualize sustainability performance 

and determine improvement opportunities at the manufacturing line level.  SC Sus-VSM 

must accomplish the same goals as standard Sus-VSM, but requires metrics to accurately 

capture economic, environmental, and societal sustainability at the supply chain level.  

These new metrics were identified while ensuring compatibility with standard Sus-VSM 

and adapting sustainability metrics from the Sustainable Manufacturing Indicators 

Repository of the National Institute of Standards and Technology (NIST) (2010) and the 

Global Reporting Initiative (GRI) (2011).  The NIST repository contains metrics for 

economic growth, environmental stewardship, and social well-being, and while metrics 

such as paid bribes were immediately deemed irrelevant for SC Sus-VSM, further 

consideration was given to other metrics such as total generated waste and recordable 

injury rate.  The GRI presents guidelines with sustainability indicators that can be 

flexibly implemented by organizations to assess sustainability performance in key areas.  

The GRI guidelines contain metrics such as habitats protected or restored that are 

irrelevant to SC Sus-VSM, but metrics such as employee diversity ratio and number of 

hazardous spills that could be beneficial.  The ProdSI developed by Shuaib et al. (2014) 

presents numerous economic, environmental, and societal metrics to assess product 

sustainability throughout the life-cycle of the product.  While metrics such as product 

reparability and maintainability are specific to products and not applicable to SC Sus-

VSM, metrics such as product defect ratio and mass of solid waste landfilled are more 

relevant for SC Sus-VSM.  Chen and Johnson (2011) present a method of various scopes 
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that can be used to assess both direct and indirect greenhouse gas (GHG) emissions, 

making the method ideal for SC Sus-VSM application.  Table 4.1 presents a sample of 

potential metrics for SC Sus-VSM, with the final metric selections highlighted in green.  

Metrics were taken directly or adapted from NIST (2010), GRI (2011), ProdSI (Shuaib et 

al., 2014), Sus-VSM (Faulkner et al., 2012), and Chen and Johnson (2011) as indicated.  

 

Table 4.1: Potential SC Sus-VSM Metrics 

 

Economic Environmental Societal
Lead Time/Plant Time 
(Faulkner et al., 2012)

Material Usage (Faulkner et 
al., 2012)

Product Defect Ratio (Shuaib et 
al., 2014)

Value Added Time 
(Faulkner et al., 2012)

Water Usage (Faulkner et al., 
2012)

Recordable Injury Rate 
(National Institute of Standards 

and Technology, 2010)
Transport Time/Distance 

(Faulkner et al., 2012)
Energy Usage (Faulkner et al., 

2012)
Employee Training Intensity 

(Shuaib et al., 2014)

WIP (Faulkner et al., 2012)
GHG Emissions (Chen and 

Johnson, 2011)
Hazardous Chemical/Materials 

(Faulkner et al., 2012)
Profit Generated (National 
Institute of Standards and 

Technology, 2010)

Total Generated Waste 
(National Institute of Standards 

and Technology, 2010)

Local Hiring Ratio (Global 
Reporting Initiative, 2011)

Government Subsidies 
(Global Reporting Initiative, 

2011)

No. of Hazardous Spills 
(Global Reporting Initiative, 

2011)

Diversity Ratio (Global 
Reporting Initiative, 2011)

Transportation Cost (Shuaib 
et al., 2014)

Environmental Protection 
Expenditures (Global Reporting 

Initiative, 2011)

Physical Load Index (Faulkner 
et al., 2012)

Use of Locally Based 
Suppliers (Global Reporting 

Initiative, 2011)

Fines for Non-compliance with 
Laws and Regulations (Global 

Reporting Initiative, 2011)

Electrical System Hazard 
(Faulkner et al., 2012)

Warranty Costs (Shuaib et 
al., 2014)

Weight of Waste by Type 
(Global Reporting Initiative, 

2011)

Pressurized System Hazard 
(Faulkner et al., 2012)

Equipment Uptime (Faulkner 
et al., 2012)

Water Withdrawal by Source 
(Global Reporting Initiative, 

2011)

High-Speed Components 
Hazard (Faulkner et al., 2012)

Storage Costs (National 
Institute of Standards and 

Technology, 2010)

Energy Saved by 
Improvements (Global 

Reporting Initiative, 2011)

Noise Hazard (Faulkner et al., 
2012)

R & D Costs (National 
Institute of Standards and 

Technology, 2010)

Energy Usage by Source 
(Global Reporting Initiative, 

2011)

Employee Hiring Rate (Global 
Reporting Initiative, 2011)

Packaging Cost (National 
Institute of Standards and 

Technology, 2010)

Mass Solid Waste Landfilled 
(Shuaib et al., 2014)

Employee Turnover Rate 
(Global Reporting Initiative, 

2011)
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4.1 Environmental Metrics 

 Three of the environmental metrics chosen for Sus-VSM for supply chain 

networks come directly from standard Sus-VSM work.  Capturing raw material usage, 

water usage, and energy consumption is as useful for visualizing sustainability 

performance for supply chains as it is at the production line level.  The additional metric 

of GHG emissions is selected to further improve sustainability assessment.  How these 

metrics are measured and visualized in SC Sus-VSM and reasons for the metrics 

selections are provided in the following sections. 

 

4.1.1 Raw Material Usage 

 For SC Sus-VSM, the procedure for capturing the raw material usage is similar to 

standard Sus-VSM, but is focused on covering the entire supply chain.  The original 

material mass will be captured at the start of each branch in the supply chain while the 

final mass will be captured just before shipment to the customer.  For the same reasons 

given above for standard Sus-VSM, the amount of material added or subtracted will be 

measured and visualized for each plant in the supply chain. 

 

 The raw material usage metric will be visualized similar to Sus-VSM (Faulkner 

and Badurdeen, 2014) using a dotted line to indicate the initial mass with mass added and 

removed mass recorded in boxes above and below the line, respectively, as shown in 

Figure 4.2.  At plants where material is neither added nor removed, the dotted line for the 

initial mass will be used as an indicator.  The sums of material added and removed will 

be recorded and displayed at the right-hand end of the SC Sus-VSM, similar to standard 
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Sus-VSM.  Completed components from feeder plants are not considered as material 

added at the receiving plant. 

 

0.2
0.8Original: 11.0 lbs Final: 10.4 lbs Removed: 0.8 lbs

Added: 0.2 lbs

 

Figure 4.2: Example of Raw Material Usage SC Sus-VSM Visual 

  

4.1.2 Water Usage 

 The use of water and other coolants is prevalent in manufacturing, and due to the 

large quantities commonly being used, this can have a significant environmental impact.  

The necessity of evaluating this impact is sufficient reason for water usage being selected 

as a metric for both Sus-VSM and SC Sus-VSM.  For SC Sus-VSM, the definition of 

water lost will be water that is not recycled within the plant, similar to standard Sus-

VSM, but water needed, used, and lost will be recorded at the plant level instead of the 

process level, and the sums of all three will be recorded at the right-hand end of the SC 

Sus-VSM.  To visually capture water usage, the SC Sus-VSM utilizes the same three-box 

icon that was developed for Sus-VSM (Faulkner and Badurdeen, 2014), as seen in Figure 

4.3.  

Plant A Plant B

7.00 
gal

7.93 
gal

1.99 
gal

30.0 
gal

30.7 
gal

7.77 
gal

37.0 
gal

38.6 
gal

9.76 
gal

Total

 

Figure 4.3: Example of Water Usage SC Sus-VSM Visual 
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4.1.3 Energy Consumption 

 Due to the use of non-renewable natural resources as well as production of GHG 

emissions, energy consumption is directly connected to environmental sustainability; it is 

also important from an economic standpoint.  Measuring and visualizing the energy 

consumption allows areas of high consumption to be easily identified and more 

thoroughly investigated, thus focusing improvement efforts to the most beneficial areas. 

 

 The definitions of energy consumption for standard Sus-VSM can be easily used 

in SC Sus-VSM to adequately assess supply chain energy consumption.  A major 

difference, however, is that the energy consumption due to transportation between plants 

will often be much larger than the consumption between processes. Thus, the 

transportation between processes within a plant will be presented collectively as a single 

measure of energy consumption for the plant.  This value will be the sum of all the 

energy consumed by processes and for transportation between those processes but will 

not include lighting or environmental control, as these are not dependent on the product 

itself.  Transportation between plants in the supply chain will be reported separately. 

 

 Despite the differences that will occur between Sus-VSM (Faulkner and 

Badurdeen, 2014) and SC Sus-VSM for the energy consumption metric, the visualization 

is almost identical, as shown in Figure 4.3.  The energy consumed by the plant is 

measured and recorded within the circles while the transportation energy is recorded on 

the line between the circles. 
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Plant A Plant B Total

5.18 
kWh

38.42 kWh 57.41 
kWh Transport: 38.4 kWh

Plant: 62.6 kWh

Transport 1

 

Figure 4.4: Example of Energy Consumption SC Sus-VSM Visual 

 

4.1.4 GHG Emissions 

 With increasing regulations and public awareness of GHG emissions, there is a 

similarly growing need to develop a metric for Sus-VSM that can capture GHG 

emissions to evaluate environmental sustainability.  By evaluating GHG emissions and 

making efforts to reduce those emissions, companies can be proactive in addressing 

changes that could potentially be regulated in the future. 

 

 The standard Sus-VSM (Faulkner and Badurdeen, 2014) does not have a metric to 

capture GHG emissions; while emissions from energy consumption can be calculated if 

the energy sources are known, direct GHG emissions from processes must be captured 

separately.  For SC Sus-VSM, a metric to capture total GHG emissions from both direct 

and indirect sources would provide more information and increase visibility for potential 

improvements by providing a separate metric and visual in the SC Sus-VSM.  Increased 

public awareness of GHG emissions and the potential to attract more customers with 

lower emissions give further reason to include this metric.  Chen and Johnson (2011) 

present a method of evaluating GHG emissions using different scopes. Scope 1 considers 

only direct emissions, while Scope 2 additionally considers emissions from energy 

consumption.  Scope 3 further includes emissions indirectly caused by company 
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activities, such as waste disposal and employee commuting.  For SC Sus-VSM, Scope 2 

provides a detailed evaluation of GHG emissions, but does not require difficult data 

acquisition needed by further detail.  Using Scope 2 has the additional benefit of further 

illustrating the direct connection between energy consumption and GHG emissions.  It is 

proposed that this metric be measured in terms of mass of carbon dioxide generated 

directly from processes within the plant and from the energy consumed by those 

processes.  GHG emissions generated by process energy consumption can be computed if 

the energy source and the amount of energy consumed are known. For example, if coal 

power plants are in the area, the GHG emissions can be calculated using the energy 

density and CO2 emissions of coal.  The emissions from transportation between plants 

can be calculated using the amount of fuel combusted and the CO2 emissions per gallon 

of fuel. 

 

 GHG emissions will be visualized in a manner similar to that of energy 

consumption as shown in Figure 4.4.  The emissions for each plant will be measured and 

recorded in the cloud icon while the emissions from transportation will be recorded on 

the line between cloud icons, as shown in Figure 4.5.  

Plant A Plant B TotalTransport 1

37.54 
lbs

124.6 lbs 112.5 
lbs Transport: 124.6 lbs

Plant: 150.0 lbs

 

Figure 4.5: Example of GHG Emissions Supply Chain Sus-VSM Visual 
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4.2 Societal Metrics 

 To achieve true sustainability, it is not enough to consider only economic and 

environmental aspects.  While standard Sus-VSM (Faulkner and Badurdeen, 2014) makes 

societal considerations for employees regarding health and safety, there are other 

stakeholders that deserve consideration when the supply chain is assessed; societal 

implications of business operations must also be considered.  The local community 

surrounding the manufacturing plants and the customers who will be using the product 

are important stakeholders that should also be considered.  For these reasons, a total of 

six societal metrics have been chosen to evaluate sustainability performance for supply 

chain Sus-VSM. 

 

 Selecting metrics that adequately capture the societal aspect of sustainability 

across the supply chain while still being measurable presents significant challenges.  One 

of the challenges faced is identifying metrics that are relevant to all interested 

stakeholders, such as the employees, customers, local community, the company itself, 

and others.  At the process level, only a few stakeholders are directly influenced, and 

relevant metrics can be identified easily.  At the supply chain level, however, many more 

stakeholders are involved and metrics must be selected to evaluate impacts on as many 

stakeholders as possible.  Another challenge faced is the availability and ease of 

gathering of data for selected metrics.  Given the emphasis on a few stakeholders at the 

process level and because information relates only to internal operations, computing 

societal sustainability metrics for standard Sus-VSM is less difficult.  At the supply chain 

level, however, there is a wider range of metrics, and data may need to be gathered from 
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external partners, which is always difficult due to confidentiality reasons.  For companies 

that exercise significant influence over suppliers, gathering data may be less difficult; for 

smaller companies that lack control over their supply chains, however, suppliers and 

downstream partners will be unwilling to share information.  Metric selection can affect 

the difficulty of data acquisition, but cannot eliminate the problem; further, metric 

selection should foremost be based on relevancy to evaluating supply chain sustainability 

performance, so this problem should be addressed using other methods discussed later.   

 

 Another challenge encountered with societal metrics at the supply chain level is 

loss of relevancy, one of the main reasons some societal metrics were not retained from 

standard Sus-VSM.  This is true for the work environment metric dealing with electrical, 

pressurized systems, and high-speed component hazards, but particularly with the 

Physical Load Index (PLI).  The PLI uses questionnaires to assess the strain placed on 

employees while working, and is captured for each process in standard Sus-VSM.  While 

it would be possible to aggregate a PLI score for the entire plant for supply chain Sus-

VSM, it would be difficult to recognize if a problem were actually present.  If a number 

of the processes in the plant have poor PLI scores, but a few have very good scores, 

examining the mean value of the scores will result in underestimating the problem.  

However, if the poorest PLI score is recorded for the plant, but there is only one process 

with a poor score, then the problem will be overestimated.  The difficulty is similar for 

the other societal metrics from standard Sus-VSM.  For these reasons, the societal metric 

selection needed to be reconsidered for the supply chain Sus-VSM, in order to select 

metrics that avoid these obstacles as best as possible.  
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4.2.1 Product Defect Ratio 

 While it is important to consider all the various societal stakeholders, it is equally 

important the metrics remain easy to use, visualize, and have collectable data, as SC Sus-

VSM would otherwise become cumbersome.  With these considerations in mind, the 

product defect ratio was selected to represent customer interest by providing an indicator 

of product quality, although other stakeholders are also interested in this metric.  Data for 

this metric is already collected by most companies for their plants, and reflects the 

reliability of the product.  Also, this metric does not lose any meaning at the plant level, 

as the number of defects can be summed for the whole plant.  Identifying which 

processes within the plant have a high product defect ratio would require a more detailed 

examination of the plant individually.   

 

 A high product defect ratio indicates that the manufacturing process is not 

creating a reliable product, and since quality control is likely unable to identify all 

defective parts, there is a higher chance that the customer will receive a defective 

product.  Not only does this create a bad reputation for the company, it can lead to 

expensive recalls of the product, and if a customer incurs injury from a defective product, 

costly lawsuits can result.  Even if quality control can identify most of the defective parts, 

this results in rework and recycling, both of which can also be costly.  Conversely, a low 

product defect ratio indicates that fewer parts will require rework or recycling, a good 

reputation will be built for the company, recalls of product will be less likely to occur, 

and lawsuits can be avoided.  Given these benefits and the ability to be used at the supply 

chain level, product defect ratio is a useful metric to include in supply chain Sus-VSM. 
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 This metric is visualized by a simple percentage shown within each plant box.  

This is easy to understand, and by not utilizing a larger icon, the SC Sus-VSM will 

remain uncluttered.  If desired, the number of product defects in a certain time period can 

be recorded instead, such as the number of defects per work week. 

 

4.2.2 Local Community Hiring Ratio 

 Accounting for effects on the local community is another consideration to 

promote sustainability, as abuse or neglect of the surrounding community will ultimately 

lead to an unsustainable method of production.  The local community hiring ratio was 

selected as a metric since hiring information is readily available from human resources, 

and the metric highlights the number of jobs that are brought to the local community.  

Interestingly, this metric is one that would lose meaning at the process level more than 

the supply chain level, as knowing the local community hiring ratio for each process 

within the plant provides no more information than being capturing the metric for the 

plant as a whole.  Hiring from the surrounding community fosters a positive relationship 

that will benefit both the company and the community, as the community will receive 

employment opportunities, and the company will build a good reputation and potentially 

gain loyal customers from the local community.  This good reputation can later aid the 

company when seeking to expand, as other locations will be more amenable to the 

construction of a plant that will bring employment opportunities to the local community.  

This metric is shown on the SC Sus-VSM as a percentage within each plant box.  It 

should be noted that each plant will be considering the community surrounding its own 

location. 
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4.2.3 Diversity Ratio 

 Similar to the local community hiring ratio, the diversity ratio takes into account 

the community, but in a broader sense than just the area surrounding the plant.  The 

metric for diversity ratio captures the racial and gender diversity of the company's 

workforce.  Again, the data for this metric should be readily available from the human 

resources division, and is captured as a ratio of minority employees to the total company 

workforce.  This metric provides an indicator of how well the company is avoiding 

discrimination in hiring and shows a willingness to hire various members of society 

equally.  By hiring a diverse workforce, the company can benefit from ideas and skills 

from numerous backgrounds and cultures.  Further, having a diverse workforce builds 

rapport with society as a whole, providing the company with a greater and more loyal 

customer base.  Given the demographics of certain areas, however, it may not be feasible 

for companies to achieve a high diversity ratio, as the local community may not be 

diverse, so balancing between with the local community hiring ratio and the diversity 

ratio may be required.  Nevertheless, diversity is a criterion that still should be considered 

in order to promote societal sustainability.  Similar to the product defect ratio and the 

local community hiring ratio, the diversity ratio is displayed as a percentage within the 

plant box on the SC Sus-VSM, being easy to understand and not causing clutter in the SC 

Sus-VSM. 

 

4.2.4 Injury Rate Metric 

 As shown by the choice of metrics for standard Sus-VSM, employee well-being is 

an important aspect of societal sustainability that should be captured and evaluated, but 
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metrics such as electrical hazards, high-pressure systems, etc. are too specific to be 

applied to supply chain Sus-VSM effectively.  Instead, the injury rate metric is more 

easily measured and provides a general indication of where a more thorough investigation 

might be necessary to determine the cause of injuries.  In addition, injury information at 

the plant level is readily available from human resources in the form of occupational 

health and safety records.  Also, by tracking the injury rate at the plant, the company can 

hopefully avoid a great number of potential expenses.  Whenever an injury occurs, the 

work flow of the plant is disrupted, causing delays and confusion.  Also, injuries lead to 

employees being unable to return to work immediately, requiring replacement workers to 

be used, who may be less skilled.  The company may also be responsible for paying the 

employees' medical bills related to treating the injury.  Furthermore, if company 

manufacturing practices are found to be unsafe, there can be repercussions from 

regulating bodies as well as potential lawsuits from employees injured in an unsafe work 

environment.  By monitoring the injury rate for each plant, companies can identify 

potential improvements to reduce the number of injuries, thereby reducing work 

disruptions, and showing employees that their welfare is one of the company's main 

concerns.  As the other societal metrics, the injury rate is recorded within each plant box 

and displayed as the number of injuries in a given time period.  This provides an easy to 

comprehend measure and does not clutter the SC Sus-VSM. 

 

4.2.5 Hazardous Materials/Chemicals Metric 

 The hazardous materials metric was taken directly from standard Sus-VSM with 

few changes, as it is relevant and is easily assessed.  As with the injury rate, this metric 
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accounts for employee well-being as a societal aspect of sustainability.  As with standard 

Sus-VSM, the hazardous materials metric is ranked based on likelihood of occurrence 

and level of impact, as seen in Table 3.1.  Instead of this rating being assigned for each 

process, it is captured for each plant in the supply chain.  If a plant is shown to have a 

high risk from hazardous materials, efforts can be made to improve safety regarding these 

materials, or possible substitutions can be explored to find a less hazardous material that 

still accomplishes the needed functions.  A plant with a high hazardous materials risk 

may also be in violation of regulations concerning the use and disposal of hazardous 

materials and chemicals, so to avoid costly fines, it is highly necessary to monitor this 

metric.   

 

 Given that this metric is an assessment of the entire plant, a more thorough 

investigation might be required to identify exactly which processes are producing the 

hazardous material risk.  Also, this metric is subjective in nature, given the way it is 

captured.  More objective forms of this metric can also be used, but the data is more 

difficult to obtain, and the data collection process is more time consuming, reducing the 

speed with which the SC Sus-VSM can be applied.  Once the hazardous material rating 

has been assigned, it is displayed in the plant box for each plant.  This prevents clutter on 

the SC Sus-VSM, and once the rating method has been explained, is easy to understand. 

 

4.2.6 Employee Training Intensity Metric 

 Similar to the local community hiring and diversity ratios, the employee training 

intensity is another way of capturing employee well-being.  This metric is an indicator of 
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how much training employees receive at the plant.  By providing greater amounts of 

training to employees, a company is helping them develop skills that can be used to 

advance upwards within company, or can be used outside the workplace.  Also, by 

providing training hours, the company can ensure that all employees meet a certain skill 

level for the tasks they need to perform.  Further, by providing cross-training between 

different job positions in the plant, the company can make operations more resilient to 

employee call-offs or sick days, as there will be other employees available who can also 

perform the needed task.  The data needed to capture the employee training intensity 

should be available from human resources, who will have a record of the number of 

training hours.  Similar to the other societal metrics, the employee training intensity is 

recorded in the plant box for each plant.  The metric is recorded as the number of training 

hours provided at the plant each week, which is easy for users to understand in the SC 

Sus-VSM.  

 

PHASE 2: SC Sus-VSM Development 

 To build the SC Sus-VSM, it is necessary to incorporate the metric visuals for the 

supply chain.  Each plant in the supply chain is visualized as a box, similar to the process 

boxes for standard Sus-VSM (Faulkner and Badurdeen, 2014), but containing different 

information.  The defect ratio, injury rate, employee training intensity, local community 

hiring ratio, diversity ratio, and hazardous material/chemical rating are displayed within 

each plant box.  In standard Sus-VSM, the amount of WIP is indicated using a triangle 

icon before each process in the production line, while in SC Sus-VSM the WIP for each 

plant is displayed using the same icon above the plant box.  The amount of inventory 
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waiting to be shipped is indicated above the transport icons using the same method.  

Transport between plants is visualized using an icon that represents the mode of 

transportation being used, such as a truck, plane, or boat, with the frequency of shipments 

and the travel time and distance displayed in the icon.  Arrows indicate the direction of 

product flow through the supply chain.   

 

 Lead time, material usage, energy usage, water usage, and GHG emissions are all 

shown below the plant boxes and transport icons.  For plants, the lead time line also 

captures the value-added time of the plant; the total plant lead time and the value-added 

time are displayed above and below the line, respectively.  For transport icons, the travel 

time is displayed on the lead time line. On the right-hand end of the SC Sus-VSM, the 

total lead time and the total value-added time for the supply chain are displayed.  Material 

usage, energy usage, water usage, and GHG emissions are displayed as discussed in the 

previous section, with the totals for each on the right-hand end of the SC Sus-VSM.  

Figure 4.6 shows an example of a developed current state SC Sus-VSM from one of the 

case study scenarios that will be addressed in Chapter V. 

 

 The SC Sus-VSM in Figure 4.6 shows the product flow from the feeder plants to 

the OEM and captures the selected metrics for each plant and transportation, with the 

metric totals for the supply chain displayed on the right-hand of the SC Sus-VSM.  The 

SC Sus-VSM can be used to quickly visualize a supply chain and identify locations for 

potential sustainability improvements based on the metric values visualized in the map.  

For example, reading the SC Sus-VSM in Figure 4.6 shows that for a total lead time of 
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439.9 days, WIP at the drive train plant accounts for 231 days, indicating that further 

investigation of the drive train plant is needed.  Similarly, the OEM accounts for more 

than half of the energy consumption from the plants, indicating energy conservation 

efforts should be focused on the OEM.   After identifying locations that require further 

investigation, standard Sus-VSM can be used at the target plant for a more detailed 

examination that can pinpoint the factors causing a problem.  A more detailed look can 

also be obtained by developing a simulation model for the SC Sus-VSM as discussed in 

Phase 3. 
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Figure 4.6: Example Current State SC Sus-VSM from Case Study 
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PHASE 3: Simulation Model Development 

 After the current state SC Sus-VSM has been created and areas have been 

targeted for kaizen improvement efforts, a simulation model can be used to simulate the 

proposed improvements and create a future state SC Sus-VSM.  Simulating the future 

state maps eliminates some of the estimating and guesswork involved, as the simulation 

will capture any effects that a change in one branch will have on other locations in the 

supply chain.  This allows multiple future state maps to be created and evaluated, and 

allows a company to move forward with the best improvements without investing 

excessive amounts of time or resources.  Also, in a scenario where data is difficult to 

obtain for some locations in the supply chain, an estimate of the information can be used 

with the simulation model to help provide more accurate results for the sustainability 

assessment. 

 

 Using Rockwell's Arena simulation software, a discrete event simulation (DES) 

model was developed to simulate the metrics used in SC Sus-VSM.  To model the supply 

chain, each plant is built as a sub-model containing various components.  With the sub-

model, each manufacturing process within the plant is modeled as a seize-delay-release 

process box, where the product entities are taken, delayed, and then allowed to continue 

on after waiting for the appropriate cycle time.  In front of each process box is an assign 

box, where the variables for the process are defined.  Immediately after the process box is 

the record sub-model, which contains a record box for each variable that was defined for 

that process.  After the record sub-model is a decision node that acts as quality control by 

using the product defect ratio.  If the product is found to be defective, the decision node 
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will dispose of the defective product.  After the decision node, the entity moves on to the 

next process within the plant.  After the last plant process, the entity continues to 

transport. Transport is modeled as a sub-model that contains a seize-delay-release process 

box that delays the entity for the amount of time equal to the travel time.  Before that 

process box, however, is a batch node, that groups entities together by the number of 

entities that is defined for each batch.  This batch size is equal to the capacity of the 

transport vehicle.  Between the batch node and the process box is an assign box to define 

the variables.  Directly after the process box is a record sub-model that serves the same 

function as in the plant.  After the transport record sub-model, the product batch moved is 

ungrouped into individual entities that move on to the next plant sub-model to continue 

processing.  Plant and transports continue to be modeled in this way until the last plant, 

where entities leave and go to shipment, which is modeled as a dispose box.   

  

 Once the general layout for the simulation model has been created, it is necessary 

to define the metric variables carefully; otherwise, the model will not behave as desired 

and the metrics will not be captured accurately.  The cycle time variables are based on the 

process they are defined for and are the most basic variable defined in the simulation 

model.  Most of the other variables in the model are defined so that they are based on the 

cycle time variables.  For example, the definition for the energy usage metric contains the 

process cycle time in the expression, so that if the cycle time increases, the energy usage 

will also increase.  Similarly, the GHG emissions metric variable is based on the energy 

usage variable.  Due to the nature of the simulation model, it is necessary to introduce a 

degree of randomness to the variables to more closely mirror a real life scenario.  Firstly, 
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this can be done at the basic level by defining the cycle times using mathematical 

distributions; exponential distributions can be used for process cycle times where the rate 

of production is fairly constant, while triangular distributions can be used for modeling 

processes with a minimum time, a mode time, and a maximum time (Kelton et al., 2009).  

This will provide some randomness to the cycle time and all the metrics based on it, but 

those metrics should also be more directly randomized.  Once the initial distribution is 

selected to represent the part of the model in question, this initial distribution can be 

multiplied by a second distribution that has a mean of 1.  This will allow the average of 

the initial distribution to remain relatively unchanged while still introducing another level 

of randomness. This degree of randomness within the model helps to simulate the 

variability that would occur in real life scenarios from delays and other factors, resulting 

in a more accurate simulation model.   

 

 To capture the product defect ratio and the injury rate, a counter was used to 

determine how many product defects and worker injuries occurred.  This means that the 

variables for these two metrics need to be defined differently than the rest of the metric 

variables.  This can be accomplished using a probability distribution that assigns a value 

of 0 or 1 based on the probability, with 0 indicating no defect and 1 indicating a defect 

has occurred.  For example, to model a 10% defect rate, the probability distribution 

would be defined so that 10% of entities that pass through the process will be assigned a 

value of 1, indicating that a defect has occurred.  Following this, the counter will track 

how many defects or injuries occurred during the simulation, which can then be 

translated into the number of defects or injuries per week.   
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 The simulation model also contained visual gauges to capture the running average 

of the metric values for each process in real time.  It should be noted, that not all metrics 

chosen for the supply chain Sus-VSM can be simulated in the DES model, as some of the 

metrics would require "forcing" the metric into the simulation in such a way that the 

result would be meaningless.  For example, simulating the diversity or local community 

hiring ratios would not provide an additional benefit, as the variables to capture the 

changes in these metrics are not easy to incorporate into a DES model.  The economic 

metrics and all the environmental metrics with the exception of raw material usage can be 

easily captured by the simulation.  Of the societal metrics, product defect ratio, injury 

rate, and employee training intensity can be captured in the simulation. 

 

PHASE 4: Case Study Analysis 

 In order to gain meaningful information from the DES model, it is necessary to 

analyze the results.  A useful way of accomplishing this is to create a sustainability index 

that produces a normalized score for each metric.  Using aggregation and weighting 

techniques, it is possible to eventually reach a single score that ranks the overall 

sustainability of the supply chain being considered.   This sustainability index score can 

then be entered into a DOE style analysis to obtain information regarding the sensitivity 

of the supply chain to changes and interventions that are applied in an effort to improve 

the sustainability of the supply chain. 

 

 In order to normalize the data, it is necessary to have a benchmark simulation 

scenario that can be used to determine the score of the other scenarios that will be 
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considered.  For SC Sus-VSM, the current state scenario lends itself to being used as the 

benchmark for the normalization methodology.  Once the metrics for a scenario have 

been normalized, they will all fall on a scale from 0 to 10, with the metrics from the 

benchmark scenario having a value of 5.  The metrics from the other scenarios considered 

will be normalized using equation 4.1.   

 

𝑚𝑒𝑡𝑟𝚤𝑐 𝑣𝑎𝑙𝑢𝑒����������������� = 5 ∗ �1 ± 𝑚𝑒𝑡𝑟𝑖𝑐 𝑣𝑎𝑙𝑢𝑒−𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑣𝑎𝑙𝑢𝑒
𝑏𝑒𝑛𝑐ℎ 𝑚𝑎𝑟𝑘 𝑣𝑎𝑙𝑢𝑒

�       (4.1) 

 

Within the parenthesis of this equation, addition is used if an increase in metric value has 

a positive effect on the supply chain sustainability, and subtraction is used if a decrease in 

metric value is an improvement.   

 

 The next analytical step was to create economic, environmental, and societal sub-

indices.  The scores for these sub-indices were determined by weighting and aggregating 

the normalized metric values based on importance.  Ranking metrics based on importance 

is subjective in nature and will vary from application to application.  As noted by Shuaib 

et al. (2014), there is no universal or standard weighting method for sustainability 

metrics, so the process will inherently be subjective.  While expert opinions would also 

be subjective, they would provide a level of guidance for weighting of sustainability 

metrics and perhaps lead to a more standard weighting method.  An equal weighting can 

also be used to provide a simpler method where it is clear what is occurring, but it does 

not accurately reflect the importance of metrics to each other. 
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 Once the economic, environmental, and societal sub-indices have been created, 

the aggregation and weighting step must be repeated to create the overall sustainability 

index.  Again, measures can be taken to reduce the subjectivity of the weighting at this 

step, but depending on what actions were taken in the previous step, this may not be as 

important.  If the metrics in the previous step were weighted by importance, then equal 

weighting of the economic, environmental, and societal sub-indices should still provide 

accurate results.  If equal weighting was used in the previous step, then more objective 

weighting of the sub-indices can help produce a more accurate overall sustainability 

index. 

 

 Once the sustainability index has been determined, a DOE style analysis can be 

performed by placing the sustainability index results from each scenario into a test 

matrix.  The test matrix for the case study performed in this thesis can be found in Table 

5.6. It should be noted that more than one replication must be performed for each 

scenario being considered, but this is easily accomplished using the simulation model.  

The DOE test matrix consists of various treatments that consider all the interventions and 

their combinations.  For example, if three interventions are considered, one each for 

economic, environmental, and societal, there will be a total of 8 possible treatments: no 

interventions implemented (1), the interventions considered individually (3), the 

interactions between pairs of interventions (3), and all three interventions together (1).  A 

plus-sign in the test matrix indicates that an intervention is being considered for that 

treatment, while a minus-sign indicates the opposite.  For interactions, however, the plus-

sign is determined by multiplying the sign's of the interventions that make up that 
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interaction.  For example, consider interventions A and B: if intervention A or B is 

considered individually, then interaction AB will have a minus-sign; if neither A or B is 

considered or if both are considered together, then interaction AB will have a plus-sign. 

 After the sustainability index scores have been entered into the DOE test matrix, a 

number of calculations must be performed to determine the significant interventions and 

the sensitivity of the sustainability index to those interventions.  First, the sample 

variance for the treatment, STR was calculated using Equation 4.2 (Montgomery, 2005), 

where n is the number of replications, yi is the response for replication i, and 𝑦� is the 

average response for the replications. 

 

𝑆𝑇𝑅2 = 1
𝑛−1

∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=1                     (4.2)  

 

The standard deviation and the effective standard deviation were then calculated using 

Equation 4.3 and Equation 4.4 (Kenney, 1962), respectively.  TR represents the number 

of treatments in the test matrix.  

 

𝑆𝑒 = �∑𝑆𝑇𝑅
2

𝑇𝑅
           (4.3) 

 

𝜎𝑒𝑓𝑓 = 𝑆𝑒�
4

𝑇𝑅∙𝑛
                  (4.4) 

 

The number of degrees of freedom for the case study was then determined using Equation 

4.5 (Stattrek, 2014). 
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𝐷𝐹 =  𝑇𝑅 ∙ (𝑛 − 1)        (4.5) 

 

Once the number of degrees of freedom has been calculated, it is used with a standard t-

table distribution to determine the t-value.  In addition to the degrees of freedom, a 

confidence interval must also be selected, with a 95% confidence interval being a 

common standard.  After the t-value is determined, it is used to calculate the decision 

limit that will be necessary to determine which interventions are significant.  Equation 

4.6 provides a sample of the calculation used for the decision limit. 

 

𝐷𝐿 = �𝑡(0.025,𝐷𝐹)
′ ∙ �𝜎𝑒𝑓𝑓��               (4.6) 

 

To determine which interventions had a significant effect on the sustainability index, it is 

necessary to calculate the absolute effectiveness using Equation 4.7. 

 

|𝐸| =  |𝑦�+ − 𝑦�−|     (4.7) 

 

In this equation, y+ represents the response values for which intervention y has been 

made, represented by a "+" in the test matrix.  As an example, for the economic 

intervention, the y+ values come from the economic, economic-environmental, and 

economic-societal treatments.  Similar reasoning is used for y-. 

 

 After determining the absolute effectiveness for each intervention and the 

decision limit, a Pareto chart can be built to show which interventions are significant.  If a 
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intervention falls above the decision limit, it is a significant intervention, but if it falls 

below, it cannot be distinguished statistically from noise in the experiment, so that 

intervention is considered insignificant.  Once the significant interventions have been 

determined, response plots can be created for each to provide information on the 

sensitivity of the supply chain sustainability.  Response plots are created by linearly 

plotting 𝑦�− and 𝑦�+ for each intervention.  For intervention pairs, one intervention is held 

constant at each value while the other intervention is plotted for those values, resulting in 

two lines on each intervention pair response plot.  The same method is used for a triple 

interaction between three interventions, resulting in a total of four lines on the response 

plot. 

 

 When implementing a DOE style analysis for SC Sus-VSM and the DES model, 

difficulties with factor variability are present.  In a typical DOE analysis, certain factors 

are changed for each treatment while the remaining factors are held constant.  Due to the 

variability present in a supply chain, it is not possible to hold the factors completely 

constant.  As discussed by Montevechi et al. (2012), simulation can be used to eliminate 

this randomness by holding each factor constant as needed.  However, this approach 

results in the simulation model representing the real world less closely.  For this thesis, an 

approach of capturing average values for cycle times, water usage, etc., is used to combat 

the amount of randomness present.  This approach, however, produces an increased 

amount of experimental noise in the results of the DOE style analysis. 

 

65 
 



 Following the methodology outlined in this section, the application of SC Sus-

VSM combined with simulation to a supply chain should be straightforward.  The SC 

Sus-VSM can be developed using pencil and paper following the part of the methodology 

for metric selection and visual development.  Implementing the DES model provides a 

number of improvements to the process by allowing different scenarios to be considered 

quickly, and allowing possible gaps in data to be estimated and simulated, providing 

more accurate results.  By analyzing the results in the method described, much useful 

information can be determined, such as which intervention provides the greatest increase 

to the sustainability of the supply chain and how sensitive the supply chain is to the each 

intervention.  Overall, this methodology provides a useful tool for assessing the 

sustainability of a manufacturing supply chain.  
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CHAPTER V  

Case Study 

 

5.1 Case Study Parameters  

 To demonstrate the methodology developed for SC Sus-VSM, a hypothetical, 

single-tier bicycle supply chain was considered.  Figure 5.1 illustrates which components 

of the bicycle are included in this case study and which components were considered but 

not included.  The dotted lines indicate that the brakes and handlebars were not included 

in this case study. 

 

Figure 5.1: Bicycle components being considered and omitted for case study (based on 
image from Shutterstock, 2014) 

 

 The supply chain consists of a single plant which houses the frame manufacture 

and final assembly with three feeder plants supplying the drive train, the seat, and the 

wheel and tires, as shown in the supply chain map in Figure 5.2.  Transportation between 

plants is accomplished via truck shipments. Although the entire bicycle could 

conceivably be manufactured in a single plant, additional plants were included to 
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thoroughly test and evaluate the methodology presented in Chapter IV.  Additionally, the 

feeder plants can be owned by different suppliers, and are not necessarily owned by the 

main manufacturer or original equipment manufacturer (OEM).   

 

 

Figure 5.2: Bicycle Supply Chain Map 

 

 The process cycle times and the travels times used for the case study are presented 

in Table 5.1, which also provides the times used in the various scenarios considered with 

the simulation model in section 5.3.  These times are based on knowledge of the 

equipment used in each process and estimated from the travel distance and speed. 
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Table 5.1: Process Cycle Times for Case Study Scenarios 

Simulation Process Boxes 
Current State Economic Environmental Societal 

Cycle Times Cycle 
Times Cycle Times Cycle 

Times 

Drive Train 
Plant 

Press 82 s 82 s 82 s 82 s 
Chain Assembly 162 s 110 s 162 s 162 s 

Transport 1 45 min 45 min 45 min 45 min 

Frame 
Manufacture 

Tube Drawing 600 s 300 s 600 s 600 s 
Frame Assembly 600 s 450 s 600 s 600 s 

Painting 600 s 600 s 700 s 600 s 

Seat Plant 

Seat Frame 300 s 300 s 300 s 300 s 
Fabric and 

Padding 240 s 240 s 240 s 240 s 

Transport 2 60 min 60 min 60 min 60 min 

Seat 
Installation 

Frame and Seat 
Assembly 120 s 120 s 120 s 120 s 

Decal Application 300 s 300 s 300 s 300 s 

Wheel and 
Tire Plant 

Tire Manufacture 180 s 180 s 180 s 180 s 
Manufacture 600 s 600 s 600 s 600 s 

Assembly 180 s 180 s 180 s 180 s 
Wheel and Tire 

Assembly 90 s 90 s 90 s 90 s 

Transport 3 55 min 55 min 55 min 55 min 

Drive Train 
and Wheel 

Install 

Drive Train 
Installation 480 s 480 s 480 s 480 s 

Wheel 
Installation 240 s 240 s 240 s 240 s 

 

 Tables 5.2 - 5.7 present the energy usage, water usage, raw material usage, and 

GHG emissions for each process and transport in the supply chain.  These parameters are 

based on general knowledge of the processes with a focus on parameters being correct 

relative to each other, i.e. a painting oven consumes more energy than seat installation.  

For this case study, it is assumed that the main power source for the plants is coal, and the 

shipping trucks use diesel engines, therefore the energy usage and GHG emissions are 

based on the energy density and CO2 emissions for these fuel types, which are shown in 
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Table 5.8.  The capacity for Transport 1 is 10 units, while the capacity for Transports 2 

and 3 is 20 units. 

Table 5.2: Drive Train Plant Parameters 

Drive Train Plant 
  Press Chain Assembly Transport 1 

Energy 2.28 kWh 3.15 kWh 37.5 kWh 
Water Used 0.68 gal 0 gal 0 gal 
Water Lost 0.17 gal 0 gal 0 gal 

GHG 4.56 lbs 2.7 lbs 75.0 lbs 
Raw Material -0.6 lbs 0.0 lbs 0.0 lbs 

Injury 0.01% 0% 0% 
PDR 0.50% 0% 0% 

 

Table 5.3: Frame Manufacture Line Parameters within OEM 

Frame Manufacture Line 
  Tube Drawing Frame Assembly Painting 

Energy 13.33 kWh 10.0 kWh 16.67 kWh 
Water Used 3.0 gal 0 gal 30.0 gal 
Water Lost 0.75 gal 0 gal 7.5 gal 

GHG 26.67 lbs 20.0 lbs 33.33 lbs 
Raw Material -0.8 lbs 0.2 lbs 0.0 lbs 

Injury 0% 0.50% 0% 
PDR 0.50% 0.50% 0.50% 

 

Table 5.4: Seat Plant Parameters 

Seat Plant 
  Seat Frame Fabric and Padding Transport 2 

Energy 6.67 kWh 4.0 kWh 70.0 kWh 
Water Used 5.0 gal 2 gal 0 gal 
Water Lost 1.25 gal 0.5 gal 0 gal 

GHG 13.33 lbs 8.0 lbs 140.0 lbs 
Raw Material -1.2 lbs 0.7 lbs 0.0 lbs 

Injury 0% 0.05% 0% 
PDR 0.50% 0.50% 0% 
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Table 5.5: Seat Installation Line Parameters within OEM 

Seat Installation Line 

  Frame and 
Seat Assembly Decal Application 

Energy 1.0 kWh 5.0 kWh 
Water Used 0 gal 7.5 gal 
Water Lost 0 gal 1.88 gal 

GHG 2.0 lbs 10.0 lbs 
Raw Material 0.0 lbs 0.0 lbs 

Injury 0.05% 0% 
PDR 0.50% 0.50% 

 

Table 5.6: Wheel and Tire Plant Parameters 

Wheel and Tire Plant 

  Tire 
Manufacture 

Wheel 
Manufacture 

Wheel 
Assembly 

Wheel and 
Tire 

Assembly 

Transport 
3 

Energy 5.0 kWh 11.67 kWh 1.25 kWh 0.75 kWh 59.58 kWh 
Water Used 10.0 gal 20.0 gal 0 gal 0 gal 0 gal 
Water Lost 2.5 gal 5.0 gal 0 gal 0 gal 0 gal 

GHG 6.67 lbs 23.33 lbs 2.5 lbs 1.5 lbs 119.2 lbs 
Raw Material 0.4 lbs -1.3 lbs 0.0 lbs 0.1 lbs 0.0 lbs 

Injury 0.10% 0% 0.50% 0.50% 0% 
PDR 0.50% 0.50% 0.50% 0.50% 0% 

 

Table 5.7: Drive Train and Wheel Installation Line Parameters within OEM 

Drive Train and Wheel Installation Line 

  Drive Train 
Installation Wheel Installation 

Energy 6.0 kWh 3.33 kWh 
Water Used 0 gal 0 gal 
Water Lost 0 gal 0 gal 

GHG 12.0 lbs 6.67 lbs 
Raw Material 0.0 lbs 0.0 lbs 

Injury 0.50% 0.50% 
PDR 0.50% 0.50% 
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Table 5.8: Diesel and Coal Energy Density and CO2 Emissions 

Diesel 
Energy Density CO2 Emissions 
135.8 MJ/gal 22.2 lbs/gal 

Coal Energy Density CO2 Emissions 
- 0.489 lbs/MJ 

 

5.2 SC Sus-VSM for Case Study 

 Using the case study parameters, the current state SC Sus-VSM was developed as 

previously shown in Figure 4.6.  The map shows the flow of the product through the 

supply chain, and highlights numerous locations where further investigation might 

provide details for improving the sustainability performance of the supply chain.  

Comparing the total lead time with the plant lead times and inventories highlights 

potential bottlenecks in the supply chain; for example, the drive train plant has 231 days 

of inventory, accounting for more than half the total lead time.  Similarly, the energy 

usage at the OEM accounts for approximately 62% of the energy usage from plants in the 

supply chain.  For metrics that are not totaled on the right-hand end of the SC Sus-VSM, 

comparisons between plants can illuminate potential problem areas, such as a diversity 

ratio of 25% at the wheel and tire plant compared to 70% at the OEM.  Once the SC Sus-

VSM is built, problem identification of this nature is straightforward and quickly 

performed, showing the effectiveness of the metrics and visuals developed for the SC 

Sus-VSM.  After identifying these problems and implementing improvements, another 

SC Sus-VSM would be created and the methodology performed iteratively, promoting 

continuous sustainability improvement in the supply chain. 
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 Due to the simplicity of the hypothetical supply chain considered, applying SC 

Sus-VSM was straightforward and presented few difficulties.  A potential challenge that 

could be encountered when applying SC Sus-VSM, however, is effectively mapping a 

complex supply chain with numerous branches.  For this case study, a OEM with three 

feeder plants was considered and presented little difficulty, but mapping additional feeder 

plants would negatively impact the legibility and usefulness of the SC Sus-VSM, as the 

map would be cluttered and difficult to follow.  Methods of overcoming this challenge 

might include consolidating plants to reduce the number of branches or excluding minor 

feeder plants. 

 

5.3 Case Study Simulation Model 

 The case study bicycle supply chain was modeled as three feeder plants flowing 

to the OEM where the frame manufacture and final assembly take place, as shown in 

Figure 5.3.  The drive train, seat, and the wheels and tires are manufactured in the three 

feeder plants and shipped to the OEM via truck.  Each plant in the supply chain is 

simulated using a sub-model containing the basic manufacturing processes with the 

running averages of the energy usage, water usage, and GHG emissions per entity 

displayed below each plant in the supply chain model.  The feeder plant simulation sub-

models are shown in Figures 5.4 - 5.6, where more details are discussed. 
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Figure 5.3: Simulation Model of Case Study Supply Chain 

  

 Figure 5.4 shows the simulation sub-model for the drive train manufacturing 

plant, where links for the chain are punched using a press, and then linked together to 

form the chain.  The sub-model first creates the entity for the drive train which then 

undergoes the punch press process, after which the metric values are recorded for the 

entity in the record sub-model, which is discussed later in this section.  After recording 

metric values, the entity passes through a decision box where defective parts are 

identified and disposed.   The parts are next assigned a number to facilitate part matching 

for final assembly at the OEM.  Parts are then routed through the chain assembly process, 

metrics are recorded, and completed drive trains move to the Transport 1 sub-model.  
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Due to software limitations, a single entity for the punch press does not represent a single 

chain link, but represents the number of links necessary to create a single chain. 

 

Figure 5.4: Drive Train Feeder Plant Simulation Sub-Model 

 

 Figure 5.5 details the simulation sub-model where the bicycle seats are 

manufactured.  The seat entities are created and assigned a number for part matching 

during final assembly before undergoing the seat frame manufacturing process.  The 

entities continue through a decision box to remove defective parts and are then routed 

through the fabric and padding process to complete the bicycle seat.  Defective seats are 

the disposed using another decision box before moving to the Transport 2 sub-model. 
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Figure 5.5: Seat Feeder Plant Simulation Sub-Model 

 

 The wheel and tire manufacturing plant sub-model is more complex than the other 

feeder plants, as shown in Figure 5.6.  In the top branch, the tire entities are created and 

assigned a number to be matched with wheel entities later in the plant, and then sent 

through the tire manufacture process.  After metric values are recorded, defective tires are 

disposed using the decision box while correct tires are sent to the match box to be paired 

with wheels.  In the other branch, the wheel entities are created also assigned a number 

for matching before going through the manufacturing process for the hub, rim, and 

spokes.  Defective parts are disposed while correct parts continue to the wheel assembly 

process after which defective wheels are again disposed before flow continues to the 

match box.  Once a tire and wheel have been matched, they are permanently batched 

together and assigned a new number for matching during the final assembly before 

undergoing the wheel and tire assembly process.  Finally, defective assemblies are 

discarded while correct wheel and tire assemblies continue to the Transport 3 sub-model. 
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Figure 5.6: Wheel and Tire Feeder Plant Simulation Sub-Model 
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 Due to the large number of processes, the simulation model for the OEM was 

divided into three sub-models as shown in the simple map in Figure 5.7.  The first sub-

model contains the processes for manufacturing the bicycle frame, followed by the sub-

model where the frame and seat are assembled together.  The final sub-model contains 

the drive train and wheel installation to finish the final bicycle assembly before leaving 

the OEM for shipment.  In Figure 5.8, a screenshot of the simulation model for the OEM 

is presented, while Figures 5.9 - 5.11 detail the three sub-models within the OEM. 

 

 

Figure 5.7: OEM Sub-model map 

 

 

 

Figure 5.8: OEM Simulation Sub-Model 

 

 

 Figure 5.9 presents the frame manufacture sub-model within the OEM.  The sub-

model first creates the frame entity and assigns a number for matching during final 
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assembly before continuing to the tube drawing process, after which defective tubes are 

disposed.  The parts continue to the frame assembly process where the tubes are welded 

together to create the bicycle frame, after which defective frames are removed and the 

correct frames are sent to the painting process, where the frames are painted and then 

dried in an oven.  Finally, frames with defective painting are discarded and the usable 

frames continue to the seat and frame assembly sub-model. 
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Figure 5.9: Frame Manufacture Sub-model in OEM 
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 Figure 5.10 details the frame and seat assembly sub-model in the OEM, which 

starts by matching and batching frames from earlier in the OEM with seats that have been 

transported from the seat manufacturing plant.  After being paired together, numbers are 

assigned for matching with drive trains and wheels later in the plant, and then sent 

through the frame and seat assembly process.  This sub-model also contains the decal 

application  process, where decals are applied to the frame of the bicycle, after which 

defective assemblies are discarded and proper assemblies continue to the drive train and 

wheel installation sub-model. 

 

 

Figure 5.10: Frame and Seat Assembly Sub-model in OEM 

 

 The drive train and wheel installation sub-model is shown in Figure 5.11, starting 

with matching frames from earlier in the OEM with drive trains from the feeder plant.  
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The match process box is shown in Figure 5.8 in an effort to reduce confusion with 

process connector lines.  After being matched and assigned a new number for later 

assembly, the parts continue through the drive train installation process and the defective 

assemblies are disposed.  These assemblies are then matched and batched with wheel and 

tire assemblies from the feeder plant and sent through the wheel installation process, 

completing the bicycle assembly.  Defective products are disposed, and usable bicycles 

are shipped to the customer.  

 

 

Figure 5.11: Drive Train and Wheel Installation Sub-model in OEM 

 

 Figure 5.12 details the Transport 1 sub-model which is identical to the other two 

transport sub-models.  Parts from the feeder plants enter the sub-model and are batched 

together based on the capacity of the transport being used.  The batches continue through 

the transport process box modeled as a seize-delay-release box, before being separated 

into individual units again.  The individual units then continue to the OEM for final 

assembly.   
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Figure 5.12: Example Transport Simulation Sub-Model 

 

 Figure 5.13 shows the punch press record sub-model as an example of how the 

metric values are recorded in the simulation.  Each record box corresponds to a variable 

assigned to each entity for the process to capture the sustainability metrics.  To capture 

the number of injuries and product defects, each entity is assigned a value of 0 or 1 based 

on whether an injury or defect occurs.  The record boxes for these metrics count the total 

number of injuries and defects, which allows the injury rate and product defect ratio to be 

calculated. 

 

Figure 5.13: Sample Record Simulation Sub-Model from Case Study 
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 Figures 5.3 - 5.13 illustrate the overall layout of the simulation model for the 

bicycle supply chain.  In the model, defective products are disposed, but would likely 

undergo rework or recycling and enter the value stream again, but the simulation model 

does not capture this rework.   

 

 The simulation model was used to simulate the current state for the bicycle supply 

chain based on the parameters discussed in Section 5.1.  Based on 8-hour work shifts 5 

days a week, the simulation was run for 10 replications using a 6 month warm-up period 

and collecting data for a 12 month period.  The reasoning for selecting the number of 

replications is provided later in this work.  Using the current state SC Sus-VSM map 

developed in Section 5.2, three interventions to improve supply chain sustainability 

performance were identified, with each intervention focusing on a single aspect of 

sustainability.  The economic intervention focused on reducing inventory levels at the 

drive train plant by reducing the chain assembly cycle time as shown in Table 5.1, as well 

implementing a truck with twice the capacity but reduced fuel-efficiency for Transport 1.  

The environmental intervention focused on reducing the painting process energy usage 

by 35% at the cost of increased cycle times as shown in Table 5.1.  Finally, the societal 

intervention reduces the product defect ratio at the wheel and tire plant to 0.3% for all 

processes within the plant. 

 

 In addition to considering the interventions individually, the economic and 

environmental, economic and societal, and the environmental and societal intervention 

combinations were also considered to investigate possible interactions between 
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interventions.  Including the original current state scenario, a total of seven different 

scenarios were considered and simulated using the same run parameters (8-hr shifts, 5 

days/wk, 6-month warm-up, 12- month run, and 10 replications). 

 

 To select the appropriate number of replications for the simulation model, an 

initial set of 8 replications was run for the current state simulation model and the total 

supply chain lead time as well as the half-width was noted.  Using the initial number of 

replications (n0), the total lead time half-width determined from the 8 replications (h0), 

and the desired half-width for the total lead time (h), the required number of replication 

(n) can be determined using Equation 5.1 (Kelton et al., 2009). 

 

𝑛 ≅ 𝑛0
ℎ02

ℎ2
= 8 × 8.9362

82
= 9.98 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠  (5.1) 

 

The half-width calculated from the Arena software is based on a 95% confidence interval, 

therefore, to achieve a half-width of 8 days for the total lead time based on a 95% 

confidence interval, a total of 10 replications are required. 
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CHAPTER VI  

Case Study Analysis and Results 

 

6.1 SC Sus-VSM Results 

 The first part of the case study dealt with the application of the SC Sus-VSM 

methodology to the simulated current state supply chain.  The SC Sus-VSM for the case 

study was shown in Figure 4.6.  The main goal of developing the SC Sus-VSM is to 

assess the supply chain and identify improvement opportunities for its sustainability 

performance.  The SC Sus-VSM successfully accomplished this goal and was used to 

identify the three interventions used for the remainder of the case study.  When data is 

available, the SC Sus-VSM can be easily developed using the visuals selected for the 

metrics.  The metric visuals resulted in an understandable and uncluttered SC Sus-VSM 

where the product flow was easily traced through the supply chain.  Because of the high-

level supply chain view captured in SC Sus-VSM, the amount of detailed information 

that can be captured is limited.  However, the SC Sus-VSM was useful in identifying 

problem locations which would most benefit from further investigation into the source of 

the problem. 

 

6.2 Case Study Data Analysis 

 Based on the results of the SC Sus-VSM, economic, environmental, and societal 

interventions were determined and simulated using the DES model to build the case 

study.  The analysis for the case study was performed using the methodology described in 

Phase 4 of Chapter IV.  While the data for most metrics could be extracted from the 
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simulation, the WIP needed to be calculated using the queue data and cycle times for 

each process in the supply chain.  The data for all the metrics (14) in each of the seven 

scenarios is compiled in Table 6.1, which also contains the normalized metric values as 

described in the methodology.  The changes made for each intervention are described at 

the end of Chapter V. 

 

Using the results from Table 6.1 and the methodology from Chapter IV, the normalized 

metrics were then weighted and aggregated together to determine the sub-index scores.  

Once this was completed, the sub-index scores were weighted and aggregated together to 

calculate the overall sustainability index for the supply chain.  For this case study, equal 

weighting was used for both steps to provide transparency to what was occurring.  The 

results from these steps can be seen in Table 6.2.  
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 Material Usage lbs 20.8 20.8 20.8 20.8 20.8 20.8 20.8
Water Usage gal 84.5 84.9 89.1 84.3 89.2 84.4 89.6
Energy Usage kWh 257.2 265.0 253.3 257.6 262.6 266.7 251.8

GHG Emissions lbs 514.6 529.8 499.2 502.6 521.4 530.9 501.8
Supply Chain Lead Time days 437.4 287.8 467.3 438.5 316.9 286.3 467.0

Value-added/Lead Time Ratio % 0.060% 0.089% 0.057% 0.062% 0.082% 0.090% 0.059%
Transport Time/Distance min/mi 160 min/125mi 160 min/125mi 160 min/125mi 160 min/125mi 160 min/125mi 160 min/125mi 160 min/125mi

WIP days 436.8 287.2 466.7 437.9 316.3 285.7 466.4
Product Defect Ratio #/wk 28.8 28.8 27.9 26.2 28.6 26.3 25.2

Recordable Injury/Sickness Rate #/wk 7.0 6.8 6.8 6.9 6.8 7.3 6.7
Employee Training Intensity hr/wk 115 115 115 115 115 115 115

Hazardous Chemicals/Materials - 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Local Community Hiring Ratio % 60% 60% 60% 60% 60% 60% 60%

Diversity Ratio % 52.50% 52.50% 52.50% 52.50% 52.50% 52.50% 52.50%

 Material Usage lbs 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Water Usage gal 5.00 4.98 4.73 5.01 4.72 5.00 4.70
Energy Usage kWh 5.00 4.85 5.08 4.99 4.90 4.82 5.11

GHG Emissions lbs 5.00 4.85 5.15 5.12 4.93 4.84 5.12
Supply Chain Lead Time days 5.00 6.71 4.66 4.99 6.38 6.73 4.66

Value-added/Lead Time Ratio % 5.00 7.41 4.74 5.13 6.82 7.45 4.87
Transport Time/Distance min/mi 5.00 5.00 5.00 5.00 5.00 5.00 5.00

WIP days 5.00 6.71 4.66 4.99 6.38 6.73 4.66
Product Defect Ratio #/wk 5.00 4.99 5.14 5.45 5.04 5.43 5.61

Recordable Injury/Sickness Rate #/wk 5.00 5.16 5.11 5.05 5.15 4.77 5.19
Employee Training Intensity hr/wk 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Hazardous Chemicals/Materials - 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Local Community Hiring Ratio % 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Diversity Ratio % 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Societal

Environmental

Economic

Societal

Environmental

Economic

Economic 
Intervention

Environmental 
Intervention

Unit Current State

Measured Value

Economic-
Environmenal

Societal 
Intervention

Economic-
Societal

Environmental-
Societal

Individual Metrics

Normalized Values

Current StateIndividual Metrics Unit Economic 
Intervention

Environmental 
Intervention

Societal 
Intervention

Economic-
Environmenal

Economic-
Societal

Environmental-
Societal

Table 6.1: Measured and Normalized Metric Values from Case Study 
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Table 6.2: Sustainability Index with Sub-indices 

 

 Examining the sustainability index results in Table 6.2 shows the effect of the 

interventions on supply chain sustainability performance.  For the intervention 

combinations, the sub-index scores seem to be an equal combination of the individual 

intervention scores in most cases, although one intervention appears to have a greater 

effect than the other in some cases.   

 

 Examining the data collected in Table 6.1 for each metric provides more 

information on the intervention effect on the sustainability index. In the economic 

intervention, which showed the second highest sustainability index score, the WIP for the 

supply chain was reduced by approximately 35%, resulting in an improved lead time and 

value added to lead time ratio.  With three of four economic metrics being improved, the 

increased score in the economic sub-index is expected.  However, the reduced fuel 

mileage caused by the increased truck capacity results in an increase in energy 

5.48 4.97
Sustainability 

Index
5.00 5.47 4.93 5.05 5.35

5.04 5.08 5.03 5.03 5.13

5.02 6.14 6.48 4.80

4.92 4.99 5.03 4.89 4.92

4.76

4.98

Economic

Environ

Societal

5.00 6.46

5.00 5.02

5.00

Econ-
Societal

Environ-
Societal

Sub-index
Current 

State
Econ 

Intervention
Environ 

Intervention
Societal 

Intervention
Econ-

Environ
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consumption and GHG emissions, causing a small decrease in the environmental sub-

index.   

 

 For the environmental intervention, which resulted in the lowest score, there is a 

noticeable reduction in the energy consumption and GHG emissions, resulting in an 

improvement in the environmental sub-index.  However, there is approximately a 6.5% 

increase in supply chain WIP, causing negative effects to both the lead time and the value 

added/lead time ratio, resulting in a significant decrease in the economic sub-index.   

 

 The societal intervention resulted in only small improvements to the sustainability 

index, but seemingly had no negative effects.  Closer examination shows an approximate 

improvement of 9% to the product defect ratio metric, as well as a small improvement to 

the supply chain WIP, with corresponding positive effects to the lead time and value 

added/lead time ratio.  These changes result in small improvements in all three 

sustainability aspects, with no drawback being indicated.  Given that the financial cost of 

implementing interventions is not considered in SC Sus-VSM or the simulation, this 

improvement without any drawback is likely unrealistic. 

 

 The economic and environmental intervention combination shows a significant 

improvement in the sustainability index, and the economic sub-index score is improved 

over the current state, but it appears to be affected more by the economic portion of the 

intervention compared to the environmental portion.  The causes for this are not readily 
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identifiable. The environmental sub-index is worse than in either individual intervention, 

although this is possibly due to variability in the simulation.   

 

 The economic and societal intervention combination produced the greatest benefit 

to the sustainability index score.  For the economic and societal intervention, the sub-

index scores appear to be a straightforward combination of the two interventions, with 

neither having a larger effect.  However, the environmental sub-index score is again 

lower than either individual intervention.  While a more neutral score would be expected, 

this score could still be caused by variability within the simulation. 

 

 The environmental and societal intervention combination resulted in a slightly 

negative effect on the sustainability index score.  The environmental and societal 

intervention also appears to be a more straightforward combination of the two individual 

interventions, but as with the other two intervention-pairs, the environmental sub-index 

score is lower than either of the individual interventions.  In fact, while the environmental 

and societal intervention both have a positive effect on the environmental sub-index 

score, the intervention pair has a small negative impact.  Examining Figure 6.7 from the 

DOE analysis discussed in section 6.3 indicates that there is a negative interaction 

between the environmental and societal interventions which could be causing unexpected 

behavior. 
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6.3 Design of Experiments-based Analysis 

 Once the sustainability index has been determined for all interventions and 

intervention pairs, a DOE style analysis was performed as described in the methodology 

to examine the sensitivity of the supply chain sustainability to the interventions that were 

considered.  A 95% confidence interval was used for this case study. The seven 

treatments considered were entered into the test matrix shown in Table 6.3.  For each 

treatment, a '+' indicates that an intervention is present, while a '-' indicates the 

intervention is not present.  For interactions, the sign is the product of the signs for the 

individual interventions; so for AB in the current state, the product of two '-' is a '+'. 

 

 Using the absolute effects and the decision limit from Table 6.3, a Pareto chart 

was built in Figure 6.1, with horizontal axis labeled according to the letters assigned to 

each intervention in the test matrix. 

 

 

Figure 6.1: Pareto Chart for Case Study Interventions and Intervention Pairs 
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Intervention Econ Environ Societal 
Econ-

Environ
Econ-

Societal
Environ-
Societal

Treatment A B C AB AC BC y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y_bar S2

Current - - - + + + 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 0.00000
Economic + - - - - + 5.52 5.44 5.52 5.44 5.41 5.45 5.51 5.44 5.46 5.48 5.47 0.01341
Environ - + - - + - 4.92 4.96 4.92 4.96 4.89 4.91 4.95 4.91 4.96 4.92 4.93 0.00580
Societal - - + + - - 5.05 5.06 5.05 5.06 5.01 5.07 4.98 5.04 5.08 5.07 5.05 0.00841

Econ-Environ + + - + - - 5.37 5.33 5.37 5.33 5.35 5.32 5.36 5.35 5.39 5.36 5.35 0.00421
Econ-Soc + - + - + - 5.48 5.50 5.48 5.50 5.44 5.50 5.43 5.44 5.52 5.46 5.48 0.00865

Environ-Soc - + + - - + 4.99 4.97 4.99 4.97 4.93 4.94 4.97 4.94 5.05 4.97 4.97 0.01056
Σy+ 158.00 149.49 159.89 154.39 154.05 154.00 Se = 0.0854

Σy- 204.44 212.95 202.55 208.05 208.39 208.44 σeff = 0.0204
y+_bar 5.27 4.98 5.33 5.15 5.14 5.13 df = 63
y-_bar 5.11 5.32 5.06 5.20 5.21 5.21 t = 1.998

E 0.16 -0.34 0.27 -0.05 -0.07 -0.08
|E| 0.16 0.34 0.27 0.05 0.07 0.08 DL = 0.0408

Sustainability Index

Table 6.3: Test Matrix for Case Study Sustainability Index 
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According to the Pareto chart, the environmental intervention is the most significant, 

followed by the societal and economic interventions.  The intervention combination pairs 

are statistically significant, but less significant than the individual interventions, which 

would be expected.  To further analyze the sensitivity of the sustainability index to the 

interventions, response plots were created following the methodology described in 

Chapter IV.  Table 6.4 shows the response values and the effective standard deviation 

used for each plot, while Figures 6.2-6.4 contain the response plots for the interventions 

and Figures 6.5-6.7 contain the response plots for the interaction pairs. 

 

Table 6.4: Response Plot Values and Effective Standard Deviation for Case Study 

 

 

Factor
Response/

Average
Interaction

Response/
Average

Interaction
Response/

Average
Interaction

Response/
Average

A+ 5.43 A+B+ 5.35 A+C+ 5.48 B+C+ 4.97
A- 4.99 A+B- 5.47 A+C- 5.41 B+C- 5.14
B+ 5.09 A-B+ 4.95 A-C+ 5.01 B-C+ 5.26
B- 5.25 A-B- 5.02 A-C- 4.97 B-C- 5.23
C+ 5.16 - - - - - -
C- 5.19 - - - - - -

Factor
Response/

Std. Dev
Interaction

Response/
Std. Dev

Interaction
Response/

Std. Dev
Interaction

Response/
Std. Dev

Se = 0.0854 A+B Se = 0.09 A+C Se = 0.09 B+C Se = 0.08
σeff = 0.0204 A+B σeff = 0.03 A+C σeff = 0.03 B+C σeff = 0.03

- - A-B Se = 0.08 A-C Se = 0.08 B-C Se = 0.09
- - A-B σeff = 0.02 A-C σeff = 0.02 B-C σeff = 0.03
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Figure 6.2: Economic Intervention (A) Response Plot 

  

Figure 6.3: Environmental Intervention (B) Response Plot 

  

Figure 6.4: Societal Intervention (C) Response Plot 
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Figure 6.5: Economic and Environmental (AB) Intervention Response Plot 

 

  

Figure 6.6: Economic and Societal (AC) Intervention Response Plot 

  

Figure 6.7: Environmental and Societal (BC) Intervention Response Plot 
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 The error bars for a few of the response plots are not visible due to the small 

deviation.  The slope of the trend line is the main indicator of how sensitive the 

sustainability index is to the intervention being plotted.   For this case study, the plots 

show that the sustainability index is most sensitive to the environmental and the 

economic interventions.  However, while the economic intervention results in a positive 

effect on the sustainability index, the environmental intervention results in a negative 

effect.  The sustainability index is least sensitive to the societal intervention, showing a 

small negative or net-zero effect within reasonable error.  In Figure 5.18, the plot 

indicates that there is an interaction between the environmental and societal interventions, 

as the societal intervention has five times the effect with the environmental intervention 

in place as it does with no other intervention involved.  

 

 In trying to establish an approach towards improving supply chain sustainability, 

it is necessary to determine which interventions should be pursued first, so as to achieve 

the greatest benefit.  For the case study presented in this paper, performing the economic 

intervention clearly provided the greatest improvement to the sustainability index.  Given 

that the main concern for most companies is improving profits and reducing costs and 

waste, performing economic interventions first is a reasonable approach.  Following the 

same reasoning, the societal intervention should be performed next, as it provided small 

improvements in all sub-indices of the sustainability index.  Due to the overall decrease 

in the sustainability index for the environmental intervention, it might be questioned 

whether the intervention should be performed at all.  With environmental legislation 

requiring reductions in GHG emissions, however, the implementation of environmental 
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interventions will likely still be required.  Also, given the downstream location of the 

environmental intervention in this case study, the negative effects of the increased 

painting oven cycle time are likely more prominent than they might be at a different 

location in the supply chain.  From the intervention pair response plots, the only plot that 

indicates an interaction between interventions is the economic-societal plot, and that is a 

positive interaction.  This information indicates that companies should not be greatly 

concerned with detrimental effects caused by implementing multiple interventions.  

Given the complex nature of these interactions, however, they should be monitored in 

future case studies to verify this tendency. 

 

 From this case study, pursuing economic interventions should be the first priority, 

followed by societal interventions, and finally environmental interventions.  However, 

due to environmental legislation, it may be necessary to pursue environmental 

interventions before societal.  Further case studies should be performed to verify that this 

general approach provides the greatest benefit towards sustainability, as the location of 

the interventions and the type of supply chain being considered could greatly affect how 

the supply chain reacts to those interventions. 
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CHAPTER VII  

Conclusions and Future Work 

  

7.1 Conclusions 

 The first research question raised in this work considered how Sus-VSM could be 

adapted and applied at the supply chain level to identify potential sustainability 

improvements.  Identifying relevant and measureable metrics that adequately captured 

the sustainability of the supply chain while retaining metrics from standard Sus-VSM 

when feasible was the first challenge faced.  After reviewing relevant literature, a total of 

14 metrics were decided upon.  The economic and environmental metrics from standard 

Sus-VSM were used with little modification, although a metric to capture GHG 

emissions was added.  Only one societal metric was retained from Sus-VSM, as the other 

metrics were not relevant at the supply chain level.  Five additional societal metrics were 

selected that were more easily measured and took different stakeholders into account, 

including employees, customers, the local community, and the company itself.  Visuals 

for these metrics were adapted from Sus-VSM when possible, although new visuals were 

created for GHG emissions and the societal metrics.  These visuals allowed for a clear 

and uncluttered SC Sus-VSM. 

  

 Another aspect of the question is how SC Sus-VSM can be applied to more 

complex supply chains.  For a relatively small number of branches, SC Sus-VSM is 

easily applied, but an increased number of branches results in an excessively cluttered 

map.  While further verification is necessary, the SC Sus-VSM application could be 
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focused to important locations in the supply chain to simplify the map, similar to the 

method used by Brown et al. (2014).  With the simplified SC Sus-VSM, locations for 

potential sustainability improvements could still be identified, making SC Sus-VSM a 

useful tool at the supply chain level. 

 

 One difficulty faced in applying SC Sus-VSM is the availability of data for 

completing the map.  In a supply chain where multiple companies are involved, there will 

be an unwillingness to share information and data due to confidentiality concerns.  For 

large companies with significant influence over other companies in the supply chain, this 

difficulty may be less problematic.  In order to alleviate this difficulty in obtaining data, 

SC Sus-VSM can be applied to a hypothetical supply chain to convince companies to 

share information by highlight the potential benefits.  Additionally, a simulation model 

might also provide methods of alleviating this difficulty, as discussed later in this section. 

  

 The second research question considers which types of interventions should be 

implemented first to achieve the maximum possible benefit to supply chain sustainability 

performance.  From the case study, the economic-societal intervention provides the most 

benefit, followed closely by the economic intervention.  The environmental intervention 

resulted in a negative impact on the sustainability index due to increased amounts of 

WIP.  Implementing the intervention at a different location with less potential to create a 

bottleneck may have resulted in a substantially changed outcome.  The societal 

intervention produced modest improvements in all aspects of sustainability.  From the 

case study, a general approach of implementing economic interventions first, followed by 
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societal and finally environmental interventions was developed.  This approach needs 

further verification through future case studies with different supply chain configurations 

and different interventions being implemented, but provides a starting point for 

companies to improve supply chain sustainability performance.  In this case study, equal 

weighting was used when aggregating the metrics in the sustainability index; if a user 

wishes to emphasize certain aspects sustainability performance through weighting, this 

approach may require appropriate adaptation. 

 

 In addition to only considering a simple supply chain for one product, the case 

study also does not consider the cost of implementing the intervention considered.  This 

could cause some results to be unrealistic and is particularly noticeable for the societal 

intervention, which provides supply chain sustainability performance benefits for all 

three aspects of sustainability with no apparent drawbacks.  Incorporating the 

implementation cost for the interventions into the study would provide more accurate 

results that can be used to improve the general approach toward sustainability 

improvements. 

 

 The third research question deals with what advantages are gained from using 

DES in conjunction with SC Sus-VSM to assess the sustainability performance of a 

supply chain.  One of the main problems with assessing supply chain sustainability 

performance is the ability to collect data.  Unless a company that closely manages its 

supply chain is being considered, collecting information necessary to build the SC Sus-

VSM is difficult, as feeder companies will be unwilling to share data due to 
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confidentiality issues.  However, the DES model can be used to help deal with this 

problem in a number of ways. First, if only a portion of the needed data is missing, the 

simulation can be used along with a reasonable estimate of the data to simulate and assess 

the supply chain.  Also, simulating the supply chain allows a clearer illustration of how 

implementing sustainability interventions can benefit the entire supply chain, including 

the feeder plant companies.  With a clearer picture of the potential benefits, the feeder 

companies might be willing to cooperate and supply the needed data themselves, 

removing the need for estimation. 

   

 The DES model also greatly aids the creation of future state maps for the supply 

chain, as it allows changes caused by interventions to properly be taken into account.  

Without the simulation model, the future state map would require estimations of what 

might occur with each intervention, and due to the complex nature of the supply chain, 

this would be almost impossible.  Also, by aiding future state map creation, the 

simulation allows many different interventions to be considered quickly and efficiently.  

Each intervention can be entered into the DES model and simulated to assess the 

sustainability performance for that intervention.  This allows a company to weigh various 

options and implement the improvements that provide the greatest benefit to the supply 

chain sustainability performance.  Overall, the simulation integrates well with SC Sus-

VSM, allowing quicker and more accurate assessment of supply chain sustainability, 

despite issues caused by supply chain complexity and lack of data. 
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 One of the major limitations to the DES model was the difficulty encountered in 

modeling the metrics to assess the societal aspect of sustainability.  Metrics such as the 

product defect ratio and injury ratio can be related to the process cycle times, but there is 

a difficulty in connecting these metrics to the other aspects of sustainability, so variations 

will not cause the appropriate changes in other aspects.  For the product defect ratio this 

is partially overcome by removing defective products from the value stream, which 

affects the amount and location of WIP that occurs in the supply chain.  However, the 

injury ratio lacks this type of connection, and the other societal metrics are difficult to 

model in the simulation in any form.  Finding methods of modeling all the societal 

metrics such that variations have the appropriate effect in all sustainability aspects would 

greatly improve the usefulness of the DES model. 

 

 The fourth and final research question considered in this work deals with what 

advantages can be gained by using a DOE style analysis together with SC Sus-VSM.  The 

main advantage of a DOE analysis is the ability to determine the sensitivity to 

interventions on the supply chain sustainability performance.  Using the data from the 

sustainability index, the DOE analysis showed which intervention and intervention pairs 

had significant effects.  The individual interventions in the case study were more 

significant than the intervention combinations.  This tendency is present in the real world, 

although an intervention pair may be more significant than a individual intervention on 

occasion. 
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 For the significant interventions, the response plots show further detail and 

indicate the sensitivity of the sustainability performance to the intervention based on the 

slope of the trend line.  Furthermore, the response plots for the intervention pairs also 

indicate whether there is an interaction between the two interventions.  Failure to identify 

these interactions can lead to unexpected results when interventions are implemented.  By 

determining the sensitivity of the supply chain sustainability performance to various 

interventions, companies can allocate resources towards interventions with the highest 

sensitivity.  Also, using information from the economic, environmental, and societal sub-

indices in the sustainability index, a more detailed DOE analysis can be performed for 

each of those sub-indices, allowing focus on a particular area of sustainability 

performance.  Overall, while some results from the DOE analysis can be seen directly in 

the sustainability index, other results such as interactions between interventions can only 

be clearly seen using the DOE analysis. 

 

 As discussed in the methodology, a limitation of the DOE style analysis is the 

randomness present in factors that would be held constant in a typical DOE analysis.  To 

eliminate this problem, a simulation model could be used and the factors held constant in 

the simulation, but the ability of the model to present the real world scenario being 

considered would be reduced.  For this reason, it was decided to use the average values 

for cycle times, water usage, etc., to reduce but not eliminate the randomness in the 

factors.  While this allows the DES model to more accurately represent the supply chain, 

it does increase the amount of experimental noise present in the results of the DOE style 

analysis. 
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 Overall, there is significant work left to be performed to finish validating the 

usefulness of the SC Sus-VSM tool and accompanying DES model, but there are some 

general observations that can be made.  First, SC Sus-VSM greatly benefits from the DES 

model, as the model provides a level of detail that is not typically captured in the SC Sus-

VSM, but provides further insight into how the supply chain sustainability performance 

can be improved.  However, a less detailed examination of the supply chain can still be 

performed quickly using the SC Sus-VSM, so the assessment speed is not greatly 

inhibited. This indicates that mapping applications can greatly benefit from implementing 

simulation.  Additionally, the societal metrics used in SC Sus-VSM were useful in 

assessing the overall sustainability of the supply chain, and while the metrics were 

difficult to include in the DES model, they functioned well in the SC Sus-VSM itself.  

These societal metrics can provide a starting point for other attempts to assess the 

sustainability of supply chains. 

 

7.2 Future Work 

 Performing additional case studies with supply chains of varying complexity and 

product types is the most important work moving forward. This would verify not only the 

application of SC Sus-VSM, but the benefits from implementing DES and a DOE style 

analysis with SC Sus-VSM, as well as further establish a general approach to 

implementing interventions.  Additionally, a literature study regarding the weighting of 

sustainability metrics would allow a weighting baseline to be established for the metrics 

used in SC Sus-VSM, improving the value of the tool to companies lacking knowledge to 

decide metric weightings.  Research into integrating an optimization model with the data 
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collected in the sustainability index would also be useful for applying SC Sus-VSM.  

After simulating and collecting data for several potential interventions to the supply 

chain, an optimization model could include intervention costs and project budget to 

determine the optimal intervention for the supply chain sustainability performance.  

Incorporating the implementation cost of interventions into the methodology would also 

improve the value of SC Sus-VSM.  Finally, since not every societal metric was capable 

of being modeled in the simulation, research into alternate metrics or methods of altering 

the current metrics could allow a greater number of metrics to be simulated in the DES 

model.   
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