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ABSTRACT OF DISSERTATION 
 

USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF  
CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE 

GENETIC CAUSE OF EXTREME LORDOSIS  
IN AMERICAN SADDLEBRED HORSES   

 
Champagne dilution of coat color in horses is caused by dominant gene action.  

Three sire families were identified as segregating for this trait. Genome wide linkage 
analysis using 104 microsatellite DNA markers was used to map the gene to ECA14 
(LOD > 11.0). Four genes, namely SPARC, SLC36A1, SLC36A2 and SLC36A3, were 
selected from the region implicated by linkage and their exons sequenced to identify 
genetic variation. DNA sequences were compared for two homozygotes for Champagne 
dilution, two heterozygotes and two horses without dilution. A single base change in 
exon 2 of SLC36A1 was found unique to horses exhibiting Champagne dilution.  
SLC36A1 encodes a eukaryote specific proton dependent small amino acid transporter 
also known as LYAAT-1 in rats. This change in base 188 of the cDNA from a C to a G 
(Genbank REFSEQ: Non-champagne EU432176 and Champagne EU432177), is 
predicted to cause an amino acid change from threonine to arginine in the first 
transmembrane region of the protein. This may disrupt placement of the transmembrane 
portion of the protein in the membrane interrupting function of the ion channel. No 
exceptions to the association of this mutation with the Champagne dilution (CH) allele 
were identified based on testing 182 additional horses representing 15 breeds, suggesting 
that this mutation may be the causative for the dilution phenotype. While this gene is 
expected to function as a proton/amino acid symporter based on its sequence and gene 
family, this observation for the horse is the first evidence for a phenotypic effect of 
mutation of the gene. Identifying this variant also gives breeders a new tool for selecting 
breeding stock with or without this dilution genotype. 

 
Extreme lordosis is a condition in which the dorsal to ventral curvature of the 

back is accentuated. The condition is considered a conformation fault by many 
Saddlebred breeders and is commonly referred to as swayback, softback or lowback.   
Previous studies suggested the existence of a hereditary component in American 
Saddlebred horses.  A whole genome association study was performed utilizing the 
Illumina SNP50 beadchip containing over 59,000 SNPs.  A 3 Mb region on ECA20 was 
found associated with extreme lordosis.  The distribution of markers indicated that the 
trait had a simple Mendelian recessive mode of inheritance.  Subsequently, the 
association was confirmed and the region was narrowed to just over 500 kb by a higher 
density SNP assay using 47 SNPs selected from the equine SNP database.  Identification 
of this associated region will allow future studies a better opportunity to locate the 
mutation responsible for the lordotic phenotype in young American Saddlebred Horses. 
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CHAPTER ONE:  Gene Mapping and Current Applications in Horses 

 

Introduction 

 Genetic tools have been valuable for medical and agricultural research. 

Applications of genetics have led to understanding of basic phenotypic variations, 

diseases, pathogens and the creation of therapeutic treatments. With the advent of 

improved molecular genetic techniques and the completion of whole genome sequences 

for many livestock species, including the horse, scientists have uncovered genes related 

to diseases, color patterns and performance traits. This dissertation describes two 

approaches to gene discovery used to investigate a coat color gene (Champagne dilution) 

and a morphological trait (extreme lordosis). The work is a product of modern technology 

but has deep roots in the history of genetics.   
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Section I: Nature of Natural and Artificial Selection 

 

Natural Selection  

In the middle of the 19th century, Charles Darwin, an English naturalist, noted that 

organisms within a species possess individual differences which are less pronounced in 

populations living in confined regions, but exhibit more pronounced variations between 

populations of different regions, especially with differing environmental pressures 

(Darwin, 1859). Inherited variation and evolution had long been recognized before 

Charles Darwin published his book On the Origin of Species, but he recognized natural 

selection as the subtle, but powerful, force that joined these two observations.  Darwin 

did not know how genetic variation originated but he recognized that when it occurred, 

resulting differences enabled some individuals in a population to be more efficient in 

obtaining food and reproducing.  Those individuals would leave more offspring leading 

to an increase in that genetic variant in future generations. He proposed that changes in 

the environment and changes in genetic variation could lead to evolution of new species.  

Variables in nature were the driving force of selection. One of his examples is the 

difference among beak functions and sizes possessed by finches populating different 

isolated islands of the Galapagos archipelago. He deduced differences such as these were 

under selective pressure from the environment and must have conferred reproductive 

advantage in order to get passed on from one generation to the next generation (natural 

selection).   
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Artificial Selection  

One of the major arguments that Darwin advanced about the power of natural 

selection was derived from observations of artificial selection (Darwin, 1859). Artificial 

selection exemplified by plant cultivation and animal domestication in which people 

select for plants and animals that have desirable traits.  Over time, artificial selection has 

led to production of wheat with higher yields, faster growth in livestock and greater 

power and speed among horses. Farmers select the most phenotypically desirable 

individuals for reproduction of the next generation, leading to varieties distinct from 

those found in nature, but are superbly adapted to agricultural use. This continued desire 

to reproduce desirable traits and avoid undesirable ones for efficiency and profitability is 

a driving force behind continued advances in molecular technologies and research.  
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Selective Pressure 

Selective pressure can be the result of natural selection in the wild, such as the 

female mocking bird’s selection of a mate depending upon his song or ecological 

selection caused by a trait making an individual more fit for reproduction in a particular 

environment. This pressure can also be the result of artificial selection as described 

above. Disease causing genes can be under selective pressure within certain populations.  

Genetic variants can be subjected to negative and positive selection at the same time.  If 

the selection pressures are equivalent, then the genes are said to be under balanced 

selection and the variant will be maintained in the population.   

The genetics of thalassemia, a microcytic anemia, is a good example of how 

selective pressure can result in fixation of an otherwise abnormal gene in a population. 

The genetic variant α-thalassemia has been found in a uniformly high frequency in Tharu 

people of Southern Nepal. Most Tharu people are homozygous for the α-/α-genotype, 

with an overall α-thal gene (α-) frequency of .8 in the population. It is suggested that 

holoendemic malaria resulted in preferential survival of people with α-thal genetic 

variant, enabling this population to survive for centuries despite the high occurrence of 

malaria (Modiano et al., 1991). Higher frequencies of the genes for sickle cell anemia, 

Glucose-6-phosphate dehydrogenase deficiency and Hemoglobin C are also associated 

with selective pressure from malaria in areas of Africa and around the Mediterranean 

region (Allison 1954; Ruwende and Hill, 1998 and Agarwal et al., 2000).  
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Section II: Discrete Nature of Genes 

 

Gregor Mendel, an Augustinian friar and Austrian scientist, established that the 

inheritance of particular traits in peas followed set patterns.  He studied traits that were 

easy to characterize and only occurred in one of two forms; such as; yellow or green 

seeds, tall or short stems, white or purple flowers.  He proposed that traits are passed on 

from parent to progeny as descrete units (later called genes). He characterized these genes 

as being dominant or recessive; dominant genes were always expressed in at least one 

parent while recessive genes would not be expressed unless two copies were present; one 

inherited from each parent.  His work led to two major conclusions. First, one of the two 

genes in a parent is passed to its offspring (Law of Segregation). Second, genes for 

separate traits are passed on to offspring independent of one another (Law of Independent 

Assortment) (Mendel, 1866).  These basic principles of genes and heredity were 

reestablished independently by three scientists around 1900 (deVries, 1890; Correns, 

1900; von Tschermak-Seysenegg, 1900-1901) who are collectively credited with 

rediscovery of Mendel’s Laws of Independent Assortment and Segregation.  

As an interesting side note, during this same period, the presence of chromosomes 

in the cell nucleus was noted by cytologists including Walther Flemming, Wilhelm von 

Waldeyer-Hartz and Edouard Van Beneden (Flemming, 1878; Waldeyer-Hartz, 1888).  

After the turn of the century, the relationship between chromosomes and heredity was 

first suggested by Theodor Boveri and expanded upon by Walter Sutton (Sutton, 1902). 

Morgan (1910) proved that chromosomes are the source of hereditary material.   

Mendel’s basic laws of heredity are the foundation of current studies to identify 

the genes responsible for simple and complex traits. During the 1900s many Mendelian 

genes were uncovered, one of the most famous being the ABO blood group system.  In 

1900, Karl Landsteiner identified four blood types A, B, AB and O in humans; however 

the specific genetic basis underlying the ABO system was not described until 24 years 

later (Bernstein 1924) 
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Modes of Inheritance 

The mode of inheritance is the manner in which a gene and its corresponding 

phenotype are passed down from one generation to another.  Modal inheritance patterns 

can be categorized as follows; autosomal dominant, autosomal recessive, X-linked 

dominant, sex-linked, complex and mitochondrial.  (Autosomes are the chromosomes 

that occur in duplicate pairs in individuals, one coming from each parent; Sex 

chromosomes are the X and the Y chromosome that determine the gender of the 

individual.)  Autosomal dominant genes are always phenotypically expressed when 

present, whether occurring as a singleton or in duplicate.  If the gene has a different effect 

when present in two copies, then it is referred to as an incomplete dominant gene. Cream 

dilution in horses has an incomplete dominant mode of inheritance as shown by the 

dilution of brown pigment when present in one copy and dilution of all pigment when 

present in two copies (Adalsteinsson, 1974).  Autosomal recessive conditions are only 

manifested in individuals bearing two copies of the variant allele, or, to put it another 

way, in the absence of a dominant gene.  Chestnut coat color is due to a recessive gene 

resulting in a loss of function variation that prevents production of black pigment 

(Marklund et al., 1996).  

Sex linked inheritance is associated with genes on the X or Y chromosome in 

mammals.  Females have two copies of the X chromosome while males have only one X 

and one Y chromosome.  Males possess a single copy of genes on the X chromosome and 

will express whatever gene is present.  As a consequence, genes which are recessive and 

rarely detected in females are readily expressed in males.  Males are said to be hemi-

zygous for the X chromosome since they have but one copy.  X-linked recessive traits are 

manifested in females where both X chromosomes bear the variation and in males 

carrying just the single X chromosome with the causative variation. Hemophilia is a 

hemorrhagic disease inherited as a sex linked recessive trait.  Queen Victoria of England 

was a carrier of hemophilia.  It was long speculated which form of hemophilia was 

carried by the royal family and no living carriers exist.  Discovery of tombs containing 

Czar Nicolas II’s entire family provided the necessary genetic material, namely from 

Czar Alexis who had the disease. This led to the discovery that the royal hemophilia was 

hemophilia B caused by a mutation of the F9 gene (Lannoy and Hermans, 2010) 
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Some phenotypically similar traits have heterogeneous origins, with different 

genetic variations within the same gene responsible for a common phenotype, such as is 

the case with Dominant White in horses.  In some horse breeds all white or partial white 

horses arise from the matings of solid colored parents.  In many of these cases the white 

color is inherited as a monogenic autosomal dominant trait that spontaneously arose in 

one of the parent’s germ line cells (Haase et al., 2007, Haase et al., 2009, Haase et al., 

2010).  Duchenne’s muscular dystrophy (Emery, 1984) is the result of many different 

individual variations, some of which occurred spontaneously in germ line cells.  Genetic 

variations in different genes can also cause a single phenotype.  Osteogeneisis imperfecta 

(OI) is a connective tissue disorder with different genes (namely collagen gens and genes 

coding for proteins that form complexes with them) responsible for different types of OI.   

Complex inheritance is the result of multiple genes, their interactions with other 

genes and/or interactions with the environment, all playing a role in the risk of disease or 

trait development.  Athletic performance is influenced by training in addition to 

hereditary characters influencing strength, endurance, speed and intellect.  For example: a 

287 bp in/del identified in the angiotensin converting enzyme, ACE gene, was found to 

be associated with serum levels of the product enzyme (Rigat et al., 1990).  Frequency of 

the insertion allele was also found to be associated with endurance 1996 study of 

Australian rowers (Gayagay et al., 1998).  In a study of British mountaineers, the ACE 

insertion allele was associated with the ability to climb greater than 8000 feet without 

oxygen with no deletion homozygotes present in this elite group.  The deletion genotype 

has been found to be associated with sprinters and short distance swimmers (Montgomery 

et al., 1998).  Observed associations such as this only account for part of the heritability 

of these traits.  There are other yet unknown genes involved in these abilities or 

phenotypes.   

Mitochondria are organelles found in the cytoplasm of cells; mitochondrial DNA 

is a closed circular molecule 16,569 bp long, encodes 13 genes and is only inherited from 

the mother (Anderson et al., 1981, Giles et al., 1980).  Many of the inherited 

mitochondrial disorders are due to mutations in the approximately 1500 nuclear genes 

that are targeted to the mitochondria and only half of which have been identified (Calvo 

et al., 2006).  
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Linear Organization of Genes and Recombination  

The first linkage between genes was discovered, but not understood, in studies of 

dihybrid crosses in pea plants similar to Mendel’s work, by William Bateson, Edith 

Rebecca Saunders and Reginald Punnett (Bateson et al., 1905). This linkage between 

traits was later elucidated by Thomas Hunt Morgan in his studies of Drosophala 

melanogaster (fruit flies) at Columbia University.  Morgan ascertained the presence of 

the discrete hereditary sex determining unit known as the X chromosome in breeding 

experiments with a white eyed fly (Morgan, 1910).  He observed co-segregation of white 

eyes and gender corresponded with the presence of chromosomes. Morgan suspected 

crossing over/recombination of chromosomes when he noticed that the “linked” traits of 

small wing and white eye would sometimes separate (Morgan, 1911).  Morgan’s student, 

Alfred Sturtevant, was able to calculate the linear genetic relationship between the trait 

loci and piece together the first map of genetic linkage by calculating recombination 

frequency/crossing over events between linked loci (Sturtevant, 1913).  This research 

demonstrated that genes were discrete hereditary units which were joined in a linear 

arrangement in relation to one other like beads on a string (Sturtevant and Beadle, 1939).  

Some chromosomes are very large and it is not possible to detect linkage between genes 

residing on opposite ends of a chromosome.  Therefore, the presence of testable markers 

that give good coverage of a chromosome is important. 
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Section III: Nature of Genetic Variation 

Every cell of mammals, except germ line cells, contains the full complement of 

DNA, called the genome.  Its code is comprised of different combinations of only four 

bases; adenine, thymine, guanine, and cytosine (A, T, G, C).  Phenotypic differences in 

organisms are the result of physical and structural changes to this code.  There are also 

many physical and structural differences of the DNA that will not be associated with 

phenotypic differences.  These variations present in the genome are discussed below. 

 

 SNPs 

Single nucleotide polymorphisms, SNPs, are a single base change in the sequence 

of DNA.  In 2001 a human SNP map was compiled using 1.42 million SNPs.  This 

included all the SNPs that were publically available from multiple sources in November 

of 2000.  This indicated about one SNP per 1.9 kbp.  An estimated 60,000 of these SNPs 

were believed to fall within coding regions (Sachidanandam et al., 2001).  By 2008, a 

sequencing project of an individual person identified over 3 million SNPs.  This indicates 

the presence of approximately 1 SNP per 1000 bases.  More than 10,000 of the SNPs 

cause amino-acid substitutions in known coding sequences (Wheeler et al., 2008).  The 

number of SNPs present in the genome can vary among other species, as the grapevine 

(Vitis vinifera L.) has SNPs occurring one in every 47 bp in non-coding regions and one 

in 69 bp in coding regions (Lijavetzky et al., 2007)  

 

Insertions and Deletions: In/Dels 

Insertions and deletions (IN/DELS) can involve a single base or several thousand 

bases and have the potential to cause disease or phenotypic change if they occur in a 

location that alters a gene’s transcript or expression. Messenger RNA transcripts are read 

by the translation machinery in sets of three base pairs at a time, called codons. The 

insertion or deletion of a single base, or any group of bases not in a multiple of three, 

results in a “frameshift”. A frameshift results in a different codon reading frame from the 

point forward from a mutation resulting in an altered product or introducing a premature 

stop codon. 
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Duchenne’s (DMD) and Becker’s (BMD) Muscular Dystrophy are examples of 

genetically heterogenous X-linked recessive lethal diseases caused by various deletions, 

duplications and point mutations in the dystrophin gene.  The dystrophin gene is a large 

gene coding for a long protein product that is part of the motor network in muscle cells. 

Disease severity depends on whether the in/del creates a frame shift or remains in frame. 

The frame-shift variants cause a more severe phenotype, because the altered reading 

frame introduces premature termination codons, whereas in frame variants are still 

functional (Prior and Bridgeman 2005).  The dystrophin gene is located on the X 

chromosome in a highly morphogenic region, also known as a mutational “hot spot”.  

Deletions or duplications account for about two-thirds of the cases of DMD and BMD 

with the remainder of the cases accounted for by smaller deletions and point mutations as 

reviewed by Prior and Bridgeman (2005).   

 

Tandem Repeats 

Tandem repeats are categorized into two groups; micro- and mini- satellites.   

Microsatellites can range from 1 to 4 base pairs; single nucleotide, dinucleotide 

trinucleotide and tetranucleotide.  Repeats of units 6 to 64 bases long are minisatellites 

and can span from 100 bp to 10 kb (Jeffries et al., 1985).  Satellites are units from 5 to 

171 bp and repeats can span from 100 kb to several Mb. A mega satellite is a repeat 

composed of units several kilobases long and can span several hundred kilobases.  The 

number of repeats in succession can be polymorphic in the population due to polymerase 

slippage at DNA replication or mismatched recombination during meiosis.   

Microsatellites in the form of simple tandem repeats with the dinucleotide 

sequence [i.e., (dT-dG)n], are interspersed throughout the human genome with 

approximately 50,000 copies present.  They can be highly polymorphic and their 

variability makes them suitable for gene mapping and parentage testing (Litt and Luty 

1989, Weber and May 1989).  They are usually absent from exons of genes because a 

dinucleotide expansion would disrupt the reading frame of the exon in which they 

resided, resulting in a frame shift.  Polymorphism of a dinucleotide repeat in the STAT 6 

gene is associated with allergic diseases (Tamura et al., 2001).  Trinucleotide repeats are 

the most common form responsible for repeat expansion diseases and disorders. 
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Huntington’s disease, a neuronal degenerative disease in humans, is a genetic 

disorder inherited in an autosomal dominant fashion and is caused by an exonic 

trinucleotide (CAG)n expansion.  In the normal population this repeat is highly 

polymorphic ranging in size from 11 to 34 repeats. Huntington’s cases possess 48 or 

more repeats of this trinucleotide.  Expansions of the repeat occur from one generation to 

the next and exhibits “anticipation”, which is an earlier age of onset with each affected 

generation due to increased repeat length. Lack of recombination of the affected 

chromosome and transmission from the father is typical (HDCRG 1993).  Myotonic 

dystrophy 1, DM1, is caused by a trinucleotide CTG expansion in 3’ untranslated region 

of the dystrophia myotonica-protein kinase gene, DMPK; whereas, an intronic 

tetranucleotide CCTG expansion in intron 1 of zinc finger protein 9, ZNF9 is responsible 

for dystrophia myotonica 2, DM2 (Liquori et al., 2001). 

Minisatellites can be highly polymorphic.  A human DNA “fingerprint” was 

purified and cloned in 1986. This 6.3 kilobase long minisatellite contained multiple 

copies of a 37 bp repeat unit. It was found to have 77 different sized alleles containing 14 

to 524 repeats among 79 individuals (Wong et al., 1986).  The human Aggrecan (ACAN) 

gene contains several repeat domains which are recognition sites for the binding of other 

molecules.  Its keratin sulfate attachment domain has 11 repeats of a hexameric amino 

acid sequence. The chondroitin sulfate binding region, CS1, has a highly conserved 

repeat region that translates to the same 19 amino acids repeated 19 times (Doege et al., 

1997).  Larger repeats, which are so big they cytogenetically alter the chromosomes, have 

been identified.  A repeat spanning over 1 Mb of chromosome 15 has been identified. 

The repeat region contains unprocessed partial duplicates of the GABRA5 gene and 

unprocessed duplicates the immunoglobulin heavy chain (IgH) D segment gene and the 

neurofibromatosis type 1 (NF1) gene (Ritchie et al., 1998). 
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Transposable Elements 

The first transposable elements were discovered in maize (McClintock, 1950). 

Transposable elements can be separated into two categories, Class I retrotransposons and 

Class II transposons. Class II elements are DNA transposons which are movable elements 

that are excised from the genome then inserted at a new location.  This family of 

transposable elements includes; Drosophila P elements, Helitrons and Maverick (Richard 

et al.,. 2008).  The Class I elements relocate in a copy and paste  method utilizing RNA 

as the copy which is then reverse transcribed and pasted back into the genome in another 

location.  These elements include long terminal repeats (LTRS), long interspersed nuclear 

elements (LINES), short interspersed nuclear elements (SINES), Dictyostelium 

intermediate repeat sequence (DIRS) elements and Penelope-like elements (PLE).  In the 

horse, ERE1 and ERE2 are two members of the SINE family of transposable elements 

(Gallagher et al., 1999). There are five members of the LINE family of transposable 

elements represented in the horse (Adelson et al., 2010).  

Alu elements of the SINE category are roughly 280 nucleotides long with no 

introns and are the most common transposable elements across the human genome with 

nearly 1 million copies present (Schmid, 1998).  Alu elements are commonly found 

associated with some microsatellites and may play a role in microsatellite expansion or 

transposition within the genome (Arcot et al., 1995). The insertion of Alu elements into 

or near genes can disrupt gene function. Genetic mutations in genes due to insertion of 

Alu elements account for approximately 0.1% of human diseases or disorders including, 

but not limited to; neurofibromatosis, hemophilia, breast cancer, Apert syndrome, 

cholinesterase deficiency and complement deficiency (Deininger & Batzer, 1999).  An 

Alu insertion into exon 5 of the Factor IX gene was found to be the cause of hemophilia 

B in one patient. This insertion interrupted the reading frame of the gene and introduced a 

stop codon within the inserted sequence (Vidaud et al., 1992). 
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Copy Number Variations (CNV) 

When insertions or deletions involve an entire gene, and possibly its promoter 

region, copy number variations arise.  An increased or decreased number of the same 

gene creates a gene dosage effect.  For example, a duplication of the CC chemokine 3-like 

1 (CCL3L1) gene has been found to decrease host susceptibility to infection by HIV.   

The product of this gene is a ligand for the main co-receptor for HIV, the CC chemokine 

receptor 5 (CCR5).  Individuals possessing more copies than the population average of  

two to four copies (depending upon the geographic region/population) for the CCL3L1 

gene have decreased susceptibility to HIV infection.  Individuals with the lowest copy 

numbers for these populations had between 69 and 97% higher chance of getting HIV 

(Gonzalez et al., 2005).  Copy number variations have been found associated with autism 

(Sanders et al., 2011).  A duplication found at a site known for microdeletions, which 

cause Williams–Beuren’s Syndrome, has been found to have the opposite effect of the 

microdeletions, which are known for expressive language, but poor drawing capabilities. 

The patient with the duplication had severe language difficulties, especially with 

expressive language, but had increased drawing capabilities for expressing thoughts 

(Somerville et al., 2005). 

 

Pseudogenes 

Pseudogenes are related to functional genes, but are defective.  Pseudogenes fall 

into two categories; genes that retain the regulatory and intervening sequences and the 

more abundant variety that lacks introns and regulatory sequences.  The latter category, 

known as processed pseudogenes, are the result of reintegration mature mRNA into the 

genome; a process also known as retrotransposition. Processed pseudogenes lack introns 

and other regulatory sequences, have poly A tails and are flanked by direct repeats of 7-

17 base pairs (Vanin, 1985). Pseudogenes can complicate gene discovery with their 

similarities to functional genes. Beta-tubulin is a member of a multi gene family. Four 

sequences are represented in the human genome.  One sequence is the expressed gene 

which yields 1.8 kb and 2.6 kb mRNAs resulting from two different polyadenylation 

sites. The other three members of this family are processed pseudogenes each flanked by 

different short direct repeats; two derived from the 1.8 kb mRNA and the other derived 
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from the 2.6 kb mRNA (Gwo-Shu Lee et al., 1983).  Not all retroposons result in 

pseudogenes. The human phosphoglycerate kinase family includes a functional intronless 

PK2 gene and the pseudogene psi hPgk-1 (McCarrey, 1990). 

Redundancy can be created in a genome when one or several genes or even the 

entire genome is duplicated in its entirety. Segmental duplication can happen during 

unequal “crossing over” resulting in homologous recombination between similar 

sequences.  When complete genes are included in the duplicated sequence, the gene 

duplication events can lead to growth of gene paralogues.  Resulting gene families 

contribute to copy number variation and increased gene dosage effect.  When mutations 

collect in one or more of a gene’s duplicates, they may be silenced into a pseudogene or 

become a unique gene with a new distinct or specialized function. Approximately 40% of 

the coding regions in the olfactory receptor cluster on human chromosome 17 are taken 

up by pseudogenes (Sharon et al., 1999).   

 

Inversions 

Inversions are DNA segments that have been flipped compared to their relative 

position in the genome.  In heterozygotes they have been noted to suppress recombination 

of the region in which they reside.  An inversion will cause phenotypic effects if it 

disrupts a gene or regulatory region that controls expression of a gene or genes.  

Many cases of Hemophilia A were found to be caused by an inversion.  

Hemophilia A is an X-linked disorder caused by various mutations in the factor VIII gene 

(Lakich et al., 1993).  Approximately 43% of individuals with this disease possess an 

inversion involving this gene due to chromosomal homologous recombination beginning 

mainly in male germ cells (Antonarakis et al., 1995). In horses, a 43Mb inversion near 

the KIT gene has been found responsible for the Tobiano coat pattern (Brooks et al., 

2007). 

 

Translocations 

Mismatching during meiosis can lead to translocations where one segment of a 

chromosome is removed from its normal location and moved to a different position on 

that chromosome or to another chromosome.  Large translocations are usually 
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microscopic in size and categorized as cytogenetic defects.  Smaller translocations have 

to be characterized on a molecular level. Autosomal translocations, characterized 

cytogenetically, have been associated with repeated early embryonic loss in horses (Lear 

et al., 2008). Translocations of genetic material from the X or Y chromosomes can have 

developmental effects on sex determination (Villagómez  et al., 2011). Examples of 

human diseases caused by translocations include acute myeloid and acute lymphoblastic 

leukemia.  In these diseases the Myeloid/Lymphoid (MLL) gene has been implicated 

because it spans the breakpoint of an 11q23 translocation (Thirman et al., 1993). 

 

Methylation/Imprinting 

The methylation status of any genomic region can determine whether that region 

is packaged tightly into heterochromatin and transcriptionally silenced or whether it is 

more loosely packed into euchromatin exposing it to molecular factors for its active 

transcription.  The methylation status of some regions or genes can be maternally or 

paternally predetermined at conception, a phenomena known as imprinting.  The hybrid 

offspring of horses and donkeys are known as hinnies (product of female donkey male 

horse) and mules (product of female horse and male donkey).  Their physical and 

temperamental differences are suspected to be the result of preferentially expressed 

maternal/paternal genes (Allen et al., 1993). Hinnies tend to be smaller in stature like the 

donkey dam and have longer manes and shorter ears like the horse sire.  Mules tend to be 

taller like the horse dam with longer ears and sparse mane more like the donkey sire.  

Both tend to have temperaments more similar to the sire as well.  In a recent study 

comparing, horses, donkeys, mules and hinnies, it was found that 15 known imprinted 

genes, play a major role in placental development.  These 15 equine imprinted genes 

matched imprinting direction as previously seen in human, mouse, hinny and mule.   The 

five maternally expressed genes included insulin-like growth factor 2 receptor (IGF2R) 

and nucleosome assembly protein 1-like 4 (NAP1L4).  The ten paternally expressed genes 

included Insulin-like growth factor 2 (IGF2) and paternally expressed gene 3 (PEG3).  

An additional 78 paternally biased candidate imprinted genes were also identified (Wang 

et al., 2013).  The different prenatal environments resulting from these differentially 

expressed genes may explain a few of these differences. 
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There are some genes that are dosage dependent and one active copy is all that is 

required for development and life.  Two active copies may result in a disease state.  To 

protect against this, one copy, the mother’s or the father’s (depending upon the gene), is 

silenced by methylation of cytosines in GC rich regions within that genomic area.  These 

genes are inherited from the mother or the father in a silenced or active state known as 

imprinting.  The insulin like growth factor 2 (IGF-2) gene is affected by tissue specific 

maternal imprinting in mice. Both alleles are transcriptionally active in the choroid 

plexus and leptomeninges, but only the paternal IGF 2 allele is active in all other 

embryotic tissues (DeChiara et al., 1991).  Genes may also be silenced or activated by 

increased or decreased methylation due to environmental cues or point mutations that 

alter the GC content of a region. The changes to DNA methylation or histone acetylation 

as a result of exposure to carcinogens is implicated in some cancers by the mechanism of 

increased methylation of DNA repair genes or deacetylation of histones allowing 

reactivation of developmental genes, both of which may possibly also be a catalyst for 

increased mutation rate of surrounding DNA or destabilization of nearby microsatellites.  

Excessive methylation throughout a 5' "CG island" region of the pi-class glutathione S-

transferase gene (GSTP1) is associated with human prostate cancer (Lee et al., 1997). 

 

Heterogeneity of Phenotypes 

 Not all phenotypes are the result of single discrete Mendelian variation. There are 

some diseases with well defined phenotypes that are caused by different variations in 

different families or populations, but within the same gene. Alternately, there are diseases 

with similar, yet difficult to distinguish, phenotypes which can be the result of variations 

in different genes that play roles in the same pathway or process.  Severe combined 

immunodeficiency (SCID) is a group of autosomal recessive diseases in people that is 

genetically and phenotypically heterogeneous.  Two of the first phenocopies of SCID 

characterized in the 1970s were purine nucleoside phosphorolase deficiency and 

adenosine deaminase deficiency both of which are inherited in an autosomal recessive 

manner (Giblett et al., 1975, Giblett et al., 1972 and WHO Scientific Group, 1995).  X-

linked forms of SCID are due to mutations in the γ chain of IL-2 receptor (Schwaber and 

Rosen, 1990).  The more rare causes of SCID are the result of MHC class II deficiency, 
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reticular dysgenesis, CD3γ or CD3ε deficiency or CD8 deficiency (Reith et al., 1988, 

Ownby et al., 1976,). There is heterogeneity of variants within the genes responsible for 

each type of SCID.  SCID is a condition in horses and mice, but equine and murine SCID 

are a result of a deficiency in DNA-PK; a gene not implicated in any cases of human 

SCID(Perryman and Torbek 1980, Pla and Mahouy 1991).  

Cystic Fibrosis (CF) is an autosomal recessive disease that is the result of many 

different individual mutations in the CFTR gene. Several of the variations responsible for 

CF and differences between their manifestations of the disease are covered in a review by 

Lommatzsch and Aris (2009).  The CFTR locus was mapped by positional cloning to 

human chromosome 7q in 1989 and was the first genetic disease mapped in this fashion 

(OMIM 1998).  This disease has a broad range of manifestations depending on the 

mutation(s) present in the individual.  Generalized atrophic benign epidermolysis bullosa 

(GABEB) is another autosomal recessive disease responsible for sub-epidermal 

blistering, alopecia, dystrophic nails and dysplastic teeth which is caused by different 

independent mutations in the same gene.  This disease is due to reduced or eliminated 

expression of the collagen17 gene, COL17A1 also known as BPAG2, resulting from 

nonsense mutations, which are genetic variations that introduce premature stop codons 

(PTCs) into a transcript.  A few of the mutations responsible for GABEB are SNPs 

altering an amino acid residue directly to a PTC (Darling et al., 1997).  Another causative 

variation is in the form of a double base deletion which creates a frame shift in the 

reading frame of the resulting RNA creating a PTC downstream of the deletion (McGrath 

et al., 1996).  These variations each cause disease when an individual is homozygous for 

any one, but individuals can also be affected when they are compound heterozygotes 

(Darling et al., 1997).  Fragile-X Syndrome, hemophilia, Duchenne’s and Becker’s 

Muscular Dystrophy and red-green color blindness are other examples of X-linked trait 

with heterogeneity of mutations within a single gene. 
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Complex Genetic Modes of Inheritance 

Many common traits and diseases are not the result of simple Mendelian 

inheritance of a single variant.  These are defined as quantitative traits that result from the 

cumulative action of multiple genes that interact with each other in a biological pathway 

or process.  Causative genes identified in the study of complex traits are known as 

quantitative trait loci (QTLs).  In humans, height clearly has a genetic component but is 

the product of many genes, deduced from early genetic studies over 95 years ago (Galton, 

1886, Fisher, 1918).  Heritability of height is approximately 0.8, meaning it has a very 

strong genetic component, but roughly 20% of height is determined by environmental 

factors (Visscher et al., 2010, Allen et al., 2010).   Hypertension (high blood pressure) is 

a common disorder that is the result of complex polygenic inheritance (Rapp, 1983).  

Hypertension can lead to stroke, heart attack or other forms of cardiovascular disease.  

Cardiovascular disease is the leading cause of death in the world (WHO, 2011).  Initial 

investigations to locate QTLs for hypertension were done crossing hypertensive rat 

strains with normotensive strains then crossing the F1 progeny to produce offspring to be 

tested for segregating marker alleles (Rapp, 1983; Rapp, 1987 and Rapp, 1991). 

 

Milk yield, fat percentage, fat yield, protein percentage and protein yield are 

polygenic traits in dairy cattle.  These traits are the consequence of the interaction of 

multiple genes and are partially affected by environmental factors.  The first statistically 

significant QTLs for milk production in Holstein dairy cattle were mapped to five 

chromosomes implementing interval mapping and “progeny testing” using microsatellites 

(Georges et al., 1995).   

 

Osteochondrosis dissecans (OCD) is a condition in horses where the bone under 

the articular cartilage fails to completely form resulting in tears and fissures in the 

cartilage surface above and can affect any bone/joint surface. It can affect the cartilage of 

any joint, but clinical significance is attributed to joints that affect soundness. 

Heritablility for Osteochondrosis of the hock joint (OC) and palmar/plantar osteochondral 

fragments (POF) was investigated in a study that included 24 Swedish Standardbred 

trotter sire families. This study concluded a heritability of 0.34 for OC and 0.23 for POF 

18 
 



 

(Philipsson et al., 1993).  It is thought that several genes play a role in location and 

severity, as well as its age of onset. There appears to be an increased occurrence of this in 

young horses with rapid growth. This condition is considered to be a complex trait and it 

is believed diet, injury, exercise and genetics all contribute to its development 

(Stromberg, 1979).  Microsatellite based WGAS conducted over the last decade have 

identified 14 quantitatitive trait loci that play a role in OCD, but only a few match 

locations between the different breeds of horse (Distl, 2013).  
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Section IV: Genetic Markers and Maps 

The rediscovery of Mendel’s genetic principles led to investigations for 

Mendelian genetic variation in diverse organisms.  For example, this led to investigations 

of blood groups in animals such as; cow (Ferguson, 1941), pig (Andresen and Baker, 

1964) and horse (Stormont and Suzuki, 1964).  Biochemical and isozyme alleles were 

found to be valuable and potentially polymorphic markers to observe for hereditary 

variation between individuals.   Isoenzyme markers also became useful biochemical 

markers for certain malignancies (Bostick et al., 1978). 

During the 1970s, scientists were sequencing the genes they identified.  Some of 

the first sequencing was accomplished through chemical modification of the DNA and 

cleavage of the modified product at Harvard University (Maxam and Gilbert, 1977).  The 

development of the chain-terminator sequencing method designed by Frederick Sanger at 

Cambridge University was a groundbreaking step in molecular genetics (Sanger and 

Coulson, 1975 and Sanger et al., 1977). Higher sequencing throughput increased the 

discovery rate of polymorphisms in the genome such as SNPs and microsatellites.  

Restriction fragment length polymorphisms, RFLPs, are the result of polymorphisms in 

the genome that introduce or eliminate a cleavage recognition site for restriction 

enzymes.  Restriction enzymes are a special class of bacterial endonucleases that 

recognize specific sequences of nucleotides in double stranded DNA and cause cleavage 

of both strands in a specific place of the recognition site.  Their original function was to 

degrade bacteriophage DNA to restrict its ability to proliferate in the bacteria.  The first 

specific cleavage site was found for the restriction endonuclease Hae I (Kelly and Smith, 

1970).  Sites for these enzymes were some of the first markers used for mapping purposes 

(Botstein et al., 1980).  An initial linkage map of the human genome was developed in 

1989 with 403 polymorphic loci, including 393 RFLPs linked to approximately 95% of 

the genome (Donis-Keller et al., 1987).  Sickle Cell Anemia, an amino acid variant in 

hemoglobin resulting from a single base change, was the first instance of a disease 

phenotype found to be linked to a polymorphism at a restriction site (Kan and Dozy, 

1978). The gene for Huntington’s disease was mapped to chromosome 4 and the region 

where it resided was narrowed considerably using RFLPs (Shoulson and Chase, 1975, 

Gusella et al., 1983, Gilliam et al., 1987).  Restriction sites contain only two alleles, so 
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RFLPs aren’t always sufficiently informative for mapping endeavors. The more 

polymorphic nature of microsatellites made them a new valuable tool for gene mapping 

and parentage testing (Litt and Luty, 1989, Weber and May, 1989).  A second generation 

linkage map was constructed using family segregation analysis, with 813 markers on 22 

autosomes and the X-chromosome spanning regions covering about 90% of the estimated 

length of the human genome (Weissenbach et al., 1992). Over the next two years, the 

human marker map would be expanded to 2,066 markers (Gyapay et al., 1994) 

In 1990, the NIH gene-mapping project, also known as the human genome 

project, was initiated.  What began in 1911 with the assignment of a single gene on the 

X-chromosome became the project of the century in 1990, a 15 year plan with the end 

goal of sequencing the entire 3 billion base pairs of the human genome.  This project, 

which seemed farfetched at its inception, was completed 2 years ahead of schedule in 

2003. A press conference on April 14th of that year and special issues of Nature: Double 

Helix at 50 (April 24, 2003) and Science Building on the DNA Revolution (April 11, 

2003) marked this historic landmark in genetic research. 

The human genome of approximately 3 billion base pairs was sequenced and 

subsequently assembled in 2001 to find that it actually only harbors 20 to 25 thousand 

genes (Venter et al., 2001, International Human Genome Sequencing Consortium 2004).  

To explain human complexity from so few gene products, it is believed that about 70% of 

human genes produce multiple mRNAs from alternate splicing of exons or parts of exons 

(Black, 2003). A single gene can produce multiple mRNA and/or protein products.  Each 

gene product can affect multiple genes upstream and downstream from it or even affect 

its own transcription with positive or negative feedback.  A common phenotype can arise 

from multiple variations in a single gene or from variations in a variety of genes within a 

network.   Different variations in a single gene can play a role in many phenotypically 

different traits or diseases or be the cause of a single disease or phenotype.  Even 

environmental factors can affect gene expression or even result in the introduction of 

variations which lead to disease phenotypes. 
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Genome Sequences and SNP Discovery 

The Human Genome Project ushered in an era of genomics with the development 

of methods and tools to cheaply and rapidly sequence DNA and investigate gene 

expression.  With the advent of the genomics era, the complete genomes of more than 

180 organisms have been sequenced 

(http://www.genomenewsnetwork.org/resources/sequenced_genomes/genome_guide_p1.

shtml).  The genomes of pathogens have been sequenced to aid in the development of 

vaccines and therapies; Neisseria meningitidis, Heliobacter pylori, Mycobacterium 

tuburculosis and Pseudomonas aeruginosa (Pizza et al., 2000; Tomb et al., 1997; Cole et 

al., 1998 and Stover et al., 2000) to name a few. The genomes of model organisms; 

Drosophilia melanogaster (Adams et al., 2000; Myers et al., 2000; Rubin et al., 2000), 

mouse (Asif et al., 2002) and Norway rat (Gibbs et al., 2004) were sequenced to inform 

us about genetics, The genomes of many vertebrates, including cattle (Zimin et al., 2009), 

chickens (Hillier et al., 2004)), dogs (Lindblad-Toh et al., 2005)) and horses (Wade et al., 

2009), were sequenced to inform us about the genome organization of vertebrates relative 

to that of human and mice.  

This surge of DNA sequencing led to discovery and use of SNPs which are, at 

best, only diallelic and often may not be polymorphic in families or even in certain 

populations. However, these are so numerous that finding a polymorphic SNP within a 

region is relatively simple since they occur roughly 1 per 1000 bases.  Genome-wide 

studies identify millions of SNPs from which assays of tens of thousands would provide 

coverage of 20 or more SNPs per centiMorgan.  For example; the low density SNP array 

currently used for the domestic horse includes over 54,000 polymorphic SNPs with 

approximately 54kb between SNPs (McCue et al., 2012).  SNPS can and are used for 

linkage studies, but the large numbers available make them suitable for genome wide 

association studies (GWAS), which have power for the mapping and discovery of genes 

responsible in complex traits and diseases (International Hapmap Consortium, 2007). 
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Nature of Genome Wide Association Studies (GWAS) 

A genome wide association study is a way to investigate genetic associations at a 

population level without families. This is necessary if the trait is rare, samples are 

difficult to acquire or if the mode of inheritance is unclear. The discovery of more than a 

million SNPs and the ability to design and implement a SNP chip to assay thousands of 

SNPS spanning the entire genome at the same time has provided a way to perform 

powerful population level studies.  A genome-wide association study (GWAS) is the 

investigation of thousands of common genetic variants in different individuals in search 

of any variant associated with the trait of interest. It is based on the concept of linkage 

disequilibrium, LD, shown in Figure 1.1. Variations in the genome arise over time.  All 

individuals possessing the variation also share a common set of markers, some of which 

are close enough to the variation that they were passed down together from generation to 

generation. In a GWAS, informative markers in LD with the variant or gene of interest 

will show statistical significance. 
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Figure 1.1: Linkage Disequilibrium Explained. 
This figure shows the emergence of variations over time. The red starburst is a genetic 
variation of interest. This is an example of linkage disequilibrium (LD) between a 
specific variant and nearby markers/variants. The variation of interest is closer in time of 
emergence with the brown marker, but physically closer and in LD with the white 
marker.  This physical proximity reduces the likelihood these two points will be separated 
by recombination during meiosis. 
 

The completion of whole genome sequences and discovery of millions of SNPs 

has made it possible to investigate genetic associations at a population level and without 

involvement of families. This is important in the following cases:  

• The trait is rare and a limited number of affected individuals are available for 
study,  

• The trait is one which is undesirable and breeders will not select or save affected 
offspring, (Indeed, in extreme cases they may be reluctant to identify affected 
offspring as coming from their breeding stock.)  

• The mode of inheritance is unclear, due to genetic complexity or due to 
incomplete penetrance.  

 In such cases, GWASs have proven effective by successfully identifying risk loci 

for disorders such as rheumatoid arthritis, Crohn’s disease, bipolar disorder, 

hypertension, diabetes and many others (Stranger et al., 2011).  GWAS is based on a 

basic population genetics concept, the presence of linkage disequilibrium between genes 
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and markers. Animals which belong to the same breed may share common ancestors 

within 10, 20 and 30 generations spanning 100-300 years.  Genes closely linked in the 

ancestor are unlikely to have been separated by genetic recombination events.  As a 

result, there will be a statistical association between alleles of closely linked loci.  In 

practice, human populations demonstrate linkage disequilibrium between SNPs in 

haplotype blocks that are from 8.8 to 25.2kb (Hinds et al., 2005).  For horses, dogs, and 

cattle, the LD ranges from 1-8 million bases (McCue et al., 2010; Gray et al., 2009 and 

Khatkar et al., 2008).  Therefore, when a genetic trait exists within a population and 

animals with and without that trait are compared, using tens of thousands to hundreds of 

thousands of informative SNPs, statistical associations may be detected.   

 
Marker Maps for Linkage Studies, Especially in the Horse 
 

With the advent of molecular genetics, several types of genetic markers were used 

in early linkage studies.  The two earliest markers used were restriction fragment length 

polymorphisms (RFLPs) and simple tandem repeats (STRs) or microsatellites.  RFLPs, 

were used to develop genetic maps in hybrid plant lines (Tanksley et al., 1989) and for 

domestic animals (Fries and Ruddle, 1989). Microsatellites soon proved even more 

effective than RFLPs since they were more widely distributed throughout the genome 

than STRs and often had multiple loci ensuring that more loci would be informative in 

families (Litt and Luty, 1989; Weber and May, 1989). Linkage maps were developed for 

many of the organisms being studied.  By 1992, a second-generation human linkage map 

was constructed of 814 polymorphic markers including microsatellites and RFLPs which 

covered about 90% of the estimated length of the human genome (Weissenbach et al., 

1992). 

Early studies of genetic markers in horses involved investigations of genetic 

systems useful for parentage testing.   Three autosomal linkage groups were discovered 

prior to the initiation of the Horse Gene Mapping Workshop in 1995. The first linkage 

group included the K blood group locus and the 6-phosphogluconate dehydrogenase 

locus (Sandberg, 1974). The second linkage group consisted of four loci; serum albumin 

locus (Al), tobiano (TO), vitamin D binding protein locus (Gc) and the serum esterase 

locus (Es) (Trommershausen-Smith, 1978; Sanberg and Juneja, 1978; Weitkamp and 
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Allen, 1979). The third linkage group included the A blood group and lymphocyte 

alloantigens (Bailey et al., 1979).  The coat colors chestnut and roan were found to be 

linked to loci Al and Es in the second linkage group (Andersson and Sandberg, 1982).  

Identification of these linkage groups was the beginning of the budding equine marker 

map.  These discoveries were less an effort to make a comprehensive map and more a 

byproduct of genetic investigations. 

In the 1990s, microsatellite DNA markers were identified and found to be suitable 

for parentage testing (Litt and Luty, 1989; Weber and May, 1989). Over the next decade, 

sequencing of equine genes and genomic regions began yielding more and more 

microsatellites to be used in a future equine marker map and well suited for parentage 

testing 

In 1995, a group comprised of 70 scientists from 20 countries gathered to 

collaborate on mapping and sequencing the horse genome.  Publication of the first 

sizeable equine linkage map occurred in 1998 and was comprised of 100 markers in 25 

linkage groups encompassing 18 equine autosomes (Lindgren et al., 1998).  The next 

year, a map was published containing 182 microsatellites and 58 random amplified 

polymorphic DNA (RAPD) markers sorted into 33 linked groups.  Twenty two of the 

groups were assigned to known chromosomes with the remaining 11 groups just 

provisionally placed upon verification by other methods (Shiue et al., 1999).  The first 

linkage maps for horses were reported with 140, 161 and 353 microsatellite markers, 

respectively, by combining of resources from the International equine gene mapping 

workshop culminating in a comprehensive map of 766 markers (Lindgren et al., 1998; 

Guerin et al., 1999; Swinburne et al., 2000 and Penedo et al., 2005).   

While linkage maps were effective at identifying genetic distances between 

polymorphic genetic markers, they did not provide as much information about genes. 

Gene sequences are highly conserved among species and comparative genetic studies 

using cross-species fluorescence in situ hybridization (Zoo FISH) indicated strong 

conservation of genome structure.  Radiation hybrid maps were used to visualize the 

relationship of particular genes and markers across species.  A comparative horse map 

comprised of 4103 markers made up of microsatellites, known genes, and radiation 

hybrids of markers from other species was compiled in 2008 (Raudsepp et al., 2008).  An 
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entire genome reference sequence was still the final goal.  A complete assembled genome 

sequence would be the most complete marker map compiled, with SNPs, microsatellites 

and known genes from comparative maps all easily accessible.  The whole genome of the 

horse was completed in 2006 with the first online reference assembly available in January 

2007.  The final assembly was available in September of that same year.  The manuscript 

detailing sequencing and assembly of the equine genome was published in 2009 (Wade et 

al., 2009).  This publication included characterization of approximately 1 million single 

nucleotide polymorphisms (SNPs), the next tool in genetic discovery.  The discovery of 

large numbers of SNPs spurred the development and implementation of SNP chips for 

equine gene discovery and mapping.  
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Nature of Linkage Studies 

Linkage studies require assembly of families including sires, dams and offspring 

and the use of genetic markers that may be linked to the gene under investigation.  

Linkage means that the gene and genetic markers are present on the same chromosome 

and sufficiently close that genetic recombination will not cause their co-segregation to be 

random (50%).  When the gene marker and the gene are very close, for example, 5 to 10 

cM apart, then small numbers of offspring (20 or less) may be effective in determining a 

statistical proof of linkage.  If the genetic markers are more distant from the gene, for 

example 20-30 cM apart, then a large number of offspring will need to be tested to 

distinguish the linkage relationship from random segregation.  Informative families are 

often difficult to assemble; consequently, it is beneficial to have one or more genetic 

markers that are close to the gene of interest. This is a challenge since we do not know in 

advance where the gene and gene markers lie relative to one another.  The solution is to 

have a large number of genetic markers to assure that at least one will be within 5 to 10 

cM of the gene of interest.  Botstein et al. (1980) suggested that a human linkage map 

with 150 evenly distributed genetic markers would be sufficient to ensure that a gene 

would be within 10 cM of a marker based on the observation of 3000 cM for the human 

gene map.  At the time, it was not possible to select genetic markers which would be 

evenly distributed and the solution was to map a greater number of genetic markers so 

that, by chance, the gene in question would be sufficiently close to a linkage marker.   

 

Family Linkage Studies  

Family linkage studies are applied to search for markers in specific genetic 

regions which co-segregate with the gene of interest from parent to offspring.  This kind 

of study requires assembly of families which include sires, dams and offspring. Genetic 

markers are used which may be linked to the investigated gene. Microsatellites, also 

known as short tandem repeats (STRs), are a valuable resource in this type of study.   

Genetic linkage is based on the concept that genes and markers located near each 

other on a chromosome are inherited together.  The closer genes are to one another the 

less likely they are to be separated during meiosis.  The base pairs which compose the 
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genetic markers, loci and genes are all connected to one another in a linear fashion on 

each chromosome, like beads on a string.  This linear connection can be broken and 

rearranged during meiosis.  At the time of meiosis, the paired chromatids (one half of 

each chromosome received from the parents) are susceptible to recombination between 

them due to crossing over events.  

A linkage map consists of genes and genetic markers shown in relation to one 

another in terms of recombination frequency are calculated as a distance, cM.  A map of 

known markers is an invaluable tool used to discover genes responsible for specific 

phenotypes or diseases.  Linkage mapping is accomplished with a family study where the 

recombination frequencies are calculated with a logarithm (base 10) of odds (LOD) score 

method (Morton, 1955).  The LOD score, represented as Z, compares the probability of 

obtaining the data if the two loci are linked to the probability of obtaining the data if the 

two loci are not linked. A LOD score of +3 shows that the odds are 1000 to 1 that the 

linkage observed did not occur by chance.  LOD is calculated LOD = log10 (1- Θ) NR x ΘR 

/ 0.5(NR+R), where Θ = number of recombinants(R) / number of recombinants (R) + 

number of non recombinants (NR).  

For a dominant, co-dominant or partially dominant trait, mapping is 

straightforward.  A verified heterozygous sire possesses a trait of interest. Assuming that 

markers and genes in proximity to each other will be linked, a search of known markers 

for one that is linked with the phenotype will give an approximate location for the genetic 

region responsible for the trait. The sire will transmit the gene causing the trait of interest 

approximately 50% of the time as shown in Figure 1.2, showing a Punnett square using 

Cream inheritance as the example.  
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Figure 1.2: Incomplete Dominant Punnett Square Example: Cream Dilution. 
Palomino sire’s genotype CR/cr. He will pass on CR 50% of the time. This Punnett 
square uses a palomino dam as well with genotype Cr/cr. This mating would produce 
Cremello 25% of the time, palomino 50% and sorrel undiluted 25%. This example is 
given on the chestnut base color. 

A family linkage analysis is performed with data derived from a sire heterozygous 

for the well-defined dominant trait to be studied and 10 to 20 of his offspring. Ten is an 

adequate number for initial screening sample sets, but 20 or more informative offspring 

may be necessary to achieve statistical significance. Significance is calculated using the 

LOD score method to calculate the probability that two loci are linked. The LOD score is 

calculated as log10 of the Likelihood Ratio (LR): LR = ΘR (1-ΘNR)/0.5N, where the LR is 

the likelihood of association divided by likelihood of no association due to free 

recombination. Therefore the LOD value or Z = log10 ΘR (1-ΘNR)/0.5N, where Θ = 

recombination rate R/ (NR+R), R = number of recombinants and NR = number of 

nonrecombinants.  
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Linkage Analysis: Dominant Traits 

For example: A heterozygous sire tested with alleles A and B for a particular 

microsatellite marker.  This marker would not be considered informative if the sire were 

homozygous for a single allele.  After testing ten of his offspring, five with sire’s trait of 

interest and five without it:  four of the five offspring who share the sire’s trait had allele 

B; the remaining offspring who shared the trait had allele A. Among the five offspring 

not sharing the trait, all five had allele A.  This data is shown below in the bottom half of 

figure 2.6.  In this case, all 10 offspring were informative, meaning there was no 

ambiguity about which genotype they received from the sire.  Offspring are considered 

uninformative if they have the same two markers as the sire, because it is unknown which 

marker they inherited from him. If the genotype of the dam is known as well, then the 

origin of the offspring genotype may be clarified.  Occasionally, even with the dam’s 

genotype, some offspring still may not be informative.  The one offspring with the sire’s 

phenotype bearing allele A is considered recombinant.  This means from 10 offspring 

there is 1 recombinant and 9 nonrecombinants, therefore, R = 1, NR = 9. Plugging them 

into the formula above will give this; LR = (0.11(1-0.1)9/ 0.510) = (0.1*(0.387)/0.000977) 

= (0.0387/0.000977) = 39.62.  Therefore LOD = log10 (39.62) = 1.6. What does this 

mean? Association results are considered to be significant if the Z value is equal to or 

greater than 3. A LOD value of 3 means there is significant evidence for linkage; this 

means the odds are 1000:1 in favor of linkage between loci.  The LOD value for these 10 

offspring was only 1.6.  LOD score values are additive. This means LOD scores for 

different sire families can be added if each individual sire has an inadequate number of 

offspring to attain significance when LOD values of the different families are combined. 

So, if a second family is studied and found to have a LOD score of 1.8, then the 

combined LOD score will be 3.4 and considered statistical evidence for linkage. 
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Linkage Analysis: Recessive Traits 

For a recessive trait, a heterozygote is a carrier (not affected).  Carriers are 

identified by the presence of affected offspring they have produced.  They are expected to 

transmit the gene of interest 50% of the time, but only affected offspring will be 

informative.  Unaffected offspring are un-informative because it is impossible to 

determine the status of carrier/non-carriers for a yet undiscovered variation.  Two or more 

affected offspring per carrier are necessary for effective linkage analysis.  According to 

Hardy-Weinberg equilibrium (HWE), population frequency of the affected allele can be 

calculated using the formula p2 +2pq + q2 = 1, knowing also that p + q = 1, where p = 

dominant wild type allele and q = recessive variant allele. Frequencies of the different 

genotypes are represented by p2, 2pq and q2.  In this population the frequency of lordotic 

horses was 0.04, and if caused by a recessive gene, the frequency of this phenotype is 

represented as q2.   Consequently, the gene frequency for affected allele (q) would be 0.2.    

By subtraction, the normal allele (p) would have a frequency of 0.8.   According to the 

HWE equation, unaffected carriers would be present in a frequency of 2pq or 0.32.  An 

example of population frequencies of genotypes from crosses assuming HWE is given in 

table 1.1. 

 

Table 1.1: Recessive Inheritance Example 

                 Sires 
Dams 

                        p = 
0.8 

                           q = 
0.2 

P = 0.8 pp = 0.64 pq = 0.16 
q = 0.2 pq = 0.16 qq = 0.04 

Population frequency of genotypes occurring in crosses assuming HWE.  Frequencies are 
represented by p2, 2pq and q2. If the frequency of a recessive trait is 0.04 then a 
population frequency of the recessive (q) allele can be calculated to be 0.2 using the 
formula p2 +2pq + q2 = 1. 
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Microsatellites have been successfully used for family studies in horses.  For 

example, genomic position of the silver (Z) locus was found when significant linkage was 

shown between the candidate gene PMEL17 and microsatellite marker TKY284. This 

analysis was accomplished in a family study containing a single sire family that included: 

1 heterozygous Silver stallion, 34 of his offspring and their 29 dams which were not 

silver (Brunberg et al., 2006. The Appaloosa gene leopard complex (LP) was assigned to 

a region of chromosome 1 in the vicinity of two positional candidate genes for LP (pink 

eyed dilution (p) and transient receptor potential cat-ion channel subfamily M. member 

1(TRPM1) using two paternal half sib families containing a total of 47 offspring (Terry et 

al., 2004).  Several possible causative SNPs (6) were identified after target sequencing of 

a 300kb region containing TRPM1 (Bellone et al., 2010).   The genetic locus for Sabino 1 

(SB1), which causes a white spotting pattern, was determined after a successful family 

study involving 3 sires and 27 offspring and 7 dams (Brooks and Bailey, 2005).  The 

genomic location where the Cream (C) gene resides was identified using a family 

consisting of one stallion, 7 mares and 21 offspring (Locke et al., 2002).  The C locus 

was identified after sequencing the positional candidate gene MATP (Mariat et al., 2002). 

Linkage between microsatellite CORO18 and the Grey locus was identified with 7 half 

sib Quarter Horse families including 276 offspring and 128 dams (Locke et al., 2002).  

The mutant locus was later identified as containing a 4.6kb duplication in intron 6 of the 

STX17 gene (Rosengren-Pielberg et al., 2008). 
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When to Use Linkage Analysis and What it Might Miss Relative to GWAS 

Family linkage studies are applied when sufficient family members are available 

for investigation into simple Mendelian traits.  Linkage testing requires minimal marker 

coverage, about one per 10 to 20 cM and minimal sample numbers of 20-50 compared to 

the hundreds to thousands of samples and markers utilized in GWAS.  However, a 

linkage study can still fail to produce results if markers near the region of interest are not 

informative.  This could either be due to parental homozygosity of necessary marker(s) or 

unresolved offspring genotypes.  Even when a study successfully identifies a linked 

marker locus, the locus may not show evidence of association in a population of 

unrelated individuals.  This could be the result locus heterogeneity between family 

groups.  For example, family linkage mapping identified the genetic region for Sabino 

1(Sb1) white spotting pattern in Tennessee Walking Horses (Brooks and Bailey, 2005).  

When to Use GWAS and What it Might Miss Relative to Linkage 

When enough family members cannot be obtained or when a trait has complex 

etiology, GWAS is recommended, as was the case with lavender foal syndrome (LFS).  

LFS is a rare recessive lethal trait found in Egyptian Arabian Horses.  This rarity 

precluded the collection of enough family members to perform a linkage study.  

Therefore, GWAS was performed which successfully identified markers in linkage 

disequilibrium with the trait from 6 affected samples and 30 unaffected relatives (Brooks 

et al., 2010).  

Complex traits are difficult to study by linkage as they are more often attributed to 

many genes with minor effect rather than a single gene(s) with major contribution.  

Minor effects are more readily identified in GWAS case/control population studies that 

provide more power in associations of limited effect on phenotype.  Complex traits can 

be the result of incomplete penetrance due to; gene-gene interactions, environmental 

factors or gene-environment interactions.  There are still disadvantages involved in case-

control study designs compared to family linkage studies.  They offer no internal check 

for genotyping quality. Results for controls may show a departure from Hardy-Weinberg 

Equilibrium (HWE), which could be caused by genotyping error, selective 

breeding/mating practices, negative selection, population stratification or pure chance. 
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The desired reason for departure from HWE would be the genotyped SNP actually plays 

a role in the disease or susceptibility or is in linkage disequilibrium with the causal 

variation.  Other factors that negatively affect outcome include poor genotyping quality 

with missing genotypes and population stratification.  The issue of population 

stratification can be avoided by using a family-based study, as was done in the lordosis 

study discussed in chapter 3.  

The search for the cause of Osteochondrosis dissecans (OCD) has been 

approached from a linkage study standpoint and whole genome association studies with 

mixed results.  Initially, a family linkage study was performed on Hanovarian 

Warmbloods with 14 paternal half sib families in a search for quantitative trait loci (QTL) 

using 172 initial microsatellites and 88 additional ones to refine QTLs. QTLs were found 

on ECA 2, 4, 5 and 16 and chromosome wide significance for QTLs was noted on ECA 

2, 3, 4, 5, 15, 16,, 19 and 21 (Dierks et al., 2007).  GWAS involving South German Cold 

Blood horses found association ECA 18 (Wittwerc et al., 2009).  GWAS/linkage analysis 

was done in Norwegian Standardbred Trotters with 162 horses, 80 cases, 82 controls, 22 

half sib paternal groups.  Two analyses were performed; mixed model analysis and basic 

association test.  Both identified QTLs on the same chromosomes; ECA 5, 10, 27, 28 

(Lykkjen et al., 2010).  GWAS in French Trotters concluded associations with GM 

(severity) ECA13, HM (Hock location) ECA3, 13, 14 and other (other locations) ECA 

13, 15 (Teyssedres et al., 2012).  GWAS investigation of osteochondrosis dissecans in 

Thoroughbred horses found association on ECA3 (Corbin et al., 2012).  These results 

have some similarities but vary more than they agree.  In each study, the testing was done 

on different breeds with different measures and different affected joints considered. The 

variation in results might be attributed to the genetic heterogeneity of the condition as 

well as differing management practices or jobs each horse performed.  Overall, multiple 

loci contributing to OCD have been successfully identified by one or more of the listed 

studies.  A more concise set of parameters regarding the joint affected, severity of lesions 

and age of onset may be beneficial for more consistent results between studies and 

breeds. 
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Section V: Applications of Genetic Tools 
 

The foregoing describes the nature of genetic variation and some examples of 

resulting phenotypes.  When phenotypic variation is apparent within a population, we 

have two major tools for investigation:  linkage studies using families and genome wide 

association studies using individuals selected from a population merely based on 

phenotype.  The discovery of microsatellite DNA markers spanning the horse genome 

during the last 20 years has made possible genome wide linkage studies when families 

are available.   The development of the horse genome sequence and the availability of 

tools to assay tens of thousands of SNPs have made possible genome wide studies in 

populations.  The studies discussed in this dissertation describe the investigation of two 

different types of phenotypic variation in horses that can be investigated using these 

tools. 

 
Champagne Dilution 

The base coat colors of horses are red and black, encoded by the MC1R locus 

(Marklund et al., 1996).  The Champagne dilution gene (CH) has been found in several 

breeds in the United States, notably the Tennessee Walking Horse, and its effect is to 

dilute both the eumelanin (black) and the pheomelanin (red) pigments.  The gene is 

sometimes confused with the effects of the Cream dilution gene (Cr), which only dilutes 

eumelanin. Breeders interested in breeding for this trait need an effective test to 

distinguish the different loci. Since the trait is considered attractive, breeders select for 

these animals and several families were available for study.  This project is the subject of 

Chapter 2.    
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Genetics Form and Functional Structure: Extreme Lordosis 

Some breeders of American Saddlebred horses are concerned about the 

occurrence of a condition called swayback that was thought to be hereditary. While some 

breeders select against the condition, others do not consider it a serious defect and 

tolerate such horses in their breeding programs.  However, no one advertises the 

condition or actively selects for it. This made it difficult to obtain large and complete 

families segregating for this trait.  Therefore, to investigate the heredity of this condition, 

a genome wide association study was conducted as described in Chapter 3.   
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CHAPTER TWO: Champagne Dilution in Horses 
 

Summary 

Champagne coat color in horses is controlled by a single, autosomal-dominant 

gene (CH). The phenotype produced by this gene is valued by many horse breeders, but 

can be difficult to distinguish from the effect produced by the Cream coat color dilution 

gene (CR). Three sires and their families segregating for CH were tested by genome 

scanning with microsatellite markers. The CH gene was mapped within a 6 cM region on 

horse chromosome 14 (LOD = 11.74 for θ = 0.00). Four candidate genes were identified 

within the region, namely SPARC [Secreted protein, acidic, cysteine-rich (osteonectin)], 

SLC36A1 (Solute Carrier 36 family A1), SLC36A2 (Solute Carrier 36 family A2), and 

SLC36A3 (Solute Carrier 36 family A3). SLC36A3 was not expressed in skin tissue and 

therefore not considered further. The other three genes were sequenced in homozygotes 

for CH and homozygotes for the absence of the dilution allele (ch). SLC36A1 had a 

nucleotide substitution in exon 2 for horses with the champagne phenotype, which 

resulted in a transition from a threonine amino acid to an arginine amino acid (T63R). 

The association of the single nucleotide polymorphism (SNP) with the champagne 

dilution phenotype was complete, as determined by the presence of the nucleotide variant 

among all 85 horses with the champagne dilution phenotype and its absence among all 97 

horses without the champagne phenotype. This is the first description of a phenotype 

associated with the SLC36A1 gene. 

 

 

[Most of the work described in this chapter was published 2008 PloS Genetics 4(9): 

e1000195. doi:10.1371/journal.pgen.1000195] 
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Introduction 

 Many horse breeders value animals with specific genetic variation in coat color 

variations.   Several genes are known which diminish the intensity of the coloration and 

are phenotypically described as “dilutions”. Two of these are a result of the Cremello and 

Silver loci.   The molecular basis for Cremello is the result of a single base change in 

exon 2 of MATP gene (Membrane Associated Transporter Protein), also referred to as 

SLC45A2 (Solute Carrier family 45 member A2), on ECA21 (Mariat et al., 2002 and 

Locke et al., 2001).  This change results in the replacement of a polar acidic aspartate 

with a polar neutral asparagine in a putative transmembrane region of the protein coded 

for by this gene (Locke et al., 2001 and Brunberg et al., 2006).   The Cremello gene has 

an incomplete dominant mode of expression.  In its heterozygous form it dilutes only 

pheomelanin (red pigment) whereas homozygosity for CR results in extreme dilution of 

both pheomelanin and eumelanin (black pigment) (Adalsteinsson, 1974).   

 The Silver dilution is the result of a missense mutation of PMEL17 

(Premelanosomal Protein) on ECA6. The base change causes replacement of a cytosolic 

polar neutral arginine with non-polar neutral cysteine in PMEL17 (Brunberg et al., 2006).   

In contrast to CR, the Silver locus is fully dominant and affects only eumelanin causing 

little to no visible change in the amount of pheomelanin.  The change in eumelanin is 

most apparent in the mane and tail where the black base color is diluted to white and gray 

(Bowling, 2000).   

The coat color produced by the CH locus is similar to that of CR in that both can 

cause dilution phenotypes affecting pheomelanin and eumelanin.  However, CH differs 

from CR in that; 1) It dilutes both pheomelanin and eumelanin in its heterozygous form 

and 2) Heterozygotes and homozygotes for CH are phenotypically difficult to distinguish.  

The homozygote may differ by having less mottling or a slightly lighter hair color than 

the heterozygote.  Figure 2.1 displays images of horses with the three base coat colors 

chestnut, bay and black and the effect of the CH locus on these colors.   
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Figure 2.1: Effect of Champagne Gene action on Base Coat Colors. 
A) Chestnut – Horse only produces red pigment.  B) Chestnut diluted by Champagne.  C) 
Bay – Black pigment is held to the points (eg. Mane, tale, and legs) allowing red pigment 
produced on the body to show.  D) Bay diluted by Champagne   
E) Black – Red and black pigment produced, red masked by black 
F) Black diluted by Champagne 
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Figure 2.2 shows CH foals are born with blue eyes, which change color to amber, 

green, or light brown and pink “pumpkin” skin which acquires a darker, mottled 

complexion around the eyes, muzzle, and genitalia as the animal matures (Sponenberg 

2003).   In contrast, foals with one copy of CR also have pink skin at birth but their skin 

is slightly darker and becomes black/near black with age.  Indeed, the existence of a gene 

responsible for a separate dilution was not readily apparent until the discovery that some 

horses exhibit a dilution phenotype, without CR.  The champagne phenotype is found 

among Tennessee Walking Horses, Quarter Horses and several other breeds from the 

United States. Here we describe family studies that led to mapping the gene and 

subsequent investigations of candidate genes leading to the identification of a genetic 

variant that appears to be responsible for the Champagne dilution phenotype.   

The purpose of this study was to uncover the molecular basis for the champagne 

hair color dilution phenotype in horses. Here, we report a DNA base substitution in the 

second exon of the horse gene SLC36A1 (Solute Carrier family 36 member A1) that 

changes an amino acid in the transmembrane domain of the protein from threonine to 

arginine. The phenotypic effect of this base change is a diminution of hair and skin color 

intensity for both red and black pigment in horses and the resulting dilution has become 

known as champagne. This is the first genetic variant reported for SLC36A1 and the first 

evidence for its effect on eye, skin, and hair pigmentation. So far, no other phenotypic 

effects have been attributed to this gene. This discovery of the base substitution provides 

a molecular test for horse breeders to test their animals for the Champagne gene (CH).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

41 
 



Figure 2.2: Champagne Eye and Skin Traits  
A, B and C) Eye and skin color of foals 
D and E) Eye color and Skin mottling of adult horse 
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Materials and Methods 

Horses 

Three half-sibling families, designated 1, 2 and 3, were used for mapping studies.   

Family 1 consisted of a Tennessee Walking Horse (TWH) stallion, known heterozygous 

at the Champagne locus (CH/ch), and his 17 offspring out of non-dilute mares (ch/ch).  

Family 2 consisted of an American Paint Horse stallion (CH/ch) and his 11 offspring out 

of non-dilute (ch/ch) mares. Family 3 consisted of a TWH stallion (CH/ch), 25 offspring 

and their 10 non-dilute dams (ch/ch) and 1 dilute (buckskin) dam (ch/ch, CR/cr).  

Pedigrees of the three sire families are provided in Figure 2.3.   

 

 
 
Figure 2.3: Sire and Offspring Pedigrees 
Males are represented with squares and females with circles.  Individuals exhibiting the 
Champagne Dilution phenotype are represented by solid colored symbols while non-
Champagne individuals are represented with uncolored symbols. There were no dams 
included for sire families 1 or 2, as sire family 3 was the only family with dams available. 
In sire family 3, the sire is number 7 in line I which includes him and the dams.  Dam’s 
offspring are ones falling between her and the sire or between her and the dam beside her 
proximal to the sire. For example: Offspring number II1 in sire family 3 is the product of 
dam I1 and sire who is I7. Offspring II2 and II3 in sire family 3 are from dam I2 and sire 
who is I7. 
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To investigate the distribution of the gene among dilute and non-dilute horses of 

different horse breeds, 97 unrelated (within a single generation) non-champagne horses 

were chosen from stocks previously collected and archived at the MH Gluck Equine 

Research Center. These horses were from the following breeds: TWH (20), 

Thoroughbreds (TB, 35), American Paint Horses (APHA, 32), Pintos (5), American 

Saddlebreds (ASB, 2), one American Quarter Horse (AQHA), one pony, and one 

American Miniature (AMH) Horse.  

 Hair and blood samples from horses with the champagne dilution phenotype were 

submitted by owners along with pedigree information and photographs showing the 

champagne color and characteristics of each horse. Samples were collected from the 

following breeds (85 total): American Miniature Horse (9), American Cream Draft (1), 

American Quarter Horse (27), American Paint Horse (13, in addition to the family), 

American Saddlebred (2), Appaloosa (1), ASB/Friesian cross (1), Arabian crossed with 

APHA or AQHA horses (3), Missouri Foxtrotter(4), Mule (2), Pony (1), Spanish 

Mustang 1), Spotted Saddle Horse (1), Tennessee Walking Horse (19), in addition to the 

families).  

 

Color Determination  

To be characterized as possessing the champagne phenotype, horses met at least 

two of the three following criteria: 1) mottled skin around eyes, muzzle and/or genitalia, 

2) amber, green, or light brown eyes, or 3) blue eyes and pink skin at birth (Sponenberg 

2003).  This was accomplished by viewing photo evidence of these traits or by personal 

inspection.  Due to potential confusion between phenotypes of cream dilution and 

champagne dilution, all DNA samples from horses with the dilute phenotype were tested 

for the CR allele and data from those testing positive were not included in the population 

data.   
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DNA Extraction 

DNA from blood samples was extracted using Puregene whole blood extraction 

kit (Gentra Systems Inc., Minneapolis, MN) according to its published protocol. Hair 

samples submitted by owners were processed using 5-7 hair bulbs according to the 

method described by Locke et al. (2002). The hair bulbs were placed in 100 µl lysis 

solution of 1X FastStart Taq Polymerase PCR buffer (Roche), 2.5 mM MgCl2 (Roche), 

0.5% Tween 20 (JT Baker, Phillipsburg, NJ) and 0.01 mg proteinase K (Sigma-Aldrich, 

St Louis, MO) and incubated at 60 ◌۫C for 45 minutes, followed by 95 ◌۫C for 45 min to 

deactivate the proteinase K. 

 

Microsatellite Genome Scan 

The genome scan was done in polymerase chain reaction (PCR) multiplexes of 3 

to 6 microsatellites per reaction. The 102 microsatellite markers used are listed in Table 

2-1. Primers for these microsatellites were made available in connection with the USDA-

NRSP8 project (Guérin et al., 1999).  Two additional microsatellites were used; TKY329 

[18] was selected based on its map location between two microsatellites used for genome 

scanning (UM010 and VHL209) and COOK007 was developed in connection with this 

study based on DNA sequence information from the horse genome sequence V2 as 

viewed in the UCSC genome browser (Kent et al., 2002) in order to investigate linkage 

within the identified interval.   Primers for COOK007 were designed using Primer 3 

software accessed online (Forward, 5’- 6FAM-CATTCCAAACACCAACAACC - 3’), 

(Reverse, 5’ – GGACATTCCAGCAATACAGAG – 3’) (Rozen and Skaletsky, 1998).  

Microsatellite PCR reactions were done in multiplexes, with anywhere from 3 to 

six microsatellites included per reaction. They were grouped according to annealing 

temperature and color differences of the dye probes; VIC (green), 6FAM (blue), NED 

(yellow). Multiple markers using the same color probe could be used if the product sizes 

differed by enough base pairs. PCR product from each assay is filtered to remove excess 

fluorescent labeled primers and dried down to be rehydrated with formamide for analysis 

in the ABI 310 sequencer. For example: microsatellite LEX020, from table 2.2, has seven 

known alleles. The fluorescently labeled product from PCR will fall in the approximate 

size range from 198 to 222 base pairs long. Preferentially, the sire will test for two 
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differently sized alleles in or near this size range in order for the marker to be 

informative. Each offspring will produce results for two alleles as well. If the offspring 

has one or both alleles matching only one allele the sire possesses, then that offspring is 

deemed informative. The results for that individual are uninformative if it has two alleles 

which match both of the sire’s alleles. 

Amplification for fragment analysis was done in 10 µl PCR reactions using 1X 

PCR buffer with 2.0mM MgCl2, 200 μM of each dNTP, 1 µl genomic DNA from hair 

lysate, 0.1U FastStart Taq DNA polymerase (Perkin Elmer) and the individual required 

molarity of each primer from the fluorescently labeled microsatellite parentage panel 

primer stocks at the MH Gluck Equine Research Center. Samples were run on a PTC-200 

thermocycler (MJ research, Inc., Boston, MA) at a previously determined optimum 

annealing temperature for each multiplex. Capillary electrophoresis of product was run 

on an ABI 310 genetic analyzer (Applied Biosystems). Results were then analyzed using 

the current version of STRand microsatellite analysis software 

(http://www.vgl.ucdavis.edu/informatics/STRand/). 

The initial multiplex scans were conducted on a subset of samples from Family 3 

which included sire 3, five non-champagne offspring, and five champagne offspring.   

When the microsatellite allele contribution from the sire was not informative, (e.g. the 

sire and offspring had the same genotype), dams from family 3 were typed to determine 

the precise contribution from the sire.  When the inheritance of microsatellite markers in 

family 3 appeared to be correlated with the inheritance of the CH allele, then the 

complete families 1, 2 and 3 were typed and the data analyzed for linkage by LOD score 

analysis (Morton 1956).  Final genotypes and LOD scores for marker COOK007 are 

given in figure 2.4.  
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Figure 2.4: Allele Results and LOD Scores for Microsatellite COOK007 
Among the three sire families. Sires A, B and C correspond to sires 1, 2 and 3 in that 
order from previous pedigree image. The numbers 324 and 332 are the length of each 
allele represented by the microsatellite amplified by the COOK007 primer pair. This 
microsatellite is on Equine Chromosome 14 at ~25.6 Mb. The data suggests this 
microsatellite is in linkage disequilibrium with the Champagne allele.  The first line of 
each box identifies the sire family and the microsatellite primer ID.  The second line is 
the pair of alleles the heterozygous champagne sire possesses for that microsatellite. The 
third line represents the champagne offspring and the allele they received from the sire. 
The fourth line is non-champagne offspring and the allele they received from the sire. 
The fifth line contains the offspring (champagne and non-dilute) whose genotype was 
ambiguous and sires contribution could not be determined.  The sixth and last line is the 
manually calculated LOD score for each family’s data.  
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Table 2.1: Microsatellites Used for Genotype Screening  

Marker Chromosome Alleles Size Dye 
Annealing 

Temp 

Optimal     
concentration        

(uM) 
AHT21 01 8 199-215 VIC 58 0.09 
COR100 01 7 212-230 VIC 56 0.15 
HMS15 01 11 207-245 6FAM 56 0.6 
VIAS-H34 01 7 144-160 VIC 58 0.7 
ASB8 01 8 138-164 VIC 58 0.08 
LEX020 01 7 198-222 6FAM 58 0.12 
ASB41 01 6 156-168 NED 58 0.3 
NVHEQ100 01 7 197-217 6FAM 58 0.1 
ASB18 02 12 196-213 6FAM 58 0.15 
A-14 02 10 220-248 VIC 58 0.8 
COR065 02 9 280-292 NED 58 0.3 
ASB17 02 17 93-125 6FAM 58 0.1 
UM007 02 18 122-176 VIC 58 0.05 
COR033 03 9 222-254 VIC 58 0.2 
ASB23 03 7 187-213 VIC 58 0.1 
UCDEQ437 03 8 167-193 NED 58 0.1 
SGCV23 04 8 221-233 VIC 56 0.6 
ASB22 04 9 155-177 NED 58 0.1 
COR089 04 10 282-304 NED 58 0.1 
LEX004 05 6 282-300 NED 58 0.15 
LEX069 05 7 248-262 NED 56 0.6 
LEX034 05 6 252-262 NED 58 0.05 
TKY28 06 7 280-364 NED 58 0.15 
COR088 06 7 283-297 NED 58 0.4 
COR070 06 12 279-307 NED 58 0.2 
NVHEQ82 06 6 133-147 VIC 58 0.01 
VIAS-H7 07 12 116-146 6FAM 58 0.3 
COR004 07 6 297-319 NED 58 0.5 
COR003 08 8 195-215 6FAM 58 0.15 
COR056 08 10 194-220 6FAM 58 0.2 
LEX023 08 12 233-257 VIC 58 0.15 
ASB14 08 9 118-136 6FAM 58 0.05 
HTG8 09 7 185-197 6FAM 56 0.6 
ASB4 09 6 128-140 VIC 58 0.7 
COR008 09 12 251-277 NED 58 0.12 
UM037 09 7 108-124 6FAM 58 0.2 
ASB6 10 8 185-212 6FAM 58 0.6 
COR048 10 10 178-186 NED 58 0.3 
ASB9 10 9 67-113 6FAM 58 0.3 
NVHEQ18 10 15 119-161 VIC 58 0.06 
COR020 10 7 162-176 NED 58 0.2 
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Table 2.1: cont… 

 
Marker 

 
Chromosome Alleles Size Dye 

Annealing 
Temp 

Optimal     
concentration        

(uM) 
SGCV24 11 10 125-141 VIC 56 0.5 
SGCV13 11 5 169-179 NED 58 0.7 
LEX068 11 7 162-174 NED 58 0.12 
SGCV8 12 8 126-143 VIC 58 0.2 
SGCV10 12 6 179-187 NED 56 0.6 
AHT17 12 11 123-147 6FAM 58 0.1 
COR058 12 12 218-244 VIC 58 0.1 
ASB37 13 6 132-146 VIC 58 0.04 
COR069 13 8 273-287 NED 58 0.13 
VHL047 13 4 134-150 VIC 58 0.05 
COR002 14 5 235-243 VIC 58 0.05 
UM010 14 7 112-126 6FAM 58 0.05 
VHL209 14 6 91-105 6FAM 58 0.2 
AHT16 15 7 130-153 VIC 58 0.2 
COR014 15 12 149-164 VIC 58 0.04 
B-8 15 8 88-110 6FAM 56 0.1 
COR075 15 9 202-220 6FAM 58 0.07 
HMS20 16 8 116-140 6FAM 58 0.25 
L15.2 16 9 147-165 VIC 58 0.07 
LEX056 16 7 218-234 VIC 58 0.08 
I-18 16 9 93-119 6FAM 58 0.05 
COR007 17 9 163-177 NED 58 0.04 
LEX055 17 7 216-232 VIC 58 0.15 
NVHEQ79 17 7 175-197 6FAM 58 0.08 
TKY19 18 9 147-173 NED 56 0.04 
COR096 18 8 315-329 NED 58 0.2 
LEX054 18 10 170-190 NED 58 0.08 
COR092 19 6 191-203 6FAM 58 0.1 
LEX036 19 8 148-170 NED 58 0.05 
LEX073 19 11 249-277 NED 58 0.15 
LEX052 20 7 208-214 VIC 58 0.05 
LEX071 20 7 192-211 6FAM 58 0.12 
HMS42 20 0 132-140 VIC 58 0.07 
UM011 20 11 167-187 NED 58 0.1 
COR073 21 8 187-205 6FAM 58 0.1 
LEX037 21 4 196-202 6FAM 56 0.07 
SGCV16 21 5 154-194 NED 58 0.12 
HMS47 22 7 203-215 6FAM 58 0.17 
HTG21 22 7 131-143 VIC 58 0.08 
COR016 22 7 184-203 6FAM 58 0.12 
COR055 23 9 240-270 NED 58 0.1 
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Table 2.1: cont… 

 
Marker 

 
 

Chromosome Alleles Size Dye 
Annealing 

Temp 

Optimal     
concentration        

(uM) 
LEX074 24 10 155-175 NED 58 0.15 

       
COR024 24 6 214-226 VIC 58 0.05 
COR061 24 11 197-227 6FAM 58 0.1 
COR018 25 7 251-283 NED 58 0.1 
NVHEQ70 26 7 192-208 6FAM 58 0.08 
COR071 26 8 188-210 6FAM 58 0.05 
A-17 26 8 102-118 6FAM 58 0.15 
COR017 27 12 241-267 VIC 58 0.15 
COR031 27 7 210-224 VIC 58 0.08 
COR040 27 8 282-300 NED 58 0.25 
UCDEQ425 28 8 236-250 VIC 58 0.1 
COR027 29 7 231-255 VIC 56 0.12 
COR082 29 7 199-233 VIC 58 0.4 
L12.2 29 10 136-156 VIC 58 0.05 
LEX025 30 7 152-168 VIC 58 0.04 
LEX075 30 8 144-164 6FAM 58 0.04 
COR038 31 4 210-214 VIC 58 0.1 
AHT33 31 8 151-167 VIC 58 0.15 
UM038 X 7 120-144 6FAM 58 0.2 
LEX022 X 7 110-124 6FAM 58 0.12 

The microsatellites on equine chromosome 14 are highlighted in green. The first column 
is the microsatellite name based upon lab location which identified it. The second column 
is the chromosome on which the microsatellite is located. The third column shows the 
number of alleles possible. The fourth column gives the size spectrum for the alleles, 
given in base pairs. The fifth column is the fluorescent dye label for that primer set. The 
sixth column is the optimal annealing temperature for PCR of that microsatellite. The last 
column is the optimal primer concentration for successful PCR.  
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Sequencing 

PCR template for sequencing was amplified in 20 µl PCR reactions using 1X 

PCR buffer with 2.0 mM MgCl2,  200 μM of each dNTP, 1 µl genomic DNA from hair 

lysate, 0.2U FastStart Taq DNA polymerase (Perkin Elmer) and 50 nM of each primer. 

Exon 2 of gene SLC36A1 was sequenced with the following primers: Forward (5’-CAG 

AGC CTA AGC CCA GTG TC-3’) and Reverse (5’-GGA GGA CTG TGT GGA AAT 

GG-3’) at an annealing temperature of 57 ◌۫C.  Additional primers used to sequence the 

other exons are listed in Table 2.2.  Template product was quantified on a 1% agarose 

gel, then amplified with BigDye Terminator v1.1 cycle sequencing kit according to 

manufacturer’s instructions (Applied Biosystems, Foster City, CA), cleaned using Centri-

Sep columns (Princeton Separations Inc., Adelphia, NJ), and run on and ABI 310 genetic 

analyzer (Applied Biosystems). Six samples were initially sequenced: 2 suspected 

homozygous champagnes (based on production of all champagne dilution offspring when 

bred to at least 10 non-dilute dams), 2 heterozygotes, and 2 non-dilute horses. The results 

were analyzed and compared by alignment using Vector NTI Advance 10.3 software 

package (Invitrogen Corporation, Carlsbad, California). 
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Table 2.2: Primers Used for Exon Screening 
Part 1 - Primer sequences for the sequencing of horse SPARC 
Exon 
# Forward Primer (5’-3’) Reverse primer (5’-3’) 
1 TCAGGATTGAAAGGGAACTG ATCTCCACCCAAAAGTCTGC 
2 CGAGTTTGGCATCTTCTTGC AGGTCTGGGAATCAATCAGG 
3 CACGCCTTTTCAGCTTGAC AATTCATGTTCCCCAGAGTCC 
4 GCTCTCCTAAATGCTGATTGC CATCTCCACCTTCTTTTCGTG 
5 GGAGCACAAABAGTGGGTTC GTGGAAGAGATTTGCCCAAG 
6 AGCCACTGTGCCAAGGTC GAGGGGAAGTCTGTGTCCTG 
7 CTTTTGTGCATGAGATGCTG GGAGCAGTGAAGGCTGCTG 
8 ATTGCACATCGTCTCCTTCC GAGTGAGTGCTAATGCTTGAGG 
Primer sequences for the sequencing genomic exons of horse SLC36A1 
Exon 
# Forward Primer (5’-3’) Reverse primer (5’-3’) 
1 AAGCGCCTGTCTGTCTCTTC CTCTTCCTCAGCACCAGCTT 
2 CAGAGCCTAAGCCCAGTGTC GGAGGACTGTGTGGAAATGG 
3 ATCCCAGGAGCCTCTGTTCT GAAGCGTTAAGCCAACAGGA 
4 CAGCTGCTCAGCATCACAG CAAAGCAGGAACAGCCCTTA 
5 CTCCTGCCATTCCAGTCTTG AAGGCTCAGTGTGTGAACGA 
6 AACCCAGCTCAGACAGTTGG CCAGAGACCTTTGGCAATGT 
7 TTTGTGCATGCTCCAACATT GTCAAGTCCTCGTGCAAGGT 
8 CTTATCGCAGGAGGCAGAAC GTCCCACATGGGTAACAAGG 
9 TATCGTGGAGCTGGTTGTGT TTCTCTGCACCATCTGGACA 
10 CTTGCAGTGAGAGACAGGTTATTC TGGGGAACATACAGCGGT 
Primer sequences for the sequencing genomic exons of horse SLC36A2 
Exon # Forward Primer (5’-3’) Reverse primer (5’-3’) 
1 CAGAGCCTGCTAAGGCACAC TTTTCCTCAGCTGCACAATG 
2 GACTGTGAGAAGGCCAGGAG GCTTGTGGAGGCCACTCTAA 
3 AAAAGGGCTTGGAAACCAGT AGCAGAACCTCGCCTTAGGT 
4 CTGCCACAGTGTTCTTTCCA CACCCTGTTGCTGGAGGTAT 
5 GGGACAGAAATGGAAACGAC CCTTGAGGACAGGTCCAAGA 
6 CACCCTAACTCGCTGAGACC ATAAAAGGCTCTGCCCACTG 
7 TCCTCTGGCTCTTTGGTTGT AGGCCAGACGTTGCTTTCT 
8 CCTTTCACCCATCAATGGAC TAGCCTTGAGTCCCCATCAC 
9 CTGCTCTGACTCCCTCTTGG CTGGTTCCTGACCATCCTTC 
10 GTCTAAGCCTGGGATGATGC TCGTAGCTGGTGAATGCTTG 
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Reverse Transcription (RT-PCR) 

 RT-PCR was performed in 25 µl reactions using a Titan One Tube RT-PCR Kit 

(Roche) according to enclosed protocol.  The primers used are listed in section 3 of Table 

S4. RNA from different tissues of non-dilute horses was used to acquire partial cDNAs 

containing the first two exons for SLC36A1, first three exons SLC36A2 and first 4 exons 

of SLC36A3. The cDNA acquired was sequenced and the resulting sequences were 

verified for their respective genes with a BLAT search using the equine assembly v2 in 

ENSEMBL (http://www.ensembl.org/Equus_caballus/index.html) genome browser. RT-

PCR was also performed utilizing RNA extracted from skin, kidney and testes of non-

dilute animals currently in lab stocks. SLC36A1 cDNA was produced from the skin and 

blood using 50 ng RNA per reaction. SLC36A2 cDNA was produced from testes using 1 

mRNA per RT-PCR reaction then following up with a nested PCR for shorter product. 

SLC36A2 cDNA was produced from skin using 50 ng mRNA per RT-PCR reaction. 

Nested PCR was not necessary. SLC36A3 cDNA was produced from testes using 1 ug 

mRNA per reaction. 9 µl of initial reaction was visualized on a 2% agarose gel to check 

for visible bands of product. When product was not initially detected an additional 20 µl 

PCR was performed in reactions as outlined above using 5 µl of RT product in the place 

of hair lysate per reaction. Detected product was then sequenced with the protocol listed 

above. Sequences were then used in a BLAST search using equine genome assembly 2 

on ENSEMBL genome browser to verify the correct cDNA was amplified. 

 

Custom TaqMan Probe Assay 

A Custom TaqMan® SNP Genotyping Assay (Applied Biosystems) was designed 

for c.188C/G SNP in filebuilder 3.1 software (Applied Biosystems) to test the population 

distribution of the SLC36A1 alleles. A similar assay was also designed to test for the 

cream SNP. These assays were run on a 7500HT Fast Real Time-PCR System (Applied 

Biosystems).  All dilute horses tested for SLC36A1 variants were concurrently tested for 

SLC45A variants.   Horses testing positive for CR alleles were not used in the dataset to 

avoid any confusion over the origin of their dilution phenotype. 
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Results 

 

Linkage Analyses 

Table 2.3 summarizes the evidence for linkage of the CH gene to a region of 

ECA14.  The linkage phase for each family was apparent based on the number of 

informative offspring in each family.   Recombination rates (θ) were calculated based on 

the recombination rate for all families.  Four microsatellites showed significant linkage to 

the CH locus; VHL209 (LOD = 6.03 for θ = 0.14), TKY329 (LOD = 3.64 for θ = 0.10), 

UM010 (LOD =5.41 for θ = 0.04) and COOK007 (LOD = 11.74 for θ = 0.00)   Most 

notably, no recombinants were detected among 39 informative offspring between the CH 

and COOK007 microsatellite locus.  
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Table 2.3: Linkage Analysis between the Champagne Dilution gene and Microsatellite 
Markers UM010, COOK007, TKY329 and VHL209. 
   alleles Sire contribution Statistics 

Family (CH) microsatellite a/b N1 a+ a- b+ b- 
LOD 
score Θ2 

3 (+/-) UM010 124/108 23 14 0 0 9 5.41   
                 Σ= 5.41 0.04 

                      
1 (+/-) COOK007 332/334 14 10 0 0 4 4.21   
2 (+/-) COOK007 332/334 8 4 0 0 4 2.41   
3 (+/-) COOK007 332/324 17 8 0 0 9 5.12   
                 Σ= 11.74 0 

                      
1 (+/-) TKY329 117/139 15 10 2 0 3 1.92   
2 (+/-) TKY329 111/137 9 5 1 0 3 1.34   
3 (+/-) TKY329 117/139 18 7 0 1 10 3.64   
                 Σ= 6.9 0.1 

                      
1 (+/-) VHL209 95/93 13 4 1 1 7 1.49   
2 (+/-) VHL209 91/93 12 4 2 1 5 0.46   
3 (+/-) VHL209 95/93 24 10 1 1 12 4.08   

                 Σ= 6.03 0.14 
The microsatellites are given in the third column. The first column shows the sire 
families with data for each microsatellite. The second column gives the sire status which 
is heterozygous CH with [+] designating the champagne allele and [–] designating the 
non-champagne allele he carries. The fourth column gives the base pair size for the sire’s 
alleles for that microsatellite which have been designated allele [a] and allele [b] for the 
data in columns 6-9. Column 5 is the number of informative offspring for that sire on that 
microsatellite. Column 6 is the number of champagne offspring possessing the [a] allele 
and column 7 is the number of non-champagne offspring possessing the [a] allele. 
Columns 8 and 9 show the number of champagne offspring and non-champagne 
respectively possessing the [b] allele. The tenth column is the manually calculated LOD 
score for each sire family for that microsatellite. The sum of LOD scores for all families 
for each microsatellite is given below the LODs as Σ=. 
1. N = the number of informative meiosis 
2. Θ = recombination frequency between that microsatelite and the champagne gene for 
all families, combined 
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Figure 2.5 identifies the haplotypes for offspring showing recombination between 

the genetic markers and the CH locus.  Table 2.4 exhibits the microsatellite haplotype 

obtained for all individuals tested.  The CH locus maps to an interval between UM010 

and TKY329 with microsatellites.  No recombinants were detected among 39 informative 

offspring between the CH and COOK007 locus. 

 

 

 
 
Figure 2.5: Recombinant Haplotypes  
Linear relationship from top to bottom between the microsatellites, phenotype, and 
genotype of recombinant offspring is shown here, with yellow denoting phenotype when 
coloring block of individual and hypothesized association coloring allele blocks. The [a] 
alleles represent the speculated paternal champagne genotype and [b] alleles represent the 
paternal non-champagne genotype. The marker column gives the approximate genomic 
location for each marker on equine chromosome 14. 
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Table 2.4: Haplotype Data for 3 Families From Figure 2.3 Pedigree Chart 
SIRE 1 

Sire 1 Color Sex UM010   COOK007   TKY329   VHl209 
I-1 CH Sire 124 124  332 334  117 139  93 95 
II-1 ch female -- --  334 338  117 127  87 93 
II-2 ch female 108 124  324 334  139 139  93 95 
II-3 ch male 116 124  332 334  117 127  85 95 
II-4 ch male -- --  334 338  127 139  87 93 
II-5 ch female 122 124  334 338  137 139  85 93 
II-6 CH male 122 124  -- --  -- --  93 95 
II-7 CH male 110 124  332 342  117 123  93 95 
II-8 CH male -- --  332 332  117 137  95 95 
II-9 CH male 122 124  332 338  117 137  85 95 
II-10 CH male 122 124  332 338  117 137  85 95 
II-11 CH female 116 124  -- --  -- --  93 95 
II-12 CH female -- --  332 338  117 135  93 95 
II-13 CH male -- --  332 338  117 137  87 95 
II-14 CH female -- --  332 332  117 137  87 95 
II-15 CH male -- --  324 332  117 135  87 95 
II-16 CH male -- --  332 338  117 127  87 93 
II-17 CH female -- --   332 338   117 127   87 95 
 

SIRE 2 
Sire 2 Color Sex UM010   COOK007   TKY329   VHl209 
I-1 CH Sire -- --  332 334  111 137  91 93 
II-1 CH female -- --  332 338  111 139  87 93 
II-2 CH female -- --  332 332  111 139  91 101 
II-3 CH female -- --  332 332  111 139  91 93 
II-4 CH female -- --  -- --  111 139  87 91 
II-5 CH female -- --  332 334  117 137  87 91 
II-6 ch male -- --  334 338  111 137  93 95 
II-7 CH male -- --  330 332  111 139  87 91 
II-8 ch male -- --  334 338  137 139  93 95 
II-9 ch female -- --  324 334  137 139  87 93 
II-10 ch male -- --  332 334  111 127  87 91 

The allele designations are the base pair lengths of the amplified microsatellite alleles. 
Sire family 3 was the only one with dams included. Each heterozygous champagne sire is 
listed first for each family and is in purple. For family of sire 3 the dams are listed below 
the sire in pink with their respective offspring immediately below them. Champagne 
offspring are in tan and non-champagne are in light blue. The genotypes for each 
offspring derived from the sire are colored in tan and blue depending on their inferred 
association with the champagne allele from sire.  
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Table 2.4: cont… 
SIRE 3 

Family 3 Color Sex UM010   COOK007   TKY329   VHl209 
I-7 CH Sire 108 124  324 332  117 139  93 95 
                         
I-1  ch Dam 108 124  324 338  127 139  85 93 
II-1 ch male 108 108  324 324  139 139  93 93 
I-2  ch Dam 108 124  324 338  127 139  85 85 
II-2 ch male 108 124  324 338  127 139  85 93 
II-3 CH male 124 124  332 338  117 127  85 95 
I-3  ch Dam 122 124  332 338  127 127  85 93 
II-4 CH male 124 124  332 332  117 127  85 95 
II-5 CH male 124 124  332 338  117 127  85 95 
II-6 ch male 108 122  324 332  127 139  93 93 
I-4  ch Dam 108 108  324 324  139 139  85 93 
II-7 ch female 108 108  324 324  139 139  85 93 
I-5  ch Dam 116 124  338 338  127 127  85 93 
II-8 ch female 108 116  324 338  127 139  93 93 
I-6  ch Dam 118 122  324 332  137 139  85 85 
II-9 ch female 108 122  324 332  137 139  85 93 
II-10 CH female 118 124  324 332  117 139  85 95 
II-11 CH male 118 124  324 332  117 139  85 95 
II-12 ch male 108 118  324 324  139 139  85 93 
I-8  ch Dam -- --  -- --  -- --  -- -- 
II-13 ch female 108 108  324 324  139 139  93 93 
I-9  ch Dam 120 124  334 338  133 137  85 85 
II-14 CH male 108 124  332 338  133 139  85 93 
I-10  ch Dam 108 114  324 342  139 139  93 93 
II-15 CH male 108 124  324 332  117 139  93 95 
II-16 ch female 108 114  324 342  117 139  93 95 
I-11  ch Dam 124 124  332 338  137 139  85 85 
II-17 CH male 124 124  332 332  117 139  85 95 
II-18 ch male 124 124  324 332  137 139  85 93 
I-12  ch Dam 108 116  324 332  133 139  93 95 
II-19 CH female 108 124  324 332  117 139  93 95 
I-13  ch Dam 108 114  324 342  139 139  93 93 
II-20 ch female 108 114  324 342  139 139  93 93 
I-14 ch Dam 122 122  324 332  117 127  85 95 
II-21 CH female 122 124  324 332  117 117  95 95 
II-22 CH male 122 124  332 332  117 127  85 95 
II-23 CH female 122 124   332 332   117 127   85 95 

Color legend: Purple = Sire, Pink = Dam, Tan = champagne phenotype (tan data = sire’s 
CH associated allele), Red = ambiguous call 
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Candidate Genes 

Candidate genes were selected on the basis of proximity to the marker COOK007 

and genes previously characterized as influential in the production or migration of any 

pigment cells.  SPARC [Secreted protein, acidic, cysteine-rich (osteonectin)] was located 

closest at approximately 90kb downstream from COOK007 and implicated in migration 

of retinal pigment epithelial cells in mice (Sheridan et al., 2002).  All 9 exons of SPARC 

were sequenced. Multiple single nucleotide polymorphisms (SNPs) were found but all 

caused synonymous mutations and will not be discussed further in this report.  

SLC36A1, A2 and A2 were also proximal to this marker. SLC36A family members 

are solute carriers and other solute carrier families have previously been found to play a 

role in coat color.  SLC36A1 was the second most proximal gene to COOK007 and is 

located less than 250kb downstream from COOK007. SLC36A2 and SLC36A3 are coded 

for on the plus strand of DNA and are approximately 350 k and 380 k downstream, 

respectively from COOK007. A2 and A3 have been found to be expressed in a limited 

range of tissues in humans and mice (Bermingham and Pennington, 2004). 
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RT-PCR 

RT-PCR (reverse transcription-polymerase chain reaction) was used to determine 

if SLC36A1, SLC36A2 or SLC36A3 were expressed in skin. SLC36A1 and SLC36A2 were 

expressed in skin and their genomic exons were sequenced. SLC36A3 is normally only 

found expressed in testes of other organisms and was not detected in equine skin.  

Therefore, it was not investigated for the presence of SNPs.  Results for RT-PCR of these 

three genes are shown in Figure 2.6 and primers used are shown in Table 2.6.   

 

 
 
Figure 2.6: RT-PCR Product Results for SLC36A1, A2 and A3. 
A) RT-PCR results for SLC36A1, showing mRNA is present in blood and skin of both 
dilute horses and lab stock non-dilutes. B) RT-PCR results for SLC36A2 verifying its 
expression in skin of lab stock non-dilute horses. C) RT-PCR results for SLC36A3 
verifying its expression only in testes with no mRNA detectible in skin of lab stock non-
dilute horses. (Faint bands observed above 400 bp on gel C were sequenced and did not 
show homology to SLC36A3.)   
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Table 2.5: Primer Sequences for Reverse Transcription and Sequencing of Partial 
cDNAs from mRNA 
 
 
Gene 

 
 
Forward Primer (5’-3’) 

 
 
Reverse primer (5’-3’) 

 
Product   
(bp) 

 
Exons 
Included 

SLC36A1 ACCAGCGGTTTGGG
GAAA 

ACGGCCACGATGCCCATC
A 

 
169 

 
1-3 

 
SLC36A2 
(outer 
long) 

 
AAGCGTCATGCCCG
TGACAAAGAGTGCG 

 
GTGGCAGAAGCGCTGGGC
ACACCTG 

 
 
348 

 
 
1-3 

SLC36A2 
(outer 
short) 

 
GCCCGTGACAAAGA
GTGCG 

 
AAGCGCTGGGCACACCTG 

 
334 

 
1-3 

SLC36A2 
(nested) 

 
ACCTCAAACTGGAC
CTCAGG 

 
ATGCCTGCGTTCCTCACA 

 
208 

 
2-3 

 
 
SLC36A3 

 
TTGGAAGGGACTAC
AACAGTGAG 

 
GGTTTCGAGGCTGTACAT
CATG 

 
 
350 

 
 
1-4 

 

 

Sequencing 

All 9 exons of SPARC were sequenced. Three SNPs were found in exons but none 

showed associations with the champagne phenotype.  SLC36A2 was sequenced with 

discovery of 9 SNPs in exons.  None of the SNPs showed associations with CH.  These 

SNPs and all other variations detected during the course of this work are described in 

Table 2.6.   

SLC36A1 was sequenced. Only one SNP was found; a missense mutation 

involving a single nucleotide change from a C to a G at base 76 of exon 2 (c.188C>G) 

(Figure 5). These SLC36A1 alleles were designated c.188[C/G], where c.188 designates 

the base pair location of the SNP from the first base of SLC36A1 cDNA, exon 1  (Figure 

2.7).  Sequencing traces for the partial coding sequence of SLC36A1 exon 2 with part of 

the flanking intronic regions for one non-champagne horse and one champagne horse 

were deposited in GenBank with the following accession numbers respectively: 

EU432176 and EU432177.  This single base change at c.188 was predicted to cause a 

transition from a threonine to arginine at amino acid 63 of the protein (T63R).  
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Figure 2.7: Genomic Alignment between Homozygous Champagne, Non-dilute, and 
Horse Genome Assembly 
Allignment is flanked by cut out electropherogram reading of sequencing data for one 
homozygous champange horse and one homozygous non-champagne horse. Reading 
frame is marked by alternating colors of codons, which code for specific amino acids 
which will make up the resulting protein. The bottom of this figure is a diagram of 
SLC36A1 highlighting the identified SNP in exon 2 with the sequence and gene layout as 
given by Ensembl genome browser equine assembly v2. Blue blocks of gene layout are 
exons and red boxes are the 5′ and 3′ UTRs. The purple star denotes the location where 
the variant associated with champagne was identified. 
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Table 2.6: Sequence Variations Detected 

Gene Location 

Base 
Position 
within 

location Variation Type  5' flank 3'flank  residues 

SPARC In 1-2 1353 A>G   ATG 

GAAT
CTCC
AG   

    1365 C>T   
GAATC
TCCAG 

GAGC
TGCT
CTCC   

                

SPARC  Ex 2 60 C>T syn 

GGCTG
AGGTG
TC 

GAGG
TACG
TGGG Cys>Cys 

                

SPARC  In 2-3 157 G>A   

TGCGT
ATTCC
CA T   

    561 C>T   
AAGCC
TCCCC 

CAGT
CTTC
ACCC   

                

  SPARC In 3-4 87 C>T   

TTCTG
TGAGG
TT 

CCTC
CCAA
GGGA   

    1397 G>A   

AAGG
ATTGG
TCT 

GATT
GGGT
TGGG   

                

SPARC  Ex 4 69 T>C mis 

CAGTC
CCATG
TG 

GTGT
GCCA
GGAC Cys>Arg 

                

SPARC  In 4-5 1827 C>T   

AAAG
GTGCG
AAA 

CCTG
TGCTT
TGC   
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Table 2.6: cont… 

Gene Location 

Base 
Position 
within 

location Variation Type  5' flank 3'flank  residues 

SPARC  In 5-6 19 G>C   

CTTTT
CCTTG
GGC 

CTTCT
GGGC
TTC   

    49 C>A   

CGAGG
AGAG
ACC 

CTGA
ACTG
ACGC   

    78 A>G   

GCTGG
CTGTG
CC 

CCCC
C   

    2181 A>G   

ACCTT
GGGCG
GG 

AGAG
TCAG
GGTC   

SPARC  In 6-7 645 T>C   

AGTCT
CCCTG
GA 

GCTTT
GTCA
CAG   

SPARC  Ex 7 51 A>G syn 

TGGAG
ACCAC
CC 

GTGG
AGCT
GCTG Ser>Gly 

  SPARC In 7-8 95 T>G   

GGTAG
GCTCA
CT 

GATA
TGGT
CAGA   

SLC36A
1  Ex 2 76 C>G mis 

GCAAC
ATTGG
CA 

AGGA
CTCCT
GGG 

Thr 
>Arg 

SLC36A
2  5’UTR 

 - 89 
from 
Start C> del 

GCTGC
TGAGA 

GGGG
TTTGC
ACT   

SLC36A
2  In 2-3 9 G>C   

CTGGT
AAGA
AGG 

GCTG
CCGC
AGGT   

SLC36A
2  Ex 6 45 C>T syn 

TTACA
A 

GAGA
CAGT
GATT Tyr>Tyr 

SLC36A
2  In 6-7 1339 T>C   

ATTCA
GGTCT
AC 

GTCA
GAAT
ACTC   

    1308 T>A   

TAAAG
GAGCT
CA 

ACAT
GCTT
CGAG   
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Table 2.6: cont… 

Gene Location 

Base 
Position 
within 

location Variation Type  5' flank 3'flank  residues 

SLC36A
2  Ex 9 94 C>T syn 

CCTCT
ACGTC
TT 

GGCA
TCCT
GTGC Trp>Trp 

    155 G>A syn 

ATCGT
CCCCT
TC 

CTGT
CTCC
CGCG
C Ser>Ser 

                
  

SLC36A
2 In 9-10 23 T>G   

TCAGC
CAGAT
GG 

GAAG
GATG
GT   

    33 T>G   
GAAG
GATGG ?   

  
SLC36A

2 Ex 10 50 T>G mis 

CCTCT
CCCTG
GT 

GGCT
CCAT
GAGC Trp>Gly 

    64 G>C mis 

GCTCC
ATGAG
CA 

CAGC
GCCC
TGGC Cys>Ser 

  
 
   67 G>C mis 

CCATG
AGCAC
CA 

CGCC
CTGG
CCCT Cys>Ser 

   227 A>G syn 

TCTGA
TCCAG
CC 

ACAG
ACCA
TCTC Ser>Ser 

   265 C>T mis 

CCACC
ATTTT
CA 

TCAG
TGAG
AATG Ser>Phe 

    269 G>C mis 

GATTT
TCACT
CA 

TGAG
AATG
GTGC Cys>Ser 

Types of variants found within exons classified as; mis = missense, syn = synonomous. 
The base position given within location refers to exons/introns.  
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Protein Alignment 

Figure 2.8 shows the alignment of the protein sequence encoded by exons 1 and 2 

of SLC36A1 for seven mammalian species with sequence information from Genbank 

(horse, cattle, chimpanzee, human, dog, rat and mouse).  The alignment was performed 

using AllignX function of Vector NTI Advance 10 (Invitrogen Corp, Carlsbad, 

California) and demonstrates that this region is highly conserved among all species.  At 

position 63, the amino acid sequence is completely conserved among these species, with 

the exception of horses possessing the champagne phenotype.  This replacement of 

threonine with arginine occurs within a putative transmembrane domain of the protein 

(Boll et al., 2003).   

 

 
 
Figure 2.8: Seven Species Protein Sequence Alignment for SLC36A1 Exons 1 and 2. 
The R in red is the amino acid replacement associated with the Champagne phenotype. 

 

 

Population Data 

The distribution of c.188G allele among different horse breeds and among horses 

with and without the champagne phenotype was investigated.  Table 2.7 is a compilation 

of the population data collected via the genotyping assay. All dilute horses (85) not 

possessing the CR gene, tested positive for the c.188G allele with genotypes c.188C/G or 

c.188G/G.  No horses in the non-dilute control group (97) possessed the c.188G allele.  

The horses used for the population study were selected for coat color and not by random 

selection; therefore measures of Hardy-Weinberg equilibrium are not applicable and were 

not calculated.  
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Table 2.7: Results for TaqMan Genotyping of c.188 Locus 
                                  Champagne (CH/CH or CH/ch)    Non-Dilute (ch/ch, cr/cr) 

Horse Breeds G/G G/C C/C Total 
American Cream Draft 
American Miniature Horse 
American Quarter Horse 
American Paint Horse 
American Saddlebred 
Appaloosa 
Kentucky Mountain 
Part Arabian 
Pinto 
Pony 
Missouri Foxtrotter 
Mule 
Spanish Mustang 
Spotted Saddle Horse 
Tennessee Walking Horse 
Thoroughbred 
 
Total 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
3 
0 
 
4 

1 
9 
26 
13 
2 
1 
1 
3 
0 
1 
4 
2 
1 
1 
16 
0 
 

81 

0 
1 
1 
32 
2 
0 
0 
0 
5 
1 
0 
0 
0 
0 
20 
35 
 

97 
 

1 
10 
28 
45 
4 
1 
1 
3 
5 
2 
4 
2 
1 
1 

39 
35 

 
182 

First column contains the horse breeds tested. Second column is for individuals 
homozygous for champagne locus. Third column contains champagne heterozygotes . 
Fourth column has nondilutes negative for champagne alleles. G is the actual champagne 
DNA allele and C is the non-dilute wild type allele. 
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Discussion 

 Family studies showed linkage of the gene responsible for the champagne dilution 

phenotype within a 6cM region on ECA14 (Penedo et al., 2005) (Table 1).  Based on the 

Equine Genome Assembly V2 as viewed in the ENSEMBL genome browser 

(http://www.ensembl.org/Equus_caballus/index.html), this region spans approximately 

2.86 Mbp (Kent et al., 2002).  Within this region, four candidate genes were investigated; 

one was selected based on known effects on melanocytes (eg. SPARC), the other three 

were chosen for their similarity to other solute carrier genes previously shown to 

influence pigmentation (eg, SLC36A1, A2, and A3). While SNPs were found within the 

exons of SPARC, none were associated with CH. Of the other 3 candidate genes, only 

SLC36A1 and SLC36A2 were found to be expressed in skin cells. Therefore, the exons of 

those two genes were sequenced. A missense mutation in the second exon of SLC36A1 

showed complete association with the champagne phenotype across several breeds. 

While SNPs were found for SLC36A2, none showed associations at the population level 

for the champagne dilution phenotype. 

This data is the first demonstration for a role of SLC36A1 in pigmentation. 

Orthologous genes in other species are known to affect pigmentation. For example, the 

gene responsible for the cream dilution phenotypes in horses, SLC45A2 (MATP), belongs 

to a similar solute carrier family. In humans, variants in SLC45A2 have been associated 

with skin color variation (Graf et al., 2005)  and a similar missense mutation 

(p.Ala111Thr) in SLC24A5 (a member of potassium-dependent sodium-calcium 

exchanger family) is implicated in dilute skin colors caused from decreased melanin 

content among people of European ancestry (Lamason et al., 2005).  The same gene, 

SLC24A5 is responsible for the Golden (gol) dilution as mentioned in the review of 

mouse pigment research by Hoekstra (Hoekstra, 2006). 

We propose that the missense mutation in exon 2 of SLC36A1 is responsible for 

the champagne dilution phenotype. While this study provides evidence that this is the 

mutation responsible for the champagne phenotype, the proof is of a statistical nature and 

a non-coding causative mutation cannot be ruled out at this point. SLC36A1, previously 

referred to by the name PAT1 (proton/amino acid transporter 1) in human and mouse 

(Chen et al., 2003), is a proton-coupled small amino acid transporter located and most 
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active in the brush border membranes of intestinal epithelial cells. This protein, also 

known as lysosomal amino acid transporter 1, LYAAT1, was first identified in rat brains 

(Sagne et al., 2001).  SLC36A1 is a symporter that facilitates the coupled transport of H+ 

and select amino acids from both intracellular and extracellular proteolysis. It functions 

in the membrane of lysozomes of brain neurons and the apical membrane of intestinal 

epithelial cells. This function is coupled to the V-type H+ ATPase in lysosomes and with 

Na+/H+ exchanger in the intestinal epithelial cells, which both provide the gradiant which 

drives transport of amino acids to the cytosol (Boll et al., 2003).  LYAAT1/SLC36A1 is 

localized in the membrane of lysozomes and the cell membrane of post-synaptic 

junctions. In lysozomes it allows outward transport of protons and amino acids from the 

lysozome to the cytosol (Wreden et al., 2003).  During purification and separation of 

early-stage melanosomes LAMP1/SLC36A1 is found in high concentrations in the 

fraction containing stage II melanosomes (Kushimoto et al., 2001).  Perhaps SLC36A1 

plays a role in transitions from lysozome-like precursor to melanosome. Since 

organellular pH affects tyrosine processing and sorting (Watabe et al., 2004), an amino 

acid substitution in this protein may affect cytosolic pH by inhibiting the proper flow of 

protons from lysozomes and, therefore, the ability to process tyrosine properly. There 

must be an increase in pH, before tyrosinase can be activated. The cytosolic pH gradient 

must be maintained for proper sorting and delivery of other proteins required for 

melanosome development (Watabe et al., 2008).  Thus, the pH gradient of the cell may 

be altered by this mutation. 

It is hypothesized that disruption of the protein structure by replacement of a non-

polar transmembrane residue with a polar residue results in loss of function for this 

protein.  This is shown here using a figure depicting the topology of the SLC36A1 gene 

originally published by Boll et al (2003). We modified the figure with horse amino acids 

overlaying the first two exons with the suspected CH variation shown in red (Figure 2.9).  

This image shows the transmembrane location of variation and its vicinity to the 

conserved histidine residues which are necessary components of the substrate recognition 

site for this transporter.  The polar residue would negatively affect the structure of this 

transmembrane region and the regions of the protein flanking it, potentially disrupting the 

substrate recognition site.   
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Figure 2.9: First Two Exons of SLC36A1 of the Horse Overlaid on Mouse Topology 
The residue differences between horse and mouse are overlaid in blue and CH variation T 
– R is highlighted in red.  The beginning and end of the 2 exon segment are denoted by 
blue arrows. 

 

 

 

 

Further investigation into this gene/protein product is necessary to elucidate its 

role in pigmentation.  The transport properties could be compared between wild type and 

SLC36A1 and the CH variant using the two-electrode voltage clamp technique in a flux 

study similar to the one by Boll et al. to compare the amino acid uptake rates of 

SLC36A1and SLC36A2 (Boll et al., 2002).  Alternatively, cell cultures containing wild 

type and CH variant melanosomes could be compared for  processes related to melanin 

synthesis and any differences in the ability to transfer melanosomes to keratinocytes.  In 

another approach, copies of SLC36A1 CH variant could be immunofluorescently labeled 

and transfected into other cell lines to identify any change in cellular localization.   
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 This variant, discovered in association with a coat dilution in the horse, is the first 

reported for the SLC36A1 gene.  The phenotype resulting from this mutation, a reduction 

of pigmentation in the eyes, skin and hair, illustrates previously unknown functions of the 

of SLC36A1 protein product.  Furthermore, now that a molecular test for champagne 

dilution is established, the genotyping assay can be used in concert with available tests 

for cream dilution and silver dilution to clarify the genetic basis of a horse’s dilution 

phenotype.  This will give breeders a new tool to use in developing their breeding 

programs whether they desire to breed for these dilutions or to select against them.  

 

Copyright © Deborah G.Cook 2014 
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CHAPTER THREE: Genetics of Extreme Lordosis in American Saddlebred 

Horses 

 

Summary 

Extreme lordosis, also called swayback, lowback or softback, can occur as a 

congenital trait or as a degenerative trait associated with aging. In this study, the 

hereditary aspect of congenital extreme lordosis was investigated using whole genome 

association studies of 20 affected and 20 unaffected American Saddlebred (ASB) Horses 

for 48,165 (SNPs). A statistically significant association was identified on ECA20 

(corrected P = 0.017) for SNP BIEC2-532523. Of the 20 affected horses, 17 were 

homozygous for this SNP when compared to seven homozygotes among the unaffected 

horses, suggesting a major gene in this region with a recessive mode of inheritance. The 

result was confirmed by testing an additional 13 affected horses and 166 unaffected 

horses using 35 SNPs in this region of ECA20 (corrected P = 0.036). Combined results 

for 33 affected horses and 287 non-affected horses allowed identification of a region of 

homozygosity defined by four SNPs in the region. Based on the haplotype defined by 

these SNPs, 80% of the 33 affected horses were homozygous, 21% heterozygous and 9% 

did not possess the haplotype. Among the non-affected horses, 15% were homozygous, 

47% heterozygous and 38% did not possess the haplotype. The differences between the 

two groups were highly significant (P < 0.00001).  The region defined by this haplotype 

includes 53 known and predicted genes.  Exons from three candidate genes, TRERF1, 

RUNX2 and CNPY3 were sequenced but distinguishing SNPs were not found. The 

mutation responsible for extreme lordosis may lie in other genes or in regulatory regions 

outside exons. This information can be used by breeders to reduce the occurrence of 

extreme lordosis among their livestock. This condition may serve as a model for 

investigation of congenital skeletal deformities in other species. 

 

 

[Most of the work described in this chapter was published in 2010 Animal 

Genetics 41(Suppl. 2), 64–71. doi:10.1111/j.1365-2052.2010.02108.x] 
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Spinal Developmental Variations 

During vertebral development different spinal variations from the norm can occur. 

The three major congenital forms of spinal malformation are extreme 

lordosis/hyperlordosis, kyphosis and scoliosis. The most commonly manifested spinal 

deformities studied in humans are congenital scoliosis, adolescent idiopathic scoliosis 

and Scheuermann's kyphosis. Adolescent idiopathic scoliosis (AIS) is characterized by a 

lateral spinal curvature of at least 10 degrees that occurs between age 10 and the point of 

skeletal maturity (Ward et al., 2010). Historically, finding the genetic cause for such 

deformities has been challenging. In humans, cases of known hereditary spinal 

malformations are rare (Winter et al., 1983). In an extended family study of AIS, the 

higher risk within the families was attributed to polygenic inheritance (Ward et al., 2010).  

Even with the polygenic etiology for AIS, one genetic risk variant near LBX1 on human 

chromosome 10 has been identified by whole genome association study (WGAS) 

(Takasha et al., 2011).Scheuermann's kyphosis is a result of uneven growth of the 

thoracic vertebrae resulting in wedge shaped vertebrae and increased kyphotic curve of 

the spine. No particular genetic cause is yet known, but it is believed to be polygenic 

(Fotiadis et al., 2008). 

 

Lordosis 

Lordosis, specifically the dorsal to ventral concave curvature of the thoracic and 

lumbar region of the spine, is normal and healthy in most mammals.  However, extreme 

lordosis is associated with pathology in horses (Rooney & Pickett 1967; Rooney, 1969).  

This condition is also known in horses as swayback, lowback or softback.  Rooney & 

Robertson (1996) noted that variable degrees of lordosis seem to be common in certain 

lines of American Saddlebred horses. Figure 3.1 shows the characteristic conformation 

for a horse with lordosis (Figure 3.1 top) and a normal horse (Fig. 3.1middle).  A familial 

aspect was suspected but not established in previous work.  A study of extreme lordosis 

among Saddlebred horses led Gallagher et al. (2003) to devise a method to measure the 

extent of lordosis and to characterize the variation found among horses in this breed. 

Based on this study, a threshold for considering horses to have the condition was defined, 
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and 5% of 294 horses were considered affected. Studies of affected families suggested, 

but did not prove, a recessive mode of inheritance. 

In our experience, breeders are of mixed opinions regarding this trait. Extremely 

lordotic horses have not been routinely identified as experiencing pain, and some horses 

with this trait have performed well. Most breeders regard the condition as a conformation 

defect and avoid breeding stock with this condition. Identifying the genetic 

determinant(s) for this condition would provide breeders with the opportunity to better 

understand the genetics of the trait and use that information in their selection programs. 

Traditionally, family studies have been most useful to identify the genetic 

locations for hereditary traits in horses such as the tobiano white spotting pattern, equine 

combined immunodeficiency disease and cream coat color dilution (Trommershausen-

Smith 1978; Bailey et al., 1997; Locke et al., 2001).  However, while horses with 

extreme lordosis are not uncommon, breeders avoid mating animals they believe likely to 

produce affected horses. Consequently, family studies are difficult. However, with the 

advent of the horse genome sequence and the availability of dense arrays of single-

nucleotide polymorphisms (SNPs) for whole genome association (WGA) studies, 

population studies can be used to investigate the genetics of traits in horses (Wade et al., 

2009).  The purpose of this study was to determine whether a hereditary component 

contributes to the lordotic trait in American Saddlebred (ASB) horses and, if so, to 

identify the location of genes responsible for this trait. 
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Figure 3.1:Characteristic Conformation Differences Between the Presence and Absence 
of Extreme Lordosis. 
Horses on top and bottom exhibit extreme lordosis. Horse in the middle is consider 
nonlordotic and has a level topline. 
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Materials and Methods 

Phenotypic Assessment of Lordosis 

Phenotypic assessment of lordosis was based on the measurement of back contour 

(MBC) (Gallagher et al., 2003).  Two points are chosen on the horse’s back, one at the 

top of the withers (the highest point of the dorsal spineous process in the region of 

thoracic vertebrae T2-T3) and one on the point of the rump (the highest point on top of 

the horse’s hips).  The shortest distance between those points was measured in 

centimeters and designated “A”.  Next, the distance along the contour of the back was 

measured in centimeters and designated “B”.  MBC was calculated as the difference 

between “A” and “B”.   Figure 3.1c and 3.2 illustrate the points of measurement on a 

horse exhibiting extreme lordosis.   

 

 
Figure 3.2: Calculating MBC. 
Long Back Length – Short Back Length = MBC 

 

Horses Measured for MBC 

Measurements and tissue (hair or blood) samples for ASB horses used in this 

study came from a sample set of 749 American Saddlebred horses collected from private 

and commercial farms in and around Kentucky.  The average age was 7.1 years and 

ranged from 1 month to 29 years old.  All Saddlebred horses used in the Illumina and 

Sequenom assays were selected from among this group.  

 

 

 

 

Short Back Length 
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Long Back 
Length 
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Horses for Illumina Assay 

For the genome scan using the Illumina Equine SNP50 Chip, 40 ASB horses were 

selected, based on their lordosis phenotype.  Twenty horses were selected based on 

having an MBC > 8.0 centimeters and 20 were selected based on having MBC < 5.0 cm.  

The control group included 19 half-siblings for horses in the affected group to reduce the 

chance of population substructure producing spurious associations.    

 

Horses for Sequenom Assay 

A total of 426 horses were selected for a 35 SNPs located in the genomic region 

suggested by the WGA study.  Three horses were tested in duplicate to control for the 

quality of the testing.  Twilight, the thoroughbred horse used for the whole equine 

genome sequencing, was also tested for quality control of known SNPs located in the 

genomic region suggested by the WGA study.  Among the ASB horses, 33 (including the 

20 original cases) had values for MBC of 7.0 or greater, 287 had MBC <7.0 cm and 106 

were parents, siblings or offspring of lordotic horses.  The relatives were tested to assist 

with haplotype determination.    

 

DNA Extraction 

DNA was extracted from blood or hair follicles for testing.  DNA from blood 

samples was extracted using Puregene whole blood extraction kit (Gentra Systems Inc., 

Minneapolis, MN) according to its published protocol. Hair samples were processed 

using 20-30 hair bulbs according to a personally optimized Gentra protocol with a Gentra 

DNA purification kit. The hair bulbs were placed in 200 µl Gentra Cell Lysis solution 

and 0.01 mg proteinase K (Sigma-Aldrich, St Louis, MO) and incubated at 55°C over 

night then DNA was purified by following remaining steps from published Gentra 

protocol.   

Illumina Equine SNP50 Genotyping 

Initial SNP genotyping of 40 samples in the case/control group was performed 

utilizing the Illumina Equine 50 SNP chip for a WGA study. DNA was provided to the 

core facility at the Mayo Clinic in Rochester, MN for genotyping.  
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Sequenom 

Ten SNPs from the WGA study and 39 additional SNPs from the EquCab2.0 SNP 

database (http://www.broadinstitute.org/ftp/distribution/horse_snp_release/v2/) were 

selected for testing using the MassArray iPLEX Gold assay on the Sequenom platform.  

Genotyping was performed at Proactive Genomics, LLC; Clemmons, North Carolina.   

The 49 SNPS selected were identified as being between positions of the SNPs flanking 

the region of interest at base pair 41530793 and 44585118 respectively on ECA 20.  

Following testing, 43 of the 49 SNPs provided quality genotyping data.  Of these, 35 

SNPS, with minor allele frequency > 0.01, were used for final association and haplotype 

analysis.  Furthermore, 96% of the submitted samples had fewer than 0.05 genotypes 

missing and were included in analysis.  

 

Genotyping Analysis 

Genotyping data analysis was performed using PLINK v1.06 (Purcell et. al. 

2007).  Association analysis by case/control chi-square was performed on the Illumina 

data.  To minimize error, because of the multiplicity of SNPs tested, an MPERM analysis 

with 10,000 permutations was done and a statistic, EMP 2 (referred to here as corrected 

P) verified possible associations.  Once association was identified, different sized 

haplotypes were tested by chi-square analysis to identify the size and location of the 

highest associated haplotype in the region. Selected haplotypes were phased for all horses 

in this study to clarify familial patterns of transmission. Chi-square association analysis 

was also performed on the Sequenom data to verify association of the SNPs included 

from llumina assay and to identify any new associations. The 35 SNP haplotypes were 

then phased to verify familial patterns and to identify possible recombination locations. 

Haplotype analysis was also performed in Haploview (Barrett et al., 2005) for validation 

of PLINK analysis. Haplotypes were identified using the HAP and PHASE options of 

PLINK. Haplotype frequencies were determined by direct counting. 
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Sequencing 

To investigate candidate genes, exon sequences of two affected horses were 

compared to those of two unaffected horses. The two affected horses were selected as 

unrelated horses with MBC >7.0 and homozygous for the lordosis-associated ECA20 

haplotype. Unaffected horses were selected as unrelated horses with MBC <7.0 and not 

possessing the ECA20 haplotype associated with extreme lordosis. When SNPS were 

identified and confirmed on these four horses, additional control and case horses were 

tested to determine whether there was an association with the lordotic trait. PCR template 

for sequencing was amplified in 20 µl PCRs using 1· PCR buffer with 2.0 mM MgCl2, 

200 lM of each dNTP, 1 µl genomic DNA from hair lysate, 0.2 U FastStart Taq DNA 

polymerase (Perkin Elmer, Waltham, Mass.) and 50 nM of each primer. Template 

product was quantified on a 1% agarose gel, then amplified with BigDye Terminator v1.1 

cycle sequencing kit according to manufacturer’s instructions (Applied Biosystems), 

cleaned using Centri-Sep columns (Princeton Separations Inc.), and run on an ABI 310 

genetic analyzer (Applied Biosystems). Primers were designed in Primer 3 (Steve and 

Skaletsky 1998) using 8 intronic sequences and seven exonic sequences of TRERF1 

(transcriptional regulating factor for CYP11A1), 15 exonic sequences for RUNX2 

(transcription factor associate with osteoblast differentiation) and six exonic sequences 

for CNPY3 (regulates cell surface expression of Toll Receptor 4) (See Table S1). 
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Results 

 

Distribution of MBC 

The distribution of MBC values among the 749 horses in this study was similar to 

that found by Gallagher et al. (2003).  MBC for the 749 ASB horses ranged from 0 cm to 

17 cm; shown in figure 3.3.  Most MBC values appear to fall within a normal population 

distribution with a mean of 3.6 ± 1.9 cm, median of 4 cm and mode of 4 cm.  An MBC of 

7 cm or greater was selected to classify horses as affected based on this value being 

approximately two standard deviations from the mean.  

 

 
 
Figure 3.3: Population Distribution of MBC Among ASB Samples 
X-axis = MBC measure in centimeters.  Y-axis = number of horses. 
 

Whole Genome Scan with Illumina Equine SNP50 Beadchip 

The Illumina Equine SNP50 chip (Illumina) was effective in typing DNA from 

the initial 40 horses.  The 40 individuals had an average call rate of 0.96.  After filtering 

for minimum minor allele frequency 0.01 and genotyping of 0.90 per SNP; 48,165 SNPs 

were retained for data analysis.     
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Table 3.1 shows the top 10 statistically significant results from a 2 X 2 chi-square 

analysis comparing the distribution of SNPs in the DNA of affected and non-affected 

horses.  The most significant association was found on ECA20 for SNP BIEC2_532523 

(P= 6.69E-06) (Figure3.4).  Of the ten most significant P values, 5 occurred for SNPs on 

ECA20 in the 531 kb region between positions 42,062,440 and 41,530,973.  The 

multiplicity of comparisons will result in the spurious discovery of high chi-square 

values; therefore, to control for the multiplicity of comparisons, PLINK was used to 

conduct a Monte Carlo simulation with 10,000 permutations to calculate a corrected P 

value (EMP2) (Figure 3.5).  Only the association with SNP BIEC2-532523 on ECA20 

remained significant (EMP2 p-value 0.017).   

 

Table 3.1: Results from Illumina Equine SNP50 assay. 
CHR BP  SNP-ID  CHISQ P   EMP2 
 
20 41530793 BIEC2-532523 20.28  6.69E-06        0.01699 
X 51065036 BIEC2-1124071 15.66  7.60E-05 0.2554 
20 42062440 BIEC2-532578 15.53  8.12E-05 0.2904 
7 7444796 BIEC2-978005 13.73  0.000211 0.6762 
X 51061227 BIEC2-1124068 13.47  0.000243 0.7091 
7 18839866 BIEC2-984003 13.33  0.000261 0.7326 
28 35119684 BIEC2-739844 13.33  0.000261 0.7326 
20 41576546 BIEC2-532530 13.07  0.000301 0.7931 
20 41604741 BIEC2-532534 13.07  0.000301 0.7931 
20 41625809 BIEC2-532535 13.07  0.000301 0.7931 
 
Case/Control Analysis: 20 lordotic and 20 normal back Saddlebred horses.  Chromosome 
location (CHR), base position on chromosome (BP), SNP identifier (SNP-ID), 2X2 chi-
square value (CHISQ), P value (P), and P value from Monte Carlo correction for number 
of comparison (EMP2) are shown. 
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Figure 3.4: The –log P-values from Association Analyses Plotted by Haploview. 
Chromosomes are differentiated by color. Illumina genotype results from 20 cases vs 20 
controls displayed in haploview. Possible statistical significance indicated on equine 
chromosome 20 with –log10 value greater than 5 which is equivalent to P < . 

 
 

 
 
Figure 3.5: Max-T Permutation Results 
X-axis = chromosomes, Y-axis = transformed EMP2 value.  Ilumina 20 case vs 20 
control data. Possible statistical significance is shown on equine chromosome 20. 

 

Among the affected horses with MBC 7cm or greater, 17 out of 20 were 

homozygous for the T allele of the [BIEC2-532523 T/C] SNP at base pair location 

41530793 on ECa 20.  Among the 20 controls, only 7 were homozygous for this allele. 

This SNP fell in a larger region of homozygosity spanning approximately 3 Mb from 

base position 41,604,741 to 44,512,270, which was identified with the homozygosity 

function in PLINK scanning sliding windows of 30 SNPS,  moving one SNP at a time 

and allowing one heterozygote per window for each segment to be considered 

homozygous. A homozygosity plot for chromosome 20 is shown in figure 3.6.   
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Figure 3.6: Homozygosity Plot Using the SNP Genotypes of 20 Cases vs 20 Controls on  
Equine Chromosome 20. 
The Y-axis is the number of horses.  The X-axis is base pair location on equine 
chromosome 20.  The dark blue line is number of affected homozygous for that genetic 
region.  The pink line represents the number of unaffected homozygous for that region.  
This homozygous region spans approximately 3 Mb from base position 41,604,741 to 
44,512,270. 
 
 

Illumina Haploview Analysis 

 Haploview SNP analysis verified the results gained in PLINK.  The most 

significant SNPS were still BIEC2-532523 (p-value = 6.6E-6) and BIEC2-532578 (p-

value = 8.1E-5).  Figure 3.7 shows the linear relationship of the SNPS on ECA20 for the 

region of association.  The chi-square values for each SNP are plotted by the red line 

above the chromosome.  Darker blocks below the chromosome are indicators of high 

linkage disequilibrium between the two SNPs connected by that particular block.  

 Haploview analysis using the four-gamete rule was applied: for each 

marker pair, the population frequencies of the four possible two-marker haplotypes are 

computed.  Recombination is considered to have taken place if all haplotypes were 

observed with the minimum frequency of 0.01. Figure 3.8 exhibits the results for the 

region of ECA20 showing significant association patterns using four gamete analyses in 

Haploview.  This region spans from BIEC2-532511 to 532579.  The statistical output 

from the analysis is given back in table 3.2.  Blocks 176 and 179 represent the haplotypes 

bearing the most statistically significant association with extreme lordosis.  
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Figure 3.7: Haploview diagram. The Two highest CHISQ peaks in red designate the two 
most highly associated SNPs; BIEC2-532523 and BIEC2-532578. 

 

 

 
Figure 3.8: ECA20 Region of Association from Haploview Four Gamete Analyses. 
The SNP IDs are across the top of the diagram. The dark red blocks indicate LD between 
alleles. Blue blocks indicate likely recombination hot spots.  
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Table 3.2: Haploview Results - Four Gamete Analysis. 

 
Data reflects what is shown in figure 3.9 for the region of ECA20 associated with 
lordosis verifying statistical significance seen with other analysis programs. 

 

 

 

 

 

 

 

 

 

 

85 
 



 

Sequenom 

To verify the statistical associations found with the Illumina assay, SNPs from the 

candidate region on ECA20 were tested, including 10 SNPS from the Illumina Equine 

SNP50 chip and 25 additional SNPs from the EquCab2.0 SNP database. Association chi-

squared analyses were performed separately for the additional 13 affected and 181 

unaffected horses not previously tested in the WGA study. The association analysis for 

just these new samples is shown in table 3.3 (CHISQ1 and P1).  Based on these 13 

affected horses, the association with BIEC2-532523 remained statistically significant 

with a P-value of 0.036.  (Since this was a comparison with new samples, dictated by the 

original Illumina assay, no statistical correction is necessary to correct for multiplicity of 

testing as done for the previous experiment.) Of the 35 SNPs, 7 showed statistically 

significant associations (P< 0.05).   When all 33 affected horses and 287 controls were 

compared, 21 of the 35 selected SNPs showed statistical significance in their distributions 

between the two groups based on their relative frequencies.   
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Table 3.3: Results from Sequenom assay Using 35 SNPs from the Candidate Region.   
SNP-ID  BP  CHISQ P           CHISQ2         P2 

BIEC2_532523* 41530793     4.416 0.0356  23.72        1.12E-06 

BIEC2_532534* 41604741     11.19 0.00082 43.72        3.79E-11 

BIEC2_559789 41772507      0.7726 0.3794  5.543        0.01855 

BIEC2_559792 41823842      0.2935 0.588  9.102        0.002553 

BIEC2_532578* 42062440      5.605 0.01791 42.03        8.99E-11 

BIEC2_559853 42305090      0.8888 0.3458  1.363        0.2431 

BIEC2_559859 42395887      1.484 0.2231  1.669        0.1964 

BIEC2_559873 42482150      2.066 0.1506  7.259        0.007055 

BIEC2_532658* 42603867      8.571 0.003415 29.79        4.80E-08 

BIEC2_559931 42679616      0.5499 0.4584  4.836        0.02787 

BIEC2_559976 42757527      0.4859 0.4858  2.909        0.08809 

BIEC2_560005 42806550      1.517 0.2181  3.629        0.05679 

BIEC2_560049 42906719      3.046 0.08091 0.002347    0.9614 

BIEC2_532826 42983718      1.666 0.1969  13.07        0.0003 

BIEC2_560102 43022942      0.8888 0.3458  1.828        0.1763 

BIEC2_560144 43069858      0.8056 0.3694  1.711        0.1908 

BIEC2_560178 43195488      2.306 0.1288  10.9        0.000963 

BIEC2_560197 43241900      1.747 0.1862  3.929        0.04746 

BIEC2_560209 43319368      9.93 0.001626 20.93        4.76E-06 

BIEC2_560255 43433802      1.213 0.2707  9.956        0.001603 

BIEC2_533020 43520722      6.459 0.01104 24.51        7.38E-07 

BIEC2_560328 43548897      1.173 0.2788  10.58        0.001144 

BIEC2_560360 43605858      1.11 0.2921  9.664        0.001879 

BIEC2_560386 43690935      2.254 0.1333  13.48        0.000241 

BIEC2_560457 43914236      1.056 0.304  2.418        0.1199 

BIEC2_560475 43971596      0.9724 0.3241  2.181        0.1397 

BIEC2_560489 44034799      2.722 0.09899 11.67        0.000634 

BIEC2_533265 44090171      7.979 0.004733 26.6        2.50E-07 

BIEC2_560585 44148267      1.407 0.2356  0.964        0.3262 
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Table 3.3: cont… 

SNP-ID  BP  CHISQ P  CHISQ2 P2 

BIEC2_560618 44188313 0.09612 0.7565  1.771  0.1832 

BIEC2_533376 44241203 3.691  0.05472 19.71          9.03E-06 

BIEC2_560705 44337671 1.659  0.1977  1.456  0.2275 

BIEC2_560742 44403289 1.312  0.2521  0.8528  0.3558 

BIEC2_560796 44484324 1.056  0.3042  8.726  0.0031 

BIEC2_533588 44585118 0.5591  0.4546  1.017  0.3132 

SNP identifier (SNP-ID),  base position on the chromosome (BP) 2X2 chi-square value  
comparing the 13 new lordotic horses to 194 controls (CHISQ1),  associated P value 
(P1), chi-square value for 33 lordotic horses and 296 controls (CHISQ2) and associated P 
values (P2)  are shown.  SNPs that showed statistically significant association with P1 or 
P2 are in bold type.  SNPs used for the definition of haplotypes for this region are 
denoted with “*”. 
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Haplotype Analysis 

Haplotypes from this region (from bp location 41,530,793 to 44,585,118) were 

compared among affected and unaffected horses.  A minimum haplotype that included 

the maximum number of affected horses and the lowest number of non-affected horses 

was identified using the four SNPs BIEC2-532523, 532534, 532578 and 532658 and 

spanned 1,073,074 bp.  Intervening SNPs did not affect haplotype assignment.   These 

four SNPs allowed identification of 13 haplotypes.  The haplotypes and their frequencies 

among affected and unaffected horses are shown in table 3.4.  Haplotypes were identified 

using the –hap-phase option of PLINK.  Haplotype frequencies were determined by 

direct counting.  Only 4 of the haplotypes had frequencies above 0.05 and had a 

cumulative frequency of 0.95 among unaffected horses and 0.93 among affected horses.  

The most common haplotype, TGTG, was the one associated with lordosis.  Haploytpe 

TGTG had a frequency of 0.80 among affected Saddlebred horses and a frequency 0f 

0.39 among non-affected horses.  The population distribution for the TGTG haplogype 

segregated by MBC value can be seen in figure 3.10. Zygosity for this haplotype is 

shown for affected and non-affected horses in table 3.5.  Among the affected horses, 23 

(70%) were homozygous for haplotype TGTG while on 15% of the non-affected horses 

were homozygous.  Among the 33 lordotic horses, seven (21%) were heterozygous for 

haplotype TGTG and three (9%) did not possess haplotype TGTG.  Among non-affected, 

48% were heterozygous and 35% did not possess haplotype TGTG.  Statistical 

comparison of the combined data set to the subset of horses with lordosis was highly 

significant (P <0.00001). 
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Table 3.4: Haplotypes defined by BIEC-532523, 532534, 532578 and 532658 with 
frequencies 

Haplotype Affected (N=33) Non-Affected(N=287)  

TGTG   0.80   0.388 

CACT   0.03   0.232 

CACG   0.06   0.167 

TACT   0.04   0.164 

TGCG   0.05   0.019 

TGTT   0.00   0.012 

CATG   0.02   0.003 

TGCT   0.00   0.003 

CGCT   0.00   0.003 

CATT   0.00   0.002 

TACG   0.00   0.002 

TATG   0.00   0.002 

CGTG   0.00   0.002 

Haplotype frequencies listed among lordotic and non-affected American Saddlebred 
horses. 
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Table 3.5: Haplotype by Affected and Unaffected Status 

Classification 
Number of  

Horses 
TGTG 

Homozygotes 
TGTG 

Heterozygotes 

 
No 

TGTG 

Lordotic 33 23 (70%) 7 (21%) 
 

3 (9%) 

Non-affected 287 44 (15%) 135 (47%) 
 

108 (38%) 
 

Combined 320 67 (21%) 142 (44%) 
 

111 (35%) 
Distribution of haplotypes between affected and unaffected individuals 

 

 

 

 
 
Figure 3.9: TGTG Haplotype Population Distribution Sorted by MBC. 
Results are from all animals genotyped.  The Y–axis represents the percentage of horses 
with each pair of haplotypes.  The X – axis represents the MBC values. 
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Haplotype and MBC Related to Age 

Extreme hereditary lordosis was the subject of this study, with a focus on early-

onset lordosis which is manifested before the horse reaches maturity.  To visualize the 

age of affected horses in the study group as related to haplotype and MBC, figure 3.10 

exhibits the individuals grouped by haplotype plotted in a graph with MBC values on the 

y-axis and age on the x-axis.  Interestingly, all of the affected horses under 10 years of 

age with MBC greater than 7.5cm were homozygous for the associated haplotype.   

 

TGTG Haplotype compared MBC vs AGE
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Figure 3.10: Population Distribution MBC vs. AGE. 
 X-axis = age in years.  Y-axis = MBC in centimeters. Interestingly, most of the more 
extreme MBC values were found in horses less than 10 years of age.  
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Sequenom Haploview Analysis 

Solid Spine Analysis: Haploview analysis of Sequenom data verified 

associations calculated by PLINK.  This method of analysis, searches for a “spine” of 

strong LD from one marker to the next along each leg of the triangles in the LD chart. 

Figure 3.11 gives the graphic image of results using the solid spine analysis option.  

Table 3.6 shows the actual haplotypes, ratios and p-values for each block.  Blocks one 

and two containing a total of 5 SNPs were most significant with p-values < 9E-11. 

 

 
 
Figure 3.11: Haploview Solid Spine Analysis.  
SNP region with LD shown by solid red blocks and recombination spots by blue.  
 

93 
 



 

Table 3.6: Solid Spine Analysis Results from Figure 3.11. 

 
Haplotype blocks with frequencies, ratios and p-values. 
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Four gamete analysis: Alternate 4-gamete analysis of Sequenom data set gave 

results similar to solid spine analyses.  Figure 3.12 shows the haplotype image. Table 3.7 

gives frequencies, ratios and p-values.  Blocks one and three were most significant.  

Block one containing 2 SNPS had a p-value of 2.05E-11; whereas block 3 with 6 SNPs 

had a p-value of 3.38E-11.   

 

 
 
Figure 3.12: Four Gamete Haploview Analysis. 
Red blocks indicate LD. 
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Table 3.7: Statistics from Four Gamete Analysis in Haploview. 

 
 
 
Candidate Genes 

The SNPs defined an overall region of homozygosity for lordotic horses from 

41.5 Mb to 44.5Mb on ECA20.  The annotated horse genome at ENSEMBL genome 

browser (Hubbard et al., 2009) showed that this region contains 53 known and predicted 

genes.  Three genes were selected as possible candidates based on predicted or known 

function in other species; sequence comparisons for TRERF1 (15 exons), RUNX2 (seven 

exons, eight introns) and CNPY3 (six exons) between normal and affected horses did not 

identify SNPs associated with lordosis. Data on SNPs found and their occurrence among 

the case and control horses are shown in Table S2. 

Figure 3.13 shows the region of association on ECA20 as accessed on ENSEMBL 

genome browser with the location of the statistically significant SNPs labeled.  The genes 

highlighted in blue (CNPY3, TRERF1 and RUNX2) were selected for exon screening 

based on location to associated SNPs and possible roles they play in organismal 

development.  Variations found thus far are in linkage disequilibrium with flanking SNP 

from the Sequenom assay. 

Only one gene, RUNX2, in this region had been implicated in skeletal defects 

based on information from OMIM.  From assessment of other likely gene functions, 
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candidate gene TRERF1 was identified based on its function as a transcription factor.   

Another candidate, RUNX2 has been found to be a scaffold for factors involved in 

skeletal gene expression (Stein et al., 2004) and it plays a role in osteoblast and 

chondrocyte differentiation and migration (Fujita et al., (2004).  The gene CNPY3 was 

selected for exon screening because it contains a trinucleotide repeat in exon 2 and 

trinucleotide repeat expansions have been identified as playing a role in disease 

phenotypes in other species.  TRERF1 has 16 exons that were sequenced and compared 

for 2 normal and 2 lordotic horses.  Likewise, RUNX2 has 9 exons and CNPY3 has 6 

exons that were sequenced and compared.  No SNPs were found associated with lordosis 

in any of the 3 genes screened, compiled results in Table 3.8.   Primers used for 

sequencing of these genes are compiled in table 3.9. 

 

BIEC2_560209, 43319368, 4.76E-06BIEC2_560209, 43319368, 4.76E-06

BIEC2_533020, 43520722,  7.38E-07BIEC2_533020, 43520722,  7.38E-07
BIEC2_533265, 44090171, 2.50E-07BIEC2_533265, 44090171, 2.50E-07

             

BIEC2_532523, 41530793,   3.54E-06BIEC2_532523, 41530793,   3.54E-06

BIEC2_532534, 
41604741, 7.47E-11
BIEC2_532534, 
41604741, 7.47E-11

BIEC2_532578, 42062440,  5.92E-10BIEC2_532578, 42062440,  5.92E-10

BIEC2_532658, 42603867,  1.29E-07BIEC2_532658, 42603867,  1.29E-07

BIEC2_533376, 44241203, 9.03E-06BIEC2_533376, 44241203, 9.03E-06  
 
Figure 3.13: Region of Association on ECA 20 as Shown on ENSEMBL Genome 
Browser.  
Genes highlighted in blue had exons sequenced to screen for additional associated 
variations. Green boxes and arrows identify approximate locations of associated SNPS 
from table 3.1.  
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Table 3.8: Results From Sequencing Candidate Genes; Allele Frequencies 

Gene Location  Mutation(q) on EquCab2.0 pp:pq:qq pp:pq:qq Conclusion 
RUNX2 Intron 1 g.44042908_44042909delAT 11:02:00 11:04:00  No assoc. 
RUNX2 Intron 5 g.44188955delT 11:6:0 25:5:0   No assoc. 
TRERF1 Exon3 g.41474935_41474936insCAG 30:16:05 5:01:00  No assoc. 

CNPY2 
 

None found   
 

 No  
evidence 

Allele frequencies for variations found in candidate genes RUNX2, TRERF1 and CNPY2 
in lordotic and normal horses to investigate association of this gene with lordosis. “p” 
represents the number of horses found with the reference type. “q” represents the number 
of horses found with the mutation. 
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Table 3.9: Sequencing Primers for Candidate Genes  
Gene ID Forward Primer Reverse Primer BP begin BP end 

RUNX2  e 1  5’-cacttcgctaacttgtggctg -3’     5’-cgggtgatctcgagaaagag-3’  44102849 44103416 

RUNX2  i 1-2 5’-tgttactcaaaggaaagacaccag-3’   5’-cctttccacgttgataaatatgtg-3’  44042741 44043285 

RUNX2  i 1-2 5’-agaggagtccaagtcaattagagc-3’ 5’-ttaccagaacacacggaatgtaac-3’ 44104971 44105504 

RUNX2  e 2 5’-attcttggtttttaagctttgctg-3’ 5’-aaacactcaaattcatctggacac-3’ 44111870 44112245 

RUNX2  i 2-3 5’-tgacacccttagttgtctaacgag-3’ 5’-attagaagtcaccaatgcttctcc-3’ 44114984 44115524 

RUNX2  e 3 5’-tctcatttagaataaggggtcctg-3’ 5’-ggctaccttatctgggatacattc-3’ 44117689 44118023 

RUNX2  i 3-4 5’-ttgaatgaatgaaacgtaagcaag-3’ 5’-gcttctttgtacagagctttcctc-3’ 44142759 44143292 

RUNX2  e 4 5’-agatgatgcttatgaagcagtttg-3’ 5’-gtgcaagtgaaacctatgagtctg-3’ 44169835 44170215 

RUNX2  i 4-5 5’-agatcaagtgtggaaagttcattg-3’ 5’-tcttccctatcaagaagaatggtc-3’ 44178502 44179044 

RUNX2  e 5 5’-tctagaaagctttgtgctatgcag-3’ 5’-atgagagtgggtttccagttaaag-3’ 44188873 44189238 

RUNX2  i 5-6 5’-aagtagacccacagagacacacac-3’ 5’-tttgcctaaaggaggtagtcattc-3’ 44190086 44190643 

RUNX2  i 5-6 5’-tgtgctactccctctttacctgag-3’ 5’-gggctttacatacattaaccatcc-3’ 44201754 44202304 

RUNX2  e 6 5’-gtttgtcatcttgaaagtgtttgc-3’ 5’-aaaatgggacagtaccaatcagac-3’ 44218256 44218605 

RUNX2  i 6-7 5’-aaagcaaagatacgagatccaaag-3’ 5’-gaaattctcctgagggtcataaac-3’ 44218899 44219446 

RUNX2  e 7 5’-tgggaagctaaagttttcttcttt-3’ 5’-atatattgatacacttgggacgtg-3’ 44220029 44220663 

CNPY3  e 1 5’-gttgccataggtcgctgaggacaccatcc-3’ 5’-gctaactcctaaccaccctctgggcttc-3’ 42019587 42020424 

CNPY3  e 2 5’-gaaatgacgtgagtaggatgagg-3’ 5’-tgaagctctaaggaacaaagcag-3’ 42023229 42023634 

CNPY3  e 3 5’-aaaaattccttcccatagagctg-3’ 5’-atcttccaatgacacccatatca-3’ 42024053 42024453 

CNPY3  e 4 5’-aaggtgaggtcaagtgtgaagag-3’ 5’-tgattctcctgaggaaactgaag-3’ 42025686 42026087 

CNPY3  e 5 5’-cagtttcctcaggagaatcacag-3’ 5’-ttgtcgcaggttattctgtacctg-3’ 42026068 42026498 
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ID column, e = exon and i = intron. 

Table 3.9: cont. 

Gene ID Forward Primer Reverse Primer BP begin BP end 

CNPY3  e 6 5’-ttaagggtctctcacttcctcac-3’ 5’-aggagagaaacgctcagcag-3’ 42026614 42027070 

TRERF1  e 1 5’-acgtgatctgttctcatgttgaag-3’ 5’-ttctccagaggtgtctaattctctc-3’ 41554583 41554104 

TRERF1  e 2 5’-cagtgacatgagagtgggtgag-3’ 5’-gtgcactttctaagtctacctatgc-3’ 41501808 41501430 

TRERF1  e 3a 5’-aaatactttcctgtcctttgcatc-3’ 5’-cacgtagctggacatggtttc-3’ 41476107 41475520 

TRERF1  e 3b 5’-ttccctcaagatactcgagacg-3’ 5’-catttcttgcatcgacatacg-3’ 41475646 41474951 

TRERF1  e 3c 5’-cagtattacccacagcagcaac-3’ 5’-ccctgtagcacactaagacacc-3’ 41475013 41474324 

TRERF1  e 4 5’-gaagtctcaggtgaggaagagc-3’ 5’-taggcacgtggtaatcctgtc-3’ 41473091 41472641 

TRERF1  e5  5’-tctgaagggtattggagtgatg-3’ 5’-aatggaagtgggactgtttgac-3’ 41472108 41471624 

TRERF1  e 6 5’-acctttctggaaaagcaaagtg-3’ 5’-aagagctgtcctcatctccaag-3’ 41470844 41470388 

TRERF1  e 7 5’-aaagcccaggtatctgaatcg-3’ 5’-taagtatttccagcaccagcac-3’ 41467098 41466515 

TRERF1  e 8 5’-agctccttggagactagtggtg-3’ 5’-gtggttaagttggtgtgctctg-3’ 41466120 41465719 

TRERF1  e9&10 5’-tcttaggatcacgctgtgagg-3’ 5’-aaacctgggaaaacagtttcag-3’ 41464789 41464197 

TRERF1  e 11 5’-agaggaggccccactatctc-3’ 5’-aagcagcaattaggacagaagc-3’ 41463180 41462699 

TRERF1  e 12 5’-ttcagggctgctaaccattatac-3’ 5’-ccgatgtcagataccatccttc-3’ 41454845 41454445 

TRERF1  e 13 5’-ggagtgagaactgaatggatcg-3’ 5’-ctctccatagcaggaagtcagg-3’ 41452870 41452410 

TRERF1  e 14 5’-atgcagaaagaaagcagtgcag-3’ 5’-acggagtgaaagaaggaaaacc-3’ 41446860 41446362 

TRERF1  e 15 5’-tgccctgtcgttagactgtttc-3’ 5’-agaccccaaggatggtatgag-3’ 41444066 41443606 

TRERF1  e16a 5’-caaaccagatgtcagaccacac-3’ 5’-aatgtagcccagatgaaacacc-3’ 41440537 41439849 

TRERF1  e16b 5’-gtggtcgttttcttgcagtttag-3’ 5’-accttttcaaatgacgtgtgtg-3’ 41439995 41439529 

 



 

Discussion 

The distribution of MBC measurements in this study confirmed the results from 

the earlier study that described a normal distribution of the MBC phenotype, with 5% 

falling two standard deviations above the mean (Gallagher et al., 2003). In that previous 

study, the mean MBC was 4.05 cm, while the mean found in this study was smaller, 3.6 

cm.  Differences in age of horses may account for this discrepancy, because the previous 

study showed a positive correlation for age and MBC; the mean age in the first study was 

7.8 years, whereas the mean age in this study was 7.1 years. 

The WGA study demonstrated the presence of a recessive gene responsible for the 

lordotic trait in horses.  This was suggested in the initial WGA study with 40 horses and 

the Illumina SNP chip (corrected P = 0.017).  The association was confirmed in a 

subsequent study with a second set of affected horses using SNPs from this targeted area 

(P = 0.036).  This haplotype spanned 1 073 074 bases and harbored 53 known and 

predicted genes. 

The TGTG haplotype was the most common and suggests that the haplotype 

occurred in the breed prior to the mutation causing extreme lordosis. If a gene present in 

this haplotype was indeed mutated to cause lordosis, then only knowing the specific 

mutation would allow us to distinguish between these haplotypes.  Of course, mutations 

which subsequently occurred within the lordosis-causing haplotype might allow us to use 

tests for other markers to identify haplotypes completely associated with extreme 

lordosis. 

The high frequency of this haplotype and this phenotype among ASB horses 

might be the consequence of selection by breeders.  If a single copy of the gene produced 

a desirable phenotypic effect, such as improved gait, selection for that trait may negate 

selection against lordosis and result in a net increase in the frequency of the gene in the 

breed. Comparisons of gene frequencies for the TGTG haplotype among horses with 

different performance phenotypes will be needed to answer this question.  

While the high homozygosity of this haplotype among the lordotic horses strongly 

suggests the presence of a recessive gene for the trait, not all lordotic horses were 

homozygous for the region. We found five different haplotypes among the lordotic 

horses, and 30% were not homozygous for the haplotype associated with the recessive 
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lordotic condition. The lordotic phenotype may have multiple possible causes, of which 

the hereditary recessive condition is only one. While 70% of the lordotic horses were 

homozygous for this haplotype, we observed seven (21%) lordotic horses that were 

heterozygous and three (9%) that did not have the haplotype at all (Table 4). There may 

be multiple causes of extreme lordosis among Saddlebred horses, and the recessive gene 

suggested by this study may be only one of them. Other genes, accidents affecting 

skeletal integrity or even management practices may lead to extreme lordosis in the 

absence of the recessive gene implicated by this study. Nevertheless, considering the high 

prevalence of this haplotype among affected horses, this hereditary recessive condition is 

probably the most common cause of lordosis among Saddlebred horses. 

Increased homozygosity of this region and frequency of the haplotype in the 

population raised a new question: Is this haplotype frequency a result of transmission 

distortion (TD) and not just breeder selectivity?  TD, also known as segregation 

distortion, is a preferentially transmitted haplotype that shows a separation from 

Mendel’s law of independent segregation for alleles. A haplotype exhibiting TD in mice, 

known as the t haplotype, was first recognized in 1927 (Dobrovolskaia-Zavadskaia, 

1927).  In mice this haplotype results from a chromosomal inversion including the mouse 

major histocompability complex (MHC) on mouse chromosome 17 (Shin et al., 1982, 

Silver 1982). The transmission ratio for some of these TD alleles can exceed 95% in mice 

(Braden, 1971).   TD has been investigated in an extended American Standardbred family 

of horses involving the gene A10 in the MHC.  Significant TD was found only within that 

family and it was theorized A10 is not the cause of the TD but is linked to the gene 

responsible in that family (Bailey, 1986). In humans, statistically significant evidence for 

TD was noted in male parents of European ancestry for chromosome 6p in the region 

containing the genes SUPT3H and RUNX2 (Santos et al., 2009). The synteny this region 

shares with the region of interest in Saddlebreds may warrant a new look at the haplotype 

associated with extreme lordosis to rule out transmission distortion as a potential cause 

for its high frequency.   

As noted above, the lordosis region contains 53 known or predicted genes. Three 

of these genes; RUNX2, TRERF1, and CNPY3 were selected for exonic sequencing in the 

hope of identifying a causative variation. From assessment of other likely gene functions, 
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the candidate gene TRERF1 was identified based on its function as a transcription factor. 

CNPY3, a trinucleotide repeat-containing gene, was also considered, because repeat 

expansion has been shown to play a role in various diseases. Spinocerebellar ataxia type 

1 is caused by such a repeat expansion within ataxin 1 gene on human 6p (Kameya et al., 

1994).  However, exon sequencing of the three candidate genes did not identify SNPs or 

other genetic variations associated with the trait. 

Though no associated variations were identified during the course of this project, 

RUNX2 could still be considered a viable candidate. Only exonic sequence based on 

Ensembl was analyzed.  RUNX2 has two isoforms that have different N-termini and are 

controlled by two different promoters (Komori and Kishimoto, 1998).  Further 

sequencing is necessary to ensure both isoforms of the gene were completely covered and 

of the known promoter regions were adequately represented.  RUNX2 is a transcription 

factor with many functions.  It is a scaffold for factors involved in skeletal gene 

expression (Stein et al., 2004) and has a role in osteoblast and chondrocyte differentiation 

and migration (Fujita et al., 2004). It is highly expressed in immature osteoblasts, but 

expression must be down regulated for osteoblasts to mature properly (Maruyama et al., 

2007).  

Another gene from this region which could be a plausible candidate is CUL7, a 

gene implicated in skeletal development and distally closer than RUNX2 to the most 

highly associated SNPs in this study.  Short stature syndrome of the Yakut people is 

attributed to a variation in CUL7, a homozygous T insertion at position 4582 in exon 25. 

Two physiological manifestations of this variant in the Yakut are hyper lordosis of the 

lumbar region and hypoplasia of the 13th rib (Maksimova et al., 2007).  Other CUL7 

variations are responsible for 3M syndrome.  There is genetic heterogeneity in 3M 

syndrome after a large-scale mutation search.  The distinguishing features of 3M are 

growth retardation, long slender tubular bones, and tall vertebral bodies (Huber et al., 

2009). 

Rooney & Robertson (1996) distinguished between senile lordosis and congenital 

lordosis in horses.  Senile lordosis was a consequence of aging. Congenital lordosis 

occurred as a consequence of hypoplasia of the articular facets of thoracic vertebrae and 

followed birth as a result of weight bearing (Rooney & Pickett, 1967).  We believe that 
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the condition we have been investigating in ASB horses is the congenital form because 

most of the affected horses were under the age of 10.  However, this should be confirmed 

by sequential measurement of MBC in horses of different ages, concentrating especially 

on young horses, to determine the progression of lordosis.  This could be accomplished 

with a cohort study, following horses from weaning to 2 years, measuring MBC every 30 

days.  To facilitate future investigations, a better physiological characterization needs to 

be developed; with photos, measurements and radiographs of the spinal facets, noting the 

vertebrae involved. This would help better understand the degree of hypoplasia involved 

with congenital lordosis.   

Discovery of the genetic basis for extreme lordosis is a goal that remains elusive.  

In connection with this project, exons of several candidate genes were sequenced. 

However, the cause of the trait could be the result of changes in gene expression which 

would not be uncovered by exon sequencing.  As we learn more about the genome of 

animals, we realize that even the introns and the DNA between genes can play a role in 

gene regulation.  The region of interest might be reduced by further studies using 

additional genetic markers from this region, including more SNPs, microsatellites or 

other genetic polymorphisms.  Deep resequencing of the genes within the target area is a 

valid next step toward identifying rare variants associated with lordosis. Even when an 

associated variant is located, functional studies may be necessary to elucidate the role the 

variant plays, especially a variant not within a gene coding region or known 

activator/inhibitor/enhancer site. This was the case when two of the SNPs associated with 

increased risk for coronary artery disease (CAD) and myocardial infarction (MI) to 

9p21.3, a barren, gene free region (Samani et al., 2007; Schunkert et al., 2008, 2011). It 

turned out the CAD risk alleles were located in a STAT1 binding site identified during a 

study that identified enhancers in this genomic region (Harismendy et al., 2011). 

Another approach to understanding this condition may be to investigate 

differences in gene expression between affected and unaffected horses. Discovery of a 

gene which shows differential expression would help to focus this work. However, the 

choice of tissues and the age at which horses are tested may be factors which confound 

such an approach. This could be accomplished with as few as two full sibling weanlings, 

one exhibiting the lordotic phenotype and one normal. One would sample tissue from the 
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developing thoracic spinal facets from the two. This tissue could then be used in gene 

expression analysis. Data could be compared among genes known to interact within the 

same developmental pathway for bone development.   

More insight into the variation responsible for early-onset extreme lordosis in 

horses may be beneficial for studies of human juvenile kyphosis and juvenile idiopathic 

scoliosis (IS). As with the horse, these two congenital conditions exhibit an early age of 

onset. Familial IS only accounts for 10% of all cases in humans, while 90% appear to be 

sporadic with unknown or environmental aetiological factors (Cheng et al., 2007). 

Through familial linkage analysis, candidate regions for IS susceptibility have been 

identified on human chromosomes 6p, 10q and 18q (Wise et al., 2000). More recently, 

regions on 6, 9, 16 and 17 were identified through genome-wide screening (Miller et al., 

2005). It is of particular interest to note that the segment on HSA6 implicated in the Wise 

paper is syntenic with the region on ECA20 that was found in this study to be associated 

with extreme lordosis.  

 

Copyright © Deborah G. Cook 2014 
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CHAPTER FOUR: Discussion of the Champagne and Lordosis Genetic 

Studies 

  

Introduction 

Chapters 2 and 3 describe studies designed to better understand the genetics of two 

traits in horses, namely champagne dilution and extreme lordosis.  Champagne dilution 

was well known to be the consequence of a Mendelian dominant gene. The task described 

here was to identify the chromosome region harboring the gene, locate the gene 

responsible and identify the likely mutation.   In contrast, extreme lordosis of American 

Saddlebred horses was thought to have a hereditary basis but this was not well established.  

The results of this study confirmed that the trait did have a strong hereditary component, 

localized a major gene responsible for the trait to chromosome 20, suggested the gene 

acted with a recessive mode of inheritance, but did not lead to identification of the gene 

responsible.   

These studies were conducted in a conventional fashion, using the best genomic 

tools available at the time, and the results were classic.  Linkage was found in family 

studies for champagne dilution and association was found with the GWAS study for 

extreme lordosis.  In both cases the underlying hypothesis being tested was that a single 

major gene was responsible for the trait being studied.   However, had the genetics of these 

traits been different we would have obtained different results.  The question arises, how 

might the results appear under different genetic models and how might they have been 

interpreted?   
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Impact of Proper Phenotyping 

 

Champagne Dilution 

The Champagne dilution gene dilutes both black and red hair pigment.  The effect 

of the Champagne dilution gene on red pigment is similar to the effects of the Cream 

dilution gene on red pigment.  Chestnuts with the Champagne gene are termed Gold 

champagne but appear very similar to chestnuts with the Cream dilution (CR) gene 

(palominos).  Had we not known of the difference and pooled data from the two types of 

horses, the results of our study would not have been very clear.  Linkage mapping is based 

on combined results from testing families.  Linkage identified between phenotype and a 

marker with a calculated LOD score of 3 or greater is considered to be statistically 

significant.  Linkage of a genetic marker with Champagne may be identified in one family 

but not other families.  If the gene segregating with the dilution phenotype had actually 

been Cream and not Champagne in one of the families, then the data for that family would 

be in conflict with the data from other families.  For example:  What if three families, 

segregating for a hair color dilution gene were genotyped and two of the families had the 

CH gene while the third did not?  In this case, the LOD the score for family-1 could be 3.4, 

family-2 could be 2.7 and family-3 could be -2.6.  The score for family-1 is statistically 

significant since it is greater than 3.0.  The score for family-2 is not statistically significant 

by itself but can be combined with that of family-1 to give a total LOD score of 6.1.  , The 

score from family-3 raises questions because it is less than -2.0 and therefore evidence 

against linkage.   If we add -2.6 to the other two scores, we still have evidence for linkage 

to those markers because the score is +3.5.  However examination of the data from each 

family would alert us that the genetic basis for dilution in Family-3 lies elsewhere.  The 

ability to detect genetic heterogeneity is one of the strengths of linkage mapping. 
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It is possible for a horse to possess one or two copies of both CH and CR 

simultaneously, because they reside on different chromosomes.  A horse possessing both 

dilutions is called an Ivory Cream and would appear as pale gold.  Genotyping a family 

with a sire possessing both CH and CR would have proven confounding and inconclusive.  

Some dilute offspring would segregate with the sire’s CR allele and some would segregate 

with the CH.  With the phenotype considered the same, statistical significance would not 

be easily attained.  

Fortuitous selection of a single true Champagne family would have permitted 

discovery of linkage and we could have continued the study and identified the gene and 

mutation as described in Chapter 2.  However, when we began to use the test for the gene 

on the general population we would have found many horses exhibiting a dilution 

phenotype without having the Champagne gene.  Every horse with the Champagne gene 

would exhibit dilution so we would know that the results were correct, except there was 

another genetic basis for dilution.   
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Examples of Similar Phenotypes Caused by Different Genes 

Splashed White 

Horses with the splashed white phenotype have blue eyes, and smooth, clearly 

defined white markings of the legs underbelly and face.  They have the appearance of 

being dipped feet first in white paint.  Three different variants in two different genes have 

been found to be responsible for Splashed White (SW) to date: SW1, SW2 and SW3.  When 

the first variant responsible was identified, it did not account for all individuals exhibiting 

the splashed white phenotype.  Upon further investigation, two other genetic variants were 

found responsible for the remaining cases of splashed white.  SW1 is caused by an 11 SNP 

insertion in microphthalmia-associated transcription factor (MITF) promoter 1; SW2 is 

caused by a SNP resulting in an amino acid change in paired box domain gene family 3 

(PAX3); and SW3 is the result of a 5 base pair deletion in exon 5 of MITF causing a frame 

shift and premature stop codon resulting in a truncated protein.  These three loci do not 

account for all the splashed white phenotypes, leaving more to be discovered (Hauswirth et 

al 2012).  . 

Sabino (White Spotting Pattern) 

Sabino is a white spotting pattern in horses with white patches on the legs belly and 

face and some white hairs mixed in with the base colored hairs in the midsection of the 

body.  The variant responsible for Sabino in Tennessee Walking Horses and other light 

horse breeds was identified as a single intronic base change that resulted in skipping of 

exon 17 in the KIT gene.  This particular variant was designated Sabino1 (Sb1), because it 

did not explain all the Sabino phenotypes, such as the one possessed by Clydesdale horses 

(Brooks et al., 2005).  Presumably a different genetic variant is responsible for sabino 

color patterns in Clydesdale horses.   
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Junctional Epidermolysis Bullosa (JEB) 

JEB is an autosomal recessive trait that affects the integrity of the skin and mucosa 

and causes neonatal blistering and skin fragility.  Candidate genes for the condition were 

LAMA3, LAMB3 and LAMC2 genes which make up the three glycoprotein subunits of 

Laminin5, a basement membrane protein required for normal function of the dermal-

epidermal junction.  A defect in any one of these genes could have resulted in JEB, 

affecting Belgian horses, other draft breeds and American Saddlebred Horses (Frame et al 

1988; Kohn et al. 1989; Lieto et al., 2002; Milenokovic et al., 2003).  The variant 

responsible for JEB in Belgian and other draft horse was a single base insertion that 

introduced a premature stop codon in the LAMC2 gene which is located on chromosome 5 

(Spirito et al., 2002). However, this mutation did not explain JEB for American Saddlebred 

horses.  Subsequent studies revealed that  6589 bp deletion spanning exons 24-27 of the 

LAMA3 gene on chromosome 8 was the cause of JEB in American Saddlebred Horses.  A 

random sample set from all cases of JEB, irrespective of breed might not provide for an 

informative GWAS.  This situation highlights the value of conducting genetic studies 

along breed lines.  
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Impact of Different Mutations at the Same Locus (Genetic Heterogeneity) 

 

Champagne Dilution 

Champagne dilution is the result of one variation within a single gene that accounts 

for all cases of Champagne across all the breeds tested.  Some genetic investigations do not 

end so concisely.  Some lead to the discovery that a single variant within that gene does 

not explain all cases.  Different variations in the same gene may be responsible for a single 

phenotype between different families, ethnicities, geographic populations and/or breeds.  

This has been noted in a 1989 review of human research of Cystic Fibrosis (CF).  About 

70% of the cases of CF are caused by one particular mutation and the remainder of the 

cases caused by almost 230 other variable mutations within the same gene (Kerem et al., 

1989).   Early characterization of the gene responsible for Duchenne’s muscular dystrophy 

found multiple deletion events to be responsible for about half of the cases, with other 

cases caused by other types of genetic variation within the same gene (Koenig et al., 1987).   

 

KIT Heterogeneity 

Heterogeneity within a single gene is seen in horses as well.  The KIT gene has 

been implicated in many white spotting patterns in mammals.  Dominant White (DW) in 

horses has been found to be the result of several different spontaneous variations which 

arise in the KIT gene.  A single mutation was found responsible for dominant white horses 

found in the Franches-Montagnes breed, while another variation was found to cause DW in 

a family of Arabian horses.   For Camarillo White horses yet another mutation in KIT was 

found to be responsible (Haase et al. 2007).  Since then even more variants have been 

found to be responsible for other cases of Dominant White (Haase et al. 2009, Haase et al. 

2010).   These studies were based on testing individual families.  If multiple causative 

variants were found in that one gene locus for different families or breeds of horse during 

the course of sequencing the exons of SLC36A1 for Champagne, then it could have been 

concluded the basis of Champagne was heterogeneous. 
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Aggrecan Heterogeneity 

Similar results came from investigation of the Aggrecan gene when looking for 

the cause of dwarfism in miniature horses.  A GWAS revealed a point of statistical 

significance on chromosome 1 showing a region where Aggrecan (ACAN) resided as 

responsible for dwarfism. Based on sequencing ACAN for dwarf horses it was discovered 

that there were at least 4 different recessive variants within the ACAN gene responsible 

for dwarfism (Eberth, 2013). The mutations destroy or alter the function of the ACAN 

gene and any combination of these 4 mutations (in other words, absence of the normal 

allele) result in a dwarf offspring or fetal/embryonic abortion.  

 

GWAS as a Tool to Find Champagne 

If families had been unavailable we could have used the SNP chip and we may 

have obtained similar results.  As long as the sample dilute horses were correctly 

phenotyped as Champagne, the results would be clear and significant.  Several hundred 

SNPs from equine chromosome 14 are represented on the SNP chip.  Some of those would 

have shown statistically significant linkage to Champagne upon analysis.  We would have 

then proceeded to select candidate genes for sequencing and found the mutation 

responsible.  However, if we had grouped all the Cream and Champagne horses as dilute, 

and looked for association, the study would have been less conclusive.  The number of 

horses tested would have been small and the genetic associations for CR and CH might not 

have been strong enough to achieve statistical significance for either genetic location.  

Considering the strong evidence that the dilution exhibited a clear Mendelian mode of 

inheritance, this would have been difficult to explain.  The explanation would have to be:  

1) The SNPs under study were not sufficiently close to the causative gene for detection.  If 

the gene fell among those which were not mapped and annotated, relegated to chromosome 

UN, then this might occur.  2) There was genetic complexity confounding the simple 

model we were testing.  Testing a larger number of horses might have provided statistical 

significance to genotyping analysis results for CH and CR, but without correct phenotyping 

the results would be difficult to decipher.  Fortunately, for our actual study we could 

distinguish between CR and CH and our results were clear, significant and conclusive.   
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Impact of Unknown Mode of Inheritance 

Extreme Lordosis 

Extreme lordosis is often associated with old horses whose backs sag due to 

weakness, overloading or overuse.  However there is another form of extreme lordosis 

found in many breeds in which the condition appears at birth or within the first two years 

(Rooney & Pickett 1967; Rooney, 1969).  Early onset extreme lordosis, the focus of our 

study, occurs about 1% of the time for most breeds, but in the American Saddlebred an 

occurrence rate of nearly 4% was noted, giving rise to the hypothesis that extreme lordosis 

has a hereditary component in this breed (Gallagher et al., 2003).  At the time we 

undertook the investigation its mode of inheritance was not known.  It could have been 

dominant with incomplete penetrance, recessive or polygenic with a complex inheritance 

pattern involving multiple genes of relatively small contribution across the genome.  

The lordosis project was different from the search for Champagne: the mode of 

inheritance was unknown and adequate family samples for a linkage study could not be 

obtained.   Many breeders considered it a defect and avoid matings which produce the trait, 

thus making them less likely to create families for linkage study.  The new equine SNP 

chip had just become available when this project began and sufficient population samples 

were available for a case vs. control genome wide association study (GWAS).  The data 

collected identified statistically significant association with a genetic location on equine 

chromosome 20 and indicated a recessive mode of inheritance (Cook et al., 2010)  If this 

significant association had not been found, we would have looked into it as having 

potentially polygenic inheritance.  Dominance would not have been considered unless 

there had been statistical association with a single SNP genotype with little or no 

homozygosity among the samples.  Complex inheritance is responsible for many 

measureable traits studied in livestock such as milk production in dairy cattle and growth 

rates in beef cattle.  A good review of dairy cattle QTL studies that collated the data across 

several mapping projects identified two consensus regions on bovine chromosome 6 that 

affect milk yield (Raadsma, 2004).  In beef cattle, QTLs have been mapped in association 

for growth rate and other meat traits (Kim et al., 2003Nkrumah et al., 2007; Sherman et al., 

2008; Gutiérrez et al., 2009; Snelling et al., 2010), QTL investigations  of Osteochondrosis 
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dissecans (OCD) in horses have been undertaken with GWAS using mainly 

microsatellites.  To date, fourteen quantitatitive trait loci have been found to play a role in 

OCD, but only a few match locations between the different breeds of horse (Distl, 2013).  

If no single genetic location had been found responsible for lordosis, multiple genetic 

locations with possible additive effects would have been included and potential heritability 

would have been calculated for each gene or region.   

 

Complex Mode of Inheritance: Size Variation in the Horse 

 The many modern breeds of horse encompass a large amount of size variation, 

from the tiniest of miniature horses at less than three feet tall to the largest of draft breeds 

that can top out over 6 feet tall at the withers.  In a search for genetic components involved 

in size variation, a GWAS was completed with 48 horses across 16 breeds.  All horses had 

33 measurements taken of the head, neck, trunk and limbs.  Four loci were identified on 

chromosomes 3, 6, 9 and 11 that together explain 83% of the size variance between these 

48 horses (Makvandi-Nejad, 2012).   

 

Impact of Family Availability 

If families had been available for use with the SNP chip we may have been able to 

identify the trait through linkage studies..  Additional family members could have proven 

helpful in defining borders of the associated homozygous region by exposing possible 

breaks between the associated haplotype and the location where the gene resides.  The 

American Saddlebreds overall, show a strong incidence close interbreeding, where highly 

favored sires are found only 4 and 5 generations back on both the sire and dam side of the 

pedigree for many horses.  The lack of genetic diversity in the region would possibly only 

prove to be confounding in more closely related individuals with the still limited number 

of markers used.    
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Current Scientific Tools and Advances 

Lavender Foal Syndrome 

Lavender foal syndrome is a lethal color dilution in Egyptian Arabian horses with 

an autosomal recessive mode of inheritance.  Lavender’s phenotype had strong parallels 

with two other mutations previously seen in mice one in Ras-associated protein (RAB27A) 

and the other in myosin Va (MYO5A).  The genetic location for Lavender foal was then 

identified using the Equine SNP50 Illumina tool to identify a region of homozygosity 

flanking the MYO5A gene (Brooks et al 2010).  Since no such genetic signature was found 

for RAB27A, this was eliminated as a candidate gene.  

Leopard Complex 

Leopard complex (LP) is characterized as different white spotting patterns in horses 

some involve symmetrical patches of white centered over the hips or complete white body 

and may or may not have pigmented oval spots in the white patterned area (Sponenberg, 

1990).  LP was first mapped to ECA1 with microsatellites in close proximity to Transient 

Receptor Potential Cation Channel Subfamily M, Member 1 (TRPM1) (Terry 2004).  

Significant down regulation of TRPM1 was detected in the skin and retina of LP 

homozygotes using qRT-PCR analysis (Bellone et al., 2008).  Subsequent fine mapping 

and mutation analysis identified one non-coding SNP that was highly associated with LP, 

but it did not show complete LD with LP (Bellone et al., 2010).  Recently a 1378 bp 

retroviral insertion was found in intron1 of TRPM1 that causes a premature poly-

adenylation sight.  This insertion was identified through novel RNA reads from intron 1 of 

TRPM1 found in LP/LP horse skin and retina that had no expression of normal TRPM1 

(Bellone et al., 2013). 
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Lordosis 

Following the discovery of association of early onset extreme lordosis with a 

region on ECA1, several candidate genes (CNPY3, TRERF1 and RUNX2) were identified 

and sequenced.  Sequencing was limited to exons with some partial sequencing of introns 

and the 5’ and 3’ untranslated regions.  In these cases the hypotheses was that the variant 

responsible would be a SNP within an exon which changes the translated product of that 

gene in some way.  But the variant responsible for lordosis could be any one of the genetic 

variations discussed in chapter 1 of this work which qualitatively influence expression.  

The variant may not even be found within the affected gene, but may fall within a 

regulatory site such as a promoter binding site, inhibitor binding site or splice recognition 

site.  Since many genes have interactions with other genes down and around many 

different pathways and processes, several genes and their products could be affected.  

Lordosis may be caused by inadequate development of vertebral facets and.  The lordosis 

gene may influence traits which are being selected for by breeders, such as a higher head 

carriage, more elevated gate or other specific aspect not yet noted which increase the 

incidence of lordosis in this breed.  Perhaps the genes involved are important for skeletal 

or cartilage growth and maturation, since the phenotype develops during the young horses 

growth and maturation.  Growth and maturation are under strict control during 

development giving rise to the idea that it could be caused by a variant involving a 

regulatory element.  The large size of the homozygous region and density of genes 

increases the difficulty in locating the variation responsible.  Some of the horses exhibiting 

extreme lordosis only possessed one copy of the haplotype of interest or did not possess 

the haplotype at all.  The gene responsible may flank the homozygous region and separated 

from the haplotype during a rare recombination event.   

Whole genome sequencing could provide additional info concerning the 

developmental pathway and genes involved.  Since the first complete equine sequence was 

assembled seven years ago, newer sequencing technologies have been developed.  Whole 

genome sequencing is now more affordable and could be used to find the gene responsible 

for lordosis.    One approach to discovering the mutation responsible for the trait would be 

the following.  A small sample selection of four individuals could be sequenced and 

compared: one affected homozygote for the implicated haplotype, one unaffected 
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homozygote, one affected without the haplotype and one unaffected without the haplotype.  

Closely related individuals could be most informative, but unrelated horses would suffice.  

The resulting data might lead to identification of the variant responsible for extreme 

lordosis and could highlight variant’s responsible for others pleotropic traits that are 

selected for by breeders. 
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