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ABSTRACT OF DISSERTATION 
 
 
 
 

RENAL HUMORAL, GENETIC AND GENOMIC MECHANISMS UNDERLYING 
HERTIABLE HYPERTENSION 

 
 
In spite of significant progress in our knowledge of mechanisms that control 
blood pressure, our understanding of the pathogenesis of hypertension, its 
genetics, and population efforts to control blood pressure, hypertension remains 
the leading risk factor for mortality worldwide.  It’s estimated that 1 out of every 3 
adults has hypertension.  Hypertension is a major risk factor for cardiovascular 
disease and stroke, and is considered a primary or contributing cause of death to 
more than 2.4 million US deaths each year.   Although spontaneous hypertension 
has been the subject of substantial research, many critical questions remain 
unanswered.   
 
To investigate mechanisms underlying spontaneous hypertension, a unique 
rodent breeding approach was used to isolate nuclear and mitochondrial genes 
contributing to the disease.  By diluting the nuclear genome of the Spontaneously 
Hypertensive Rat on a normotensive Brown Norway background while 
maintaining the SHR mitochondrial genome, I investigated both intrinsic and 
extrinsic mechanisms of the kidney and its relationship to hypertension.  Chapter 
2 documents the dominance of the hypertensive phenotype in our rodent colony, 
despite the dilution of the nuclear genome of the SHR.  Chapter 3 presents data 
indicating that the renin-angiotensin system, particularly the location and 
abundance of the AT1 receptor may play an important role in the manifestation of 
spontaneous hypertension.   Chapter 4 presents that rats in our rodent colony 
exhibited normal pressure-natriuresis and kidney function; however, hypertensive 
rats had a reduced ability to sense orally ingested sodium chloride, thus 
necessitating chronic elevations of arterial pressure in order to maintain sodium 
balance.  This chronic pressure-natriuresis relationship shifts the renal function 
curve to the right, thus sustaining elevated blood pressure.  Chapter 5 presents 
data that genes important for oxidative phosphorylation may play a critical role in 
the development of hypertension.  Both nuclear and mitochondrial oxidative 



 
 

phosphorylation genes were downregulated in hypertensive rats compared with 
normotensive rats.  Data presented in every chapter highlights the importance of 
the kidney in the pathogenesis of hypertension.  Humoral, genetic and genomic 
mechanisms of the kidney appear to play a dominant role in the development 
and maintenance of the disease.   
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CHAPTER 1 

KIDNEY, LONG-TERM CONTROL OF ARTERIAL PRESSURE AND 
HYPERTENSION 

 

Jason Andrieu Collett 

 

Abbreviations used: BP, blood pressure; TPR, total peripheral resistance; CO, 
cardiac output; RAS, Renin-Angiotensin System, ECFV, extracellular fluid 
volume; AVP, arginine vasopressin;  MD, macula densa’ cTAL, cortical thick 
ascending limb; JGA, juxtaglomerular apparatus; GFR, glomerular filtration rate; 
Ang II, angiotensin II; RPP, renal perfusion pressure; RVLM, rostral ventrolateral 
medulla; NTS, nucleus of the solitary tract; RSNA, renal sympathetic nerve 
activity; RBF, renal blood flow; SNA, sympathetic nerve activity; Ang, 
angiotensin; ACE, angiotensin-converting enzyme; AT1(r), angiotensin II type 1 
receptor; AT2(r), angiotensin II type 2 receptor; CVLM, caudal ventrolateral 
medulla; ENaC, epithelial sodium channel; SFO, subfornical organ; OVLT, 
organum vasculosum of the lamina terminalis; MnPO, median preoptic nucleus; 
PVN, paraventricular nucleus of the hypothalamus; ADH, antidiuretic hormone; 
CVO, circumventricular organs; SON, supraoptic nucleus of the hypothalamus; 
ICV, intraerebroentricular; AP, area postrema; VSMC, vascular smooth muscle 
cells; CNS, central nervous system; ARB, angiotensin II receptor blocker; SHR, 
Spontaneously Hypertensive Rat; IV, intravenously; QTL, quantitative trait loci; 
CNV, copy number variant; OXPHOS, oxidative phosphorylation system; ROS, 
reactive oxygen species; nDNA, nuclear DNA; mtDNA, mitochondrial DNA; 
rRNA, ribosomal RNA; tRNA, transfer RNA; SNPs, single nucleotide 
polymorphisms; ETC, electron transport chain; HNF-1α, hepatocyte nuclear 
factor-1alpha; PGC-1α, Peroxisome proliferator-activated receptor gamma 
coactivator 1 alpha; NRF, nuclear respiration factor(s); Tfam, transcription factor 
A mitochondria; NO, nitric oxide; SOD, superoxide dismutase; NT, normotensive; 
HT, hypertensive;  
 

 

Keywords: Spontaneous hypertension, Renin-Angiotensin System, genomics, 
mitochondria, sympathetic nerve activity, kidney 

 

 

 

 



 

 
2 

 

 

1.1 Introduction 
 

Hypertension and the chronic elevation of blood pressure (BP) constitute a 

primary and significant factor in the development of cardiovascular disease.  

Despite major gains in the long-term treatment of hypertension, cardiovascular 

disease remains the number one cause of death and disability in developed 

countries.  For well over 50 years, scientists have uncovered several 

mechanisms believed to govern the long and short-term control of arterial 

pressure, with much debate on one major governing factor (Cowley 1992).   

Spontaneous hypertension, commonly referred to as essential or primary 

hypertension, is a rise in blood pressure of little known cause.  Spontaneous 

hypertension is a multifactorial disease which accounts for 95% of all cases of 

hypertension in humans.  There is a significant positive and continuous 

relationship between elevated BP and cardiovascular disease (stroke, heart 

failure, myocardial infarction), often resulting in renal disease and even death 

(Carretero and Oparil 2000).  Data from the National Health and Nutrition 

Examination Survey NHANES have indicated that 50 million or more Americans 

have high BP  warranting some form of treatment (Burt, Whelton et al. 1995).  

Worldwide prevalence estimates for hypertension may be as much as 1 billion 

individuals, and approximately 7.1 million deaths per year may be attributable to 

hypertension (Burt, Whelton et al. 1995).   
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Understanding the mechanisms for the long-term control of BP has important 

clinical significance.  Because movement-to-movement and long-term stability of 

arterial pressure is necessary for survival, mammals have evolved many 

redundant controllers that participate in both of these functions.  It is thought that 

the feedback control systems that provide rapid stabilization of arterial pressure 

are fundamentally different than those that determine the long-term level of 

arterial pressure.  Blood pressure, simply defined, is the pressure exerted upon 

the walls of blood vessels.  Figure 1.1 represents the mathematic representation 

(Ohm’s law) of blood pressure (BP=total peripheral resistance (TPR) X cardiac 

output (CO).  Arterial pressure is the consequence of several factors that can 

influence cardiovascular function including both renal intrinsic mechanisms as 

well as extrinsic mechanisms, such as the Renin-Angiotensin System (RAS) and 

the sympathetic nervous system. 
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1.2 The Kidney, Long-term Control of Blood Pressure and Hypertension 
 

It has been hypothesized that the “set point” for the long-term control of BP 

resides in the kidney (Guyton and Coleman 1968; Guyton, Coleman et al. 1972; 

GUYTON, COLEMAN et al. 1974).  In this model, the set-point of the chronic 

renal function curve (Figure 1.2) establishes the steady state relationship 

between renal perfusion pressure and urinary excretion of sodium and water, 

which in turn affects blood volume and CO (Figure 1.1).  This renal-body fluid-

pressure control system exhibits “infinite feedback gain”, i.e., BP will stabilize 

only when intake and output of sodium and water become exactly equal, which 

occurs at one pressure level for any given renal function curve and salt intake 

level (Guyton 1990).  The renal-BP set-point theory predicts that the kidney 

controls BP to maintain its own excretory function and that long-term regulation 

of blood volume and CO are paramount to the regulation of BP.   

 

The mechanism for pressure natriuresis and diuresis, developed in a theoretical 

analysis by Guyton and Coleman, provides the kidney with the long-term ability 

to detect and control arterial pressure (Guyton and Coleman 1968; Guyton, 

Coleman et al. 1972; GUYTON, COLEMAN et al. 1974).  These seminal works 

demonstrated that the mechanism of pressure natriuresis and diuresis is capable 

of determining the long-term level of arterial pressure.  Because the gain for the 

pressure-natriuresis relationship overrides all other regulatory systems in blood 

pressure control, the ultimate determinant of BP must be renal handling of 

sodium (Adamczak, Zeier et al. 2002). 
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The kidney exerts its powerful diuresis- natriuresis mechanism by both sensing 

total extracellular fluid volume (ECFV) and responding to renal perfusion 

pressure (Cowley 1992) (Figure 1.3).  The quantity of NaCl in the extracellular 

fluid compartment and the body’s efficient osmoregulatory system determine total 

ECFV.  The regulation of ECF osmolality by both the kidney and the brain, and 

the rate of fluid entering and exiting the body are important determinants in blood 

pressure regulation.  Osmoreceptors in the brain detect subtle changes in ECF 

sodium concentration and modify thirst and arginine vasopressin (AVP) release 

for restoration, conservation or contraction of body water (Andersson, Dallman et 

al. 1969; Vereerstraeten and Toussaint 1969). The mechanisms controlling 

sodium excretion also contribute importantly to the process of osmoregulation.  

The delivery of filtered sodium to the specialized cells of the renal macula densa 

(MD) is a major effector sensor for sodium loss in the body.  MD cells in the 

cortical thick ascending limb (cTAL) are the sensory element of the 

juxtaglomerular apparatus (JGA) and play an important role in the control of renal 

blood flow, glomerular filtration rate (GFR) and renin release by tubuloglomerular 

feedback (TGF), among other things (Sipos, Vargas et al. 2010).  It has been 

postulated that the MD cells sense Na+, Cl-, or a combination of both, however; 

Sipos et al.  (2010) demonstrated that the macula densa cells of the thick 

ascending limb are equipped with tubular-flow sensing mechanisms that 

contribute to MD cell function, renin release and TGF.   With increased plasma 

sodium filtered at the glomerulus, and more sodium (or chloride or flow) to the 
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MD, renin secretion from JGA is reduced.  Circulating levels of Angiotensin II 

(Ang II) and aldosterone are therefore reduced.  Because Ang II and aldosterone 

are intimately involved in increased sodium reabsorption, and therefore 

determine the rate of sodium loss, it is evident that these and other neural and 

endocrine pathways influence osmoregulation via changes in sodium excretion.   

 

This influential model developed by Guyton postulates that the relationship 

between renal sodium excretion and BP defines the BP homeostatic set-point.   

According to this model, any increase in sodium retention produces an initial 

blood volume expansion causing BP to increase via a rise in cardiac output, as 

illustrated in Figure 1.3.  Eventually, tissue over-perfusion leads to an increase in 

peripheral resistance (whole-body autoregulation) that returns resting cardiac 

output towards normal.  According to this widely held theory, a resetting of the 

pressure–natriuresis relationship inevitably leads to hypertension regardless of 

the cause of the resetting, whether it be humoral, neural, degenerative or genetic 

(Guyton and Coleman 1968). 

 

Renal perfusion pressure (RPP), a direct indicator of arterial pressure, can exert 

a powerful influence on the rate of urine excretion as evidenced by the 

mechanisms mentioned above (Roman and Cowley 1985; Roman, Cowley et al. 

1988).  This response can be, and is, blunted by extrinsic factors such as neural 

and circulation hormones.  However, experiments by Roman et al. showed when 

maintaining neural and circulating hormones at constant levels, small elevations 
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in RPP by abdominal aortic clamping resulted in large increases of urine output 

(Roman and Cowley 1985) .  The reflex neural and endocrine systems that effect 

the pressure-natriuresis relationship, and hence regulation of body volumes must 

be taken into account with understanding long-term BP control.  For instance, the 

diuretic and natriuretic responses observed from carotid-occlusion or epinephrine 

infusion-mediated rises in BP are severely blunted compared to those observed 

using aortic clamps (Kirchheim, Ehmke et al. 1987; Sipos, Vargas et al. 2010).  

These extrinsic mechanisms include, but are not limited to Ang II, 

catecholamines (and renal sympathetic nerve activity), prostaglandins, renal 

kinins, atrial natriuetic factor, vasopressin and endothelin (Cowley 1992). 

 

1.2.1 Sympathetic Nervous System and Blood Pressure Control 

 

There has been much controversy over the pressure-natriuresis theory of the 

main controller of BP, as it states that it is not determined by the generalized 

level of vascular resistance of the systemic circulation (TPR).  Total peripheral 

resistance is defined simply as the sum of the resistance of all peripheral 

vasculature in systemic circulation.  As shown in Figure 1.1, a major contributor 

to TRP is arteriolar smooth muscle contraction via the autonomic nervous 

system.  The neural control of circulation operates via parasympathetic neurons 

that innervate the heart and three main classes of sympathetic efferents; 

barosensitive, thermosensitive and glucosensitive that innervate blood vessels, 

the heart, kidneys and adrenal medulla (Guyenet 2006). The barosensitive 

sympathetic efferents are under the control of arterial baroreceptors.  This large 
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group of efferents has a dominant role in both short-term and potentially long-

term BP regulation (Osborn 2005; Guyenet 2006).  Their level of activity at rest is 

postulated to be an important parameter for long-term BP control. This 

background activity is set by a core network of neurons that reside in the rostral 

ventrolateral medulla (RVLM), the spinal cord, the hypothalamus and the nucleus 

of the solitary tract (NTS). Both variables of BP, TPR and CO are controlled by 

some extent by the autonomic nervous system.   CO is dependent on three 

regulated variables: ventricular end-diastolic volume; myocardial contractility; and 

heart rate. End-diastolic volume is the volume reached by the ventricular 

chamber before contraction and is determined by venous pressure, which is 

related to blood volume and venous smooth muscle tone, both of which are 

under sympathetic control (Osborn 2005).   Myocardial contractility and heart rate 

are regulated by both the sympathetic and parasympathetic divisions of the 

autonomic nervous system.  The autonomic nervous system is able to incur rapid 

changes via CO and regional arteriolar resistance, which can be associated with 

substantial increases in BP.  Significant evidence has implicated the autonomic 

nervous system and the brain in producing long-term changes in BP (Osborn, 

Holdaas et al. 1983; Osborn, Plato et al. 1997; Madden and Sved 2003; Osborn 

2005; Littlejohn, Siel et al. 2013).  Additionally, peripheral efferents have shown 

the same effect.  For instance, increased renal sympathetic nerve activity 

(RSNA) results in increased renin secretion rate, increased renal tubular sodium 

reabsorption and retention, and decreased GFR and renal blood flow (RBF) with 

increased renal vascular resistance (DiBona and Kopp 1997; Osborn, Plato et al. 
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1997; DiBona 2000). Thus, increased RSNA represents an important candidate 

as a mediator of the normal and abnormal renal function and therefore, the 

development of hypertension.  Many reports have implicated neurally-mediated 

mechanisms in the development of hypertension in several animal models (Judy, 

Watanabe et al. 1976; Osborn, Holdaas et al. 1983; Ichihara, Inscho et al. 1997).  

Furthermore, removal of renal nerves completely prevented or delayed the onset 

of hypertension in numerous animal models of hypertension including humans 

with drug-treatment-resistant, primary hypertension (DiBona and Esler 2010).  

Elevated SNA is present in most forms of human hypertension (Wyss 1993)  and 

a causal relationship is suggested by the well-documented antihypertensive 

efficacy of sympatholytic drugs (for example, alpha1- or beta-adrenergic receptor 

antagonists) (James, Oparil et al. 2014).  The sympathetic efferents that 

innervate the kidneys are commonly presented as the only ones that are capable 

of influencing the 24-h average BP (Cowley 1992).  If this theory is correct, a 

more complete knowledge of the neural pathways that selectively regulate renal 

SNA could be key to understanding the contribution of the CNS to hypertension.  

However, elevated RSNA is probably not the sole mechanism involved in 

neurogenic hypertension, and the method by which an increase in SNA raises 

the 24-h mean BP has not been established. The most commonly invoked 

mechanism is resetting of the renal BP–natriuresis relationship to higher levels of 

BP by either a rise in sympathetic tone to the kidney or by hormones whose 

production is partly controlled by the autonomic nervous system (for example, 

Ang II) (Guyenet 2006).  
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1.1.2 The Kidney and its Role in Hypertension 

 

The theoretical basis for the role of the kidney in hypertension is well established 

and alterations in kidney function have been identified in the established stage of 

every form of hypertension yet studied (Cowley and Roman 1983).  

Hypertension, therefore, can develop only when something impairs the ability of 

the kidney to excrete sodium and water and shifts the relationship between 

sodium excretion and arterial pressure towards higher pressures.  Renal humoral 

mechanisms and transcriptomics related to the development and maintenance of 

hypertension will be presented in this doctoral thesis, highlighting the importance 

of the kidney in blood pressure control and pathogenesis of the disease. 
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Figure 1.1: Comprehensive contributions to control of BP.  
Mathematically, BP control is equivalent to Ohm’s law, where BP 
is the product of flow (CO) and resistance (TPR).  Additionally, 
CO is the product of HR and SV.  Several factors can directly 
influence these cardiovascular parameters, ultimately influencing 
to BP.  BP=blood pressure, CO=cardiac output, TPR=total 
peripheral resistance, SV=stroke volume, HR=heart rate 
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Figure 1.2: The Renal Function Cure.  Systolic arterial pressure is a 
direct function of urine output (UNaV), and hence kidney function.  This 
relationship exhibits “infinite gain”, i.e., BP will stabilize when intake and 
output of sodium are equal, which occurs at one pressure level for any 
given renal function curve and salt intake.  It is hypothesized that the 
manifestation of hypertension occurs only when a rightward shift in the 
renal function curve occurs, requiring a higher pressure to excrete the 
same level of salt.  A rise BP is “essential” to maintain sodium balance. 
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Figure 1.3: Basic renal-body fluid feedback mechanism for the long-term 
regulation of blood pressure and body fluid volumes.  The kidney, it is 
hypothesized, contains the long-term homeostatic set-point. 
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1.3 Systemic Renin Angiotensin System (RAS): Overview of Components, 
Features and Actions   
 

The RAS is an essential regulator of blood pressure, fluid balance, and 

cardiovascular function. The RAS produces a family of bioactive angiotensin 

(Ang) peptides with a variety of biological and neurobiological activities, with the 

most notable peptide being Ang II.  The components of the RAS are present in 

peripheral tissues such as the vasculature, kidney, brain and heart, all of which 

locally produce Ang II (Peach 1977).   The canonical systemic cascade begins 

with the release of the aspartyl protease renin from the JG cells of the kidneys 

leading to the conversion of circulating angiotensinogen from the liver to inactive 

angiotensin-I (Ang I) which, in turn, is converted to three different peptides; Ang II 

by the dipeptyl carboxypeptidase angiotensin-converting enzyme (ACE) located 

ubiquitously along vascular walls and secreted into the lungs and kidneys, Ang-

(1-7) by neprilysin and Ang-(1-9) by the zinc metalloprotease ACE2 (Figure 1.4).  

Ang-(1-9) is metabolized by the metalloendopeptidase neprilysin to form Ang-(1-

7), which is hydrolyzed by ACE to form Ang-(1-5). Ang II is degraded into the 

smaller, active peptides Ang III, Ang IV and Ang (1-7) by aminopeptidase A, 

aminopeptidase N and ACE2, respectively. Ang II is also converted to Ang-(1-4) 

by neprilysin (Lavoie and Sigmund 2003).  

 

Ang II primarily binds two G-protein coupled receptors, Ang II type 1 (AT
1
) and 

Ang II type 2 (AT
2
) receptor, to produce both harmful and physiological effects on 

cardiovascular health (de Gasparo, Catt et al. 2000; Lavoie and Sigmund 2003). 
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Most of the classical actions of Ang II such as vasoconstriction, sodium retention, 

aldosterone release and sympathetic activation are facilitated by the AT
1 

receptor. There are two AT
1 

receptor isoforms in rodents, AT
1A 

and AT
1B

, and 

only one in humans (de Gasparo, Catt et al. 2000).  Activation of the AT2 

receptor generally has effects that are contrary to AT1 receptor actions-mainly 

vasodilation, natriuresis and antiproliferation (Bottari, de Gasparo et al. 1993).  In 

humans, the AT1 receptor is located in blood vessels, heart, kidney, adrenal 

glands and liver while the AT2 receptor is mainly expressed in fetal tissue, with 

relatively low amounts present in adult tissue (Matsubara 1998). Ang-(1-7), 

acting through the G-protein Mas receptor, has actions that are contrary to the 

effects of Ang II, such as vasodilation, natriuresis and antiproliferation(Santos, 

Simoes e Silva et al. 2003). Ang III (Ang 2-8) is thought to exert its actions at the 

AT1 receptor and may be responsible for effects associated with Ang II, 

especially in the brain (Wright, Bechtholt et al. 1996). Ang IV binds the AT1 and 

AT
 2 

receptors with low affinity and binds its own AT4 receptor. 

 

The RAS has generally been classically affiliated with blood pressure control and 

salt and water balance. Nevertheless, the RAS is continually emerging as a 

complex system involved in many physiological and pathophysiological 

conditions outside of the classic hemodynamic and osmoregulatory effects. The 

RAS contributes to oxidative damage (Sachse and Wolf 2007), insulin resistance 

(Henriksen 2007) and cell-growth (Pawlikowski, Melen-Mucha et al. 1999) and 
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has been implicated in the pathogenesis of the metabolic syndrome, diabetes, 

renal damage and hypertension.  

 

1.3.1Cardiovascular Regulation  

 

The body has several mechanisms to control blood pressure. These 

mechanisms, such as the actions of the RAS, can alter cardiac output, the blood 

volume in the bloodstream and vasoactivity of the arteries. The RAS has 

profound influence on cardiovascular and renal function due to its various actions 

throughout the body.   Ang II is a potent vasoconstrictor, constricting arteries and 

veins to increase blood pressure. Ang II is also involved in fluid reabsorption.  

 

Blood pressure regulation is a separate but not mutually exclusive process: both 

quick BP adjustments via baroreflexes and through long-term control involving 

the kidneys. The baroreflexes are mediated by the sympathetic and 

parasympathetic nervous systems.   The baroreflex, which is a negative-

feedback system, augments blood pressure in a matter of seconds to minutes. 

When blood pressure rises, the carotid and aortic sinuses distend resulting in 

activation of the baroreflex which adjusts sympathetic and parasympathetic 

activity accordingly. Afferent baroreceptor input suppresses sympathetic activity 

through a multisynaptic pathway which starts with excitatory fibers synapsing at 

the NTS. The NTS then sends excitatory (glutamatergic) projections to the 

caudal ventrolateral medulla (CVLM) and nucleus ambiguous (NA).  The 

activated CVLM sends inhibitory (GABAergic) fibers to the RVLM, which then 
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decreases sympathetic nerve activity to the heart and vasculature.   Activation of 

the NA will decrease heart rate by increasing parasympathetic nerve activity to 

the heart via the vagus nerve. The blood pressure is reset back to its original 

point.   The RAS interacts with both these systems to help maintain and regulate 

cardiovascular function.  Ang II modulates baroreflex function by decreasing the 

sensitivity of the gain of the baroreflex (Brooks 1995).  Ang II acts at AT
1 

receptors in the NTS to decrease the baroreflex sensitivity (Diz, Jessup et al. 

2002), whereas Ang-(1-7) enhances the baroreflex sensitivity also by acting at 

the NTS (Ferrario, Chappell et al. 1997). 

 

The kidney is involved in more long-term regulation of blood pressure and the 

RAS has both direct and indirect effects on the kidney.  The RAS partners with 

the kidney to control blood pressure by maintaining salt and water balance. Ang 

II does this through its direct and indirect effects on water and salt reabsorption, 

which leads to an increase in blood pressure. Under physiological conditions, the 

RAS ensures that blood pressure does not drop too low and to maintain proper 

perfusion and blood flow to tissues and organs that need it the most under these 

circumstances. However, chronic activation of Ang II may lead to hypertension 

and damage the various organs and tissues of the body (Lavoie and Sigmund 

2003).  Ang II has a direct effect on the proximal tubules to increase salt 

reabsorption. Indirectly, Ang II causes the adrenal cortex to secrete the 

mineralcorticoid aldosterone which acts on the distal tubules and collecting ducts 

to cause conservation of sodium, water retention and potassium secretion.  The 
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effects that Ang II has on renal blood flow and GFR vary depending on the 

situation.  Ang II constricts the afferent and efferent arterioles and incites 

contraction of the mesangium, resulting in a decrease in renal blood flow, 

glomerular filtration rate and filtered sodium load (Brewster and Perazella 2004).  

Ang II decreases the surface area for glomerular filtration by constricting the 

mesangial cells. The effect on the efferent arteriole is greater in part due to its 

smaller basal diameter.  Efferent arteriole constriction decreases renal blood flow 

and increases glomerular filtration by increasing glomerular capillary pressure.  

This increase in filtration fraction causes an increase in the peritubular vessel 

oncotic pressure and a decrease in the hydrostatic pressure, which also occurs 

in the renal interstitium.  This pressure gradient allows sodium and water to move 

from the proximal tubule to the interstitium.  Ang II decreases medullary blood 

flow and reduces renal interstitial pressure which decreases water and sodium 

excretion (Brewster and Perazella 2004).  Ang II inhibits pressure-natriuresis and 

it is thought to be a TGF modulator because it augments TGF sensitivity (Vallon 

2003). Furthermore, Ang II is involved in the proliferation of nephron cells 

(Zhang, Guo et al. 2004).  

 

Ang II exerts influence on distinct ion channels along the nephron as well.  Ang II 

enhances the sodium/hydrogen (Na
+
/H

+
) ion anti-porter activity on the luminal 

membrane of proximal tubules (Brewster and Perazella 2004) and in the early 

and late distal segments (Wang and Giebisch 1996). The action of Ang II to 

augment distal tubule sodium reabsorption complements the effect in proximal 
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tubules to create a greater efficiency of sodium retention. It stimulates the 

Na+/HCO3
- symporter and Na+/K+ pump in the proximal tubule basolateral 

membranes (Brewster and Perazella 2004).  Ang II acts at the Na+/K+ pump in 

the medullary thick ascending limb and at the epithelial sodium channel (ENaC) 

of the cortical collecting tubules.  

 

1.3.2 Neural Effects of RAS 

 

Ang II plays a prominent role in a variety of neural mechanisms. It interacts with 

neurotransmitters and is itself considered a peptidergic neurotransmitter under 

certain conditions (McKinley, Albiston et al. 2003). It stimulates thirst centers in 

the brain, the desire for salt and is involved in vasopressin release. It facilitates 

norepinephrine release from sympathetic nerve endings and is known to 

decrease baroreflex function (DiBona 2001). Some of the central mechanisms 

are described in more detail below.  

 

1.3.3 Thirst Sensation  

 

The thirst mechanism is one way to increase fluid volume, leading to volume 

expansion and a subsequent increase in blood pressure. Stimulation of AT
1 

receptors in the brain causes an increase in water intake, salt appetite and blood 

pressure. Intracerebroventricular (ICV) administration of Ang II increases the 

dipsogenic response and blood pressure and the subfornical organ (SFO), which 

lies outside the blood-brain barrier, is reported to be involved in this dipsogenic 
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mechanism (McKinley, Albiston et al. 2003). Dehydration causes a significant 

increase in Ang II binding sites in the SFO which could make circulating Ang II 

more efficient as a thirst stimulus (Saavedra 2005).  Ablation studies showed that 

the thirst effect is facilitated by Ang II binding to receptors in the SFO and 

organum vasculosum of the lamina terminalis (OVLT) and Ang II injected into 

these forebrain areas leads to an increased blood pressure (Andersson, Eriksson 

et al. 1995) . The median preoptic nucleus (MnPO) has also been shown to be 

involved in thirst because Ang II micro-injected directly into the MnPO promotes 

drinking in rats (McKinley, Albiston et al. 2003). The MnPO is suggested to be an 

angiotensinergic synapse site that mediates thirst caused by Ang II as the SFO 

sends efferent projections to the MnPO. Projections are also sent to the 

paraventricular nucleus of the hypothalamus (PVN), which facilitates vasopressin 

production and secretion (McKinley, Albiston et al. 2003).  

 

1.3.4 Ang II and Vasopressin Release  

 

AVP, or anti-diuretic hormone (ADH), is a hormone secreted by the posterior 

pituitary gland that regulates water reabsorption in the collecting duct in kidneys 

as well as act as a potent vasoconstrictor.  It increases water permeability of the 

distal convoluted and collecting tubules by inserting aquaporin channels into the 

apical membranes of the tubules/collecting duct epithelial cells.  Circulating Ang 

II stimulates vasopressin release mainly by binding receptors in the SFO and 

possibly in the OVLT (Andersson, Eriksson et al. 1995).  The vasopressin 

response to systemic Ang II is inhibited in rats following SFO ablation (Simpson, 
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Epstein et al. 1978).  ICV injection of Ang II activates circumventricular organ 

(CVO) neurons, which directly or indirectly project to vasopressin-producing 

neurons in the paraventricular and supraoptic nuclei of the hypothalamus (SON) 

(McKinley, Albiston et al. 2003).  Coadministration of Ang II and AT
1 

receptor 

antagonist losartan decreases vasopressin secretion, further documenting Ang 

II’s role in AVP release (76).  

 

1.3.5 Ang II and the Sympathetic Nervous System  

 

The RAS and SNA are two major extrinsic regulatory mechanisms for blood 

pressure and fluid homeostasis.  Ang II activates the SNA at various levels and is 

known to be a tonic stimulus of RSNA (DiBona 2001).  Both central and 

circulating Ang II may influence SNA.  Ang II injected into the RVLM increases 

SNA and arterial pressure (Andersson, Eriksson et al. 1995).  Microinjection of 

angiotensin II receptor blockers losartan and candesartan into the RVLM 

decreased the basal level of RSNA and heart rate, with candesartan also 

decreasing BP (DiBona and Jones 2001).  Bilateral injection of Ang II receptor 

antagonists into the RVLM decreased BP similar to the decrease revealed 

subsequent to blockade of spinal sympathetic outflow (DiBona, Jones et al. 

1996).  ICV injection of losartan attenuated basal RSNA in proportion to the level 

of RAS activation (DiBona, Jones et al. 1996).  Activation of the PVN by 

bicuculline leads to an increase in arterial pressure, heart rate and RSNA, which 

is primarily mediated by excitatory angiotensinergic projections from the PVN to 
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the RVLM.  Furthermore, losartan injected into the ipsilateral RVLM decreases 

the renal sympathoexcitatory, pressor and tachycardic responses to bicuculline 

injected into the PVN (DiBona, Jones et al. 1996).  

 

As a counter to Ang II’s effects, Gironacci et al. (2004) showed that Ang-(1-7) 

decreased norepinephrine release from the hypothalamus through the Mas 

receptor, suggesting that Ang-(1–7) may decrease SNSA leading to an 

antihypertensive effect.  

 

Ang II influences renal function through central mechanisms, mainly involving 

activation of the renal sympathetic nerves.  RSNA and its arterial baroreflex 

control are mediated by changes in RAS activation. Circulating Ang II can act at 

areas such as the SFO and area postrema (AP) to modulate SNA (DiBona 

2001). Circulating Ang II acting at the AP may increase peripheral SNA through a 

direct excitatory projection from the AP to RVLM (DiBona 2001).  ICV injection of 

losartan in conscious rats did not affect basal levels of BP, but decreased basal 

RSNA suggesting that Ang II tonically influences basal levels of RSNA and its 

arterial baroreflex (DiBona, Jones et al. 1996). Brain Ang II activates AT
1 

receptors to suppress the baroreflex control of RSNA and increases sodium 

reabsorption by stimulating renal nerve activity and catecholamine release within 

the kidney (van den Meiracker and Boomsma 2003).  
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The renal sympathetic nerves innervate all the major structural elements of the 

kidney including the afferent and efferent arterioles, JG cells, mesangium, 

vascular smooth muscle cells (VSMC) and tubules (proximal, distal and 

ascending limb of loop of Henle, collecting duct), with some areas being more 

innervated than others.  There is also differential innervation of the three 

intrarenal effectors (JG cells, tubules, vasculature) such that some renal 

sympathetic nerve fibers only make contact with one of the three and some fibers 

make contact with multiple effectors (DiBona and Kopp 1997).  Low frequency 

renal nerve stimulation stimulates renin release from the JG cells via a β-1 

adrenoceptor effect, increases reabsorption of sodium and water in the tubules of 

the nephron, and causes renal vasoconstriction (Osborn, Holdaas et al. 1983).  

Activation of the renal nerves generally leads to a decrease in renal blood flow 

and GFR due to the constriction of the vasculature.  Renal nerve activation is one 

of the more important mechanisms leading to sodium retention since it increases 

sodium and water retention throughout the entire nephron and can also induce 

sodium retention by increasing renin production and by mediating the resistance 

of the afferent arterioles.  Increased renal nerve activity is thought to play a role 

in many pathologic conditions such as hypertension (Winternitz, Katholi et al. 

1980; Hendel and Collister 2006), myocardial infarction (Souza, Mill et al. 2004) 

and renal failure.  Renal denervation prevented hypertension in male SD rats 

with chronic renal failure (Campese, Kogosov et al. 1995) and in genetically 

hypertensive rats delays the development of hypertension (Liard 1977; 

Winternitz, Katholi et al. 1980; Diz, Nasjletti et al. 1982; Kline 1987).  Recently, 
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renal denervation in humans has shown to be extremely effecting in attenuating 

elevated arterial pressure in treatment-resistance patients (DiBona and Esler 

2010).  These studies highlight the importance of renal nerves in the 

manifestation and maintenance of hypertension. 

  

1.3.6 Local (Tissue) RAS  

 

The idea of local or tissue RAS was first conceptualized upon the confirmation 

that there was a separate brain RAS (local Ang II production), independent of the 

circulating RAS. It is now well established that many tissues and organs contain 

their own local RAS, including the kidney, heart, vessels, adrenal gland, 

pancreas and brain (Lavoie and Sigmund 2003; Bader and Ganten 2008).  The 

local systems seem to be regulated independently of the circulating RAS though 

interactions exist.  The actions of the tissue RAS’s may occur in the cell that 

generates the peptides (intracrine and autocrine), in neighboring cells (paracrine) 

or through the bloodstream to a specific organ or tissue (endocrine).  In the brain, 

the AT
1 

receptor is located in the SFO, OVLT, NTS, APS, PVN, CVLM, RVLM, 

dorsal medulla, the lateral parabrachial nucleus and the MnPO (Diz, Jessup et al. 

2002; McKinley, Albiston et al. 2003; Veerasingham and Raizada 2003).  These 

regions are involved in regulating cardiovascular function and/or body fluid and 

electrolyte balance.  Though all components of the RAS are located in the brain, 

not a single cell contains all of the constituents of the RAS (Saavedra 2005; von 

Bohlen und Halbach and Albrecht 2006).  
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Regulation and specific mechanisms of the brain RAS in normal physiology and 

pathophysiology are not completely understood. Studies show that the brain RAS 

activates sympathetic outflow, inhibits the baroreflex, stimulates thirst, and 

contributes to neurogenic hypertension (Steckelings, Lebrun et al. 1992; Lavoie 

and Sigmund 2003; van den Meiracker and Boomsma 2003).  In rats with chronic 

renal failure, the brain RAS is upregulated, resulting in sympathetic overactivity 

and hypertension (Nishimura, Takahashi et al. 2007).  Transgenic mice with 

increased brain Ang II production developed hypertension and an increase in salt 

appetite and drinking volume (Morimoto, Cassell et al. 2001). 

 

1.3.7 Brain RAS  

 

It is reported that there are two RASs in the brain; an endogenous system 

located within the neurons inside the blood brain barrier and a system in the 

CVOs and cerebrovascular endothelial cells that respond to circulating Ang II of 

peripheral origin (Saavedra 2005).  The two systems are interconnected and the 

brain responds to both.  Angiotensinogen is produced mainly in astrocytes 

(McKinley, Albiston et al. 2003).  Renin mRNA is present in the central nervous 

system (CNS), but concentrations are low (McKinley, Albiston et al. 2003).  High 

concentrations of ACE are located in the AP, SFO, OVLT and median eminence.  

Aminopeptidase A and N are both located in the rodent brain. Ang I, Ang II, Ang 

III and Ang-(1-7) have been discovered in brain tissue, however Ang III and Ang-

(1-7) are found in very low concentrations (McKinley, Albiston et al. 2003).  
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1.3.8 Kidney RAS  

 

All of the RAS components are present within the kidney with 

compartmentalization in the tubules and interstitium as well as intracellular 

accumulation (Kobori, Nangaku et al. 2007).  In fact, it is reported that there are 

two distinct intrarenal RASs; vascular (renal vessels, arterioles and glomeruli) 

and tubulointerstitial (proximal tubules and associated interstitium). Intrarenal 

Ang II, which can be formed independent of the circulation, may also be a result 

of circulating Ang II that is internalized into proximal tubule cells by the AT
1 

receptor.  In addition, Ang II may be formed from systemically delivered Ang I 

(Navar, Harrison-Bernard et al. 1999).  Angiotensinogen is located mostly in the 

proximal tubule cells and can be secreted directly into the tubule lumen (Navar, 

Prieto et al. 2011).  In general, renin from the JG cells is the primary source of 

both circulating and intrarenal renin.  However, renin is also found in other areas 

of the kidney and is produced by the proximal tubule cells, as well as the distal 

nephron segments. Ang I and Ang II formation in the tubule lumen may occur 

subsequent to angiotensinogen secretion because some renin is filtered and/or 

secreted from juxtaglomerular or proximal tubule cells.  ACE is located on the 

proximal tubule brush border and converts Ang I to Ang II (Kobori, Nangaku et al. 

2007).  ACE2 is present in renal endothelial and tubule cells and in glomerular 

podocyte and mesangial cells (Donoghue, Hsieh et al. 2000; Reich, Oudit et al. 

2008).  Previous work demonstrates that Ang I and Ang II are located with renin 
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in the juxtaglomerular apparatus cells and vascular smooth muscle cells of the 

afferent arteriole (Navar, Prieto et al. 2011).  However, Ang I and Ang II are 

mainly located in the tubular and interstitial fluid compartments (Navar, Prieto et 

al. 2011).  The AT
1 

receptor is extensively dispersed throughout the kidney.  It is 

located in the vascular smooth muscle cells of the afferent and efferent arterioles, 

glomeruli (mesangial cells and podocytes) and proximal tubule cells (brush 

border and basolateral membranes).  Receptor subtypes are also found in the 

juxtaglomerular and macula densa cells, thick ascending limb, distal tubules, 

vasa recta, arcuate arteries and cortical collecting ducts (Carey and Siragy 2003; 

Kobori, Nangaku et al. 2007).  The distribution of the two AT
1 

receptor subtypes 

in rodents is different with the AT
1A 

subtype being the more prevalent of the two. 

The AT
1A 

is present in all nephron segments and AT
1B 

is more abundant than 

AT
1A 

in the glomerulus (66). The AT
2 

receptor is present in the afferent arteriole, 

mesangium, proximal tubule, collecting ducts, parts of the renal vasculature, 

interstitial cells and in glomerular endothelial and epithelial cells (Bader and 

Ganten 2008).   

 

The intrarenal RAS is regulated differently than the circulating RAS as shown by 

the fact that proximal tubule angiotensinogen, collecting duct renin and tubular 

AT
1 

receptors are increased by intrarenal Ang II (Kobori, Nangaku et al. 2007).  

Intrarenal RAS activation may contribute to hypertension, renal injury, diabetes 

and metabolic syndrome.  Ang II produced in the kidney directly induces 
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podocyte injury and apoptosis through AT
1 

receptor activation independent of 

hemodynamic changes (Kobori, Nangaku et al. 2007).  Ang II induces 

proliferation of glomerular endothelial cells, mesangial cells and fibroblasts 

(Rüster and Wolf 2006).  Additionally, hyperglycemia, proteinuria and renal injury 

activate the intrarenal RAS (Rüster and Wolf 2006).  

 

Inhibition of the RAS has proven to be renoprotective against diseases other than 

hypertension.  The American Diabetes Association suggest that ACE inhibitors 

and angiotensin II receptor blockers (ARBs) be considered as first-line therapy to 

slow renal disease progression in hypertensive and type 2 diabetic patients 

(Vejakama, Thakkinstian et al. 2012).  In hypertensive, type 2 diabetic patients, 

irbesartan delayed the increase in serum creatinine 24% more slowly than the 

placebo group and 21% slower than the group that received the calcium channel 

blocker amlodipine (Rossing, Schjoedt et al. 2005).  This renoprotective effect 

was independent of the blood pressure lowering effect (Lewis, Hunsicker et al. 

2001) as ARBs have been shown to benefit normotensive diabetic patients as 

well (Coyle, Gardner et al. 2004).  ACE inhibitors decrease mesangial expansion, 

glomerulosclerosis, loss of glomeruli, tubular atrophy, interstitial fibrosis and 

proteinuria (Gansevoort, Sluiter et al. 1995; Ferder, Inserra et al. 2003).  

Proteinuria is also decreased in the presence of AT
1 

receptor blockers (Mizuno, 

Sada et al. 2006).  Losartan and enalapril reduced glomerular and 

tubulointerstitial fibrosis, tubular atrophy and increased the number mitochondria 

and improved mitochondrial function (Ferder, Inserra et al. 2003).   
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The RAS has been suggested to play a pathogenic role in the development of 

hypertension in Okamoto-Aoki Spontaneously Hypertensive Rat (SHR).  These 

RAS implications are directly related in part to activation of sympathetic nerve 

activity. Numerous studies have demonstrated that administration of either 

angiotensin-converting ACE inhibitors or angiotensin receptor antagonists to 

immature SHRs prevents development of hypertension (Madeddu, Anania et al. 

1995) .  In the SHR, brain levels of Ang II and renin are elevated after the onset 

of adult hypertension (Phillips and Kimura 1988), hypothalamic angiotensinogen 

mRNA is more abundant (Yongue, Angulo et al. 1991), and SHRs exhibit 

elevated AT1r mRNA in the brain and kidney compared to normotensive Wistar 

Kyoto (WKY) rats (Raizada, Sumners et al. 1993; Cheng, Wang et al. 1998).  

Subsequently, losartan, a potent AT1r antagonist, normalizes blood pressure in 

SHRs when delivered intravenously (IV) or ICV (Medina, Cardona-Sanclemente 

et al. 1997).  In addition to pharmacological blockade, Gyurko et al. (1993) 

demonstrated that inhibiting the brain RAS by antisense inhibition of 

angiotensinogen and AT1 receptor genes lowers blood pressure in adult SHRs, 

potentially linking genetic contributions of the RAS to hypertension.  

Abnormalities in AT1r function have been linked to several pathological 

conditions such as hypertension, cardiac and renal hypertrophy, and proliferation 

of vascular smooth muscle cells. Each of these pathologies alone or together 

may critically contribute to the onset and maintenance of hypertension.  Taken 
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together, SHRs exhibit an exacerbated RAS, which in turn, plays a role in 

development of elevated arterial pressure and propagation of hypertension. 
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Figure 1.4: Overview of the renin-angiotensin system (RAS). 
AGT indicates angiotensinogen; Ang, angiotensin; ACE, 
angiotensin-converting enzyme; ACE2, angiotensin-converting 
enzyme 2; AT1R, angiotensin type 1 receptor; AT2R, 
angiotensin type 2 receptor; MasR, Mas (Conti, Cassis et al. 
2012) 
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1.4 Nuclear Genetics and Genomics of Spontaneous Hypertension 
 

Significant effort has been devoted to defining the pathogenesis of blood 

pressure variation.  The difficulty in defining the causes of hypertension from 

physiological studies alone motivated the application of genetic approaches to 

hypertension. Identification of genes underlying blood pressure variation has the 

capacity to define primary physiologic mechanisms underlying this trait, thereby 

clarifying disease pathogenesis, identifying pathways and targets for improved 

therapeutic intervention, providing opportunity for preclinical diagnosis, and 

allowing treatment tailored to individual patients. There is substantial evidence for 

genetic influence on blood pressure. Twin studies document greater 

concordance of blood pressures of monozygotic than dizygotic twins (Feinleib, 

Garrison et al. 1977) and population studies demonstrate greater similarity of 

blood pressure within families than between families (Longini, Higgins et al. 

1984). This familial aggregation of blood pressure is not simply attributable to 

shared environmental effects since adoption studies show greater concordance 

of blood pressure among biological siblings than adoptive siblings living in the 

same household (Biron, Mongeau et al. 1976) (Rice, Vogler et al. 1989). Single 

genes can impart large effects on blood pressure as demonstrated by rare 

Mendelian forms of high and low blood pressure (Lifton 1996).  Although these 

Mendelian traits have quantitatively large effects in affected individuals, they are 

quite rare and likely account for a very small fraction of the variation in blood 

pressure in the human population (Lifton, Gharavi et al. 2001). 
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The polygenic nature of essential hypertension and its dependence on 

environmental factors complicate the identification of causative genetic factors 

(Garrett, Dene et al. 1998).  Significant progress has been made to map the 

genes involved in blood pressure regulation.  Genome scans have been carried 

out in rats, mice and humans and have revealed several potential chromosome 

regions that may contain genes involved in the pathogenesis of spontaneous 

hypertension.  Molecular genetic analysis proves that BP regulation is polygenic 

and there is good evidence for several BP related quantitative trail loci (QTL) on 

nearly every rat chromosome (Deng, Dene et al. 1994; Schork, Krieger et al. 

1995; Hopkins and Hunt 2003; Laulederkind, Hayman et al. 2013).  Linkage 

studies in populations derived from the SHR indicate potential BP QTL.  

Recently, Atanur et al. (2010) sequenced the SHR/Olalpcv genome, identifying 

3.6 million high quality SNPs between the SHR/Olalpcv and BN reference 

genome.  Genomic regions containing genes that have been previously mapped 

as cis-regulated expression (QTL) contained several SNPs, short indels, and 

larger deletions which suggests potential functional effects on gene expression.  

Atanur et al. found 688 genes that overlap with regions showing copy number 

variation (CNV) that represent genes for immunological, neurological or 

mechanical function.  The high statistical significance of these functional variants, 

coupled with the known metabolic, cardiovascular and neurobehaviorial 

phenotypes described in the SHR (Okamoto and Aoki 1963), suggests alteration 

of these gene classes may directly relate to the phenotypes manifested by SHR-

derived strains (Rapp 2000).  This sequence information supports previous 
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studies of experimental crosses and congenic strains that led to the identification 

of CNV in rat Cd36 gene as a cause of CD36 deficiency, insulin resistance, 

dyslipidemia, and hypertension in the SHR strain (Aitman, Glazier et al. 1999; 

Pravenec, Landa et al. 2001; Pravenec, Churchill et al. 2008).  This highlights the 

potential functional significance of other CNVs detected in the SHR genome.   

 

 

1.4.1 Renin-Angiotensin System Genes and Hypertension 

 

With the abundance of knowledge on the role of both circulating and tissue RAS 

in BP control, it is hypothesized that genetic variability in one or more of the RAS 

components could account for the pathogenesis of hypertension.  A large 

number of patients with hypertension and cardiovascular disease are on ACE 

inhibitors or AT1r antagonists.   Recognizing a potential genetic influence on 

protein expression would be vital to the treatment and prevention of essential 

hypertension.   The mouse renin gene (Ren) was the first gene of the RAS to be 

cloned (Burnham, Hawelu-Johnson et al. 1987).  Several investigators have 

established transgenic models expressing the mouse Ren-2 gene (mRen-2).   

High expression of the transgene has been shown to cause severe hypertension, 

associated with increased renin activity and local Ang II formation, while 

suppressing plasma RAS (Rothermund and Paul 1998). Restriction mapping and 

linkage analysis have been used to study the association of renin and 

hypertension, but whether the renin locus is associated with hypertension is still 

under debate.  Cloning of the human genes coding for angiotensinogen (Agt) 
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(Jeunemaitre, Soubrier et al. 1992), angiotensin-converting enzyme (ACE) 

(Rigat, Hubert et al. 1990) and the AT1 receptor (Agtr1a/b) (Bonnardeaux, Davies 

et al. 1994) has led to the discovery of several polymorphisms that may play a 

role as risk factors for hypertension.  Higher levels of angiotensinogen have been 

demonstrated to be associated with higher levels of Ang II (Walker, Whelton et 

al. 1979).   In addition, transgenic mice with overexpression of a rat 

angiotensinogen gene develop hypertension, and knockout mice with a disrupted 

gene and absent production of angiotensinogen develop low BP (Jeunemaitre, 

Soubrier et al. 1992).  

 

In 1990, Rigat et al (1990) produced evidence for an insertion/deletion (I/D) 

polymorphism (287bp insert/deletion) in intron 16 of the ACE gene was strongly 

associated with circulating ACE concentrations.  In individuals that were 

homozygous for the D allele (D/D), plasma ACE concentrations were twice those 

of persons homozygous for I allele (I/I).  Zhu et al. (Zhu, McKenzie et al. 2000)  

later reported that the functional mutation was not the I/D variant, but a variant 

downstream that exists in linkage disequilibrium that is responsible for changes 

in plasma ACE levels.  Nevertheless, there is significant evidence that the ACE 

gene controls plasma ACE concentrations and therefore could have a causal 

relationship with hypertension.   

 

For the Agtr1a/b gene, a SNP has been described in which either adenine (A) or 

a cytosine (C) base (A/C tranversion) in position 1166 in the 3’ untranslated 
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region of the gene (Joe and Garrett 2005).  The physiological importance of this 

polymorphism is uncertain because of its location in the untranslated region, 

however several studies have shown that it was associated with hypertension 

(Joe and Garrett 2005), left ventricular hypertrophy (Takami, Katsuya et al. 

1998), coronary artery disease and myocardial infarction (Bonnardeaux, Davies 

et al. 1994), and progression of diabetic nephropathy (Tomino, Makita et al. 

1999).  The silent A1166C SNP has been associated with severe forms of 

hypertension, and in particular in resistant hypertensive patients taking two or 

more antihypertensive drugs (Bonnardeaux, Davies et al. 1994; Kainulainen, 

Perola et al. 1999).  However, the relationship between this SNP and BP shows 

great diversity within human populations (Baudin 2002).  The most likely scenario 

is that the polymorphic transversion in not functional, but may occur in linkage 

disequilibrium with an unidentified functional variant (Bonnardeaux, Davies et al. 

1994).   

 

Although significant progress has been made, the exact form of the underlying 

genetic mechanisms remains unanswered.  Multiple approaches will be needed 

to achieve this assignment; however, the sequencing of the SHR nuclear 

genome by Atanur et al. (2010) will provide a great source for complete 

functional elucidation between hypertensive and normotensive rats of SHR origin 

at the molecular level.  This provides substantial insight to the genetic 

components of human essential hypertension.   It is the hope that by identifying 
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nuclear genes contributing to hypertension, that we can switch from treatment to 

prevention of hypertension and cardiovascular disease.   
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1.5 Mitochondrial Genomics/Dynamics and Hypertension 
 

Eukaryotic cells contain a number of organelles with specialized functions like the 

mitochondria.  Mitochondria are broadly known as double-membrane-bounded 

organelles, which perform a number of indispensable functions for the life of most 

eukaryotic cells.  Their main function is the production of energy in the form of 

ATP via the citric acid cycle and the oxidative phosphorylation system 

(OXPHOS),  but they are also involved in the biosynthesis of many metabolites 

like pyrimidines,  amino  acids  or cellular iron sulphur cluster proteins (Bereiter-

Hahn 1990; Attardi, Yoneda et al. 1995; Lill, Diekert et al. 1999). Mitochondria 

also control the ability of the cell to generate and detoxify reactive oxygen 

species (ROS) (Nicholls, Vesce et al. 2003).  Beside their role as ATP 

generators, mitochondria  have  also the ability to remove Ca2+  ions out of the 

cytosol and accumulate them in their matrix (Deluca and Engstrom 1961).  The 

release of mitochondrial pro-apoptotic factors like cytochrome c into the 

cytoplasm can induce a signaling cascade, which plays a prominent role in 

apoptotic cell death (Hengartner 2000). 

 

The  citric  acid  cycle,  which takes place in the mitochondrial matrix, is a central 

metabolic pathway involved in the catabolic oxidation of substrates (Krebs 1970).  

Acetyl-CoA, which is generated by the decomposition of nutrients such as 

glucose, transfers two carbon acetyl groups to oxaloacetate to generate citrate. 

The citrate is metabolized through a series of chemical transformations and 

releases two carboxyl groups as CO2. The energy-rich electrons generated by 
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the cycle are transferred to NAD+/NADP+ and FAD+ to form NADH/NADPH and 

FADH2.  Several substances like NADH, ATP and Ca2+ regulate the citric acid 

cycle (Krebs 1970).   

 

The electrons generated via the citric acid cycle are transferred to the 

multisubunit enzyme complexes of the respiratory chain.  The OXPHOS is 

embedded in the inner mitochondrial membrane.  Functionally, it is composed of 

the five enzyme complexes: NADH dehydrogenase (Complex  I),  succinate 

dehydrogenase (Complex  II), cytochrome bc1 complex (Complex  III), 

cytochrome c oxidase (Complex IV, COX) and ATP synthase (Complex V) as 

well as the two electron carriers coenzyme Q and cytochrome c (Hatefi 1985). 

The electrons are transferred to oxygen to generate water at Complex IV.  The 

transport of electrons via the respiratory chain generates a proton gradient 

across the membrane which is used to synthesize ATP by Complex V (Hatefi 

1985). 

 

Molecular genetics research and hypertension has been primarily focused on the 

nuclear genes (nDNA), despite the fact that mitochondria are present in multiple 

copies in each cell, have their own genome, and mitochondrial dysfunction has 

recently been implicated in a wide variety of genetic disorders (Aitman, Glazier et 

al. 1999; Taylor and Turnbull 2005).   Mitochondrial DNA is transmitted through 

the oocyte’s cytoplasm at fertilization, hence, are nearly strictly maternally 

inherited.  Alterations in mitochondrial function are observed in conjunction with 



 

 
40 

 

increase in age and the development of hypertension in rodents and humans 

(Hofmann, Jaksch et al. 1997; Shin, Tanaka et al. 2000; Schwartz, Duka et al. 

2004; Chan, Wu et al. 2009; Kumarasamy, Gopalakrishnan et al. 2010). 

Mitochondria are the principal generators of cellular ATP by OXPHOS.  

Mammalian mtDNA encodes 37 genes, including 13 polypeptide genes, all of 

which encode essential components of OXPHOS.  It also encodes the 12S and 

16S ribosomal RNA (rRNA) genes and the 22 transfer RNA (tRNA) genes 

required for mitochondrial protein synthesis (Figure 1.5).  The rat mtDNA 

genome varies between 16,307 and 16,315 bp in size.  The size variation is due 

to insertions/deletions in the replication origin, D-loop, 16S rRNA, and NADH 

dehydrogenase subunit 2 (Schlick, Jensen-Seaman et al. 2006).  Each 

mitochondrion contains one to ten copies of its genome and each cell 

encompasses hundreds to thousands copies of mitochondria. The faster rate of 

mtDNA replication, however, is not without consequences, particularly, in an 

environment that is high in reactive oxygen species (ROS). The rare error rates 

of DNA replication and editing enzymes increase in the presence of oxidative 

modified nucleotides and enzymes. Hence, mtDNA has ~16 times higher 

mutation accumulation rate than the nDNA (Richter, Park et al. 1988). Mutations 

could initiate a vicious cycle of impaired mitochondrial functions, increased ROS, 

higher error rates of DNA polymerases and editing enzymes and further 

accumulation of mutated mtDNA.  Given the presence of thousands of copies of 

mtDNA in each cell, mutations generate an admixture of wild type and mutant 

mtDNA, which is referred to as heteroplasmy, as opposed to homoplasmy, when 
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all copies of mtDNA are identical. Heteroplasmy in mtDNA in somatic cells, as 

the mitochondria replicates, increases with age. Accordingly mitochondrial 

mutations and dysfunctions have been implicated in various age-dependent 

phenotypes including cellular senescence and metabolic disorders. 

 

Base substitutions in mtDNA protein synthesis genes can result in multisystem 

disorders with a wide range of symptoms (Shin, Tanaka et al. 2000; Schwartz, 

Duka et al. 2004; Wallace 2005).  Recently, Schlick et al. (2006) sequenced the 

mtDNA of 10 commonly used inbred rat strains.  Analysis showed 11 single 

nucleotide polymorphisms (SNPs) within the tRNA genes, 6 in the 12S  rRNA, 

and 12 in the 16S rRNA including 3 indels.  Also, 14 SNPs and 2 indels were 

found in the D-loops.  Pravenec et al. (Pravenec, Churchill et al. 2008) 

investigated whether naturally occurring variation in the mitochondrial genome of 

SHRs and BN rats could be linked to risk factors for type 2 diabetes.  Sequence 

analysis revealed distinct differences between the 2 strains, revealing 

polymorphisms of functional significance in seven of 13 mRNA genes, five of 22 

tRNA genes and both rRNA genes.  The mRNA variants were predicted to cause 

amino acid substitutions in mitochondrial cytochrome oxidase subunit 1, ATP 

synthase subunit 6, ATP synthase subunit 8, cytochrome b, NADH 

dehydrogenase subunit 2, and NADH dehyrogenase 6.  Some of these amino 

acid substitutions are located within 0-3 residues of mutation sites known to be 

associated with human diseases (Pravenec, Churchill et al. 2008).  Variations in 

the tRNA genes were also shown to be closely located to human mutation sites 
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associated with mitochondrial encephalopathy (Elo, Yadavalli et al. 2012).  

Recently, reports of mitochondrial tRNA mutations were observed in a Chinese 

population with essential hypertension (Li, Liu et al. 2009; Liu, Li et al. 2009).  

Additionally, Wilson et al. (2004) describe a causal relationship between a 

T4921C transition SNP, which lies in the mitochondrial tRNAlle gene and 

hypertension.  The genetic association of mtDNA variants and tRNA mutations to 

type 2 diabetes and hypertension directly implicated mitochondrial defects to the 

etiology of cardiovascular disease and metabolic syndrome (Wallace 2005). 

Taken together, there is significant evidence of mtDNA mutations and altered 

mitochondrial genetic expression that may play a significant role in 

cardiovascular disease phenotypes.   

 

The viability of individual electron transport chain (ETC) subunits and the 

potential for disease has been evaluated.  Altered function of complex I has been 

linked to cardiovascular disease (Antonicka, Ogilvie et al. 2003; Lopez-

Campistrous, Hao et al. 2008).  Lopez-Campistrous et al. revealed defects in 

complex I in the brainstem of SHR, resulting in increased reactive oxygen 

species production, decreased ATP synthesis and impaired respiration in 

hypertension (Lopez-Campistrous, Hao et al. 2008).  Altered function of complex 

III, a major site of superoxide formation and ROS production, may play an 

important role in renal mitochondrial ETC dysfunction and cardiovascular 

disease.  Similar to these findings, Das et al. (1990) reported that the regulation 

of ATP synthase is abnormal in SHR cardiac cells, as demonstrated by the 
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inability to respond to acute increases in energy demand compared to cells from 

normotensive rats .  Taken together, the altered function of ETC subunits derived 

from decreased kidney-specific mt-gene expression may have several 

implications to the development of hypertension. 

 

To date, however, it is clear that phenotypes that may arise from mtDNA 

mutations are not uniform, and can be influenced by both environmental factors 

as well as the nuclear genome.  Only 13 of the  proteins needed to assemble the 

electron transport chain are coded by the mitochondrial genome.  The remaining 

proteins are coded by the nuclear genome and transferred to the mitochondria.  

This interaction may have profound effects on disease phenotypes.  For 

example, mutations in the nDNA encoded hepatocyte nuclear factor-1 alpha 

(HNF-1α) are associated with post-pubertal diabetes, dislipidemia and 

hypertension (Wallace 1999).  HNF-1 is also important in regulating nDNA-

encoded mitochondrial gene expression (Wang, Maechler et al. 2000).  Patients 

with type II diabetes show a downregulation in the expression of nDNA encoded 

mitochondrial genes associated with mitochondrial biogenesis and transcription 

(Patti, Butte et al. 2003).  In the SHR, the gene encoding mitochondrial coupling 

factor 6 was evaluated.  Osanai et al. (2001) reported that the genetic expression 

and plasma concentration of coupling factor 6 was significantly higher in SHRs 

compared with normotensive controls.  Functional analysis suggests that it acts 

as a potent endogenous vasoconstrictor as a circulating hormone, and thus a 

potential factor in the propagation of hypertension.  Circulating coupling factor 6 
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is also elevated in human hypertensive patients compared with normotensive 

subjects (Osanai, Sasaki et al. 2003).  Taken together, these findings suggest 

that mitochondrial dysfunction of both mitochondrial and nuclear origin may play 

a significant role in the pathophysiology of arterial blood pressure regulation and 

development of hypertension (Figure 1.7). 

 

The nuclear pathway that regulates mitochondrial transcription and biogenesis is 

well established (Ventura-Clapier, Garnier et al. 2008).  Peroxisome proliferator-

activated receptor gamma coactivator 1 alpha (PGC-1α) plays a central role in 

regulating mitochondrial content and function within cells, because of its ability to 

co-activate and augment several promoters of nuclear-encoded mitochondrial 

genes, as well as regulating mitochondrial transcription via the NRF-Tfam 

(Nuclear respiration factor-Transcription factor A mitochondria) pathway (Figure 

1.6) (Wu, Puigserver et al. 1999).  PGC-1α regulates NRF-dependent 

transcription, increases expression of both mitochondrial and nuclear encoded 

genes of oxidative phosphorylation and induces mitochondrial biogenesis 

(Scarpulla 2002).  Decreased PGC-1α  expression has been shown to decrease 

expression of NRF-dependent genes, leading to metabolic disturbances 

characteristic of type II diabetes (Patti, Butte et al. 2003).  This linear coordinated 

reduction of nuclear transcription factors, that ultimately leads to decreased 

mitochondrial gene transcription appears to play a role in metabolic syndrome, 

however, it’s role in the development of hypertension is largely unknown.  

Additionally, it has been shown that metabolic functions are controlled by PGC-
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1α  in a tissue specific manner in brown fat, muscle and liver (Puigserver 2005), 

however kidney regulation of  PGC-1α  and its effectors is unknown. 

 

Mitochondrial dysfunction contributes to the pathophysiology of hypertension, 

renal disease, as well as other cardiovascular diseases.   Significant evidence 

indicates that the RAS plays a role in developing mitochondriopathy.  AngII 

stimulates mitochondrial oxidant release both directly and indirectly, leading to 

energy metabolism depression, and potentially modification of gene expression, 

ultimately contributing to cardiovascular-related pathologies (de Cavanagh, 

Inserra et al. 2007). Dikalova et. al showed that mitochondrial superoxide was 

directly related to the development of hypertension, and that targeting of 

mitochondrial superoxide scavenging significantly attenuates the development of 

the disease (Dikalova, Bikineyeva et al. 2010).  Additionally, de Cavanagh et al. 

demonstrated that oxidant stress is associated with mitochondrial dysfunction in 

the SHR, and that blocking AngII with losartan provided mitochondrial-antioxidant 

actions that reversed mitochondrial dysfunction and renal impairment (de 

Cavanagh, Toblli et al. 2006).  AngII can promote mitochondrial oxidative stress 

indirectly by stimulating both nitric oxide (NO) production and NAD(P)H oxidase-

derived superoxide, which in turn enhances peroxynitrite  formation (Pueyo, 

Arnal et al. 1998).  Substantial evidence has shown that NAD(P)H oxidase 

derived reactive oxygen species are important mediators of AngII signaling 

(Figure 1.7) (de Cavanagh, Inserra et al. 2007).  ROS has been shown to play 

an important role in the physiological and pathophysiological process in the 
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central nervous system, and has been linked to activation of sympathetic nerve 

activity (Gao, Wang et al. 2004) . SHRs exhibit increased NAD(P)H driven O2
- 

generation in resistance and aortic vessels (Rodriguez-Iturbe, Zhan et al. 2003; 

Tanito, Nakamura et al. 2004), associated with NAD(P)H oxidase subunit 

overexpression and enhanced oxidase activity (Shokoji, Nishiyama et al. 2003; 

Kishi, Hirooka et al. 2004).  Several polymorphisms in the promoter region of the 

p22phox gene have been identified in the SHR (Zalba, San Jose et al. 2001), and 

an association between p22phox gene polymorphism and NAD(P)H oxidase 

mediated O2- production in the vascular wall of humans with hypertension also 

has been established (Moreno, San Jose et al. 2003). Additionally, increased 

expression of p47phox has been reported in the renal vasculature, macula densa 

and distal nephron of young SHRs, suggesting renal NAD(P)H oxidase 

upregulation in kidney structures precedes development of hypertension, that 

again may be related to altered RAS activity (Kishi, Hirooka et al. 2004).  The 

role played by angiotensin II in developing mitochondriopathy has been 

advanced recently by Benigni et al. (Benigni, Corna et al. 2009).   Deletion of the 

Agtr-1a gene resulted in the reduced age-related cardio-renal complications, 

improved mitochondrial biogenesis, and increased longevity in mice.  Treatment 

with antioxidants, superoxide dismutase (SOD) mimetics, and AT1r blockers 

decrease vascular O2- production and attenuate development of hypertension in 

the SHR and stroke-prone SHR (Park, Touyz et al. 2002; Rodriguez-Iturbe, Zhan 

et al. 2003; Shokoji, Nishiyama et al. 2003).  Taken together, these findings 

suggest that oxidative stress plays an important role in genetic hypertension and 
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involves NAD(P)H oxidase activity that is regulated, in part, by the AT1 receptor 

and possibly AT1r genetic expression. 
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Figure 1.5: Mamalian mitochondrial genome.  Mammalian mtDNA 
encodes 37 genes, including 13 polypeptide genes, all of which 
encode essential components of OXPHOS.  It also encodes the 
12S and 16S rRNA genes and the 22 tRNA genes required for 
mitochondrial protein synthesis (Leigh-Brown, Enriquez et al. 
2010). 
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Figure 1.6: Nuclear-mitochondrial pathway driving mtDNA transcription 
and biogenesis.  This well known pathway may be regulated in a tissue-
specific manner, depending on the energetic needs of that tissue.   
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Figure 1.7: Proposed role of redox-dependent cross talk between 
mitochondria and NADPH oxidases (NOXs) in vascular and renal 
dysfunction in hypertension. CVD, cardiovascular disease; NO, nitirc oxide; 
ONOO−, peroxynitrite; eNOS, endothelial NO synthase; GPx, glutathione 
peroxidase, Trx2, thioredoxin 2; mCat, catalase targeted to mitochondria; 
mKATP, ATP-sensitive K+ channel; ΔΨm, mitochondrial transmembrane 
potential (Dikalov 2013)    
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Rationale, Overall Hypothesis and Specific Aims 
 

Primary or essential hypertension is regarded as a multi-factorial disease, 

influenced by both genetic makeup and environmental conditions. Though 

several (~300) genetic loci have been identified for hypertension in the rat 

(Hilbert, Lindpaintner et al. 1991; Schork, Krieger et al. 1995; Laulederkind, 

Hayman et al. 2013), the exact form of the underlying genetic mechanism 

remains unanswered.  In addition to being polygenic, hypertension is thought to 

be polygenomic, with significant evidence supporting the relationship between 

mtDNA dysfunction and cardiovascular disease (Wilson, Hariri et al. 2004; de 

Cavanagh, Inserra et al. 2007; Chan, Wu et al. 2009).  Additionally, significant 

data from our lab and others have documented that angiotensin II and the renin-

angiotensin system play a critical role in maintenance of arterial blood pressure 

and, that this hormonal system is elevated in several experimental models of 

hypertension, as well as human essential hypertension.  Presented in this body 

of work is evidence of renal intrinsic and extrinsic mechanisms, including specific 

humoral, genetic and genomic mechanisms that appear to play a role in the 

manifestation and maintenance of spontaneous hypertension.  This work will be 

laid out in the following aims: 

 

Specific Aim 1  established a unique rodent colony (BN/SHR-mtSHR) 

to attempt to isolate nuclear and mitochondrial genes, and their potential 

interaction with the renin-angiotensin system that may be causal to 

hypertension in BN/SHR-mtSHR 
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Specific Aim 2 determined tissue angiotensin II, type 1 receptor 

(AT1r) gene and protein expression in normotensive (NT) and hypertensive 

(HT) BN/SHR-mtSHR.   

• Evaluate tissue-specific Agtr1a mRNA expression and incidence 
of hypertension in BN/SHR-mtSHR 

• Evaluate kidney- and hypothalamic- specific AT1 protein 
expression and incidence of hypertension in BN/SHR-mtSHR 

 

Specific Aim 3 evaluated sodium sensitivity and renal function in 

hypertensive and normotensive BC5 sibxsib BN/SHR-mtSHR. 

• Characterize renal function, pressure-natriuresis and diuresis in 
normotensive and hypertensive BN/SHR-mtSHR 

 

Specific Aim 4 evaluated tissue-specific nuclear and mitochondrial 

genes involved in oxidative phosphorylation and their role in spontaneous 

hypertension in BN/SHR-mtSHR.  

• Evaluate tissue-specific mitochondrial gene expression and 
incidence of hypertension in BN/SHR-mtSHR 

• Evaluate tissue-specific gene expression of nuclear regulatory 
factors for mitochondrial transcription and regulation 

• Characterize kidney-specific OXPHOS using cytochrome 
oxidase staining in normotensive and hypertensive BN/SHR-
mtSHR 
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CHAPTER 2 

SPONTANEOUS HYPERTENSION: THE SPONTANEOUSLY HYPERTENSIVE 
RAT & DEVELOPMENT OF BN/SHR-mtSHR CONPLASTIC RAT MODEL 
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Abbreviations used: BN, Brown Norway rat; WKY, Wistar Kyoto rat; SAP, 
systolic arterial pressure  
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2.1 Introduction: Development of the Spontaneously Hypertensive Rat 
 

The various mechanisms underlying human hypertension have been difficult to 

study as there is individual variation in the polygenetic/polygenomic disposition 

and environmental factors that are difficult to differentiate from each other.  The 

most commonly used model of experimental hypertension is the Spontaneously 

Hypertensive rat (SHR). Okamoto-Aoki SHRs are descendants of an outbred 

Wistar male (WKY) with spontaneous hypertension from a colony in Kyoto, 

Japan (Okamoto and Aoki 1963).  Briefly, A male rat with spontaneously high 

systolic blood pressures of 150 to 175 mmHg persisting for more than one month 

and a female rat with elevated systolic blood pressures (130 to 140 mmHg), were 

mated to obtain F1 rats. Of these F1 rats, males and females with hypertension, 

as defined as systolic BP > 150mmHg persisting for more than a month were 

mated to produce F2 generation rats. The procedure was repeated to obtain F3, 

F4, F5 and F6 rats totaling 380 animals.  The incidence of the spontaneous 

occurrence of hypertension increased, and the development of hypertension 

occurred at younger ages from generation to generation.  The incidence of 

severe hypertension (SYS>200mmHg) increased with each generation, so that 

among male animals it increased from only 9% in F2 to 35% in F3, 42% in F4, 

and 56% in F5, and in female animals from 3% in F2, 16% in F3, 33% in F4, and 

37% in F5 (Okamoto and Aoki 1963).  From 1968, this inbred strain of SHRs was 

further developed in the USA and elsewhere (Kurtz and Morris 1987). The 

various colonies of SHR are pre-hypertensive for the first 6–8 weeks of their lives 

with systolic blood pressures around 100–120 mmHg (Adams, Bobik et al. 1989), 
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and then hypertension develops over the next 12–14 weeks(Doggrell and Brown 

1998).  As in humans, hypertension develops more rapidly and becomes more 

severe in male than female SHR (Iams and Wexler 1979). In vivo studies have 

shown that, in the early stages of hypertension, SHRs have an increased cardiac 

output with normal total peripheral resistance. As the SHR progresses into the 

established hypertension state, the cardiac output returns to normal and the 

hypertrophied blood vessels produce an increase in the total peripheral 

resistance.  

 

Researchers in hypertension have commonly used SHRs which have, within 

each colony, uniform polygenetic disposition that influence the cardiovascular 

system.  It was, and continues to be the hope of geneticists and physiologists 

that the SHR will be pivotal in identifying genes contributing significantly to the 

pathophysiology of hypertension.  The nuclear loci causal to chronic elevated 

arterial pressure have been extensively investigated in the SHR (Kurtz, Casto et 

al. 1990; Ye and West 2003; Atanur, Birol et al. 2010; Pravenec and Kurtz 2010; 

Yamamoto, Okuzaki et al. 2013).  Translationally, the SHR follows the same 

progression of hypertension as human hypertension with pre-hypertensive, 

developing and sustained hypertensive phases with each phase lasting at least 

several weeks (Folkow 1993). However, the SHR differs from human 

hypertension in that SHRs reproducibly develop hypertension in young adulthood 

rather than in middle age as in humans.  SHRs have a defined “pre-hypertensive 
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state”, which makes the model invaluable to be used in studies of the cause and 

development of hypertension.  

 

The WKY controls were established later, in 1971, as a normotensive control 

strain by the National Institutes of Health (USA) as an inbreed of the Wistar 

Kyoto colony via brother×sister mating (Kurtz and Morris 1987). The degree of 

genetic difference between the SHR and WKY strains and within different 

colonies of each strain is substantial and comparable to the extreme variability 

that exists between human populations and thus unlikely to be related solely to 

hypertension (Johnson, Ely et al. 1992; St Lezin, Simonet et al. 1992). 

Differences between SHRs and Wistar normotensive rats other than WKY may 

be more likely to be hypertension-related than differences between SHR and 

WKY because the SHRs were derived from the WKY, hypertension may develop 

spontaneously in the WKY, and the WKY may share some of the genes 

responsible for hypertension with the SHR (Louis and Howes 1990).  

 

The SHR has been shown to exhibit lower blood pressure when administered the 

most common antihypertensive medications (Pinto, Paul et al. 1998).  Thus, it is 

not surprising that SHRs have been used extensively and successfully for 50 

years to test compounds for their effectiveness in lowering blood pressure, and to 

study the mechanisms of established hypertension.  
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To investigate mechanisms underlying spontaneous hypertension, we utilized the 

Okamoto-Aoki SHR in a unique breeding paradigm to isolate nuclear and 

mitochondrial genes responsible for the manifestation of heritable hypertension.   
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2.2 Development of BN/SHR-mtSHR “conplastic” rat model for investigating 
physiological and genetic mechanisms of spontaneous hypertension 
 

Hypertension in the Okamoto-Aoki SHR is both neurogenic and genetic in nature.  

The present study measured the arterial blood pressures of offspring over six 

generations (F1-BC5) of breeding in a “conplastic” colony derived from mating a 

female hypertensive, SHR with a systolic arterial pressure (SAP) averaging 188 

mmHg with two normotensive Brown Norway (BN) males (SAP 100 & 104 

mmHg, respectively).  Hypertension was defined in all offspring as a SAP ≥ 

145mmHg, normotension as SAP ≤ 124mmHg and borderline hypertension as 

125mmHg < SAP < 145mmHg.   F1 – BC5 female offspring with a SAP ≥ 

145mmHg were back bred to the original, normotensive, founder BN males 

(Figure 2.1).  Offspring at each generation were raised to adulthood and blood 

pressure measurements were obtained by tail cuff plethysmography at 8, 12, and 

16 weeks of age, as well as into later adulthood ages.  The purpose of this 

breeding paradigm was two-fold.  First, hypertensive nuclear “loci” that are likely 

causal to hypertension were isolated on a normotensive, Brown Norway 

background.  Second, as females were phenotypically selected for back breeding 

at each generation, all offspring of the colony had identical mitochondrial 

genomes of the founder SHR hypertensive female.  This breeding paradigm 

allowed for the investigation of any potential role that the mitochondria may play 

in the development and maintenance of the inherited hypertension.  Six 

generations produced more HT (n=88; 46%) than NT (n=21;11%) offspring, 

documenting consistent and dominant expression of the hypertensive phenotype.  
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These results indicate that dominant alleles of both the nuclear and mitochondrial 

genomes may be responsible for the development of hypertension in rats with a 

decreasing SHR nuclear genome that is replaced with a Brown Norway genome. 

 

2.2.1 Methods and Materials 

 

Rats were raised in a 12 hr light: 12 hr dark cycle in a climate at 20° to 22°C from 

birth.  At 3 weeks of age, rats were weaned and transferred to either individual 

(males) or group (≤3 females of the same litter) solid-wall cages with bedding 

and were provided a commercial standard rodent chow and tap water ad libitum.  

Beginning at 10 weeks of age, rats were phenotyped as normotensive, borderline 

hypertensive or hypertensive using tail cuff plethysmography (Kent Scientific, 

Torrington, CT).  Hypertensive female offspring were then back-crossed to the 

original progenitor BN males for 5 subsequent generations.  All rats in the colony 

possessed identical mitochondrial genomes, with increasing BN nuclear genome 

with each subsequent backcross generation.  After repeated blood pressure 

recordings that assured consistent determination of adult arterial pressure, rats 

were euthanized with an overdose of sodium pentobarbital (60 mg/kg i.p)., 

immediately decapitated, and organ tissues were rapidly frozen in a solution of 

dry ice and acetone.   
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2.2.2 Measurement of arterial pressure.  

 

Since animals were to be back-bred to the founder males in the establishment of 

the conplastic genome, tail cuff plethysmography was used as a phenotyping 

methodology only to establish basic individual blood pressures. To minimize 

stress and improve reliability of blood pressure measurements, several steps 

were used in the blood pressure recording method that has been previously 

characterized and published (Kurtz, Griffin et al. 2005).  Rats were exposed and 

acclimated to the measurement procedures and restraint equipment prior to BP 

recordings.  A dark cover was placed over the restrained animal for the duration 

of the BP measurement, and BP recordings were performed at the same time 

each day.  All equipment was thoroughly cleaned and disinfected before and 

after each individual rat to eliminate foreign scent.  Animals were moderately 

warmed to dilate the ventral artery.  Arterial pressures were derived from the 

average results of ≥5 measurements in each recording session.  The average 

blood pressures of ≥5mmHg separate recording sessions with <5% variability 

were used to establish the phenotype of each animal.  Both systolic and diastolic 

pressures were obtained and recorded.  For purposes of reporting, the systolic 

pressures were used for the determination of the specific individual phenotype. 
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2.3 Results 
 

Progenitor female SHR had a SAP of 188mmHg and progenitor BN males had 

SAPs of 100 (BN*) and 104 (BN^) mmHg.  The BN*/SHR-mtSHR produced six 

generations, yielding 94 total offspring, with 42.6% (n=40) expressing the 

hypertensive phenotype, 42.6% (n=40) expressing the BHT phenotype, and only 

14.9% (n=14) expressing the normotensive phenotype (Table 2.1). The 

BN^/SHR cross/backcross also produced six generations, yielding 71 total 

offspring, with 52.1% (n=37) expressing the hypertensive phenotype, 39.4% 

(n=28) expressing the BHT phenotype, and only 8.5% (n=7) expressing the 

normotensive phenotype (Table 2.2). Together, the 6 total generations produced 

190 offspring, with 110 (58%) female and 80 (42%) male offspring.  There were 

significantly more hypertensive (n=88; 46%) than normotensive offspring 

(n=21;11%), while a large number of individuals expressed the intermediate 

phenotype (n=81; 43%). There were no differences in SAP between male and 

female offspring at any generation.  Furthermore, comparison of systolic, 

diastolic and mean arterial pressures of male and female offspring across all 

backcross generations did not demonstrate any gender differences in arterial 

pressures. Hypertension was dominantly expressed and maintained across all 

six offspring generations of BN/SHR-mtSHR rats (Figure 2.2).  

 

With the conplastic breeding paradigm, the BN contribution to the nuclear 

genome at each generation is as follows: F1: 50%, BC1: 75%, BC2: 87.5%, BC3: 

93.75%, BC4: 96.875%, BC5: 98.4375%.  Thus, at the 6th generation, SHR only 
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accounts for 1.5625% of the nuclear genome, however, the hypertensive 

phenotype is still dominantly expressed (Figure 2.2).  Additionally, the 

mitochondrial genomes of all offspring (n=190), barring any mutations, are 

identical to the founder SHR female. 
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2.4 Implications and Significance 
 

Because of the lack of appropriate animal models, the potentially causal 

contributions of inherited mitochondrial genomic factors to complex traits are less 

well studied compared with inherited nuclear genomic factors. To evaluate the 

effects of these mtDNA variations in the absence of the corresponding nuclear 

genomic factors as confounding variables, novel conplastic BN/SHR-mtSHR rats 

were constructed using a founder male back breeding paradigm and 

characterized for the existence of hypertension.  Utilizing this unique rodent 

colony, one can begin to understand the different roles that the nuclear and 

mitochondrial genome may be playing in the development of chronic elevated 

arterial pressure, and subsequently the development of cardiovascular disease 

associated with arterial hypertension.   
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Figure 2.1: Breeding paradigm for BN/SHR-mtSHR rats.  Hypertensive 
female SHR (SAP= 188mmg) was crossed with two BN males (100mmHg* 
and 104mmHg^ respectively).  Back-breeding female offspring using 
phenotypic selection of elevated arterial pressure (>145mmHg) was used to 
provide the second generation (BC1).  Subsequent back-crossing was 
performed for five additional generations to create 6 total generations (F1, 
BC1-BC5). 
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Systolic Arterial Pressure distribution across
6 generations BN/SHR-mtSHR
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Figure 2.2: Six generations of BN/SHR-mtSHR rats with 
corresponding average systolic pressure (SAP) values.  The Po 
generation represents repeated measures of the founding SHR and 
BNs.  Each individual dot in generations F1-BC5 represent average 
BP of individual rats. Three distinct populations persisted throughout 
all 6 generations (NT animals above red dotted line, NT animals 
below green dotted line, and BHT animals between red and green 
dotted lines), with hypertension being dominantly expressed and 
maintained.  Modified from (Collett, Hart et al. 2013) 
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Table 2.1: Phenotypic characterization of BN*/SHR-mtSHR colony.  Phenotypes 
are separated according to gender.  There was no difference in SAP between 
genders.  SAP values are expressed as mean ± S.E.M.   
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Table 2.2: Phenotypic characterization of BN^/SHR-mtSHR colony.  Phenotypes 
are separated according to gender.  There was no difference in SAPs between 
genderss.  SAP values are expressed as mean ± S.E.M  
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3.1 Introduction 
 

Hypertension and the chronic elevation of blood pressure constitute a primary 

and significant factor in the development of cardiovascular disease.  Essential 

hypertension is regarded as a multi-factorial disease, influenced by both genetic 

makeup and environmental conditions that can alter genomic expression 

(National Heart, Institute et al. 1977), (Raizada, Sumners et al. 1993), (Schork, 

Krieger et al. 1995).  The polygenic nature of hypertension and its dependence 

on environmental factors complicate the clear identification of genetic factors that 

directly increase blood pressure (Joe and Garrett 2005).    The rat is a well-

established animal model for investigating human hypertension, with over 25,000 

papers reported on hypertension in rats alone (Kwitek-Black and Jacob 2001).   

Rat models of spontaneous hypertension, in particular, the SHR, have been 

critical to our understanding of blood pressure control and the pathophysiology of 

hypertension.  Significant progress has been made to map the genes involved in 

blood pressure regulation in these animal models.  Nuclear and mitochondrial 

genome scans have been carried out in rats, mice and humans and have 

revealed several potential genomic regions that may contain genes involved in 

the pathogenesis of spontaneous hypertension (Rapp 2000).  Molecular genetic 

analysis proves that BP regulation is polygenic, and there is good evidence for 

several BP related quantitative trait loci (QTLs) on nearly every rat chromosome 

(Deng, Dene et al. 1994), (Doris 2002), (Hilbert, Lindpaintner et al. 1991), 

(Hopkins and Hunt 2003), (Rapp, Dene et al. 1994), (Schork, Krieger et al. 1995).  

Linkage analyses of populations derived from the SHR shows potential BP QTLs 
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at numerous loci, however, the precise nature of the genetic mechanisms 

underlying essential hypertension remains unanswered.  

 

Significant data from our lab and others have documented that angiotensin II and 

the renin-angiotensin system play a critical role in maintenance of arterial blood 

pressure and that this hormonal system is elevated in several experimental 

models of hypertension, as well as human essential hypertension (Cowley 1992), 

(de Gasparo, Catt et al. 2000), (Doris 2002), (Lenkei, Palkovits et al. 1997), 

(Lifton, Gharavi et al. 2001), (Reinhart, Lohmeier et al. 1995), (Weir and Dzau 

1999).   It has been suggested that the renin-angiotensin system RAS plays a 

pathogenic role in the development of hypertension in Aoki-Okamoto SHR.  An 

elevated RAS impacts blood pressure directly via vasoconstriction and sodium 

retention, as well as indirectly, through increased reactive oxygen species, 

altering redox signaling and increased sympathetic outflow.   

Here we demonstrate a unique rat colony developed by breeding a hypertensive 

female Okamoto-Aoki SHR with male, normotensive Brown Norway (BN) rats.  

Hypertensive female offspring were backcrossed with the original males for 5 

subsequent generations.  Despite the dilution of the “hypertensive” nuclear 

genome, hypertensive phenotype expressed by the founder female was 

dominantly expressed and maintained across 6 generations of BN/SHR-mtSHR 

rats.  All progeny however, have identical mitochondrial genomes.  We 

investigated the tissue-specific mRNA expression of the RAS pathway, including 

angiotensinogen (AGT), renin (REN), angiotensin converting enzyme 1 (ACE1), 
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angiotensin converting enzyme 2 (ACE2) and angiotensin II, type 1 receptors 

(Agtr1a) in normotensive and hypertensive BN/SHR-mtSHR backcross rats.  It is 

hypothesized that tissue-specific increased RAS expression contributes to 

heritable hypertension in BN/SHR-mtSHR rats. 
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3.2 Materials and Methods 
 

3.2.1 Animals.  

 

All experiments were carried out in accordance with the AAALAC Guide to the 

Care and Use of Laboratory Animals and all protocols were previously approved 

by the University of Kentucky Institutional Animal Care and Use Committee (UK 

IACUC).  A congenic colony using phenotypic selection was employed.  The 

Aoki-Okamoto SHR/Brown Norway (BN/SHR-mtSHR) rat colony was developed by 

breeding a female SHR (Charles River Labs, Wilmington, MA) with 2 different 

normotensive Brown Norway males (BN* and BN^, respectively; Charles River 

Labs, Wilmington, MA).  Rats were raised in a 12 hr light: 12 hr dark cycle in a 

climate at 20° to 22°C from birth.  At 3 weeks of age, rats were weaned and 

transferred to either individual (males) or group (≤3 females of the same litter) 

solid-wall cages with bedding and were provided a commercial standard rodent 

chow and tap water ad libitum.  Beginning at 10 weeks of age, rats were 

phenotyped as normotensive, borderline hypertensive or hypertensive using tail 

cuff plethysmography (Kent Scientific, Torrington, CT).  Hypertensive female 

offspring were then back-crossed to the original progenitor BN males for 5 

subsequent generations.  All rats in the colony possessed identical mitochondrial 

genomes, with increasing BN nuclear genome with each subsequent backcross 

generation.  After repeated blood pressure recordings that assured consistent 

determination of adult arterial pressure, rats were euthanized with an overdose of 
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sodium pentobarbital (60 mg/kg i.p)., immediately decapitated, and organ tissues 

were rapidly frozen in a solution of dry ice and acetone.   

Brains were carefully removed from the skull, and hypothalami were excised 

using previously characterized specific landmarks:  anterior – optic chiasm; 

lateral – optic nerve projections; dorsal – fornix. 

Age and sex matched HT (N=20) and NT (N=20) animals across 6 generations of 

BN/SHR-mtSHR were chosen for RAS mRNA evaluation.  Animals in the 

backcross generation 3 (BC3) were chosen for protein analysis as there were an 

appropriate number of age and sex matched NT and HT rats within a single 

generation. 

 

3.2.2 Measurement of Arterial pressure.  

 

Systolic arterial pressure (SAP) was evaluated in parents and offspring beginning 

at 10-12 weeks of age.  Phenotypes were assigned as either normotensive (NT: 

SAP ≤ 124mmHg), borderline hypertensive (BHT:  125 ≤ SAP < 145 mmHg) or 

hypertensive (HT: SAP ≥ 145mmHg).  Since animals were to be back-bred to the 

founder males in the establishment of the conplastic genome, tail cuff 

plethysmography was used as a phenotyping methodology only to establish 

basic individual blood pressures. To minimize stress and improve reliability of 

blood pressure measurements, several steps were used in the blood pressure 

recording method that has been previously characterized and published (Kurtz, 

Griffin et al. 2005).  Rats were exposed and acclimated to the measurement 

procedures and restraint equipment prior to BP recordings.  A dark cover was 
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placed over the restrained animal for the duration of the BP measurement, and 

BP recordings were performed at the same time each day.  All equipment was 

thoroughly cleaned and disinfected before and after each individual rat to 

eliminate foreign scent.  Animals were moderately warmed to dilate the ventral 

artery.  Arterial pressures was derived from the average results of ≥5 

measurements in each recording session.  The average blood pressures of 

≥5mmHg separate recording sessions with <5% variability were used to establish 

the phenotype of each animal.  Both systolic and diastolic pressures were 

obtained and recorded.  For purposes of reporting, the systolic pressures were 

used for the determination of the specific individual phenotype. 

 

3.2.3 RNA Extraction and RT-PCR.   

 

Kidney, liver and lung tissue were harvested from HT and NT rats (n=20 NT; 

n=20 HT) as described above.  Total RNA was extracted by Trizol reagent 

(Invitrogen, Carlsbad, CA) and purified using RNeasy minicolumns (Qiagen Inc., 

Valencia, CA) according to manufacturer’s protocol.  Possible genomic DNA in 

total RNAs was digested with RNA-free DNase I (Qiagen Inc., Valencia, CA).  

Concentration and purity of all RNA samples was determined by the Nanodrop 

ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE).  

Extracted RNA was reverse-transcribed into complementary DNA (cDNA) using 

qScript cDNA supermix (Quanta Biosciences, Gaithersburg, MD) in a total 

volume of 20µl using a MyCyler Thermal Cycler (Bio-Rad Laboratories, Hercules, 

CA).  
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3.2.4 Quantitative Real-Time PCR.   

 

Quantitative Real-Time PCR was performed on a StepOnePlus Real-time PCR 

system (Applied Biosystems).  Real-time quantitative PCR amplifications were 

performed in triplicate in a 96-well plate.  For normalization, GAPDH was used as 

the reference gene.  Pre-designed primers and hydrolysis probes were 

purchased from Integrated DNA Technologies, Inc.  (Agtr1a; Primer 1: 5’-

CCAGCCATTTTATACCAATCTC-3’, Primer 2: 5’-TCCTGTTCCACCCGATCA-3’, 

Probe: 5’-/HEX/CAGCTCTGC/ZEN/CACATTCCCTGAGT/ 3IABkFQ/-3’.) 

(GAPDH; Primer 1: 5’GTAACCAGGCGTCCGATAC-3’, Primer 2: 5’-

GTTCTAGAGACAGCCGCATC-3’, Probe: 5’-/56-FAM/ATCCGTTCA/ZEN/ 

CACCGACCTTCACC/3IABkFQ/-3’.)  Pre-designed TaqMan primers and 

hydrolysis probes for AGT (Rn00593114_m1), REN (Rn00561847_m1), ACE1 

(Rn00561094_m1), ACE2 (Rn01416293_m1) were purchased from Life 

Technologies.   Relative gene expression was calculated using the comparative 

CT method.  Primers and probes were verified and operating at similar 

efficiencies. 

 

 

3.2.5 Membrane Protein Extraction.  

 

Whole kidney and hypothalamic tissues were placed in an ice-cold buffer solution 

containing 1M Tris, 5M NaCl, 0.5M EDTA, 100% Brij 96/97 and 10% NP40 with 
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0.3% protease inhibitor leupeptin (50μM), aprotinin (50nM) and pepstatin (1μM).  

Tissue samples were immediately homogenized (PowerGen® 125 Homogenizer, 

Fisher Scientific, Pittsburgh, PA) at 4°C for approximately 15 seconds.  After 

complete homogenation, samples were loaded into a centrifuge (Heraeus 

Biofuge 13, Baxter Scientific, Deerfield, IL) and spun at 13,000 rpm for 10 

minutes at 4°C.  Protein concentration was determined for each sample using 

colorimetric assay according to Lowry et al. (Lowry, Rosebrough et al. 1951). 

 

3.2.6 Western blot analysis of AT1 Receptor.  

 

Kidney and hypothalamic protein samples were electrophoretically separated on 

4% to 10% SDS-Page gels at 150V/50mA for 1 hour.    Separated proteins were 

transferred by electroelution (200V, 1-2hrs) to polyvinylidene difluoride (PVDF) 

membranes (0.45μm;Millipore, Bedford, MA).  Molecular weight markers (~10-

190kDa; Benchmark Prestained Protein Ladder, Invitrogen, Carlsbad, CA) were 

used to estimate molecular mass.  Blots were blocked with 5% bovine serum 

albumin (BSA) in Tris-buffered saline.  Blots were incubated with primary 

antibodies AT1r (1:200, sc-81671) and β-tubulin (loading control; 1:200, sc-

23949; Santa Cruz Biotechnology Inc., Santa Cruz, CA) at 25°C for 2 hours.  

Blots were washed with Tris-buffered saline/0.1% Tween-20 (TBST) and then 

exposed to secondary antibody conjugated to horseradish-peroxidase (1:2000, 

sc-2005; Santa Cruz, CA) at 25°C for 2 hours.  Detection of specific proteins was 

accomplished using enhanced chemiluminescence (SuperSignal West Pico, 

Thermo Scientific, Rockford, IL) according to manufacturer’s instructions, and 
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blots were exposed to BioMax Light Autoradiography film (Kodak #1788207).  

Densitometric results were reported as integrated values (area density of band) 

and expressed as a ratio of AT1r to loading control (β-tubulin).  Results were then 

compared between phenotypic groups.  Lanes lacking protein were subject to 

AT1r and β-tubulin primary antibody to verify antibody selectivity.  Densitometry 

reflects mean ± S.EM. of all samples. 

 

3.2.7 Statistical analysis.  

 

Blood pressures, as well as tissue AT1r protein expression between NT and HT 

BN/SHR-mtSHR rats were analyzed using an Student’s T-test.  Renal AGT, REN, 

ACE1, ACE2 and Agtr1a mRNA expression levels between HT and NT BN/SHR-

mtSHR rats were analyzed using Mann-Whitney U Test comparisons.  The 0.05 

level of probability was utilized as the criterion of significance.  All statistical 

analyses were performed using GraphPad Prism 4 (GraphPad Software, Inc., La 

Jolla, CA).  

 

 

 

 

 



 

 
80 

 

3.3 Results 
 

3.3.1 Arterial pressure phenotyping of  BN/SHR-mtSHR  colony.   

 

Systolic arterial pressure phenotypes were assessed weekly beginning at 10-12 

weeks of age according to the following arterial blood pressure parameters: 

normotensive (NT: SAP ≤ 124mmHg), borderline hypertensive (BHT:  

125mmHg<SAP< 145 mmHg) or hypertensive (HT: SAP > 145mmHg).  

Progenitor female SHR had a SAP of 188mmHg and progenitor BN males had 

SAPs of 105 (BN*) and 103 (BN^) mmHg.  The BN*/SHR-mtSHR cross/backcross 

produced six generations, yielding 94 total offspring, with 42.6% (n=40) 

expressing the hypertensive phenotype, 42.6% (n=40) expressing the BHT 

phenotype, and only 14.9% (n=14) expressing the normotensive phenotype. The 

BN^/SHR-mtSHR cross/backcross also produced six generations, yielding 71 total 

offspring, with 52.1% (n=37) expressing the hypertensive phenotype, 39.4% 

(n=28) expressing the BHT phenotype, and only 8.5% (n=6) expressing the 

normotensive phenotype.  Together, the 6 total generations produced 190 

offspring, with 110 (58%) female and 80 (42%) male offspring.  There were 

significantly more hypertensive (n=88; 46%) than normotensive offspring 

(n=21;11%), while a large number of individuals expressed the intermediate 

phenotype (n=81; 43%). There were no differences in SAP between male and 

female offspring at any generation.  Furthermore, comparison of systolic, 

diastolic and mean arterial pressures of male and female offspring across all 

backcross generations did not demonstrate any gender differences in arterial 
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pressures. Hypertension was dominantly expressed and maintained across all 

six offspring generations of BN/SHR-mtSHR  rats (Figure 3.1).  

 

3.3.2 Renal Agtr1a mRNA expression is higher in hypertensive BN/SHR than in 

normotensive BN/SHR-mtSHR rats.   

 

The mRNA levels of AGT, REN, ACE1 and ACE2 and Agtr1a in renal tissue were 

evaluated NT and HT BC3 (NT: n=6, HT: n=6; Figure 3.2) and in HT and NT rats 

representative of each generation of BN/SHR-mtSHR rats (n=20 NT; n=20 HT; 

Figure 3.3).  Animals exhibiting the most extreme phenotypes were chosen for 

mRNA expression analysis.  AGT, REN, ACE1 and ACE2 mRNA levels were not 

different between NT and HT BN/SHR-mtSHR rats.  Renal Agtr1a was increased 

by ~2.5-fold (P < 0.05) in HT compared to NT BN/SHR-mtSHR rats (Figure 3.2).  

Expression is reported as relative expression using 2-ΔΔCT method.   NT values 

were normalized to 1.    

 

3.3.3 Systemic RAS mRNA expression is not different in hypertensive compared 

to normotensive BN/SHR-mtSHR rats.  

 

The mRNA levels of liver AGT, Agtr1a and lung ACE1 were evaluated in HT and 

NT BN/SHR-mtSHR rats (n=20 NT; n=20 HT).  Animals exhibiting the most 

extreme phenotypes were chosen for mRNA expression analysis.  Liver AGT, 

Atgr1a and lung ACE1 mRNA levels were not different between NT and HT 
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BN/SHR-mtSHR rats (Figure 3.4 A,B,C).  Expression is reported as relative 

expression using 2-ΔΔCT method.   NT values were normalized to 1.    

 

3.3.4 Renal AT1 receptor protein expression is higher in hypertensive BN/SHR-

mtSHR than in normotensive BN/SHR-mtSHR rats.  

 

Western blot analysis of AT1 receptor protein from whole kidney homogenates 

using the monoclonal antibody showed that AT1 receptor protein levels were 

significantly higher (p<0.05; Figure 3.5A) in BC3 HT rats compared to NT rats.  

The ratio of renal AT1 to β-tubulin densitometric signals were 1.000 ± 0.097  vs. 

1.379 ± 0.06975 (Figure 3.5B).  Regression analysis was also performed, 

indicating a positive correlation (r2=0.6502, p<0.05) between SAP and AT1 

receptor protein expression in kidney of BC3 BN/SHR-mtSHR rats (Figure 3.5C). 

 

3.3.5 Hypothalamic AT1 receptor expression is higher in hypertensive BN/SHR-

mtSHR than in normotensive BN/SHR-mtSHR rats.  

 

Western blot analysis of AT1 receptor protein from hypothalamus homogenates 

using the same monoclonal antibody showed that AT1 receptor protein levels 

were significantly higher (p<0.05) in BC3 HT rats compared to NT rats (Figure 

3.6A).  The ratio of hypothalamic AT1 to β-tubulin was 2.600 ± 0.07616 (NT: 

N=16) vs. 3.072 ± 0.2031 (HT: N=18) respectively (Figure 3.6B).  Regression 

analysis was also performed, indicating a positive correlation (r2=0.4781, p<0.05) 
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between SAP and AT1 receptor protein expression in hypothalamus of BC3 

BN/SHR-mtSHR rats (Figure 3.6C).  
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3.4 Discussion 
 

The main findings of this study are: 1) elevated arterial pressure is dominant and 

maintained across 6 generations of BN/SHR-mtSHR rats, despite the increasing 

nuclear genomic contribution of the NT male donor rats, 2) hypertensive 

BN/SHR-mtSHR rats across 6 generations exhibit elevated renal Agtr1a mRNA 

expression compared to NT BN/SHR-mtSHR rats, while expression of renal REN, 

liver AGT and Agtr1a and lung ACE1 were not different 3) hypertensive BN/SHR-

mtSHR in the BC3 generation exhibit an elevated AT1r protein expression in 

kidney and hypothalamus compared to NT BN/SHR-mtSHR rats, 4) increased AT1r 

expression is positively correlated with elevated SAP in BC3 BN/SHR-mtSHR rats.  

Taken together, these results suggest that hypertension is dominant in the 

presence of increasing normotenive “loci” and that tissue-specific altered 

expression of AT1r, but not other aspects of renal or systemic RAS, may underlie 

heritable hypertension. 

 

The SHR has been the most widely studied genetic model of essential 

hypertension in the past four decades (Pinto, Paul et al. 1998).  Neurogenic in 

nature, the underlying mechanisms of the onset and manifestation of 

hypertension in the SHR remains to be fully elucidated.  In this experimental 

paradigm, an attempt to isolate genomic regions from which hypertension derives 

in a “conplastic” colony using phenotypic selection was employed.  In these rats, 

the nuclear genome of the 6th generation (BC5) offspring is comprised of ~96.9% 

original BN males, and only 1.6% of original donor SHR.    The dilution of the 
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hypertensive genome had seemingly little effect on the manifestation of the 

hypertensive phenotype from generation F1 through backcross 5 (Figure 3.1).   It 

is clear, however, that the magnitude of the hypertension was never as high in 

the offspring, as in the progenitor SHR even from the initial F1 generation.  In 

fact, there is approximately a 30 mmHg difference between the average SAP of 

the SHR and F1 generation offspring. However, from the F1 generation forward, 

the magnitude of elevated blood pressure did not decline toward the BN blood 

pressure in any of the subsequent offspring generations.  Thus, although a 

significantly increasing influence of the BN genome is transmitted following 

genetic mixing with SHR of subsequent backcross generations, the impact of the 

SHR genome was fully maintained for 6 consecutive generations (F1-BC5) 

following the initial mating. 

 

Since the discovery of “renin” in 1898 and subsequent recognition that Ang II is 

pressor, the RAS has been extensively studied and remains a major candidate 

as a causative factor in elevated arterial pressure and the pathogenesis of 

hypertension (Carey and Siragy 2003), (de Gasparo, Catt et al. 2000), 

(Tigerstedt and Bergman 1898).  The angiotensin II, type 1 receptor has been 

extensively evaluated in rodents and has subsequently become a target as a 

causal factor in the development of essential hypertension.  Reja et al. (2006) 

showed that gene expression levels of AT1r, extracellular signal-regulated kinase 

2 and phosphatidylinositol 3-kinase were significantly higher in the PVN, RVLM 

and adrenal medulla in SHR compared to normotensive WKY rats. Raizada et al. 
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(1993) showed that AT1r mRNA was higher in the brains of the SHR compared to 

normotensive WKY rats.  Furthermore, Gyurko et al. (1993) showed that 

antisense inhibition of AT1 receptor mRNA in the brain reduces the magnitude of 

hypertension in adult SHR.  Data from our study supports the notion that 

elevated AT1 receptors may play a role in SHR-derived elevated arterial 

pressure.  Hypertensive BN/SHR-mtSHR rats across several generations exhibit 

elevated renal specific Agtr1a mRNA (Figures 3.2 and 3.3) expression while 

expression of other renal RAS components, as well as liver AGT and lung ACE1 

were not different (Figure 3.4).  In the BC3 generation, where the nuclear 

genome of the original SHR accounts for only ~6.2%, HT rats had significantly 

higher AT1r and protein expression than normotensive rats in kidney and 

hypothalamic tissue (Figure 3.5 and 3.6).  Furthermore, average SAP and tissue 

expression of AT1r were positively correlated (Figure 3.5C and 3.6C), indicating 

that tissue specific expression of AT1r expression may critically impact the 

development and maintenance of SHR hypertension.  Increased AT1r protein 

could potentially have drastic effects on the cardiovascular system, including the 

pathogenesis of hypertension, and seems to play a role in the development of 

hypertension in BN/SHR-mtSHR rats.  Ang II’s effect in the kidney would be 

exacerbated, increasing proximal tubular sodium reabsorption and decreasing 

renal blood flow.    In the hypothalamus, elevated AT1r expression could increase 

sympathetic nervous activity and/or vasopressin secretion, subsequently 

increasing vascular resistance and sodium and water retention.  The 

hypothalamus is of particular interest, as it plays a major role in sympathetic 
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outflow, vasopressin production and osmoregulation (Scherrer 1959).  Recently, 

commercially available AT1r antibodies have come under scrutiny for lack of 

specificity, and therefore may lead to erroneous results (Herrera, Sparks et al. 

2013).  It is critical to note here, however, that the antibody used for this study 

has not previously been identified as non-specific, and that our mRNA 

expression data fully corroborates the protein data that AT1r expression is 

elevated in kidney of BN/SHR-mtSHR backcross rats.  

 

With the abundance of knowledge on the role of both circulating and tissue RAS 

in BP control, it is hypothesized that genetic variability in one or more of the RAS 

components could account for the pathogenesis of hypertension. Common 

variants of the RAS genes, including those coding for angiotensinogen and 

angiotensin-converting enzyme were some of the first to be associated with 

altered blood pressure control (Norton, Brooksbank et al. 2010).  Several linkage 

analysis and genome wide association studies have been performed in both 

rodents and humans in regards to RAS genes, producing variable results (Baudin 

2002), (Bonnardeaux, Davies et al. 1994), (Jeunemaitre, Soubrier et al. 1992), 

(Kainulainen, Perola et al. 1999), (Rigat, Hubert et al. 1990), (Rothermund and 

Paul 1998), (Schmidt, Beige et al. 1997), (Tomino, Makita et al. 1999), (Zhu, 

McKenzie et al. 2000).  Results from our current study highlight a renal-specific 

elevation of a single gene of the RAS, therefore indicating genomic 

polymorphisms at this allele are not causal to the manifestation of the disease.  

Gene expression and subsequent protein synthesis may be equally, if not more 
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important than heritable nucleotide differences in elucidating the causes of 

complex, multigenic diseases.  Data from this study indicate that AT1r mRNA and 

receptor protein expression may have a significantly more important role than 

other aspects of RAS in heritable hypertension.   

 

Due to the breeding paradigm (i.e. backcrossing hypertensive females with 

founder males), the influence of the mitochondrial genome (female transmission) 

on the pathophysiology of hypertension should be taken into consideration. 

These results provide strong evidence for the dominance of loci within the SHR 

genome that are highly resistant to increasing normotensive influence of the BN 

genome.  At present, there are few data that identify the specific genes located in 

these “SHR dominant” regions.  However, it is likely that these genomic regions 

contain numerous blood pressure controlling gene loci (Rapp 2000), (Lowry, 

Rosebrough et al. 1951), (Kaschina and Unger 2003).  As hypertensive females 

were phenotypically selected for backcross, all offspring (F1, BC2-BC5) should 

have identical mitochondrial genomes, barring any mutation(s).  Mitochondrial 

dysfunction has recently been implicated in a wide variety of genetic disorders 

(Taylor and Turnbull 2005), (Wallace 1999).  Alterations in mitochondrial function 

are observed in conjunction with the development of hypertension in rodents and 

humans (Chan, Wu et al. 2009), (Kumarasamy, Gopalakrishnan et al. 2010), 

(Pravenec, Hyakukoku et al. 2007).  The genetic association of mtDNA variants 

(Kumarasamy, Gopalakrishnan et al. 2010), (Wilson, Hariri et al. 2004) and tRNA 

mutations (Kumarasamy, Gopalakrishnan et al. 2010), (Benigni, Corna et al. 
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2009), (Liu, Li et al. 2009), (Pravenec, Hyakukoku et al. 2007) to type 2 diabetes 

and hypertension directly implicated mitochondrial defects to the etiology of 

cardiovascular disease and metabolic syndrome.  Mitochondrial integrity and 

potential dysfunction is currently being evaluated in the BN/SHR-mtSHR rats. 

 

A potentially critical avenue in investigating the underlying mechanisms of 

heritable hypertension in BN/SHR-mtSHR is the relationship between the renin-

angiotensin system and mitochondrial dysfunction.  The role played by 

angiotensin II in developing mitochondriopathy has been advanced recently by 

Benigni et al. (2009)   Deletion of the Agtr1a gene resulted in the reduced age-

related cardio-renal complications, improved mitochondrial biogenesis, and 

increased longevity in mice.  Additionally, treatment with antioxidants, 

mitochondrial superoxide dismutase mimetics, and AT1r blockers decreased 

vascular O2- production and attenuated development of hypertension in SHR 

(Park, Touyz et al. 2002), (Rodriguez-Iturbe, Zhan et al. 2003), (Shokoji, 

Nishiyama et al. 2003).  De Cavanagh et al. (2006) have demonstrated that 

oxidative stress is associated with mitochondrial dysfunction in SHR, and that 

this dysfunction is attenuated with AT1r blockade with losartan.   Taken together, 

there is significant evidence of mtDNA mutations and/or altered mitochondrial 

genetic expression is influenced, at least in part, by the RAS, and that this 

relationship may play a significant role in the development of hypertension. 
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In summary, the present results indicate that hypertension is dominantly 

expressed in BN/SHR-mtSHR rats, and that elevated arterial pressure is positively 

correlated with the upregulation of kidney AT1r mRNA, as well as kidney and 

hypothalamic AT1r protein expression, while other aspects of the local and 

systemic RAS pathways are not different.  It has been reported that AT1r mRNA 

is regulated in a tissue-specific manner that is distinct among the other 

components of the RAS, and potentially independent of changes in circulating 

Ang II (Sechi, Griffin et al. 1996). Our current study supports this finding, as well 

as adds insight into the heritability and expression of different aspects of RAS.  

The maintenance of hypertension under conditions where the proportion of the 

female progenitor SHR mitochondrial genome remains intact, nuclear genome is 

continually reduced by increasing amounts of normotensive progenitor BN 

genome strongly suggests a major linkage of the SHR genes to the development 

of hypertension.  While the origins of this SHR derived hypertension remain 

unknown, strong physiological evidence for a major neurogenic and RAS 

components have been reported.  Given that the maintenance of hypertension in 

the F1 and subsequent backcross generations, the encoding and linkage of 

hypertensive loci may be directly related to genomic components of the female 

SHR mitochondrial genome.   

 

The presence and abundance of AT1r in the kidney and hypothalamus appears 

to be related to the propagation of the HT phenotype in BN/SHR-mtSHR.  This 

work adds to the body of evidence that quantitative variations in gene expression 
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at loci encoding components of the renin-angiotensin-aldosterone system may be 

genetically linked to or associated with physiological alterations in blood 

pressure.  Though the RAS pathway has been a major therapeutic target for 

decades, understanding the heritability of expression of these targets can help 

switch the focus from treatment to prevention.  The role of AT1 receptors in 

individual tissues and their differential expression provides valuable information 

on how personalized therapy can be used to better treat or prevent 

cardiovascular disease in the future.   
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Figure 3.1: Six generations of BN/SHR-mtSHR rats with 
corresponding average systolic pressure (SAP) values.  Three 
distinct populations persisted throughout all 6 generations, with 
hypertension being dominantly expressed and maintained despite the 
reduction of the SHR nuclear genome.  HT animals used are 
indicated by the red circle.  NT animals used are indicated by the 
blue circle. 
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Figure 3.2: Quantitative Real-Time PCR of renal AGT, 
REN, ACE1, ACE2 and Agtr1a in age and sex 
matched BC3 HT and NT rats.   Data were normalized 
to GAPDH RNA from same samples (NT n=20; HT 
n=20).  There was no difference in AGT, REN, ACE1 
and ACE2 expression HT BC3 rats compared to NT 
BC3 rats.  Agtr1a mRNA levels were ~5X higher in HT 
rats compared to NT rats. 
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Figure 3.3: Quantitative Real-Time PCR of renal AGT, REN, 
ACE1, ACE2 and Agtr1a in age and sex matched HT and NT 
rats representative of all generations in the colony.   Data 
were normalized to GAPDH RNA from same samples (NT 
n=20; HT n=20).  There was no difference in AGT, REN, 
ACE1 and ACE2 expression  in HT compared to NT rats.  
Agtr1a mRNA levels were ~2.5X higher in HT rats compared 
to NT rats. 
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Figure 3.4: Quantitative Real-Time PCR of liver AGT (Figure 
3.4A), lung ACE1 (Figure 3.4B) and liver Agtr1a (Figure 3.4C  
in BC3 HT and NT rats.  Data were normalized to GAPDH RNA 
from same samples (NT n=6; HT n=5).  There was no 
difference in liver AGT, lung ACE1 or liver Agtr1a mRNA 
expression in HT BC3 rats compared to NT BC3 rats.   
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Figure 3.5: Semiquantitative immunoblotting of whole kidney 
tissue homogenates of BC3 HT and NT rats. A: Representative 
blot of AT1r and β-tubulin.  B: Illustrates quantified densitometry of 
hypothalamic AT1r protein.  HT rats exhibited significantly higher 
AT1r protein expression compared to NT rats (p<0.05). C: 
Regression analysis between SAP and AT1r protein expression in 
hypothalamic homogenates.  Average SAP and AT1r protein 
expression were positively correlated (r2=0.6502, * = P<0.05). 
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Figure 3.6: Semiquantitative immunoblotting  of AT1 receptor protein 
from hypothalamus homogenates of BC3 rats. A: Representative blot 
comparing NT, BHT and HT AT1r densities.  Β-tubulin was used as 
housekeeping protein. B: Illustrates quantified densitometry of 
hypothalamic AT1r protein.  HT rats exhibited significantly higher AT1r 
protein expression compared to NT rats (p<0.05). C: Regression 
analysis between SAP and AT1r protein expression in hypothalamic 
homogenates.  Average SAP and AT1r protein expression were 
positively correlated (r2=0.4781, * = P<0.05). 
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CHAPTER 4 

SODIUM BALANCE AND RENAL FUNCTION IN BN/SHR-mtSHR RATS 
 

Jason Andrieu Collett, Jeffrey L. Osborn 

 

 

 

Abbreviations used: CVD, cardiovascular disease; [Na+], sodium concentration; 
[Cl-], chloride concentration 
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4.1 Introduction 
 

The relationship between dietary NaCl intake and the development of 

hypertension has been the subject of much debate for several decades (Dahl 

1961; MacGregor 1985; Osborn and Camara 1997).  In societies where salt 

intake is less than 50 to 100 mmol/d, hypertension and cardiovascular disease 

(CVD) are rare, and the frequency of hypertension and CVD increase at higher 

levels of salt intake (Weinberger 1996).  Pharmacological therapy with natriuretic 

agents has been very successful, and is still  considered a first line therapy in the 

treatment of hypertension (Weinberger 1996).  However, epidemiological 

observations have established profound heterogeneity between salt intake and 

hypertension.  There is evidence that genetic factors, particularly alterations in 

genes of known osmoregulatory roles, play a very significant role in the 

deleterious impact of hypertension on the progression of renal disease (Rostand, 

Kirk et al. 1982). For instance, the risk of developing end-stage renal disease is 

10- to 20-fold greater in black Americans than in Caucasian American patients 

with essential hypertension, and this increased risk cannot readily be explained 

by differences in the severity or treatment of hypertension (Rostand, Kirk et al. 

1982).  One major difference is salt sensitivity.  Greater sodium retention is 

thought to underlie BP determining physiology of blacks, and though the renin-

angiotensin system has been implicated, the exact mechanisms are currently 

unknown (Tu, Eckert et al. 2014).  The renin–angiotensin system, for example, is 

more likely to be suppressed in blacks than in whites, consistent with greater 

volume expansion from sodium accumulation and water retention (HELMER and 
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JUDSON 1968; Wilson, Bayer et al. 1999).  In addition, BP in blacks in contrast 

to BP in whites typically increases in response to an increase in sodium intake, 

i.e. greater NaCl sensitivity (Weinberger 1996).  Whether blacks have a unique 

renal physiology that puts them at risk for a more aggressive form of 

hypertension is unclear.  What is clear, is that NaCl sensitivity, or possibly the 

inability to “sense” NaCl intake can have a profound effect on arterial pressure, 

the pressure-diuresis-natriuresis relationship and subsequent development of 

hypertension.  Like humans, genetically similar rodent models responding 

differently to NaCl intake have been established.  The SHR parallels the most 

common form of idiopathic hypertension and that of most Caucasian Americans, 

in that most SHR strains are not salt sensitive.  Studies by Lundin et al. (1982) as 

well as Greenberg and Osborn (1994) have shown that renal retention of sodium 

in water should not be of pathogenic importance in identifying causes of 

hypertension in the SHR.  Still, hyperosmotic saline, as well as Ang II injected 

ICV in the SHR and other rodents alters renal sodium handling and increases 

BP, which may be mediated by the activation of renal sympathetic nerve activity 

(Osborn and Camara 1997; Guadagnini and Gontijo 2006).   

 

To further understand the mechanisms of sodium sensing and potential altered 

renal sodium handling in rats stemming from the SHR, we utilized our unique 

conplastic rodent model to evaluate acute renal responses to altered NaCl 

concentrations, when rats were able to titrate their own sodium load.  It is 

hypothesized that hypertensive BN/SHR-mtSHR will be unable to appropriately 
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“sense” sodium load, hence ingesting more NaCl, and potentially alter renal 

sodium handling compared with NT BN/SHR-mtSHR. 
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4.2 Methods and Materials 
 

4.2.1 Animals  

 

Male rats generated from sibling-sibling crosses of a BC5 generation from the 

BN/SHR-mtSHR colony described in detail previously were used for the acute 

sodium intake aspect of the experiment.  All animals were maintained in 

temperature controlled rooms with 12:12 h-light/dark cycle.  Rats were raised 

from weaning on normal NaCl chow (0.8% NaCl; Dyets, Bethlehem, PA) and 

given water ad libitum.   Care of the rats before and during experimental 

procedures was conducted in accordance with the policies of the National 

Institutes of Health guidelines for the care and use of laboratory animals. All 

protocols had received prior approval by the Institutional Animal Care and Use 

Committee at the University of Kentucky. 

 

4.2.2 Experimental Protocols 

 

Twelve week old male rats weighing 300-400g were chosen for the experiment.  

Rats were housed in metabolic pens and allowed distilled water and NaCl-free 

chow ad libitum for the entirety of the 17-day experiment.  Rats titrated Na+ intake 

by drinking 0.9% saline for 2 acclimation days, followed by 5 experimental days.  

On the fifth day, BP was measured and rats were then switched to 2.0% 

hypertonic saline for 5 experimental days.  On day 10, BP was measured and 

rats were switched back to 0.9% saline for 5 experimental days (Figure 4.1A).   
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4.2.3 Measurement of Arterial Pressure 

 

Rats previously phenotyped as normotensive (NT: SAP ≤ 124mmHg; n=6) or 

hypertensive (HT: SAP ≥ 145mmHg; n=6) were utilized for this study.  Since 

animals were to be back-bred to the founder males in the establishment of the 

conplastic genome, tail cuff plethysmography was used as a phenotyping 

methodology only to establish basic individual blood pressures. To minimize 

stress and improve reliability of blood pressure measurements, several steps 

were used in the blood pressure recording method that has been previously 

characterized and published (Kurtz, Griffin et al. 2005).  Rats were exposed and 

acclimated to the measurement procedures and restraint equipment prior to BP 

recordings.  A dark cover was placed over the restrained animal for the duration 

of the BP measurement, and BP recordings were performed at the same time 

each day.  All equipment was thoroughly cleaned and disinfected before and 

after each individual rat to eliminate foreign scent.  Animals were moderately 

warmed to dilate the ventral artery.  Arterial pressures were derived from the 

average results of ≥5 measurements in each recording session.  Both systolic 

and diastolic pressures were obtained and recorded.  For purposes of reporting, 

the systolic pressures were used for the determination of the specific individual 

phenotype. 

 

 



 

 
105 

 

4.2.4 Determinations 

 

Sodium and water intake were determined daily by weighing calibrated bottles 

every 24 hours.  Sodium intake was calculated as a product of the volume 

ingested and sodium concentration.  Urine was collected and the volume was 

determined in calibrated cylinders positioned directly under the pens.  Urinary 

sodium concentration was determined by flame photometry, and urinary sodium 

excretion was calculated from the product of urine flow rate and sodium 

concentration.  Sodium balance averaged over the experimental periods was 

determined as the difference between sodium excretion and sodium intake.  

Urinary protein concentration was measured by the method of Lowry et al. 

(1951), and protein excretion was calculated as the product of urine flow rate and 

urinary protein concentration.  Bovine serum albumin was used as the standard. 

 

4.2.5 Statistical analysis  

 

Blood pressures, average sodium intake/excretion, water intake, sodium balance, 

AT1r protein expression and urinary protein between NT and HT BN/SHR-mtSHR 

rats were analyzed using an one-way ANOVA.  Daily sodium intake/excretions 

were analyzed using a two-way ANOVA.  The 0.05 level of probability was 

utilized as the criterion of significance.  All statistical analyses were performed 

using GraphPad Prism 4 (GraphPad Software, Inc., La Jolla, CA).  
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4.3 Results 
 

4.3.1 Arterial pressure did not change during acute sodium challenge.   

 

SAP was significantly higher in the HT BN/SHR-mtSHR (SAP=157.0±5.2 mmHg; 

n=6) compared with NT BN/SHR-mtSHR (SAP=124.2±5.5 mmHg; n=6) to begin 

the study. SAP did not change (p>0.05) during any of the three phases of the 

experiment (Figure 4.1B).   

 

4.3.2 Sodium intake was maintained when offered 2.0% saline in HT while NT 

BN/SHR-mtSHR decreased their sodium intake. 

 

Average daily sodium intake for NT and HT BN/SHR-mtSHR rats is displayed in 

Figure 4.2A.  Average 5-day sodium intake was significantly reduced in NT 

BN/SHR-mtSHR when offered 2.0% hypertonic saline (166.3±21 to 79.554±10 

µEq/day; #p<0.05), which remained suppressed when again offered 0.9% saline 

(69.14±14 µEq/day; #p<0.05; Figure 4.2B).  HT BN/SHR-mtSHR, however, 

maintained sodium intake when offered 2.0% hypertonic saline (127.5±36 to 

147.9±24.9 µEq/day), that was maintained when again offered 0.9% saline 

(89.7±9.8 µEq/day; Figure 4.2B).  HT BN/SHR-mtSHR failed to “sense” hypertonic 

saline challenge, therefore failed to reduce sodium intake (Figure 4.2B).     
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4.3.3 Water intake increased in both HT and NT when offered hypertonic saline. 

 

Average 5-day water intake was significantly increased in NT BN/SHR-mtSHR 

when offered 2.0% hypertonic saline (4.2±0.37 to 11.1±0.628 ml/day; #p<0.05), 

and NT rats maintained an increased water intake when again offered 0.9% 

saline (9.14±0.864 ml/day; #p<0.05; Figure 4.3).  HT BN/SHR-mtSHR also 

increased water intake when offered 2.0% hypertonic saline (5.3±1.0 to 

8.9±0.231 µEq/day; #p<0.05; Figure 4.3), however water intake values were not 

different in HT rats when again offered 0.9% saline (6.4±0.28 ml/day; Figure 

4.3).   

 

4.3.4 Sodium Excretion was higher in HT compared to NT BN/SHR-mtSHR. 

 

Average daily sodium excretion for NT and HT BN/SHR-mtSHR rats is displayed in 

Figure 4.4A.  In accordance with elevated NaCl intake, average 5-day sodium 

excretion was elevated in HT BN/SHR-mtSHR when offered 2.0% hypertonic 

saline (271.7±25.1 to 331.8±31.7 µEq/day), and HT rats maintained an elevated 

sodium excretion when again offered 0.9% saline (313.22±18.1 µEq/day; Figure 

4.4B). NT BN/SHR-mtSHR, however, maintained sodium excretion when offered 

2.0% hypertonic saline (220.5±57.7 to 229.6±52.2 µEq/day), and NT rats 

maintained same sodium excretion when again offered 0.9% saline (191.3±39.4 

µEq/day; Figure 4.4B).  HT rats did, however, excrete more NaCl during the last 

0.9% phase than NT rats (*p<0.05; Figure 4.4B).   
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4.3.5 Sodium Balance was More Negative in HT  BN/SHR-mtSHR. 

 

Cumulative daily sodium balance in illustrated in Figure 4.5A.  HT rats exhibited 

greater variability in maintaining sodium balance during the three experimental 

phases.   Average 5-day sodium balance for NT and HT BN/SHR-mtSHR is 

displayed in Figure 4.5B.  NT averaged (0.9%:-53.6±17.9 µEq/day; 2.0%:-

120.1±8.8 µEq/day; 0.9%: -122.17±7.5 µEq/day; Figure 4.5B) compared to HT 

averages (0.9%: -151.0±29.2  µEq/day; 2.0%: -183.9±18.7 µEq/day; 0.9%: -

226.9±15.5  µEq/day; Figure 4.5B).  HT rats exhibited greater sodium natriuresis 

in all three experimental phases due to elevated arterial pressure (*p<0.05). 

 

4.3.6 Urinary Protein Excretion was Not Different Between NT and HT BN/SHR-

mtSHR. 

 

Urinary protein excretion was maintained and normal in NT and HT BN/SHR-

mtSHR for the entire experimental protocol.  For the three experimental saline 

trials, NT rats averaged (0.9%:476.7±66 µg/day; 2.0%:557.1±71 µg/day; 0.9%: 

441.7±63 µg/day; Figure 4.6) compared to HT averages (0.9%: 328.2±46 

µg/day; 2.0%: 413.3±62 µg/day; 0.9%: 299.7±29 µg/day; Figure 4.6).  Therefore, 

renal function appeared to be normal in NT and HT BN/SHR-mtSHR. 
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4.4 Discussion 
 

The necessity to maintain salt and water balance is an important aspect of land 

dwelling animals.  Alterations in this balance can significantly impact 

cardiovascular health and disease. Epidemiological studies have demonstrated a 

positive correlation between NaCl intake and elevated blood pressure (Grim, Luft 

et al. 1980; Weinberger 1996; Dahl 2005).  Elevated NaCl intake may lead to the 

development of hypertension and cardiovascular complications by signals 

triggered by augmented extracellular [Na+] , extracellular [Cl−] , and/or osmolality 

of extracellular fluids (Orlov and Mongin 2007).  The present study was designed 

to evaluate the influence of acute high NaCl on renal sodium handling and BP in 

rats stemming from the SHR.  This study is unique, in that the experimental 

paradigm allowed rats to titrate their NaCl intake, providing useful information as 

to the rats ability to “sense” sodium load.  Both the kidney and the CNS are 

involved in sodium sensing via at least two different mechanisms: Cl- and Na+ 

sensing in the tubular fluid and plasma osmolality in the CSF.  In the kidneys, 

salt-sensing and the regulation of sodium excretion is provided mainly via TGF.  

TGF is triggered immediately after an elevation of salt concentration in the 

tubular fluid delivered to the JGA and results in the contraction of VSMCs of 

afferent arterioles, thus causing increases in the exposure of proximal tubules to 

high-salt fluid via the attenuation of glomerular capillary pressure and 

GFR.   CNS [Na+] sensors are primarily located in the circumventricular organs, 

separate structures that line brain ventricles and consist of the SFO, MnPO, and 

OVLT (Orlov and Mongin 2007).  In these brain areas, the blood-brain barrier is 
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partially open due to the presence of fenestrated capillaries (Bourque and Oliet 

1997; Hussy, Deleuze et al. 2000). This feature makes the circumventricular 

organs an optimal location for direct sensing of the ionic composition of plasma.  

SFO and OVLT may influence electrical activity of the magnocellular neurons in 

the SON and PVN of the hypothalamus, both of which secrete AVP into the 

circulation (Denton, McKinley et al. 1996; Hussy, Deleuze et al. 2000).  

Vasopressin is produced by the magnocellular neurosecretory cells of the 

hypothalamic SON and PVN, which both project to the median eminence in the 

neurohypophysis.  Such regulation occurs via direct excitatory projections to the 

SON and PVN or indirectly via projections to the MnPO, a nucleus that also 

innervates both the SON and PVN (Hussy, Deleuze et al. 2000).   Interestingly, 

the PVN and SON possess their own intrinsic [NaCl]-sensing mechanism, which 

adds additional complexity to the CNS regulation of salt intake and secretion. 

This mechanism involves sensing changes in CSF osmolality rather than 

alterations in extracellular [Na+] (Mason 1980; Oliet and Bourque 1992).   

 

Leenen and coworkers (Budzikowski, Huang et al. 1998; Huang, Amin et al. 

2006) were the first to propose that blood pressure elevation in animal models of 

hypertension is triggered by augmented NaCl delivery to the CNS.   Elevated 

NaCl diets may significantly affect the regulation of blood pressure and fluid and 

electrolyte balance by way of changes in the sensitivity of the brain to circulating 

or centrally generated humoral factors (Wilson, Bayer et al. 1999; Guadagnini 

and Gontijo 2006).  For example, Andersson showed that hypertonic saline 
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injected into the hypothalamus of the goat induced a large dipsogenic response 

(Andersson, Dallman et al. 1969).  Additionally, when hypertonic saline is 

administered into the CSF of the third ventricle, animals drink more water and 

vasopressin is released from the neurohypophysis (Andersson and Olsson 

1973).   Though HT BN/SHR-mtSHR were able to excrete their increased sodium 

intake, results demonstrate a potential decreased ability to sense sodium load, 

likely via central mechanisms in brain.  Though several mechanisms could be 

involved, we postulate that augmented RAS, in particular, elevated AT1r 

expression may be related to the reduced sodium sensing ability in HT BN/SHR-

mtSHR (Figure 4.7). 

 

It is well documented that endogenous Ang II may contribute to the development 

of certain forms of experimental hypertension, including the SHR.  The 

cardiovascular effects of centrally administered Ang II also may be related to 

NaCl intake.  It has been reported that changes in NaCl intake may be 

accompanied by changes in the density and affinity of Ang II receptors in 

hypothalamic areas of the brain involved in cardiovascular, fluid, and electrolyte 

regulation (Bickerton and Buckley 1961).  Systemic and brain Ang II has been 

shown to participate in blood pressure and salt and water balance through a 

variety of mechanisms including sympathetic outflow, stimulation of vasopressin 

release (Yang, Jin et al. 1992).  Additionally, brain Ang II alters thirst and salt 

appetite, which plays a major role in fluid and electrolyte regulation (Epstein, 

Fitzsimons et al. 1970; Fluharty and Epstein 1983).  Dukacz, et al. (2003) 
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previously demonstrated that long term inhibition of RAS with captopril 

decreased blood pressure in the SHR, resulting in a leftward shift in the 

pressure-natriuresis relationship.  This is significant, as results from our lab 

demonstrate that HT BN/SHR-mtSHR have significantly more hypothalamic AT1r 

protein compared with NT HT BN/SHR-mtSHR, indicating a potential relationship 

between hypothalamic AT1r expression and reduced salt-sensing ability in HT 

BN/SHR-mtSHR (Figure 4.7).  An increase in both gene and protein expression of 

renal AT1r has also been shown in HT BN/SHR-mtSHR (Collett, Hart et al. 2013).  

Taken together, the presence and abundance of AT1r in the hypothalamus or 

kidney is related to the HT phenotype in BN/SHR-mtSHR, and its role may be 

involved in the chronic rightward shift of the renal function curve and/or a 

reduced ability of sodium sensing (Figure 4.7). 

 

The reduced ability to sense salt in HT BN/SHR-mtSHR and the compensatory 

elevation of blood pressure to keep the rats in sodium balance may have 

something to do with activation of renal sympathetic nerve activity.  The elevated 

level of efferent sympathetic tone in the SHR may alter the renal handling of 

sodium and water.  Renal nerve stimulation directly affects both proximal tubular 

sodium reabsorption and renin release (Osborn, Holdaas et al. 1983; Chen and 

Toney 2001).  Greenberg et al. (2000) demonstrated the importance of the renal 

nerves in mediating sodium excretion in response to sodium load in SHRs.  

Camara and Osborn (2005) demonstrated that hypertension induced by chronic 

left ventricular Ang II infusion is dependent upon activation of renal sympathetic 
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nerve activity and is associated with sodium retention.  Furthermore, Camara and 

Osborn  showed that lifelong increases in NaCl intake may sensitize the CNS to 

low doses of Ang II, causing increases in renal sympathetic nerve activity 

mediated by brain AT1r.  Therefore, we postulate that lifetime desensitization of 

orally ingested NaCl causes profound pressure-natriuresis that may be mediated, 

in part, by activation of renal sympathetic nerves and AT1r (Figure 4.7).  

 

In summary, we present data that demonstrate  that HT BN/SHR-mtSHR have a 

reduced ability to sense elevated sodium when given the option to titrate their 

own NaCl load, and this may be related to tissue specific expression of AT1r 

and/or elevated sympathetic nerve activity.  However, it appears that HT 

BN/SHR-mtSHR have normal kidney function and are operating within normal 

kidney natriuresis with increased sodium intake, which agrees with previous 

studies that sodium retention is not of pathogenic importance in the SHR (Lundin, 

Herlitz et al. 1982; Greenberg and Osborn 1994).  It appears then, that the 

elevation of arterial pressure in SHR is important to maintain daily sodium 

balance, i.e., functional pressure-natriuresis.  Hence, HT BN/SHR-mtSHR is truly a 

model of “essential” hypertension.  It is concluded then, that long-term increases 

in arterial pressure are necessary to maintain sodium balance, and that this is an 

important aspect of development and maintenance of spontaneous hypertension. 
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Figure 4.1: Experimental schema of the acute salt study that allowed 
for rats to titrate their own salt and water. A: Illustrates the 
experimental design, with three experimental phases.  Rats were 
given 0.9% saline for the first 5 days, followed by hypertonic 2.0% for 
5 days, and then returned to 0.9% saline.  Blood pressures were 
taken after each of the three phases.  B: Illustrates BP differences 
throughout the entirely of the experiment.  BP was elevated in HT 
rats compared with NT rats, however, BP did not change with acute 
saline challenge (p>0.05). 
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Figure 4.2: Sodium intake throughout course of the experiment.  A: 
Illustrates the average daily sodium intake (µEq/day) for NT and HT 
rats.  B: Illustrates the average 5-day sodium intake for NT and HT 
rats.  HT rats ingested more sodium than NT rats when offered 2.0% 
saline (*p<0.05), however, HT rats ingested similar amounts of sodium 
in all three phases of the experiment.  NT rats ingested significantly 
less sodium (#p<0.05) when offered 2.0% saline, and continued to eat 
less when again offered 0.9% saline. 
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Figure 4.3: Average 5-day water intake (ml/day).  NT rats 
ingested significantly more water (#p<0.05) when offered 2.0% 
saline and again offered 0.9% saline.  NT rats also ingested 
significantly more water than HT rats (*p<0.05).  HT rats ingested 
significantly more water than when offered 2.0% saline (#p<0.05), 
but ingested similar amounts when again offered 0.9% saline. 
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Figure 4.4: Sodium excretion throughout the course of the 
experiment.  A: Illustrates the average daily sodium excretion 
(µEq/day) for NT and HT rats.  B: Illustrates the average 5-day 
sodium excretion for NT and HT rats.  HT rats excreted more 
sodium than NT rats when offered 2.0% saline (p>0.05), 
however, this amount did not reach statistical significance until 
rats were again offered 0.9% saline (*p<0.05). HT and NT rats 
maintained similar amounts of sodium in all three phases of the 
experiment.   
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Figure 4.5: Sodium balance throughout the course of the experiment.  A: 
Illustrates the cumulative daily sodium balance (µEq/day) for NT and HT 
rats.  B: Illustrates the average 5-day sodium balance for NT and HT 
rats.  Both NT and HT rats were in negative sodium balance throughout 
the course of the experiment, however HT rats exhibited greater 
variability while maintaining elevated  sodium natriuresis (*p<0.05).  This 
may be due to elevated arterial pressures.   
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Figure 4.6: Urinary protein excretion was maintained and normal 
in NT and HT BN/SHR-mtSHR for the entire experimental protocol.  
Therefore, renal function appeared to be normal and not different 
between NT and HT BN/SHR-mtSHR  (P>0.05). 
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Figure 4.7: Hypothetical pathway in which long term reduced NaCl 
sensitivity could activate the RAS, increasing sympathetic nerve activity 
and increases in arterial pressure.  Chronic pressure-natriuresis may be 
“essential” in the SHR, therefore underlie the development and 
maintenance of elevated arterial pressure. 
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5.1 Introduction 
 

Hypertension constitutes a primary and significant factor in the development of 

cardiovascular disease.  Despite major gains in the long-term treatment of 

hypertension, cardiovascular disease remains the number one cause of death 

and disability in developed countries.  Primary or essential hypertension is 

regarded as a multi-factorial disease, influenced by both genetic inheritance and 

environmental conditions that influence gene expression.  The genetic basis of 

hypertension has been focused primarily on inheritance and expression of 

nuclear genes (Tsuchida, Liu et al. 1994), despite the fact that mitochondria are 

present in multiple copies in each cell and have their own genome.  Additionally, 

and potentially of great importance, is the fact that OXPHOS depends on the 

coordinated expression of two separate but interactive genomes, nuclear and 

mitochondrial.  Numerous trans-factors involved with mtDNA replication, 

transcription and mRNA processing are nuclear encoded, including mtRNA 

polymerase, mtDNA polymerase, several regulatory transcription factors and 

mtRNA processing proteins (Hein and Kobilka 1995).   This nuclear-

mitochondrial interaction is essential to cellular health and function, and therefore 

may play a large role in the development of disease (Nowak 2002).   

 

Mitochondrial dysfunction has been implicated in a wide variety of genetic 

disorders (Wallace 1999; Taylor and Turnbull 2005) and alterations in 

mitochondrial function have been observed in conjunction with aging and 

development of hypertension in both rodents and humans (Schwartz, Duka et al. 
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2004; Wallace 2005; Chan, Wu et al. 2009; Kumarasamy, Gopalakrishnan et al. 

2010).  Recently, mitochondrial transfer RNA (tRNA) mutations were observed in 

a genetically focused population with a high incidence of essential hypertension 

(Osanai, Tanaka et al. 2001; Li, Liu et al. 2009).  Wilson et al. (2004) have 

described a correlation between a T4921C transition SNP, which lies in the 

mitochondrial tRNAlle gene (GenBank accession no. NC_001807) and 

hypertension.  The genetic association of mtDNA variants and tRNA mutations 

(Geraldes and King 2010) to type 2 diabetes and hypertension directly implicated 

mitochondrial dysfunction in development of cardiovascular disease and 

metabolic syndrome (Wallace 2005).  Taken together, there is significant 

evidence that altered mitochondrial genetic expression may have a significant 

role in the generation of cardiovascular disease phenotypes.  However, the 

regulatory mechanisms in which mitochondria and mitochondrial genes are 

expressed and regulated in disease is mostly unknown. 

 

In contrast, the role of the kidney in long-term blood pressure regulation and 

manifestation of hypertension is well known.  The importance of kidney function 

to modulate blood pressure has been shown by Lifton et al. (2001) demonstrating 

genetic variants in important renal pathways underlie all of the Mendelian 

disorders affecting blood pressure homeostasis (Inagaki, Churchill et al. 2006).  

Therefore, it is postulated that altered renal expression of genes may contribute 

significantly to the disease.  The goal of the present study was to determine the 

renal expression of mitochondrial protein-coding genes, the nuclear pathway that 
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regulates their expression and the relationship between heritable hypertension in 

a rat strain with localized mt-DNA from Okomoto-Aoki SHR.  The “conplastic” 

strain was developed by crossing a hypertensive female SHR with normotensive, 

male BN rats (BN/SHR-mtSHR) (Collett, Hart et al. 2013).  Hypertensive female 

offspring then were phenotypically selected and crossed with founder males for 

several generations.  All offspring had identical mitochondrial DNA of the 

progenitor SHR, barring any mutation.  The results of these studies document 

significant reduced expression of renal mtRNA and nuclear encoded regulatory 

elements in hypertensive male and female offspring.  The data suggest that 

reduced renal mtRNA expression may elicit hypertension by decreased 

OXPHOS.  
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5.2 Methods and Materials 
 

5.2.1 Animals 

 

All experiments were carried out in accordance with the AAALAC Guide to the 

Care and Use of Laboratory Animals and all protocols were previously approved 

by the University of Kentucky Institutional Animal Care and Use Committee.  A 

“conplastic” colony using phenotypic selection was employed.  The development 

and phenotypic characterization have been described in detail elsewhere (Collett, 

Hart et al. 2013).  The Aoki-Okamoto SHR/Brown Norway rat colony was 

developed by breeding a female SHR (Charles River Labs, Wilmington, MA) with 

2 different normotensive BN males (Charles River Labs, Wilmington, MA) 

(BN/SHR-mtSHR).  Beginning at 10 weeks of age, rats were phenotyped using tail 

cuff plethysmography (Kent Scientific, Torrington, CT).  Hypertensive female 

offspring were then back-crossed to the original progenitor BN males for 5 

subsequent generations.  

 

After repeated blood pressure recordings that assured consistent determination 

of arterial pressure, rats not scheduled for rebreeding were euthanized with an 

overdose of sodium pentobarbital (60 mg/kg i.p)., and organ tissues were rapidly 

frozen and stored for later analysis.   
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5.2.2 Measurement of arterial pressure. 

  

Systolic arterial pressure (SAP) was evaluated using in parents and offspring 

beginning at 10-12 weeks of age.  Phenotypes were assigned as either 

normotensive (NT: SAP ≤ 124mmHg), borderline hypertensive (BHT:  125 ≤ SAP 

< 150 mmHg) or hypertensive (HT: SAP ≥ 150mmHg).  Arterial pressure was 

derived from the average results of ≥5 measurements in each recording session.  

The average blood pressures of ≥5mmHg separate recording sessions with <5% 

variability were used to establish the phenotype of each animal.    Systolic 

pressures were used for the determination of the specific individual phenotype 

(Collett, Hart et al. 2013) . 

 

5.2.3 RNA Extraction and RT-PCR. 

   

Renal cortex and outer medulla homogenate, liver and left ventricular cardiac 

tissue were selected from HT and NT BN/SHR-mtSHR rats (n=20 NT; n=20 HT) as 

described above.  Total RNA was extracted with Trizol reagent (Invitrogen, 

Carlsbad, CA) and purified using RNeasy minicolumns (Qiagen Inc., Valencia, 

CA) according to the manufacturer’s protocol.  Possible genomic DNA was 

digested with DNase I (Qiagen Inc., Valencia, CA).  Concentration and purity of 

all RNA samples was determined by the Nanodrop ND-1000 spectrophotometer 

(Nanodrop Technologies, Wilmington, DE).  Extracted RNA was reverse-

transcribed into complementary DNA (cDNA) using qScript cDNA Supermix 
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(Quanta Biosciences, Gaithersburg, MD) in a total volume of 20µl using a 

MyCyler Thermal Cycler (Bio-Rad Laboratories, Hercules, CA).  

 

5.2.4 Quantitative Real-Time PCR. 

 

Quantitative Real-Time PCR was performed on a StepOnePlus Real-time PCR 

system (Applied Biosystems, Foster City, CA).  Real-time quantitative PCR 

amplifications were performed in triplicate on a 96-well plate.  Pre-designed 

TaqMan primers and hydrolysis probes for all genes of interest were purchased 

from Applied Biosystems (mt-ND1- Rn03296764_s1, mt-ND2- Rn03296765_s1, 

mt-ND3- Rn03296825_s1, mt-ND4- Rn03296781_s1, mt-ND4L- 

Rn03296792_s1, mt-ND5- Rn03296799_s1, mt-ND6- Rn03296815_s1, mt-CO1- 

Rn03296721_s1, mt-CO2- Rn03296737_s1, mt-CO3- Rn03296820_s1, mt-CYB- 

Rn03296746_s1, mt-ATP6- Rn03296710_s1, mt-ATP8- Rn03296716_s1, NRF1- 

Rn01455958_m1, NRF2a- Rn01767215_m1, NRF2b-Rn01514289_g1, Pgc1α-

Rn00598552_m1,  Tfam-Rn00580051_m1, Cyc1-Rn01504159_g1, Cox6c-

Rn00820983_gH, GAPDH- Rn01775763_g1).  Primers and probes were verified 

and operating at similar efficiencies.  Target gene and endogenous control 

amplicons were labeled with either FAM or VIC.  The levels of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) RNA expression were measured in all 

samples to normalize gene expression for sample-to-sample differences in RNA 

input, RNA quality and reverse transcription efficiency.  Each sample was 

analyzed in triplicate, and the expression was calculated according to the 

2−ΔΔCt method (Bright and Mochly-Rosen 2005; Coble, Johnson et al. 2014). 

https://bioinfo.appliedbiosystems.com/details/gene-expression/Rn01775763_g1
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5.2.5 Citrate Synthase Assay.  

 

Citrate synthase activity was determined in homogenates prepared from kidney 

tissue using a citrate synthase assay kit (CS0720; Sigma-Aldrich, St. Louis, 

MO). Total muscle protein was determined in triplicate by the method of Bradford 

(Buchholz, Dundore et al. 1991) and the protein concentration of all samples was 

equalized. Citrate synthase activity was determined based on the formation of 2-

nitro-5-thiobenzoic acid at a wavelength of 412 nm at 25°C on a microplate 

absorbance reader (iMark; BIO RAD, Hercules, CA). In each well, 8 μl of sample 

was added to a reaction medium containing 178 μl of assay buffer, 2 μl of 30 

mmol/L acetyl coenzyme A, and 10 mmol/L 2-nitro-5-thiobenzoic acid. The 

baseline solution absorbance was recorded, reactions were initiated by the 

addition of 10 μl of oxaloacetic acid, and the change in absorbance measured 

every 15 seconds for 2 minutes. 

 

5.2.6 Cytochrome Oxidase Histochemistry.  

  

Cytochrome oxidase (CO) activity was determined in fresh frozen sections 

(20µm) in kidney, liver and heart tissue, as described previously (Whitfield-

Rucker and Cassone 2000).  Briefly, fresh frozen tissue was sectioned on a 

cryostat at 20 µm.  Slides were immersed in 0.5% glutaraldehyde in 0.1% 

phosphate buffer for 5 minutes.  Slides were then incubated for 2 hours in a 

diaminobenzidene (DAB)/cytochrome c solution (preceded by 5 minutes of 
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sparged oxygen) at 37ºC.  Slides were then postfixed in 10% formalin for 15 

minutes.  Finally, slides were immersed in a serious of ethanol dehydration steps: 

50, 70, 90, 95, 100% ethanol (30 seconds each) and xylene (2 changes, 5 

minutes each).  Slides were then coverslipped using Histomount (Life 

Technologies) and dried overnight.  Colorometric change was used as a direct 

measurement of OXPHOS, in which darker color indicated higher metabolically 

active tissue.  Relative density per area was calculated using ImageJ (NIH). 

 

5.2.7 Statistical Analysis.  

 

Blood pressures and citrate synthase activity among animals were initially 

analyzed by 1-way analysis of variance (ANOVA) followed by post-hoc 

comparisons using the Bonferroni t-test.  Tissue mRNA expression levels were 

analyzed using Mann-Whitney U Test comparisons.  The 0.05 level of probability 

was utilized as the criterion of significance.  All statistical analyses were 

performed using GraphPad Prism 4.0 (GraphPad Software, Inc., La Jolla, CA).  

 

 

 

 

 

 

 



 

 
131 

 

5.3 Results 
 

5.3.1 Evaluation of mt-gene expression 

 

Quantitative real-time PCR was used to identify genes differentially expressed in 

renal tissue from hypertensive and normotensive BN/SHR-mtSHR rats.  Multiple 

mtDNA encoded genes of the mitochondrial respiratory chain were significantly 

reduced in renal, but not liver or cardiac tissue of HT BN/SHR-mtSHR, including 

five complex I, one complex III, three complex IV and both subunits of ATP 

synthase.  The well-established pathway in mammalian cells for mt-transcription 

initiation was evaluated using qPCR.  Tfam, NRF1, NRF2a, NRF2b and Pgc-1α 

were all downregulated in the kidney, but not elsewhere, of HT BN/SHR-mtSHR .  

 

5.3.1.1 Complex I: NADH Dehydrogenase 

 

Seven of the forty six genes that encode vital proteins for complex I of the 

electron transport chain are mt-encoded.  The renal mtRNA expression of five of 

the seven were significantly reduced in hypertensive versus normotensive 

BN/SHR-mtSHR.  mt-ND1 was reduced ~3.7 fold in HT BN/SHR-mtSHR (P<0.05).  

mt-ND3 was reduced ~2.6 fold in HT SHR/BN-mtSHR (P<0.01).  mt-ND4 was 

reduced ~10.8 fold in HT SHR/BN-mtSHR (P<0.05).  mt-ND4L was reduced ~7.7 

fold in HT SHR/BN-mtSHR (P<0.05).  mt-ND5 was reduced ~2.7 fold in HT 

SHR/BN-mtSHR (P<0.05).  mt-ND6 was reduced ~1.7 fold in HT SHR/BN-mtSHR 
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(P>0.05) (Figure 5.1A).  mt-ND2 was not different between the two phenotypes 

(P>0.05).  

 

5.3.1.2 Complex 3: Cytochrome bc1 Complex 

 

One of the eleven genes that encode vital proteins for complex three of the 

electron transport chain is mt-encoded. The renal mtRNA expression of mt-

encoded cytochrome b (mt-CYB) was significantly reduced in hypertensive 

versus NT BN/SHR-mtSHR.  mt-CYB was reduced ~5 fold in HT BN/SHR-mtSHR 

(P<0.05) (Figure 5.1B).  

 

5.3.1.3 Complex 4: Cytochrome C oxidase 

 

Three of the thirteen genes that encode vital proteins for complex IV of the 

electron transport chain are mt-encoded.  All three genes were significantly 

reduced in hypertensive versus normotensive BN/SHR-mtSHR.  mt-CO1 was 

reduced ~3.2 fold in HT BN/SHR-mtSHR (P<0.05), mt-CO2 was reduced ~3.6 fold 

in HT BN/SHR-mtSHR (P<0.01), and mt-CO3 was reduced 4.1 fold in HT 

BN/SHR-mtSHR (P<0.01) (Figure 5.1C).  

 

 

 

 



 

 
133 

 

5.3.1.4 Complex V: ATP synthase 

 

Two of the sixteen genes that encode vital proteins for ATP synthase of the 

electron transport chain are mt-encoded.  mt-ATP6 was reduced ~2.3 fold in HT 

BN/SHR--mtSHR (P<0.05), while mt-ATP8 was reduced ~3.1 fold in HT BN/SHR-

mtSHR (P<0.05) (Figure 5.1D).  

 

5.3.1.5 Tissue expression in Liver and Heart 

 

Expression levels of several mt-genes were evaluated in both the liver and heart 

of HT and NT BN/SHR-mtSHR as described above.  mt-CYB, mt-CO2 and mt-

ND1, mt-ATP6 were shown to be not different (P>0.05) between the HT and NT 

BN/SHR-mtSHR liver or heart tissues.  This is in contrast to renal tissue wherein 

each of these genes exhibited reduced expression in HT vs. NT animals (Figure 

5.2).    

 

5.3.2 Evaluation of Oxidative Phosphorylation: Cytochrome Oxidase 

Histochemistry 

 

CO activity was measured densitometrically in kidney, liver and heart sections 

(20µm) in NT (n=6) and HT (n=6) BN/SHR-mtSHR.  CO activity was significantly 

lower (p<0.05) in the kidney, but not the liver or heart in HT BN/SHR-mtSHR 

(Figure 5.3). 
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5.3.3 Evaluation of Trans-Regulatory Factors 

 

The well-established pathway in mammalian cells for mt-transcription initiation 

was evaluated using qPCR.  Pgc1a, NRF1, NRF2a, NRF2b and Tfam were all 

downregulated in the kidney, but not liver tissue, of HT compared to NT BN/SHR-

mtSHR (n=20).  The pathway leading to reduced mitochondrial gene expression is 

summarized in (Figure 5.7). 

 

5.3.3.1 Peroxisome Proliferator-Activated Receptor Gamma Co-Activator 1-alpha 

(PGC-1α) 

 

PGC-1α regulates NRF-dependent transcription, increases expression of both 

mitochondrial and nuclear encoded genes of oxidative phosphorylation and 

induces mitochondrial biogenesis.  HT BN/SHR-mtSHR exhibited ~2.5 fold 

reduction in PGC-1α mRNA in kidney tissue compared with NT BN/SHR-mtSHR 

(P<0.05) (Figure 5.4A).   

 

5.3.3.2 Nuclear Respiratory Factors 

 

Nuclear respiratory factors 1 and 2 are well characterized transcriptional 

activators of genes involved in assembly of the respiratory apparatus, as well as 

constituents of the mtDNA transcription and replication machinery (Kelly and 

Scarpulla 2004).  A main factor involved in mtDNA transcription is Tfam, whose 

expression is regulated by NRF1.  All three NRFs were reduced in the kidney, 



 

 
135 

 

but not liver of HT compared to NT BN/SHR-mtSHR.  Renal NRF1 mRNA 

expression was reduced ~1.8 fold in HT BN/SHR-mtSHR compared with NT 

BN/SHR-mtSHR (P<0.05) (Figure 4B). Renal NRF2a mRNA expression was 

reduced ~2.3 fold in HT BN/SHR-mtSHR compared with NT BN/SHR-mtSHR 

(P<0.05) (Figure 4C). Renal NRF2b mRNA expression was reduced ~1.9 fold in 

HT BN/SHR-mtSHR compared with NT BN/SHR-mtSHR (P<0.05) (Figure 5.4D).  

 

5.3.3.3 Mitochondrial Transcription Factor A (Tfam) 

 

Tfam is a key activator of mammalian mitochondrial transcription.  Kidney, but 

not liver tissue exhibited reduced Tfam mRNA expression ~2.5 fold in HT 

BN/SHR-mtSHR compared with NT BN/SHR-mtSHR (P<0.05) (Figure 5.4E).  

 

5.3.4 Nuclear-Encoded Mitochondrial Genes: Cytochrome C-1 (Cyc1), 

Cytochrome C Oxidase, Subunit Vic (Cox6c) 

 

In order to assess the downstream pathways of the nuclear encoded regulatory 

elements, nuclear-encoded mitochondrial gene expression were assessed.  

There was no difference in the renal mRNA expression of CYC or Cox6c 

between NT (n=10) and HT (n=10) BN/SHR-mtSHR (P>0.05) (Figure 5.5). 
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5.3.5 Evaluating Mitochondrial Number: Citrate Synthase Assay 

 

To quantify mitochondrial number, citrate synthase activity was measured in 

kidney homogenates of NT (n=10) and HT (n=10) BN/SHR-mtSHR (Figure 5.6).  

There was no difference between the two phenotypes (P=0.9676), indicating that 

mitochondrial number was not driving the reduced transcript expression in HT 

BN/SHR-mtSHR kidneys. 
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5.4 Discussion 
 

There is significant evidence that mitochondria and the mitochondrial genome 

may be important in the development of hypertension (Wallace 1999; Osanai, 

Tanaka et al. 2001; Schwartz, Duka et al. 2004; Taylor and Turnbull 2005; de 

Cavanagh, Toblli et al. 2006; Lopez-Campistrous, Hao et al. 2008; Kumarasamy, 

Gopalakrishnan et al. 2010).  Of particular interest may be the nature of 

mitochondrial inheritance, being strictly maternal, and of female SHR origin.  The 

results of the current study provide evidence that gene expression variation in 

renal mitochondrial genes encoding respiratory chain complexes is related to 

hypertension in rats stemming from a SHR/BN conplastic breeding paradigm.  

This breeding method provided a continuous passing of the maternal 

mitochondrial genome, while mixing the inherited nuclear genome between the 

maternal SHR and paternal BN with each succeeding generation. We have 

reported the maintenance of arterial systolic hypertension for 6 consecutive 

generations in this conplastic strain despite the reduction in maternally derived 

nuclear genome (Collett, Hart et al. 2013).  Results from the current study show 

mitochondrial protein-coding genes critical for OXPHOS exhibited significantly 

reduced expression in the kidney, but not the in the liver or heart, in HT BN/SHR-

mtSHR compared with NT BN/SHR-mtSHR.  Additionally, in HT BN/SHR-mtSHR, 

nuclear genes involved in mitochondrial biogenesis and transcription (PGC-1α, 

NRF1, NRF2a/b, Tfam), exhibited reduced expression in the kidney, but not liver, 

compared with NT BN/SHR-mtSHR (Figure 5.3).  Thus, kidney-specific reduction 

in expression of both mitochondrial and nuclear genes critical to OXPHOS is 
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associated with the manifestation of hypertension in rats with intact SHR 

mitochondrial genome but minimal SHR nuclear genome. 

 

Recently, Lee et al. (2014) postulated that increased mitochondrial activity in 

proximal convoluted tubule cells of young, normotensive SHR may contribute to 

the development of hypertension at adulthood.  These studies show that various 

parameters of mitochondrial activity were elevated in very young SHR prior to the 

onset of hypertension, while mt-gene expression remained unchanged.   Our 

study documents mitochondrial genes encoding proteins of each mitochondrial 

subunit of mRNA were reduced in renal tissue of HT BN/SHR-mtSHR compared 

with NT BN/SHR-mtSHR. It is possible that mitochondrial activity is elevated in 

renal proximal tubules of very young SHR prior to the onset of hypertension.  As 

the development of hypertension progresses in the maturing SHR, renal 

mitochondrial gene expression may then decline which in turn significantly 

contributes to the further elevation of blood pressure.  Ongoing and future studies 

are being conducted to address this possible relationship and mechanism 

specific to the SHR.  

 

The viability of individual electron transport chain subunits and the potential for 

disease has been evaluated.  Altered function of complex I has been linked to 

cardiovascular disease (Antonicka, Ogilvie et al. 2003; Lopez-Campistrous, Hao 

et al. 2008).  Lopez-Campistrous et al. (2008) revealed defects in complex I in 

the brainstem of SHR, resulting in increased reactive oxygen species production, 
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decreased ATP synthesis and impaired respiration in hypertension .  Results 

from our current study indicate reduced genetic expression of most the mt-genes 

coding for Complex I, suggesting that defects in complex I function may be due 

to reduced mitochondrial gene expression.  Altered function of complex III, a 

major site of superoxide formation and ROS production, may play an important 

role in renal mitochondrial ETC dysfunction and cardiovascular disease.  Similar 

to these findings, Das et al. (1990) reported that the regulation of ATP synthase 

is abnormal in SHR cardiac cells, as demonstrated by the inability to respond to 

acute increases in energy demand compared to cells from normotensive rats .  

Data from our study indicate that mt-gene expression is reduced in kidneys, a 

key organ in blood pressure control.  Furthermore, kidneys of hypertensive rats 

had reduced CO staining, indicating reduced oxidative phosphorylation 

compared with NT rats (Figure 5.3).  This could have profound effects, as the 

kidney has high metabolic demand, particularly in regulating salt and water 

balance, and hence, arterial pressure.  Taken together, the altered function of 

ETC subunits derived from decreased kidney-specific mt-gene expression may 

have several implications to the development of hypertension. 

 

PGC-1α plays a central role in regulating mitochondrial content and function 

within cells, because of its ability to co-activate and augment several promoters 

of nuclear-encoded mitochondrial genes, as well as regulating mitochondrial 

transcription via the NRF-Tfam pathway (Wu, Puigserver et al. 1999).  PGC-1α 

regulates NRF-dependent transcription, increases expression of both 
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mitochondrial and nuclear encoded genes of oxidative phosphorylation and 

induces mitochondrial biogenesis (Scarpulla 2002).  It has been shown that 

metabolic functions are controlled by PGC-1α  in a tissue specific manner in 

brown fat, muscle and liver (Puigserver 2005), however kidney regulation of  

PGC-1α  and its effectors is unknown.  Results from this study show a clearly 

coordinated reduction of the kidney-specific expression of nuclear and 

mitochondrial genes vital to OXPHOS coinciding with the manifestation of 

hypertension (Figure 5.7).  It is likely that this nuclear-mitochondrial gene down 

regulation is being driven by upstream events.  Although the upstream signaling 

involved in the activation/reduction of PGC-1α is yet to be fully elucidated, 

several pathways have been described.  Briefly, the activity of PGC-1α can be 

modulated by numerous post-translational events, including phosphorylation by 

AMP kinase (AMPK)(Fan, Rhee et al. 2004)  and cAMP response element-

binding protein (CREB) (Fernandez-Marcos and Auwerx 2011), among others 

(García-Giménez, Gimeno et al. 2011).   

 

Mitochondrial biogenesis and transcription have been thought to be regulated by 

the same nuclear-mitochondrial pathway described above (Scarpulla, Vega et al. 

2012).  However, mitochondrial number between NT and HT rats were not 

different as measured by citrate synthase activity (Figure 5.6).  Mitochondrial 

encoded gene ND2 of complex 1 was also not different between the NT and HT 

phenotypes (Figure 5.1A).   Subunit ND2 has been shown to play a significant 

role in the assembly and/or stability of Complex I (Antonicka, Ogilvie et al. 2003).  
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Results from our current study reinforce the importance of ND2 in electron 

transport chain integrity, as it was the only subunit of complex I that showed no 

expression difference in kidneys between the two phenotypes.  In order to further 

assess the downstream pathways of the nuclear-encoded regulatory elements, 

the expression of two separate nuclear-encoded mitochondrial genes were 

assessed.  Interestingly, other nuclear-encoded mitochondrial genes known to be 

regulated by the PGC-1α-NRF-Tfam pathway were not different.  Neither renal 

Cytochrome C-1 (Cyc1) nor cytochrome c oxidase subunit Vic (Cox6c) were not 

different between HT and NT BN/SHR-mtSHR (Figure 5.5).  This phenomenon 

has several implications.  First, biogenesis and transcription of mitochondrial 

genes, though known to be regulated by the PGC-1α pathway, may in fact be 

regulated in a more complex manner than previously thought.  Furthermore, 

mitochondrial gene expression appears to be regulated in a tissue-specific 

manner.  If this is the case, our data indicate that tissues of high metabolic 

activity may have a critical role in the development of disease.  Therefore, it is 

plausible that altered OXPHOS could impact renal function, which is the 

cornerstone of blood pressure regulation and development of hypertension. 

 

One of the more interesting aspects of this study is a potential ETC dysfunction 

driven by transcript differences in the kidneys, but not in other tissues, of mt-

genes and the nuclear trans-factors that regulate them.  Cytochrome oxidase 

serves as an endogenous metabolic marker.  As shown in Figure 5.3, CO 

staining was significantly reduced in the kidneys, but not liver or heart of HT 
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BN/SHR-mtSHR, indicating that the kidneys of hypertensive rats had reduced 

OXPHOS.  Altered renal function has been well recognized as a key factor in the 

development and maintenance of hypertension (Bianchi, Fox et al. 1974; Curtis, 

Luke et al. 1983; Dilley, Stier et al. 1984; Guyton 1990; Cowley and Roman 

1996; Ichihara, Inscho et al. 1997).  One such mechanism that may be 

responsible is altered regulation of the renin-angiotensin system.  The RAS 

serves as one of the most powerful regulators of blood pressure.    The 

interactions among RAS and altered mitochondrial function has been advanced 

recently by Benigni et al. (2009).  Deletion of the Agtr1a gene resulted in the 

reduced age-related cardio-renal complications, improved mitochondrial 

biogenesis, and increased longevity in mice.  Treatment with antioxidants, 

mitochondrial superoxide dismutase mimetics, and AT1r blockers decreased 

vascular O2- production and attenuated development of hypertension in SHR 

(Park, Touyz et al. 2002),(Rodriguez-Iturbe, Zhan et al. 2003),(Shokoji, 

Nishiyama et al. 2003).  De Cavanagh et al. (2006) demonstrated that oxidative 

stress is associated with mitochondrial dysfunction in SHR, and that this 

dysfunction is attenuated with AT1r blockade with losartan .   The presence and 

abundance of renal AT1r is related to the propagation of the HT phenotype in 

BN/SHR-mtSHR.  We have previously shown that HT BN/SHR-mtSHR exhibit 

elevated AT1r mRNA (Agtr1a) expression compared to NT BN/SHR-mtSHR, while 

the renal and systemic expression of renin, angiotensinogen, and angiotensin-

converting enzymes were not different (Collett, Hart et al. 2013).  HT BN/SHR-

mtSHR exhibited elevated AT1r protein compared with NT BN/SHR-mtSHR, and this 
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increase was positively correlated with elevated systolic BP (Collett, Hart et al. 

2013).  These data highlight a renal-specific phenomenon that appears to play a 

role in the pathology of hypertension in these animals. 

 

Another mechanism that may underlie reduced mt-gene expression is altered 

activity of the sympathetic nervous system.  Elevated RSNA plays an important 

role in the development and maintenance of hypertension in the SHR (Judy, 

Watanabe et al. 1976; 1995; Karim, Defontaine et al. 1995).   Increases in RSNA 

decrease urinary sodium and water excretion by increasing renal tubular water 

and sodium reabsorption throughout the nephron, decrease renal blood flow and 

glomerular filtration rate by constricting the renal vasculature, and increase 

activity of the renin-angiotensin system by stimulating renin release from 

juxtaglomerular granular cells (DiBona and Kopp 1997; Osborn, Plato et al. 1997; 

DiBona 2000).  Activation, or overactivation of adrenergic receptors may trigger 

downstream effects, altering expression of PGC-1α through phosphorylation of 

AMP kinase (AMPK)(Fan, Rhee et al. 2004), cAMP response element-binding 

protein (CREB) (Fernandez-Marcos and Auwerx 2011) or others (García-

Giménez, Gimeno et al. 2011) to ultimately decrease mt-gene expression. 

 

Whenever mitochondrial disturbances inhibit electron transport, electrons are 

forwarded into an increased generation of ROS (Wallace 2005).  Increased 

mitochondrial ROS is linked to metabolic diseases such as aging, diabetes and 

hypertension (Hagen, Yowe et al. 1997; Kristal, Jackson et al. 1997; Addabbo, 
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Montagnani et al. 2009).  Mitochondria are a major site of oxygen consumption 

and oxidative stress due to generation of ROS, where complexes I and III are the 

main sites of mitochondrial superoxide formation (Votyakova and Reynolds 

2001).  Recently, mitochondrial ETC dysfunction has been shown to directly 

cause oxidative stress during hypertension.  Chan et al. (2009) reported that 

mitochondrial ROS production in the rostral ventrolateral medulla is elevated in 

SHRs, and that ROS dependent inhibition of mitochondrial ETC complexes I, II 

and III resulted in a feed-forward production of ROS, as well as defects in anti-

oxidant production.  Ballinger et al. (2000) have demonstrated that  reactive 

oxygen species decreased mtRNA transcripts, mitochondrial protein synthesis 

and decreased cellular ATP levels.  Taken together, ROS decreases OXPHOS, 

and decreased OXPHOS increases ROS, both of which contribute to 

hypertension (Figure 5.7).   Therefore, in our studies, the reduction of renal gene 

expression may lead to the development and maintenance of hypertension.  

 

In summary, we present novel data documenting a decrease in a well-defined 

nDNA-mtDNA interactive pathway resulting in decreased mtDNA transcripts of 

proteins vital to OXPHOS.  This coordinated reduction of nuclear-mitochondrial 

OXPHOS genes and its potential role in the development of hypertension until 

now was largely unknown (Figure 5.7).  Though the exact mechanisms driving 

this reduction in gene expression is currently not known, it is clear that reduced 

mt-gene expression in the kidney coincides with the development of hypertension 

in BN/SHR-mtSHR.  Using our current model, where the nuclear genome is 
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increasingly BN while maintaining the SHR mitochondrial genome, in 

combination with other similar models, the relevance of the specific control of 

each of these genomes and how they may contribute to disease may be 

revealed.  Furthermore, the nuclear-mitochondrial gene expression interactions 

may also be critically important in the manifestation of the progression of the 

renal disease process and ultimate development of hypertension.  Future studies 

focused on elucidating the upstream mechanisms driving the reduced expression 

and subsequent potential mitochondrial dysfunction will determine if this 

phenomenon may directly lead to the development of heritable hypertension. 
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Figure 5.1: Quantitative Real-Time PCR mt-genes across 4 complexes of 
ETC. NT animals are in white, HT animals are in black.  A: mt-ND1 was 
reduced ~3.7 fold in HT BN/SHR-mtSHR (*P<0.05).  mt-ND3 was reduced 
~2.6 fold in HT SHR/BN-mtSHR (**P<0.01).  mt-ND4 was reduced ~10.8 fold 
in HT SHR/BN-mtSHR (*P<0.05).  mt-ND4L was reduced ~7.7 fold in HT 
SHR/BN-mtSHR (P<0.05).  mt-ND5 was reduced ~2.7 fold in HT SHR/BN-
mtSHR (P<0.05).  mt-ND6 was reduced ~1.7 fold in HT SHR/BN-mtSHR 
(P>0.05). mt-ND2 was not different between the two phenotypes (P>0.05). 
B:  mt-CYB was reduced ~5 fold in HT BN/SHR-mtSHR (*P<0.05).  C:  mt-
CO1 was reduced ~3.2 fold in HT BN/SHR-mtSHR (*P<0.05), mt-CO2 was 
reduced ~3.6 fold in HT BN/SHR-mtSHR (P<0.05), and mt-CO3 was reduced 
4.1 fold in HT BN/SHR-mtSHR (P<0.05).  D: mt-ATP6 was reduced ~2.3 fold 
in HT BN/SHR--mtSHR (*P<0.05), while mt-ATP8 was reduced ~3.1 fold in 
HT BN/SHR-mtSHR (*P<0.05). 
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Figure 5.2: Quantitative Real-Time PCR of representative mt-genes of 
complex I-V were evaluated in liver and heart tissue of HT and NT 
BN/SHR-mtSHR. NT animals are in white, HT animals are in black.  A: 
mt-CYB, B: mt-CO2, C: mt-ND1, and D: ATP6 were shown to be not 
different (P>0.05) between the HT and NT BN/SHR-mtSHR liver and 
heart compared with kidney tissue. 
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Figure 5.3: Cytochrome oxidase staining was significantly 
lower in the kidney of HT vs. NT BN/SHR-mtSHR (P<0.05). 
However, CO staining was not different in liver (p=0.3828) or 
heart (p=0.6664) of HT vs.  NT BN/SHR-mtSHR.  NT are in 
white, HT in black.   
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Figure 5.4: Quantitative Real-Time PCR graphs of the well-established nuclear-
mitochondrial induction of mitochondrial gene transcription.    NT animals are in 
white, HT animals are in black.  A. Peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha (PGC-1α).  Renal  PGC-1α mRNA expression was 
reduced ~2.5 fold in HT BN/SHR-mtSHR compared with NT BN/SHR-mtSHR 
(P<0.05).  B. Nuclear Respiration Factor (NRF) 1.  Renal NRF1 mRNA expression 
was reduced ~1.8 fold in HT BN/SHR-mtSHR compared with NT BN/SHR-mtSHR 
(P<0.05). C. Nuclear Respiration Factor 2A.  Renal NRF2A mRNA expression was 
reduced ~2.3 fold in HT BN/SHR-mtSHR compared with NT BN/SHR-mtSHR 
(P<0.05).  D. Nuclear Respiration Factor 2B.  Renal NR2B mRNA expression was 
reduced ~1.9 fold in HT BN/SHR-mtSHR compared with NT BN/SHR-mtSHR 
(P<0.05). E. Mitochondrial Transcription Factor A (Tfam).  Renal Tfam mRNA 
expression was reduced ~2.5 fold in HT BN/SHR-mtSHR compared with NT 
BN/SHR-mtSHR (P<0.05)   Expression levels were not different in the liver 
(P>0.05) in HT BN/SHR-mtSHR compared with NT BN/SHR-mtSHR for any of the 
transcription factors.   
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Figure 5.5: Quantitative Real-Time PCR of nuclear-encoded 
mitochondrial genes.  NT animals are in white, HT animals are in black.    
Neither renal   A: Cytochrome C-1 (Cyc1) (P=0.3928) nor B: cytochrome 
c oxidase, subunit Vic (Cox6c)(P=0.7618) were different between NT and 
HT BN/SHR-mtSHR. 
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Figure 5.6: Citrate synthase activity was not different in renal 
tissue of NT versus HT BN/SHR-mtSHR.  Mitochondrial number 
was not different between the two phenotypes (P=0.9676).   
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Figure 5.7: Hypothetical nuclear-mitochondrial pathway driving reduced mtDNA 
transcription, ultimately leading to elevated arterial pressure and hypertension.  
The pathway is clearly reduced in the kidney, but not liver of HT BN/SHR-mtSHR 
compared with NT BN/SHR-mtSHR.   
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CHAPTER 6 
GENERAL CONCLUSIONS AND DISCUSSION 

 

The goal of this dissertation was to determine the roles that specific humoral, 

genetic and genomic mechanisms play in the manifestation and maintenance of 

spontaneous hypertension. This was accomplished with two major hypotheses.  

One underlying hypothesis tested was that specific aspects of the renin-

angiotensin system, in particular, the location and abundance of AT1 receptors 

was associated with hypertension, which is supported by data presented in 

Chapters 3 and 4.  Renal- and hypothalamic-specific expression of AT1 receptors 

was associated with hypertension in rats with decreasing SHR nuclear genome.  

Chapter 4 data further support tissue-specific expression, suggesting that 

elevated hypothalamic AT1r protein may be associated with an impaired ability to 

sense orally ingested sodium.   The second major hypothesis tested was that the 

maternal inheritance of the mitochondrial genome might play a specific role in the 

development of hypertension.  Data presented in Chapter 2 supports a dominant 

expression of the hypertensive phenotype stemming from a single SHR female 

rat, despite the continual reduction of the SHR nuclear genome.  With the 

dominance of the hypertensive phenotype, the role of the mitochondria, 

mitochondrial gene expression and mitochondrial function were investigated.  

Data presented in Chapter 5 supports an important role that the mitochondria 

and the regulation of the mitochondrial genome play in the development of 

hypertension.  Hypertensive BN/SHR-mtSHR exhibited significant reductions of 
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mtRNA compared to NT rats of the same strain, in nearly all of the 

mitochondrially protein encoded genes, and this reduction coincided with a 

reduction of OXPHOS.  Furthermore, data presented in Chapter 5 indicates an 

important role for tissue-specific expression and function of the mitochondria, 

with the reduced expression of genes critical to OXPHOS, as well as reduced 

OXPHOS itself, occurring in the kidney but not liver or heart in HT BN/SHR-

mtSHR.  However, this data also implicates an important role of the nuclear factors 

that regulate mitochondrial gene expression and biogenesis, leading to a future 

hypothesis that it is not mitochondrial inheritance, but something upstream of the 

mitochondrion, for instance the RAS that is driving mitochondrial dysfunction, 

ultimately contributing to hypertension.  Presented in this final chapter is a 

discussion of how these findings relate to each other and possible future 

directions to take.  I postulate that Ang II binding to its type 1 receptor plays a 

significant role in the renal downregulation of mitochondrial gene expression and 

OXPHOS, thus contributing significantly to the development and maintenance of 

hypertension in BN/SHR-mtSHR (Figure 6.1). 

 

Data presented in this dissertation supports the important role of the kidney in the 

development and maintenance of hypertension.  HT BN/SHR-mtSHR exhibited 

elevated AT1 gene and protein expression in the kidneys, but not the liver or 

heart compared with NT BN/SHR-mtSHR.  Transcript analyses of systemic 

aspects of RAS were not different between the two phenotypes in the BN/SHR-

mtSHR colony.  This increase in kidney AT1r expression coincided with a decrease 
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in mitochondrial gene expression in HT BN/SHR-mtSHR.  HT rats exhibited a 

decrease in the well-defined nDNA-mtDNA interactive pathway resulting in 

decreased mtDNA transcript expression of proteins vital to OXPHOS (Figure 

6.1).  This coordinated reduction of nuclear-mitochondrial OXPHOS genes and 

its potential relationship to the development of hypertension until now was largely 

unexplored.  Though the exact mechanisms driving this reduction in gene 

expression is not known, it is clear that reduced mt-gene expression in the kidney 

coincides with the development of hypertension in BN/SHR-mtSHR.  Furthermore, 

data presented in Chapter 5 indicates that HT rats exhibited reduced OXPHOS, 

as HT rats exhibited decreased cytochrome oxidase staining compared with NT 

BN/SHR-mtSHR, and this decrease was observed only in the kidney.  What then 

does this mean in terms of the development of spontaneous hypertension?  Does 

reduced mitochondrial gene transcription, and ultimately reduced OXPHOS lead 

to reduced renal function, which then initiates chronic elevated arterial pressure?  

Data presented in Chapter 4 indicates that renal function was normal between 

NT and HT BN/SHR-mtSHR.  Both NT and HT rats were in negative sodium 

balance, while exhibiting similar proteinuria.  Since that is the case, it may be 

possible that reduced renal tubular mitochondrial function makes sodium 

handling in the kidney less efficient, therefore requiring chronic pressure-

natriuresis and a resetting of the renal function curve.  This hypothesis seems 

plausible, with a reduced ability to “sense” orally ingested NaCl, HT rats require 

elevated arterial pressure to maintain sodium balance, shifting the renal-function 
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curve to the right.  Hence, the HT BN/SHR-mtSHR maintain sodium balance, but 

at the expense of the morbidity of hypertension.   

 

As discussed in Chapters 1, 3 and 4, Ang II plays a pivotal role in the regulation 

of blood pressure, volume, and electrolyte balance.  The angiotensin II, type 1 

receptor has been extensively evaluated in rodents and has subsequently 

become a target as a causal factor in the development of spontaneous 

hypertension.  Reja et al. (2006) showed that gene expression levels of AT1r, 

extracellular signal-regulated kinase 2 and phosphatidylinositol 3-kinase were 

significantly higher in the PVN, RVLM and adrenal medulla in SHR compared to 

normotensive WKY rats.  Raizada et al. (1993) showed that AT1r mRNA was 

higher in the hypothalamus and brainstem of hypertensive SHR compared to 

normotensive WKY rats.  Furthermore, Gyurko et al. (1993) showed that 

antisense inhibition of AT1 receptor mRNA in the brain reduces the magnitude of 

hypertension in adult SHR.  Data from our studies strongly supports the notion 

that tissue-specific elevation of AT1 receptors may play a role in SHR-derived 

hypertension.  In fourth generation BN/SHR-mtSHR , where the nuclear genome of 

the original SHR accounts for only ~6.2%, HT rats had significantly higher AT1r 

protein expression than normotensive rats in both kidney and hypothalamic 

tissue.  Average SAP and tissue expression of AT1r were positively correlated, 

indicating that tissue-specific expression of AT1r expression may critically impact 

the development and maintenance of spontaneous hypertension.  In HT and NT 

BN/SHR-mtSHR rats across all generations, we saw in increase in the kidney 
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expression of AT1r mRNA associated with hypertension. Increased AT1r could 

potentially have drastic effects on the cardiovascular system, and subsequently, 

the pathogenesis of hypertension.  Ang II’s effect in the kidney would be 

exacerbated, increasing proximal tubular sodium reabsorption and decreasing 

renal blood flow.  In the hypothalamus, elevated AT1r expression could increase 

sympathetic nervous activity and/or vasopressin secretion, subsequently 

increasing vascular resistance and sodium and water retention (Scherrer 1959; 

Osborn and Camara 1997; Chen and Toney 2001).   

 

Significant evidence suggests that the RAS plays a role in altering mitochondrial 

function.  ACE inhibitors and ARBs reduce age-related mitochondrial dysfunction 

and protect against cardiac mitochondrial dysfunction following acute ischemic 

attack (DE CAVANAGH, PIOTRKOWSKI et al. 2003; Monteiro, Duarte et al. 

2005; de Cavanagh, Toblli et al. 2006).  Ang II can induce oxidant stress by 

enhancing the generation of both NO (Pueyo, Arnal et al. 1998) and NAD(P)H 

oxidase-derived superoxide (Rueckschloss, Quinn et al. 2002). Ang II can also 

induce endothelial NO synthase uncoupling, i.e., switching from NO to 

superoxide production (Mollnau, Wendt et al. 2002). Furthermore, Ang II has 

been shown to stimulate mitochondrial reactive oxygen species (mtROS) 

production.  Increased mtROS has been linked to metabolic diseases such as 

aging, diabetes and hypertension (Hagen, Yowe et al. 1997; Kristal, Jackson et 

al. 1997; Addabbo, Montagnani et al. 2009).  Mitochondria are a major site of 

oxygen consumption and a major site of oxidative stress due to generation of 



 

 
159 

 

ROS, where complexes I and III are the main sites of mitochondrial superoxide 

formation (Votyakova and Reynolds 2001).  There is increasing evidence that 

hypertension is associated with an increased mitochondria-derived production of 

ROS in various animal models (Doughan, Harrison et al. 2008; Dikalova, 

Bikineyeva et al. 2010).  In mice, acute (24 h) and chronic (14 day) Ang II 

infusion led to a decreased cardiac expression of mitochondrial electron transport 

chain and Krebs cycle genes (Larkin, Frank et al. 2004), supporting previous 

observations that indicated a role for Ang II and Ang II-induced ROS in the 

depression of mitochondrial energy metabolism (Sanbe, Tanonaka et al. 1995; 

Casademont and Miro 2002; Sorescu and Griendling 2002).  In rat endothelial 

cells, Ang II-induced mtROS generation activates redox-sensitive nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB), which is followed by a 

stimulation of vascular cell adhesion molecule-1 expression, a cytokine involved 

in atherosclerosis lesion formation (Pueyo, Gonzalez et al. 2000).  Recent data 

suggest that brain activation of the RAS elicits intraneuronal signaling, which 

involves an increased production of mitochondrial O2
·− (Case, Li et al. 2013), 

modulating ion channel activity and increasing neuronal firing (Yin, Yang et al. 

2010).  Furthermore, overexpression of mitochondrial superoxide dismutase in 

the brain effectively abolishes the central angiotensin II-induced pressor 

response and decreases blood pressure in rodent models of hypertension 

(Zimmerman, Lazartigues et al. 2002; Chan, Wu et al. 2009). It is clear then, that 

Ang II binding to its AT1 receptor has profound effects on the mitochondria and 

metabolism, and therefore this pathway should be considered a potential target 
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in the treatment and/or prevention of hypertension.  The RAS-mitochondria 

connection is strongly supported by work presented in this dissertation, 

demonstrating an inverse relationship between renal AT1r expression and 

components of OXPHOS, despite the continual reduction of the founder SHR 

female nuclear genome (Figure 6.1).  

 

Mitochondrial membranes, proteins, and mitochondrial DNA are particularly 

sensitive to oxidative damage (Yakes and Van Houten 1997; Ballinger, Patterson 

et al. 2000).  ROS has been shown to posttranslationally modify mitochondrial 

proteins leading to their inactivation, as in the case of SOD2 and aconitase, or 

alter their function as occurs with cytochrome c (Brookes, Zhang et al. 2001; 

MacMillan-Crow, Cruthirds et al. 2001; Chen, Deterding et al. 2002). 

Mitochondrial ETC dysfunction has been shown to be causally related to 

oxidative stress during hypertension.  Chan et al. (2009) reported that 

mitochondrial ROS production in the RVLM is elevated in SHRs, and that ROS-

dependent inhibition of mitochondrial ETC complexes I, II and III resulted in a 

feed-forward production of ROS, as well as defects in anti-oxidant production.  

Ballinger et al. (2000) demonstrated that the reactive oxygen species H2O2 and 

peroxynitrite decreased mtRNA expression, mitochondrial protein synthesis and 

decreased cellular ATP levels.  It is possible that ROS, known to be involved with 

the development of hypertension and mitochondrial dysfunction in SHRs, may 

play a role in the development of hypertension in BN/SHR-mtSHR (Figure 6.1).  
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Doughan et al. (2008) has shown that the molecular mechanisms involved in Ang 

II-mediated mitochondrial dysfunction (mitochondrial H2O2 production, and 

decreased mitochondrial glutathione, ADP-stimulated respiration, and decreased 

membrane potential) include protein kinase C (PKC) activation.  Interestingly, 

and of significant importance here, AT1r and α-adrenergic receptors increase 

PKC activity (Tsuchida, Liu et al. 1994; Hein and Kobilka 1995; Karim, 

Defontaine et al. 1995).  Ang II binding to its type 1 receptor causes the G-protein 

mediated stimulation of phospholipase C and phophoinositide 3 kinase, which in 

turn activates PKC.  This pathway is involved with several mechanisms 

associated with the pathogenesis of hypertension, including vasoconstriction, 

catecholamine release, increased renal sodium reabsorption, as well as 

increased vasopressin release and salt appetite (de Gasparo, Catt et al. 2000).  

Buchholz et al. (1991) demonstrated that inhibition of PKC lowers blood pressure 

in SHRs.  Pfaff and Vallon (2002) demonstrated that the renoprotective effect of 

ACE inhibitors in diabetic rats is mediated by the inhibition of PKC-β.  Identifying 

the exact isozyme involved in hypertension may prove to be difficult.  There are 

eight known homologous PKC isozymes, which are products of seven related 

genes (Mochly-Rosen, Das et al. 2012).  Nowak (2002) demonstrated that 

mitochondrial dysfunction and reduced OXPHOS in renal proximal tubular cells is 

mediated by PKC-α and ERK1/2.  Recently, Coble et al. (2014) demonstrated a 

role for central PKC-α in fluid balance by showing the role of PKC-α signaling in 

the SFO in fluid intake stimulated by Ang II in the brain.   To date, several other 

isoforms have been implicated in cardiovascular pathologies, such as diabetes 
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(Geraldes and King 2010), heart failure (Inagaki, Churchill et al. 2006) and stroke 

(Bright and Mochly-Rosen 2005).  Does PKC alter PGC-1α, thereby initiating the 

cascade reducing mitochondrial gene expression and OXPHOS?  Does PKC 

directly, or through a second messenger, alter mitochondrial function in other 

ways?  One future goal will be to elucidate what role, if any, PKC isozymes play 

in mitochondrial dysfunction mediated by Ang II. 

 

I believe that data presented in this dissertation strongly supports a relationship 

between decreased mitochondrial gene expression, mitochondrial function and 

hypertension, and that this altered mitochondrial dynamics may be mediated, at 

least in part, by Ang II binding to its AT1r.  Another mechanism that may underlie 

reduced mt-gene expression is altered activity of the sympathetic nervous 

system. Elevated RSNA plays an important role in the development and 

maintenance of hypertension in the SHR (Judy, Watanabe et al. 1976; Karim, 

Defontaine et al. 1995).   Increases in RSNA decrease urinary sodium and water 

excretion by increasing renal tubular water and sodium reabsorption throughout 

the nephron, decrease renal blood flow and glomerular filtration rate by 

constricting the renal vasculature, and increase activity of the renin-angiotensin 

system by stimulating renin release from juxtaglomerular granular cells (DiBona 

and Kopp 1997; Osborn, Plato et al. 1997; DiBona 2000).  Activation, or 

overactivation of adrenergic receptors may trigger downstream effects, 

potentially altering expression of PGC-1α through, for instance phosphorylation 

AMP kinase (AMPK)(Fan, Rhee et al. 2004), cAMP response element-binding 
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protein (CREB (Fernandez-Marcos and Auwerx 2011) or others (García-

Giménez, Gimeno et al. 2011) to ultimately decrease mt-gene expression.  

Adrenergic activation also increases PKC activity, which has been shown to 

mediate mitochondrial dysfunction in conjunction with ERK1/2 (Nowak 2002).   A 

second future goal is to evaluate the relationship between the sympathetic 

nervous system and mitochondrial function, as elevated RSNA is a key 

component of most forms of hypertension, including primary hypertension in 

humans.  Evaluating RAS with RSNA could provide valuable information on how 

each contribute to hypertension individually and in concert with one another.  

 

PGC-1α plays a central role in regulating mitochondrial content and function 

within cells, because of its ability to co-activate and augment several promoters 

of nuclear-encoded mitochondrial genes, as well as regulating mitochondrial 

transcription via the NRF-Tfam pathway (Wu, Puigserver et al. 1999).  PGC-1α 

regulates NRF-dependent transcription, increases expression of both 

mitochondrial and nuclear encoded genes of oxidative phosphorylation and 

induces mitochondrial biogenesis (Scarpulla 2002).  It has been shown that 

metabolic functions are controlled by PGC-1α  in a tissue specific manner in 

brown fat, muscle and liver (Puigserver 2005), however kidney regulation of  

PGC-1α  and its effectors was unknown until now.  Results from our studies 

show a clearly coordinated-reduction of the kidney-specific expression of nuclear 

and mitochondrial genes vital to OXPHOS coinciding with the manifestation of 

hypertension.  As mentioned above, it is likely that this nuclear-mitochondrial 



 

 
164 

 

gene downregulation is being driven by upstream events.  A third future goal, 

though related to the other two, is to elucidate the exact mechanisms that 

regulate PGC-1α, particularly in a tissue-specific manner.  Understanding these 

mechanisms will be critical in understanding the etiology of hypertension and 

cardiovascular disease.   

 

I have postulated thus far that reduced mitochondrial gene expression and 

OXPHOS may be driving hypertension.  It is possible, however, that elevated 

blood pressure is driving reduced mitochondrial function.  Elevated ROS can 

cause reduced OXPHOS, making the mitochondria less efficient.  The converse 

is true as well, as less efficient OXPHOS can increase mtROS.  Oxidative 

mitochondrial DNA damage may affect the synthesis of components of the 

respiratory chain, which in turn can further increase ROS production, initiating a 

feed-forward cycle (Figure 6.1).  Chronic over activity of renal sympathetic 

nerves, elevated blood pressure and a rightward shift in the renal function curve 

may ultimately drive down the expression of mitochondrial genes.  High 

metabolic activity in young SHRs may drive mitochondrial gene expression down 

in adulthood, coinciding with the chronic elevation of BP.  This “chicken-or-the-

egg” type question is crucial in understanding the pathology of the disease, and 

one that needs to be addressed.  One way this could be accomplished is to trace 

the pathogenesis of the disease in developing SHRs, while monitoring tissue-

specific mitochondrial function. 
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Within this dissertation, I have presented data supporting the hypotheses that the 

location, genetic expression and abundance of AT1 receptors is associated with 

development and maintenance of spontaneous hypertension.  Both renal- and 

hypothalamic-specific expression of AT1 receptors was associated with 

hypertension in rats with decreasing SHR nuclear genome.  Secondly, I 

presented data to support the hypothesis that the maternal inheritance of the 

mitochondrial genome may play a specific role in the development of 

hypertension, though mitochondrial function is most likely altered upstream of the 

well-known nuclear-mitochondrial pathway, and there is significant evidence that 

the RAS is involved.  Most importantly, data presented here indicates both 

intrinsic and extrinsic mechanisms of the kidney, i.e. the RAS, as well as genetic 

and genomic mechanisms of the kidney may be driving that spontaneous 

hypertension.   A major question remains: Why is there tissue-specific regulation 

of mitochondrial gene expression and OXPHOS, and how is this accomplished?  

Future directions will try to elucidate what exact mechanisms are driving 

decreased OXPHOS, as well as further investigate the importance of tissue-

specific regulation of mitochondria, and how this may be causal to the 

manifestation of hypertension. 
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Figure 6.1: Interactions among RAS and AT1r, reduced mitochondrial gene 
expression, reduced OXPHOS in the development of hypertension.  There are 
several possible interactions presented above which ultimately lead to chronic 
elevation of arterial pressure.  
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