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Novel Magnetism of Ir5þð5d4Þ Ions in the Double Perovskite Sr2YIrO6

G. Cao,1 T. F. Qi,1 L. Li,1 J. Terzic,1 S. J. Yuan,1,2 L. E. DeLong,1 G. Murthy,1 and R. K. Kaul1
1Department of Physics and Astronomy and Center for Advanced Materials, University of Kentucky,

Lexington, Kentucky 40506, USA
2Department of Physics, Shanghai University, Shanghai, China

(Received 8 November 2013; published 6 February 2014)

We synthesize and study single crystals of a new double-perovskite Sr2YIrO6. Despite two strongly
unfavorable conditions for magnetic order, namely, pentavalent Ir5þð5d4Þ ions which are anticipated to
have Jeff ¼ 0 singlet ground states in the strong spin-orbit coupling (SOC) limit and geometric frustration
in a face-centered cubic structure formed by the Ir5þ ions, we observe this iridate to undergo a novel
magnetic transition at temperatures below 1.3 K. We provide compelling experimental and theoretical
evidence that the origin of magnetism is in an unusual interplay between strong noncubic crystal fields,
local exchange interactions, and “intermediate-strength” SOC. Sr2YIrO6 provides a rare example of the
failed dominance of SOC in the iridates.

DOI: 10.1103/PhysRevLett.112.056402 PACS numbers: 71.70.Ej, 71.70.Ch, 75.30.-m

The iridates have become a fertile ground for studies of
new physics driven by strong spin-orbit coupling (SOC)
that is comparable to the on-site Coulomb (U) and
crystalline electric field interactions. This unique circum-
stance creates a delicate balance between interactions
that drives complex magnetic and dielectric behaviors
and exotic states seldom or never seen in other materials.
A profound manifestation of this competition is the novel
“jeff ¼ 1=2 Mott state” that was recently observed in
the layered iridates with tetravalent Ir4þð5d5Þ ions [1–3].
In essence, strong crystal fields split off 5d band states with
eg symmetry, whereas the remaining t2g bands form jeff ¼
1=2 and jeff ¼ 3=2 multiplets via strong SOC. The jeff ¼
3=2 band is lower in energy and is hence fully filled,
leaving the jeff ¼ 1=2 band which is of higher energy half
filled. The key, surprising result is the jeff ¼ 1=2 band has
a small enough bandwidth that even a modest Coulomb
repulsion U among the 5d-electron states is sufficient to
open a Mott gap in these iridates [1,2], which is contrary
to expectations based upon the relatively large unperturbed
5d bandwidth.
A great deal of recent theoretical and experimental work

has appeared in response to early experiments, including
predictions of a large array of novel effects in 5d-electron
systems having strong SOC: superconductivity [4], Weyl
semimetals with Fermi arcs [5], correlated topological
insulators with large gaps, Kitaev spin liquids [6–18],
etc. Most of these discussions have focused on the
tetravalent iridates in which the Kramers degeneracy of
the Ir4þð5d5Þ ions results in magnetism. On the other hand,
very little attention has been drawn to iridates having
pentavalent Ir5þð5d4Þ ions, primarily because the strong
SOC limit is expected to lead to a nonmagnetic singlet
ground state, which can be simply understood as a Jeff ¼ 0
state arising from four electrons filling the lower jeff ¼ 3=2

quadruplet [see Fig. 1(c) for a cartoon picture]. Indeed, the
Jeff ¼ 0 state has been used to explain the absence of
magnetic ordering in the pentavalent post perovskite
NaIrO3 [19].
An interesting issue that has received some but limited

attention is how the jeff picture is affected by noncubic
crystal fields [20]. The presence of such crystal fields has
been clearly observed in a number of recent experimental
works on materials with the Ir4þð5d5Þ electronic configu-
ration such as Sr3IrCuO6 [21], Na2IrO3, and Li2IrO3 [22].
It is generally agreed in these studies that for Ir4þð5d5Þ,
despite the presence of the noncubic crystal field and its
importance for the electronic structure, the basic jeff picture
is a good starting point to understand the magnetism in
these iridates. In this Letter, we show that, in contrast, for
the Ir5þð5d4Þ ions of Sr2YIrO6 the strong noncubic crystal
field results in a breakdown of the Jeff picture even as a
starting point. As illustrated in Fig. 1(c), the conventional
strong spin-orbit coupling picture, popular in the descrip-
tion of the Ir4þð5d5Þ systems, would result in the ionic state
of a single Ir5þð5d4Þ being a nonmagnetic singlet, predict-
ing then that Sr2YIrO6 should be a band insulator with no
magnetism. Unexpectedly, we find instead from experiment
that Sr2YIrO6 hosts well-formed magnetic moments and a
magnetic transition below 1.3 K. We shall see that this
surprising behavior and other features of the experiment,
such as the small amount of entropy lost at the transition,
can be understood if we take into account the presence of a
substantial noncubic crystal field on the Ir sites. This crystal
field arises from distortions of the IrO6 octahedra that are
evident from the crystal structure inferred from an x-ray
analysis. Finally, we observe unusual metamagnetic behav-
ior at low temperatures whose origin lies in the face-
centered cubic (fcc) lattice that the Ir moments form in this
ordered double perovskite (see, e.g., [20,23–29]). Quantum
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magnetism on the frustrated fcc lattice is yet poorly
understood both experimentally and theoretically, and so
our work calls for detailed neutron scattering and magnetic
x-ray studies of this unusual quantum magnet.
Sr2YIrO6 adopts a monoclinic structure essentially

derived from the perovskite SrIrO3 by replacing every
other Ir by nonmagnetic Y; the remaining magnetic Ir5þ
ions form a fcc structure with lattice parameters elongated
compared to the parent cubic structure, as shown in Fig. 2.
Because of the differences in valence state and ionic radius
between Y3þ and Ir5þ ions, no significant intersite disorder
is expected. The lattice parameters of Sr2YIrO6 are given in
Table 1 in the Supplemental Material [30]. The IrO6

octahedra are tilted and rotated, as seen in Fig. 2. A crucial
structural detail is that each IrO6 octahedron is significantly
flattened since the bond distance between Ir and apical
oxygen Ir-O3 (¼1.9366 Å) is considerably shorter than
the in-plane Ir-O1 and Ir-O2 bond distances (¼ 1.9798 Å
and 19723 Å, respectively), as shown in Fig. 2(b). The
flattening of the IrO6 octahedra generates a noncubic
crystal field Δ that strongly competes with the spin-orbit
interaction λ, as discussed below.
Sr2YIrO6 displays paramagnetic behavior at temper-

atures above 1.5 K, as the magnetic susceptibility χðTÞ
follows the Curie-Weiss law for 50 < T < 300 K, as
shown in Fig. 3(a). Data fits to the Curie-Weiss law
over the range 50 < T < 300 K yield an effective mo-
ment μeff ¼ 0.91 μB=Ir and a Curie-Weiss temperature
θCW ¼ −229 K. The value of μeff is considerably smaller
than the value 2.83 μB=Ir expected for a conventional
S ¼ 1 5d-electron system. In fact, a reduced value of

μeff is commonplace in iridates [20,23,31–34] in part
because the strong SOC may suppress the spin moment
[35]. A strong antiferromagnetic exchange coupling might
be inferred from the large magnitude of θCWð¼ −229 KÞ;
however, the absence of any magnetic ordering at
T > 1.5 K indicates the existence of strong quantum
fluctuations in Sr2YIrO6. A signature for long-range anti-
ferromagnetic order is evident at a very low temperature,
TN ¼ 1.3 K, as shown in Fig. 3(b). The two temperature
scales evident in the magnetic data yield a strikingly large
frustration parameter, jθCW j=TN ¼ 176.2.
The magnetic state undergoes a sharp metamagnetic

transition at a critical field HC below TN, as shown in
Fig. 3(c). The isothermal magnetization MðHÞ initially
rises and then exhibits a plateau before a rapid jump at HC.
The metamagnetic transition signals a spin reorientation,
but the remarkably low ordered moment (< 0.023 μB=Ir,
even at H > HC) implies that the magnetic state is only
partially ordered or unsaturated. Note that a field depend-
ence of MðHÞ that features a plateau followed by a
metamagnetic transition is observed for some geometrically
frustrated magnets [36]. The onset of long-range magnetic
order is confirmed by an anomaly in the specific heat CðTÞ
observed near TN, as shown in Fig. 4(a). This anomaly is
well-defined but weak, and is extremely sensitive to low
magnetic fields, as can be seen in Fig. 4(b). The entropy
removal SðTÞ due to the magnetic transition is finite but
very small compared to that expected for any possible
magnetic ground states consistent with Jeff ¼ 1 or 2,
or S ¼ 1.

(a)

(b) (c)

Fig. 1 (color online). Ground state of a single Ir5þ ð5d4Þ ion under three different scenarios. (a) When Δ, JH , and λ ¼ 0, the four
electrons in the t2g give 15 ground states. Throughout our analysis here, we use the physical JH > 0,Δ < 0, and λ > 0. (b) When λ ≪ Δ,
the ground state is a S ¼ 1 triplet. (c) When λ ≫ Δ, the ground state is thought of as a Jeff ¼ 0 singlet. The main inset shows the
spectrum of four electrons E4 as a function of λ for some expected values JH ¼ −Δ ¼ 0.5 eV. At intermediate physical values of λ the
ground state is always a singlet but with a low-lying doublet. Note: The doublets are non-Kramers time reversed pairs and the line
originating at E4 ¼ 2 has both a doublet and singlet that are not exactly degenerate but have a splitting too small to see on the scale here.
For λ ≫ Δ, we recover the Jeff ¼ 0 ground state with Jeff ¼ 1 as the first excited state.
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In light of the data presented above, it is clear that neither
SOC λ nor noncubic crystal field Δ alone dominates the
low-temperature behavior of Sr2YIrO6. Indeed, for λ ≫ Δ,
a prevailing SOC would suppress magnetic order and
render a singlet ground state Jeff ¼ 0 (Fig. 1c), which is
clearly inconsistent with the experimental observation.
On the other hand, a S ¼ 1 ground state would occur if
Δ ≫ λ [Fig. 1(b)]. This scenario cannot adequately account
for the small amount of entropy lost at the transition. It is
therefore compelling to attribute the observed magnetic
state to a delicate interplay between the competing λ and Δ.
The standard accepted Hamiltonian for electrons in a t2g
manifold is given by a sum of one-body terms: λ, Δ, U, and
Hund’s rule exchange JH,

Ht2g ¼ H1b þHmb (1)

H1b ¼ − X

m;m0;s;s0
c†msðλl⃗mm0 ⋅ s⃗ss0 þ Δðl⃗⋅n̂Þ2mm0δss0 Þcm0s0

Hmb ¼ U

�X

m;s

c†mscms

�
2

þ JH
2

X

m;m0;s;s0

× ðc†msc
†
m0s0cms0cm0s þ c†msc

†
ms0cm0s0cm0sÞ (2)

where m is an index that labels the yz, xz, xy orbitals. l⃗ and
s⃗ are the spin-1 and spin-1=2 Pauli matrices. n̂ is a unit
vector in the direction of the noncubic distortion or an Ir-O
bond. Since the Ir5þ ion carries four 5d electrons in the t2g
orbitals, Eq. (1) becomes a 15 × 15matrix in this space [see
Fig. 1(a)]. We ignore U as we compare the quantum states
with the same number of particles; thus, we are left with λ,
Δ, and JH. Since the flattening of the IrO6 octahedra (see
Fig. 2) renders Δ < 0 and both λ and JH > 0, the Ir5þ ion
always has a nondegenerate ground state independent of
the magnitude of the couplings. However, the excitation
gap to the lowest doublet becomes substantially suppressed
in the regime where all three parameters are comparable, as
shown in Fig. 1.
The physics of this regime can be understood by first

diagonalizing the problem with Δ and JH. In essence, the

Fig. 2 (color online). (a) The double perovskite crystal structure
of Sr2YIrO6 based on the single-crystal diffraction data;
(b) Enlarged view of flattened IrO6 octahedra; (c) The ordered
replacement of nonmagnetic Y ions for magnetic Ir ions leading to a
face centered cubic (fcc) lattice with geometrically frustrated edge-
sharing tetrahedra formed by the pentavalent Ir5þ ions in Sr2YIrO6.
Note that IrO6 octahedra are noticeably tilted and rotated.

Fig. 3 (color online). Magnetic properties of Sr2YIrO6: The
temperature dependence of (a) the magnetic susceptibility χðTÞ
(left scale) and 1=Δχ (right scale) at μ0H ¼ 0.1 T for 1.7 K ≤
T < 350 K (Note that Δχ ¼ χ − χ0, where χ0 is a temperature-
independent contribution to χ), and (b) the low-temperature
magnetization MðTÞ at μ0H ¼ 7T. (c) The isothermal magneti-
zation MðHÞ at T ¼ 0.5, 0.8, and 1.7 K.
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noncubic crystal field Δ < 0 splits the t2g orbitals, leaving
the a1g having lower energy than the eg states. Populating
the states with four 5d electrons gives a degeneracy of
6 (three singlets and one triplet); the presence of JH > 0
then promotes a robust S ¼ 1 ground state, as discussed
above. Now adding the SOC λ to the interactions splits the
triplet, resulting in a singlet ground state and a doublet
excited state. This is the near degeneracy, as shown in
Fig. 1. If Δ > λ, the splitting, Δ, can be fairly small.
While a full super-exchange calculation of the interaction

between Ir moments is possible, a cartoon model can capture
the essence of the magnetism. Following our discussion
above, we first consider the exchange interactions in the
absence of λ, where spin rotation symmetry is preserved. We
hence expect the resulting S ¼ 1 moments to interact with a
Heisenberg interaction on the fcc lattice. Now, adding λ to
the interactions yields a local term δðSzi Þ2 on the ith Ir site.
Putting these together, we arrive at the following S ¼ 1
model Hp ¼ J

P
ij S⃗i⋅S⃗j þ δ

P
i ðSzi Þ2. Such models have

been studied extensively on bipartite lattices (although not
on the fcc lattice of interest here) both in theory [37] and

experiment [38]. The broad feature of such models that is
important for our discussion here is that the magnetic order
found when δ ¼ 0 can persist even when δ > 0, albeit with a
suppression of the magnetic ordering temperature. As the
coupling δ is further increased, at a critical value of the ratio
ðδ=JÞc, the magnetic order is completely suppressed at a
quantum critical point.
This scenario predicts that a magnetic ordering can occur

even though a single ion can be in a nondegenerate “singlet”
state. A unique characteristic of such a magnetic order is that
the entropy, which is removed at the magnetic transition, is
much smaller than the R × ln× ð3Þ ¼ 9.13 J=moleK
expected for an ordering transition of S ¼ 1 moments as
the isolated ions already lose their entropy when T ≪ δ. This
prediction is consistent with the experimental observation
that the entropy is only ∼ 0.01 J=molK, a tiny fraction of
R ln(3), as shown in Fig. 4(c). Indeed, the ground state is
so fragile that even low magnetic fields are strong enough
to tip the balance, based upon the data presented herein; this
qualitatively explains (a) the strongly depressed, weak mag-
netic order [Fig. 3(b)], (b) the drastic changes in the specific
heat and entropy in weak applied magnetic fields (Fig. 4),
and (c) the low-field metamagnetic transition [Fig. 3(c)].
In conclusion, the relative effect of the SOC critically

depends upon the strength of noncubic crystal fields,
electron hopping and exchange interactions; therefore, it
should vary from material to material. While the Jeff model
successfully captures the new physics observed in many
iridates, it may not be appropriate to describe new phe-
nomena in other heavy transition metal materials with
strong noncubic crystal fields. Our results for Sr2YIrO6 not
only illustrate a prototypical breakdown of spin-orbit-
driven Jeff states, but also provide a new paradigm for
studying novel phenomena emerging from the strong
competition between the SOC, local exchange interactions,
and crystal fields [39,40].

GC is very thankful to D. I. Khomskii, T. Saha-Dasgupta,
G. Jackeli, Y. B. Kim, D. Singh, I. Mazin, S. V. Streltsov, and
X. Dai for enlightening discussions. This work was sup-
ported by the U.S. National Science Foundation via Grants
No. DMR-0856234, No. DMR-1265162, and No. DMR-
NSF DMR-1056536 (RKK).
Note Added.—Recently, we became aware of a theoreti-

cal Letter just published in Phys. Rev. Lett. by G. Khaliullin
[39] who predicts that the magnetic response is dictated by
gapped singlet-triplet excitations in Mott insulators with the
t42g electronic configuration such as of Ru4þ; Re3þ, Os4þ,
and Ir5þ ions. Our Letter presents the first experimental
evidence of such magnetism.
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Fig. 4 (color online). Thermal properties of Sr2YIrO6: For
0.05 K ≤ T ≤ 5 K, the temperature dependence of (a) the
specific heat CðTÞ at zero field μ0H ¼ 0 T (the red dashed line
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