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ABSTRACT OF DISSERTATION 

Finite Element Modeling and Fabrication of an SMA-SMP Shape Memory 

Composite Actuator 

Shape memory alloys and polymers have been extensively researched 

recently because of their unique ability to recover large deformations. Shape 

memory polymers (SMPs) are able to recover large deformations compared to 

shape memory alloys (SMAs), although SMAs have higher strength and are able 

to generate more stress during recovery. 

This project focuses on procedure for fabrication and Finite Element 

Modeling (FEM) of a shape memory composite actuator. First, SMP was 

characterized to reveal its mechanical properties.  Specifically, glass transition 

temperature, the effects of temperature and strain rate on compressive response 

and recovery properties of shape memory polymer were studied. Then, shape 

memory properties of a NiTi wire, including transformation temperatures and stress 

generation, were investigated. SMC actuator was fabricated by using epoxy based 

SMP and NiTi SMA wire. Experimental tests confirmed the reversible behavior of 

fabricated shape memory composites. 

The Finite Element Method was used to model the shape memory 

composite by using a pre-written subroutine for SMA and defining the linear elastic 

and plastic properties of SMP. ABQUS software was used to simulate shape 



memory behavior. Beside the animated model in ABAQUS, constitutive models for 

SMA and SMP were also developed in MATLAB® by using the material properties 

obtained from experiments. The results of FEM simulation of SMC were found to 

be in good agreement with experimental results. 

 

KEYWORDS: Shape Memory Polymer, Shape Memory Alloy, 

Shape Memory Composite, Finite Element 

Modeling, Actuators 
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1 CHAPTER I: INTRODUCTION 

1.1 PRELIMINARY INTRODUCTION 

As a new "smart" material, shape memory polymers (SMPs) are one of the most 

interesting subjects research groups have studied in recent years. Many 

applications are being explored because of their rare benefits, such as large 

recoverable deformation, easier pretreatment procedure, low fabrication cost and 

adjustable recovery temperatures. As soon as the shape-memory effects in shape 

memory polymers were found out, a lot of applications have been introduced. Heat 

shrinkable tapes and tubes made with radiation-cross-linked polyethylene, 

information storage that can allow thermally reversible recording [1-3], temperature 

sensors and actuators are some of the examples of their applications [1]. However, 

novel applications are mostly focused on medical devices, such as biodegradable 

sutures [4, 5], actuators [6], catheters, and stents [1, 7]. 

The other novel shape memory materials are shape memory alloys (SMAs).  SMAs 

can produce very high recoverable shape changes (~4‐8%) as a result of 

reversible martensitic phase transformations that can be triggered by changes in 

temperature, stress state or magnetic field. Their remarkable mechanical property 

features, such as high recovery force to weight ratio and large recoverable 

deformation have enabled them to be utilized for actuators and sensors in a 

diversity of fields. SMAs have higher energy density than pneumatic actuators, D.C 

motors or other active materials and are equivalent in performance to hydraulic 

actuators while being compact, robust, lightweight, frictionless, quiet, easier and 

less costly to be inspected and maintained [8]. Due to these unique properties, 

industries such as aerospace, automotive, oil and gas and many others have 

become increasingly interested in SMAs [8-10]. 

A composite is a hybrid of two or more constituent materials with significantly 

different physical or chemical properties that remain discrete on a macroscopic 

level within the finished structure. A composite is designed to display a 
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combination of the best characteristics of each of the constituent materials. 

Consequently, a composite’s performance is superior to those of its constituents 

acting independently [11]. SMAs have high strength, good thermal conductivity, 

and ability to generate high forces, but are more expensive, denser and show lower 

recovery strain in comparison to SMPs [12]. On the other hand, SMPs are 

lightweight, inexpensive, have good formability and provide high recovery strain; 

however, they lack strength, have low modulus at high temperatures and do not 

have the ability to perform reversible actuation [11, 12]. A SMC can be created by 

embedding SMA components (e.g. in wire or powder forms) in a SMP polymer 

matrix resulting in a low density composite with increased strength and modulus. 

Also, the addition of SMA wires, through electrical resistance, can supply heat 

energy to the overall polymer matrix to trigger the actuation motion. The size, 

distribution, and volume fraction of wires can be adjusted to control the SMC 

properties in accordance with the application requirements. The temperature 

range at which the SMC will function is one of the design variables that should be 

engineered and designed according to SMA and SMP transition temperatures.  

This project focuses on a novel shape memory composite actuator that is designed 

with a shape memory polymer cylinder specimen and a NiTi shape memory alloy 

wire. The actuator is triggered by temperature and combines the shape memory 

effect of both SMP and SMA. The actuator shows reversible shape change with 

temperature.   

1.2 MOTIVATION 

Smart materials are engineering materials that have inherent sensing, actuating, 

and controlling or information processing capabilities in their microstructures. They 

have the ability to respond to changes in temperature, electric field, or magnetic 

field owing to their intrinsic intelligence. Shape memory materials, piezoelectric 

materials, fiberoptics, magneto‐(electro‐)strictive materials, magneto‐(electro‐

)rheological fluids and some functional polymers are some examples of smart 

materials [13, 14]. They all have great potential in a variety of applications; 

however, shape memory materials (SMAs and SMPs) are the major elements of 
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smart composites because of their unusual properties of shape memory effect, 

pseudoelasticity, damping capacity, and adaptive properties. 

In SMPs, the modulus changes significantly at the glass transition temperature 

(Tg), decreasing as the polymer is heated above the transition temperature [15, 

16]. As a result, strain can be introduced into the polymer with relative ease at 

temperatures above the transition temperature. If the strain is maintained and the 

temperature of the material is decreased below the transition temperature, the 

strain is ʹfrozen inʹ. 

This strain is recovered when the polymer is heated above the transition 

temperature again [17, 18]. SMPs have found use in structural applications in 

which epoxy‐based materials are often used owing to their intrinsically high 

mechanical properties, chemical resistance, thermal stability, and tunable 

transition temperatures. SMPs can be employed in open cellular (foam) form as 

low mass, low volume, and low-cost self-deployable structures for space and 

commercial applications [19]. Their advantages include low mass, low storage 

volume, high reliability (no deployment mechanisms are required), high dynamic 

damping, ease of fabrication, impact and radiation resistance, and thermal and 

electrical insulation and low cost [20]. Because SMPs exhibit physical properties 

similar to those of human tissues, they are thought of as ideal candidates for many 

medical applications. 

1.3 LITERATURE REVIEW 

Shape memory composite, as described above, is a state-of-the-art actuator for 

which few groups have studied. 

Tobushi et al. made a bending actuator using SMA and SMP properties in 2009. 

By putting a super-elastic kind SMA tape and a shape memory effect type SMA 

tape inside of a SMP tape. The two different kinds of SMAs have memory by heat-

treatment in different directions. When SMC heated the recovery force increases 

and the SMC changes the shape and when cooled the recovery force is decreases 

and it will get back to the original shape [21]. 
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Tobushi et al. fabricated the SMC belt, composed of SMA tapes and a SMP in 

which they showed that a small rotary actuator can be developed using the torsion 

properties of SMA-tape. They have fabricated the SMC belt with the SMA tapes 

covered by SMP tape. By using the characterizations of SMA and SMP, a three-

way bending movement of the SMC belt during heating and cooling was observed 

[22].  

In another effort, Tobushi et al. made a composite belt with a SMA wire and SMP 

sheet and the thermomechanical properties of the SMC matrix has been 

investigated [23]. 

Dapino and Noeth have tried to fabricate a shape memory composite by inserting 

pre-deformed shape memory alloy texture in shape memory polymer plate to 

achieve a fully reversible actuator. They have explained the techniques that they 

have used to embed the wire into the polymer by creating surface modifications 

using shape memory wires and modifying polymer using vacuum actuation [24]. 

Bollas et al. have investigated the stress generated in a shape memory wire 

embedded in fibrous polymer. The stress fields measured have confirmed that 

SMA wires can serve as effective stress-actuators. The wire composition and level 

of pre-strain turned out to be very important factors on efficiency of stress 

generation. The maximum value of stress recorded in the fibers at a distance of 

almost one wire radius was 227 MPa [25].  

Turner has showed the results from experimental validation of a recently 

developed model for predicting the thermo-mechanical behavior of shape memory 

alloy hybrid composite (SMAHC) structures, composite structures with an 

embedded SMA constituent. The model captures the material nonlinearity of the 

material system with temperature and is capable of modeling constrained, 

restrained, or free recovery behavior from experimental measurements of 

fundamental engineering properties. A brief description of the model and analysis 

procedures is given, followed by an overview of a parallel effort to fabricate and 

characterize the material system of SMAHC specimens. Static and dynamic 

experimental configurations for the SMAHC specimens are described and 

experimental results for thermal post-buckling and random response are 
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presented. Excellent agreement is achieved between the measured and predicted 

results, fully validating the theoretical model for constrained recovery behavior of 

SMAHC structures [14].  

Initial experimental efforts by Tobushi et al. provided data from small deformation 

experiments with applied extensions of 2%, 4%, and 10% [21]. The tests 

investigated the stress-strain relationship of thin polyurethane SMPs. The results 

obtained during this experimental investigation represent one of the first attempts 

to capture the entire shape memory effect of SMPs. In particular, the stress due to 

constrained cooling and the shape recovery upon subsequent heating was noted. 

Additional efforts by Tobushi et al. involved deforming the thin films to extensions 

of 20% and 100% [26]. The thermo-mechanical response of specimens loaded at 

different temperatures were captured. In addition, the stress-strain relationship 

upon loading was observed to be nonlinear for extensions greater than 

approximately 20%. 

The preliminary cyclic effects on the shape recovery were investigated, and a shift 

in the stress-strain-temperature results was noted for subsequent thermo-

mechanical cycles [26]. In particular, the accumulated amount of irrecoverable 

deformation continued to increase for each of the ten thermo-mechanical cycles, 

and Tobushi noted that the SMPs recovered approximately 98% of the applied 

deformation during each thermo- mechanical cycle. 

Extensive efforts on the thermo-mechanical behavior of SMPs for small 

deformations were also conducted by Liu et al. [27]. These experiments 

characterized dog-bone shaped specimens, and the data was subsequently used 

to calibrate and validate the proposed constitutive model. The experiments 

performed by Liu not only aimed to obtain the material properties above and below 

the glass transition temperature, but also characterize the thermo-mechanical 

response when deformed to a range of values, up to 9% in magnitude, of applied 

tensile and compressive strains. In these experiments, both the stress increase 

due to constrained cooling and the nonlinear strain-temperature relationship during 

zero load recovery were captured and observed to occur in a smooth, nonlinear 

manner. 
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Recent experimental efforts have shifted from the characterization of the response 

due to small deformations to the large deformation response of SMPs processed 

in a dog-bone shape. For instance, Baer et al. [28] tested polyurethane SMP 

specimens to tensile extensions of 20% and 100% for use in medical applications. 

In these experiments, the SMP recovered approximately 90% of the applied 

deformation, and the effects of cyclic deformation at a range of temperatures were 

investigated. The results from the cyclic deformation study indicated the greatest 

shift in material response from the first cycle to the second cycle with an apparent 

training, or stabilization in material response, occurred from the second to fifth 

cycles. 

Additionally, Atli et al. thermo-mechanically characterized SMPs for applied tensile 

strains up to 75% for dog-bone specimens [29]. The experiments performed by Atli 

are similar in principle to those presented in this work such that the same 

VeriflexTM shape memory polymer is used and subjected to a similar thermo-

mechanical load path. Due to experimental apparatus limitations, however, the 

complete shape recovery profile during heating was not captured by Atli. 

1.4 RESEARCH OBJECTIVES 

Review of available literature on SMCs reveals that only limited work has been 

done on them. In order to be able to fabricate SMCs, there are critical steps to 

undertake. First, properties of SMPs must be characterized thoroughly to 

determine their glass transition temperature, fracture stress level, effects of 

temperature, and the amount of stress that can be generated. 

The SMC was made with epoxy-based SMP cylinder and NiTi SMA wire. Thus, 

shape memory properties of NiTi wire should be characterized as well. For SMA 

wire, the transition temperature and the amount of stress that the SMA wire can 

generate were characterized.  

For modeling, both SMA and SMP models were used. For SMA model, a 

subroutine that has developed by Lagoudas et al. (based on Tanaka, Boyd and 

Lagoudas, and Liand and Rogers constitutive models) was used [30]. This 

subroutine implements the SMA behavior in ABAQUS. In this study, this subroutine 
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was used for finite element modeling of the SMC. The required geometry was 

created and meshed with appropriate hexagonal elements and the material 

properties were assigned by the subroutine. For SMP, it is important to know its 

shape memory behavior and material properties very well. For SMC, SMP can be 

modeled as a linear-elastic material with plastic definition. SMP behavior is highly 

temperature dependent and it has to be considered in the material definition. A 

constitutive model for SMP that has proposed by Volk and Lagoudas [31] also was 

coded in MATLAB®. 

In conclusion, the objectives of this study are: 

- Thermo-mechanical characterization of the SMP that includes: 

o Fabrication of epoxy-based SMPs 

o Determining the glass transition temperature 

o Determining the critical stress for failure 

o Revealing shape memory effect 

o Investigating stress-strain tests as a function of temperature 

o Revealing stress generation as a function of strain 

o Studying the effects of loading history on SMP behavior 

o Modelling the SMP behavior 

- Thermo-mechanical characterization of SMA wire that includes: 

o Determining the transition temperature 

o Revealing the critical stress for failure 

o Determining the elastic modulus 

- Fabricating the SMC  

- Determining the thermo-mechanical behavior of SMC  

- Modelling of the SMC by using a commercial FEM software 
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2 CHAPTER II: SHAPE MEMORY POLYMER, 
CHARACTERIZATION AND MODELING 

2.1 INTRODUCTION 

The main focus of this chapter is the characterization of shape memory polymers 

and modeling its behavior by using a constitutive model from Volk and Lagoudas 

and a hyper-elastic model in ABAQUS. SMP characterization including the 

fabrication process to tailor the glass transition temperature, introduction of the 

experimental setup to perform the needed experiments, and detailed discussion of 

the characterization processes including the glass transition temperature, failure 

test, and shape memory effect, effects of temperature, recovery tests, stress 

generation tests, and effects of loading history, were investigated. 

2.2 HISTORY OF SMP CHARACTERIZATION 

The origin of SMPs can be traced back to the French company CdF-Chimie in 

1984, and in less than a year, SMPs gained attention by Nippon Zeon Company 

in Japan because of their processability.  Over the two decades, there have been 

great improvements to the understanding and applications of SMPs, but recently 

it gained greater interest [32].   

SMPs function in two phases, separated by its glass transition temperature (Tg). 

The first state, below Tg, is a solid, fixed state, often times referred to as the glass 

state.  When the SMP’s temperature is increased above its Tg, the material 

transitions into a softer, rubber-like phase. During this state, the material is 

thermally reversible; the SMP will recover most, if not all, of its initial shape. It 

should be noted that the Tg can be adjusted by the composition of SMP and can 

be increased to 100 °C or more. 

The mechanical properties of shape memory polymers were first characterized in 

1992 by Tobushi et al.  [33]. This first study tested the resistance to deformation of 

polyurethane above Tg by running tensile cycles with a strain level of 50%.  The 

results showed that resistance to deformation increased with the number of cycles 

[33]. In four years, the research group of Tobushi published another paper that 

reported several results from different experiments on polyurethane, including 
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isothermal stress-strain responses in tension at constant strain rate, creep tests, 

and relaxation tests at different temperatures [34]. 

The shape fixity and recovery were examined in tension for polyurethane thin films 

at different temperatures by Tobushi et al. [35]. In 2003, Abrahamson et al. 

conducted isothermal tensile tests with constant strain rate experimentally [36]. In 

2004, Liu and Gall et al. have done uniaxial compression and tension on shape 

memory polymer [37]. In 2009, Atli et al. characterized SMPs in a dog-bone shape 

for values of extensions up to 75% [29]. In 2011, Lagoudas et al. also have done 

a complete thermo-mechanical characterization of SMP in tension [31]. A few 

researchers have studied the effect of polymer structure on recovery properties at 

moderate strains. Baer et al. examined the thermo-mechanics and shape-memory 

behavior for thermoset polyurethanes intended for medical applications as a 

function of curing temperature, Tr, and deformation strain [28, 38].  

Although, a great increase in the understanding of the constitutive response of 

SMPs was evident, there has been little effort to connect the effects of SMP 

structure, temperature, and strain limits to one another.  Due to this deficiency of 

knowledge, it is difficult to optimize the strain recovery of an SMP by altering its 

structure and/or deformation temperature.     

Currently, research is being focused on the characterization of thermo-mechanical 

properties of epoxy-based SMPs. Several approaches are being investigated to 

help our understanding of these properties, such as compression and recovery 

tests, failure tests, effect of temperature, etc. The epoxy-based SMPs were 

fabricated  based on an approach introduced in the study by Xie et al. [39]. A series 

of epoxy-based SMPs was introduced in the aforementioned work with various 

glass transition temperatures. They have named NGDE1 to NGDE4 based on their 

glass transition temperature. In this project, one epoxy-based shape memory 

polymer that will be specifically focused on is the NGDE3 (part of the NGDE 

series). NGDE3 has been selected because of the appropriate range of glass 

transition that it has and needed to fabricate SMC. 
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2.3 SAMPLE PREPARATION 

The SMP used for our experiments is epoxy-based and composed of an epoxy 

monomer (EPON 826), Jaffamine D230 (curing agent) and NGDE (neopentyl 

glycol diglycidyl ether). The detailed formulations of the epoxy SMP are 

summarized in Table 2-1. EPON 826 was weighed in a glass bottle and melted at 

70 °C. After melting EPON 826, weighed Jeffamine D230, and NGDE (or 

decylamine) were introduced into the bottle, which was then shaken vigorously by 

hand for about 10 seconds to mix the components. Next, the mixture was poured 

into a Teflon container to get a cylindrical shape for compression tests. The epoxy 

samples were thermally cured at 100 °C for 1.5 hours and post-cured at 130 °C for 

1 hour. 

Upon the completion of the cure, the epoxy cylindrical samples could be cut into 

appropriate lengths for compression and recovery tests and the thin plates into 

rectangular shapes with needed dimensions for DMA three-point bending tests 

[39]. 

 

Table 2-1: Chemical formulations of the NGDE3 SMP 

 

 

A Lindberg/BlueM BF514841 Box furnace (Figure 2-1) was used for curing the 

polymer. Equipped with a UT150 controller, the furnace could be programmed to 

a single set-point while using a desired ramp rate. The furnace was set to the 

desired temperature and allowed to reach the set temperature before the sample 

was place in the furnace. After putting the liquid polymer or a sample in the furnace, 

the time was noted once the temperature reached the set temperature again [40].  
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Figure 2-1: Lindberg/BlueM box furnace (BF514841) 

2.3.1 EXPERIMENTAL SETUP 

All experiments for this project were performed at the Smart Material’s Laboratory 

at the Mechanical Engineering Department of University of Kentucky. The 

compression tests are performed by a Landmark 370.10 MTS (Servo-hydraulic 

Mechanical Tester) with 100kN capacity. As shown in Figure 2-2, MTS has a 

temperature controller. The specimen was heated in a furnace and cooled via 

convection using liquid nitrogen introduced near the bottom of the furnace at a rate 

of 10 °C/min. An Omega CN8200 series temperature controller ensured stable 

heating-cooling rates with K-type thermocouples attached to both the specimen 

and grips. A cryogenic grade, on/off solenoid valve commanded by the 

temperature controller was used to control the flow of liquid nitrogen [40]. 
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Figure 2-2: Illustration of MTS and its components 

 

Figure 2-3 shows a schematic of MTS and its main parts. 

 

Figure 2-3: Servo-Hydraulic Mechanical Tester (MTS) setup schematic 

 

The compression sample was polished mechanically with 600-grit paper to remove 

any residue after being removed of its Teflon container Teflon container. Once the 

sample was ready, a K-type thermocouple was attached to the sample by fastening 

it with fine gauge copper wire, followed by placing the sample between the test 

setup in proper position. Typical strain rate used for isothermal cycling was (2*10-

4) mm/sec for loading. The sample was unloaded with 100 N/sec.  

For recovery tests, a DMA (Dynamic Mechanical Analyzer) was used (Figure 2-4). 

The Perkin Elmer DMA 7e provides the performance and flexibility necessary for 
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the characterization of a broad range of materials from soft samples, such as 

elastomers, thin films and single filament fibers, to hard samples, like composites, 

ceramics and metals. The DMA 7e’s multiple measuring systems accommodate 

most sample types, and its multiple operating modes, including temperature, time, 

frequency scan, stress scan, creep-recovery, and constant force (TMA), further 

enhance flexibility and accurate material characterization. The temperature range 

for Perkin Elmer Pyris DMA 7e is from -170  ͦC to 500  ͦC [40]. 

For the SMP recovery test, the sample was placed inside the chamber of DMA 

underneath of the probe after which the temperature was increased from 20 °C to 

80 °C. By recording the change in the length of the sample, strain could be 

calculated.  

The three-point bending test is another important test that can be performed on a 

SMP thin plate by the DMA. This test has mainly performed to confirm the glass 

transition temperature of SMP.  

 

Figure 2-4: Perkin Elmer Pyris DMA 7E 

 

The Perking Elmer Differential Scanning Calorimeter (Pyris 1) has been used to 

determine the glass transition temperature of SMP and also the transition 

temperature of SMA wire (Figure 2-5). Differential scanning calorimetry (DSC) is a 

thermo-analytical technique in which the difference in the amount of heat required 
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to increase the temperature of a sample and reference are measured as a function 

of temperature. Both the sample and reference are maintained at nearly the same 

temperature throughout the experiment. The heating and cooling rate used to run 

the experiments was fixed at 5°C/minute. The temperature scale was calibrated 

using the furnace calibration feature in Pyris software. The minimum and maximum 

set-point is entered in the sub menu for furnace calibration and the software 

calculates seven other points between the desired ranges, as specified by the 

user. The thermocouple temperature is matched to the programmed furnace 

temperature when this calibration is complete. The enthalpy scale was calibrated 

using the observed delta-H from an accurately known amount of indium.  

Samples were encapsulated in disposable aluminum pans, typically using 20 to 40 

milligrams of sample. There are two styles of pans available, one used for solids, 

and a hermetically sealed version for liquids. Aluminum pans (Perkin Elmer part 

number 0219-0041) with a temperature range of -170°C to 600°C and volume 

capacity of 40 μL were used. The sample pans ensured safety against material 

that can leak out into the DSC can contaminate and cause permanent damage to 

the DSC’s furnace, particularly if there are metals present in the sample that could 

make an alloy with the platinum furnace holders. 

There is a sample side and a reference side in the furnace. A blank pan was 

inserted into the reference side. For all samples, it was noted that the sample 

maintained good contact with the bottom of the pan, thus ensuring good contact 

with the sensor, especially when using large samples since the thermal gradient 

effects can increase. Large samples produce larger transition, hence are preferred 

for study even the small changes, but thermal gradient should be taken into 

account while using them [40]. 
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Figure 2-5: Pyris1 DSC used for finding the glass transition temperature of SMP 
and transition temperature of SMA wire 

2.4 EXPERIMENTAL RESULTS 

In this section, all experiments necessary for characterizing SMP behavior will be 

discussed. The detailed information about the devices and performing the 

experiments are presented and the results were inputted for subsequent modeling. 

2.4.1 GLASS TRANSITION TEMPERATURE 

Glass transition temperature (Tg) of an SMP is the temperature at which a 

substance transitions from a fixed phase to a rubber phase.  The Tg can vary 

among the different types of SMPs and can be manipulated by altering the 

chemical composition of the SMP.  Determining this glass transition temperature 

is a crucial step prior to the thermo-mechanical testing of an SMP.   

In order to find the Tg of an SMP, a technique called Differential Scanning 

Calirometry (DSC), as described in the previous part, is used. For SMPs, as 

temperature increases, the internal energy steadily changes, and the Tg is marked 

by a fluctuation of the internal energy. As illustrated in the graph of Figure 2-6, the 

glass transition temperature of NGDE3 SMP is around 43 °C.  

 

Reference 

Pan 

Sample 

Pan 
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Figure 2-6: Results of DSC for NGDE3 SMP 

 

Another common test that is performed on materials to characterize the transition 

temperature is three-point-bending test. This test was performed by DMA device. 

Figure 2-7 shows a schematic of the three-point-bending test clamp.

 

Figure 2-7: Schematic of the three-point bending test [41] 

 

A rectangular 1 mm thick (t) SMP specimen was cut to 5 mm in width and 15 mm 

in length and put in the furnace of DMA while clamped on a special grip. The 
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distance between the 2 sides of the grip is 12 mm (L). Once the probe touches the 

middle of the sample and with amplitude of 20 mN for dynamic force and static 

force of 100 mN, the test begins. The temperature range is from 15 °C to 75 °C. 

The peak for heat flow will show the transition temperature. Figure 2-8 shows the 

results for the NGDE3 specimen. The glass transition temperature obtained from 

this test is consistent with the results from DSC (~43 °C). 

 

Figure 2-8: Results of the three-point bending test for the NGDE3 epoxy-based 
SMP 

2.4.2 SHAPE MEMORY EFFECT  

The driving force for shape recovery in a polymer is the elastic strain generated 

during the deformation. Deformation at high temperature is much easier due to the 

lower rubbery modulus of the polymer that makes the orientation of polymer more 

feasible. However, the orientation will be partly relaxed before the structure is 

frozen in during the subsequent cooling cycle. On the other hand, deformation at 

low temperature is more difficult due to the higher glassy state modulus of the 

polymer but chain orientation will remain at a higher degree as the relaxation 
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process is slowed down. A high glassy state modulus (Eg) will provide the material 

with high shape fixity during simultaneous cooling and unloading, whereas a high 

rubbery modulus (Er) will provide high elastic recovery at high temperature [13]. 

Shape recovery is important to SMPs because it is the material's ability to 

completely return to its original shape after stretching. Shape recovery is most 

often studied by loading and unloading an SMP at various temperatures, then 

heating it up to above the glass transition temperature.  

Figure 2-9 shows the complete cycle of the shape memory effect of an SMP.  

The thermo-mechanical cycle in which SMP is recovered can be summarized as 

follows: 

1. While kept at a zero stress, heat the material above its glass transition 

temperature (Point 1). 

2. At high temperature, compress the SMP to the desired strain level (Point 2). 

3. Cool the material down to a temperature below its glass transition temperature 

while keeping the strain constant (Point 3). 

4. Unload the stress from the specimen (Point 4). 

5. To recover the original shape, heat the material above its Tg (Point 1). 

The SMP's recovery characteristics are best illustrated by producing a shape-

memory plot of strain vs. temperature. This plot also shows the material's shape 

fixity or its ability to hold a shape after it has been deformed. Figure 2-9 gives a 

breakdown of the shape-memory plot and what each section represents. The 

material is first loaded to 2.75 MPa at a constant temperature above Tg which is 

60 °C (process 1: Heating). The loading is then held constant for one minute to 

determine if there is any creep present (process 2: Loading). Then, the material is 

cooled down to 12 °C (below Tg) under the constant stress of 2.75 MPa (process 

3: Cooling). After cooling, the load is released (process 4: Unloading). Finally, the 

material is reheated to the original temperature above Tg (which was 60 °C) and 

recovery profile is seen in the final section of the graph (process 5: Heating) 

During the shape memory effect, 19% strain was recovered, and recovery process 

shows a glass transition temperature of 43 °C which is consistent with DSC results 

described in the previous section. 
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Figure 2-9: Shape memory effect of SMP with illustrated schematics 

2.4.3 DEFORMATION LIMIT ON NGDE3 SMP 

Figure 2-10 shows the stress versus strain graph for an NGDE3 SMP sample in 

compression at room temperature. It indicates that 65% strain compression is 

needed for an SMP sample to fail which is relatively high for rubbery materials. 

The graph shows that the stress level does not exceed 30 MPa until the material 

is roughly compressed to about 55%. Even though the area of the sample is 

increased, after this point the stress level is increasing at a much higher rate 
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suggesting that the material is going to fail. At a strain of 65%, the SMP fails at a 

compressive stress of 75 MPa. It has been reported that some SMPs could be 

stretched up to 800% in tension [1], but tensile test study was not performed in the 

current project. The modulus of elasticity calculated from the compressive stress-

strain curve and is found to be 1.3 GPa and the yield strength (the maximum stress 

in stress-strain curve) is determined to be 22 MPa. Strain rate is very important in 

determining these factors.  

 

 

Figure 2-10: Failure test result of NGDE3 SMP 

2.4.4 COMPRESSION RESPONSES AND RECOVERY 

Epoxy-based SMP has a unique behavior on compression. It behaves like an 

elastic material up to some extent of deformation after which the stress level 

decreases and plastic deformation occurs. A compression test for NGDE3 SMP 

sample was performed with MTS at room temperature. It is important to note that 

the strain rate significantly affects the stress level that is obtained in this test. 

Compression tests have been done up to 40% of the original length at room 

temperature. After loading to the pre-determined strain levels of 10%, 20%, 30%, 

and 40% in compression (Figure 2-11), the sample was unloaded. Upon unloading 

the material has unrecovered strain at room temperature,  
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After loading and unloading at room temperature, the sample was heated in DMA, 

where the probe was touching the sample in stress control. By tracking the position 

of the probe, recovery graphs can be created. Figure 2-12 shows recovery tests 

that were done with DMA from room temperature to 80 ⁰C with a heating rate of 5 

⁰C/min. The other important information from the recovery tests is the observing 

glass temperature for NGDE3 as 43 ⁰C which is in good agreement with DSC 

results. The recovery of the SMP is 100% after the temperature is reached above 

its glass transition temperature. 

 

 

Figure 2-11: Compression test results for SMP at room temperature 

 

The recovery characteristics of the SMP can be illustrated by producing a shape-

memory plot of strain vs. temperature. From this plot, the linear shape recovery 

ratio, R, can be estimated 

100)
h

h
1(R

i

f                                             

Where hi and hf are the initial and final heights of the cylindrical specimens.  After 

the final step, the SMP has returned completely to its original position. The linear 
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shape recovery ratio was calculated as ~100%, indicating that the SMP exhibits 

perfect shape recovery.   

 

 

Figure 2-12: Recovery of compressed SMP samples by increasing the 
temperature 

2.4.5 EFFECTS OF TEMPERATURE ON DEFORMATION BEHAVIOR  

In this section the effects of temperature on SMP recovery and produced stress 

are discussed. As temperature increases, the material softens and requires less 

stress for the same amount of deformation inflicted. Basically, the SMP behaves 

like rubbery material at temperatures higher than the glass transition temperature 

and no plastic deformation is observed.  

The compression/recovery tests are done at five selected temperatures from 15°C 

to 55 °C (Figure 2-13). The amount of compressive strain was fixed to 10%. It is 

clear that as the temperature increases, the mechanical behavior of SMP more 

closely resembles pure elastic material. Its behavior is completely linear at 55°C, 

above the glass transition temperature. The required applied stress for 10% 

deformation was decreased considerably as SMP softened. 
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Figure 2-13: SMP compression test in different temperatures 

 

Figure 2-14 shows the recovery tests of the same sample that is compressed at 

selected temperatures (see figure 2-13). Upon heating, complete recovery was 

observed for the deformed specimens. SMPs compressed above the transition 

temperature exhibited elastic behavior  

 

 

 

Figure 2-14: Recovery tests on compressed specimens at different temperature 
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2.4.6 CONSTRAINT SHAPE RECOVERIES 

From the practical application point of view, the ability for a programmed SMP to 

recover its original shape under loads is critical. The process of heating a deformed 

SMP under constant stress is called the constraint shape recovery. In this study, 

the constraint shape recovery tests began by deforming the cylindrical SMP 

specimens in the glassy phase to a compressive strain of 10%. Then, the samples 

are unloaded to the loads of 2 MPa and 3 MPa and the loads are kept constant. 

The specimens were heated to 70°C at a rate of 5°C/min. The stress was held 

constant to allow the shape change. Finally, the materials were cooled down to the 

glassy phase under the same constant loads. Figure 2-14 shows the thermal 

cycling under constant stress results.  Upon heating after deformation the material 

is trying to recover (in tensile direction) the pre-deformation amount of 10%. 

However, since load is applied and the elastic modulus of SMP decreases 

dramatically above Tg, The recovery stops and the sample is deformed in 

compression. Thus, during heating the pre-deformed sample initially elongated but 

then shortens under constant stress. It should be noted that there is an optimum 

stress level for fully reversible behavior. In this study it is founf to be 2 MPa. If lower 

stress of 1 MPa is applied, the recovery is more pronounced than the compression 

due to modulus change and vice versa if 3 MPa is applied.   

 

Figure 2-15: Strain-temperature profiles of constraint shape recoveries of the 
SMP 
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Figure 2-15 is indicating an important achievement in SMPs since normally, they 

do not show reversible shape memory behavior during thermal cycling. By applying 

the optimized stress two-way-shape-memory-effect (TWSME) can be observed in 

SMPs. In other words, SMPs could be used as an temperature activated actuator 

that is acting reversibly by temperature cycling.  

Another version of the constraint shape recovery test is to hold the SMP at a 

constant strain during the heating which would allow measuring the stress 

generation of SMPs. The amount of stress generated during the recovery process 

is a very useful actuator property of the SMPfor designs.  In this test, cylindrical 

SMP specimens were deformed to selected compressive strains ranging from 10% 

to ~50%. Then the samples were unloaded to 0.5 MPa and the ends of the SMP 

are fixed by displacement control. Specimens were then heated to elevated 

temperatures while maintaining the strain constant. As the temperature increased, 

the material tried to recover to initial length by expansion, however since the ends 

of the SMP are fixed, it exerted reaction loads. As expected, such loads reached 

to the maximum level around the glass transition temperature and then decreased 

as temperatures continued to increase (Fig. 2-16). The load decreased after the 

glass transition temperature due to low elastic modulus and elastic behavior of the 

SMP at higher temperatures. 



26 
 

 

Figure 2-16: Stress-temperature profiles of constraint shape recoveries of the 
SMP 

 
The amount of stress generated is almost linearly dependent upon the amount of 

compressive strain applied to the SMP prior to the test (Fig. 2-17). It is seen that 

the present SMPs can generate a maximum stress of 24 MPa after pre-strain of 

50%. Such high magnitude of stress generation from an SMP is promising and 

even comparable to that generated from shape memory alloys [16, 25]. 
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Figure 2-17: The maximum stress generated during constraint shape recovery as 
a function of fixing strain 

2.4.7 EFFECTS OF THERMO-MECHANICAL HISTORY 

Earlier mechanical tests have shown that the present SMP has very distinct 

behaviors at glassy and rubbery states. These temperature-dependent mechanical 

behaviors can be sketched as shown in Fig.15. In the glassy state (T<Tg), the 

material exhibits elastic and perfect plastic deformation (Fig. 2-18 (a)). While in the 

rubbery state (T>Tg) the material exhibits revisable hyper-elastic deformation (Fig. 

2-18 (b)).  So, for any applied stress at low temperature there exist two different 

strains (points 1 and 3 in Fig. 2-18 (c)). For any applied stress at elevated 

temperatures, there exists only one strain (point 2 in Fig. 2-18 (c)).  
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Figure 2-18: (a) Schematic of the mechanical behavior of the SMP at T<Tg, (b) 
Schematic of the mechanical behavior of the SMP at T>Tg, and (c) Combined 

view of (a) and (b) 

 

According to this unique material behavior, different loading histories might be 

used to reach the same stress-strain condition for the same material. Fig. 2-19 

depicts a three-dimensional stress-strain-temperature plot showing the shape 

recoveries of the present SMP under two selected thermo-mechanical cycles. The 

first cycle started from point 0, in which the SMP was at room temperature under 

zero load/displacement.  The specimen was then loaded to 5 MPa at the same 

temperature (point 1). The material was heated to an elevated temperature (60°C) 

under the applied load, which resulted in a large strain (point 2). The constraint 

material was subsequently cooled down to room temperature (point 3). The second 
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cycle started from point 3, where the SMP was at room temperature under 

constrained load. To begin the cycle, the material was unloaded at low temperature 

and the strain was stored (point 4). Next, the material was heated to a rubbery 

state (60°C), after which the material recovered to its original shape (point 5). The 

material was loaded again to reach point 2 and cooled down again to reach point 

3. The entire thermo-mechanical process involved two distinct cycles: 0123 – the 

constraint recovery and 34523 – the free recovery.  The SMP is seen to have fully 

recovered its shape (from point 1 to point 5) in this very complex thermo-

mechanical cycle.   

 

 

Figure 2-19: 3D stress-strain-temperature profile showing the shape recoveries 
of the SMP under complex thermo-mechanical cycles 
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2.5 SMP MODELLING 

2.5.1 LITERATURE REVIEW 

There have been various efforts to develop constitutive modeling for SMPs, but 

most efforts concentrate on small deformations, namely 10% nominal strain for 

compression or tension.  

Tobushi had developed a spring-dashpot system to model the behavior of SMP for 

small deformations [42, 43]. In 2000, Tobushi and Bhattacharyya developed the 

model further [44] and in 2001, Tobushi et al. added more details on constitutive 

modeling. They incorporated nonlinear elastic terms, thermal expansion and 

viscosity in the model after which the viscoelasticity of SMP for small deformations 

was studied [45]. In 2007, Hong encountered the relaxation modulus in different 

temperatures for model input [46]. Srinivasa and Gosh developed a rheological 

model and used a spring-dashpot system and based on Gibbs potential approach, 

solved the state of the material with the result of differential equations [47]. The 

shape memory behavior and the process that SMP encountering during the shape 

memory effect, including the formation of different phases has been developed by 

Rao [48]. The model by Rao stated that the crystalline phase stores the 

deformation and the melting of the crystalline returns the material to its original 

shape. Liu et al. also proposed a model that predicted the small deformation [27, 

49]. Liu’s model proposed the frozen volume fraction and stored strain as two state 

variables and defines the strain as fractions of elastic, thermal and stored 

components. Then, the model describes the deformation in the frozen phase 

contributes to the stored strain. By heating up the stored deformation returns to its 

permanent shape. In 2008, Chen and Lagoudas proposed a model that can 

support three-dimensional SMP constitutive model for large deformations [50, 51]. 

This model continues the framework of Liu et al. [49] and uses the same concepts 

such as the stored strain and frozen volume fraction.  
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2.5.2 SMP CONSTITUTIVE MODEL FOR SMALL DEFORMATIONS  

Lagoudas’ model is on the basis of nonlinear thermo-elasticity and formulated 

according to Gibbs free energy [31, 52-54]. It is assumed that individual material 

particles transform from the frozen (glass) phase to the active (rubber) phase, and 

vice versa, until the entire material has transformed into a single phase. Based on 

this theory, SMP is assumed to be a mixture of these particles. Initially, the 

equations for a single phase are proposed. The model is formulated in terms of a 

general deformation gradient. SMP is composed of individual particles, as can be 

seen in Figure 2-20, that may be transformed to another phase at different 

temperatures. Deformation is continuous during the transformations and an 

integral technique is used over the entire volume to determine the average 

deformation gradient. 

 

Figure 2-20: SMP composed of active and frozen phases in the model proposed 
by Lagoudas et al. [53] 

 

The average deformation gradient for the entire SMP undergoing homogenous 

deformation was calculated via the volume integral of individual material particles 

in each phase (introducing frozen volume fraction and net cooling history). In 

general, the deformation gradient is defined by the following equation: 
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𝐅(𝑡) = [1 − 𝜙(𝜃(𝑡))]�̂�𝑎(𝑆(𝑡), 𝜃(𝑡))

+ ∫ �̂�𝑓(𝑆(𝑡), 𝜃(𝑡))�̂�𝑓
−1(𝑆(𝜏), 𝜃(𝜏))�̂�𝑎(𝑆(𝜏), 𝜃(𝜏))𝜙′(𝜃(𝜏))�̃�′(𝜏)𝑑𝜏

𝑡

0

 

where 𝐅(𝑡), �̂�𝑎, �̂�𝑓 are the deformations from active to frozen, from active reference 

to deformed active and from frozen reference to frozen deformed, respectively. 

S(X,t) and θ(X,t) represent the two state variables of Piola-Kirchhoff stress and ϕ 

is the frozen volume fraction. The term, 𝜏, represents the last time at which the 

material point X was frozen. The term �̃�′(𝜏) represents the net cooling history. The 

second term in the equation above calculates the shape recovery of the material 

during heating dictated by change in volume fraction. 

In the case of one-dimensional deformation, the assumptions that have been made 

are as follows:  

 SMP is isotropic-linear elastic: 𝐸 = 𝐸𝑡(𝜃) + 𝑀(𝜃): 𝜎   

 The cross-sectional area changes negligibly as result of loading, so Piola-

Kirchhoff stress will be equal to Cauchy stress: 𝑆 ≈ 𝜎 

 Infinitesimal strain tensor: 𝐸 ≈
1

2
(𝐹 + 𝐹𝑇) − 𝐼 

 Isotropic material behavior: 𝐸𝑡(𝜃) = 𝜀𝑡𝐼 = 𝛼∆𝜃𝐼 

 Uni-axial tension: 𝜎11 = 𝜎(𝑡) 

 Compliance tensor, assuming linear elastic behavior, independent of 

temperature: 𝑀11(𝜃) =
1

𝐸
 

For calibrating the linearized model, the following equation is used for calculating 

the axial strain:  

𝜀(̅𝜃) = [1 − 𝜙(𝜃(𝑡))] {𝛼𝑎∆𝜃(𝑡) +
𝜎(𝑡)

𝐸𝑎
} + 𝜙(𝜃(𝑡)) {𝛼𝑓∆𝜃(𝑡) +

𝜎(𝑡)

𝐸𝑓
}

+ ∫ {𝛼𝑎∆𝜃(𝜏) − 𝛼𝑓∆𝜃(𝜏) +
𝜎(𝜏)

𝐸𝑎
−

𝜎(𝜏)

𝐸𝑓
} 𝜙′(𝜃(𝜏))�̃�′(𝜏)𝑑𝜏

𝑡

0

 

Calibration is necessary for the five functions that are listed below: 

 Elastic modulus for active and frozen phases: 𝐸𝑎, 𝐸𝑓 

 Thermal expansion coefficients for the active and frozen phases: 𝛼𝑎, 𝛼𝑓 
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 Frozen volume fraction: 𝜙(𝑡) 

The above functions will be calibrated by using the experimental data. The elastic 

modulus for the current epoxy-based SMP used for characterizing the active and 

frozen phases and also the thermal expansion coefficient are listed in Table 2-2. 

 

Table 2-2: Calibrated functions for strain calculation 

 Active Phase Frozen Phase 

Elastic Moduli 1.3 GPa 0.2 GPa 

Thermal 

Expansion 

Coefficient 

1.17e-5 K-1 2.3e-6 K-1 

Frozen Volume 

Fraction 
𝜙(𝜃(𝑡)) 𝜙(𝜃(𝑡)) 

 

The frozen volume fraction should be normalized according to the strain-

temperature graph of the SMP. Figure 2-21a shows the strain-temperature 

behavior of the SMP. By normalizing the graph to the range of 0 to 1, the frozen 

volume fraction function will be generated as shown in Figure 2-21b. At 

temperatures below the glass transition temperature, the function has the value of 

1 for frozen volume fraction, indicating that the material is fully in the frozen phase. 

By increasing the temperature to above the glass transition temperature, the frozen 

volume fraction has the value of almost zero, consistent with the material being in 

the active phase. During the transition, the function returns a value between 0 and 

1 depending on the temperature. 
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Figure 2-21: a) Strain-temperature and b) Calibrated frozen volume fraction-
temperature graphs of SMP 

 

After determining the calibrated volume fraction function, the shape memory effect 

modeling requires four steps, as described in the experimental results section. 

Each step has to be identified correctly and then implemented in MATLAB® 

program with ode45 function. The governing equation for each step is as follows: 

 At a temperature greater than glass transition temperature, the sample will 

be loaded: 

𝜀(𝑡) = [1 − 𝜙(𝜃(𝑡))]
𝜎(𝑡)

𝐸𝑎
+ 𝜙(𝜃(𝑡))

𝜎(𝑡)

𝐸𝑓
 

 While the load is held constant, the temperature decreases to below the 

glass transition temperature: 

𝑑𝜎′(𝜃)

𝑑𝜃
= −

[1 − 𝜙(𝜃)]𝛼𝑎 + 𝜙(𝜃)𝛼𝑓

[
1 − 𝜙(𝜃)

𝐸𝑎
+

𝜙(𝜃)
𝐸𝑓

]
 

 In the third step, the material will be unloaded at the temperature below the 

glass transition temperature: 

𝜀(𝑡) = 𝜀𝑝𝑟𝑒 + [
1 − 𝜙(𝜃2)

𝐸𝑎
+

𝜙(𝜃2)

𝐸𝑓
] [𝜎(𝑡) − 𝜎(𝜃2)] 



35 
 

 In the last step, recovery occurs while the temperature increases to above 

the transition temperature and load remains zero: 

𝑑𝜀′(𝜃)

𝑑𝜃
= [1 − 𝜙(𝜃)]𝛼𝑎 + 𝜙(𝜃)𝛼𝑓 + [

1

𝐸𝑎
−

1

𝐸𝑓
]𝜙′(𝜃)𝜎′(𝜃) 

The above equations were implemented in MATLAB® with appropriate material 

specifications determined from the experimental characterization results shown 

before (see Table 2-2). The predicted results are matching very well with 

experimental results as shown in Figure 2-22. It should be noted that In this graph, 

the cooling was done on strain control, while stress control was used by Volk et al. 

[53]. 

 

 

Figure 2-22: Comparison between the experimental shape memory effect 
(colored) and the theoretical results (black) 

2.5.3 FINITE ELEMENT MODELLING OF SMP IN ABAQUS® 

There have been several studies of finite element modeling of SMP in which 

commercial software was used. For example, Khanokar et al.[55] reported a 

subroutine for glassy shape memory polymers based on the constitutive model 

developed by Rao et al. [48]. However, a simpler model is used in this study since 

SMP is deformed only in compression and temperature-dependent elastic 



36 
 

modulus and the plastic behavior is known. Thus, it could be modeled in ABAQUS 

as an elastic material with plastic definitions. The material specifications at different 

temperatures, according to experimental results, are indicated in Table 2-3.   

  

 

Table 2-3: Material specification of SMP in different temperatures 

TEMPERATURE 

(K) 

ELASTIC 

MODULI (GPA) 

POISON’S 

RATIO 

THERMAL 

EXPANSION COEF. 

288 1.3 0.3 2.3e-6 

298 0.9 0.3 2.3e-6 

308 0.4 0.4 2.3e-6 

318 0.3 0.4 1.17e-5 

328 0.2 0.45 1.17e-5 

373 0.1 0.45 1.17e-5 

 

The plastic behavior of the material was defined according to the experimental 

results for 50% compression at room temperature with regards to ABAQUS 

requirements as shown in Table 2-4. 

 

Table 2-4: Plastic definition for SMP at room temperature for 50% compression 
according to ABAQUS requirements 

STRESS 

(MPA) 

STRAIN 

(%) 

70 0 

45 5 

50 18 

70 50 

 

The model that was created in ABAQUS is a cylindrical specimen with the diameter 

of ¼” and length of 3”. The geometry created in ABAQUS matches with the sample 

dimensions and was meshed with average size hexagonal elements. In order to 

prevent the rigid body motion in FEM simulation, the bottom end of the cylindrical 
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sample has to be constrained for all degrees of freedom. In order to do so, a 

reference point was defined and the kinematic motion of the reference point was 

coupled with the bottom surface. With applying constraint on the reference point, 

the whole surface will be constrained as shown in Figure 2-23a. On the top end, 

another reference point was defined that was coupled for kinematic motions with 

the top surface. The load was applied to the top reference point as pictured in the 

Figure2-23b.

 

Figure 2-23: (a) Applying constraint on the bottom end of the SMP, (b) Applying 
load on the top end of SMP 

 

For shape memory effect modeling in ABAQUS, material properties given in 

Tables 3 and 4 were used, along with the following steps: 

Initial step: In this step, all the initial conditions were set. The temperature was set 

to 363 K, which is above the glass transition temperature, and load at zero. The 

boundary conditions were defined in this step. 

Step 1: In this step, the temperature was kept at 363 K and a compressive load of 

1500 N (approximately 75 MPa) was applied to the top surface. The applied load 

resulted in the deformation amount of around 20% (Figure 2-24a). 

Step 2: While the load was kept constant, the temperature decreased with a 

constant rate to 263 °K, which is lower than the glass transition temperature. 

(Figure 2-24b). 
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Step 3: The load was removed and the temperature was kept constant. Thus, the 

elastic deformation was released and the sample remained deformed (Figure 2-

24c). 

Step 4: The temperature was increased with a constant rate up to 363 K, which is 

above the glass transition temperature at which the sample will recover back to its 

original shape (Figure 2-24d). 

A summary of the shape memory effect that was done in ABAQUS on the created 

SMP sample is illustrated in Figure 2-24. 

 

Figure 2-24: Illustration of shape memory effect on SMP FE model. a) Loading, 
b) Cooling, c) Unloading, d) Heating 

 

The graph on Figure 2-25 shows the shape memory effect in a 3D plot for 

temperature-strain-stress variations that compares the FEM results with 
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experimental results. The SME graph from ABAQUS shows a difference in 

experimental SME. Although both cooled by the same method, ABAQUS shows a 

strain release.  The reason is because a constant force was applied to the SMP 

for loading that was maintained during cooling as well. The elastic modulus is 

increasing in different temperatures and the reaction force from SMP is also 

increasing because of that. The increased reaction force causes the strain release. 

In the current model there is no control over this behavior. 

 

Figure 2-25: Comparison between experimental SME and ABAQUS results 
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CHAPTER III: NiTi WIRE CHARACTERIZATION AND 
MODELLING 

3.1 EXPERIMENTAL CHARACTERIZATION OF NiTi WIRE 

For the SMC fabrication, the shape memory properties of NiTi should be 

characterized. Flexinol NiTi wires were ordered from DYNALLOY© and used in as-

received form. Flexinol wires were heat treated by the factory to show shape 

memory behavior. To determine the transition temperature, DSC testing was 

performed on the NiTi wires. Also, stress-strain and recovery tests were conducted 

on the wires to determine the elastic modulus and plastic strain. Moreover, the 

fracture stress of the wire was also determined. The stress generation tests were 

conducted by loading the wire at room temperature and heating it up above the 

transition temperature while keeping the strain constant. 

3.1.1 DSC RESULTS ON NiTi WIRE 

Figure 3-1 shows the results of DSC response of the NiTi wire that was used to 

fabricate the SMC actuator. The results show the martensite to austenite 

transformation of the wire. The peak observed at DSC during heating corresponds 

to martensite to austenite transformation. This transition does not happen 

suddenly. Martensite to austenite transformation starts at 68 °C and finishes at 78 

°C. Thus, austenite start temperature is 68 °C and austenite finish temperature is 

78 °C. For the cooling part, the peak shows austenite to martensite transformation. 

Martensite start temperature is 50 °C and martensite finish temperature is 40 °C. 
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Figure 3-1:  DSC result of NiTi wire 

3.1.2 STRESS INCREASE OF CONSTRAINED NiTi WIRES WITH 
TEMPERATURE SCAN 

To determine the stress generation of NiTi wires, MTS Landmark test setup with 

custom heating system was used. The wire was clamped to both grips and then 

loaded to tensile stress of 10 MPa at room temperature when it is martensite. Then, 

the wire was heated up to 200°C in displacement control mode which means that 

the distance between the end points of the wire kept were kept constant during the 

temperature scan. As the temperature increases, the NiTi wire has a tendency to 

transform to austenite. Since NiTi wire wants to contract as it transforms to 

austenite, additional stress was applied to keep the length of the wire constant. At 

the end, the wire generated a stress level up to 800 MPa, as shown in Figure 3-2.  

The graph is not smooth since the servo-hydraulic MTS controller has to constantly 

adjust the applied force to a thin wire to keep the length of the wire constant as 

temperature increases. The initial increase of the force up to 120 °C is related to 

the change of the elastic modulus and strength of martensite. At temperatures 
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above 120 °C, the force is applied to prevent the martensite to austenite 

transformation, resulting in a steeper slope. At temperatures above 180 °C, the 

stress generation becomes saturated due to plastic deformation or completion of 

martensite to austenite transformation. 

 

Figure 3-2: Stress generation test for a SMA wire 

3.2 SMA MODELLING 

In this part, the constitutive SMA model, developed by Lagoudas et al., [50, 51] will 

be reviewed. The subroutine is based on this constitutive model. In another effort, 

a dog-bone shape tensile sample was created in ANSYS with the built-in SMA 

predefined material in its library. The built-in SMA material in ANSYS was 

developed according to constitutive model that has provided by Auricchio et al. 

[56], for isothermal analysis Finally, the modeling of the SMA wire by ABAQUS will 

be described. Shape memory effect has been demonstrated by implementing a 

subroutine USERMAT that was developed by Lagoudas et al. [30]. The modeled 

NiTi wire was later used to simulate the behavior of shape memory composite in 

ABAQUS. 
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3.2.1 LITERATURE REVIEW 

One-dimensional SMA modeling was first reported in 1986 [57]. Tanaka proposed 

to use an exponential hardening function for the phase transformation. However, 

the model was very simple in which the material properties remained constant 

during the transformation [57]. Achenbach proposed a model with two different 

phases including austenite, martensite in tension and compression by utilizing 

potential energy wells [58]. Later, Seelecke and Muller expanded the work by 

Achenbach [59]. Helmholtz free energy has been used in Liang and Rogers model 

[60] in which, similar to Tanaka’s model, the material properties were kept 

constant, but cosine hardening function was used instead of exponential hardening 

function [60]. Brinson and Abeyaratne used Helmholtz free energy in their works 

as well. Brinson uses a cosine hardening function and the model allows twinned 

martensite [61]. Abeyaratne did not use martensitic volume fraction, instead strain 

was presented in each phase [62]. Govindjee and Kasper used a phase diagram 

based model in which not only martensitic phase in compression and tension were 

considered, but the coefficient of thermal expansion and the plasticity as well [63]. 

Auricchio and Sacco also developed a phase diagram based model for isothermal 

super-elasticity. A linear hardening function with critical temperatures input has 

been used for model development [64]. Bekker and Brinson also used a phase 

diagram based model with cosine hardening function [65]. Ivshin and Pence have 

used hyperbolic function to model the transformation hysteresis. The model 

considered both hysteretic and non-hysteretic conditions [66]. Rajagopal and 

Srinivasa, as well as Savi and Paiva, have used Helmholtz free energy to construct 

models as reported in two different works. In Savi and Paiva’s work, two-way 

shape memory effects and internal sub-loops in tension and compression were 

also considered [67, 68]. 

Three-dimensional SMA models have been developed by several groups. In 1987, 

Patoor et al. used Gibbs free energy formulation to simulate transformation of a 

single crystalline SMA. The model was then extended to predict the polycrystalline 

behavior as well [69]. Liang and Rogers developed their one-dimensional model 

based on transformation surfaces and Helmholtz free energy [70]. Sun and Hwang 
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used Gibbs free energy to formulate a model in macro-scale by using the 

microstructure variables martensitic volume fraction and re-oriented martensitic 

volume fraction [71]. Boyd and Lagoudas used Gibbs free energy and a polynomial 

hardening function to model the phase transformation. Martensitic volume fraction 

was used as an internal variable [72]. Auricchio et al. extended the work previously 

done by Auricchio and Sacco [64] for a three-dimensional case. An exponential 

hardening function was used and FEM implementation of the model has been 

described [73]. Lagoudas et al. generated a unified framework from the works of 

Tanaka [74], Liang [70] and Boyd [72] by Gibbs free energy formulation [75]. 

Leclercq and Lexcellent also used Helmholtz free energy and exponential 

hardening function in their model. Two internal variables were used to allow both 

twinned and detwinned martensitic transformation [76]. Raniecki and Lexcellent 

have used Gibbs free energy and exponential hardening function to model tension 

and compression asymmetry [77]. Bo and Lagoudas have extend their work to 

include transformation induced plasticity as well [78]. Qidwai and Lagoudas have 

also used Gibbs free energy to extend the work of Boyd and Lagoudas [72] by 

adding several different transformation surfaces [79]. Govindjee et al. extended 

their phenomenological model by allowing arbitrary numbers of martensitic 

variants. They have also focused on the numerical implementation of their model 

[80]. Brocca, Brinson and Bazant have developed a microplane-based model that 

allows for nonproportional loading paths [81].  Juhasz et al. considered the effects 

of reorientation by taking the whole transformation strain as an internal variable 

instead of just the detwined martensite volume fraction [82]. Lagoudas and 

Entchev have extended upon the work of Bo and Lagoudas that was reported in 

2003 [30]. Helm and Haupt used Helmholtz free energy and considered both 

temperature and stress induced cases. They used kinematic hardening for both 

the forward and reverse cases [83]. Anand and Gurtin have also developed a 

model based on Helmhotz free energy and derived a finite deformation framework. 

Tension and compression in single crystal has been considered [84]. Popov and 

Lagoudas considered three different phases of twinned and detwinned martensite 

and austenite and developed a three-dimensional implementation based on Gibbs 



45 
 

free energy [85]. Reese and Christ [86] used Helmholtz free energy to focus on 

large deformation of SMAs. Only isothermal pseudo-elasticity has been 

considered. They used kinematic hardening function based on Helm and Haupt 

model [83]. 

3.2.2 LAGOUDAS APPROACH FOR SMA CONSTITUTIVE MODEL  

 

Qidwai and Lagoudas have developed constitutive models for shape memory and 

super-elastic materials based on the first principles of thermodynamics [79]. In their 

approach, the second law of thermodynamics is written in terms of the Gibbs free 

energy. Strain, temperature and martensitic volume fraction were state variables 

that must satisfy the second law of thermodynamics. An evolution equation for the 

martensitic volume fraction is derived from a dissipation potential and the effective 

transformation surfaces are evaluated as functions of the state variables. This 

approach also allows for temperature dependent elastic properties for austenite 

and martensite and accommodates both mechanical and thermal loading. 

Modeling of the shape memory alloys using thermodynamic equations is important 

since this model can be used to predict the behavior of complex SMA parts in 

selected thermomechanical loading conditions. 

The current work is based on Lagoudas’ constitutive model since they have 

implemented their model in ABAQUS. The important equations of their constitutive 

model are discussed below. 

 

The explicit form of the Gibbs free energy is given by [87]:  

 

𝐺(𝜎, 𝑇, 𝜉, 𝜀𝑡) = −
1

2𝜌
𝜎: 𝑆: 𝜎 −

1

𝜌
𝜎: [𝛼(𝑇 − 𝑇0) + 𝜀𝑡] + 𝑐 [(𝑇 − 𝑇0) − 𝑇𝑙𝑛 (

𝑇

𝑇0
)] − 𝑠0𝑇

+ 𝑢0 +
1

𝜌
𝑓(𝜉) 

 

where G is the specific Gibbs free energy, σ represents Cauchy stress tensor, T is 

temperature tensor, ξ is martensitic volume fraction, 𝜀𝑡 is uniaxial transformation 
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strain, ρ represents mass density, α is thermal expansion coefficient, T0 is 

reference temperature, c is specific heat capacity, s0 and u0 represent specific 

entropy and specific internal energy at reference point, respectively, and f is the 

hardening function. 

 

After algebraic calculations and adding the explicit equations for stress and 

compliances, the following equation for thermodynamic force conjugated to ξ 

can be extracted: 

𝜋(𝜎, 𝑇, 𝜉) = 𝜎: 𝛬 +
1

2
𝜎: 𝛥𝑆: 𝜎 + 𝜎: 𝛥𝛼(𝑇 − 𝑇0) − 𝜌𝛥𝑐 [(𝑇 − 𝑇0) − 𝑇𝑙𝑛 (

𝑇

𝑇0
)] + 𝜌𝛥𝑠0𝑇

− 𝜌𝛥𝑢0 −
𝜕𝑓

𝜕𝜉
 

where π is thermodynamic force conjugated to ξ, Λ is transformation tensor, and 

S represents the compliance tensor. 

By having the Clausius-Plank inequality as below: 

(𝜎: 𝛬 − 𝜌
𝜕𝐺

𝜕𝜉
) �̇� = 𝜋�̇� ≥ 0 

The conditions in which the forward and reverse martensitic phase 

transformations could happen can be defined. 

• In forward martensitic transformation, �̇�  is positive because austenite is 

transforming to martensite. Now the Clausius-Planck inequality can only be 

satisfied if π is a positive value. For the forward martensitic transformation, �̇� > 0, 

the function π will take the condition of π = Y. 

• In the reverse martensitic transformation, �̇� will be negative because martensite 

is transforming back into austenite. Now the Clausius-Planck inequality can only 

be satisfied if π is a negative value. For the forward martensitic transformation, �̇� 

< 0, the function π will take the condition of π = -Y. 

• While stress and temperature of the SMA is in the situation that there is no 

phase transformation occurring, the value of ξ remains constant and �̇�  = 0. 
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Therefore, the Clausius-Planck inequality is always satisfied, regardless of the 

value of π, because π�̇� = 0. 

 

The above constraints, called Kuhn-Tucker conditions, are presented below for 

both the forward and reverse phase transformations: 

 

�̇� ≥ 0;      Ф (𝜎, 𝑇, 𝜉) = 𝜋 − 𝑌 ≤ 0;       Ф𝜉 = 0;̇

�̇� ≤ 0;      Ф (𝜎, 𝑇, 𝜉) = −𝜋 − 𝑌 ≤ 0;       Ф𝜉 = 0;̇

̇
 

 

where Ф represents the transformation function and Y is the critical value for 

thermodynamic force to cause transformation. 

The final step in the constitutive formulation is to define an appropriate hardening 

function, f (ξ). The hardening function defines the interactions between the 

austenitic and martensitic phases, and also among the martensitic variants 

themselves. Here, the hardening function that Lagoudas proposed is as follows: 

𝑓(𝜉) = {

1

2
𝜌𝑏𝑀𝜉2 + (𝜇1 + 𝜇2)𝜉;         �̇� > 0

1

2
𝜌𝑏𝐴𝜉2 + (𝜇1 − 𝜇2)𝜉;         �̇� < 0

 

 

where ρbM, ρbA, μ1, and μ2 are model parameters that could be determined from 

thermo-mechanical experiments and M and A represent the martensite phase and 

austenite phase, respectively. 

Overall, after submitting the required criteria for the forward and reverse stages, 

five separate equations have to be considered as follows: 

 

1. Beginning of forward phase transformation at zero stress: 

 

𝜋(𝜎, 𝑇, 𝜉) = 𝑌    𝑎𝑡    𝜎 = 0, 𝑇 = 𝑀𝑠, 𝜉 = 0 

 

2. Ending of forward phase transformation at zero stress: 
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𝜋(𝜎, 𝑇, 𝜉) = 𝑌    𝑎𝑡    𝜎 = 0, 𝑇 = 𝑀𝑓 , 𝜉 = 1 

 

3. Beginning of reverse phase transformation at zero stress: 

 

𝜋(𝜎, 𝑇, 𝜉) = −𝑌    𝑎𝑡    𝜎 = 0, 𝑇 = 𝐴𝑠, 𝜉 = 1 

 

 

4. Ending of reverse phase transformation at zero stress: 

 

𝜋(𝜎, 𝑇, 𝜉) = −𝑌    𝑎𝑡    𝜎 = 0, 𝑇 = 𝐴𝑓, 𝜉 = 0 

5. Continuity of Gibbs free energy: 

 

𝑓(𝜉 = 1)|�̇�>0 = 𝑓(𝜉 = 1)|�̇�<0 

 

 

 

Model parameters for the quadratic polynomial hardening function model are 

defined as below: 

 

𝑌 =
1

4
𝜌∆𝑠0(𝑀𝑠 + 𝑀𝑓 − 𝐴𝑓 − 𝐴𝑠) 

𝑏𝐴 = −∆𝑠0(𝐴𝑓 − 𝐴𝑠) 

𝑏𝑀 = −∆𝑠0(𝑀𝑠 − 𝑀𝑓) 

𝜇1 =
1

2
𝜌∆𝑠0(𝑀𝑠 + 𝐴𝑓) − 𝜌∆𝑢0) 

𝜇2 =
1

4
𝜌∆𝑠0(𝐴𝑠−𝐴𝑓 − 𝑀𝑓 + 𝑀𝑠) 
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3.2.3 ANSYS MODEL OF A DOG-BONE TENSILE SMA SAMPLE 

These are strong thermo-mechanically coupled problems due to the latent heat 

that is released and absorbed during austenite-martensite phase transformations. 

To facilitate the development of these new devices and obtain a better 

understanding of their working mechanism, an efficient computational tool such as 

finite element method (FEM) has to be used. 

This work was performed to show the capabilities of the built-in SMA material in 

ANSYS. It is relatively easy to model the SMA behavior by ANSYS; however, the 

drawback of this software would be its limitation to isothermal condition. A dog-

bone tensile sample was created to show the capability of the SMA material in 

ANSYS.  

ANSYS is a general purpose finite element modeling package for numerically 

solving of a wide variety  of  mechanical  problems and is used  widely  in  industry  

to  simulate  the  response  of  a physical system to structural loading, and thermal 

and CFD effects. ANSYS uses the finite-element method to solve the underlying 

governing equations and the associated problem-specific boundary conditions. In 

this report, ANSYS was used to analyze the nonlinear behavior of framed 

structures. 

ANSYS 12.0 and later versions have SMA material in their built-in material library. 

This SMA material was developed by utilizing Auricchio’s constitutive model [64] 

which is limited to isothermal loading. Thus, the tensile specimen was loaded at 

selected constant temperatures and the results were compared to each other. 

The shape memory alloy material model implemented (accessed with TB, SMA 

which is the command for SMA material definition in ANSYS) is intended to model 

the super-elastic behavior of NiTi alloys in which the material undergoes large 

deformations without showing permanent deformation under isothermal 

conditions. Figure 3-3 shows the super-elastic behavior of SMA. The indicated 

points show the critical stress values for the start and finish of austenite to 

martensite and martensite to austenite transformation. The maximum residual 

strain is also indicated as 𝜀�̅� in figure 3-3.  
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Figure 3-3: Super-elastic behavior of SMA with definitions of the important 
variables (from ANSYS online help and [1]) 

 

Table 3-1 shows the constants that have to be defined for SMA material in ANSYS. 

 

Table 0-1: ANSYS SMA material constant definitions 
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For the specimen, the material model was extracted from the following curves at 

selected temperatures as shown in Figure 3-4. Then, the specifications were 

defined in ANSYS according to the needed constants and are shown in Table 3-1. 

 

Figure 3-4: Transformation stress versus temperature curves for SMA material 

 

The values for start and finish stresses for forward and backward transformations 

as a function of temperature can also be defined according to the results shown in 

Figure 3-5. 

 

Figure 3-5: Superelastic responses at selected temperatures 
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The SMA specimen geometry was created in ANSYS with the following 

dimensions as showed in Figure 3-6. It was then meshed with a size of 4 in smart 

mesh. 

 

 

Figure 3-6: Dog-bone tensile specimen dimensions 

 

Load and boundary conditions were applied to the specimen after being meshed. 

The load was applied on the top curve of the upper hole and the constraint was 

applied to the lower curve of the bottom hole. Figure 3-7 shows the pressure load 

on the upper curve of the upper hole and the constraint for all degrees of freedom 

was applied to the lower curve of the bottom hole. 
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Figure 3-7:  Load and boundary condition that applied to the dog-bone tensile 
specimen 

 

Table 3-2 provides the maximum von-misses stresses that were generated 

because of the applied pressure at selected temperatures. It is clear that as 

temperature increases, the maximum stress increases.   

 

Table 0-2: Comparison of the results for the maximum von-misses stress in 
different temperatures 
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Also, Figure 3-8 shows a contour plot of the SMA sample that was deformed at 70 

°C. As expected, the maximum stress was generated by the holes where the load 

and constraint were applied. 

 

 

Figure 3-8: The contour plot of generated stress at 70 °c 

 

3.2.4 SMA MODEL IN ABAQUS 

As described in previous sections,  the subroutine developed by Lagoudas’ group 

for SMA modeling in ABAQUS was used [30]. The subroutine is a FORTRAN 

coded numerical implementation for SMA that is called SMA_UM (Shape Memory 

Alloy-Unified Model). The material has to be defined in a certain way and the 

required parameters have to be provided by the user. 

The required material specifications are: the Young’s modulus of both austenite 

and martensite phases (EA and EM), thermal expansion coefficients for both 

phases (αA and αM), martensite start and finish and austenite start and finish 

temperatures at zero stress (M0s, M0f, A0s and A0f), maximum transformation strain 
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(H), and austenite and martensite stress influence coefficients (ρΔsA and ρΔsM). In 

addition, the subroutine is capable of using different hardening functions in which 

according to the selection, the hardening constants must also be defined [30]. 

Figure 3-9 shows the pseudoelasticity of SMA and the parameters that can be 

obtained. 

 

Figure 3-9: Pseudo-elastic behavior of SMA with definition of SMA parameters 
[30] 

 

The stress influence coefficients for both phases could then be defined as: 

𝜌∆𝑠𝐴 = −
𝜎𝐴

𝑇𝑇𝑒𝑠𝑡 − 𝐴0𝑠
𝐻 

𝜌∆𝑠𝑀 = −
𝜎𝑀

𝑇𝑇𝑒𝑠𝑡 − 𝑀0𝑠
𝐻 

The material parameters values that were used for the SMA wire are listed in Table 

3-3: 
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Table 0-3: SMA material parameter's values 

Material Parameter Value 

Austenite elastic modulus EA 70 GPa 

Martensite elastic modulus EM 30 GPa 

Poisson’s ratio ν 0.33 

Austenite coefficient of thermal expansion 

αA 

22.0 x 10-

6/K 

Martensite coefficient of thermal expansion 

αM 

22.0 x 10-

6/K 

Martensite start temperature M0s 291 K 

Martensite finish temperature M0f 271 K 

Austenite start temperature A0s 345 K 

Austenite finish temperature A0f 365 K 

Maximum transformation strain H 0.08 

Austenite stress influence coefficient ρΔsA -0.35 

MPa/K 

Martensite stress influence coefficient 

ρΔsM 

-0.35 

MPa/K 

 

 

For material verification, a simple model of a SMA bar was created in ABAQUS 

and loaded up to 5000 N (Approximately 1000 MPa) at selected temperatures. The 

bar was created with 2 cubic elements and the load was applied to the top surface. 

The bottom surface was constrained for all degrees of freedom. A contour graph 

of the model is shown in Figure 3-10. 
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Figure 3-10: Contour plot of SMA bar under load 

 

The simulated superelasticity results for SMA at selected temperatures are 

shown in Figure 3-11. 

 

Figure 3-11: Superelasticity results of a SMA that was defined in ABAQUS at 
selected temperatures 
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In another effort, shape memory effect was examined on a SMA wire model. This 

model consisted of two beam elements. The bottom node was constrained for all 

degrees of freedom and the top node was loaded in tension while the temperature 

was kept above the austenite finish temperature right at 100 °C. Then, while the 

load was kept constant, temperature was lowered to below martensite finish 

temperature. The load was then removed and temperature was increased to 100 

°C for recovery.  

Figure 3-12a shows the simulated 2D results for strain versus temperature and 

Figure 3-12b shows the 3D results of the shape memory effect. 

 

Figure 3-12: ABAQUS results: shape memory effect of a SMA wire a) in 2D and 
b) in3D 
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4 CHAPTER IV: SHAPE MEMORY COMPOSITE ACTUATOR: 
FABRICATION AND FINITE ELEMENT MODELING 

4.1 BACKGROUND 

 

Conventional SMAs are a unique class of shape memory materials with the ability 

to recover their shapes when temperature is increased. In addition, under specific 

conditions, SMAs can absorb and dissipate mechanical energy by undergoing a 

reversible hysteretic shape change when subjected to the applied mechanical 

cyclic loading. These unique characteristics of SMAs have made them popular for 

sensing and actuation, impact absorption, and vibration damping applications [88]. 

SMAs have two phases: a high temperature phase or austenite, and a low 

temperature phase or martensite. Martensite has a different crystal structure and 

therefore different properties than austenite. The transformation from one structure 

to the other does not occur by diffusion of atoms, but rather by shear lattice 

distortion which is known as martensitic transformation. Although the shape 

memory phenomenon has been observed in a variety of alloys, near equiatomic 

NiTi (49‐51 at% Ni) has been the workhorse of research and applications due its 

excellent ductility and shape memory properties. In this proposal, unless it is stated 

otherwise, SMAs will refer to NiTi alloys. 

SMAs have been utilized as smart composites in which SMA fibers (powders, 

wires) are used as reinforcements in the matrix. One example is to make 

composites by mixing NiTi SMA fibers or particles with other materials, such as 

metal powders and polymers, so that SMA fibers or particles are embedded in the 

matrix. In general, there are two main techniques by which to utilize SMAs 

embedded composite structures: active property tuning and active strain energy 

tuning [60]. Active property tuning refers to the increase of the Young’s modulus, 

yield strength, and other properties of the SMA during the transformation of 

martensite phase to austenite phase. These changes in material properties, 

especially the Young’s modulus, were used to modify the dynamic characteristics 

of the composite plate in which the SMA wires had been embedded. On the other 

hand, active strain energy tuning involves the embedment of the pre‐strained SMA 
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wires in martensitic phase into a composite material. Upon the application of heat, 

the SMA wires are constrained from returning to their memorized length, thus 

creating the recovery force. This recovery force is used to increase the strain 

energy and the stiffness of the structure and thus improves structural problems 

(e.g., shifting natural frequency), suppresses vibration, increases critical and 

thermal buckling loads, controls post‐buckling and thermal post‐buckling 

deflections and prevents cracks and fatigues. When the composite is used in an 

application, the pre‐existing internal compressive stress will compensate the 

tensile stress applied from the external load, thus improving the tensile and fatigue 

resistance of the composite [89]. Increase in tensile strength and decrease in crack 

propagation rate with temperature is observed in those composites indicating the 

strengthening mechanisms by SMAs [90]. It has also been observed that size and 

aspect ratio of fibers, pre-strain and thermo-mechanical history of SMAs, and the 

interface between the fibers and matrix affect the strength of composites [89, 91, 

92]. 

In addition to strengthening, remarkable properties of SMAs have been utilized as 

a composite constitute to produce intelligent materials with improved and tunable 

stiffness, fracture toughness, damping properties. The resulting SMA‐based 

composites exhibit unique properties or functions such as self‐strengthening, 

active modal modification, high damping, damage resistance, and shape control 

that make them useful in many engineering applications [93]. 

SMAs are mostly added to polymer matrices, although they have also been used 

with metal matrices [89, 92]. It has been reported that SMA wire‐reinforcement 

increases ductility and strength in fiberglass composites [94] and shifts the natural 

frequency of a structure away from its exciting frequency and as such controls the 

amplitude of the structure’s motion during vibration [95] and alters the stiffness 

properties when the SMAs are activated. The hybridized composites can also be 

utilized for shape control, as well as for various vibration controls, due to the 

excellent damping properties of the SMAs [96-98]. 

Due to their low thermal conductivity, lower mechanical properties, and reduction 

in shape memory performance over the first several thermo-mechanical cycles and 
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high‐thermal‐expansion coefficients, SMP composites are produced by adding 

inorganic particles or fibers (thermal conductivity) to improve their properties [16, 

98]. The addition of inorganic particles increases thermal conductivity, but 

decreases shape recovery. Carbon nanotubes improve thermal conductivity 

slightly, but enhance the mechanical properties considerably. The addition of multi-

walled carbon nanotubes increases shape recovery and recovery stresses, but 

decreases shape fixity [99]; while organically and carbon nano-fibers are found to 

be efficient in decreasing the coefficient of linear thermal expansion [100]. 

Electro‐active shape‐memory composites were synthesized using conducting 

polyurethane (PU) composites and multi‐walled carbon nanotubes (MWNTs). 

Electro‐active shape recovery was observed in the experiments for the surface‐

modified MWNT composites with an energy conversion efficiency of up to 10.4%, 

making these composites promising candidates for use as smart actuators [101]. 

In another study, a deployable shape memory polymer composite (SMPC) 

reinforced by carbon fiber fabrics was fabricated, followed by experiments to 

demonstrate the feasibility of using an SMPC hinge as a deployable structure with 

an aim of overcoming the relatively low modulus and low strength by fiber 

reinforced SMPC and utilizing the extremely high recovery strain, low density and 

low cost [102]. A shape recovery ratio of the SMPC upon bending above 90% was 

observed in the experiments conducted. 

Additionally, fiber micro-buckling was found to be the primary mechanism for 

obtaining a large strain in the bending of the SMPC. As a result, an SMPC hinge 

was fabricated, and a prototype of a solar array actuated by the SMPC hinge was 

successfully deployed. 

4.2 SMA-SMP COMPOSITES 

The main properties of SMAs and SMPs are given in Table 4-1 [17]. It is clear that 

SMAs have one order of magnitude higher recovery stress, but also one magnitude 

of order lower recovery strain than SMPs. SMPs are softer at high temperature 

and have a lower density, easier formability and lower heat conductivity than 

SMAs. Moreover, the modulus decreases as the polymer is heated through the 
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glass transition temperature (Tg) or the crystalline melting temperature (Tm).  The 

elastic modulus is normally observed to increase with heating for SMAs. 

SMPs are lightweight and inexpensive and have good formability and provide high 

recovery strain.  The main drawbacks of SMPs are their lack of strength, low 

modulus at high temperatures and an inability for reversible actuation [17, 103]. 

On the other hand, SMAs have high strength, good conductivity, and the ability to 

generate high forces, but are more expensive, dense and show lower recovery 

strain than SMPs [17]. A shape memory composite (SMC) can be created by 

embedding SMA components (e.g. wires) in SMP polymers that will result in low 

density composites with increased strength and modulus. Also, the addition of 

SMA wires can supply electrical resistive heat to the overall polymer matrix to 

trigger the actuation. The size, distribution, and volume fraction of wires can be 

adjusted to control the SMC properties.  

 

Table 4-1: Main material properties of NiTi SMAs and SMPs [17] 

 

There have been only a few studies on SMA+SMP composites [21, 103, 104].  

Tobushi and his team investigated two-way bending deformation and recovery 

force of shape memory composites [21]. Two kinds of SMA tapes showing SME 
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and the SE were heat-treated to memorize a round shape. Shape-memorized 

round tapes were arranged facing in opposite directions and were sandwiched by 

one SMP sheet in the middle part and by two SMP sheets from upper and lower 

sides. The fabricated SMC belt bends in the direction of the shape-memorized 

round shape of the SME-SMA tape during heating and bends in the direction of 

the shape-memorized round shape of the SE-SMA tape during cooling. The two-

way bending deformation with an angle of 56 degrees was observed.  

Figures 4-1a and 4-1b compare the elastic modulus and yield stress variations in 

different temperatures for SMA, SMP, and steel. This graph supports another 

reason for the use of SMA-SMP composites. By increasing the temperature, 

SMA’s elastic modulus is increasing, while the elastic modulus of the SMP is 

decreasing and vice-versa. An SMA-SMP composite could have appropriate 

mechanical strength in all temperatures. 

 

 

Figure 4-1: Change of a) elastic modulus and b) yield stress with temperature of 
SMA, SMP and steel [104] 

 

In this project, shape memory composites will be studied in two novel research 

areas: 

1) Novel functional composites: The material properties of both SMAs and 

SMPs are temperature dependent. SMA+SMP composites can be classified as a 

novel SMC with multifunctional material properties of which could be governed by 

temperature. Furthermore, the properties of SMA+SMP composites could be 

optimized for a specific application (by changing the chemical compositions of 
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SMP and SMA, applying heat treatments on SMA and altering the volume fraction 

of either constituent).  

2) Reversible Actuation with SMA+SMP composites: There is a possibility of 

inducing reversible actuation in SMCs through a careful adjustment of the 

transformation temperatures of SMA and Tg of SMP. The proposed mechanism for 

a reversible SMC actuator and how to build this composite is explained as follows: 

In SMAs, the start and finish temperatures of the martensite to austenite 

transformation are given as As and Af while start and finish temperatures of the 

austenite to martensite transformation are depicted as Ms and Mf, respectively. 

These temperatures are referred to as transformation temperatures (TTs) and are 

strongly composition and thermo-mechanical treatment dependent and can be 

adjusted. In order to achieve reversible actuation, we will use a SMP that has a Tg 

higher than Ms and lower than As. The original length of the SMA wires with self-

accommodated (twinned) martensite structure is designated as “S” in Figure 4-2.   

 

Figure 4-2: SMC actuation illustration 
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When stress is applied to the SMA wires in martensite phase, their length will 

increase from “S” to “L” due to detwinning of martensite and upon unloading it will 

not change but remain as “L”. The SMP cylinder, described previously, will be used 

as the matrix. After drilling a thorough hole at the center of SMP cylinder, the wire 

will go through that and from the sides. Both ends of the SMC will be rigid to ensure 

the compatibility and the transformation of the induced stress from one component 

to the other. Next, these steps should be realized in the given sequence for the 

SMC to successfully perform reversible actuation: 

i) Heat the composite to T1>Af>Tg. Above Tg ,the SMP is soft and can be easily 

deformed, while the SMA will transform from detwinned martensite to austenite 

where the length of the SMA will shorten from initial length “L” to compressed 

length “S”. Since the ends of composite are rigid, SMA wires will apply force to the 

soft SMP, resulting in a decrease in the overall length of the composite as shown 

in Figure 4-2b. 

ii) In the second step, the temperature will decrease down to T2 (Ms <T2< Tg). 

The SMP will harden in the compressed length “S”. Upon further cooling to T3<Mf, 

austenite will transform to twinned martensite and the length of the composite “S” 

will remain the same (Figure 4-2c). 

iii) In the third step, the temperature will be increased to T4 (Tg <T4<As). In this 

case, the polymer will create a recovery force to change the length from its 

compressed length of “S” to initial length of “L”. Since the force required to 

transform twinned martensite to detwinned martensite is low in the SMA wire, the 

length of the composite will increase from “S” to “L” (Figure 4-2d).  

iv) When the composite is cooled down to RT it will retain its length “L” and steps 

1 to 3 can be repeated for reversible actuation (Figures 4-2c and 4-2d). 

v) There is an alternative way to achieve reversible actuation: After step 2, the 

temperature can be increased to T4 first and then to T1 (T4< Af <T1) where the 

length of the composite will increase from “S” to “L” first and then decrease from 

“L” to “S”. Therefore, reversible actuation during heating can be observed. 
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Following the same cooling process as described in step 2, the shape of the SMC 

can be reset and the heating process can be repeated. 

4.2.1 RULE OF MIXTURE 

To be able to determine how many wires are needed for SMC that can show 

reversible actuation, the rule of mixture with exact dimensions and elastic modulus 

for both SMP and SMA wire is used.  Importantly, the elastic modulus of SMP 

changes drastically with temperature, making the design a bit challenging. Rule of 

mixture has shown in the following equation [105] 

0 = 𝑓𝛺�̅�𝛺(𝜀𝑃
𝛺 − 𝛾𝛺) + 𝑓𝑀�̅�𝑀(𝜀𝑃

𝑀 − 𝛾𝑡
𝑀) 

where f, E, ε, and γ represent the volume fraction, elastic modulus, plastic strain 

and elastic strain, respectively, Ω and M represent SMA wire and SMP matrix, 

respectively. The first term is the total force that is generated by SMA wire and the 

second term is the total force that has been generated by SMP. The SMP cylinder 

“S” has the diameter of 0.25” and the wire has the diameter of 0.008”. The elastic 

moduli of the SMP at selected temperatures are given in Figure 8. The elastic 

modulus of the wire was determined from the experiments to be around 30 GPa 

as shown in Figure 4-3. 
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Figure 4-3: Stress-strain graph for NiTi wire 

 

Table 4-2 shows the number of wires needed for equilibrium condition at selected 

temperatures. 

 

Table 4-2: Calculated the number of needed wires for SMC according to rule of 
mixture 

 

Temperature 15°C 25°C 35°C 45°C 55°C 

SMP Matrix 

Elastic 

Modulus 

(GPa) 

1.3 0.9 0.4 0.3 0.2 

SMA Wire 

Elastic 

Modulus 

(GPa) 

30 30 30 30 30 

Wires 

Needed 
43 29 13 9 6 
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As the temperature increases, the volume fraction of SMA should decrease to 

reach equilibrium. At low temperatures, there is no need for large number of wires 

since SMA will not contract. At higher temperatures, a few wires can do their job 

of deforming the SMP; however the force that SMA is producing should overcome 

the matrix’s force. The most important stage is the time that SMP wants to recover. 

The SMP should be able to overcome the force that is created by wires. As 

indicated in Table 4-2, nine wires are needed for equilibrium at the glass transition 

temperature of SMP (43°C). If any fewer wires are installed, the SMP will be able 

to recover. Thus, eight wires were installed in SMC, with four at the center hole 

and four at the sides.  

4.2.2 EXPERIMENTAL RESULTS AND DISCUSSION 

The SMC was fabricated by using epoxy-based NGDE3 SMP and Flexinol NiTi 

wires from DYNALLOY©. The clamps were machined from stainless steel. Figure 

4-4 shows the fabricated SMC used in experiments. 

 

The SMC sample was tested in DMA. After placing the sample inside the chamber, 

the probe needs to touch the clamp. Thermal cycling was done between room 

temperature and 130 °C (above Af) for complete recovery and maximum action. 

The temperature rate of 1 °C/min was used. The strain was calculated from the 

Figure 4-4: SMC sample made with NGDE3 SMP matrix and Flexinol NiTi wires 
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displacement of probe. Strain versus temperature response of the SMC is shown 

in Figure 4-5. 

 

 

Figure 4-5: SMC actuation results with 1 °C/min 

 

The SMC sample was been placed in DMA, reflected by point 1 on the graph. Point 

2 shows the austenite start temperature where the wire is contracting and will 

deform the SMP matrix as well. At higher temperatures, the SMP has lower elastic 

modulus and is very elastic. NiTi wire can easily deform the SMP. At point 3, the 

wire contracts and transforms to austenite. When the sample is cooled down, the 

modulus of SMP increases, thus, SMP exerts additional force to NiTi wire which 

transforms to martensite, resulting in increased length of the composite.  In order 

to understand why compressive strain increases when the sample is cooled further 

to point 5, figure 2-11 is needed to be reviewed. As the temperature is reduced, 

the elastic modulus of SMP was increased and SMP went from pure elastic 

behavior to elastoplastic type behavior. As the stress applied to SMP was 

increased, SMP was deformed plastically as shown in Figure 2-11. Therefore, the 

compressive strain of SMC was increased. At point 5, the sample is at its lowest 
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temperature in the cycle and as expected, the SMP matrix is in deformed condition. 

Upon heating, the SMC expands to recover and softens with temperature. Thus 

the wires are expanded due to variant reorientation. As temperature exceeds As, 

the wire transforms to austenite and contracts the SMC. The SMC was thermally 

cycled two more times to observe the reversible actuation behavior. It is clear that 

the response is fully reversible after the initial heating. 

 

Figure 4-6: Alternative SMC cycle done by adjusting the thermal cycling range 
with a rate of 5 °c/min 

 

The plastic behavior of SMP at temperatures below point 4, provides an alternative 

method to create reversible behavior. Instead of cooling the sample further from 4 

to 5 shown in Figure 4-5, the temperature of the sample can be cycled between 3 

and 4 shown in Figure 4-5. Figure 4-6 shows the alternative cycle that was done 

at the rate of 5°C/min. In this test, the sample was placed inside the furnace at 

point 1. After heating the sample up, the wires started to contract at point 2. At 110 

°C, contraction was complete and the sample as it was transformed to austenite. 

Upon cooling, the SMA transforms to martensite where its modulus decreases 
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while SMP becomes harder with increased modulus, resulting in increased length 

of the SMC. Upon heating, martensite to austenite transformation results in 

contraction of the SMC. The alternative experiment was done for two additional 

cycles to check the repeatability. 

4.3 SMC MODEL IN ABAQUS 

Modeling of the behavior of SMC in ABAQUS will now be described. As described 

in the previous sections, SMP and SMAs models are individually created. For SMC 

modeling, not only are two types of materials needed, but the interactions between 

these materials play a very important role. In order to to model the SMC, either 

SMA has to be in tension before contraction or SMP needs to be in compression 

before they can be tied together.  

4.3.1 Wire SMC FEM 

ABAQUS has the capability to define a contraction between two separate parts. 

Also, it is possible to have a “model change” during the steps. This way contraction 

will not work for the steps that there is no need for that. This capability was used 

for the model. The only difference between the SMA model that was used for SMC 

and the one that was introduced in the previous section is that hexagonal elements 

were used as the element type instead of beams. The total area of the wires used 

in the experiments were superimposed and one bar with an area equal to the total 

area of the wires was created. The length of the SMA bar is considered a little 

shorter so it matches the length of SMP when in compression. Figure 4-7 shows 

the geometry of the SMC created in ABAQUS. 
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Figure 4-7: SMC model in ABAQUS 

 

In this model, there are two reference points defined at the top and bottom of SMP. 

They are coupled with top and bottom surfaces of SMP cylinder, respectively.  The 

bottom point was constrained for all degrees of freedom. SMC behavior was tested 

in ABAQUS through the following steps: 

Step 1: SMP was compressed for 10% of its original length at 110 °C which is 

above its glass transition temperature. 

Step 2: The temperature decreased to 20 °C which is below the glass transition 

temperature of SMP. The interaction between the two parts was also activated. 

The load was removed after cooling down from SMP in this step. 

Step 3: The temperature was increased to 110 °C which is higher than the glass 

transition temperature of SMP.  

Step 4: The deformed SMP tried to recover but it was tied to the SMA part. As a 

result, the SMA rod will be deformed in this step. 
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Step 5: The temperature increased to 110 °C which is more than the austenite 

finish temperature of SMA and activated the SMA to recover to its original shape. 

However, since SMA was tied to SMP, it also deformed the SMP.  

The heating and cooling steps were added for two more cycles to ensure that the 

SMC actuator is moving back and forth only with altering the temperature.  

Figure 4-8 shows the two slides of the SMC was after being cooled down and then 

heated up. The pictures show the same position for both SMA and SMP and also 

confirm that the movement is due only to changes in temperature, a main goal of 

this study.  

 

 

Figure 4-8: SMC FEM in action, a) cooled down b) heated up 

 

Figure 4-9 shows both experimental and simulation results of SMC behavior with 

temperature. 
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Figure 4-9: Comparison between finite element model results and experimental 
results of SMC 

  

The FEM results match quite well with the experimental results with the exception 

that full recovery was achieved at each step and resulted in less hysteresis 

compared to the experimental results. This discrepancy is a result of how the SMP 

was defined in this project in experiments, the SMP properties change instantly 

with alterations in temperature, while in FEM, a gradual change in properties is 

noted with temperature, thus resulting in less hysteresis. The simulation results 

capture the general behavior of SMC actuation. However, because of the 

limitations of a simple SMP model, the simulation results do not exactly match with 

experimental results.  

In order to confirm that the contraction with further cooling from point 4 to 5 in 

Figure 4-5 is due to plastic deformation of SMP, the temperature range was 

changed in ABAQUS model. Figure 4-10 shows the FEM results includes the 

plastic behavior of SMP. It shows the behavior that we observed in experiments. 
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However the hysteresis is lower in this case because after the heating the gained 

displacement is lower. 

 

Figure 4-10: SMC results with SMP plastic behavior 

 

4.3.2 Spring-SMC FEM 

In another effort, a NiTi coil spring was used instead of NiTi wire to create a SMC 

by attaching it to a SMP cylinder. The concept is exactly the same beside the fact 

that we have to encounter the spring force according to Hooke’s law in rule of 

mixture equation. As such, the equation becomes: 

0 = 𝑓𝛺�̅�𝛺(𝜀𝑃
𝛺 − 𝛾𝛺) + 𝑓𝑀�̅�𝑀(𝜀𝑃

𝑀 − 𝛾𝑡
𝑀) + 𝐾∆𝐿 

where K represents the spring stiffness and ΔL represents the SMC actuator 

stroke.  Figure 4-11 shows contour plots of the SMC in two cases while it is in its 

upper and lower level of its stroke. 

  



76 
 

 

Figure 4-11: Contour plots of spring SMC 

 

Figure 4-12 shows the spring SMC actuator behavior. It clearly shows a reversible 

motion with temperature cycling.  

 

Figure 4-12: Displacement versus temperature graph for spring-SMC actuation 
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4.3.3 SMC with SMA-SMP bending plates 

In order to be able to show that SMC simulations would work for different actuator 

designs, SMC was created by using the plates of SMP and SMA to work in 

bending. The NiTi plate has an original curved shape and SMP plate has an original 

straight shape. The SMP plate was then bended and attached to the SMA plate at 

a higher temperature than its glass transition temperature. While the load is still 

applied to the SMP, the temperature decreased. The load was then removed and 

SMP attached to the SMA plate. By heating them up, the SMP plate generates 

stress because it wants to bend to its original straight shape and it contracts the 

SMA plate as well. Figure 4-13 shows the contour plots of bending plates in two 

positions. 

 

 

 

Figure 4-13: Contour plots of SMC bending plates 

 

Figure 4-14 shows the reversible behavior by temperature track but on the rotation 

angle of the bended plates.  
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Figure 4-14: Angle versus temperature graph for bending plates SMC 
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5. CONCLUSIONS 

In this work, the thermomechanical properties of epoxy-based SMP were 

investigated. The glass transition temperature was determined from DSC results 

and was confirmed by three-point-bending testing at DMA. Failure and 

compression tests, along with recovery, of the SMP were shown. Two cases for 

constrained loading of SMP were reviewed. In the constrained load test, two-way 

shape memory effect under stress was revealed. In the constrained displacement 

test, 24 MPa stress was generated at glass transition temperature. A simple 

elastic-plastic model was generated in ABAQUS for SMP that shows shape 

memory effect; however findings for the cooling section were not consistent with 

experimental results. Importantly, this simple model of SMP is sufficient for 

evaluating the kinematic behavior of SMA-SMP shape memory composite. 

In Chapter 3, properties of the NiTi wire were discussed. Transformation 

temperatures were determined by DSC tests. Stress generation and stress-strain 

tests at room temperature were performed. For modeling of NiTi wire in ABAQUS, 

a developed subroutine from Lagoudas et al. [30] was used. The net cross-

sectional area of the total wires in experiments was considered equal to the rod 

cross sectional area used in the model. The pseudoelasticity graphs in different 

temperatures were shown for a simple element.  

In the last chapter, the SMA-SMP shape memory composite was fabricated and its 

response with temperature change was revealed. In the experiments, it was 

confirmed that SMC shows a reversible behavior with temperature cycling. By 

adjusting the temperature range, the cycle could be more efficient if the plastic 

deformation of the SMP was not allowed. The model of the SMC in ABAQUS 

yielded comparable results to those of experiments. Moreover, a spring coil was 

used instead of wires in the ABAQUS model and another reversible behavior with 

higher stroke was shown. Since the ABAQUS model indicates a very good 

estimation of kinematic behavior of the SMA-SMP composite actuator, there is 

opportunity to simulate the behavior of different SMC designs. Simulation of the 

actuation behavior of a SMC consists of two bending plates was done in ABAQUS 

and the results showed a reversible behavior in bending as well 
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