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Genetics of PICALM Expression and Alzheimer’s Disease
Ishita Parikh1, David W. Fardo2, Steven Estus1*

1 Sanders-Brown Center on Aging, Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America, 2 Sanders-Brown Center on Aging,

Department of Biostatistics, University of Kentucky, Lexington, Kentucky, United States of America

Abstract

Novel Alzheimer’s disease (AD) risk factors have been identified by genome-wide association studies. Elucidating the
mechanism underlying these factors is critical to the validation process and, by identifying rate-limiting steps in AD risk, may
yield novel therapeutic targets. Here, we evaluated the association between the AD-associated polymorphism rs3851179
near PICALM, which encodes a clathrin-coated pit accessory protein. Immunostaining established that PICALM is expressed
predominately in microvessels in human brain. Consistent with this finding, PICALM mRNA expression correlated with
expression of the endothelial genes vWF and CD31. Additionally, we found that PICALM expression was modestly increased
with the rs3851179A AD-protective allele. Analysis of PICALM isoforms found several isoforms lacking exons encoding
elements previously identified as critical to PICALM function. Increased expression of the common isoform lacking exon 13
was also associated with the rs3851179A protective allele; this association was not apparent when this isoform was
compared with total PICALM expression, indicating that the SNP is associated with total PICALM expression and not this
isoform per se. Interestingly, PICALM lacking exons 2–4 was not associated with rs3851179 but was associated with
rs592297, which is located in exon 5. Thus, our primary findings are that multiple PICALM isoforms are expressed in the
human brain, that PICALM is robustly expressed in microvessels, and that expression of total PICALM is modestly correlated
with the AD-associated SNP rs3851179. We interpret these results as suggesting that increased PICALM expression in the
microvasculature may reduce AD risk.
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Introduction

Alzheimer’s disease (AD) is a devastating disease marked by

cognition and memory decline, affecting the elderly population.

Twin and family-based studies suggest that sporadic late onset AD

risk is genetically linked [1,2]. Recent genome wide association

studies (GWAS) have identified loci of genetic variance, single

nucleotide polymorphisms (SNP)s, that are associated with AD risk

[3–10]. Elucidating the mechanism of action of these SNPs

validates the SNP as an AD risk factor and may identify novel AD

pathways. Additionally, since steps in AD pathways that are

modulated by genetics may be susceptible to pharmacologic

manipulation, identifying the actions of AD-associated SNPs may

lead to robust new pharmacologic targets.

One of these SNPs is near the gene PICALM (phosphatidylino-

sitol binding clathrin assembly protein) which is involved in

endocytosis. The primary AD-associated SNP is rs3851179 [9–

11], which lies approximately 80 kb 59 of PICALM. PICALM itself

is encoded by 21 exons, several of which are variably spliced [12].

Here, we sought to elucidate how rs3851179 alters PICALM

expression or splicing to modulate AD risk. We report that

PICALM is expressed robustly in microvessels and moderately in

other cell types. Rs3851179 was modestly associated with total

PICALM expression as well as the major PICALM isoform lacking

exon 13. In contrast, the expression of rare PICALM isoforms

lacking exons 2, 2–4, or 18–19 was not associated with rs3851179.

We interpret our results as suggesting that the PICALM is robustly

expressed in microvessels and that the protective rs3851179A

allele is associated with modestly increased PICALM expression.

We speculate that increased microvessel PICALM reduces AD risk,

perhaps by facilitating Ab clearance from the brain through

enhanced translocation across the blood brain barrier.

Materials and Methods

Ethics Statement
The work described here was performed with approval from the

University of Kentucky Institutional Review Board.

Tissue samples
The RNA and DNA samples for this study were from de-

identified AD and non-AD autopsy samples. Anterior cingulate

specimens were provided by the University of Kentucky AD Center

Neuropathology Core and have been described previously [13,14].

A total of 52 brain samples, 28 male and 24 female, were used for

this study. All of the non-AD individuals were cognitively intact at

their last visit (MMSE of 27.963.4 (mean 6 SD)). AD individuals

were demented (MMSE of 12.268.3). For the AD autopsy

samples, the average age at death and postmortem interval was

82.966.4 years (mean 6 SD) and 3.460.7 hrs, respectively. For

the non-AD samples, the average age at death and postmortem

interval was 82.368.7 years (mean 6 SD) and 2.860.8 hrs,

respectively. By NIARI neuropathology criteria, the non-AD

individuals included 21 samples with a score of no-low likelihood
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of AD, and 6 with intermediate. The AD samples were uniformly

high-likelihood of AD. RNA was prepared by the method of

Chomczynski and Sacchi [15] and converted to cDNA with

random hexamers and Superscript II, as described previously [13].

Although RNA integrity analyses were not performed prior to

reverse transcription, others have demonstrated that for qPCR

with short amplicons, normalized expression differences are

comparable between samples with moderate RNA degradation

and those with high integrity RNA [16].

PICALM immunostaining
Paraffin-embedded anterior cingulate tissue sections (5 mm

thick) were rehydrated, underwent heat-induced antigen retrieval

in citrate buffer (pH 6.0) and were quenched in 0.3% H2O2.

Sections were immersed in 10% rabbit serum in Tris-buffered

saline followed by an overnight incubation in anti-CALM (sc-

6433, Santa-Cruz; 1:400 dilution). After thorough rinsing in Tris-

buffered saline, sections were incubated in biotinylated secondary

antibody for 1 h, rinsed, incubated in ABC reagent (Vector) for

1 h, developed in Nova Red chromagen (Vector) and counter-

stained with Hematoxylin.

Identification of PICALM Splice Variants in Human Brain
Screening for PICALM splice variants was performed on a pool

of cDNA samples from five AD and five non-AD individuals. This

cDNA pool was amplified by PCR by using forward and reverse

primers designed to produce overlapping products; this enabled

evaluation of splicing efficiency of each internal exon (Table 1).

The identity of splice variants was determined by sequencing. To

estimate the distribution of these splice variants, exon 12–20 PCR

products from three rs3851179 homozygous minor (A/A) and

three homozygous major (G/G) individuals were TA-cloned

(Invitrogen) and 847 random clones were sequenced. For this

work, thirty cycles of PCR (Platinum Taq, Invitrogen) were

performed by using primers corresponding to exons 12 and 20

(Table 1). PCR conditions were 94u for 15 seconds, 60u for 15

seconds, and 72u for 60 seconds (Veriti 96-Well Thermal Cycler,

Life Tech). PCR was conducted using approximately 30 ng of

cDNA template. After PCR, samples were cloned into pcDNA2.1

according to the manufacturer’s instructions (TA-Cloning Kit,

Invitrogen) and sequenced.

Quantitation of PICALM Expression
Total PICALM expression was quantified by qPCR using

primers corresponding to sequences within the constitutively

present exons 9 and 10 (Table 1); PICALM isoforms lacking exon

2, exons 2–4, 13 or 18–19 were quantified similarly (Table 1). As

no single Ensembl transcript incorporates each of the exons that

we identify here, note that our exon designations are derived from

ENST00000393346 for exons 1–16. Exons 17–21 correspond to

the final five exons within ENST00000532317. PCR was

conducted using an initial 2-minute incubation at 95u, followed

by cycles of 10 seconds at 95u, 20 seconds at 60u, and 20 seconds at

72u. The 20 mL reactions contained 1 mM of each primer, 1x

PerfeCTa SYBR Green Super Mix (Quanta Biosciences), and

30 ng cDNA. Experimental samples were amplified in parallel

with serially diluted standards that were generated by PCR of

cDNA using the indicated primers followed by purification and

quantitation by UV absorbance. Results from samples were

compared relative to the standard curve to calculate copy number

in each sample. Real time assays were performed at least twice and

the average copy number used for data analyses. Since PICALM

was expressed in microvessels, neurons and astrocytes, we wished

to compare PICALM expression to that of genes specific to these

cell types. Hence, we also quantified two microvessel-specific

mRNAs, CD31 and von Willebrand Factor (vWF), neuron-specific

mRNA SYP and astrocyte-specific GFAP. [17,18]. The copy

number for each mRNA was then normalized to the geometric

mean of reference genes RPL32 and EIF4H, previously quantified

in this sample set [13,14]. The linear regression statistical model

used to analyze the data included the geometric mean of CD31

and vWF (microvessel mRNA), GFAP, SYP, AD status and the

number of rs3851179 minor alleles (SPSS version 21).

Results

To begin to evaluate the role of PICALM in AD, we localized

PICALM expression in human brain by performing immunohis-

tochemistry. We used an antibody that recognizes an epitope at

the extreme PICALM carboxyl terminus that is found in all

PICALM isoforms (see below). Robust PICALM expression was

observed in microvessels in both non-AD and AD brain sections

(Figure 1). Consistent with other reports, we also observed less

robust PICALM immunostaining in other cell types that have

been identified as neurons and glia [19,20].

Table 1. PCR Primers.

Target Name Sequence (59-39)

Exons 1–5 1F Sense CTGACGGACCGAATCACTG

5R Antisense TCAAGAAGTGCATCCATCTGA

Exons 3–9 3F Sense TGGCTTCAAGAAACACGTTG

9R Antisense GCTTGCAGCTGTAGAATCTTTG

Exons 7–12 7F Sense TGAAAAAGAACCAATGCAAAGA

12R Antisense CCCCATGTACTTGCTACCTGA

Exons 10–14 10F Sense CTTTCCAATGCAGTGTCTTCC

14R Antisense CCCCAGAATCTACTACAATAACATTTG

Exons 12–17 12F Sense GCCCAATGATCTGCTTGATT

17R Antisense CATTGTTGCAGCATTCCAAG

Exons 15–20 15F Sense GCTTTGATGAACTAGGTGGACTT

20R Antisense GCAGTTTGGATTTTGCTGGA

Total PICALM 9 Sense ACAGGCCCCTAGCAGTCTTC

10 Antisense TGCTTTTCCCTTTCATCCAC

D13 11 Sense TGCAGCCTCTCCTGTATCCACCT

12–14
Junction

Antisense GGAGAAGGAGTGAATCCTCCC

D18–19 17 Sense TGGAGTCAACCAGGTGAAAA

17–20
Junction

Antisense CATTTGTGGAGGCATTGTTG

D2 1 Sense GAGGAGCTGCAGAGATGTCC

1–3 Junction Antisense TACTGAATAAAACGAGTCCAGGTG

D2–4 1–5 Junction Sense AAAGCACCTGGACTGGCTGA

6 Antisense GGCAGCATTTATTACCCCATT

PECAM1 CD31F Sense ATTGCAGTGGTTATCATCGGAGT

CD31R Antisense CTCGTTGTTGGAGTTCAGAAGTGG

VWF vWF F Sense CGGCTTGCACCATTCAGCTA

vWF R Antisense TGCAGAAGTGAGTATCACAGCCATC

Exon12–20 12 Sense GCCCAATGATCTGCTTGATT

20 Antisense TTGGTTGCGTCATTACAGGA

PCR primers used for screening splice variants, cloning, qPCR and sequencing.
doi:10.1371/journal.pone.0091242.t001

PICALM and Alzheimer’s Disease
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To elucidate the impact of the primary AD-associated SNP

rs3851179 on PICALM, we chose a three-tiered approach. First,

we evaluated whether a non-synonymous PICALM SNP was in

linkage disequilibrium with rs3851179. The rs3851179 minor

allele frequency in European Americans is 35%. According to the

Exome Variant Server (http://evs.gs.washington.edu/EVS/),

there are no non-synonymous PICALM SNPs with a minor allele

frequency above 0.2% [21]. Hence, the rs3851179 association

with AD is not likely to be explained by a non-synonymous

PICALM SNP.

The second tier of our approach to elucidate SNP action was to

evaluate the extent that PICALM expression correlated with

rs3851179 genotype and/or AD status. To this end, total PICALM

expression was quantified in 52 brain samples by using qPCR and

primers corresponding to sequences within exons 9 and 10 which

are constitutively present (see below). PICALM copy number was

normalized to the geometric mean of two housekeeping genes,

RPL32 and eIF4H [13,14]. Inspection of the results supports that

total PICALM expression correlated positively with microvessel

mRNA expression (Figure 2A). To evaluate the statistical

correlation between PICALM expression and relevant indices, we

analyzed PICALM expression relative to AD status, rs3851179

genotype, and several cell-type specific mRNAs. Linear regression

analysis found an overall significant model (adjusted R2 = 0.46)

with a significant correlation between PICALM and rs3851179 as

well as cell type markers but not AD (Table 2). Rs3851179, GFAP

and microvessel mRNA correlated positively with total PICALM

expression, whereas SYP showed negative correlation. The AD-

protective, minor rs3851179A allele was associated with increased

total PICALM expression.

The third tier of our approach to determine possible SNP

function was to evaluate the extent that a PICALM splice variant

was associated with rs3851179 genotype and/or AD status. We

began by identifying PICALM splice variants present in human

brain. PCR was performed by using a series of primer pairs that

flank PICALM internal exons, e.g., primers corresponding to exons

1 and 5 were used to evaluate whether exons 2, 3 or 4 were

variably spliced. This study found that multiple PICALM exons

were inefficiently spliced (Figure 3). Sequencing of the exon 1–5

amplicons found that most PICALM isoforms contained exons 2, 3

and 4 while apparently rare isoforms lacked exon 2 or exons 2–4.

Amplifying from exon 3 to exon 9, and exon 7 to exon 12 showed

that exons 5–11 were consistently present (Figure 3). This supports

the use of primers corresponding to exons 9 and 10 for qPCR for

total PICALM. Amplification reactions between exons 10–21

overall found multiple PICALM isoforms. These isoforms were not

sufficiently resolved by polyacrylamide gel electrophoresis to allow

sequencing of individual gel-purified products. To overcome this

issue, PICALM from exon 12 to exon 20 was PCR-amplified, and

the PCR products cloned and sequenced. To gain an initial

evaluation of whether rs3851179 may be associated with PICALM

splice variants, we analyzed RNA from three rs3851179 G/G and

three rs3851179 A/A homozygous individuals. This effort

revealed that exons 13, 14, 18 and 19 were inefficiently spliced.

The most common PICALM variant lacked exon 13 and contained

each of the other exons from 12 to 20 (Table 3). Other common

variants contained each exon from 12–20, or lacked exon 13 and

the initial 15 bp of exon 15, or lacked both exon 13 and 18. A

comparison of the abundance of each isoform in rs3851179G/G

versus rs3851179A/A individuals did not reveal striking differ-

ences (Table 3). Overall, we interpret these data as indicating that

multiple PICALM exons are variably spliced. Although these

isoforms were not associated with rs3851179 in this semi-

quantitative assay, their abundance warranted a more quantitative

evaluation.

For quantitation, we initially focused on exon 13 because (i) this

exon is commonly skipped and (ii) this exon encodes the DPF

peptide motif that contributes to PICALM binding to AP2 [22].

We quantified PICALM lacking exon 13 (D13-PICALM) by using

qPCR primers corresponding to sequences within exon 11 and the

exon 12- exon 14 junction (Table 1). D13-PICALM correlated well

with total PICALM expression and constituted about 40% of total

transcript (Figure 2B). D13-PICALM expression was analyzed as a

function of rs3851179, AD status, and several cell-type specific

mRNAs. The expression of D13-PICALM correlated with

rs3851179, AD status, as well as the cell-type specific mRNAs

(adjusted R2 = 0.54, Table 2). The minor rs38555179A allele and

the absence of AD correlated with increased D13-PICALM

expression.

To evaluate whether rs3851179 was associated with D13-

PICALM independently of the SNP association with total PICALM

expression, we analyzed D13-PICALM expression as a function of

rs3851179, AD status and total PICALM expression. With this

analysis, we found that D13-PICALM was associated with AD

status and total PICALM, but not rs3851179. Hence, D13-PICALM

expression is associated with rs3851179 only because total

PICALM expression is associated with rs3851179.

We next analyzed PICALM splice variants that lacked exons 18

and 19 (D18–19 PICALM), noting that the PICALM carboxyl

region that includes amino acids encoded by exon 18 and 19 is

critical for PICALM function [23]. This qPCR assay used forward

and reverse primers that recognized exon 17 and the exon 17 -

exon 20 junction, respectively (Table 1). We found that D18–19

PICALM represented 1–2% of total PICALM expression

(Figure 2C) and correlated with neuronal and astrocyte content

but not rs3851179 (Table 2).

We next quantified isoforms that lack exon 2 (D2-PICALM).

This isoform is expected to not encode a functional protein

because the loss of exon 2 introduces a codon frameshift with a

premature stop codon in exon 3. Exon 2 encodes a portion of the

ANTH domain that binds PIP2 on the plasma membrane during

the initial stage of clathrin-coated pit formation [24], We found

that D2-PICALM was typically rare, representing less than 1% of

total PICALM expression (Figure 2D). However, two samples

showed increased D2-PICALM expression, ranging as high as

3.6%. The reason underlying the higher D2-PICALM in these

individuals was unclear; these individuals both had AD, they differ

in sex (one female and one male), and had a post-mortem interval

similar to the other samples (2.4–4.0 hours). When these outlier

samples were excluded from analysis, D2-PICALM was signifi-

cantly associated with microvessel and neuronal content, as well as

AD status but not rs3851179 genotype (adjusted R2 = 0.41,

Table 2). D2-PICALM was increased in AD individuals.

Figure 1. PICALM immunohistochemistry in human brain.
Human anterior cingulate was immunostained with anti-CALM anti-
body, revealing robust microvessel labeling (bar = 100 mm).
doi:10.1371/journal.pone.0091242.g001

PICALM and Alzheimer’s Disease
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We also identified a PICALM isoform lacking exons 2–4 (D2-4

PICALM). The D2-4 PICALM isoform was also present at low

levels, with an average of 0.2860.15% (mean 6 S.E.) of total

PICALM expression (Figure 2E). Expression of D2-4 PICALM was

associated with AD but not with rs3851179 or microvessel content,

suggesting that this variant is not expressed in microvessels

(Table 2). Interestingly, Schnetz-Boutaud et al have reported that

an exon 5 SNP rs592297 is in linkage disequilibrium with

rs3851179 (D9 = 1, r2 = 0.34) and proposed that rs592297 mod-

ulates the activity of an exon splicing enhancer [25]. Therefore we

evaluated whether rs592297 was associated with D2-4 PICALM

expression. We found that rs592297 associated with the D2-4

PICALM (Figure 2F, Table 2). Hence, higher D2-4 PICALM

expression is associated with the rs592297C minor allele. The

percentage of PICALM expressed as D2-4 PICALM was quite low

but was increased from 0.2360.11% in rs592297 major allele

homozygous samples to 0.3660.17% in samples with the rs592297

minor allele (Figure 2F, p = 0.004). Although we and others have

not examined the association of this SNP with AD directly, based

on the linkage between rs592297 and rs3851179, the minor

rs592297C allele is likely to associated with increased AD risk [25].

Discussion

The primary findings of this paper are (i) multiple PICALM

isoforms are expressed in human brain, (ii) consistent with

immunohistochemistry results that PICALM is commonly found

in microvessels, expression of total PICALM and the abundant

D13-PICALM is positively correlated with the expression of

microvessel mRNAs, (iii) total PICALM expression correlates

modestly with the AD-associated SNP rs3851179, (iv) D2-4

PICALM was associated with AD status and an exon five SNP,

rs592297, which is in linkage disequilibrium with rs3851179

(r2 = 0.34). However, D2-4 PICALM was a rare isoform, suggesting

that this association is not responsible for the SNP association with

AD, and (v) two additional rare PICALM isoforms, D18-19

PICALM and D2-PICALM were variably associated with AD and

cell-specific mRNAs. Overall, we interpret our results as suggest-

ing that multiple PICALM isoforms are expressed in the brain,

and that correcting for cell-specific mRNAs allows the discern-

ment that the AD-protective allele of rs3851179 is associated with

increased PICALM expression.

Immunostaining showed abundant PICALM expression in

microvessels. Consistent with this observation, total PICALM

expression correlated with CD31 and vWF expression, genes highly

expressed in endothelial cells [17,18]. Hence, our statistical model

for PICALM expression included the geometric mean of these

microvessel mRNAs, well as SYP and GFAP. When we analyzed

PICALM expression in this fashion, PICALM expression correlated

with rs3851179 genotype. Indeed, inclusion of the expression of

these cell-type specific mRNA is the primary difference between

our study which detected an association between PICALM

expression and rs3851179 and prior studies that did not discern

this association [26,27]. The modest association that we observed

may reflect that rs3851179 is not a functional SNP but rather is in

linkage disequilibrium with SNP(s) that directly modulate PICALM

expression. Rs3851179 is unlikely to be a directly functional SNP

since its well removed from PICALM at 80 kbp upstream and does

not alter a transcription factor binding site as predicted by

ENCODE [28]. Hence, we speculate that another SNP, more

proximal to PICALM, is the functional SNP and is in moderate

linkage disequilibrium with rs3851179.

Figure 2. Quantitative analysis of PICALM isoform expression. The indicated mRNAs or isoforms was quantified by qPCR and compared
relative to the AD-associated SNP rs3851179 (A–E) or rs592297, an exon 5 SNP (F).
doi:10.1371/journal.pone.0091242.g002

PICALM and Alzheimer’s Disease
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Variation in PICALM expression associated with rs3851179

genotype may have several effects. At the cellular level, PICALM

mediates clathrin-coated-pit endocytosis; the amino-terminus of

PICALM binds phosphatidyl-inositol 4,5 bisphosphate (PIP2),

while the central portion binds adaptor protein-2 (AP-2) and the

carboxyl terminus binds clathrin [22,29]. Reducing PICALM

expression by siRNA leads to altered size and shape of the

clathrin-coated pit [22,30]. Since the AD-protective allele of

rs3851179 correlates with increased PICALM expression, we

considered several mechanisms whereby PICALM may modulate

AD risk. First, PICALM expression modulates APP metabolism in

vitro [28]. Decreased PICALM expression leads to increased APP

at the cell surface while increased PICALM expression leads to

increased APP internalization. Since APP is metabolized in a non-

amyloidogenic pathway at the cell surface but in an amyloidogenic

pathway in endosomes, the effects of PICALM on APP

localization lead to altered Ab levels: PICALM knockdown

reduces Ab while PICALM overexpression increases Ab [31].

This pathway is not consistent with our finding that the protective

rs3851179 allele increases PICALM expression. A second pathway

whereby altered PICALM may alter AD risk recognizes that

altered PICALM expression modulates cell surface proteins in a

protein-specific fashion. For example, decreased PICALM leads to

increased GluR2 which may promote excitotoxicity [32]; the

protective rs3851179 allele that increases PICALM expression

may reduce AD risk by reducing excitotoxicity. Increased

PICALM also leads to increased cell surface transferrin and

EGFR [22,30,32,33]. Consistent with a critical role for PICALM

in iron homeostasis, PICALM-deficient mice suffer from severe

anemia and poor erythroid development and, at the cellular level,

show reduced transferrin uptake; iron supplementation amelio-

rates some aspects of PICALM deletion [23]. Recognizing that

PICALM was robustly expressed in microvessels and that

PICALM expression correlated positively with microvessel

mRNAs, we speculate that increased PICALM may be AD-

protective by facilitating Ab clearance across the blood brain

barrier [34]. Overall, altered PICALM levels may modulate AD

risk by multiple mechanisms and is the subject of ongoing

investigation.

Multiple PICALM exons were spliced inefficiently in human

brain. Isoforms lacking many of these exons are likely to encode

Table 2. Multivariate Linear Regression Analysis of Total
PICALM and Isoforms.

Standardized
Beta
Coefficients p-value

Model: Total PICALM Expression (Adj r2 = 0.46)

AD Status 20.05 0.66

Rs3851179 0.298 6.961023

Microvessel mRNA 0.387 8.661024

SYP 20.455 1.261024

GFAP 0.313 0.01

Model: D13-PICALM (Adj r2 = 0.54)

AD Status 20.304 4.961023

Rs3851179 0.268 8.161023

Microvessel mRNA 0.302 4.061023

SYP 20.519 4.261026

GFAP 0.513 1.861025

Model: D18–19 PICALM (Adj r2 = 0.21)

AD Status 0.011 0.94

Rs3851179 20.036 0.78

Microvessel mRNA 0.255 0.06

SYP 20.36 8.061023

GFAP 0.312 0.03

Model: D2-PICALM (Adj r2 = 0.41)

AD Status 0.238 0.05

Rs3851179 0.084 0.46

Microvessel mRNA 0.287 0.02

SYP 20.429 1.061023

GFAP 0.24 0.06

Model: D2–4 PICALM (Adj r2 = 0.10)

AD Status 20.322 0.03

Rs3851179 0.114 0.40

Microvessel mRNA 0.002 0.99

SYP 0.233 0.10

GFAP 20.041 0.79

Model: D2–4 PICALM (Adj r2 = 0.24)

AD Status 20.245 0.08

Rs592297 0.384 4.061023

Microvessel mRNA 0.004 0.97

SYP 0.243 0.06

GFAP 0.001 0.99

Total PICALM, D13-PICALM, D18–19 PICALM, D2-PICALM, and D2-4 PICALM
expression was analyzed as a function of AD, rs3851179 and microvessel mRNA,
SYP and GFAP content by using a linear regression model. D2-4 PICALM was also
analyzed as a function of rs592297, along with AD, microvessel mRNA, SYP and
GFAP. Adj: Adjusted
doi:10.1371/journal.pone.0091242.t002

Figure 3. PICALM splice patterns in human brain. PCR amplifica-
tion across the indicated exons was performed on cDNA pooled from
AD and non-AD brain samples. The products were separated by
polyacrylamide gel electrophoresis and visualized by SYBR-Gold
fluorescence. Single PCR products from amplifications between exon
3–9 and 7–12 indicate that individual exons between 5–11 are included
with high efficiency. The presence of multiple products in other lanes
represents inefficiently spliced exons as confirmed in Table 3.
doi:10.1371/journal.pone.0091242.g003

PICALM and Alzheimer’s Disease

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e91242



PICALM with altered function. Isoforms lacking exon 13 were

especially common. Since a critical AP-2 binding DPF peptide

motif is encoded by exon 13, the loss of exon 13 is expected to

reduce AP-2 binding [22]. Loss of this DPF motif may be

compensated by the DIF and/or FESVF motifs encoded within

exons 12 and 14, respectively [22]. Isoforms lacking exons 13 and

14 were also detected that would lack both the DPF and FESVF

motifs and would be expected to have particularly low AP-2

binding. Rare isoforms also showed an absence of exons 2 or 2–4.

Since exon 2 is 143 bp, isoforms lacking exon 2 undergo a codon

frameshift such that D2-PICALM and D2-4-PICALM are predicted

to encode only an amino terminal PICALM fragment. Since the

exon 5 SNP, rs592297, was associated with exon 2 splicing, we

sought to evaluate whether this SNP was associated with AD.

Although rs592297 was not available in data from Naj et al,

rs1237230 is highly linked with rs592297 (r2 = 0.95 in Europeans,

(http://www.broadinstitute.org/mpg/snap/ldsearch.php) and is

present in this dataset. Rs1237230 was modestly associated with

AD (p = 0.018), relative to rs3851179 (p = 0.00015) [5]. Hence,

rs592297 does not appear to be robustly associated with AD risk

relative to the primary PICALM SNP. Although rs592297 may be

a functional SNP in modulating exon 2–4 splicing, the modest

proportion of PICALM present in this isoform may mitigate the

SNP effects on overall PICALM function.

In summary, our primary findings are that multiple PICALM

isoforms are expressed in human brain, with prominent presence

in microvessels, and that overall PICALM expression is correlated

with the AD SNP rs3851179. Rare PICALM isoforms are

associated with AD status and/or rs592297, a SNP that is in

moderate linkage disequilibrium with rs3851179. The rarity of

these isoforms and their lack of association with rs3851179 suggest

they are unlikely to contribute to AD risk. Since D13-PICALM is

the most abundant PICALM isoform, future studies of PICALM

function may wish to evaluate this isoform.
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