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ABSTRACT OF DISSERTATION 

 

 
MEASURING UNDERGRADUATE STUDENTS’ ENGINEERING SELF-EFFICACY: 

A SCALE VALIDATION STUDY 
 

The purpose of this study was to develop and evaluate engineering self-efficacy measures 
for undergraduate students (N = 321) and to examine whether students' engineering self-
efficacy differed by gender, year level, and major.  The relationships between 
engineering self-efficacy and academic achievement and intent to persist in engineering 
were also investigated.  Data from engineering students from two southeastern 
universities were collected in spring 2013.  Exploratory factor analyses resulted in a 
unidimensional general engineering self-efficacy scale and a three-factor (i.e., research 
skills, tinkering skills, and engineering design) engineering skills self-efficacy 
scale.  Multivariate analyses of variance revealed that self-efficacy did not differ by 
gender or year level.  Students in different engineering sub disciplines reported different 
levels of tinkering self-efficacy.  Multiple regression analysis showed that engineering 
self-efficacy measures predicted academic achievement outcomes but not intent to persist 
in engineering.  Engineering self-efficacy significantly contributed to the prediction of 
achievement after controlling for prior achievement.    
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Chapter 1: Introduction 

The National Science Board (2012) reported that about 4% of all bachelor’s 

degrees awarded in the United States in 2008 and in 2009 were in engineering.  The 

United States earned only 10% of the five million undergraduate degrees awarded in 

science and engineering worldwide in 2008 compared to China, which had 23%, and the 

European Union, which earned about 19%.  In 2011, the American Society of 

Engineering Education reported that the number of degrees awarded at all degree levels 

grew from the past year.  Yet, the number of engineering degrees awarded to American 

students at all degree levels decreased by 4% (Yoder, 2011).  To maintain its global 

competitiveness, the United States must be able to supply the market demand for 

engineers.  Engineering educators in the United States are challenged with addressing the 

decline in numbers of engineering graduates. 

Engineering students’ academic success has been linked to pre-college 

achievement scores such as those on the mathematics section of the Scholastic 

Assessment Test (SAT) and the American College Testing (ACT).  Studies have shown 

that SAT mathematics scores predict first term grade point average (GPA; Besterfield-

Sacre, Atman, & Shuman, 1997) and college GPA (French, Immekus, & Oakes, 2005), 

whereas ACT mathematics scores predict passing grades in freshman courses (Veenstra 

& Herrin, 2006).  Clearly, having quantitative skills upon entering engineering programs 

helps prepare students for the rigors of the engineering curriculum and will likely help 

them get through their first year of engineering courses.  However, having these skills 

alone does not ensure that students will be motivated to complete their engineering 

degrees. 
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Individuals’ success in engineering lies not only in their achievement and ability 

but also in their social cognition and self-beliefs (Bandura, 1986; Betz & Hackett, 1981; 

Hutchison, Follman, Sumpter, & Bodner, 2006; Lent Brown, & Hackett, 1994).  

Students’ self-efficacy has been identified as a significant factor contributing to their 

persistence and achievement (Schunk & Pajares, 2002).  Self-efficacy refers to “the 

beliefs in one’s capabilities to organize and execute the courses of action required to 

produce given attainments” (Bandura, 1997, p. 3).  Such beliefs influence the choices 

people make, the effort they put into a task, their perseverance when difficulties arise, 

their resilience to adversity, and their coping skills.  Bandura (1997) contended that self-

efficacy is not about the number of skills people have but what people believe they can 

do with these skills under a variety of circumstances.  For undergraduate engineering 

students to function most effectively in their degree programs, they must have the 

required skills and competencies.  They must also have the belief that they are able to 

perform these skills.    

Self-efficacy is a significant factor contributing to students’ persistence and 

academic achievement.  A meta-analysis of self-efficacy studies has shown that self-

efficacy accounted for an average of 14% of the variance in students’ academic 

performance and approximately 12% of the variance in their academic persistence 

(Multon, Brown, & Lent, 1991).  Although none of the studies included in this meta-

analysis featured self-efficacy in the domain of engineering, the results provide support 

that self-efficacy is a variable worth exploring in motivation studies in engineering.  

Researchers have explored self-efficacy in engineering by measuring self-efficacy in 

engineering-related domains such as mathematics and science.  Even though mathematics 
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and science are part of the engineering curriculum, researchers in engineering education 

emphasize that there is a growing need to study engineering in its distinct context to 

capture unique experiences specific to this domain. 

 Researchers have recommended that engineering educators commit to identifying 

the skills that are important to practicing engineers and to incorporating strategies that 

enhance confidence in performing these skills (Ponton, Edmister, Ukeiley, & Seiner, 

2001).  On a general level, engineering students should then possess the knowledge of 

fundamental engineering principles and laws and should be able to apply this knowledge 

and to convert theory into practice.  In addition, engineering students should also have 

intellectual skills such as logical thinking, problem solving skills, and communication 

skills (Nguyen, 1998). 

Engineering educators have also identified engineering-specific skills that 

engineering students should possess to become engineers.  For example, Towle, Mann, 

Kinsey, O'Brien, Bauer, and Champoux (2005) suggested that spatial ability, the ability 

to correctly visualize three-dimensional objects when they are represented in two 

dimensions, is an essential skill for engineers.  Engineering design skill, the ability to 

design a system or component to meet an identified need, is another important skill for 

engineering students to have, especially in preparing students for industrial demands 

(Carberry, Lee, & Ohland, 2010; Schubert, Jacobitz, & Kim, 2012).  Researchers have 

also specified tinkering skills and technical skills, which are useful in creating and 

modifying products, as crucial for engineers (Baker, Krause, Yasar, Roberts, & 

Robinson-Kurpius, 2007).  Tinkering skills involve engaging in manual activities such as 

disassembling a vacuum cleaner, whereas technical skills refer to applying technical 
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academic subject matter.  Given that these skills are deemed important to a practicing 

engineer, there is value in assessing students’ beliefs that they are able to perform these 

skills. 

Statement of the Problem 

Although the existing research indicates a strong relationship between self-

efficacy and academic achievement, there is a need to craft an engineering self-efficacy 

scale that can tap the multifaceted nature of self-efficacy in the engineering domain.  The 

domain of engineering included a variety of disciplines such as chemical engineering, 

civil engineering, electrical engineering, and mechanical engineering.  The assumption is 

that engineering skills common to these disciplines exist (Nguyen, 1998).  In fact, the 

Accreditation Board for Engineering and Technology (ABET) has established a set of 

abilities that graduates of undergraduate engineering programs should have.  Engineering 

students should then possess these abilities and have the belief that they can use their 

abilities in various circumstances (Bandura, 1997).   

General self-efficacy scales have been employed to measure engineering self-

efficacy.  A common misconception is that “general efficacy beliefs spawn specific 

efficacy beliefs” (Bandura, 1997, p. 41).  Bandura (1986) cautioned that general self-

efficacy assessments are omnibus measures that create problems of predictive relevance.  

They may have little or no relation to self-efficacy in particular activity domains or even 

to behavior (Bandura, 1997).  Even at the general level, self-efficacy measures should be 

relevant to the domain of functioning that is the object of interest (Bandura, 2006).     

Current measures of self-efficacy in engineering have included activities in 

engineering-related domains, particularly mathematics and science.  Pajares (1996) 
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emphasized that self-efficacy should be assessed at the optimal level of specificity that 

corresponds to the task being assessed and the domain of functioning being analyzed.  To 

assess college students’ engineering self-efficacy, the self-efficacy measure should 

provide clear activities or tasks in the domain of engineering.  Students may then 

generate judgments about their capabilities with specific situations in mind.  Self-efficacy 

judgments should be consistent with and tailored to the domain of engineering and to 

engineering tasks to achieve explanatory and predictive power (Pajares, 1996).  Thus, a 

better measure of engineering self-efficacy is needed to adequately assess engineering 

students’ beliefs in their capabilities to perform tasks in their engineering coursework and 

their future roles as engineers. 

Purpose of the Study 

The aims of this dissertation study are: (a) to develop engineering self-efficacy 

scales for college students and to determine the content, construct, concurrent, and 

predictive validity of the instruments; (b) to determine the reliability of the scale when 

used with undergraduate engineering students; and (c) to add to the current body of 

literature on self-efficacy in the field of engineering by investigating the relationships 

among engineering self-efficacy, achievement, and other motivation constructs.   

Significance of the Study 

 My hope is that results of this study will provide engineering educators and 

researchers with a psychometrically sound instrument that reflects the 

multidimensionality of engineering self-efficacy.  I will also demonstrate the utility of 

engineering self-efficacy in predicting engineering students’ performance in their 

programs.  I expect the results of this investigation to show the predictive power of a 
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general engineering self-efficacy measure and a task-specific self-efficacy measure in 

relation to engineering students’ achievement and intent to persist in engineering.   

 Success in engineering is essential to the development of the engineering 

workforce needed to support the industries in the United States.  Engineering educators 

have identified the skills and knowledge that future engineers should possess.  Although 

some researchers (e.g., Ponton, 2002; Ponton et al., 2001) have emphasized the need to 

develop engineering students’ self-efficacy, engineering educators have yet to understand 

the role of self-efficacy in students’ academic and professional performances.  The self-

efficacy measures developed from this study may be useful in predicting students’ 

persistence in engineering programs and their intent to practice engineering.      
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Chapter 2: Review of the Literature 

The overarching objective of this study is to investigate the relationships among 

engineering motivation, academic achievement, and the intent to persist in engineering 

programs.  In this dissertation study, I focus on the academic motivation of undergraduate 

engineering students, particularly their self-efficacy, a central construct of social 

cognitive theory.  To properly situate this study, I provide an overview of social cognitive 

theory, which serves as the guiding theoretical framework.  I then describe self-efficacy 

and its sources, and review how self-efficacy has been examined in the domain of 

engineering.   

Overview of Social Cognitive Theory 

Social cognitive theory (SCT) is based on the view that personal factors (in the 

form of cognition, biological, and affective states), behavioral factors, and environmental 

factors dynamically interact in a process of triadic reciprocality (Bandura, 1986, 1997).  

These factors are interconnected and affect one another.  For example, engineering 

students who are confident in their laboratory skills (personal factor) may perform well in 

laboratory activities (behavioral factor) and be invited by engineering faculty 

(environmental factor) to conduct research with them.  Bandura (1997) has asserted that 

most motivation for human action stems from the central belief in the power of one’s 

actions to bring about results.  It is for this reason that people’s behaviors can often be 

better predicted by the beliefs they hold about their capabilities than by what they have 

actually accomplished. 
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Self-Efficacy 

Self-efficacy refers to the beliefs that people have in their capabilities to perform 

life’s tasks (Bandura, 1997).  These beliefs help determine the amount of effort exerted in 

an activity and people’s persistence and resilience in the face of adversity (Pajares, 1996).  

If people believe they can achieve a certain goal, such as obtaining an engineering 

degree, then they will likely work towards that goal by studying and meeting the course 

requirements.  Students who believe in their abilities to perform certain engineering tasks 

(e.g., design a building) are typically more motivated to complete those tasks (Bandura, 

1997).  

Bandura (1997) hypothesized that individuals’ self-efficacy is shaped by their 

interpretation of information from four sources, namely, mastery experience, vicarious 

experience, social persuasions, and physiological states.  Mastery experience may be 

defined as the interpreted result of one’s own performances.  Successes are usually 

interpreted with a sense of accomplishment that raises one’s self-efficacy.  Students who 

have previous success in an academic task, such as problem solving, tend to believe they 

are capable of performing similar tasks in the future.  Vicarious experience takes place as 

individuals observe models and learn from their experiences (Bandura, 1986).  People 

compare themselves to others and evaluate their own capabilities in relation to models’ 

successes and failures (Bandura, 1997).  When students see their peers solve a problem in 

a certain way, they may come to believe that they could solve the problem, too.   

Social persuasion often takes the form of verbal judgments that students receive 

from other people.  Whether in the form of an encouragement or otherwise, social 

persuasions can strengthen or weaken people’s self-efficacy (Schunk & Pajares, 2005).  
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A professor’s praise of a student’s design of a contraption may enhance the student’s self-

efficacy compared to a fellow student’s positive comments about the design.  

Physiological states arise as students experience stress or fear as they perform or think 

about performing a given task.  Bandura (1997) noted that affective and physiological 

reactions to a task can signal possible success or failure.  Strong negative thoughts and 

fears about one’s capabilities can lower self-efficacy perceptions and lead to poor task 

performance.  Together, these four sources of self-efficacy inform individuals of their 

capabilities.  Bandura (1997) pointed out that efficacy beliefs are individuals’ 

interpretations of the information conveyed enactively, vicariously, socially, and 

physiologically. 

Self-Efficacy in Engineering 

In this section, I provide a review of selected literature pertaining to 

undergraduate students’ self-efficacy in the domain of engineering.  I discuss how 

engineering self-efficacy has been measured by critically examining the measures used 

based on Bandura’s (2006) guide for constructing self-efficacy scales.  I also present 

findings from studies that have focused on the self-efficacy of engineering students and 

its relation to gender, year-level classification, and achievement outcomes.  I close by 

briefly discussing other motivation constructs that have been studied together with 

engineering self-efficacy. 

 The articles for the literature review were found by conducting searches on online 

databases (e.g., EBSCOhost, JSTOR, PsycINFO, Web of Science) using the following 

key words in different combinations: engineering, engineer, motivation, retention, 

attrition, persistence, social cognitive theory, self-efficacy, beliefs, and confidence.  I also 
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found articles relevant to my study through the references cited in the articles I came 

across.  I included published articles starting from 1984, because this was the year the 

first study linking self-efficacy to engineering students was conducted (i.e., Lent, Brown, 

& Larkin, 1984).  I reviewed the studies’ key findings and examined the methods used in 

each study, taking note of the instruments used in quantitative studies (see Table 1).  As I 

am interested in the engineering self-efficacy of college students, I excluded studies 

focused on K-12 students, graduate students, and practicing engineers.  

Measuring Engineering Self-Efficacy 

 Researchers seem to agree on a conceptual definition of engineering self-efficacy 

but variations exist in the ways they have measured self-efficacy.  Self-efficacy items 

either concentrate on overall performance levels or on specific facets of task 

performance.  Investigators have assessed engineering self-efficacy in three ways.  Some 

have used omnibus measures of self-efficacy.  Others have adapted general measures to 

the engineering domain.  A few investigators have taken a step further by creating self-

efficacy measures for specific engineering skills.  The use of different assessments to 

examine engineering self-efficacy and its relation to particular outcomes may render 

comparability of the findings unclear.    

 General self-efficacy measures.  Some researchers have used general self-

efficacy measures to assess engineering self-efficacy (e.g., Dunlap, 2005; Vogt, Hocevar, 

& Hagedorn, 2007).  These general self-efficacy measures are designed to measure 
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Table 1 

Studies Included in the Review of Engineering Self-Efficacy 

Author Participants Variables Self-Efficacy Measures Findings and Conclusion 
Lent, Brown, & 
Larkin 
(1984) 

42 students who 
participated in 10-
week career -planning 
course on science and 
engineering fields 

Self-efficacy (SE) 
preliminary scholastic 
aptitude test scores, high 
school ranks, and college 
grades 

Self-efficacy to fulfill educational 
requirements and job duties of a variety of 
technical/scientific occupations 

Students reporting high SE for educational requirements 
generally achieved higher grades and persisted longer in 
technical/scientific majors over the following year than 
those with low SE. 
 
SE was also moderately correlated with predictors of 
academic aptitude and achievement. 
 

Lent, Brown, & 
Larkin 
(1986) 

105 undergraduate 
students who 
participated in career 
planning course 

Self-efficacy, 
grades, 
persistence, 
perceived career options 

Educational requirements scale  
(Lent et al., 1984)  
Self-Efficacy for Technical/Scientific 
Fields based on Betz and Hackett (1981) 
 

Hierarchical regression analysis indicated that SE 
contributed significant unique variance to the prediction 
of grades, persistence, and range of perceived career 
options in technical/scientific fields. 
 
 

Lent,  
Brown, 
Schmidt,  
Brenner,  
Lyons, & 
Treistman  
(2003) 

328 students in an 
introductory 
engineering course 

Self-efficacy, 
coping efficacy, 
outcome expectations, 
interests, 
academic goals, 
environmental supports 
and barriers 

Self-efficacy for Technical/Scientific 
Fields (Lent et al., 1984) 
- modified by having participants indicate 
their confidence that they could complete 
each of 10 engineering majors with an 
overall grade point of average of B or 
better. 
 

Findings indicate good support for a model portraying 
contextual supports and barriers linked to choice goals 
and actions (persistence in engineering) indirectly, 
through self-efficacy rather than directly as posited by 
social cognitive career theory (SCCT). 

Dunlap  
(2005)  

31 students in the 
capstone course in 
software engineering 

Self-efficacy, sources of 
SE, final grades 

Guided journal  
General Perceived Self-Efficacy Scale 
(Jerusalem & Schwarzer, 1992) 

Problem-based learning's collaborative process provides 
explicit feedback to students about their performance, 
serving as a source of efficacy information that enhances 
SE development. 
 
Through authentic activities, students have an opportunity 
to practice applying knowledge and skills to new and 
novel problems and successfully working through these 
activities increases their performance accomplishments. 
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Table 1 (continued) 
 

   

Author Participants Variables Self-Efficacy Measures Findings and Conclusion 
Lent, Brown, 
Steven, et al.  
(2005) 

487 students in 
introductory courses 

Academic interests, goals, 
self-efficacy, outcome 
expectations, 
environmental supports 
and barriers, 
gender 
university type 

Self-efficacy for academic milestones  
(Lent et al., 1986) 
Barrier-coping self-efficacy  
(Lent et al., 2001) 

SCCT-based model of interest and choice goals produced 
good fit to the data across gender and university type. 
 
SE appeared to be primary predictor of goals.  Supports 
and barriers jointly predicted SE. 
 
 
 

Towle, Mann,  
Kinsey, 
O’Brien, Bauer, 
& Champoux 
(2005) 
 

219 engineering and 
physical sciences 
students 

Self-efficacy, spatial 
ability 

Purdue Spatial Visualization Test (PSVT) 
Self-efficacy on spatial tasks 

Engineering students’ SE was directly correlated to 
spatial ability.  
 
No difference in self-efficacy among men and women, 
however, men scored higher than women on the PSVT. 
 

Hutchison,  
Follman, 
Sumpter, & 
Bodner 
(2006) 

1387 first-year 
students enrolled in 
ENGR 106 (Problem-
Solving and Computer 
Tools) 

Sources of SE, 
self-efficacy 

SE for Academic Milestones (Lent et al., 
1986) 
Academic Efficacy Scale (Midgley et al., 
1998)  
Students were also asked to describe 
factors on which their confidence rating 
was based on. 

Nine categories emerged from the classification of factors 
affecting the confidence of students to succeed in ENGR 
106: understanding or learning of material, drive or 
motivation toward success, teaming issues, computing 
abilities, the availability of help and ability to access it, 
issues surrounding doing assignments, student problem-
solving abilities, enjoyment, interest, and satisfaction 
associated with the course and its materials, and grades 
earned in the course. 
 
Drive and motivation, understanding of material, and 
computing abilities as most influential. 
 
 

Lent,  
Schmidt, & 
Schmidt  
(2006) 

Phase 1: 165 students 
Phase 2: 312 students 
Students were 
enrolled in an 
engineering design 
course 

Collective efficacy,  
team cohesion 
self-efficacy, 
team ratings 

Collective efficacy  
Cohesion subscale  
(Group Environment Scale; Moos, 1986) 
Self-efficacy  
Team performance 

Consistent with social cognitive theory, collective 
efficacy was a stronger predictor of team performance 
than team members' perceptions of their self-efficacy 
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Table 1 (continued) 
 

   

Author Participants Variables Self-Efficacy Measures Findings and Conclusion 
Marra & Bogue 
(2006) 

164 undergraduate 
female engineering 
students at 5 
universities 

Self-efficacy, institution, 
year-level, ethnicity 

Longitudinal Assessment of Engineering 
Self-Efficacy (LAESE) 

Longitudinal significant increases from time1 to time 2 
were found for engineering efficacy, coping SE, and math 
outcomes efficacy. 
 
Significant main effect for ethnicity on inclusion subscale. 
 
No significant differences found by institution or by year-
level. 
 
 

Baker & Krause 
(2007) 

71 members of ASEE 
24 engineering 
students in a design 
course 
6 engineering faculty 

  Asked participants to list characteristics of 
someone with good tinkering skills and of 
someone with good technical skills 

Differences between the characteristics associated with 
tinkering and technical activities and the ABET criterion 
3 a-k learning outcomes suggest that ABET criteria may 
need to be reviewed in the light of changes in the 
profession in the innovation-driven global economy. 
 

Baker, Krause,  
Purzer, Roberts, 
& Robinson-
Kurpius 
(2007) 

5 females 
4 males enrolled in a 
graduate level DET 
course 

Tinkering self-efficacy, 
technical self-efficacy, 
societal relevance of 
engineering 

Reflection papers 
Self-efficacy assessment 
Informal unstructured classroom 
observations, three focus group transcripts 

Tinkering self-efficacy and technical self-efficacy are 
malleable and can be improved in women who are 
provided with the appropriate educational experiences. 
 
Study documents the kinds of educational experiences 
that are most likely to bring about changes in these self-
efficacies and also an understanding of the societal 
relevance of engineering. 
 
 
 

Hutchison, 
Follman, & 
Bodner 
(2007) 

9 (5 women, 4 men) 
2nd year students 
enrolled in CHE 205 
(Chemical 
Engineering 
Calculations) 

Sources of SE Semi-structured, open-ended interview 
protocol 

Adaptation to college life and experience with discipline-
specific coursework influence engineering students' self-
efficacy.  Grade-based social comparisons made by 1st 
year students were rarely discussed by 2nd year students.  
 
Students' SE are directly influenced by their learning 
environment and students appear to place significant 
importance on mastery experiences. 
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Table 1 (continued) 
 

   

Author Participants Variables Self-Efficacy Measures Findings and Conclusion 
Lent, Singley,  
Sheu, Schmidt, 
& Schmidt 
(2007) 

153 engineering 
students 
(124 men, 21 women, 
8 unknown) 
74% freshmen 
20% sophomores 
 

Self-efficacy, outcome 
expectations, 
environmental support, 
perceived goal progress, 
academic satisfaction 
 

SE for academic milestones Lent, Brown, 
et al. (2005) 
 
 

Structural equation modeling analyses indicated that the 
social-cognitive model fit the data well overall and that 
each of the predictors, except for outcome expectations, 
explained unique variation in students' academic 
satisfaction. 

Vogt, Hocevar, 
& Hagedorn 
(2007) 

714 students across 4 
universities (409 
males, 304 females); 
89 seniors, 116 
juniors, 165 
sophomores, 281 
freshmen 

Environment 
(discrimination and 
academic self-confidence) 
Self  
(academic self-confidence 
and self-efficacy)  
Behavior  
(help-seeking, peer 
learning, effort, and 
critical thinking) 

Discriminations scale   
(Seymour & Hewitt, 1997) 
Academic integration scale  
(Santiago & Einarson, 1998) 
Academic self-confidence subscale from 
Cooperative Institutional Research 
Program (CIRP) scale (Astin & Sax, 1994) 
Self-efficacy items from Motivated 
Strategies for Learning Questionnaire  
(MSLQ; Pintrich et al., 1991)  
Task-specific self-efficacy scale  
(O'Neil and Herl, 1998) 
Help seeking, peer learning, effort, and 
critical thinking items from MSLQ 
 

Findings successfully confirmed Bandura's triadic 
reciprocality model in showing the effects of classroom 
environment on students' performance. 
 
Results corroborate body of evidence where females 
reported lower engineering self-efficacy and lower levels 
of critical thinking. They also reported greater perceived 
gender discrimination than the male subsample did. 
 
 
 
 
 
 

Baker, Krause, 
& Purzer 
(2008) 

84 freshman students 
in engineering design 
class 

Tinkering self-efficacy, 
technical self-efficacy 

Tinkering scale  
Technical scale  
 

Students had moderate self-efficacy in terms of technical 
skills. 
 
Technical Scale reliability coefficient = 0.80;  tinkering 
scale reliability coefficient = 0.87 
 
Three clear factors for technical scale, accounting for 
41% of the variance:  technical knowledge, understanding 
theory and models, and systems and how things work. 
 
Three clear factors for tinkering scale, accounting for 
44% of variance: knowledge and experience, creativity 
and curiosity, and knowledge and skills. 
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Table 1 (continued) 
 

   

Author Participants Variables Self-Efficacy Measures Findings and Conclusion 
Hutchison-
Green,  
Follman, & 
Bodner,  
(2008) 

12 first-year 
engineering students 

Sources of SE, 
engineering SE 

Semi-structured, open-ended interview 
protocol 
 
SE for Academic milestones  
(Lent, Brown, & Larkin, 1986)  
Academic Efficacy Scale  
(Midgley et al., 1998) 
 

Results demonstrate the susceptibility of first-year 
engineering students’ self-efficacy beliefs to the influence 
of performance comparisons based on the speed with 
which students were able to perform various tasks, the 
degree of contribution they were able to achieve when 
working with others, how much material they had 
mastered, and their grades. 
 
Gender differences were also identified in the way in 
which men and women were influenced by these 
experiences. 
 

Kinsey, Towle,  
O'Brien, & 
Bauer 
(2008) 

497 students from 
various engineering 
disciplines and 
undeclared students 

Spatial ability, 
self-efficacy 
  

Purdue Spatial Visualization Test (PSVT) 
Self-efficacy on spatial tasks 

Students' perception of their spatial ability is significantly 
correlated with how well they perform on the PSVT. 
 
Males performed better on the PSVT questions than 
females but the SE scores reported by both genders were 
statistically equivalent. 
 

Lent, Sheu, 
Singley, 
Schmidt, 
Schmidt, & 
Gloster 
(2008) 

209 students taking 
beginning level 
engineering courses 
(166 men, 37 women, 
6 unknown) 

Self-efficacy, 
outcome expectations, 
interests, goals 

SE for academic milestones   
(Lent, Brown, et al., 2005) 
Barrier-coping self-efficacy 

Though findings are consistent with a causal role for self-
efficacy, they cannot conclusively prove such a role. 
SCCT can be used as an explanatory framework on the 
role of self-efficacy relative to interest and choice 
processes. 

Concannon & 
Barrow 
(2009) 

519 undergraduate 
engineering students 

Engineering SE, year 
level, 
ethnicity,  transfer status 

Modified subscales of the LAESE No significant differences in mean engineering SE scores 
were found by gender, ethnicity, and transfer status.  
 
Significant interactions between gender and the subscales, 
ethnicity and subscales, and transfer status and subscales 
were found. 
 
Significant differences in mean engineering SE scores 
were found among years students had been enrolled in the 
program. 
 

     

 

 



 

    

16 

Table 1 (continued) 
 

   

Author Participants Variables Self-Efficacy Measures Findings and Conclusion 
Marra,  
Rodgers,   
Shen, &  
Bogue 
(2009) 

196 undergraduate 
engineering students 
in 5 institutions 

Career expectations, 
engineering SE, 
feelings of inclusion, 
coping self-efficacy, 
math expectations 

LAESE Women showed positive progress on some self-efficacy 
and related subscales and a significant decrease on 
feelings of inclusion from the 1st to 2nd measurement 
period.   
 
Results also suggest a relationship between ethnicity and 
feelings of inclusion. 
 

Carberry,  
Lee, & 
Ohland. 
(2010) 

202 respondents: 
12 engineering 
professors, 7 
engineering education 
graduate students 
28 engineering 
graduate students 
60 engineering 
undergraduate 
students 
32 non-engineers with 
science background 
37 non-engineers 
without science 
backgrounds 

Engineering design SE, 
engineering experience, 
motivation, expectancy, 
anxiety 

Developed 36-item instrument for 
engineering design SE 
 

Instrument has been validated as a general engineering 
design instrument and can provide a tool for educators to 
gather information about engineering design self-efficacy. 
 
Engineering design process steps used in the study can 
represent engineering design. 
 
Engineering design SE is highly dependent on 
engineering experiences. 
 
Motivation, outcomes expectancy, and anxiety were 
shown to relate to self-efficacy toward engineering 
design. 
 
 

Jones,  
Paretti,  
Hein, & 
Knott  
(2010) 

363 first-year 
engineering students 
at large state 
university 
(27.4% of all 
students) 
78.5% male; 87.4% 
Caucasian 

Engineering SE, 
expectancy for success, 
interest, attainment value, 
utility value, gender, time 
 

SE for academic milestones  
(Lent et al., 1986) 
Self- and Task Perception Questionnaire  
(Eccles & Wigfield, 2005) 

Expectancy- and value-related constructs predicted 
different outcomes. Both types of constructs are needed to 
understand students' achievement and career plans in 
engineering. 
 
Expectancy- and value-related beliefs decreased over 1st 
year for both genders 
 
Men reported higher levels of expectancy-related beliefs. 
 
Expectancy-related constructs predicted achievement 
better than value-related constructs, whereas value-related 
constructs better predicted career plans. 
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Table 1 (continued) 
 

   

Author Participants Variables Self-Efficacy Measures Findings and Conclusion 
Fantz, 
Siller, & 
DeMiranda  
(2011) 

Pilot test: 78 junior-
level engineering 
students 
Sample: 1st year 
engineering students 

Engineering self-efficacy MSLQ (Pintrich et al., 1991) Significant differences in self-efficacy were only found 
between groups of students who had pre-engineering 
classes and engineering hobbies versus students who did 
not have these experiences. 
 
Based on the findings, engineering colleges with the goal 
of increasing self-efficacy of engineering students should 
consider focusing resources on developing K-12 
technology and pre-engineering teachers. 
 
 

Purzer  
(2011) 

22 first-year 
engineering students 
in introductory design 
course 

Verbal exchanges 
engineering SE 
student achievement 

Team interaction Observation Protocol 
Coding Scheme 
Engineering SE survey 

SE correlated with achievement. 
 
Students who initiated support-oriented conversations and 
did not engage in disruptive behaviors had high SE scores 
at the end of the semester. 
 
Verbal persuasions from peers were not directly related to 
SE or academic performance. 
 
Initial SE can predict certain verbal interactions an 
individual would engage in when working in a team. 
 
 

Brown, & 
Burnham 
(2012) 

First-year engineering 
students in ENGR 107 

Math SE (problem math 
SE and courses math SE) 

Mathematics Self-Efficacy Survey  
(MSES: Betz & Hackett, 1983) 

Engineering students' self-efficacy beliefs are strongly 
tied to their successful navigation of the engineering 
curriculum. 
 
Mastery experiences were most powerful source of SE for 
students in engineering math course. 
 
Changes in students’ math SE were inconsistent.  
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Table 1 (continued) 
 

   

Author Participants Variables Self-Efficacy Measures Findings and Conclusion 
Concannon & 
Barrow 
(2012) 

746 engineering 
students 
635 men 
111 women 

Engineering SE, 
engineering career 
outcome expectations, 
coping self-efficacy, year-
level  

LAESE  No significant differences in overall mean engineering SE 
scores were found by gender 
 
Overall, fifth year men had significantly lower mean ESE 
scores compared to all other groups. 
 
Men in their 1st year of engineering had significantly 
lower subscale scores compared to other groups of men. 
 
No significant difference in overall ESE scores nor SE 
subscale scores were found among 1st to 5th year women. 

Schubert,  
Jacobitz, & 
Kim 
(2012) 

60 students enrolled in 
ENGR 101 (Intro to 
Engineering) and 
ENGR 102 (Intro to 
Engineering Design) 

Student knowledge, 
confidence, usage of 
design process 

Survey of students' perceptions of 
knowledge of the engineering design 
process 
 
Designed Assessment of student 
confidence in applying engineering design 
concepts  

Assessment data showed a significant overall increase in 
both student knowledge and confidence scores as well as 
significant individual incremental increases. 
 
Presentation-exercise combinations have been found 
useful as a meaningful first exposure of freshman students 
to the engineering design process. 
 

 

 



 

students’ beliefs in their capabilities to perform academic tasks.  Students are asked to 

judge their general confidence to function successfully in engineering without an explicit 

reference to particular problems or tasks.  One such measure is the Patterns of Adaptive 

Learning Scale (PALS; Midgley et al., 2000).  The PALS includes a measure of academic 

self-efficacy, which refers to students’ perceptions of their competence to do their class 

work.  Another scale, the Generalized Self-Efficacy Scale (GSES; Schwarzer & 

Jerusalem, 1995) was designed to measure individuals’ beliefs that they can perform 

novel or difficult tasks in various domains of functioning.  This scale has been used by 

Dunlap (2005) to quantify software engineering students’ self-efficacy in problem 

solving.  In addition to PALS and GSES, a general measure of self-efficacy often 

administered to students in engineering programs is the Self-Efficacy for Learning and 

Performance Scale of the Motivated Strategies for Learning Questionnaire (MSLQ; 

Pintrich, Smith, Garcia, & McKeachie, 1991).  The MSLQ manual states that there are 

two aspects of expectancy: expectancy for success and self-efficacy.  Items for these 

aspects are combined in one scale.  Sample items from the scales mentioned above are 

found in Table 2. 
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Table 2 

General Self-Efficacy Measures Used and Sample Items 

Author Scale How construct was 
defined 

Sample Item(s) 

Pintrich, 
Smith, 
Garcia, & 
McKeachie 
(1991) 

Self-Efficacy for 
Learning and 
Performance Scale of 
the MSLQ 

Self-efficacy is 
referred to as an 
aspect of expectancy 

I'm confident I can understand the 
basic concepts taught in this course. 

Schwarzer & 
Jerusalem 
(1995) 

Generalized Self-
Efficacy Scale 

Self-efficacy - 
individuals' beliefs 
that they can perform 
new and difficult 
tasks in various 
domains of human 
functioning 

When I am confronted with a 
problem, I can usually find several 
solutions. 
I can usually handle whatever 
comes my way. 

Midgley et al. 
(2000) 

Patterns of Adaptive 
Learning Scale 
(PALS) 

Academic self-
efficacy - students' 
perceptions of their 
competence to do 
their class work 

I'm certain I can master the skills 
taught in class this year. 
I can do almost all the work in class 
if I don't give up. 
I can do even the hardest work in 
this class if I try. 

Vogt, 
Hocevar, & 
Hagedorn 
(2007) 
 

Motivated Strategies 
for Learning 
Questionnaire 
(MSLQ) and task-
specific self-efficacy 
scale (O'Neil and 
Herl,1998) 

Beliefs in capabilities 
to perform specific 
tasks 

I can master the skills in my major. 
I will do well in one's major. 
I can understand the most basic 
concepts. 
I can understand the most complex 
concepts. 
I will receive better than average 
grades in my major. 

  

As general measures, these scales are thought to be suitable for a broad range of 

applications.  However, Bandura (2006) argued that there is no all-purpose measure of 

self-efficacy.  He emphasized that a “one measure fits all” (p. 307) approach usually has 

limited explanatory and predictive value because the items are not in the context of the 

situational demands and circumstances that are unique to the domain of functioning.  

Researchers interested in examining the self-efficacy of engineering students should 

therefore utilize a differentiated set of efficacy beliefs associated with the various 

competencies in engineering.    
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Modified general self-efficacy measures.  In an attempt to make general self-

efficacy measures domain specific, researchers have modified items in existing general 

self-efficacy instruments (see Table 3).  For example, the concept of engineering was 

integrated into the MSLQ instrument by replacing the generic label of “class” with 

“engineering classes” (Fantz, Siller, & DeMiranda, 2011).  In their study of first and 

second-year engineering students’ motivation, Jones, Paretti, Hein, and Knott (2010) 

adapted self-efficacy items from the Academic Milestones Scale (AMS) created by Lent, 

Brown, and Larkin (1986).  The engineering self-efficacy scale items in the AMS were 

worded to include “engineering major” to help students situate their rating of confidence 

in their abilities (e.g., “How much confidence do you have in your ability to excel in your 

engineering major over the next semester?”).  Lent et al. (1986) combined the 

Educational Requirements Scale and the Self-Efficacy for Technical/Scientific Fields to 

ask students to indicate their self-efficacy for completing the educational requirements 

and job duties performed in 15 science and engineering fields.  The final scale was 

intended to measure self-efficacy in technical/scientific fields such as engineering.  These 

efficacy belief scores were matched to corresponding career options. 
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Table 3 

Modified General Self-Efficacy Measures Used and Sample Items 

Author Scale 
How construct was 
defined Sample Items 

Marra, & 
Bogue 
(2006) 

LAESE - 
Engineering 
Self-Efficacy 1  

Belief in one’s capabilities 
to organize and execute 
courses of action required 
to produce given 
attainments (Bandura, 
1997, p. 3) 

I can succeed in an engineering 
curriculum. 
I can succeed in an engineer 
curriculum while not having to give 
up participation in my outside 
interests (e.g., extra-curricular 
activities). 
I will succeed (earn an A or B) in 
an advanced math course. 
I will succeed (earn an A or B) in 
an advanced engineering course. 

 

LAESE - 
Engineering 
Self-Efficacy 2  

 

I can complete the math 
requirements for most engineering 
majors. 

 
  

I can excel in an engineering major 
during the academic year. 

 
  

I can complete any engineering 
degree at this institution. 

 
  

I can complete the chemistry 
requirements for most engineering 
majors. 

Fantz, 
Siller, & 
DeMiranda 
(2011) 

Modified 
MSLQ to 
measure 
engineering 
self-efficacy 
with the 
replacement of 
"class" with 
"engineering 
classes" 

People’s judgment of their 
capabilities to organize 
and execute courses of 
action required in 
engineering coursework 

I'm confident I can understand the 
basic concepts in my engineering 
classes. 
I expect to do well in my 
engineering classes. 
I'm confident I can do an excellent 
job on the assignments in my 
engineering classes. 
Considering the difficulty of my 
engineering courses and teachers, 
and my skills, I think I will do well 
in my engineering classes. 
I believe I will receive excellent 
grades in my engineering classes. 

Jones, 
Paretti, 
Hein, & 
Knott 
(2010) 

Self-Efficacy 
for Academic 
Milestones 
(Lent, Brown, 
& Larkin, 
1986) 

One’s judgment of his or 
her ability to perform a 
task in engineering 

How much confidence do you have 
in your ability to: 
Complete all of the "basic science" 
(i.e., math, physics, chemistry) 
requirements for your engineering 
major with grades of B or better?  
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The Longitudinal Assessment of Engineering Self-Efficacy (LAESE), developed 

by Marra and Bogue (2006), is designed to identify longitudinal changes in the efficacy 

beliefs of undergraduate students studying engineering.  The items in the LAESE 

measure various “aspects of self-efficacy, confidence, and outcome expectations, all 

factors that have been shown to influence success in studying engineering” (Assessing 

Women and Men in Engineering, n. d.).  The instrument includes items focusing on 

engineering-related self-efficacy such as, “I can complete the physics requirements for 

most engineering majors, and I can complete the math requirements for most engineering 

majors.”  It also contains expectancy items (e.g., “I will succeed, e.g., earn an A or B, in 

my physics courses).   

A concern with current general engineering self-efficacy measures is the 

combination of items that involve expectancy and self-efficacy.  Expectancy for success 

refers to the expectation that success will likely occur.  On the other hand, self-efficacy 

refers to the beliefs that individuals have in their capabilities to perform a task.   The 

anticipation of a future success in a performance (e.g., I believe I will receive an excellent 

grade in this class) does not necessarily translate to the belief that an individual can do 

the task (e.g., I can get an excellent grade in this class).  Bandura (2006) stressed that 

items concerned with perceived capability should be phrased in terms of can do rather 

than will do, because the former is a judgment of capability whereas the latter is a 

statement of intention.  Researchers who have used the LAESE in subsequent studies 

revised the will do items to can do items when they used the scale (e.g., Concannon & 

Barrow, 2009).   
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 Engineering skills self-efficacy measures.  Some researchers have sought to 

assess skills-specific self-efficacy in engineering.  Inherent in a skills-specific measure is 

what it means to be an efficacious engineer.  One approach to assessing skills self-

efficacy is to present a set of specific problems to students and then ask them to rate their 

confidence for successfully solving each type of problem (Bong & Hocevar, 2002).  

However, there are instances when a specific skill is better reflected by using verbal 

descriptions of task components.  For example, students estimate their confidence in their 

engineering design skills by judging their confidence to successfully perform tasks such 

as identify a design need, develop design solutions, and evaluate a design (e.g., Carberry 

et al., 2010).   

Understanding that self-efficacy is context- and skills-specific rather than a global 

judgment of ability, other researchers have developed measures for task-specific self-

efficacy in engineering (see Table 4).  Kinsey, Towle, O’Brien, and Bauer (2008) 

designed a measure specifically for engineering students’ self-efficacy for spatial tasks.  

Spatial ability is the ability to correctly visualize three dimensional objects when they are 

represented in two dimensions (Towle et al., 2005) and is relevant to designing and 

fabricating components for devices.  Using portions of the Purdue Spatial Visualization 

Test (PSVT), they developed a self-efficacy test to assess students’ self-confidence in 

being able to rotate objects given a prior example of a rotated object.  Their protocol was 

based on a similar technique used to assess students’ self-efficacy in solving algebra 

problems (i.e., Schunk, 1982).   

 Researchers have asserted that because engineering design is a central theme in 

the engineering profession, there is a need to investigate engineering students’ confidence 
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in their engineering design skills (Carberry et al., 2010; Purzer, 2011; Schubert et al. 

2012).  Engineering design tasks are applied or practical components of engineering 

consisting of several processes used in devising a system or a component to meet an 

identified need.  Carberry et al. (2010) echoed other researchers’ claims that design tasks 

are an important part of engineering education because they prepare students for the 

demands for new processes and products in various industries.  Two measures have been 

used to assess engineering design self-efficacy.  The first, created by Carberry et al., 

includes items based on a model of the design process as proposed in the Massachusetts 

Department of Education Science and Technology/Engineering Curriculum Framework.  

The second, designed by Schubert et al., consists of items based on a ten-step engineering 

design process from a textbook used in an engineering design class. 

Bandura (2006) noted that “perceived efficacy should be measured against a level 

of task demands that represent gradations of challenges or impediments to successful 

performance” (p. 311).  The measures created by Carberry et al. (2010) and Schubert et 

al. (2012) have items that reflect the varying level of task difficulty involved in the 

engineering design process.  The items begin with a simple task of recognizing a design 

need, followed by developing a design given certain constraints, evaluating the design 

based on a defined set of criteria, even including redesign.  Having levels of task 

difficulty helps students reflect on how much they believe in their abilities to surmount 

challenges.  According to Bandura (2006), if the engineering task is easily performable, 

then everyone would be highly efficacious in engineering. 

 Baker et al. (2008) developed an instrument measuring perceived efficacy for 

tinkering and technical skills.  The tinkering self-efficacy and technical self-efficacy 
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instruments contain items that focus on possession (or lack thereof) of skills (“I do not 

have data analysis skills”), hobbies (“I do not have tinkering type hobbies”), and 

experience (“I do not have engineering experience”).  Although tinkering and technical 

skills are certainly within the domain of engineering, items crafted in this way do not 

measure students’ beliefs in their capabilities and therefore cannot be considered efficacy 

judgments. 

 The nature of questions and statements included in self-efficacy instruments can 

be problematic (Bong, 2006).  Instruments that are inconsistent with Bandura’s (2006) 

guidelines might be assessing something other than self-efficacy.  Table 4 presents 

engineering skills self-efficacy measures and their respective items.  In certain cases, 

items in the self-efficacy measure are personality statements such as, “I am inquisitive” 

and “I am not a logical thinker” (Baker et al., 2008), and do not represent self-efficacy as 

conceptualized by Bandura. 
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Table 4 

Engineering Skills Self-Efficacy Measures Used and Sample Items 

Author Scale 
How construct was 
defined Sample Items 

Baker, 
Krause, & 
Purzer 
(2008) 

Technical 
Self-Efficacy 

Confidence and belief 
in one’s competence to 
learn, regulate, master 
and apply technical 
academic subject 
matter related to 
success in engineering. 

I can statistically model a process.  
I do not have data analysis skills. 
I think practically. 
I understand the relationship of theory 
and application. 
I can develop/improve a product/system 
for manufacture of the product or 
implementation of the system. 
I am not a logical thinker. 
 

Baker, 
Krause, & 
Purzer 
(2008) 

Tinkering 
Self-Efficacy 

Confidence and belief 
in one's competence to 
engage in activities 
such as manipulating, 
assembling, 
disassembling, 
constructing, 
modifying, breaking 
and repairing 
components and 
devices. 

I have more experience than knowledge. 
I have a long history of tinkering on 
personal development projects. 
I have the knowledge and technical skills 
to create mechanisms or devices. 
I do not have spatial sense. 
I do not consider solutions before taking 
things apart. 
I am inquisitive. 
I do not work well with my hands. 

 
 

I try to understand how things work in 
order to fix problems. 

 
 

I do not understand technical drawings 
such as wiring diagrams. 

Carberry, 
Lee, & 
Ohland 
(2010) 

Engineering 
Design Self-
Efficacy 

Belief in ability to 
perform engineering 
design tasks which 
consists of devising a 
system, a component, 
or a protocol to meet 
an identified need. 

Respondents were asked to rate:  
1) their degree of confidence,  
2) how motivated would they be, 
3) how successful would they be, and 
4) their rate of anxiety to perform the 
following tasks 
conduct engineering design: 
 

 
 

identify a design need 
research a design need 
develop design solutions 
select the best possible design 
construct a prototype 
evaluate and test a design 
communicate a design 
redesign 
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Table 4 (continued) 
   

Author Scale 
How construct was 
defined Sample Items 

Schubert, 
Jacobitz, & 
Kim, 
(2012) 

Assessment 
of Student 
Confidence in 
Engineering 
Design 

Confidence in applying 
the concepts of the 
design process 

I can recognize the needs to be addressed 
by a problem and formulate those needs 
in clear and explicit items. 
I can select a solution that best satisfies 
the problem objectives. 

 

  

I can build and evaluate a prototype or 
final solution. 

 
  

I can recognize when changes to a 
solution may be necessary through 
iteration in the design process. 

   I can document the design process. 
Purzer  
(2011) 

Engineering 
Self-Efficacy  

Confidence in one’s 
ability to perform tasks 
aligned with the 
objectives of an 
introductory design 
course 

Please indicate how confident you are in 
your ability to… 1.  explain steps of the 
engineering design process 
2.  use the steps of the engineering 
design process to solve an engineering 
design problem 
3. build a prototype model using 
appropriate cutting, joining, and shaping 
tools   
4. use a CADD (computer-aided drafting 
and design) software to document a 
design concept. 

 

Qualitative measures of engineering self-efficacy.  Some scholars have taken a 

qualitative approach in their investigation of engineering self-efficacy.  Qualitative 

studies in engineering self-efficacy have explored aspects of engineering skills.  For 

example, Baker and Krause (2007) asked students to list what they thought were 

characteristics of an individual with good tinkering skills and of an individual with good 

technical skills.  They ranked the themes and found that technical or tinkering skills 

represented different aspects of engineering.  In another study, Baker et al. (2007) relied 

on nine graduate students’ reflection papers, classroom observations, and focus group 

transcripts to document the kind of educational experiences that are most likely to bring 

about changes in students’ tinkering self-efficacy and technical self-efficacy.  In other 
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studies, open-ended survey questions and semi-structured open-ended interview protocols 

have been used to investigate the influence of first-year engineering experiences on 

students’ self-efficacy.  When asked to describe an experience that affected their 

confidence in succeeding in an introductory class in engineering, first-year engineering 

students mentioned experiences that aligned closely with the hypothesized sources of 

self-efficacy (Hutchison et al., 2006; Hutchison-Green, Follman, & Bodner, 2008).  The 

results of these studies support Bandura’s (1997) framework for the sources of self-

efficacy. 

Mixed method approaches have also been used to conduct research on 

engineering self-efficacy.  Such approaches involved the analysis of scores collected on a 

self-efficacy instrument (e.g., Academic Efficacy Scale) in combination with analysis of 

qualitative data such as guided journal entries (i.e., Dunlap, 2005), responses to open-

ended items on a survey (i.e., Hutchison et al., 2006), or class observations (i.e., Schubert 

et al., 2012).  In effect, quantitative and qualitative data were “mixed” in some way to 

form a more complete picture of self-efficacy in engineering. 

Engineering Self-Efficacy and Gender 

 Traditionally, engineering has been a male-dominated field.  Clement (1987) 

provided evidence that women had lower self-efficacy than did men with regard to 

traditionally male occupations.  She also reported that self-efficacy failed to predict 

women’s consideration of traditionally male occupations.  In the past years, several 

efforts have been made to increase the number of women in engineering.  However, the 

decline in the number of engineering degrees awarded to students in the United States has 

raised concerns about student retention regardless of gender.  Researchers have examined 
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gender differences within college-level academic settings.  They have looked into the 

relationship between women’s and men’s self-efficacy and their choice, performance, and 

persistence in engineering programs.  Hackett, Betz, Casas, and Rocha-Singh (1992) 

found that gender was not a significant predictor of self-efficacy.  Rather, academic self-

efficacy mediated the effects of gender on college level academic achievement.  Few to 

no gender differences in SAT scores, college GPA, or self-efficacy have been observed 

among engineering students (Hackett et al., 1992; Schaefers, Epperson, & Nauta, 1997; 

Vogt, 2003).  Some researchers have found that women perceive more social support and 

fewer social barriers to their pursuit of engineering degrees than do men (Jackson, 

Gardner, & Sullivan, 1993; Lent et al., 2005; Zeldin & Pajares, 2000).  

 Despite these trends, inconsistent findings from other studies make it difficult to 

form generalizations regarding self-efficacy and gender.  Hutchison et al. (2006) and 

Concannon and Barrow (2008) did not find evidence of gender variations in the self-

efficacy of first-year engineering students.  Other researchers have likewise reported that 

women did not differ significantly from men across most social cognitive variables in 

science and engineering fields (Lent et al., 1984, 1986; Lent, Brown, Sheu, et al., 2005).  

In some studies, women’s self-ratings of their abilities were lower than men’s self-ratings 

when students compared themselves to their peers in engineering (Betz & Fitzgerald, 

1987; Jackson et al., 1993; Jagacinski, LeBold, & Linden, 1987; Jones et al., 2010).  Vogt 

et al. (2007) found significant gender differences in students’ self-efficacy as well.  Once 

again, men reported higher self-efficacy scores than did women. 

 Most research on self-efficacy in engineering has been focused on students’ 

overall performance in their engineering programs.  Baker et al. (2007) asserted that 
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students may be generally self-confident but lack self-efficacy related to specific areas of 

skill, knowledge, or ability.  Tinkering self-efficacy has been considered to be a factor 

related to the low percentage of women in engineering.  Women’s lack of experience in 

using tools and machinery might explain their lower scores than men in tinkering self-

efficacy (Baker et al., 2007).  Although men and women are equally prepared 

academically to pursue undergraduate degrees in engineering and willing to learn 

engineering skills, women’s lack of confidence in their tool and machine skills may have 

discouraged them from pursuing engineering degrees (Schreuders, Mannon, & 

Rutherford, 2009). 

A strong sense of efficacy in engineering, especially for women, might help 

students persist in engineering programs and enable them to become practicing engineers 

(Marra et al., 2009).  Gender differences in self-efficacy could also help explain why 

women and men report different motives for pursuing an engineering degree.  Further 

examination of the relationship between engineering self-efficacy and gender is needed.  

Moreover, gender differences in engineering skills self-efficacy have yet to be 

investigated, particularly at the undergraduate level. 

Engineering Self-Efficacy and Year Level 

 Scholars have investigated the relationship between engineering self-efficacy and 

year level (i.e., freshman, sophomore, junior, senior).  Students’ year levels help describe 

the length of time they have been in their engineering programs.  Marra and Bogue 

(2006) proposed that students further along in their engineering degree programs would 

have higher engineering self-efficacy than those who are just beginning.  Students’ 

successful completion of requirements in their engineering programs likely enhances 
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their engineering self-efficacy (Bandura, 1997).  However, few researchers have 

examined engineering self-efficacy across undergraduate year levels.   

Most of the research on engineering self-efficacy has focused on the first-year 

college experience (e.g., Concannon & Barrow, 2008; Hutchison et al., 2006; Hutchison-

Green et al., 2008).  Results of such studies have provided a useful look at the first-year 

engineering experiences that influence students’ self-efficacy.  First-year engineering 

students placed significant weight on social comparisons compared to second-year 

students (Hutchison-Green et al., 2008).  Researchers have also compared how first-year 

students build and modify their efficacy beliefs as they advance in the engineering 

curriculum.  Interviews conducted by Hutchison, Follman, and Bodner (2007) revealed 

that mastery experiences influenced second-year students’ confidence in succeeding in an 

engineering course.  Results suggested that students’ self-efficacy is directly affected by 

their learning environment (Hutchison et al., 2007).   

Considering that the learning environment changes as students advance in their 

engineering programs, researchers have tried to determine whether students’ engineering 

self-efficacy differs as a function of the number of years they have been in their programs 

(e.g., Brainard & Carlin, 1998; Marra et al., 2009).  Concannon and Barrow (2009) 

reported that fourth-year students had higher engineering self-efficacy scores than fifth-

year students.  However, they attributed this result to the fact that a certain percentage of 

the fifth-year students were students who transferred into the College of Engineering.  

Thus, the fifth-year status given to these students did not reflect the actual number of 

years these students have been in their engineering program.  When they excluded the 

fifth-year students' data from their analysis, Concannon and Barrow (2009) found no 
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significant differences in engineering self-efficacy from first-year to fourth-year students.   

In a later study, the researchers found that all first-year students had significantly lower 

self-efficacy scores compared to upperclassmen (Concannon & Barrow, 2012).  

Moreover, regression analysis showed that engineering self-efficacy significantly 

predicted students’ intentions to persist in engineering at all year-levels.  Self-efficacy 

explained 17.2%, 40.2%, 19.8%, 33.9%, and 23.5% of the variance in first-year, second-

year, third-year, fourth-year, and fifth-year students’ intentions to persist, respectively. 

Researchers have also explored the relationship between self-efficacy and year 

level by gender.  Women’s self-efficacy scores were not significantly different when 

analyzed by year-level (Concannon & Barrow, 2012; Marra & Bogue, 2006; Marra et al., 

2009).  In contrast, men’s self-efficacy scores were significantly different as a function of 

years in the program (Concannon & Barrow, 2012).  Men in their first year of 

engineering had lower self-efficacy scores compared to their upperclassmen counterparts.  

Further investigation revealed that upperclassmen had significantly higher self-efficacy 

compared to freshmen men and women.  

Results from studies on the relationship between engineering self-efficacy and 

year-level have been inconsistent.  Inclusion of a third variable, such as gender or intent 

to persist, has helped tease out significant differences in engineering self-efficacy among 

undergraduate engineering students.  Given the limited number of studies on engineering 

self-efficacy of students at different levels in their engineering programs, researchers do 

not have conclusive evidence about the effect of the number of years students have been 

in their program on their engineering self-efficacy.  The few researchers who have 

investigated self-efficacy across year levels only focused on students’ general 
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engineering self-efficacy.  Studies that examine engineering skills self-efficacy across 

year levels have yet to be conducted.   

Engineering Self-Efficacy and Engineering Major 

 The engineering profession is directed towards the application and advancement 

of skills based upon a body of distinctive knowledge in mathematics, science, and 

technology acquired through education and professional formation in an engineering 

discipline (Nguyen, 1998).  Typically, students decide to major in engineering because 

they were told they were good in mathematics and/or science.  Students’ familiarity with 

and perceptions of engineering specialties also influence their choice of engineering 

majors and their career decision-making self-efficacy (Shivy & Sullivan, 2005).  Pre-

collegiate informal experiences may have also exposed students with real engineers in the 

field.  Even students’ toys or hobbies help students develop an understanding of 

engineering principles.  According to Fantz et al. (2011), there are some relationships 

between engineering disciplines and toys.  Examples of these relationships are civil 

engineering and LEGO® building blocks, mechanical engineering and Erector® Sets, and 

computer engineering and video game production.  They hypothesized that engineering 

exposure affects the self-efficacy of engineering students, particularly freshmen.  

Moreover, engineering self-efficacy was related to students’ exposure to engineering and 

to the discipline they choose to pursue. 

 Although engineers may have a general role of implementing, applying, 

operating, designing, developing, and managing products and processes, the type of work 

they do varies based on their chosen field of study or major (e.g., chemical, civil, 

electrical, mechanical; Nguyen, 1998).  Each engineering discipline requires a specialized 
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skill set that corresponds to the demands of a student’s future profession.  Thus, the 

engineering curriculum for each major is designed for students to learn concepts specific 

to their engineering discipline and to connect what they learn with their future roles as 

engineers in their chosen discipline (Dunsmore, Turns, & Yellin, 2011). 

 Some evidence has shown that students’ efficacy beliefs are related to their 

engineering discipline.  For example, Towle et al. (2005) examined the correlations 

between the self-efficacy and spatial ability of students who are declared engineering 

majors and students who have not declared a major.  They found that the relationship 

between students’ self-efficacy and their spatial ability was significant only for those 

students who had declared engineering as a major.  Towle et al. also found a difference in 

the spatial abilities of students in a mechanical engineering design course and a civil 

engineering course and hypothesized that students’ beliefs in their spatial ability could be 

improved by taking computer-aided design classes tailored to engineering majors.  

Kinsey et al. (2008) compared the spatial ability scores and self-efficacy of students from 

various engineering majors (i.e., mechanical, electrical, civil, and civil technology).  They 

reported that mechanical engineering majors had significantly higher self-efficacy scores 

than civil engineering majors and civil technology majors. 

 Concannon and Barrow (2008) also examined differences in mean scores of 

engineering self-efficacy across engineering disciplines.  They found no statistically 

significant differences in self-efficacy scores among students majoring in biological, 

chemical, civil, computer/electrical, or industrial engineering.  It bears noting, however, 

that all participants in the study were freshman engineering students.  At this point in 
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their program, they had not taken engineering major courses tailored to their areas of 

specialization.   

Findings with regard to major and self-efficacy are mixed.  Researchers examined 

either general engineering self-efficacy or a particular type of engineering skills self-

efficacy (e.g., spatial ability self-efficacy) in relation to engineering major.  Further 

research is necessary to investigate whether students’ engineering majors influence their 

general engineering self-efficacy, a type of engineering self-efficacy, or both.  To date, 

research simultaneously investigating the influence of engineering major on the different 

types of engineering self-efficacy is limited. 

Engineering Self-Efficacy and Academic Achievement 

 The predictive effect of self-efficacy on students’ academic achievement (e.g., 

grades) has been researched extensively in the academic setting, yet few studies have 

been conducted in the domain of engineering.  Bandura (1997) proffered that students’ 

beliefs about their capabilities influence their academic achievement.  Psychological 

variables, such as self-efficacy, have been shown to predict engineering students’ grades 

(Hsieh, Sullivan, Sass, & Guerra, 2012; Lent et al., 1984, 1986).  For example, Hackett et 

al. (1992) showed that academic self-efficacy was the strongest predictor of cumulative 

college GPA.  Using stepwise regression analysis, the researchers found that SAT 

mathematics scores, faculty encouragement, and high school GPA, along with academic 

self-efficacy, were positive predictors of engineering students’ college GPA.  Similarly, 

Jones et al. (2010) conducted a stepwise regression analysis of predictors (i.e., 

expectancy and self-efficacy) of engineering students’ first year GPA.  Self-efficacy 

alone accounted for 35 percent of the variance in GPA, and expectancies for success 
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accounted for an additional 3 percent of the variance.  Lent et al. (1986) found that self-

efficacy accounted for additional significant variance in students’ technical GPA after 

controlling for high school rank and SAT mathematics score.  Researchers have not fully 

explored how students’ efficacy beliefs in doing engineering tasks affect their 

performance in engineering programs.   

 Lent et al. (1984, 1986) reported that students in scientific and technical programs 

who had high self-efficacy generally achieved higher grades than those students with low 

self-efficacy.  With the intention to focus only on students in engineering programs, 

Hackett et al. (1992) found that both occupational and academic milestones self-efficacy 

were significantly correlated with college GPA.  Academic self-efficacy mediated the 

effect of prior academic achievement on college-level academic achievement.  Other 

researchers have explored task-based self-efficacy in engineering and its relationship to 

academic success.  For example, Vogt et al. (2007) and Vogt  (2008) showed that self-

efficacy had the strongest significant relationship with GPA compared to other study 

variables (e.g., academic integration, discrimination, academic confidence, help-seeking, 

effort, and critical thinking).  

 Correlations between self-efficacy and academic achievement have also been 

investigated in the context of specific engineering courses.  Using a sequential mixed-

methods design approach, Purzer (2011) examined the relationships among discourse 

actions, self-efficacy, and achievement of students in an introductory course in 

engineering.  Engineering students’ self-efficacy scores were collected at the beginning 

and at the end of a semester.  Embedded performance assessments (e.g., design projects) 

were used to measure learning related to the course objectives.  Although beginning and 
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end of semester self-efficacy scores were not significantly correlated with student 

achievement, the self-efficacy gains during the semester were found to have a significant 

correlation with achievement scores. 

 The studies presented above describe the positive relationship between self-

efficacy and academic achievement.  Students with high self-efficacy tend to perform 

better academically than students with low self-efficacy.  Self-efficacy has been found to 

predict overall achievement in engineering.  However, concerns about the 

correspondence between the engineering self-efficacy and achievement outcomes still 

prevail.  The self-efficacy measures used in these studies have varied from general to 

task-specific but have often lacked correspondence to the achievement outcomes used.  

Results reported must therefore be interpreted cautiously with this limitation in mind.  

Self-efficacy measures that correspond to the outcome of interest achieve better 

explanatory and predictive power (Bandura, 2006; Pajares, 1996). 

Engineering Self-Efficacy and Persistence 

The relationship between self-efficacy and persistence in engineering has been 

investigated in numerous ways.  As noted earlier, the use of self-efficacy measures in 

engineering-related domains (i.e., mathematics and science) as a proxy for gauging 

engineering self-efficacy is not uncommon.  For example, Schaefers et al. (1997) found 

that mathematics and science self-efficacy significantly predicted persistence in 

engineering.  In other studies, confidence in mathematics and science skills were 

correlated with persistence in engineering programs (Eris et al., 2010).   

Researchers have examined the relationship between self-efficacy in engineering 

and students’ persistence in engineering degree programs.  Some have found that students 
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with high self-efficacy in technical/scientific fields not only obtained high grades but also 

persisted longer in these fields (Lent et al., 1984).  Lent and colleagues (2010) suggested 

that efforts to promote engineering students’ self-efficacy may offer a viable means to 

solidify students’ intentions to persist in engineering.  The relationship between self-

efficacy and the intent to persist may also differ for male and female students.  For 

example, Concannon and Barrow (2010) found that men’s intentions to persist in their 

engineering degree programs were predicted by their beliefs in their ability to complete 

coursework requirements, whereas women’s intentions to persist were predicted by 

getting an “A” or a “B” on a test or in a difficult course. 

Persistence has been defined in various ways, however.  Some scholars have 

measured persistence in terms of the number of quarters students have actually completed 

(Lent et al., 1984).  Others have opted to define persistence in terms of students’ current 

enrollment status in their academic program (Schaefers et al., 1997).  Eris et al. (2010) 

defined persistence in relation to the engineering domain in two dimensions: academic 

persistence and professional persistence.  Academic persistence meant graduating with an 

undergraduate engineering degree, whereas professional persistence referred to the 

intention to practice engineering for at least three years after graduation.  They noted that 

students who graduate with engineering degrees do not necessarily practice engineering.   

Self-Efficacy and Other Motivation Constructs 

 Numerous factors contribute to students’ success in engineering.  Educators and 

researchers desire to better understand the factors that affect students’ decisions to remain 

in engineering programs and their ability to perform well enough to be retained (Bernold, 

Spurlin, & Anson, 2007).  Examining multiple motivation variables may be helpful for 
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understanding the educational goals that engineering students pursue (Harackiewicz, 

Barron, & Elliot, 2000; Heyman, Martyna, & Bhatia, 2002).  Motivation variables, such 

as achievement goal orientation and task value, have been found to predict academic 

performance and persistence in academic programs.  I next discuss these variables as they 

have been examined within the concept of engineering. 

 Achievement goal orientations.  Some researchers have taken interest in 

engineering students’ achievement goal orientation and how this relates to achievement 

behavior.  Achievement goals refer to the purpose or reason engineering students pursue 

academic learning tasks (Pintrich & Schunk, 1996).  These goals involve the pursuit of 

competence in achievement situations and represent students’ motivational orientation in 

certain situations, such as engineering courses (Harackiewicz, Barron, & Elliot, 1998).  

Students can pursue competence for two very different reasons: they may strive to 

demonstrate their competence to others (performance goal), or they may strive to develop 

competence for mastering or learning how to do the task (mastery goal) (Middleton & 

Midgley, 1997; Pintrich, 2000).  Evidence demonstrated consistent and positive links of 

mastery goals to many educational outcomes; on the other hand, the effect of 

performance goals on similar outcomes is inconsistent (Harackiewicz et al., 1998).     

 Elliot (1999) noted that achievement goal researchers have relied primarily on the 

performance-mastery dichotomy in differentiating competence-based endeavors.  He 

proposed that a better way of looking at achievement goals was through approach and 

avoidance motivation.  Unlike students who want to learn or who want to attain success, 

some students may be motivated to avoid failure and have low competence expectancies.  

Performance-avoidance goals emphasized on avoiding unfavorable judgments of 
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competence (Elliot & Church, 1997).  Within a trichotomous achievement goal 

framework, three independent goals are delineated: a mastery goal, focused on 

developing competence or task mastery; a performance-approach goal, focused on 

attaining perceptions of competence relative to others; and a performance-avoidance 

goal, focused on avoiding perceptions of incompetence relative to others (Elliot, 1999).  

Mastery goals have been associated with positive achievement outcomes such as good 

grades, high test scores, and deeper learning.  Performance-approach goals facilitate both 

adaptive and maladaptive achievement behavior.  Performance-avoidance goals elicit 

negative affective, cognitive, and behavioral processed that lead to negative outcomes 

(Elliot & Church, 1997). 

 Students’ college-related achievement goals have been shown to predict overall 

GPA (Durik, Lovejoy, & Johnson, 2009; Hsieh, Sullivan, & Guerra, 2007).  Mastery 

goals predict enrollment in major courses, whereas performance goals predict long-term 

academic performance (Harackiewicz et al., 2000).  Students who adopted mastery goals 

more than performance-avoidance goals were likely to have high GPAs (Hsieh et al., 

2007).   

The achievement goals students pursue have also been found to be related to 

students’ self-efficacy.  Engineering students with high self-efficacy are more likely to 

adopt mastery goals compared to those who have low self-efficacy (Hsieh et al., 2012).  

Although research on the relationship between achievement goals and academic self-

efficacy has contributed to understanding students’ motivation and general academic 

achievement, evidence of this relationship in the field of engineering is scarce (Hsieh et 

al., 2012).   
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 Task values.  Researchers have also examined students’ expectancies and values 

to explain what influences their effort, performance, and persistence.  In expectancy-

value theory, expectations for success (i.e., beliefs about how well one will do in an 

activity) and subjective task value (i.e., value placed on an activity) are assumed to 

influence directly achievement choices (Eccles, 2005; Wigfield & Eccles, 2000).  Task 

value has four components: attainment value, intrinsic value, utility value, and cost 

(Eccles, 2005).  Attainment value is described as the personal importance of doing well 

on a specific task (Eccles & Wigfield, 2002).  Intrinsic value is the enjoyment the 

individual derives from performing the activity or the internal drive or interest an 

individual has for the task itself.  Utility value refers to the usefulness of the task and how 

the task fits into an individual’s future plans (Wigfield & Eccles, 2002).  Perceived cost is 

conceptualized in terms of the demands of engaging in the task, such as amount of time 

and effort needed to succeed, the sacrifices involved to accomplish the task, and the 

degree of failure the task provokes (Eccles, 2005).  

Researchers have shown that task values predict course plans and enrollment 

decisions in mathematics and physics (Bong, 2001a; Meece, Wigfield, & Eccles, 1990), 

test-taking effort, and test performance (Cole, Bergin, & Whittaker, 2008).  In some 

studies, usefulness and importance have been shown to affect persistence and 

achievement (Pintrich & Zusho, 2002; Wigfield & Eccles, 2000).  These findings suggest 

that if students do not perceive the usefulness or importance of an engineering course, 

they might not put much effort into class activities and their academic performance may 

suffer.   
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Students develop subjective task values for different tasks and activities 

depending on the nature of the task and how well the task aligns with their goals and 

needs (Eccles, 2005).  In the field of engineering, few studies have investigated academic 

performance and persistence in engineering from the task value perspective.  Students’ 

perceived value of tasks and activities influence their choices to engage in engineering 

activities and persist in earning engineering degrees (Matusovich, Streveler, & Miller, 

2010).  In some studies, researchers have examined engineering students’ value of tasks, 

projects, and course activities by measuring only two or three of the value components.  

Panchal, Adesope, and Malak (2012) investigated engineering students’ perceptions of 

the value of design projects and found that self-rated project performance was 

significantly related to attainment value and intrinsic value but not to utility value.  Burn 

and Holloway (2006) examined engineering majors’ perceptions of the attainment value 

(importance) and utility value (usefulness) of learning programming in an introductory 

course on computers and programming.  Their study showed that students’ interest in 

weekly programming assignments was related to self-reported proficiency in 

programming.  Without individual student grades, they could only speculate that 

students’ perceptions about the importance and usefulness of programming were directly 

associated with levels of achievement based on historical data. 

Students’ perceptions of engineering seem to tell part of the story about why they 

stay in the field or leave.  In general, students agree that engineering is beneficial to 

society yet they tend to feel that much effort is needed to earn an engineering degree and 

maintain a career (Li, McCoach, Swaminathan, & Tang, 2008).  Contrary to engineering 

faculty members’ belief that college students seek classes that are easy, engineering 
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students are typically not averse to a heavy workload if they see the benefit of putting in 

the effort (Martin, Hands, Lancaster, Trytten, & Murphy, 2008).  These students are up to 

the challenge as long as they perceive they can do what the courses require.   

According to Matusovich et al. (2010), different patterns exist in the types of 

value students assign to earning an engineering degree.  Situations in which attainment, 

interest, and utility values are low and cost values are high can lead students to leave their 

engineering programs.  On the other hand, low attainment values, high utility value, and 

moderate interest can lead to persistence.  Their study confirmed “that one value category 

alone is not enough to explain persistence” (Matusovich et al., 2010, p. 299).  In certain 

cases, students who leave engineering in good standing were likely to have lost interest in 

engineering (Besterfield-Sacre et al., 1997).  In this way, task value and self-efficacy 

appear to influence academic outcomes. 

Other researchers have ventured towards determining which expectancy-value 

constructs best predict achievement and persistence in engineering.  Jones at al. (2010) 

reported that both self-efficacy and expectancy for success were significant predictors of 

engineering GPA.  They found that women’s interest predicted their engineering GPA.  

Data collected at the start and at the end of students’ first year in engineering were 

examined to determine whether the types of value students’ assigned to engineering and 

engineering activities changed in relation to the pursuit of their engineering degrees.  

Using the data from the start of the first year, they found that extrinsic utility value and 

intrinsic interest value predicted students’ pursuit of their engineering degrees.  By the 

end of students’ first year, only utility value predicted likelihood of pursuing an 

engineering degree.  They concluded that expectancy- and value-related constructs 
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predicted different outcomes; the expectancy for success predicted achievement better 

than task value, whereas task value predicted career plans better than expectancy.   

Review Summary and Problem Statement 

 The review of the literature on engineering self-efficacy points to three major 

areas for improvement to address gaps in what is known about the measurement of 

engineering self-efficacy.  First, self-efficacy measures have been used to assess 

engineering self-efficacy at varying levels of specificity.  Despite the various ways that 

researchers have attempted to measure engineering self-efficacy, few have been true to 

Bandura’s (1997) definition of self-efficacy and have been closely aligned with his 

(2006) guidelines for creating self-efficacy scales.  Lent et al. (1984) even noted that 

although the results of their study support the theory of self-efficacy, their study had 

conceptual and methodological shortcomings.  Their measures of self-efficacy did not 

adequately operationalize the concept of self-efficacy rather these reflected general self-

confidence.  As Bong (2006) emphasized, self-efficacy measures should include 

questions and statements that not only ask about students’ generalized perceptions of 

competence in engineering but also about their confidence in their capabilities to 

successfully perform a task under specified circumstances.   

Second, existing measures do not seem to adequately cover the engineering 

domain and therefore may not accurately predict academic achievement.  Academic 

performance in three levels are vital for success in engineering: general performance, 

performance of specific engineering tasks, and performance in specific engineering 

courses (Levin & Wyckoff, 1990).  Items in engineering self-efficacy measures must 

include the skills required to carry out engineering tasks.  Moreover, the items in the 
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measure should have a level of specificity corresponding to the researcher’s goal 

(Bandura, 2006).  Judgments of capabilities matched to specific outcomes afford the 

greatest prediction of academic and/or behavioral outcomes (Bandura, 1986).  To date, no 

study has examined the predictive utility of a general engineering self-efficacy scale and 

that of an engineering skills self-efficacy scale on academic performance and intent to 

persist in engineering.  

Third, motivation researchers have learned how students’ beliefs, values, and 

goals relate to their achievement behaviors by drawing on three theoretical perspectives 

of motivation: social cognitive theory, achievement goal theory, and expectancy-value 

theory.  Research findings point to the need to integrate motivation constructs to better 

understand academic performance and persistence in engineering.  Researchers need to 

continue to examine how motivation constructs operate within the domain of engineering.  

Successful performance and retention in engineering programs depend not only on 

students’ knowledge and skills students learn, but also on their attitudes and beliefs 

(Besterfield-Sacre et al., 1997). 
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Chapter 3: Methodology 

The purpose of the study was to develop and evaluate engineering self-efficacy 

scales to capture the different ability beliefs undergraduate engineering students hold and 

to examine if two types of engineering self-efficacy (general engineering self-efficacy 

and engineering skills self-efficacy) are significant predictors of achievement and intent 

to persist in engineering. 

A quantitative survey design approach was used for this study.  The survey was 

administered via the online survey program Qualtrics.  This study included the 

development and evaluation of engineering self-efficacy scales for college students and 

the examination of the predictive validity of engineering self-efficacy measures.  The 

development and validation of the Engineering Self-Efficacy Scales involved: (a) item 

development and assessment of content validity, (b) evaluation of scale reliability and 

construct validity, and (c) establishment of concurrent and predictive validity.  Construct 

validity was further explored by correlations with other motivation constructs 

(achievement goal orientations and task value).   

Research Questions and Hypotheses 

This study was guided by the following research questions: 

1. What are the psychometric properties of the measures designed to assess 

general engineering self-efficacy and engineering skills self-efficacy? 

Hypothesis 1a: Corresponding items for both measures will have high inter-

item correlations. 

Hypothesis 1b: The engineering self-efficacy measures will have positive 

correlations with each other. 
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Hypothesis 1c: The factor structure of the general engineering self-efficacy 

measure will be unidimensional. 

Hypothesis 1d: The factor structure of the engineering skills self-efficacy 

measure will be multidimensional with three differentiated factors (i.e., 

tinkering skills, technical skills, and engineering design). 

2. Are there mean differences in the engineering self-efficacy scores of college 

students as a function of gender, year level, or major? 

Hypothesis 2a: Men will report higher self-efficacy scores than women will. 

Hypothesis 2b: Upperclassmen ad lowerclassmen will report similar levels of 

general engineering self-efficacy.  Upperclassmen will report higher 

engineering skills self-efficacy scores than lowerclassmen will. 

Hypothesis 2c:  Mechanical and civil engineering majors will report higher 

tinkering skills self-efficacy and engineering design self-efficacy than students 

in other engineering majors. 

3. What is the unique contribution of each of the following: engineering self-

efficacy, achievement goals, and task value to the prediction of achievement 

and intent to persist? 

Hypothesis 3a: Engineering self-efficacy will contribute to the prediction of 

achievement and intent to persist in engineering. 

Hypothesis 3b: Achievement goals will contribute to the prediction of 

achievement but not of intent to persist in engineering. 

Hypothesis 3c: Task value will contribute to the prediction of achievement 

and intent to persist in engineering. 
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Participants 

Fall 2012 - Pilot Study.  A total of 136 engineering students from two 

southeastern universities (n1 = 72, n2 = 64) completed the pilot survey.  Of the students, 

84% were Caucasian, 6% African American, 4% Hispanic/Latino, and 63% were male.  

The sample comprised of freshmen (29%), sophomores (36%), juniors (19%), seniors 

(13%), and students pursuing their second bachelor’s degree (3%).  The students were 

from different engineering major programs: 23% computer engineering, 22% mechanical 

engineering, 15% bioengineering, 11% civil engineering, 11% mining engineering, and 

9% materials science engineering. 

Spring 2013.  A total of 321 engineering students from two southeastern 

universities (n1 = 224, n2 = 97) completed the survey at the beginning of the spring 

semester.  The majority of the students were Caucasian (89%) and male (75%).  The 

distribution by year level was as follows: 39% juniors, 31% sophomores, 23% seniors, 

and 6% freshmen.  The students majored in mechanical engineering (33%), civil 

engineering (18%), industrial engineering (9%), chemical engineering (8%), and 

biosystems engineering (8%).  There were a few students who majored in mining 

engineering (6%), electrical engineering (6%), and materials science engineering (5%). 

Procedure  

 A meeting was held to inform the Dean of Academic Affairs of my intention to 

visit engineering classes to talk about the current study and to invite students to 

participate in the study.  A curriculum matrix of the eight undergraduate programs in the 

College of Engineering was created to help identify classes from which to recruit (see 

Appendix B).  Classes that were offered in fall 2012 and spring 2013 that had students 
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from different year levels were chosen.  Emails were sent to the department chairs to 

request five minutes of class time for the presentation of the study and to recruit 

participants.  Department chairs gave their approval to visit classes in their departments.  

I visited eight engineering classes in fall 2012 and 23 classes in spring 2013 to recruit 

participants for the study.  In addition, a research assistant at the other university visited 

three engineering classes to recruit participants for the spring 2013 survey. 

 Invitations with the survey link were emailed to engineering students (see 

Appendix C).  At least four email reminders were sent until the close of the data 

collection period.  Data for the final engineering self-efficacy measure were collected in 

spring 2013 semester.   

Item Development and Assessment of Content Validity 

I developed a pool of engineering self-efficacy items specific to engineering 

activities considered essential to undergraduate engineering students.  The developed 

items were reviewed by a panel of experts who were asked to assess content validity of 

the Engineering Self-Efficacy Scale (DeVellis, 1991).  The panel included five experts in 

the fields of engineering, engineering education, and educational psychology.  Experts in 

the field of engineering were consulted to verify whether the items adequately covered 

the domain of engineering.  Prior to the pilot test, three experts reviewed the initial scale.  

Following the panel’s initial review of the items, a group of engineering graduate and 

undergraduate students (n = 14) took the survey and provided comments on item wording 

and clarity.  After the pilot test, two more experts (one in engineering, one in engineering 

education) reviewed the scale.  In total, five experts provided feedback on item relevance, 

clarity, and conciseness.  Based on the experts’ feedback and students’ comments, I 
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removed and/or revised items as necessary.  The remaining items were then included in 

the pilot version of the scale that was used in the pilot test.  Items are worded to begin 

with “I can” so as to emphasize the perception of one’s capability to perform a task 

(Bandura, 2006).  Two types of self-efficacy measures resulted: general engineering self-

efficacy scale and engineering skills self-efficacy scale, which are described in the next 

section.  

Instrumentation  

 Each of the motivation variables used in this study with the exception of the 

engineering self-efficacy scale was assessed with previously validated scales often used 

in studies of academic motivation.  Using a 6-point Likert-type scale, students rated their 

level of agreement to statements related to the motivation variables.  In the self-efficacy 

scales, students assessed their level of certainty that they can perform general and task-

specific activities in engineering using a 6-point Likert-type scale (1 = completely 

uncertain; 6 = completely certain).  I next describe the self-efficacy measures in detail. 

General Engineering Self-Efficacy Scale.  An initial pool of six items designed 

to assess general engineering self-efficacy was created by adapting items from previously 

published, validated scales (see Table 5).  The items included in this scale focus on 

students’ perceptions of their capability to perform generic tasks in most engineering 

courses, particularly referring to learning engineering content and competence in doing 

engineering coursework in general.  Items were adapted from Bong (2001a) and were 

similar to the academic efficacy items in the Patterns of Adaptive Learning Scales 

(PALS) by Midgley et al. (2000).  The items in the current scale were adapted for the 

domain of engineering.   
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Table 5 

Items for General Engineering Self-Efficacy Scale for College Students 

Item Code Scale Items 
GESE25 1.  I can master the content in the engineering-related courses I am 

taking this semester. 
GESE26 2.  I can master the content in even the most challenging engineering 

course if I try. 
GESE27 3.  I can do a good job on almost all my engineering coursework if I 

do not give up. 
GESE28 4.  I can do an excellent job on engineering-related problems and tasks 

assigned this semester. 
GESE29 5.  I can learn the content taught in engineering-related courses. 
GESE30 6.  I can earn a good grade in my engineering-related courses. 
Note. GESE = General Engineering Self-Efficacy, SE = Self-Efficacy. Items were 
adapted from Bong (2001a). 

 
Engineering Skills Self-Efficacy Scale.  An initial pool of 21 items was created 

by adapting items from previously published, validated scales and by developing new 

items based on field standards and qualitative studies in engineering self-efficacy (see 

Table 6).  These items assessed engineering students’ beliefs in their abilities to perform 

engineering tasks related to engineering coursework.  Nine items were derived from 

“General Criterion 3. Student Outcomes” set by the Accreditation Board for Engineering 

and Technology (ABET; www.abet.org).  These nine items reflect engineering skills 

expected from graduates of undergraduate engineering programs.  Evaluation of student 

performance must be based on the demonstration of specific skills required for the 

completion of an engineering degree.  Moreover, these skills are linked to three 

fundamental engineering activities that Schreuders et al. (2009) considered to be specific 

to engineering disciplines: designing, building, and analysis. 
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Table 6 

Items for Engineering Skills Self-Efficacy Scale for College Students 

Item Code Scale Items Source 
Engineering Skills Self-Efficacy Items 
ESSE1 1.  I can perform experiments 

independently. 
ESSE1 and ESSE2 – Items 
adapted from Schreuders et al. 
(2009) and aligned with ABET 
program learning outcomes 

ESSE2 2.  I can analyze data resulting from 
experiments. 

ESSE3 3.  I can orally communicate results of 
experiments. 

ESSE3 and ESSE4 - New items 
aligned with ABET program 
learning outcomes ESSE4 4.  I can communicate results of 

experiments in written form. 
ESSE5 5.  I can work with tools and use them 

to build things. 
ESSE5, ESSE6, ESSE7, ESSE8, 
and ESSE9 - Items adapted from 
Schreuders et al. (2009) and 
aligned with ABET program 
learning outcomes 

ESSE6 6.  I can work with tools and use them 
to fix things. 

ESSE7 7.  I can design new things. 
ESSE8 8.  I can solve problems using a 

computer. 
ESSE9 9.  I can work with machines. 
Tinkering Self-Efficacy Items  
ESSE10 10.  I can build machines. ESSE10 and ESSE11 – Items 

adapted from Schreuders et al. 
(2009) 

ESSE11 11.  I can fix machines. 

ESSE21 12.  I can manipulate components and 
devices. 

ESSE21, ESSE22, and ESSE26 - 
New items developed based on 
Baker et al. (2007) ESSE22 13.  I can assemble things. 

ESSE26 14.  I can disassemble things. 
Technical Self-Efficacy Items  
ESSE23 15.  I can learn academic subject 

matter in engineering. 
New item developed based on 
Baker et al. (2007) 

ESSE24 16.  I can apply technical concepts in 
engineering. 

ESSE24 and ESSE25 - New items 
developed based on Baker et al. 
(2007) and aligned with ABET 
program learning outcomes 

ESSE25 17.  I can master engineering subject 
matter 

Engineering Design Self-Efficacy Items 
ESSE13 18.  I can identify a design need. ESSE13, ESSE15,  

ESSE18, and ESSE20 – Items 
taken from Carberry et al. (2010) 
and Schubert et al. (2012) 

ESSE15 19.  I can develop design solutions. 
ESSE18 20.  I can evaluate a design. 
ESSE20 21.  I can recognize changes needed 

for a design solution to work. 
Note. ESSE = Engineering Skills Self-Efficacy. 
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  The remaining 12 items are associated with specific tasks covered in engineering 

coursework.  These items were crafted to differentiate levels of task difficulty as well.  

Five items were related to tinkering skills, and three items involved technical skills.  

Baker and Krause (2007) noted that the ABET Criterion 3 outcomes do not incorporate 

skills associated with tinkering and technical activities.  They argued that tinkering and 

technical skills are skills engineers bring to the practice of engineering.  Four items 

encompassed engineering design skills.  “The engineering design process is a central 

theme in the engineering profession and essentially all engineering curricula” (Schubert 

et al., 2012, p. 177).  Carberry et al. (2010) presented the engineering design process as a 

multi-step process.  Each step in the design process requires skills specific to the 

engineering design tasks including decision making and the application of basic sciences, 

mathematics, and engineering sciences. 

Achievement goal orientation.  The Achievement Goal Orientation Scale, 

adapted from Harackiewicz et al. (2000), was used to assess students’ self-reported 

adoption of mastery and performance approach goals in their engineering coursework.  

This scale was developed for use in college classes.  The items in the scale (see Appendix 

D) are comparable to the PALS’ mastery and performance approach subscales developed 

by Midgley et al. (2000).  Items from the performance avoidance subscale of PALS were 

possible in my engineering classes,” and “The most important thing for me is trying to 

understand the content in my engineering classes as thoroughly as possible.”  

Performance goals were assessed with items such as, “My goal in my engineering classes 

is to do well compared to other engineering students in my program,” and “Getting good 

grades in my engineering classes is the most important thing for me right now.”  
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Performance avoidance goal items included statements such as, “One of my goals in my 

engineering class is to avoid looking like I have trouble doing the work.”  The 

Cronbach’s alphas for each scale are as follows: mastery goal items (α = .85), 

performance goal items (α = .89), and performance avoidance goal items (α = .74).   

Task value.  Most of the items in the task value scale were taken from the 

instrument measuring general perspectives about engineering developed by Li et al. 

(2008).  Items in this instrument (see Appendix E) are based on expectancy-value theory 

(Eccles & Wigfield, 2002) and assess students’ perceptions of attainment value, intrinsic 

value, utility value, and cost associated with completing tasks in engineering.  Intrinsic 

value items included statements such as, “I like engineering design projects,” whereas 

cost items included statements like, “Engineering is a tough program.”  The Cronbach’s 

alphas obtained by Li et al. (2008) for the scores on intrinsic value was .93 and on 

perceived cost was .82.  Due to the low reliabilities obtained by Li et al. for the utility 

value item scores (α ranged from .58 to .69), I created four new items to assess utility 

value.  Attainment value items (e.g., “The amount of effort it will take to do well in 

engineering courses is worthwhile to me”) were adapted from the Self- and Task-

Perception Questionnaire (Eccles & Wigfield, 1995) used by Jones et al. (2010) in their 

study on engineering students’ motivation.  The Cronbach’s alpha for the attainment 

scale was .71. 

Intent to persist in engineering.  The items in the scales measuring intentions to 

persist in engineering were modifications of the items in the Persistence in Engineering 

(PIE) survey developed by Eris et al. (2010).  The PIE survey was intended to identify 

correlates of persistence in engineering.  It explores two levels of persistence, namely, 
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academic and professional persistence.  In this dissertation study, intent to pursue an 

engineering degree and intent to pursue engineering as a career were used as proxies for 

academic persistence and professional persistence in engineering, respectively 

(Concannon & Barrow, 2010; Eris et al., 2010).  Intent to pursue an engineering degree 

was operationalized with two items assessing a) students’ intention to enroll in 

engineering courses in their major and b) students’ intention to complete all requirements 

to obtain their engineering degree.  Intent to persist in one’s engineering major (academic 

persistence) was assessed with the following two items: “I intend to enroll in engineering 

courses next semester” and “I intend to complete all requirements for my engineering 

degree program.”  The correlation for these items is r (222) = .36, p < .001.    

Intent to pursue engineering as a career is operationalized as students’ intention to 

either practice engineering or conduct research in engineering.  The original items in the 

PIE survey were phrased as questions: “Do you intend to complete a major in 

engineering?” and “Do you intend to practice, conduct research in, or teach engineering 

for at least three years after graduating?”  The second question asked about intentions to 

pursue at least one of the three possible options after graduation.  In this dissertation 

study, I crafted items (see Appendix F) as statements to which students responded using a 

6-point Likert-type response scale (1 = strongly disagree; 6 = strongly agree).  

Professional persistence was assessed by these two items: “I intend to practice 

engineering for at least 3 years after I graduate” and “I intend to conduct research in 

engineering for at least 3 years after I graduate.”  The correlation for these items is r 

(222) = .25, p < .001.    
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Academic Achievement.  Students’ ACT mathematics scores were included as a 

predictor variable in the study.  Some students only had SAT mathematics scores (n = 11) 

and these were converted to ACT mathematics scores based on concordance tables 

(Dorans, 1999).  ACT mathematics scores ranged from 17 to 36 (M = 29.06, SD = 4.25). 

 Two grade point averages were used as outcomes in this study: engineering core 

GPA and engineering major GPA.  Students’ grades were obtained from their transcripts 

with the permission of the university registrar’s office.  To compute for grade point 

averages, I followed the procedure used by Jones et al. (2010).  Grade point averages 

were calculated by multiplying each course grade (i.e., A = 4.0, B = 3.0. C = 2.0, D = 1.0, 

and E = 0.0) by the number of credits for each course, and then I averaged the sum of 

these values for all of the students’ courses.   

Students’ engineering core GPA was calculated based on grades that they have 

received in their engineering-related courses that are typically taken in the first two years 

of their engineering program and are common to engineering students regardless of their 

major.  These engineering-related courses were considered to be prerequisites for 

engineering major courses.  I did not choose overall GPA as this would include non-

engineering-related courses, such as Humanities courses or electives.  I wanted to 

examine their achievement specific to engineering.  I included available grades in thirteen 

engineering core courses: General College Chemistry I and II, and Laboratory to 

Accompany General Chemistry I; Calculus I, II, III, and IV; two courses in General 

University Physics and the accompanying laboratory courses; First Course in Computer 

Science for Engineers, and an engineering mechanics course (i.e., Statics).  The 

engineering core GPA for some students was based on fewer than the thirteen courses 
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listed because these students may have taken Advanced Placement (AP) or transfer credit 

for one or more of these courses.  

 A similar procedure was used to calculate for engineering major GPA.  Due to 

the varying year levels of students in the study, I included students’ grades from 

engineering courses that were specific to engineering majors, and then multiplied the 

grade point for the course by the number of credits for the course and averaged the sum 

of these values for all of the students’ courses.  Engineering GPAs were calculated to 

match the engineering self-efficacy measures in this study.   

Data Analysis 

 Data collected through Qualtrics was exported to IBM SPSS Statistics version 

21.0 for analysis.  Before conducting analyses, data were checked for errors and cleaned.  

Cases were excluded on a pairwise basis, i.e., student’s data were excluded only for 

analyses for which student has missing data, such as no ACT or SAT mathematics score 

(n = 35), no core GPA due to transfer of credit units (n = 26), or no major GPA (n = 14).  

I conducted exploratory, descriptive analyses of all data by examining item means, 

standard deviations, frequency distributions, histograms, outliers, skewness, and kurtosis 

(Seltman, 2013).  I checked for outliers by inspecting boxplots with identified outliers.  

For items with identified outliers, I compared the original mean with the 5% trimmed 

mean to see if the outliers’ scores led to a significant difference in the two mean values 

(Pallant, 2010).  I calculated z scores to identify univariate outliers for all the engineering 

self-efficacy scales.  Fewer than 5% of the z scores had values greater than 1.96, only 1% 

of the z scores had values greater than 2.58; a few cases were above 3.29.  The 

percentages obtained were consistent with what is expected in a normal distribution.  
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Absolute values of skewness and kurtosis were within the criteria recommended by Kline 

(1998) for determining normal distributions.  In addition, I compared the original mean 

with the 5% trimmed mean to determine the influence of outliers.  Because the two mean 

values were not too different from the remaining distribution, all outliers were retained in 

the data and included in the analyses. 

 To detect multivariate outliers, I followed Tabachnick and Fidell’s (2013) 

guidelines.  I computed the Mahalanobis distance for each case, determined the critical 

chi-square value (i.e., 18.47), and then evaluated the Mahalanobis distance values against 

the critical value.  One multivariate outlier was found with a Mahalanobis distance of 

19.44.  I then checked the value for Cook’s distance to determine if a particular outlier 

would be problematic.  According to Tabachnick and Fidell, cases with values larger than 

1.0 are a potential problem.  The maximum value for Cook’s distance was less than 1.0, 

suggesting no major problems.  Thus, the multivariate outlier was included in subsequent 

analyses. 

Psychometric properties of engineering self-efficacy scales.   The first 

objective of my study was to examine the psychometric properties of the measures 

designed to assess general engineering self-efficacy and engineering skills self-efficacy.  

Given an initial pool of items for each engineering self-efficacy measure (six items for 

the general engineering self-efficacy scale and 21 items for the engineering skills self-

efficacy scale), I needed to determine if all the items in their respective scales were 

necessary to measure the corresponding type of engineering self-efficacy.  DeVellis 

(1991) commented that “the more items you have in your pool, the fussier you can be 

about choosing which ones will do the job you intend” (p. 57).  My goal is to have 
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reliable, parsimonious scales with items that reflect the construct of engineering self-

efficacy.   

Therefore to determine which items to flag for possible elimination, I used three 

screening methods.  First, I explored each item to see if responses were normally 

distributed.  I followed Kline’s (1998) recommended criteria for determining normal 

distributions; skewness with an absolute value greater than 3.0 and kurtosis with an 

absolute value greater than 10.0 indicate a serious deviation from normality.  Second, I 

examined the correlation between the items to justify retaining the items in the scale.  The 

higher the correlations among items, the more reliable the items on the scale, and this 

makes the scale itself more reliable (DeVellis, 1991).  Third, I examined the corrected 

item-scale correlations to check that each item correlated substantially with the rest of the 

items in each respective scales.  A minimum corrected item-total correlation of .30 with 

the total score is considered desirable (DeVellis, 1991; Field, 2013).  An item with a high 

item-scale correlation is more desirable than an item with a low value (DeVellis, 1991).  

Items with extremely low correlations with other items in the scale were flagged for 

removal.  I took note of the flagged items and the reason they were flagged to later decide 

whether to retain each item for further analyses.  Elimination of an item from further 

analyses depended on the number of flags it received.   

Next, I examined the Cronbach’s alpha coefficients for the retained items in each 

scale.  The alpha coefficient is one of the most important indicators of a scale’s quality 

and provides an indication of how well different items in the scales fit together in the 

scale (i.e., internal consistency) (DeVellis, 1991).  As a rule of thumb, Cronbach’s alpha 
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should be above .70 to ensure that the items in a single scale are related enough to 

warrant their combination into that scale (DeVellis, 1991; Pearson, 2010). 

 Items were next subjected to exploratory factor analysis (EFA) to determine their 

factor structure (Field, 2013; Thompson, 2004).  Two separate EFAs were conducted: 

one for the general engineering self-efficacy items and one for the engineering skills self-

efficacy items.  I examined Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy.  

A KMO value greater than .50 indicates that a factor analysis is appropriate for use with 

the data (Cerny & Kaiser, 1977; Field, 2013).  Bartlett’s test of sphericity was also used 

to check whether every item was correlated adequately with all the other items for factor 

analyses to be conducted (Field, 2013).  The test should be significant (p < .05), as this 

would indicate that the variables are correlated (Field, 2013). 

Next, I used the appropriate factor extraction method depending on the normality 

of the data (i.e., maximum likelihood for normal distribution or principal axis factoring 

for significantly non-normal distribution).  To determine the number of factors to retain, I 

used the Kaiser criterion of eigenvalues greater than 1.0 (Kaiser, 1970).  I also examined 

the scree plot of eigenvalues associated with each factor and determined where the 

discontinuity of the eigenvalue occurs (Gorsuch, 1983; Tabachnick & Fidell, 2013).  

Thompson (2004) suggested that factor extraction be stopped at the point where there is 

an “elbow,” or leveling of the plot.  I also examined the factor loadings for each item.  

The significance of a factor loading depends on sample size.  For a sample size of 100, a 

factor loading greater than .50 is recommended to be significant (Stevens, 2002).  Some 

researchers have recommended a factor loading greater than .30 for an item to be of 
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substantive importance to a factor (Field, 2013).  Given the exploratory nature of my 

study, I considered using .30 as an acceptable factor loading.    

I used factor rotation to transform the factor matrix into a simpler one that is 

easier to interpret, keeping in mind that factor rotation is not possible if the scale is 

unidimensional (Thompson, 2004).  Because the factors were correlated, an oblique 

rotation was a suitable method (Osborne, Costello, & Kellow, 2008).  I then followed 

Pett, Lackey, and Sullivan’s (2003) suggestion to refine the factors generated in the factor 

analysis by evaluating the loadings in the factor structure matrix.  I took note of those 

items with loadings less than .40 and items that loaded on multiple factors.  If an item 

was removed from the scale, the scale was factor analyzed again.   

Reliability and validity.  After conducting each EFA, I once again computed 

Cronbach’s alpha coefficients for the items in each scale to measure each scale’s 

reliability (DeVellis, 1991; Field, 2013).  Evidence for content validity was established 

by asking a panel of experts to review the items in the scales.  I examined concurrent and 

predictive validity by analyzing bivariate correlations among the study variables.  

Concurrent validity was determined by checking the extent to which engineering self-

efficacy scores were related to achievement goal orientations and task value.  To 

determine predictive validity, I examined correlations among engineering self-efficacy, 

and academic achievement (engineering core GPA and engineering major GPA). 

 Mean differences.  Prior to investigating mean differences between groups, I 

calculated the scale scores for each self-efficacy scale by taking the mean of the items 

that make up each scale.  I conducted a three-way multivariate analysis of variance 

(MANOVA) to explore mean differences in the four types of self-efficacy by gender, 
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year level, and major.  The independent variables were gender (i.e., male, female), year 

level (i.e., upperclassmen, lowerclassmen), and major (i.e., biosystems, chemical and 

materials, civil, electrical and computer, and mechanical engineering).  The dependent 

variables were the four types of engineering self-efficacy (i.e., general engineering self-

efficacy, research skills self-efficacy, tinkering skills self-efficacy, and engineering 

design self-efficacy).  Conducting a series of analyses of variance (ANOVA) separately 

for each dependent variable increases the risk of an inflated Type 1 error, meaning 

significant results may be found even when there are no differences between the groups 

(Field, 2013).  To reduce the risk of a Type 1 error, MANOVA was conducted.  Use of 

MANOVA is recommended when there is more than one dependent variable and the 

dependent variables are related in some way (Field, 2013; Pallant, 2010). 

 I tested whether the data conformed to the assumptions that must be met before 

conducting the MANOVA.  As noted earlier, multivariate normality was checked and 

met.  To assess linearity, I generated matrix scatterplots between each pair of the 

dependent variables for the groups based on gender, year level, and major.  All 

scatterplots exhibited linear relationships, thus, the assumption of linearity was satisfied.  

I also checked for multicollinearity between the dependent variables.  The types of 

engineering self-efficacy were moderately correlated.  To assess the assumption of 

homogeneity of variance-covariance matrices, I used the Box’s M Test of Equality of 

Covariance Matrices, which SPSS includes in the MANOVA output.  Significant values 

larger than .001 indicate that the assumption is tenable (Pallant, 2010; Tabachnick & 

Fidell, 2013).  The Box’s test was not significant at the alpha = .001 level. 
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 After performing the MANOVA, I examined the significance of Levene’s statistic 

for each dependent variable (significance should be more than .05) to ensure that the 

assumption of equality of variance was not violated for that variable (Pallant, 2010).  

Only research skills self-efficacy had a significant value indicating that the assumption of 

equality of variances for this variable was not met.  Tabachnick and Fidell (2013) 

suggested that if this assumption is violated, a more conservative alpha level for 

determining significance for that variable should be set when conducting the univariate 

F-test. I therefore used an adjusted alpha of .01.   

I checked for multivariate tests of significance using Pillai’s Trace.  Generally, 

Wilks’ Lambda is most commonly reported; however, due to unequal N values and 

violation of assumptions, Pillai’s Trace was more robust (Tabachnick & Fidell, 2013).  A 

significance level of less than .05 implies that there is a difference among the groups 

(Pallant, 2010).       

I conducted a post hoc ANOVA to identify where significant differences lie 

particularly when the independent variable has three or more levels (e.g., major) (Pallant, 

2010).  A Bonferroni adjustment (i.e., α = .05/4 or α = .0125) was applied to account for 

multiple comparisons among means and to reduce the chance of a Type 1 error (Pallant, 

2010; Tabachnick & Fidell, 2013).  I only considered results to be significant if the 

significant value is less than .0125.  I also calculated the effect sizes (i.e., Cohen’s d) to 

describe the relative magnitude of the differences between groups (Cohen, 1988).   

Predictive utility of engineering self-efficacy scales.  To investigate the 

relationships between the dependent variables (engineering GPAs and intentions to 

persist in engineering) and the independent variables (gender, year-level, major, and ACT 
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mathematics score), I conducted multiple regression with independent variables 

(predictors) entered in sets or blocks.  This type of multiple regression is also called 

hierarchical or sequential regression (Field, 2013; Pallant, 2010; Tabachnick & Fidell, 

2013).  I conducted three separate multiple regressions to examine the influence of 

engineering self-efficacy on three outcomes: engineering core GPA, engineering major 

GPA, and intent to persist in engineering professionally.  Students’ scale scores on intent 

to persist academically were severely skewed and application of data transformation 

techniques did not result in a normal distribution.  I therefore excluded this outcome 

variable, intent to persist in engineering academically, from further analysis. 

For each regression model, the first block of variables entered included gender, 

year level, major, and ACT math score.  Engineering self-efficacy measures (general 

engineering self-efficacy, research skills self-efficacy, tinkering skills self-efficacy, and 

engineering design skills self-efficacy) were entered as the second block of variables.  

Achievement goal orientations (mastery goals, performance goals, and performance 

avoidance goals) were entered in the third block.  The fourth block of variables 

comprised of task value constructs (intrinsic value, cost, and utility value).   

In hierarchical regression, the independent variables are entered into the equation 

as specified by the researchers (Tabachnick & Fidell, 2013).  As a general rule, known 

predictors (from other research) should be entered in the first block (Field, 2013).  

Quantitative skills (e.g., ACT or SAT math scores) have been hypothesized to be a 

predictor of students’ success in engineering programs (Veenstra, Dey, & Herrin, 2008; 

Zhang, Anderson, Ohland, Carter, & Thorndyke, 2004).  Thus, ACT math scores were 

included in the first block.  My objective was to investigate the extent to which self-
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efficacy adds to the prediction of engineering students’ achievement (i.e., engineering 

core GPA and engineering major GPA) and intent to persist in engineering when 

quantitative skills (i.e., ACT math score) are controlled for.  Therefore, four types of 

engineering self-efficacy were entered in the second block.  Then, I included achievement 

goals and task value in the following blocks to explore whether these added to the 

explained variance in the outcomes.  I also calculated uniqueness indicators using 

regression commonality analysis to determine the amount of variance explained in the 

dependent variable by each independent variable (Nathans, Oswald, & Nimon, 2012).   

I checked for multicollinearity by scanning the correlation matrix of the predictors 

making sure that they were not highly correlated (r ≥ .90).  In addition, I examined the 

VIF statistic, tolerance statistic, and variance proportions (Pallant, 2010).  Field (2013) 

recommended that VIF values should not be greater than 10 and the tolerance statistic 

should be above .20.  The VIF values ranged from 1.04 to 2.39.  Tolerance statistics 

ranged from .42 to .97.  All collinearity statistics and diagnostics indicates that there is no 

concern for multicollinearity.  I also calculated structure coefficients because beta 

weights are sensitive to multicollinearity.  Both beta weights and structure coefficients 

should be interpreted to determine the contribution of predictor variables in the regression 

(Courville and Thompson, 2001; Kraha, Turner, Nimon, Zientek, & Henson, 2012; 

Nathans et al., 2012).   
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Chapter 4: Results 

 In this chapter, I present the results of the analyses used to address my research 

questions.  First, I present the descriptive statistics for items in the engineering self-

efficacy measures and the results of the exploratory factor analyses for the two 

engineering self-efficacy measures (general engineering self-efficacy and engineering 

skills self-efficacy).  I then describe the psychometric properties of the resulting 

engineering self-efficacy scales.  Second, I report the results of the MANOVA.  Third, I 

present the results of the regression analyses. 

Psychometric Properties of Engineering Self-Efficacy Scales 

General Engineering Self-Efficacy Scale.  All six items in the original general 

engineering self-efficacy scale were retained based on the items’ performance in the 

scale.  Absolute values of skewness and kurtosis were less than 3.0 (see Table 7).  Items 

were correlated substantially with the rest of the items in the scale.  Inter-item 

correlations ranged from .58 to .78, whereas item-total correlations ranged from .76 to .82 

(see Table 8). 

Table 7 

Descriptive Statistics for the General Engineering Self-Efficacy Items 

Item M SD Skewness Kurtosis 
GESE25 4.83 0.84 -0.38 -0.07 
GESE26 4.66 0.93 -0.24 -0.47 
GESE27 5.12 0.87 -0.93  1.14 
GESE28 4.92 0.85 -0.43 -0.45 
GESE29 5.16 0.78 -0.53 -0.46 
GESE30 4.93 0.92 -0.61  0.28 
Note. GESE = General Engineering Self-Efficacy. 
N = 321 
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Table 8 

Inter-Item and Item-Scale Correlations of General Engineering Self-Efficacy Items 

Item r-total GESE25 GESE26 GESE27 GESE28 GESE29 
GESE25 .78           
GESE26 .77 .78     GESE27 .78 .59 .61    GESE28 .82 .73 .68 .69   GESE29 .81 .69 .67 .70 .75  GESE30 .76 .58 .59 .76 .67 .68 
Note. GESE = General Engineering Self-Efficacy. 
N = 321 
 
 The six items of the general engineering self-efficacy scale were then subjected to 

exploratory factor analysis (EFA).  Prior to performing EFA, the suitability for factor 

analyses was assessed.  The Kaiser-Meyer-Olkin (KMO) value was .90, exceeding the 

recommended value of .60 (Cerny & Kaiser, 1977).  A KMO value close to 1.0 indicates 

that patterns of correlations are relatively compact and factor analysis should yield 

distinct and reliable factors (Field, 2013).  Bartlett’s test of sphericity reached statistical 

significance, indicating that relationships exist among the items and that factor analyses 

can be used with the data.  The maximum-likelihood extraction method resulted in one 

factor with an eigenvalue of 4.75, explaining 67.83% of the variance.  The 

unidimensionality of the scale was further supported by the clear break on the scree plot.  

Table 9 shows the factor loadings and communalities for the six items. 
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Table 9 

Final Factor Loadings and Communalities for Exploratory Factor Analysis of the 
General Engineering Self-Efficacy Items 
 
Item GESE h2 

1. I can master the content in the engineering-
related courses I am taking this semester. 

.82 .67 

2. I can master the content in even the most 
challenging engineering course if I try. 

.80 .65 

3. I can do a good job on almost all my 
engineering coursework if I do not give up. 

.81 .65 

4. I can do an excellent job on engineering-
related problems and tasks assigned this 
semester. 

.87 .75 

5. I can learn the content taught in my 
engineering-related courses. 

.85 .73 

6. I can earn a good grade in my engineering-
related courses. 

.79 .62 

Percentage of variance 67.73%  

Note. GESE = General Engineering Self-Efficacy. h2 = communality. 

Engineering Skills Self-Efficacy Scale.  Two items in the original engineering 

skills self-efficacy scale were removed due to their similar wording to two general 

engineering self-efficacy items.  The items, “I can learn academic subject matter in 

engineering” (ESSE23), and “I can master engineering subject matter” (ESSE25), were 

similar to “I can learn the content taught in engineering-related courses” (GESE29) and 

“I can master the content in the engineering-related courses I am taking this semester” 

(GESE25), respectively.  

After examining the descriptive statistics, I flagged one item, “I can build 

machines” (ESSE10), on the original engineering skills self-efficacy scale because it had 

an inter-item correlation less than .30.  However, after checking the item-total correlation 
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(.70), I decided to keep the item.  The removal of two items from the engineering skills 

self-efficacy scale resulted in 19 items. 

An EFA was conducted on the 19 items using maximum-likelihood extraction 

with oblique rotation (Promax).  The KMO measure verified the sampling adequacy for 

the analysis, KMO = .93.  Bartlett’s test of sphericity was significant, indicating that the 

variables are correlated and justifying the use of factor analysis.  An initial analysis was 

run to obtain eigenvalues for each factor.  Four factors had eigenvalues over 1.0, 

accounting for 54.93%, 9.58%, 6.23%, and 4.57% of the variance, respectively.  

However, Kaiser’s criterion of retaining factors with eigenvalues greater than 1.0 often 

overestimates the number of factors (Field, 2013).  The scree plot was ambiguous and 

showed inflexions that would justify retaining either two or three factors.   

Because of the unclear cutoff for the number of factors, I undertook several factor 

analyses with different numbers of specified factors (i.e., two, three, or four) as suggested 

by Tabachnick and Fidell (2013).  Preacher, Zhang, Kim, and Mels (2013) suggested 

searching for the best number of factors to retain to satisfy the researcher’s goal.  In this 

dissertation study, the primary goal is to retain factors adequate for descriptive and 

predictive purposes.  In the two-factor solution, several items cross-loaded on the factors.  

In the four-factor solution, some items also loaded on two or more factors.  I then 

examined whether the four-factor solution made sense conceptually compared to a three-

factor solution.  Two factors were common to the three- and four-factor solutions (i.e., 

engineering research skills self-efficacy and engineering design self-efficacy).  One 

factor in the three-factor solution (i.e., tinkering skills self-efficacy) was split into two 

factors in the four-factor solution (i.e., tinkering skills self-efficacy items being separated 
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as tool-related versus machine-related).  In the three-factor solution, the items loaded 

strongly onto the hypothesized factor of tinkering skills self-efficacy.  A three-factor 

solution made the most sense empirically and theoretically, demonstrating a balance 

between good fit to data and model parsimony (Preacher et al., 2013). 

After rotating the three-factor solution, I examined the pattern matrix and 

interpreted variables with loadings of .30 or higher (Tabachnick & Fidell, 2013).  

Worthington and Whittaker (2006) suggested removing items that cross-loaded when the 

factor loadings on two factors differed by less than .15.  Two items, “I can design new 

things” (ESSE7) and “I can apply technical concepts in engineering” (ESSE24), cross-

loaded.  These items were removed from the analyses one at a time, and data were 

analyzed again as recommended by Pett et al. (2003).   

After factor extraction and rotation, 17 items remained in a three-factor solution.  

The items that clustered on Factor 1 represent engineering research skills self-efficacy (5 

items), Factor 2 represents tinkering skills self-efficacy (8 items), and Factor 3 represents 

engineering design skills self-efficacy (4 items).  Worthington and Whittaker (2006) 

suggested optimizing the scale length only after the factor solution is clear.  Optimizing 

scale length involved assessing the trade-off between length and reliability.  Upon review 

of the items for each factor, I noted that the tinkering skills self-efficacy subscale had 

more items than the other scales.  To balance the number of items for each factor, I 

decided to remove three items from the tinkering skills self-efficacy scale.  “I can work 

with tools and use them to build things” (ESSE5) and “I can work with tools and use 

them to fix things” (ESSE6) were removed because these items appeared to be covered 

already by “I can assemble things” (ESSE22) and “I can disassemble things” (ESSE26).  
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I also removed “I can fix machines” (ESSE11) because it was highly correlated (r = .90) 

with a similar item, “I can build machines” (ESSE10).  Removal of these three items 

resulted in 14 skills self-efficacy items: 5 items measuring research skills self-efficacy, 5 

items measuring tinkering self-efficacy, and 4 items measuring engineering design self-

efficacy.  An EFA was conducted with the final 14 items.  Means, standard deviations, 

skewness, kurtosis, inter-item, and item-total correlations for the items in each 

engineering skills self-efficacy scales are presented in Tables 10 and 11.   

Table 10 

Descriptive Statistics for the Engineering Skills Self-Efficacy Items 

Item M SD Skewness Kurtosis 
ESSE1 4.69 0.96 -0.43 -0.21 
ESSE2 4.89 0.83 -0.35 -0.32 
ESSE3 4.93 0.92 -0.74  0.40 
ESSE4 4.96 0.88 -0.59 -0.02 
ESSE8 4.93 0.91 -0.60 -0.12 
ESSE9  4.85 1.05 -0.69  0.00 
ESSE10 4.06 1.33 -0.19 -0.70 
ESSE13 4.79 0.96 -0.54 -0.07 
ESSE15 4.71 0.97 -0.64   0.43 
ESSE18 4.81 0.94 -0.67   0.41 
ESSE20 4.76 0.97 -0.55   0.02 
ESSE21 4.45 1.12 -0.38  -0.29 
ESSE22 5.10 0.96 -0.98   0.61 
ESSE26 5.23 0.92 -1.18   1.18 
Note. ESSE = Engineering Skills Self-Efficacy. 
N = 321 
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Table 11 

Inter-Item and Item-Scale Correlations of Engineering Skills Self-Efficacy Items 

Item r-total ESSE1 ESSE2 ESSE3 ESSE4 ESSE8 ESSE9 ESSE10 ESSE13 ESSE15 ESSE18 ESSE20 ESSE21 ESSE22 ESSE26 

ESSE1 .67                

ESSE2 .69 .76               

ESSE3 .60 .50 .63              

ESSE4 .53 .46 .62 .68             

ESSE8 .57 .49 .57 .37 .40            

ESSE9 .79 .57 .48 .45 .36 .53           

ESSE10 .66 .42 .33 .30 .19 .31 .70          

ESSE13 .78 .48 .51 .47 .41 .39 .59 .57         

ESSE15 .79 .50 .50 .48 .41 .44 .60 .57 .86        

ESSE18 .76 .49 .50 .38 .40 .48 .58 .54 .82 .82       

ESSE20 .78 .51 .53 .45 .40 .41 .57 .55 .79 .85 .85      

ESSE21 .69 .47 .44 .36 .27 .48 .66 .68 .58 .55 .53 .53     

ESSE22 .73 .45 .45 .44 .36 .35 .71 .64 .55 .57 .51 .55 .55    

ESSE26 .67 .43 .48 .42 .41 .35 .68 .54 .46 .44 .43 .48 .53 .83   

Note. ESSE = Engineering Skills Self-Efficacy. r-total is the correlation between a particular item and the total scale. All correlations 
were significant at the p < .01 level. Values < .30 are bolded. 
N = 321 
 
   
 

 

 
 



 

     

Table 12 shows the final factor loadings and communalities of the engineering 

skills self-efficacy items.  Pattern loadings ranged from .40 to .88 on research skills self-

efficacy, .48 to .94 on tinkering skills self-efficacy, and .85 to .91 on engineering design 

self-efficacy.   

Table 12 

Final Factor Pattern Loadings and Communalities for Exploratory Factor Analysis of 
the Engineering Skills Self-Efficacy Items 
 
Item Research 

Skills 
SE 

Tinkering 
Skills SE 

Engineering 
Design SE 

h2 

1. I can perform experiments 
independently. 

.65   .57 

2. I can analyze data resulting from 
experiments. 

.88   .78 

3. I can orally communicate results of 
experiments. 

.72   .56 

4. I can communicate results of 
experiments in written form. 

.77   .55 

5. I can solve problems using a 
computer. 

.40   .39 

6. I can work with machines.  .68  .69 
7. I can build machines.  .56  .57 
8. I can manipulate components and 

devices. 
 .48  .50 

9. I can assemble things.  .93  .84 
10. I can disassemble things.  .94  .80 
11. I can identify a design need.   .87 .82 
12. I can develop design solutions.   .91 .86 
13. I can evaluate a design.   .91 .82 
14. I can recognize changes needed for a 

design solution to work. 
  .85 .82 

Percentage of variance 8.45% 7.24% 52.62% 68.32% 
Note. SE = Self-Efficacy. Factor loadings > .40 are shown. h2 = communality. 

Reliability and validity.  Following the factor analyses, I computed for 

Cronbach’s alpha coefficients to estimate internal consistency.  As presented in Table 13, 
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the alpha coefficients for the engineering self-efficacy scales are robust.  They ranged 

from .86 to .95, indicating good internal consistency. 

Table 13 

Cronbach’s Alpha Coefficients for the Engineering Self-Efficacy Items 

Scale α 
General Engineering Self-Efficacy .93 
Experiment/Research Skills Self-Efficacy .86 
Tinkering Skills Self-Efficacy .90 
Engineering Design Self-Efficacy .95 
 
 To examine concurrent validity, I analyzed bivariate correlations among the 

engineering self-efficacy scales and related motivation constructs, specifically 

achievement goals and task values.  Bivariate correlations are found in Table 14.  As 

expected, the different engineering self-efficacy measures were positively related to one 

another.  All correlations between self-efficacy variables were significant at the .01 level. 

The four engineering self-efficacy measures were significantly correlated to 

mastery goals at p < .01.  Only general engineering self-efficacy and research skills self-

efficacy were significantly correlated to performance goals.  There was no significant 

relationship between any of the four types of engineering self-efficacy and performance 

avoidance goals. 

All four types of engineering self-efficacy were positively related to both intrinsic 

value and utility value.  Correlations between the self-efficacy and intrinsic value and 

utility value were significant.  Perceived cost was negatively related to general 

engineering self-efficacy but unrelated to skills self-efficacy.
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Table 14 

Means, Standard Deviations, and Bivariate Correlations for Study Variables 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1. General Engineering SE                               
2. Research Skills SE .50**                             
3. Tinkering Skills SE .30** .59**                           
4. Engineering Design Skills 

SE .35** .61**  .68**                         
5. Mastery Goals .45** .45**  .32**  .47**                       
6. Performance Goals .19**  .13*   .01   .11  .29**                     
7. Performance Avoidance 

Goals  -.11 -.12 -.05   .03   .10  .44**                   
8. Intrinsic Value .37** .45**  .40**  .45**  .59**  .23** .12                 
9. Cost -.17*  .07 -.01   .06  .21**  .18** .06 .20**               
10. Utility Value   .14* .21**  .18**   .22**  .26**   .08 -.01 .35** .39**             
11. ACT Math Score .24**  .08 -.13 -.12 -.05 .12 .03 -.04 -.15* -.12           
12. Engineering Core GPA .33**  .08 -.18* -.03   .03 .08 -.12 -.09 -.12 -.04 .57**         
13. Engineering Major GPA .38**  .12  -.10 -.07 .09 .20** -.10 .02 -.11 -.05 .44**  .62**       
14. Intent to persist 

professionally .12  .04 -   .07 .23** .08 .11 .36** -.02 -.03   .06 -.04 .06     
15. Intent to persist 

academically  (transformed) -.03  .01  -.01 - -.13 -.06 -.05 -.04 -.06 -.04 -.08 .06 -.04 -.30**   
16. Gender -.07 -.01  -.02 - -.01 -.02  .07 -.10 .01 -.01 .12 .10 .04  -.08 -.06 
M 4.95 4.88 4.78 4.77 5.12 4.49 3.73 5.07 5.31 5.29 29.06 3.11 3.30 4.24 0.10 
SD 0.75 0.74 0.92 0.90 0.61 1.05 1.28 0.68 0.71 0.56 4.25 0.69 0.59 1.07 0.19 
Note. SE = Self-Efficacy. GPA = Grade Point Average.  Scores on intent to persist in engineering academically were transformed 
because they were severely negatively skewed. 
*p < .05, ** p < .01 
N = 224 
 

 
 



 

Correlations with measures of academic performance (i.e., engineering core GPA 

and engineering major GPA) were examined to provide evidence of predictive validity of 

the engineering self-efficacy scales.  As shown in Table 14, general engineering self-

efficacy was significantly and positively correlated with both GPA outcomes.  Tinkering 

skills self-efficacy was significantly and negatively related to engineering core GPA.  I 

also examined the bivariate correlations among each engineering self-efficacy measures, 

and students’ intentions to persist in engineering professionally.  None of the engineering 

self-efficacy measures was significantly correlated with intentions to persist.   

Mean Differences in Types of Engineering Self-Efficacy 

 Means and standard deviations of the four types of engineering self-efficacy for 

the full sample, by gender, by year level, and by major, are found in Table 15.  A three-

way multivariate analysis of variance was conducted to investigate mean differences in 

engineering self-efficacy.  Table 16 presents the MANOVA results.  Using Pillai’s trace, 

there was a significant difference in engineering self-efficacy as a function of major, V = 

0.151, F(4, 179) = 1.781, p = .03.  A separate one-way ANOVA on engineering self-

efficacy revealed a significant mean difference in tinkering self-efficacy, F(4, 196) = 

5.14, p < .01 (see Table 17).  Post hoc comparisons using the Bonferroni adjusted alpha 

level of .0125 showed that the average tinkering skills self- efficacy score of mechanical 

engineering majors (M = 5.10, SD = 0.85) was significantly higher than that of chemical 

and materials engineering majors (M = 4.30, SD = 0.69).  The mean comparisons among 

majors’ tinkering skills self-efficacy are presented in Table 18.  Mean levels did not 

differ for any other type of self-efficacy belief as a function of students’ major.
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Table 15 

Means and Standard Deviations of Engineering Self-Efficacy Scores 
 
 General 

Engineering SE 
M (SD) 

Research  
Skills SE 
M (SD) 

Tinkering  
Skills SE 
M (SD) 

Engineering  
Design SE 

M (SD) 
Full Sample 
(N = 224) 
 

4.95 (0.75) 4.88 (0.74) 4.78 (0.92) 4.77 (0.90) 

Gender 
 
Men (n = 171) 
Women (n = 53) 
 

 
 

4.99 (0.74) 
4.85 (0.79) 

 

 
 

4.89 (0.73) 
4.88 (0.77) 

 

 
 

4.79 (0.94) 
4.74 (0.86) 

 

 
 

4.76 (0.90) 
4.77 (0.89) 

 
Year Level 
 
Lowerclassmen (n = 68 ) 
Upperclassmen (n = 156) 
 

 
 

5.03 (0.76) 
4.91 (0.75) 

 

 
 

4.83 (0.74) 
4.91 (0.74) 

  
 

 
 

4.77 (0.92) 
4.77 (0.94) 

 

 
 

4.69 (0.89) 
4.80 (0.90) 

 

Major 
 
Biosystems Engineering (n = 25) 
Chemical and Materials Engineering (n = 31) 
Civil Engineering (n = 57) 
Electrical and Computer Engineering (n = 27) 
Mechanical Engineering  (n = 61 ) 
 

 
 

4.89 (0.61) 
4.81 (0.90) 
4.99 (0.72) 
5.14 (0.78) 
4.91 (0.77) 

 

 
 

4.77 (0.73) 
5.02 (0.69) 
4.84 (0.79) 
5.05 (0.71) 
4.89 (0.74) 

 

 
 

4.69 (0.90) 
4.30 (0.69) 
4.66 (0.95) 
4.99 (0.95) 
5.10 (0.85) 

 

 
 

4.54 (0.98) 
4.62 (0.76) 
4.77 (0.81) 
4.94 (0.89) 
4.85 (0.95) 

 
Note. SE = Self-Efficacy. Corresponding standard deviations are in parentheses.  
*p < .01  
 

 
 



 

Table 16 

Three-Way Multivariate Analysis of Variance Results  

Variable Pillai’s Trace 
(V) 

F p 

Gender .005 0.205 .936 
Year Level .033 1.507 .202 
Major .151 1.781  .030* 
Gender*Year Level .024 1.104 .356 
Gender*Major .051 0.590 .892 
Year Level*Major .098 1.148 .306 
Gender*Year Level*Major .023 0.352 .979 
*p < .05 

Table 17 

One-Way Analysis of Variance Results for Engineering Skills Self-Efficacy by Major 

Variable F p 
General Engineering Self-Efficacy 
 

0.807 .522 

Research Skills Self-Efficacy 0.788 .534 
Tinkering Skills Self-Efficacy 5.14   .001* 
Engineering Design Self-Efficacy 1.040 .388 
*p < .01 
  
 
Table 18 

Mean Differences in Tinkering Skills Self-Efficacy by Major 
 
Major  Mean Difference Cohen’s d 
Mechanical vs. Biosystems 0.42 0.48 
Mechanical vs. Chemical and Materials   0.81* 1.01 
Mechanical vs. Civil 0.45 0.49 
Mechanical vs. Electrical and Computer 0.12 0.13 
Note. A positive mean difference indicates that mean for majors on the left is higher than 
mean for majors on the right. Post hoc analyses using adjusted Bonferroni criterion for 
significance.  
*p < .01 
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Predictive Utility of Engineering Self-Efficacy Scales 

 Engineering Self-Efficacy and Engineering Core GPA.  Results of the 

multiple regression showed that engineering self-efficacy was a significant predictor of 

engineering core GPA, F(8, 162) = 14.39, p < .01, and explained an additional 9% of the 

variance of the outcome variable after controlling for ACT mathematics score (see Table 

19).  As shown in Step 2 of the model, general engineering self-efficacy was positively 

related to engineering core GPA, whereas tinkering skills self-efficacy was negatively 

related to engineering core GPA.  Commonality analysis results demonstrated that 

general engineering self-efficacy contributed the most unique variance (10.64%) to 

engineering core GPA, followed by tinkering skills self-efficacy (10.08%), and 

engineering design self-efficacy (2.22%) in Step 2 of the model.  In Step 3 and Step 4, 

general engineering self-efficacy, tinkering skills self-efficacy, and engineering design 

self-efficacy significantly contributed to the prediction of engineering core GPA.  

Research skills self-efficacy did not contribute to the variance explained in engineering 

core GPA.  Achievement goals and task value were unrelated with engineering core GPA 

and their addition to the model did not explain a significant proportion of the variance for 

this outcome.   
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Table 19 

Hierarchical Regression Analyses Predicting Engineering Core GPA 
 
Predictor Step 1 Step 2 Step 3 Step 4 
Gender (β) .03 .06 .07  .06 
Year Level (β) .00 .01 -.02 -.02 
Major (β) -.01 .05 .04 .06 
     
ACT Math Score (β)        .57**    .48**    .48**   .48** 
  Structure Coefficient  .99 .89 .87 .85 
  Uniqueness 95.05% 46.33% 43.25% 40.49% 
     
General Engineering Self-Efficacy (β)     .25**    .24**   .25** 
Structure Coefficient   .51 .50 .49 
Uniqueness  10.64% 8.04% 7.21% 

     
Research Skills Self-Efficacy (β)  .01 -.02 .01 
Structure Coefficient   .12 .12 .12 
Uniqueness  0% 0% 0% 

     
Tinkering Skills Self-Efficacy (β)    -.31**  -.31** -.30** 
Structure Coefficient   -.28        -.27 -.27 
Uniqueness  10.08% 9.54% 8.42% 

     
Engineering Design Skills Self-Efficacy (β)  .14 .18* .19* 
Structure Coefficient   -.04 -.04 -.04 
Uniqueness  2.22% 3.20% 3.36% 

     
Mastery Goals (β)    -.03 .03 
Structure Coefficient    .05 .05 
Uniqueness   0% 0% 

     
Performance Goals (β)    .04 .05 
Structure Coefficient    .13 .12 
Uniqueness   0% 0% 

     
Performance Avoidance  Goals (β)    -.16 -.14* 
Structure Coefficient    -.19 -.19 
Uniqueness   4.06% 3.11% 

     
Intrinsic Value (β)     -.16 
Structure Coefficient     -.13 
Uniqueness    2.94% 

     
Cost (β)     -.01 
Structure Coefficient     -.18 
Uniqueness    0% 

     
Utility Value (β)     .03 
Structure Coefficient     -.06 
Uniqueness    0% 

     
F 20.31** 14.39** 11.13** 9.06** 
Model R2  .33  .42 .44 .45 
R2 Change    .33**    .09** .02 .01 
Note. *p < .05, **p < .01 
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Engineering Self-Efficacy and Engineering Major GPA.  Results of the 

hierarchical multiple regression showed that engineering self-efficacy predicted 

engineering major GPA, F(8, 162) = 8.63, p < .01, and explained an additional 10% of 

the variance in the achievement outcome when ACT mathematics score was controlled 

(see Table 20).  Commonality analysis results showed that general engineering self-

efficacy contributed the most unique variance (27.55%) to engineering major GPA, 

compared to tinkering skills self-efficacy (2.97%) and engineering design self-efficacy 

(1.32%) when entered in Step 2.  The addition of achievement goals and task value in 

Step3 and Step 4, respectively, did not contribute to the variance explained in engineering 

major GPA.  General engineering self-efficacy contributed significantly to the prediction 

of engineering major GPA even when achievement goals and task value were in the 

model.    
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Table 20 

Hierarchical Regression Analyses Predicting Engineering Major GPA 
 
Predictor Step 1 Step 2 Step 3 Step 4 
Gender (β) -.02  .02  .04 .04 
Year Level (β) -.04 -.02 -.03 -.03 
Major (β) -.04   .00 -.01 .00 
     
ACT Math Score (β) .44**      .32**    .31**    .31** 
  Structure Coefficient  .99 .80 .76 .76 
  Uniqueness 94.50% 27.57% 23.96% 22.15% 
     
General Engineering Self-Efficacy (β)      .35**   .31**    .30** 
Structure Coefficient   .69 .66 .66 
Uniqueness  27.55% 17.10% 14.26% 

     
Research Skills Self-Efficacy (β)  .06 .02 .03 
Structure Coefficient   .21 .20 .20 
Uniqueness  0% 0% 0% 

     
Tinkering Skills Self-Efficacy (β)  -.14 -.12 -.12 
Structure Coefficient   -.19 -.18 -.18 
Uniqueness  2.97% 1.82% 1.86% 

     
Engineering Design Skills Self-Efficacy (β)  -.09 -.08 -.08 
Structure Coefficient   -.13 -.12 -.12 
Uniqueness  1.32% 0% 0% 

     
Mastery Goals (β)    .00 .02 
Structure Coefficient    .16 .16 
Uniqueness   0% 0% 

     
Performance Goals (β)    .18* .19* 
Structure Coefficient    .35 .35 
Uniqueness   7.28% 7.53% 

     
Performance Avoidance Goals (β)    -.17* -.17* 
Structure Coefficient    -.18 -.17 
Uniqueness   5.98% 5.86% 

     
Intrinsic Value (β)     -.02 
Structure Coefficient     .04 
Uniqueness    0% 

     
Cost (β)     -.03 
Structure Coefficient     -.19 
Uniqueness    0% 

     
Utility Value (β)     -.03 
Structure Coefficient     -.08 
Uniqueness    0% 

     
F 10.05** 8.63** 7.08** 5.52** 
Model R2  .20  .30 .33 .33 
R2 Change     .20**    .10** .03 .00 
Note. *p < .05, **p < .01 
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Engineering Self-Efficacy and Intent to Persist in Engineering.  The results of 

the third hierarchical regression analyses with intent to persist in engineering 

professionally as the outcome are presented in Table 21.  In Step 2 of the model, the 

addition of engineering self-efficacy to the equation did not improve the R2.   In Step 3 of 

the model, the addition of achievement goals did not contribute to the variance explained 

in interest to persist in engineering.  Neither engineering self-efficacy nor achievement 

goals was a significant predictor of students’ intent to persist.  In Step 4 of the model, the 

addition of task value resulted in a significant change in R2.  Task value explained 21% of 

the variance in students’ intent to persist in engineering.  Specifically, intrinsic value was 

a significant predictor of intentions to persist in engineering.  Commonality analysis 

revealed that intrinsic value contributed a unique variance (54.84%) to this outcome 

variable. 
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Table 21 

Hierarchical Regression Analyses Predicting Intent to Persist in Engineering 
 
Predictor Step 1 Step 2 Step 3 Step 4 
Gender (β) -.09 -.08 -.09 -.05 
Year Level (β) -.12 -.12 -.08 -.06 
Major (β) -.02 -.02 -.01 -.04 
     
ACT Math Score (β)  .06 .04 .07  .06 
  Structure Coefficient  .38 .30 .21 .13 
  Uniqueness 11.30% 2.87% 4.37% 1.41% 
     
General Engineering Self-Efficacy (β)   .09 .03 -.02 
Structure Coefficient   .57 .40 .25 
Uniqueness  12.65% 0% 0% 

     
Research Skills Self-Efficacy (β)  -.03 -.05 -.10 
Structure Coefficient   .20 .14 .09 
Uniqueness  0% 1.22% 2.10% 

     
Tinkering Skills Self-Efficacy (β)  -.09 -.07 -.12 
Structure Coefficient   -.01 -.01 .00 
Uniqueness  9.06% 2.59% 3.02% 

     
Engineering Design Skills Self-Efficacy (β)  .13 .04 .02 
Structure Coefficient   .33 .23 .15 
Uniqueness  17.87% 0% 0% 

     
Mastery Goals (β)    .24 .10 
Structure Coefficient    .79 .51 
Uniqueness   41.32% 2.43% 

     
Performance Goals (β)    -.05 -.04 
Structure Coefficient    .29 .18 
Uniqueness   1.79% 0% 

     
Performance Avoidance Goals (β)    .09 .03 
Structure Coefficient    .36 .23 
Uniqueness   6.40% 0% 

     
Intrinsic Value (β)     .47** 
Structure Coefficient     .80 
Uniqueness    54.84% 

     
Cost (β)     -.07 
Structure Coefficient     -.05 
Uniqueness    1.45% 

     
Utility Value (β)     -.14 
Structure Coefficient     -.06 
Uniqueness    7.17% 

     
F 1.09 .88 1.37 2.93** 
Model R2 .03 .04  .09   .21** 
R2 Change .03 .02 .05   .12** 
Note. *p < .05, **p < .01 
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Summary of Findings 

 The EFA conducted resulted in a unidimensional general engineering self-

efficacy scale that has six items and a multidimensional skills self-efficacy scale with 

three subscales: engineering research skills self-efficacy (5 items), tinkering skills self-

efficacy (5 items), and engineering design self-efficacy (4 items).   

 Results of a three-way MANOVA showed that women and men did not differ in 

any of the four types of engineering self-efficacy nor did upperclassmen and 

lowerclassmen.  The hypotheses that men will report higher self-efficacy scores than 

women and that upperclassmen will report higher scores than lowerclassmen were not 

supported.  A significant difference in self-efficacy scores was found based on students’ 

engineering major.  A follow-up one-way ANOVA revealed that engineering students’ 

tinkering self-efficacy differed significantly by student major.  Post hoc analyses using a 

Bonferroni adjustment showed that mechanical engineering majors reported higher self-

efficacy than did the students in chemical and materials engineering. 

 Engineering self-efficacy significantly predicted academic achievement outcomes 

but not of intent to persist in engineering.  Specifically, general engineering self-efficacy 

and tinkering skills self-efficacy significantly contributed to the prediction of engineering 

core GPA even when ACT mathematics scores were controlled.  General engineering 

self-efficacy accounted for 28% of the 30% explained variance in engineering major 

GPA.  Intrinsic value significantly predicted intent to persist in engineering 

professionally and accounted for more than half of the 21% explained variance in this 

outcome. 

Copyright © Natasha Johanna A. Mamaril 2014 

86 

 



 

Chapter 5: Discussion 

 I designed this study with three goals in mind.  First, I sought to develop and 

validate items to assess undergraduate students’ general engineering self-efficacy and 

engineering skills self-efficacy.  Second, I investigated whether significant mean 

differences in engineering self-efficacy existed among students based on their gender, 

year level, and major.  Third, I aimed to examine the unique contributions of engineering 

self-efficacy, achievement goals, and task value to the prediction of achievement 

outcomes and students’ intent to persist in engineering. 

Researchers have shown that engineering students’ success is linked to scores on 

the mathematics section of the SAT or the ACT (e.g., Zhang et al., 2004).  Clearly, 

having quantitative skills upon entering engineering programs helps prepare students for 

the rigors of the engineering curriculum and may help them get through their first year of 

engineering courses.  However, having these skills alone does not ensure that students 

will be motivated to complete their engineering degrees.  Researchers have shown that 

students’ success in engineering lies not only in the number of skills students have, but 

also in what they believe they can do with these skills.  In his social cognitive theory, 

Bandura (1997) posited that behaviors can often be better predicted by the beliefs 

students hold about their capabilities than by what they have actually accomplished.  For 

this reason, engineering students’ beliefs in their abilities to perform engineering tasks 

could help them function most effectively in their degree programs and motivate them to 

pursue engineering careers. 

   

87 

 



 

Psychometric Properties of Engineering Self-Efficacy Scales 

 Researchers have used omnibus measures to assess students’ self-efficacy in 

engineering but this presents problems of predictive relevance.  At times, the items in 

these measures assess self-constructs other than self-efficacy.  Some researchers have 

modified existing self-efficacy scales designed for domains other than engineering.  They 

have explored engineering self-efficacy by measuring self-efficacy in engineering-related 

domains such as mathematics and science.  Though these domains are part of the 

engineering curriculum, experiences unique to engineering exist; thus engineering self-

efficacy measures must target performance of activities or tasks relevant to the domain of 

engineering.  Few researchers have captured the different ability beliefs students hold 

while staying true to Bandura’s (1997) definition of self-efficacy.  In this study, I 

developed self-efficacy measures that reflect both general and specific engineering tasks 

and are closely aligned with Bandura’s (2006) guidelines for creating self-efficacy scales.  

 Despite efforts to craft a self-efficacy scale true to the domain of engineering and 

to Bandura’s (1997) conceptualization of self-efficacy, no scale will ultimately fit all 

studies of engineering self-efficacy.  A self-efficacy scale is not a “one size fits all” 

measure (Bandura, 2006).  Bong (2006) emphasized that the usefulness of self-efficacy 

scales depends on whether they match the tasks and domain of interest.  I referred to 

existing literature on what engineering researchers, educators, students, and practicing 

engineers believe to be important skills that engineers should possess.  With the help of 

engineering faculty, I identified tasks that engineering students need to perform in their 

engineering coursework and in their future roles as engineers.  Scale items were worded 

to assess students’ beliefs in their capabilities to perform these engineering tasks.   
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The results of the exploratory factor analyses supported my hypotheses that the 

general engineering self-efficacy scale was unidimensional, whereas the engineering 

skills self-efficacy scale was multidimensional.  These findings indicate that engineering 

self-efficacy can be assessed at two levels: general and task-specific.  The general 

engineering self-efficacy scale measures students’ beliefs in their capabilities to perform 

general tasks associated with academic functioning.  Items in this scale were geared 

toward engineering courses in general yet were content-specific (e.g., mastery of content 

in engineering), course-specific (e.g., doing assigned engineering work), and grade-

specific (e.g., earning a good grade).  The engineering skills self-efficacy scale comprised 

three factors.  Five items were related to research skills that ABET specified to be a set of 

skills graduates of engineering programs should possess.  The next five items 

corresponded to Baker et al.’s (2008) description of tinkering skills.  Four items featured 

design as the common element.  This result suggests that Carberry et al.’s (2010) 

engineering design self-efficacy measure can still be reliable with fewer items.  These 

findings provide evidence that students’ engineering self-efficacy can be differentiated by 

the level of specificity of tasks.   

Pajares (1996) claimed that the correspondence between the level of task 

specificity and achievement outcome in the engineering domain is important for a task-

specific self-efficacy measure to have explanatory and predictive power.  In the field of 

engineering, few researchers have chosen to match self-efficacy assessments with 

academic achievement as an outcome measure (e.g., Hsieh et al., 2012).  In this 

dissertation study, I identified engineering GPA as an outcome measure to attain better 
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correspondence with particularized self-efficacy assessments.  This outcome was limited, 

however, as I address later.  

The items in the self-efficacy measures developed in this study are consistent with 

Bandura’s (2006) concept of self-efficacy because they are “I can” statements that reflect 

the construct of self-efficacy, which is a judgment of capability.  These items are linked 

to distinct areas of functioning in the domain of engineering.  Moreover, they reflect a 

level of task demands that represent gradations of challenges to successful performance 

(Bandura, 2006).  Consequently, they offer scholars an improvement over similar 

engineering self-efficacy scales used in the past that assessed constructs other than self-

efficacy (e.g., personality, interest). The general self-efficacy scale and the three 

engineering skills self-efficacy subscales can be used altogether or separately based on 

the needs of the researcher or instructor.  

Patterns of relationships with other relevant constructs provided support to the 

validity of the scales.  Engineering self-efficacy was positively related to mastery and 

performance approach goals, and was negatively related to performance avoidance goals. 

Correlations between the different types of engineering self-efficacy and mastery goals 

were significant and positive.  This result suggests that students with higher self-efficacy 

tend to strive to develop new skills and acquire knowledge.  Conversely, as students learn 

and master skills, their beliefs in their capabilities to complete engineering tasks 

successfully likely become stronger.  A similar finding was reported by Hsieh et al. 

(2012).    

General engineering self-efficacy and research skills self-efficacy were 

significantly related to performance goals.  Although the relationship was weak (r < .20), 
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the results indicate that students who believe they can perform generic tasks in their 

engineering courses may have the desire to demonstrate their competence to others.  

Given the assumption that students in engineering programs are academically gifted (e.g., 

being good in mathematics and/or science), successful performance of general 

engineering tasks demonstrates their competence to others.  Students who believe in their 

capabilities to perform engineering tasks seem to also think that they should be able to 

master content in their courses and conduct basic research, at a minimum.  The 

expectation of being smart enough to be in engineering may influence students to want to 

look smart to their peers and instructors.  

Self-efficacy, intrinsic value, and utility value were positively correlated, 

consistent with results reported by Bong (2001a, 2001b).  Researchers have asserted that 

interest plays a critical role in gendered occupational choices (Su, Rounds, & Armstrong, 

2009).  Engineering has been regarded a male-dominated field and a demanding career.  

Though this perceived cost about engineering prevails, the intrinsic value and utility 

value students assign to earning an engineering degree seems to propel them to work 

harder and to believe that they can perform engineering tasks required in their 

engineering coursework.  Eccles (2005) suggested that students’ choices to engage in 

activities, such as earning an engineering degree, are shaped by both ability beliefs and 

value beliefs.  Furthermore, different patterns exist with respect to students’ value beliefs 

about earning an engineering degree (Matusovich et al., 2010).  Students may see the 

usefulness and or importance of an activity to their future plans that they muster the 

belief that they can do the task.  Some students may believe they have the skills to 

successfully complete a task and find enjoyment in the process of completing the task.   
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The relationships between engineering self-efficacy and the outcome variables 

provided evidence of predictive validity.  General engineering self-efficacy showed 

significant correlations with achievement outcomes.  High general engineering self-

efficacy scores were associated with higher grades (both in their engineering core courses 

and major courses).  The correlations were in the expected directions.  Tinkering skills 

self-efficacy was negatively related to engineering core GPA.  This finding suggests that 

an increase in tinkering skills self-efficacy is accompanied by a decrease in engineering 

core GPA.  Students who believe they can put things together and take things apart do not 

necessarily get high grades.  This result was unexpected.  One would assume that having 

confidence in one’s tinkering skills would be beneficial to performance in engineering 

core courses, such as physics and chemistry that typically involve a laboratory class.  

Tinkering skills self-efficacy was operationalized in this study to reflect working with 

machines, building machines, manipulating devices, assembling things, and 

disassembling things.  These are tasks that engineering students most likely perform in 

laboratory classes.  Students in core engineering courses are being introduced to 

fundamental laws and principles in engineering (Nguyen, 1998).  They are not only 

graded on their performance in laboratory classes but also on the mastery and 

understanding of course content.  Though the magnitude of the relationship is small (r = -

.18), this result warrants further investigation.  For future research, researchers could 

identify courses where tinkering skills would matter and examine the relationship 

between tinkering skills self-efficacy and course grade.  Current literature on tinkering 

includes use of science equipment and tools in constructing knowledge during science 

instruction (e.g., Baker, 2013; Jones et al., 2000).  To date, literature pertaining to 
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tinkering self-efficacy is limited and in the early stages (e.g., definition, development of 

measures).   

 In this study, engineering research skills self-efficacy involved performing tasks 

related to conducting experiments and communicating results of experiments, whereas 

engineering design self-efficacy dealt with designing solutions.  These two types of 

engineering skills self-efficacy were not significantly correlated with any of the 

achievement outcomes.  I hypothesized that research skills self-efficacy would be related 

to either of the engineering GPAs because research skills are typically needed throughout 

students’ educational experience.  I hypothesized that engineering design self-efficacy 

would be correlated with engineering major GPA because higher level classes (e.g., 

capstone) would require working on design projects.  According to Schubert et al. (2012), 

the engineering design process “culminates in a capstone design experience in the senior 

year in which students apply the design process to a project specific to their major” (p. 

187).  The participants in this study included senior students; however, they were not the 

primary target sample population. Year level sampling could help explain the result 

regarding engineering design self-efficacy and engineering major GPA.   

Group Differences in Engineering Self-Efficacy  

The second goal of this study was to determine whether engineering students’ 

self-efficacy scores differ with respect to students’ gender, year level, or major.  Having 

established that the engineering self-efficacy measures are psychometrically sound, I 

used students’ scores on these measures to make the comparisons and test my hypotheses.   

Gender.  The self-efficacy scores for men and women in this sample were not 

significantly different.  Findings in the literature on gender difference in engineering self-
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efficacy have been mixed.  Concannon and Barrow (2009, 2012) did not find significant 

gender differences in engineering self-efficacy among engineering students.  They 

attributed this finding to the quality of students in their sample.  Students had similar 

abilities coming into college, high school grades, and college entrance scores.  Others 

have found gender differences in engineering self-efficacy, however.  For example, Jones 

et al. (2010) found that even when men and women had similar mean engineering GPAs 

at the end of their first year in college, men reported higher self-efficacy scores than 

women did.  The authors speculated that men might have overestimated and women 

underestimated their abilities.  Reisberg et al. (2010) also found that men had higher 

academic self-efficacy than women, who had higher career self-efficacy than men.   

The inconsistency in findings could be due to the type of self-efficacy assessed 

and the various ways in which self-efficacy has been measured.  Jones et al. (2010) 

assessed students’ confidence in their ability to complete basic science (i.e., mathematics, 

physics, chemistry) requirements in their major with grades B or better.  The other items 

in their self-efficacy scale asked about confidence in their abilities to excel in their 

engineering major in the future.  On the other hand, Reisberg et al. (2010) used Lent et 

al.’s (1986) measure, Self-Efficacy for Academic Milestones and Self-Efficacy for 

Technical/Scientific fields.  The finding in this dissertation study suggests that women 

believe in their general and skills-specific engineering capabilities just as much as men 

do.  Women were equally prepared academically as the men (i.e., their average ACT 

math scores were not significantly different) and their engineering GPAs were 

comparable to their male counterparts’.   
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 Year level.  Studies examining self-efficacy across year levels have often focused 

on students’ general engineering self-efficacy.  Studies that examine engineering skills 

self-efficacy across year levels are limited.  Thus, I investigated whether general and 

skills-specific engineering self-efficacy differed based on students’ year level.  No 

significant differences were found in the general engineering self-efficacy scores of 

lowerclassmen (freshmen and sophomores) and upperclassmen (juniors and seniors).  

Other researchers have reported similar findings (Concannon & Barrow, 2009; Marra & 

Bogue, 2006).  Upperclassmen and lowerclassmen reported similar levels of engineering 

skills self-efficacy (i.e., research skills self-efficacy, tinkering skills self-efficacy, and 

engineering design self-efficacy).  Contrary to the idea that upperclassmen would have 

higher engineering self-efficacy than lowerclassmen, the findings imply that the number 

of years in the engineering program does not necessarily translate to gains in engineering 

self-efficacy.   

 Major.  Studies examining whether engineering self-efficacy differs as a function 

of students’ major are scarce.  Because each engineering discipline requires a specialized 

skill set that corresponds to the demands of a student’s future profession, I hypothesized 

that students in different engineering majors would report different levels of tinkering 

skills self-efficacy and engineering design self-efficacy.  In this dissertation study, 

tinkering skills self-efficacy differed by student major.  Mechanical engineering majors 

reported higher tinkering skills self-efficacy scores than chemical and materials 

engineering majors.  The focus of the engineering discipline may provide an explanation 

for the significant differences in tinkering self-efficacy as a function of major.  Engineers 

are thought to have an inclination for tinkering with devices, machines, and tools to 
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design products and improve processes.  People in the field of engineering (students, 

faculty, and professionals) rank tinkering skills as an important characteristic of good 

engineers (Baker & Krause, 2007).  However, the level of tinkering skills expected from 

engineering students likely varies depending on their major.  Engineering curricula are 

designed to provide opportunities for students to engage in engineering tasks relevant to 

their major.  If the development of tinkering skills is not an emphasis in a given program, 

students in that program may have low self-efficacy for such skills.  Mechanical, civil, 

electrical, and computer engineering involve a focus on macro level and human-regulated 

systems, whereas chemical engineering focuses on micro level and largely inert materials 

(Shivy & Sullivan, 2005).  Mechanical engineering majors engage in activities that 

incorporate use of tinkering skills, such as fixing equipment, fabricating parts, and 

basically dealing with gears and machinery.  Civil engineering majors demonstrate their 

tinkering skills as they work with building materials, structural supports, and 

infrastructures.  Electrical and computer engineering majors assemble and disassemble 

circuits, devices, and machines.  On the other hand, chemical engineering majors may not 

have similar opportunities to work with machines and devices that are physically 

manipulated.  Because mastery experience is the most influential source of self-efficacy 

(Bandura, 1997) and students who major in mechanical, civil, or electrical and computer 

engineering tend to have more successful task performances related to their tinkering 

skills, they are more likely to have higher tinkering self-efficacy than chemical 

engineering majors.    
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Predictive Utility of Engineering Self-Efficacy Scales 

 In this study, I sought to determine the unique contributions of engineering self-

efficacy, achievement goals, and task value, to the prediction of achievement outcomes 

and intent to persist in engineering in a model controlling for gender, year level, major, 

and ACT mathematics score.  I hypothesized that engineering self-efficacy and task value 

will predict achievement outcomes and intent to persist in engineering, and achievement 

goals will predict achievement and not intent to persist in engineering. 

 Predicting academic achievement.  Engineering self-efficacy was a consistent 

predictor of academic achievement in engineering and added a significant proportion of 

the variance for each of the achievement outcomes (engineering core GPA and 

engineering major GPA).  General engineering self-efficacy significantly predicted and 

contributed the most unique variance to both achievement outcomes.  Previous research 

has demonstrated that self-efficacy is a significant predictor of engineering students’ 

academic achievement (Hsieh et al., 2012; Lent et al., 1984, 1986) and that ACT 

mathematics scores predicted engineering GPA (e.g., Veenstra et al., 2008; Zhang et al, 

2004).  This dissertation study contributes to the literature by providing evidence that 

engineering self-efficacy adds to the prediction of students’ engineering achievement 

even with ACT mathematics scores in the model.  Ability, such as quantitative skills, has 

often been considered a strong determinant of academic success in engineering 

(Schaefers et al., 1998).  The findings from this dissertation study suggest that, in 

addition to having requisite abilities, students’ efficacy judgments of capabilities increase 

the likelihood of students achieving higher grades in engineering. 
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 The unexpected finding in this study is the inverse relationship between tinkering 

skills self-efficacy and engineering core GPA.  As discussed in an earlier section of this 

chapter, tinkering skills seem to be more relevant to students in certain majors.  Students 

who work with macro-level systems have higher tinkering self-efficacy (e.g., mechanical 

engineering majors) than students who work with micro-level systems (e.g., chemical 

engineering majors).  Tinkering skills self-efficacy may then be beneficial only to those 

who work with large scale systems as tinkering would be a skill required in their future 

profession.  For mechanical engineering majors, having the belief to perform tasks that 

involve tinkering skills is relevant.  Overall though, lack of belief in one’s tinkering skills 

may not be detrimental to obtaining good grades in engineering courses.  Future research 

should investigate the contributions of the different types of self-efficacy to achievement 

outcomes based on students’ engineering major. 

 Task value and achievement goals did not contribute to the explained variance in 

students’ engineering GPAs.  Jones et al. (2010) reported that task value did not predict 

engineering GPA of first-year engineering students.  Studies investigating the 

relationship of students’ task value and engineering GPA are few, whereas studies 

examining engineering students’ achievement goals and engineering GPA are scarce.  

Further research could shed more light into the relationship of these variables. 

 Predicting intent to persist in engineering.  Engineering self-efficacy did not 

predict intent to persist in engineering professionally, a finding consistent with Jones et 

al. (2010).  This finding indicates that students’ belief in their capabilities to perform 

engineering tasks is not sufficient motivation for students to pursue engineering careers.  

Achievement goals did not add a significant proportion of the variance in intent to persist.  
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This suggests that engineering students’ intention to persist in engineering is not 

influenced by reasons they pursue competence.  Consistent with the findings of Jones et 

al. (2010), task value was the strongest predictor of students’ intent to persist.  In 

particular, intrinsic value contributed the most unique variance to the outcome.  Task 

enjoyment and interest in engineering may be better predictors of the likelihood that 

students will pursue careers directly pertaining to engineering.   

Values influence students’ decisions to become engineers (Matusovich et al., 

2010).  In an interview, Eccles posited that opportunities to help others and to work in 

teams influence women’s decisions to pursue engineering careers because these are what 

women value (Bembenutty, 2008).  If students understand the significance of an 

engineering career to their personal goals, they are likely to persist in engineering.  Thus, 

engineering educators could provide students with information about careers in 

engineering and emphasize the value of engineering to strengthen students’ intent to 

persist. 

Conclusion 

I embarked on this study with the goal of developing engineering self-efficacy 

scales that capture the multifaceted nature of self-efficacy in the engineering domain.  

The general engineering self-efficacy scale and the engineering skills self-efficacy scale 

demonstrated acceptable reliability and validity.  Certain types of engineering self-

efficacy may be more relevant to students than others depending on their engineering 

discipline.  Researchers and educators can use these scales to assess undergraduate 

engineering students’ perceptions of their capabilities to perform tasks in their 

engineering programs and future roles as engineers.  Measures of engineering self-
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efficacy could also help educators and researchers identify areas of task performance in 

which students feel less efficacious.  Data gathered from engineering self-efficacy 

measures may guide researchers in the development of interventions to enhance students’ 

judgments of their capabilities to function successfully in the domain of engineering.   

Different sets of beliefs inform students of what they can do and what they can 

become.  Some beliefs are general yet domain specific; other beliefs are task-specific.  

Level of specificity of measures and correspondence with the outcome of interest are 

important to achieve explanatory and predictive power.  Engineering self-efficacy and 

task value predicted different outcomes.  This finding implies that both motivation 

variables are needed to understand students’ achievement and intent to persist in 

engineering. 

Limitations and Future Directions 

This scale validation study is exploratory in nature.  Results must be interpreted 

with caution as findings have not been replicated.  Further research should be conducted 

to validate the findings of this study.  I recognize the limitations of this study and provide 

recommendations to improve future work related to the assessment of undergraduate 

students’ engineering self-efficacy. 

When selecting participants for a study, the goal is to select as large a sample as 

possible from the population to lessen sampling error (Creswell, 2012).  A limited 

number of engineering students were invited to participate in the study based on the 

courses they were in. The recruitment process involved the cooperation of department 

chairs and instructors in the College of Engineering.  Thus, the number of students 

recruited for the study were limited by the number of classes I was allowed to visit.  In 
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the future, having an advocate in the College of Engineering who is interested in 

examining academic achievement and student retention would be essential to gaining 

access to more engineering classes and possibly obtaining a larger sample size. 

Data collection involved emailing students the link to the online survey.  A 

common concern with online surveys is low response rates (Kwak & Radler, 2002; 

Nulty, 2008; Sheehan, 2001).  Engineering students may have demanding class schedules 

and may be consequently inundated with school work such that completion of the survey 

was not a priority.  To increase participation, I personally visited the engineering classes 

to talk about my study and informed students that I will be sending them an email 

invitation.  Response rates are slightly better when the email invitation comes from a 

person compared to when the source was an office (Porter & Whitcomb, 2003).  I also 

sent strategically timed email reminders to students who have not answered the survey at 

all and to those who have yet to complete the survey.  Administration of a paper survey 

may help obtain better responses. 

To measure accurately levels of engineering self-efficacy, accurate and honest 

responses are required from students. Self-reported data was used in this study.  Such 

data are limited by the fact that they are individuals’ own perspectives and cannot be 

verified (Barker, Pistrang, & Elliott, 2002).  Another concern with self-reported data is 

social desirability.  Individuals tend to present themselves in a favorable light, regardless 

of their true feelings about an issue or topic.  Thus, social desirability has the potential to 

bias answers of respondents (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003).  As I 

recruited participants for the study, I informed them that all responses will be kept 

confidential, individual responses will not be singled out, and results will be reported in 
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aggregate.  I also reiterated that there are no right or wrong answers to the survey and 

encourage their candid responses. By doing this, I hoped to reduce the possibility of 

response bias. 

Engineering grade point averages may not be the ideal measure of achievement in 

engineering but compared to cumulative GPAs, they do offer better correspondence to 

efficacy beliefs in engineering.  This is a step towards addressing correspondence 

between self-efficacy measures and outcomes being measured.  Scale developers may 

want to consider searching for outcomes more closely aligned with the type of self-

efficacy they are measuring.   

 The study was a cross-sectional design that provides a snapshot of students’ 

engineering self-efficacy, achievement, and intentions to persist in engineering.  

Participants in the study are at different stages in the program and may have different 

motivation profiles as a result of their experiences in particular engineering classes.  

Future work should include tracking a cohort of freshman engineering students and 

examining how their engineering self-efficacy, grades, and intentions to persist in 

engineering change as they navigate their way through engineering programs.  Such a 

longitudinal study would be best suited most especially for research on persistence in 

engineering.  The first two years in the engineering program have been regarded as the 

critical years in engineering.  By conducting a longitudinal study, researchers can also 

compare changes in self-efficacy, achievement goals, and task values of students who 

stay or leave engineering after the first two years.  Though it would be institution 

specific, the study could help identify turning point(s) in the engineering program.  The 
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results of a study such as this would guide educators and researchers in designing courses 

and revising curricula.   

     Much of the variance in the persistence outcome of this study needs to be 

explained.  Researchers could investigate the unique contributions of other motivation 

variables.  For example, researchers have investigated grit and implicit theories of ability 

to explain persistence in tasks.  Grit, defined as perseverance and passion for long-term 

goals, predicts success over and beyond mental ability and conscientiousness 

(Duckworth, Peterson, Matthews, & Kelly, 2007).  On the other hand, the belief one 

holds about the nature of abilities (i.e., implicit beliefs) can lead to loving challenges, 

believing in effort, and remaining resilient when faced with setbacks (Dweck, 2006).  

Dweck (2006) also referred to these beliefs as mindsets about the origins of students’ 

own ability.  Two mindset tendencies exist: a fixed mindset (belief that ability is innate 

and there is nothing you can do about it) and a growth mindset (belief that ability is 

acquired, can be changed, and developed).  Grit and implicit theories of abilities are 

believed to change over time.  Adding them to the list of variables in a future longitudinal 

study mentioned above may help explain variance in persistence in engineering. 
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Appendix B: College of Engineering Curriculum Matrix 

 
Major 

Course CHE CE CompE BAE EE MSE ME MinE 
Introduction to Biosystems 
Engineering 

   
F1 

    Energy in Biological Systems 
   

F2 
    Economic Analysis for 

Biosystems 
   

F2 
    Statistical Inferences in 

Biosystems 
 

So1 
 

So2 
    DC Circuits and 

Microelectronics 
   

J2 
    Senior Seminar 

   
Se1 

    Biosystems and Agricultural 
Engineering Design I 

   
Se1 

    Biosystems and Agricultural 
Engineering Design II 

   
Se2 

    Principles of Biology I 
   

So1 
    Principles of Biology II 

   
J1 

    Computer Graphics and 
Communication 

 
F2 

 
F2 

    Introduction to Civil 
Engineering 

 
F1 

      Introduction to Construction 
Engineering 

 
J1 

      Civil Engineering 
Communications 

 
J1 

      Transportation Engineering 
 

J2 
      Introduction to Fluid 

Mechanics 
 

J1 
 

J1 
    Introduction to Environmental 

Engineering 
 

J2 
      Civil Engineering Materials I 

 
J1 

      Structural Analysis 
 

J2 
      Seminar 

 
Se2 

      Civil Engineering Systems 
Design 

 
Se2 

      Water Resources Engineering 
 

Se1 
      Soil Mechanics 

 
Se1 

      Structures Elective 
 

Se1 
      CE Technical Design 

 
Se1 

      General College Chemistry I F1 F2 F1 F1 F2 F1 F1 F1 
General College Chemistry II F2 So1  F2  F2 F2 F2 
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Appendix B (continued)  
 Major 
 CHE CE CompE BAE EE MSE ME MinE 
Laboratory to Accompany 
General Chemistry I F1 

    
F1 F1 

 Laboratory to Accompany 
General Chemistry II F2 

    
F2 

  Organic Chemistry I So1 
       Organic Chemistry Laboratory 

I So1 
       Organic Chemistry II So2 
       Survey of Organic Chemistry 

     
So1 

  Physical Chemistry for 
Engineers J1 

       The Engineering Profession J2 
       Introduction to Chemical 

Engineering F1 
       Process Principles So1 
    

J1 
  Computational Tools in 

Chemical Engineering So2 
       Engineering Thermodynamics So2 
       Fluid Mechanics J1 
       Separation Processes J1 
       Process Modeling in Chemical 

Engineering J2 
       Heat and Mass Transfer J2 
       Chemical Engineering 

Laboratory I J2 
       Chemical Engineering 

Laboratory II Se1 
       Chemical Engineering Process 

Design I Se1 
       Chemical Engineering Process 

Design II Se2 
       Process Control Se2 
       Professionalism, Ethics and 

Safety Se1 
       Chemical Reactor Design Se1 
       The Computer Science 

Profession 
  

F1 
     Introduction to Computer 

Programming 
  

F1 
 

F1 
   Introduction to Program 

Design 
  

So1 
 

So2 
   Introduction to Software 

Engineering 
  

So2 
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Appendix B (continued)         
 Major 
 CHE CE CompE BAE EE MSE ME MinE 
First Course in Computer 
Science for Engineers 

 
So2 

 
So1 

 
F2 So1 F1 

Algorithm Design and 
Analysis 

  
J1 

     Discrete Mathematics 
  

So2 
     Algorithm Design and 

Analysis 
  

J1 
     Compilers for Algorithmic 

Languages 
  

Se1 
     Introduction to Operating 

Systems 
  

J2 
     Senior Design Project 

  
Se2 

     Creativity and Design in 
Electrical and Computer 
Engineering 

  
F1 

 
F1 

   Circuits I 
  

So1 
 

So1 
   Circuits II 

  
J1 

 
So2 

   Electrical Engineering 
Laboratory I 

  
J1 

 
So2 

   Design of Logic Circuits 
  

F2 
 

F2 
   Logical Design Laboratory 

  
So1 

     Electrical Circuits and 
Electronics 

   
J1 

 
Se1 J1 J1 

Introduction to Semiconductor 
Devices 

    
So2 

   Microcomputer Organization 
    

J1 
   Introduction to Embedded 

Systems 
  

J1 
     Electromechanics 

    
J1 

   Signals and Systems 
  

J2 
 

J1 
   Introduction to Electronics 

  
J2 

     Introduction to Engineering 
Electromagnetics 

    
J2 

   Advanced Computer 
Architecture 

  
J2 

     Electrical Engineering 
Capstone Design I 

    
Se1 

   EE 491 Electrical Engineering 
Capstone Design II 

    
Se2 

   Microcomputer Organization 
  

So2 
     Statics 

 
So1 

 
So2 

 
So2 So2 So1 

Mechanics of Deformable 
Solids 

 
So2 

 
J1 

 
J1 J1 So2 
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Appendix B (continued)         
 Major 
 CHE CE CompE BAE EE MSE ME MinE 
Dynamics 

   
J1/J2 

  
J1 J2 

Principles of Physical Geology 
 

J1 
     

So1 
Fundamentals of Geology I 

       
J1 

Calculus I F1 F1 F1 F1 F1 F1 
 

F1 
Calculus II F2 F2 F2 F2 F2 F2 F2 F2 
Calculus III So1 So1 So1 So1 So1 So1 So1 So1 
Calculus IV So2 So2 So2 So2 So2 So2 So2 So2 
Introductory Probability 

    
J1 

   Introduction to Mechanical 
Engineering 

      
F1 

 Manufacturing Engineering 
      

F2 
 Computer Aided Engineering 

Graphics 
      

So1 
 Engineering Thermodynamics 

I 
   

So2 
  

So2 So2 
Engineering Experimentation I 

      
J2 

 Engineering Experimentation 
II 

      
Se1 

 Engineering Thermodynamics 
II 

      
J1 

 Elements of Heat Transfer 
   

J2 
  

J2 
 Fluid Mechanics 

      
J1 J1 

Introduction to Mechanical 
Systems 

   
Se2 

  
J2 

 Mechanical Design 
      

J2 
 ME Capstone Design I 

      
Se1 

 ME Capstone Design II 
      

Se2 
 Design of Control Systems 

      
Se1 

 Mechanical Design with Finite 
Element Methods 

      
Se1 

 Introduction to Mining 
Engineering 

       
F1 

Mine Graphics 
       

F2 
Mine Surveying 

       
J1 

Mining Methods 
       

F2 
Mineral Reserve Modeling 

       
So2 

Minerals Processing 
       

J1 
Minerals Processing 
Laboratory 

       
J1 

Deformable Solids Laboratory 
       

So2 
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Appendix B (continued)         
 Major 
 CHE CE CompE BAE EE MSE ME MinE 
Mine Safety and Health 
Management and Processes 

       
So2 

Explosives and Blasting 
       

So1 
Mine Plant Machinery 

       
Se1 

Introduction to Mine Systems 
Analysis 

       
J1 

Mine Ventilation 
       

Se1 
Professional Development of 
Mining Engineers 

       
J2 

Mine Systems Engineering 
and Economics 

       
J2 

Surface Mine Design and 
Environmental Issues 

       
J2 

Rock Mechanics 
       

Se1 
Mine Design Project I 

       
Se1 

Mine Design Project II 
       

Se2 
Materials Engineering 

     
F1 

  Materials Science F2 
       Materials Science Laboratory 

     
So1 

  Materials Science II 
     

So2 
  Material Thermodynamics 

     
So2 

  Metal and Alloys 
     

J1 
  Electronic Materials and 

Processing 
     

J2 
  Ceramic Engineering and 

Processing 
     

J2 
  Polymeric Materials 

     
J1 

  Materials Laboratory I 
     

J2 
  Materials Laboratory II 

     
Se1 

  Material Failure Analysis 
     

Se1 
  Materials Design 

     
Se2 

  Mechanical Properties of 
Materials 

     
J2 

  Metals Processing 
     

Se2 
  Materials Characterization 

Techniques 
     

Se1 
  General University Physics So1 F1 F2 So1 F2 So1 So1 F2 

General University Physics So2 So2 So1 So2 So1 So2 So2 So1 
General University Physics 
Laboratory So1 F1 F2 So1 F2 So1 So1 F2 
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Appendix B (continued)         
 Major 
 CHE CE CompE BAE EE MSE ME MinE 
General University Physics 
Laboratory 

 
So2 So1 So2 So1 

 
So2 So1 

Principles of Modern Physics 
     

J2 
  Introduction to Engineering 

Statistics 
  

J1 
      

Legend: 
 F1 – 1st semester freshmen 
 F2 – 2nd semester freshmen 
 So1 – 1st semester sophomore 
 So2 – 2nd semester sophomore 

J1 – 1st semester junior 
 J2 – 2nd semester junior 

Se1 – 1st semester senior 
 Se2 – 2nd semester senior  
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Appendix C: Email Invitation to Participate in the Study 

Subject: Invitation to Participate in Survey for Engineering Students 
 
Dear (Student’s First Name),  
 
You are invited to participate in a study about attitudes and beliefs about engineering. 
This study is being conducted by Natasha Mamaril, a graduate student of the University 
of Kentucky department of Educational, School, and Counseling Psychology, to examine 
the psychological factors related to engineering students’ academic performance and 
persistence in engineering programs. 
 
You are being invited to take part in this research because you are an engineering student 
at the University of Kentucky College of Engineering and at least 18 years of age.  
 
Your participation in this survey is completely voluntary. Your responses will be kept 
confidential. The results of the survey will be reported in such a way that individual 
responses cannot be identified. The survey takes approximately 15 minutes to complete. 
If you decide to participate, please complete the survey by (Day of the Week), (Month 
Day), (Year). 
 
 Below is your password to access the survey. Please enter this password when prompted: 
(electronically generated password shows up here) 
 
Click this link to access the survey: 
(insert survey link here) 
 
If you experience technical difficulties, please email tashmamaril@uky.edu. 
 
Thank you, 
 
Natasha Mamaril 
Member, P20 Motivation and Learning Lab 
College of Education 
University of Kentucky 
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Appendix D: Achievement Goal Orientation Scale  

Mastery Goals (Adapted from Harackiewicz et al., 2000) 
1.  I want to learn as much as possible in this engineering class. 
2.  In an engineering class, I prefer course material that really challenges me so I can 

learn new things. 
3.  The most important thing for me in an engineering class is trying to understand the 

content as thoroughly as possible. 
4.  Understanding engineering is important to me. 
5.  I like it best when something I learn makes me want to find out more. 
6.  In an engineering class, I prefer course material that arouses my curiosity, even if it is 

difficult to learn. 
 
Performance Approach Goals (Adapted from Harackiewicz et al., 2000) 
7.  It is important for me to do better than other students. 
8.  My goal in this engineering class is to get a better grade than most of the other 

students. 
9.  It is important for me to do well compared to other engineering students in this   
     class/program. 
10.  I want to do well in this class to show my ability to my family, friends, advisors, or  
       others. 
11.  Getting a good grade in this class is the most important thing for me right now. 
12.  It is important for me to establish a good overall grade-point average, so my main  
       concern in this class is getting a good grade. 
 
Performance Avoidance Goals (PALS items by Midgley et al., 2000) 
13.  It's important to me that I don't look stupid in my engineering class. 
14.  One of my goals in my engineering class is to avoid looking like I have trouble    
       doing the work. 
15.  It's important to me that my instructor doesn't think that I know less than other  
       students in my engineering class. 
16.  One of my goals is to keep other engineering students from thinking I'm not  
        smart in class. 
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Appendix E: Task Value Scale 

Intrinsic Value (Items taken from Li et al., 2008) 
1.   I would like to design new products to make people’s lives more convenient. 
2.   I like to know how things work. (new item) 
3.   Solving a challenging engineering problem is rewarding. 
4.   I like engineering design projects. 
5.   Science is one of my favorite subjects. 
6.   I would like to play a role in advanced technology development in the future. 
7.   I find subjects requiring quantitative analysis interesting. 
8.   Engineering is exciting. 
9.   I enjoy reading about new technological innovations. 
10. I would like to have a career involving innovative engineering products design. 
11. I enjoy watching TV programs on technology related topics. 
12. I would like to be an engineer. 
 
Cost Value (Items taken from Li et al., 2008) 
13. Engineering is a tough program. 
14. Engineering is a tough career. 
15. To earn an engineering degree takes much effort. 
 
Attainment Value (Item taken from Jones et al., 2010) 
16.    The amount of effort it will take to do well in engineering courses is worthwhile 
to me. 
 
Utility Value (New Items) 
17.  Engineers are well paid. 
18.  An engineering degree leads to a profitable career. 
19.  Engineering degrees are good for getting industry jobs. 
20.  Engineering degrees offer a wide range of employment options. 
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Appendix F: Persistence Scale 

Academic Persistence (Items taken from Eris et al., 2010) 
1.  I intend to enroll in engineering courses next semester. 
2.  I intend to complete all requirements for my engineering degree program. 
 
Professional Persistence (Items taken from Eris et al., 2010) 
3.  I intend to practice engineering for at least 3 years after I graduate. 
4.  I intend to conduct research in engineering for at least 3 years after I graduate. 
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Appendix G: Descriptive Statistics for Study Variables 

Variables M SD Skewness Kurtosis 
Self-Efficacy     
General Engineering Self- Efficacy 4.95 0.75 -0.40 -0.62 
Research Skills Self-Efficacy 4.88 0.74 -0.35 -0.16 
Tinkering Skills Self-Efficacy 4.78 0.92 -0.62 0.08 
Engineering Design Skills Self-Efficacy 4.77 0.90 -0.49 -0.03 
     
Achievement Goals     
Mastery 5.12 0.61 -0.78 1.80 
Performance Approach 4.49 1.05 -0.87 0.87 
Performance Avoidance 3.73 1.28 -0.25 -0.62 
     
Task Value     
Intrinsic Value 5.07 0.68 -0.79 1.18 
Cost 5.31 0.71 -1.55 -5.40 
Utility Value 5.29 0.56 -0.35 -0.44 
     
Achievement      
ACT Mathematics Score 29.06 4.25 -0.60 0.13 
Engineering Core GPA 3.11 0.69 -0.41 -0.62 
Engineering Major GPA 3.30 0.59 -0.72 -0.09 
     
Intent to Persist in Engineering     
Intent to Persist Academically 5.57 0.94 -2.85 9.13 
Intent to Persist Professionally 4.24 1.07 -1.05 1.27 
Note. GPA = Grade Point Average 
N = 224 
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