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ABSTRACT OF DISSERTATION 
 
 

THE ROLE OF EXERCISE IN POLYCHLORINATED BIPHENYL-INDUCED 
CARDIOVASCULAR DISEASE 

 
Cardiovascular disease remains the leading cause of death in Western societies.  

Endothelial dysfunction is one of the initiating steps in the development of 
atherosclerosis.   While there is a strong correlation with a person’s genetics, lifestyle 
factors including smoking, physical activity, and diet can significantly increase a person’s 
susceptibility to the development of atherosclerosis.  In addition to these lifestyle factors, 
there is a strong body of evidence linking exposure to environmental pollutants including 
persistent organic pollutants such as polychlorinated biphenyls to increased 
cardiovascular disease and mortality.   It has been well-established that exercise 
protects against cardiovascular disease, but whether exercise can modulate PCB-
induced cardiovascular inflammation and dysfunction is unknown.   
 To investigate the effects of exercise on PCB-induced cardiovascular disease, 
two murine models of atherosclerosis, the ApoE-/- and the LDLr-/- mouse were utilized.  
Risk factors for cardiovascular disease including adiposity, glucose intolerance, 
hyperlipidemia, hypertension, oxidative stress, and inflammation, were assessed in 
these two models as well as mean atherosclerotic lesion size.  Exercise positively 
modulates several risk factors associated with cardiovascular disease including 
hypertension, hyperlipidemia, adiposity and obesity, systemic levels of oxidative stress, 
inflammation, and glucose tolerance.  Exercise significantly reduced mean lesion size in 
vehicle-treated animals.  To assess the mechanism of protection of exercise in chapter 
4, vascular reactivity studies were performed to measure endothelial function after 
exposure to PCB 77.  Exercise prevented PCB-impaired endothelial function implicating 
the role of superoxide as a cause of impairment.  Exercise upregulated phase II 
antioxidant enzymes.    The work in this dissertation demonstrates several protective 
properties of exercise against PCB-induced cardiovascular disease; however, additional 
studies are needed to determine if exercise enhances metabolism and excretion of these 
environmental pollutants.  
 
KEYWORDS:  cardiovascular disease (CVD); Polychlorinated biphenyls (PCBs); 

exercise, oxidative stress, endothelium dysfunction 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Margaret O’Bryan Murphy  
       Student’s Signature 
 
       May 8, 2014        
       Date 
 



 
 

THE ROLE OF EXERCISE IN POLYCHLORINATED BIPHENYL INDUCED 
CARDIOVASCULAR DISEASE 

 
 
 

By 
 

Margaret O’Bryan Murphy 
 

 
       
 

 
 
 
 
 
 
 
 
 
 
 
Dr. Bernhard Hennig    

      Director of Dissertation 
 
      Dr. Howard Glauert    
      Director of Graduate Studies 
 
      May 8, 2014     
      Date 



 
 

In dedication to Margaret O’Bryan Fitts



iii 
  

Acknowledgements 
 

I would like to acknowledge several people who assisted me in the completion of this 

dissertation.  First, I would like to thank my mentor, Dr. Bernhard Hennig who offered me 

a position in his laboratory after serving as his teaching assistant.  Without your 

guidance, none of this could have occurred.  Thank you helping me grow not only in my 

career as a scientist on a personal level as well.    

To my other committee members, thank you for your assistance.   Dr. Esser, thank you 

for  being a strong female scientist and true role model.  Additionally, thank you for 

collaborating with us by providing running wheel cages.  To Dr. Pearson, thank you for 

your continued support and enthusiasm about my project and growth as a scientist.  To 

Dr. Cassis, thank you for encouragement and insights into assisting this project along.  

Your expertise has truly been appreciated in developing dosing regimens as well as the 

appropriate mouse model to conduct these experiments.  Dr. Li, thank you for your 

critical thought and advice for continuing my work.  Dr. Newman, thank you for serving 

as an outside examiner.   

To my fellow labmates, current and previous, I thank you for your continued support, 

kindness, and advice during this time.  Michael Petriello, your academic input has been 

thoroughly appreciated and necessary.  Dr. Zuzana Makjova and Dr. Sung Gu Han, your 

expertise and training has been invaluable.  Katryn Eske, thank you for your kindness 

and assistance in animal work. To Brad Newsome, thank you for your editing expertise 

and friendship.  The laboratory of Alan Daugherty allowed me to perform and refine 

many experiments within this dissertation.  Jess, thank you for setting up the contractility 

apparatus and providing me detailed training to conduce these ex vivo experiments. 

Deborah, your training on aortic root sectioning has been very helpful, you are truly a 



iv 
  

master. I am eternally grateful for the day that you and Jess helped me handle a mouse 

without fear.  Anju, thank you for blood pressure training and animal assistance.  I would 

also like to acknowledge Dr. Morris and Manjula Sunkara for their assistance and 

availability to analyze PCB 77, its metabolites, and F2-isoprostanes.    

 To my family and friends, thank you for your continued support, encouragement 

and love during this time.  I am truly grateful for your love and kindness. To Tom 

Gawriluk, thank you for your continued passion for science.   I dedicate this work to my 

grandmother and namesake, Margaret O’Bryan Fitts, who would have been a brilliant 

scientist had she lived in a different generation when women had more opportunities.  

  



v 
  

Table of Contents 
ACKNOWLEDGEMENTS ........................................................................................................................... III 

TABLE OF CONTENTS ................................................................................................................................ V 

LIST OF FIGURES .................................................................................................................................... VIII 

LIST OF TABLES ........................................................................................................................................ IX 

CHAPTER 1: INTRODUCTION .................................................................................................................... 1 

1.1 CARDIOVASCULAR DISEASES AND PATHOLOGY OF ATHEROSCLEROSIS ................................................................... 1 
1.1.1 The role of endothelium in atherosclerosis .................................................................................... 3 
1.1.2. Mechanisms of Atherosclerosis-Shear Stress and Physical Inactivity ........................................... 3 

1.2. AN OVERVIEW OF PCBS ............................................................................................................................. 4 
1.2.1 Polychlorinated Biphenyls Contribute to Cardiovascular Disease .................................................. 7 
1.2.2. Modulation of Polychlorinated biphenyl-induced cardiovascular toxicity through nutrition ....... 8 

1.3. EXERCISE ................................................................................................................................................. 9 
1.3.1. The Vascular Response during Acute Exercise ............................................................................ 10 
1.3.2. Vascular response to chronic exercise ........................................................................................ 12 
1.3.3. Exercise Reduces Cardiovascular Risk Factors ............................................................................ 12 

1.4. POTENTIAL MECHANISMS OF EXERCISE THAT PROTECT AGAINST ATHEROSCLEROSIS: AN IMPLICATION FOR THE 
VASCULAR ENDOTHELIUM ............................................................................................................................... 17 

1.4.1. Shear Stress................................................................................................................................. 17 
1.4.2. Nitric Oxide ................................................................................................................................. 18 
1.4.3. Exercise Reduces Expression of Cellular Adhesion Molecules ..................................................... 19 
1.4.4. Endothelial Progenitor Cells ........................................................................................................ 20 
1.4.5. Exercise is Anti-inflammatory ..................................................................................................... 20 
1.4.6. Exercise Increases the Antioxidant Defense System ................................................................... 21 
1.4.7. Nuclear factor erythroid 2-related factor 2 (Nrf2) ...................................................................... 23 

1.5 SCOPE OF DISSERTATION ........................................................................................................................... 26 
1.5.1. Aims of dissertation .................................................................................................................... 26 
1.5.2. Rationale ..................................................................................................................................... 26 
1.5.3. Hypothesis and Specific Aims: ..................................................................................................... 27 

CHAPTER 2: EFFECT OF EXERCISE ON PCB 77-INDUCED TOXICITY IN LDL-R-/- MICE FED A HIGH-FAT DIET
 ............................................................................................................................................................... 29 

2.1 SYNOPSIS ................................................................................................................................................ 29 
2.2. INTRODUCTION ....................................................................................................................................... 29 
2.3. MATERIALS AND METHODS ....................................................................................................................... 31 

2.3.1. Chemicals .................................................................................................................................... 31 
2.3.2 Animal treatment ........................................................................................................................ 31 
2.3.3. Exercise Protocol ......................................................................................................................... 32 
2.3.4. Echo Magnetic Resonance Imaging ............................................................................................ 32 
2.3.5. Quantification of PCBs ................................................................................................................ 32 
2.3.6. Plasma cholesterol measurement ............................................................................................... 33 
2.3.7. Liver cholesterol measurement ................................................................................................... 33 
2.3.8. Blood pressure ............................................................................................................................ 33 
2.3.9 Quantification of atherosclerosis ................................................................................................. 33 
2.3.10. Quantification of plasma components ..................................................................................... 34 
2.3.11. Quantification of mRNA using RT-PCR. ..................................................................................... 34 
2.3.12. Statistical analysis..................................................................................................................... 34 

2.4 RESULTS ................................................................................................................................................. 35 
2.4.1. Exercise decreases body weight and fat mass in PCB 77-treated animals ................................. 35 
2.4.2. Exercise increases liver size relative to body weight in PCB77-treated mice .............................. 36 



vi 
  

2.4.3. Running activity .......................................................................................................................... 36 
2.4.4. Quantification of PCB77 in exercise and sedentary animals ....................................................... 36 
2.4.5. Exercise reduces atherosclerosis in PCB 77-treated mice ........................................................... 37 
2.4.6. Exercise reduces total plasma and liver cholesterol in PCB 77-treated mice .............................. 37 
2.4.7. Exercise does not attenuate PCB 77 increases in systolic blood pressure ................................... 38 
2.4.8. Exercise increases inflammatory parameters within the plasma of PCB 77-exposed animals ... 38 
2.4.9. Exercise reduces leptin in PCB 77-treated animals ..................................................................... 38 
2.4.10. PCB 77 exposure significantly increases expression of CYP1A1 ................................................ 38 

2.5 DISCUSSION ............................................................................................................................................ 39 

CHAPTER 3: THE EFFECTS OF PHYSICAL ACTIVITY ON PCB-INDUCED CARDIOVASCULAR DISEASE IN APOE-
/- MICE ................................................................................................................................................... 55 

3.1 SYNOPSIS ................................................................................................................................................ 55 
3.2. INTRODUCTION ....................................................................................................................................... 55 
3.3. METHODS .............................................................................................................................................. 57 

3.3.1. Chemicals .................................................................................................................................... 57 
3.3.2. Animal treatment & sample collection ....................................................................................... 57 
3.3.3. Glucose tolerance test ................................................................................................................ 58 
3.3.4. Quantification of plasma cholesterol, lipoproteins and cytokines/chemokines ......................... 58 
3.3.5. Liver cholesterol measurement ................................................................................................... 59 
3.3.6. Quantification of atherosclerosis ................................................................................................ 59 
3.3.7. Quantification of PCBs and F2-isoprostanes ............................................................................... 59 
3.3.8. Gene expression of CYP1A1 and antioxidant enzymes ............................................................... 60 
3.3.9. Statistical analysis....................................................................................................................... 61 
3.4. Results ............................................................................................................................................ 61 
3.4.1. Exercise reduces cardiovascular disease and associated risk factors in PCB77-treated mice ..... 61 
3.4.2. Exercise reduces systemic oxidative stress and upregulates antioxidant enzymes .................... 63 

3.5. DISCUSSION ........................................................................................................................................... 63 

CHAPTER 4:  EFFECT OF EXERCISE ON PCB 77-INDUCED ENDOTHELIAL DYSFUNCTION IN C57BL/6 MICE 82 

4.1 SYNOPSIS ................................................................................................................................................ 82 
4.2. INTRODUCTION ....................................................................................................................................... 82 
4.3 METHODS ............................................................................................................................................... 84 

4.3.1. Chemicals .................................................................................................................................... 84 
4.3.2. Animal treatment ....................................................................................................................... 84 
4.3.3. Exercise ....................................................................................................................................... 85 
4.3.4. Ex vivo vascular reactivity studies ............................................................................................... 85 
4.3.5. Quantification of PCBs and F2- isoprostanes ............................................................................... 85 
4.3.6. Plasma and liver cholesterol measurement ................................................................................ 86 
4.3.7. Quantification of mRNA using RT-PCR ........................................................................................ 87 
4.3.8. Statistical analysis....................................................................................................................... 87 

4.4 RESULTS ................................................................................................................................................. 87 
4.4.1. Exercise lowers F2-isoprostane levels .......................................................................................... 88 
4.4.2. Exercise did not lower plasma and liver cholesterol levels ......................................................... 88 
4.4.3. Exercise restores endothelium-dependent vasodilation in PCB 77-treated mice ........................ 89 
4.4.4. Exercise reduces expression of CYP1A1 ...................................................................................... 89 

4.5 DISCUSSION ............................................................................................................................................ 89 

CHAPTER FIVE: GENERAL DISCUSSION .................................................................................................. 102 

5.1 DISCUSSION .......................................................................................................................................... 102 
5.1.1 Summary .................................................................................................................................... 102 
5.1.2. Effect of Exercise on PCB 77-induced toxicity in LDLr-/- mice ................................................... 102 
5.1.3 The Effects of Physical Activity on PCB-Induced Cardiovascular Disease in ApoE-/- mice ..... 105 



vii 
  

5.1.4. Effect of exercise on PCB 77-induced endothelial dysfunction in C57BL6 mice ................. 110 
5.1.5  Implications From Different Mouse Models .............................................................................. 112 

5.2. FUTURE DIRECTIONS .............................................................................................................................. 115 
5.3 CONCLUSIONS ....................................................................................................................................... 117 

APPENDIX A: VASCULAR REACTIVITY PROTOCOL ................................................................................. 120 

BIBLIOGRAPHY ..................................................................................................................................... 124 

VITA ..................................................................................................................................................... 153 

 
  



viii 
  

List of Figures 
 
Figure 1.1 Structure and nomenclature of polychlorinated biphenyls  28 
Figure 2-1 Exercise Increases Body Weight in Vehicle-treated Animals  43 
Figure 2-2 Exercise Increases Lean Body Mass and Reduces Fat Mass in  
PCB-treated Animals         44 
Figure 2-3 Exercise increases liver: body weight in PCB77-treated mice  45 
Figure 2-4  Voluntary wheel-running performance in control and PCB77-treated  
Mice           46 
Figure 2-5 Concentrations of PCB in tissues      47 
Figure 2-6 Exercise Reduces Mean Aortic Lesion Area    48 
Figure 2-7 Exercise reduced total plasma cholesterol and HDL total cholesterol  
levels           49 
Figure 2-8 Exercise fails to attenuate PCB77 increases in systolic  
blood pressure          50 
Figure 2-9 Exercise increases serum t-PAI-1 and TNF-α levels in PCB77-treated  
Animals          51 
Figure 2-10 Exercise increases plasma levels of IL-6 and MCP-1 in PCB77-treated 
animals          52 
Figure 2-11 Exercise reduces plasma leptin levels in PCB77-treated animals 53 
Figure 2-12 Exercise upregulates CYP1A1 in PCB77 treated mice   54 
Figure 3-1.  Exercise attenuates PCB 77-impaired glucose intolerance  67 
Figure 3-2. Exercise reduces systolic blood pressure in PCB 77-treated mice 68 
Figure 3.3 Exercise reduces total plasma cholesterol and VLDL and LDL cholesterol 
concentrations          69 
Figure 3-4. Exercise prevents upregulation of proinflammatory cytokines by  
PCB77 exposure         70 
Figure 3-5. Exercise reduces atherosclerosis in PCB77-treated mice  71 
Figure 3-6. Exercise modulates PCB 77-induced oxidative stress   72 
Figure 3-7. Exercise upregulates antioxidant and phase II enzymes  73 
Figure 3-8. Exercise decreases level of OH-PCB 77 in feces   74 
Figure 3 9.  Proposed signaling pathway for PCB detoxification in vivo  75 
Supplementary Figure 3-1. Exercise increases body weight and lean body mass 76 
Supplementary Figure 3-2 Exercise increases liver: body weight in PCB77- 
treated mice          77 
Supplementary Figure 3-3 Voluntary wheel-running performance in control and  
PCB77-treated mice         78 
Supplementary Figure 3-4  Voluntary wheel-running performance in control and  
PCB77-treated mice         79 
Supplementary Figure 3-5 Exercise reduces hepatic cholesterol levels  80 
Figure 4-1 Voluntary exercise had no effect on body weight    93 
Figure 4-2 Voluntary wheel-running performance     94 
Figure 4-3 The effect of exercise on PCB 77 and OH-PCB 77 concentration 95 
Figure 4-4 PCB 77 induced oxidative stress is reduced in exercised animals 96 
Figure 4-5 Exercise does not reduce plasma or liver cholesterol levels  97 
Figure 4-6 Confirmation of Tissue Viability      98 
Figure  4.7 Exercise restores endothelium-dependent dilation in PCB77 impaired  
vessels          99 
Figure 4-8 Exercise reduces CYP1A1 and MCP-1 levels in PCB 77-treated  
Animals          100 
Figure 5-1 Proposed signaling pathway for PCB detoxification in vivo  119 



ix 
  

List of Tables 
Table 3-1: Primers used for RT-PCR       81 
Table 4-1: Primers used for RT-PCR       101 
 



1 
  

Chapter 1: Introduction  

1.1 Cardiovascular Diseases and Pathology of Atherosclerosis 

Cardiovascular diseases (CVDs) are currently the leading cause of death in the 

U.S1.  Atherosclerosis is characterized by the accumulation of lipids and fibrous debris 

within the large arteries2.  Early lesions of atherosclerosis consist of cholesterol-laden 

macrophages in sub-endothelial spaces, known as foam cells3.  These foam cells and 

subsequent fatty streaks can be found in the aorta of a human within the first decade of 

life.  Fatty streaks are the precursors of more advanced lesions characterized by the 

accumulation of lipid-rich necrotic debris and smooth muscle cells (SMCs)4.  These 

types of lesions usually have a fibrous cap made up of SMCs and an extracellular matrix 

that encloses the lipid-rich necrotic core.  Although advanced lesions can grow 

significantly and result in stenosis, the formation of a thrombus or clot is more likely to 

form resulting in myocardial infarction or stroke, and ultimately death5.  

  Epidemiological studies over the past 50 years have revealed several risk 

factors for atherosclerosis.   The main risk factors for atherosclerosis include increased 

total cholesterol levels with high ratios of low-density lipoproteins (LDL) to high-density 

lipoproteins (HDL), obesity, diabetes mellitus, and hypertension6.  While there is a strong 

correlation with a person’s genetics, lifestyle factors including smoking7, physical 

inactivity8 and diet9 can significantly increase a person’s susceptibility to the 

development of atherosclerosis10.  In addition to these lifestyle factors, there is a strong 

body of evidence linking exposure to environmental pollutants including persistent 

organic pollutants to increased cardiovascular disease and mortality11.   

Cholesterol constitutes a major portion of the atherosclerotic plaque and 

increased serum levels of cholesterol play a role in the development of atherosclerosis.  

In fact, the first observable change in the vessel wall is the accumulation of lipoprotein 

particles and their aggregates in the intima4.  However, recent evidence has 

demonstrated that atherosclerosis is a low-grade inflammatory disease rather than a 

lipid storage disease2.    Within days, monocytes can be seen adhering to the surface of 

the endothelium and then transmigrate across the endothelial monolayer to the intima, 

ultimately forming foam cells12. Furthermore, circulating levels of inflammatory mediators 

including C-reactive protein (CRP) are independent risk factors for atherosclerosis3.  The 
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specific involvement of inflammation in plaque initiation and progression will be 

discussed below.  

The formation of an atherosclerotic plaque is a complex process involving 

several different cell types.  A primary initiating event in atherosclerosis is the 

accumulation of LDL within the sub-endothelial space of the intima, which stimulates 

endothelial cells to produce a number of pro-inflammatory mediators including adhesion 

molecules and macrophage colony-stimulating factor (M-CSF)4.  LDL diffuses passively 

through gap junctions and its retention within the vessel wall involves interactions with 

matrix proteoglycans and apolipoprotein B (apoB)13.  Trapped LDL undergoes oxidation, 

lipolysis, proteolysis and aggregation which further stimulate inflammatory cytokines14.  

These mediators recruit monocytes and lymphocytes to the arterial wall.  The first step in 

adhesion, the “rolling” of leukocytes along the endothelial surface, is mediated by 

selectins which bind to carbohydrate moieties on leukocytes15.  Firm adhesion of 

monocytes and T cells to the endothelium is mediated by the integrin VLA-4 on the EC, 

which interacts with both VCAM-1 and the CS-1 splice variant of fibronectin16.  Monocyte 

chemoattractant protein-1 (MCP-1) is a chemokine produced by endothelial cells.  Mice 

deficient in monocyte chemoattractant protein (MCP-1) or its receptor CCR2 had 

significantly reduced atherosclerosis, suggesting a role for MCP-1/CCR2 in monocyte 

recruitment17,18.  It has been shown that MCP-1 facilitates monocyte transmigration and 

retention into the sub-endothelial space in both humans and mice.   The rapid uptake of 

oxLDL particles by macrophages is mediated by two scavenger receptors, SR-A and 

CD3619,20.  The resulting cholesterol uptake by macrophages leads to the conversion of 

a foam cell, which makes up the fatty streak, characteristic of early lesion 

development21.  

Fibrous plaques are formed by a  growing mass of extracellular lipid consisting 

mainly of cholesterol and its ester, and by the accumulation of SMCs4.  SMC migration 

and proliferation as well as extracellular matrix production is regulated by cytokines and 

growth factors secreted by macrophages and T cells22.  SMCs form the fibrous cap that 

encases the necrotic core of the lesion.     Additionally, matrix metalloproteinases 

(MMPs) are produced by macrophages within the plaque and cleave the extracellular 

matrix.  Cleavage of the extracellular matrix aids in the migration of SMCs and 

contributes to instability of the plaque increasing the risk for thrombosis23.  
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1.1.1 The role of endothelium in atherosclerosis  

 The endothelium is a monolayer which acts as an interface between blood-borne 

molecules; including circulating nutrients, environmental pollutants, lipoproteins, and 

cytokines.  Endothelial integrity is essential for preserving vascular homeostasis, 

regulating vascular tone, coagulation, angiogenesis and repair, and inflammatory 

processes.  Nitric oxide (NO) is produced by endothelial cells and has several important 

roles including regulation of vascular tone, inhibition of platelet aggregation, inducing 

vasodilation in SMCs, and preventing leukocyte adhesion24–26.  Endothelial dysfunction, 

including a decrease in bioavailable NO, is an independent risk factor in cardiovascular 

disease27.  Endothelial dysfunction is a condition that includes the upregulation of 

cellular adhesion molecules (CAMs), which recruit blood mononuclear cells, and 

increases in endothelial permeability, which facilitates the diffusion of LDL to the 

intima28.  The transcription factors nuclear factor-KB (NF-KB) and activator protein-1 

(AP-1) regulate the expression of adhesion molecules and cytokines29,30  and are 

activated in response to increased levels of reactive oxygen species (ROS)31.    

Circulating leukocytes do not adhere to endothelium unless the expression of CAMs 

(e.g. VCAM-1, ICAM-1) is present on the cell surface32.  Similarly, chemoattractant 

stimuli produced from ECs promote migration of leukocytes into the intima where M-CSF 

stimulates differentiation from monocytes into macrophages.  The macrophages express 

scavenger receptors which engulf oxidized LDL ultimately forming foam cells.  These 

lipid-laden macrophages secrete a number of inflammatory mediators including IL-1 and 

TNF-a that amplify inflammation within the vessel wall and contribute to additional 

leukocyte accumulation, SMC proliferation, and extracellular matrix remodeling2,4,33.  

1.1.2. Mechanisms of Atherosclerosis-Shear Stress and Physical Inactivity  

 Blood flow-induced shear stress has emerged as an essential feature of the 

development of atherosclerosis.  Shear stress is a biomechanical force that is 

determined by blood vessel, vessel shape, and fluid viscosity and is expressed as units 

of dynes/cm2 34.  Fluid shear stress has effects on EC morphology.  Cells in the tubular 

regions of arteries are ellipsoid in shape and align in the direction of laminar flow.  Cells 

in arterial areas of curvature are exposed to “disturbed” flow have polygonal shapes and 

no orientation which increase susceptibility to lesion formation35. A sedentary lifestyle 

results in disturbed vascular flow including irregular and non-uniform flow.  The influence 
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of blood flow in atherosclerosis can be deduced from the presence of vascular 

inflammation and the distribution of atherosclerotic lesions at lesser curvature of bends 

and near side branches, where blood flow rate is relatively low.36  For example, 

atherogenesis is promoted by low shear stress i.e. <5 dynes/cm2 because it disrupts 

numerous cell functions including a reduction in eNOS synthesis, vasodilation, and 

endothelial cell repair.  These disruptions in cell function are coupled to an increase in 

reactive oxygen species, increased leukocyte adhesion, apoptosis, increased 

permeability to lipoproteins, smooth muscle cell proliferation, and collagen deposition35.   

A key initial step in this process involves the recruitment and binding of leukocytes to the 

endothelium.  Leukocytes normally do not adhere to the endothelium; however, if the 

endothelium expresses adhesion molecules, the leukocyte “tethers” through interaction 

with P- or L-selectin on the microvilli of leukocytes37.  Low shear stress or reduced flow 

upregulates the expression of leukocyte adhesion receptors such as intercellular 

adhesion molecule 1 and vascular cell-adhesion 138 as well as chemokines including 

monocyte chemotactic protein 139 under conditions of disturbed flow.  

 It should be noted that these receptors and signaling molecules initiate and 

maintain inflammation within the vessel wall leading to the development of CVD.  These 

areas of low or disturbed flow do not cause atherosclerosis by itself, rather it is the 

systemic inflammation that leads to the development of this disease.  Under conditions 

of low-flow, circulating leukocytes can adhere to the EC surface, transmigrate across the 

endothelial layer, and initiate the development of the atherosclerotic lesion40.   

1.2. An Overview of PCBs 

Exposure to persistent organic pollutants is a risk factor for the development of 

cardiovascular disease (reviewed in11 ).   Polychlorinated biphenyls (PCBs) consist of 

two benzene rings with 0-10 chlorines attachment sites with the possibility of 209 

congeners (Figure 1.1). Most PCB congeners are colorless, odorless crystals. Mass 

production of PCBs began in 1929, largely through Monsanto Chemical Company under 

the brand name Aroclor.  PCBs were commercially produced as complex mixtures 

containing multiple isomers at different degrees of chlorination for a variety of 

applications, including dielectric fluids for capacitors and transformers, heat transfer 

fluids, hydraulic fluids, lubricating and cutting oils, and as additives in pesticides, paints, 

carbonless copy paper, adhesives, sealants, and plastics.  Their commercial utility was 
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based largely on their chemical stability, including low flammability, and desirable 

physical properties, including electrical insulating properties.  Their chemical and 

physical stability has been responsible for their persistence in the environment, despite 

their ban in 1979 by the U.S. Environmental Protection Agency (EPA) 41.  

 As early as 1936, occupational exposure was reported to cause acute toxicity 

leading to workplace threshold limits set.  PCB-contaminated cooking oil caused a total 

of 1,291 “Yusho” patients in Japan.  Symptoms of toxicity included low birth weights, 

chloracne, and pigmentations42.  In 1966, Jensen reported PCBs in eagles, herring, and 

other Swedish environmental samples43.  PCBs have been shown to be nearly 

ubiquitous environmental pollutants occurring in most human and animal adipose 

samples, milk, and sediment.  PCBs have entered the environment through use and 

disposal.  Because PCBs do not easily degrade and are lipophilic in nature, they are 

persistent and bioaccumulate.  Human exposure to PCBs occurs primarily through low-

level food contamination44,45.  PCBs have been found in nearly all marine plant and 

animal species including fish, mammals, birds, and humans.  Highly PCB-contaminated 

populations include Native American tribes, communities on Forae Islands46, and 

Canadian Inuits47.  There are several reports of occupational exposure as well as 

documented cases within communities such as the Monsanto plant in Anniston, AL48 

and the upper Hudson River, NY49.   Additionally, two cases of accidental ingestion from 

rice oil were reported, the previously mentioned Yusho incident as well as Yu-Cheng in  

Taiwan in 197950. 

 PCB levels in human plasma resulting from exposure vary with low ppb 

concentrations found in the general U.S. population51.  Yu-Cheng patients in Taiwan 

were documented to have 99 ppb of PCBs in plasma50 with levels as high as 1 ppm (3 

orders of magnitude difference) after occupational exposure52.Canadian Inuits, who 

consume large quantities of fish within their diet have 3.4 fold higher levels of PCBs 

within their plasma than the U.S. population53. High risk groups within these populations 

include breast-fed children which have been documented to have negative cognitive 

functions from exposure54,55.  

 While acute toxicity of PCBs is a rare phenomenon and limited to symptoms 

including chloracne56, a large number of scientific studies (>10,000 published44) have 

linked PCB exposure to chronic disease in humans.   PCBs contribute to a variety of 

pathological conditions within humans.  PCBs can act as initiators and promoters of 

carcinogenesis57, specifically the congener PCB 358,59.  PCBs act as endocrine 
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disrupters and can alter metabolic processes regulated through the thyroid gland60.  In 

addition, developmental exposure to PCBs can result in cognitive dysfunction later in 

life61,62.  

 PCBs can be further classified based on their stereochemistry which affects their 

biological functions.  There are three groups of PCB congeners including non-ortho-

substituted coplanar PCBs (e.g. PCB 77 and PCB 126), ortho-substituted non-coplanar 

PCBs (e.g. PCB  104 and PCB 153) and mixed-inducers with one or two chlorines in 

ortho positions (e.g. PCB  118)63. This dissertation work focuses on the coplanar PCB77, 

which is an agonist of the aryl hydrocarbon receptor (AhR).  The toxicity of the coplanar 

PCBs correlates with their binding affinity for the AhR which has led to the assignment of 

a Toxic Equivalency Factor (TEF) for each of the coplanar PCBs.  TEF expresses 

toxicity relative to the most potent AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD)64. AhR is a cytosolic transcription factor with a basic helix-loop-helix structure 

that is bound to chaperone proteins including a dimer of heat shock protein 90 (hsp90), 

and the hepatitis B virus-associated protein 2 (XAP2)65.  Upon ligand binding (e.g. PCB 

77), AhR dissociates from its chaperone proteins and translocates into the nucleus 

forming a dimer with the AhR nuclear translocator (ARNT)66.  The newly formed 

AhR/ARNT complex binds to AhR-response elements (DREs) located in the promoter 

region of responsive genes, thus serving to modify transcription of targeted genes66.  

 There are several targets of the AhR including a family of CYP enzymes and 

other phase II enzymes such as uridine 5’diphosphoglucuronosyltransferase (UGT) 1A1, 

and glutathione (GSH)-S-transferase67. These gene targets play a role in the 

detoxification process of hydrophobic compounds by adding an epoxide molecule or 

other hydrophilic moiety to aid in metabolism41.  Because AhR upregulates the family of 

CYP enzymes, this explains some of the toxicity from PCB 77 exposure.   It has been 

shown that upregulation of CYP1A1 by AhR due to PCB 77 leads to its uncoupling, 

resulting in the production of Reactive Oxygen Species (ROS)68. Phase I metabolism of 

PCB77 forms catechol and hydroquinones which are then converted to quinones by 

cellular peroxidases69, which can further contribute to cellular oxidative stress70.  These 

reactive intermediates can directly bind to DNA71 and proteins72 which may explain some 

of the toxic effects of PCBs.  
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1.2.1 Polychlorinated Biphenyls Contribute to Cardiovascular Disease 

 PCB exposure can lead to the development of CVD.  Swedish capacitor workers 

had increased rates of cardiovascular mortality73.  In the female population, a National 

Health and Nutrition Examination Survey (NHANES) demonstrated an association 

between plasma PCB levels and cardiovascular disease74.  Within the Yusho patients, 

elevated levels of total blood cholesterol and triglycerides were reported50.  A recent 

report in Hypertension revealed that residents in Anniston, AL had increased rates of 

hypertension, a known risk factor for cardiovascular disease48.  Exposure to PCBs in 

human studies has also demonstrated elevated cardiovascular disease risk factors 

including insulin resistance75, metabolic syndrome76, and diabetes77.  

 Several mechanisms have been suggested to explain the increased rates of 

cardiovascular diseases induced by PCB exposure.  Yusho patients had elevated 

plasma cholesterol78, and similar effects have been reported in animal models after 

exposure to coplanar PCBs79,80 including findings reported within this dissertation.  Our 

laboratory has previously shown that PCB 77exposure reduced liver expression of 

CYP7A181, the rate-limiting enzyme in the synthesis of bile acid from cholesterol, which 

could explain the elevated cholesterol levels in the plasma.  Additionally, coplanar PCBs 

promote adipocyte differentiation as well as upregulating proinflammatory mediators 

including MCP-1 and TNF-α, thus contributing to the development of obesity and 

associated inflammation82 .   

However, our laboratory and others have focused on the mechanism of PCB-

induced endothelial dysfunction83,84.  Specifically coplanar PCBs, including PCB 77 bind 

the AhR leading to upregulation of CYP1A1 within the vasculature85.  PCB 77 uncouples 

CYP1A1 increasing ROS production which activates redox sensitive transcription factors 

NFκB and AP-1.  Activation of NFκB can upregulate cellular adhesion molecules 

including VCAM-183,86.   It should be noted that activation of NFκB and AhR through PCB 

77 can be reversed with co-treatment of AhR antagonists as well as antioxidants87,88.  

Coplanar PCBs have been shown to disrupt the endothelial barrier83 and even induce 

endothelial apoptosis89.  PCB 77 can phosphorylate eNOS, leading to formation of 

peroxynitrite (ONOO-) which further increases oxidative stress and formation of 

nitrotyrosine90.  Additionally, previous work in our laboratory has investigated the role of 

caveolae in PCB-induced endothelial dysfunction.  Caveolae are a type of lipid raft found 

in endothelial cells that play a role in signal transduction91.  PCB 77 exposure increased 

the formation of caveolae and caveolin-1 protein levels in endothelial cells and PCB 77 
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was found in the caveolae-rich fraction92.  This data suggest that caveolae could be a 

major entry for PCBs into the endothelial cell which can lead to activation of downstream 

signaling pathways.  Cav-1 has been shown to bind AhR, but deletion of Cav-1 prevents 

upregulation of CYP1A1 and subsequent ROS production as well as preventing 

downstream activation of NFκB92.  Furthermore, PCB 77 phosphorylation of eNOS was 

Cav-1 dependent90.    

1.2.2. Modulation of Polychlorinated biphenyl-induced cardiovascular toxicity 
through nutrition  

 An accumulating body of evidence within the scientific literature implicates the 

role of nutrition in the pathology of atherosclerosis.  While a positive energy intake can 

lead to obesity, an independent risk factor for atherosclerosis93, specific dietary 

compounds can modulate cellular signaling in either pro- or anti-atherogenic ways.  A 

diet rich in polyphenols found in fruits and vegetables as well as fish oil have been 

shown to reduce cardiovascular mortality and reduce the risk of developing 

cardiovascular disease94,95.  Extensive studies have demonstrated omega-3 fatty acids, 

which are a type of polyunsaturated fatty acid (PUFA), to be anti-inflammatory compared 

to saturated and trans fatty acids which tend to increase cardiovascular risk factors 

because of their inflammatory nature96.  Eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) are two omega-3 fatty acids primarily found in fish with 

high anti-inflammatory properties.  A large number of epidemiological studies have 

shown that a diet rich in the consumption of fish or fish oil reduces the risk for 

cardiovascular disease97. 

 Nutrition as a modulator of chronic disease accelerated by environmental 

pollutant exposure is an exciting area within the field98.  A majority of these studies have 

been conducted with PCB being the pollutant studied99.  Epigallocatechin-3-gallate 

(EGCG), a compound found in green tea, reduced PCB 77-induced CYP1A1 

upregulation while reducing the generation of ROS87.  EGCG acts as an AhR antagonist 

by binding to its chaperone protein, hsp90100.  Dietary antioxidants e.g. vitamin E can 

reduce PCB-induced activation of NFκB and its subsequent pro-inflammatory 

signaling88.  

Specifically, our lab has demonstrated that certain polyphenols found in fruits and 

vegetables can attenuate the PCB-induced pro-inflammatory signaling within cultured 

endothelial cells.  Co-treatment with quercetin prevented PCB 77 upregulation of 
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CYP1A1  as well as VCAM-1 and E-selectin101.  Recently, EGCG was shown to protect 

endothelial cells against PCB 126 induced-inflammation by inhibiting AhR and its 

associated proinflammatory signaling while upregulating the antioxidant transcription 

factor, NF-E2-related factor 2 (Nrf2)102.  Nrf2 is a transcription factor that upregulates 

phase II enzymes including glutathione S transferase and NAD(P)H: quinone 

oxidoreductase 1(NQO1)103.  Additional studies from our laboratory provide evidence 

that the type of dietary fat can modulate the level of inflammation104.  Diet enriched with 

linoleic acid, an omega-6 fatty acid, exacerbated expression of adhesion molecules in 

the aorta; however, diet enriched in olive oil attenuated this response104. Other studies 

have examined the role of olestra, a sucrose polyester that is non-absorbable and has 

been shown to decrease the absorption of PCB 77105. Fish oil contains a rich source of 

omega-3 fatty acids including DHA and EPA; oxidized DHA was shown to ameliorate 

PCB 77 induced proinflammatory signaling by upregulating Nrf2-mediated signaling106.  

 Although there is no quick fix to protect against diseases associated with 

exposure to environmental pollutants including coplanar PCBs, there is strong evidence 

for the role of nutrition in providing protection against chronic disease associated with 

environmental toxic insult.  However, additional studies are needed in particular 

epidemiological studies that can demonstrate nutrient protection in human while 

providing recommendations for an effective dose of nutrient(s).  Furthermore, additional 

studies examining the effects of lifestyle modifications including physical activity on the 

outcome of chronic disease related to chemical exposure should be included.  The 

second half of this chapter will describe the cardioprotective properties of exercise 

leading up to the rationale for this dissertation work.  

1.3. Exercise 

Physical activity is defined as “any bodily movement produced by skeletal 

muscles that results in energy expenditure beyond resting expenditure.”  Exercise is a 

subset of physical activity that is planned for the purpose of improving one’s physical 

fitness.  The American College of Sports Medicine defines exercise as “Any and all 

activity involving generation of force by the activated muscles that result in disruption of 

a homeostatic state”107.  Exercise can be classified by the type, intensity, and duration of 

activity.  Endurance exercise reflects extended and continuous periods of contractile 

activity against low resistance compared with  resistance exercise (or strength training) 
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which involves short periods of contractile activity against a high resistance108.   It has 

been shown that protection from cardiovascular disease occurs in those who are 

regularly physically active, however, beginning an exercise program at any age will 

improve cardiovascular health109.  Because daily physical activity is considered to be an 

effective component in preventing cardiovascular disease, most cardiologists prescribe 

physical activity regimens into primary and secondary prevention programs110. Clinical 

trials have demonstrated that patients who have had a cardiac event but undergo 

cardiac rehabilitation will have decreased rates of mortality111–113.   Daily physical aerobic 

activity is considered an effective prescription in preventing one’s risk for cardiovascular 

disease10.  It has been well-established that exercise protects against cardiovascular 

disease, but the complex set of metabolic pathways, hemodynamic effects of exercise 

on vasculature, and the regulation of genetic expression activated by exercise are not 

fully elucidated.  

1.3.1. The Vascular Response during Acute Exercise 

 During resting conditions, the heart provides enough blood or cardiac output to 

sustain basal metabolic needs while central cardiovascular reflex systems maintain 

blood pressure.  Within each tissue, a network of resistance arteries control the amount 

of resistance needed in order to receive adequate blood supply to meet metabolic needs 

of that tissue.  Within the resistance arteries, vascular smooth muscle (VSM) controls the 

level of contraction. VSM are also influenced by sympathetic nerve innervation as well 

as local factors, thus establishing tone and integrating the many inputs that regulate 

constriction114.   

 Initiation of muscle contraction during exercise increases the body’s requirement 

for nutrients and oxygen.  Within the skeletal muscle, vascular control mechanisms work 

in a linear fashion to increase blood flow, which meets this increased metabolic demand.  

Central control processes also lead to a linear increase in heart rate and cardiac output 

to match the needs of the contracting skeletal muscle115.  The increase in cardiac output 

is supplied by an enhanced venous return which is due to a decrease in visceral blood 

flow as well as the phenomenon of the muscle pump116.  The muscle pump refers to the 

compressive effects of muscle contraction on veins within the contracting skeletal 

muscle.  Vascular resistance is the main control mechanism for blood flow during 

exercise, which is controlled at the level of vascular smooth muscle cells in resistance 

arteries of the muscle tissue117.  There are complex interactions between 
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vasoconstricting and vasorelaxing factors in the VSM of resistance arteries in active 

skeletal muscles118. The net effect is that central sympathetic stimulation is 

counterbalanced by an overall decrease in total peripheral resistance of the skeletal 

muscle e.g. even a 5-fold increase in cardiac output during rigorous exercise mildly 

increases mean arterial pressure114.   

 The local control of blood flow during exercise is mediated by the release of 

metabolites from the active muscle, the mechanical stimulation of arteries supplying the 

muscle, vasodilation within the arterial tree, and paracrine signaling from RBCs and 

endothelial cells119.  Changes in intravascular pressure during exercise result in the 

myogenic response.  The myogenic response occurs when arterioles dilate passively 

with increasing pressure until a myogenic constriction occurs (range from 20-120 

mmHg)120.  If pressure continues to increase, the vessel wall will continue to dilate.  

Relaxation of VSM can also occur from capillaries releasing vasodilators locally to 

increase their blood flow120.  An important role of endothelial cells is maintaining vascular 

tone in large and small arteries by releasing vasconstricting mediators (e.g. endothelin-

1) and vasodilating substances (e.g. nitric oxide and prostacyclin).   In a healthy 

individual, the primary effect of endothelial cells appears to be endothelium-dependent 

dilation (EDD) induced by ligands such as Ach and intraluminal flow-mediated dilation 

(FMD) of arteries in response to increased blood flow during exercise121.  The enhanced 

relaxation of VSM during exercise is due to the release of NO from the endothelium.  

ECs experience shear stress from the increase in blood flow during exercise which 

causes NO release from the phosphorylation of eNOS by Akt.  The diffusion of NO from 

the ECs to VSM activates cGMP which induces vasodilation by inhibiting calcium entry 

into the cell122.    

 At the central level, blood flow is controlled by cardiac output and vascular 

resistance via the autonomic nervous system.  Neurons involved in the central control of 

blood flow are from both sympathetic and parasympathetic systems.  Parasympathetic 

control regulates heart rate while sympathetic effects regulate contractility, vascular 

resistance and venous compliance through efferent neurons which innervate the 

vasculature, heart, renal system, and adrenal medulla123.  At maximal exercise, 

vasodilation at the active muscle is centrally controlled to prevent overwhelming the 

heart.  A separate, central control of blood flow is necessary to prevent hypotension 

which could occur from an overly vasodilatory response.   
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1.3.2. Vascular response to chronic exercise  

 It has been shown in multiple animal and human models that chronic exposure to 

physical activity results in improved cardiovascular function through increased maximal 

oxygen consumption, increased maximal cardiac output, and increased blood flow 

capacity in skeletal and cardiac muscle.  In relation to the prevention of cardiovascular 

disease, there is a strong argument that exercise is a natural “anti-atherogenic” activity 

by reducing the risk of certain risk factors including hyperlipidemia, glucose intolerance, 

and obesity. The molecular pathways responsible for the “anti-atherogenic” 

characteristics of physical activity are just beginning to be revealed.  Although chronic 

exposure to exercise can influence the molecular pathways of several organ systems, 

this section will focus on the current findings within the vascular endothelium. 

1.3.3. Exercise Reduces Cardiovascular Risk Factors  

 Over the past thirty years, there has been a rapid increase in caloric intake and 

sedentary lifestyle in developed countries.  As a result of these changes, there has been 

a parallel increase in cardiovascular disease and metabolic disorders including obesity, 

type 2 diabetes, and metabolic syndrome.  A sedentary lifestyle has been shown to be 

an independent risk factor for these metabolic disorders that lead to atherosclerosis and 

cardiovascular disease.124  Pedersen hypothesizes that physical inactivity leads to an 

accumulation of body fat within the viscera that activates proinflammatory signaling 

which promotes the development of these metabolic disorders, described as the “the 

diseasome of physical inactivity.”125  On the other hand there is a plethora of scientific 

evidence demonstrating that physical activity reduces and prevents atherosclerotic risk 

factors as well as the disease itself.  

 1.3.3.1. Metabolic Disorders 

 During the late-Paleolithic era (50,000-10,000 BC), hunter-gatherers or ancestors 

of the human race depended on physical activity to obtain food or survive during hostile 

encounters.  It has been suggested that ancient hunter-gatherers had cycles of feast and 

famine that required large bouts of physical activity to obtain food because the food 

supply was inconsistent.   Thus, it is proposed that the human genome evolved to 

ensure that metabolic advantage for these oscillating conditions.  A thrifty gene adapted 

in order to ensure adequate storage of fuel during times of famine including glycogen 
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conservation and gluconeogenesis while glycogen storage, triglyceride synthesis, and 

carbohydrate oxidation would predominate during times of feast.   These metabolic 

adaptations enabled our ancestors to hunt for food by performing intense bouts of 

physical activity during times of famine.126    Since the late-Paleolithic era, several 

revolutions (Neolithic, industrial, and telecommunication) have led to alterations within 

the human environment.  Since the latter half of the 20th century, a dramatic increase in 

sedentary lifestyle has occurred with television viewing, video gaming and employment 

involving sitting in front of a computer becoming the major activities of society127.  

Furthermore, the food supply is plentiful.  These societal changes (sedentary lifestyle 

and plentiful food supply) have occurred too rapidly for the human genome to adapt.  

The human genome has remained relatively stable since the arrival of Homo sapiens, 

suggesting that our genome was not selected for physical inactivity.128  Based on 

hypotheses from Booth and Chakravarthy, the combination of physical inactivity and 

plentiful food supply has led to metabolic storage disorders since certain metabolic 

genes continue to store fuel with it never being utilized through physical activity126.    

 Scientific evidence suggests that metabolism can be maintained without 

modifying dietary restriction if physical activity is performed to match caloric intake.   

However, when daily steps are reduced for 2-3 weeks in healthy males, insulin 

sensitivity decreases and abdominal fat increases suggesting that calories used to 

maintain muscle mass were partitioned to visceral fat129.  Previous work has shown that 

whole body insulin-sensitivity decreases rapidly in athletes when aerobic training ceases 

or detraining occurs in just 7 days.130  These studies demonstrate the negative metabolic 

consequences when physical activity is removed, which makes exercise appear to be a 

natural regulator of insulin sensitivity.  Wild animals do not exhibit metabolic disorders 

because their physical activity is maintained.  In experimental studies, rodents will 

voluntarily run when placed in a cage with a running wheel; however, when the wheel is 

removed epididymal fat and abdominal fat mass rapidly increase.131  In a separate study, 

cessation of running led to a decrease in insulin sensitivity by reducing expression of the 

insulin receptor and GLUT4 in skeletal muscle.132  Collectively, these studies suggest 

that low physical activity levels can elicit an undesirable metabolic phenotype 

characterized by reduced insulin sensitivity with subsequent increases in body fat and 

triacylglycerol levels that lead to the development of cardiovascular disease. A growing 

body of evidence shows a direct link between newly adopted sedentary activities such 
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as television watching and risk for metabolic and cardiovascular risk factors in both 

adolescents and adults133–135.   

1.3.3.2. Insulin Resistance and Glucose Intolerance 

 Physical activity has been shown to reduce insulin resistance and glucose 

intolerance in numerous studies.  Additionally a review examined 8 studies in patients 

with type II diabetes who underwent an exercise training program between 12-18 

months found that participants lowered their hemoglobin A1c by 0.5-1% on average136.  

The Diabetes Prevention Program has demonstrated the profound effects of exercise 

compared to metformin in reducing the incidence of type II diabetes.  The lifestyle 

intervention which had participants perform 150 minutes of physical activity each week 

over 2.8 years had a 58% reduction in incidence compared to 31% in metformin 

group137.  The Old Order Amish community, which is a conservative Christian sect, has a 

low prevalence of type II diabetes.  Recent studies have attributed this phenomenon to   

the fact that the Old Order Amish maintain a much more physically active lifestyle 

compared to  non-Amish, communities within the United States138,139. 

1.3.3.3. Blood Pressure 

More than 40 randomized controlled trials including 2,674 participants have 

examined the effect of exercise on resting blood pressure140.  The average reduction for 

systolic was 3.4 mmHg and 2.4 mmHg for diastolic.  Vigorous exercise has been shown 

to acutely reduce systolic blood pressure for up to 12 hours141. These studies have not 

found a relationship between training frequency, duration, or intensity with reduction in 

blood pressure, suggesting that there is not a dose response curve for exercise and 

blood pressure; however, exercise may be only therapy needed for mildly hypertensive 

patients142.   

1.3.3.4. Lipoproteins 

 The association between serum cholesterol and CVD is well established within 

the literature, therefore, reductions in serum lipoproteins that promote atherosclerosis 

are thought to be protective and minimize risk.  Low-density lipoprotein (LDL) and 

apolipoprotein B have been correlated with cardiovascular disease and related events 
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while HDL has been correlated with risk reduction.  A meta-analysis of 52 aerobic 

exercise training studies lasting >3 months  demonstrated an average 5.0% reduction in 

LDL-C and a 4.6% increase in HDL-C; however, specific dose response relationships 

could not be established143.  Within the HERITAGE (Health, Risk Factors, Exercise 

Training, and Genetics) study, males with low HDL that participated in 5 months of 

aerobic training demonstrated an increase in HDL (4.9%)144.  Several groups have 

reported increases in HDL (e.g. 0.008 mmol/L per mile of running each week145) with 

moderate intensity exercise training146,147. 

1.3.3.5. Exercise Reduces Atherosclerotic Plaque 

Recently, studies have begun to assess the effect of exercise on the 

development and progression of atherosclerosis in humans.  Measurement of intima-

media thickness (IMT)  of the common carotid artery is a common technique used to 

quantify generalized atherosclerosis148. A meta-analysis reviewing the current literature 

on exercise and carotid intima-media thickness demonstrates that physical inactivity is 

associated with increased carotid IMT149.  Hambrecht et al found that leisure physical 

activity in excess of 1500 kcal/week inhibited the progression of coronary atherosclerotic 

lesions measured by angiography in CAD patients150.  Regression of lesions was 

observed in patients expending greater than 2200 kcal/week.  Similarly, another group 

found a significant regression of coronary atherosclerotic lesions in seven out of 

eighteen patients with angina who followed a 1 year intervention of exercise151.  

Rauramaa et al. conducted a 6 year random controlled trial examining the effect of 

exercise on atherosclerosis through the measurement of carotid artery IMT (intima-

media thickness).  Although the progression of carotid IMT did not differ between the 

control and intervention groups, a subgroup of patients not taking statins had a 40% 

reduction in progression in the exercise group152.  Although these results are promising, 

it should be noted that coronary angiography and IMT measurements do not provide a 

comprehensive measure of atherosclerotic plaque burden.   

Because accurate assessments of coronary plaque composition and plaque 

burden remain a challenge, autopsy studies in animal models of cardiovascular disease 

provide a more thorough portrayal of the development and progression of 

atherosclerosis.  The effect of exercise training on atherosclerosis has been directly 

measured post-mortem in a variety of animal models including monkeys, pigs, rabbits, 
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rats, and mice.  In the majority of studies, regardless of the animal model tested, animals 

in the exercise group develop less aortic and/or coronary atherosclerosis than their 

sedentary counterparts153.  For example,  a long-term exercise study utilizing pigs found 

that 22 months of treadmill exercise reduced diet-induced atherosclerosis in both the 

aorta and coronary arteries approximately 10 fold compared with sedentary animals154.  

However, there have been a few studies reporting discrepancies in results.  Williams et 

al. reported no effect of exercise training on the extent of coronary artery atherosclerosis 

in monkeys, despite improvements in other cardiovascular risk factors including 

improved left ventricular ejection fractions and improved vasodilation of coronary 

arteries155.  A short term exercise study (8 weeks) utilizing pigs reported no change in 

atherosclerosis, however, this could be due to the duration of the study.156    

Mice are increasingly being utilized in atherosclerotic studies due to the 

development of transgenic strains including LDLr-/- and ApoE-/- which develop 

atherosclerosis at an accelerated rate157.  More than twenty published studies have 

examined the effect of exercise training in mouse models of atherosclerosis. Among 

these studies, regardless of exercise intervention utilized (swimming158–163, treadmill 

running164–170, or voluntary running171–177) each of these studies reported a decrease in 

atherosclerosis following exercise.  The implications of each of these studies is profound 

in that numerous mechanisms were identified that show how exercise exerts its 

protective effects.  These potential mechanisms will be discussed below. 

1.3.3.6. Exercise promotes plaque stability 

 Rupture of atherosclerotic plaque leads to acute myocardial infarction and stroke, 

two dramatic clinical events that often lead to mortality.  In order for plaques to rupture, 

they must become vulnerable.  A plaque is defined as vulnerable when the fibrous cap 

thins, the smooth muscle content is low while the lipid core is enlarged (>50% surface 

area), and inflammatory cells have accumulated within the lesion.77  Agents that 

promote plaque stabilization are attractive therapeutic strategies in the prevention of 

cardiovascular events.  In ApoE-/- mice, swimming for six months led to a stabilization of 

plaque as evidenced by decreased macrophage content, increased smooth muscle cell 

content, thicker cap, and lack of adventitia inflammation159.  In another study that utilized 

ApoE-/- mice and treadmill running, plaque stabilization occurred with increased 

collagen content, decreased macrophage and matrix metalloproteinase-2 content, and 
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increased fibrous cap thickness178.  Stabilization of plaque composition through exercise 

is a desirable option as it could lead to a decrease in cardiovascular mortality.    

1.4. Potential Mechanisms of Exercise that Protect Against Atherosclerosis: An 
Implication for the Vascular Endothelium 

 As mentioned above, there is a plethora of clinical and experimental studies that 

provide evidence for the cardiovascular protection that exercise provides.  These 

protective mechanisms include modulating the lipid profile, enhancing carbohydrate 

metabolism and insulin sensitivity, reducing blood pressure, and reducing adipose 

stores.  Chemical signals (e.g. cytokines, metabolites released from muscles, humoral 

factors) and hemodynamic signals acting on the endothelium (e.g. shear stress, blood 

pressure and stretch, circumferential stress) are likely candidates that modify endothelial 

cell (EC) gene expression during bouts of exercise.  There is a growing body of evidence 

that repeated exercise imposes shear stress and stretch on the artery wall can initiate 

altered gene expression in ECs.  A group of exercise physiologists would argue that 

these gene expression changes induced by exercise training are the “normal” human EC 

phenotype from our previous history of being hunters and gatherers124.  This “normal” 

phenotype is crucial to the maintenance of vascular tone, preventing VSM proliferation 

and migration seen in atherosclerosis, inhibiting inflammation, and preventing the pro-

thrombytic state seen in advanced cardiovascular disease179  

1.4.1. Shear Stress 

The endothelium is exposed to hemodynamic forces including shear stress.  

Shear stress is an important stimulus as it has been shown to induce gene expression 

changes involved in NO production, vascular remodeling, and angiogenesis34. The 

increased shear stress at the endothelial surface can result in distortion of the EC 

monolayer likely due to cytoskeleton rearrangement.  Steady laminar but not oscillatory 

flow increases Na-K-Cl co-transporter mRNA in cultured ECs and also increases the 

conductance of K+ and Cl- channels, ultimately leading to vasodilation.180   The authors 

propose that this transporter may act as a flow-sensor by upregulating transcription of 

co-transporter proteins.    Steady rhythmic flow has impacts on the endothelial lipid 

bilayer and increases its fluidity.  Acting as a transducer, lipid components of the 

membrane can discriminate changes in shear which initiates MAPK activation in the cell.  

Prolonged laminar shear stress induced anti-inflammatory gene expression through the 
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activation of Kruppel-like factor 2 and nuclear factor erythroid-2, which induce 

transcription of the antioxidant heme oxygenase 1 and eNOS.181 Other antioxidant genes 

upregulated by laminar shear stress include superoxide dismutase (SOD), glutathione 

peroxidase (GPx)182. 

 Laminar blood flow from exercise regulates the orientation of EC lining the blood 

vessels and influences processes such as angiogenesis.  These signals from shear 

stress move through the cytoskeleton to the intimal region of the basal endothelial 

surface.  Integrins are then phosphorylated and activate a multiple complex of non-

receptor kinases (FAK, c-Src, Shc, paxillin, and p130CAS) which along with their 

adaptor proteins (Grb2, Crk) and guanine nucleotide exchange factors (Sos, C3G) 

activate Ras family.183  Active Ras then activates Mitogen-activated protein kinase 

(MAPK) which results in shear stress-induced upregulation of atheroprotective genes 

that send anti-apoptotic and anti-proliferative signals, by increasing vascular NO 

bioavailability and vascular remodeling184.  In contrast, in regions with low and disturbed 

flow (due to sedentary lifestyle or vessel shape) the atheroprotective genes are 

suppressed while pro-atherogenic genes including c-Jun NH2-terminal kinases are 

upregulated, thus promoting atherosclerosis.185  The vasodilation and platelet inhibition 

of NO and prostacyclin have been studied extensively.  Reduced NO and prostacyclin 

levels can result in endothelial dysfunction, an initiating step in atherosclerosis186.     

1.4.2. Nitric Oxide  

Nitric oxide (NO) is a heterodiatomic free radical generated by oxidation of L-

arginine to L-citrulline by the enzyme, Nitric Oxide Synthase (NOS).  NO has an 

important role in the regulation of vascular tone, the inhibition of platelet aggregation, 

and the control of adhesion molecules187,188.  In vessels with atherosclerotic lesions, 

there is a reduction of NO bioavailability which is associated with vasoconstriction, 

platelet adherence and aggregation, leukocyte adherence to the vascular wall, and 

increased proliferation of VSMC189. NO bioavailability can be indirectly measured by the 

degree of endothelium-dependent dilation (EDD)190–193.  It has been more than 20 years 

since it was described that chronic exercise enhances EDD in canine coronary 

arteries194. This phenomenon has been confirmed many times in a variety of clinical and 

experimental models (reviewed in 195).  

Exercise training, especially aerobic training, has been shown to improve 

impaired EDD suggesting an increased bioavailability of NO.  Regular exercise has also 
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been shown to improve endothelial function in patients with CAD196,197 as well as heart 

failure198.  Specifically a 4 week aerobic exercise intervention improved EDD by 54% in 

patients with CAD199.  An important study by Hambrecht reported that exercise increased 

eNOS mRNA expression 2-fold with a 3.2 increase in phosphorylation of eNOS on 

serine 1177 residue after 4 weeks of regular exercise training in CAD patients150.  This 

study suggests that exercise led to an increase in enzymatic activity of eNOS and 

increased bioavailability of NO since EDD improved.190 

The increase bioavailability of NO from exercise could result from increased 

expression of eNOS or prevented degradation of NO by reduction of ROS.  Studies 

utilizing cultured endothelial cells suggest that shear stress increases eNOS expression 

and activity200,201.  Further evidence for the role of NO in exercise capacity was 

discovered in studies utilizing eNOS-/- mice.  Running capacity in eNOS-/- is diminished 

(50-60% less) than age-matched controls202.  Other studies have shown that the 

beneficial effects of exercise are negated when one allele is knocked out, suggesting 

that full eNOS expression is required203,204.  Additionally, regular exercise has been 

shown to increase the antioxidant defenses, thus reducing NO degradation192.  

Production of NO by the endothelium can influence expression of antioxidant enzymes 

and cellular inflammation in vascular tissue.200  This increase in expression of antioxidant 

enzymes including superoxide dismutase and glutathione peroxidase, could reduce the 

NO degradation by reducing the levels of ROS.  This increase in antioxidant enzymes 

and eNOS seems to result from repetitive exposure to increased laminar shear stress 

during acute bouts of training114.  In summary, regular exercise increases blood flow and 

subsequent shear stress which improves NO bioavailability and increases EDD.   

1.4.3. Exercise Reduces Expression of Cellular Adhesion Molecules 

 The activation of endothelial cells by cytokines, oxidized LDL, and ROS can 

induce the endothelial expression of cellular adhesion molecules including ICAM-1, 

VCAM-1, E-selectin, and P-selectin which play a major role in the recruitment of 

leukocytes to the vessel wall2.  These molecules can be measured in the circulation as 

soluble adhesion molecules since they are released into the bloodstream and are 

considered to be important markers of endothelial cell dysfunction and inflammation205.  

In cardiac patients, a 2 week exercise training intervention led to reduced circulating 

levels of ICAM-1206.  In patients with heart failure, a 12 week exercise training program 

decreased the circulating levels of soluble ICAM-1, VCAM-1207, while a 20 week aerobic 
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exercise training program decreased circulating levels of  P-selectin208.  Animal 

experiments support this finding as well. Rabbits underwent exercise training on a 

treadmill, 5 days per week for 8 weeks and had a significant decrease in circulating 

levels of P-selectin and VCAM-1209.  By reducing soluble adhesion molecule expression 

most likely due to changes in shear stress and downregulation of other proinflammatory 

cytokines, exercise training may be considered an effective non-pharmacological 

intervention to reduce endothelial adhesiveness.  

1.4.4. Endothelial Progenitor Cells 

 Endothelial function is dependent on the endothelium’s ability to repair after 

injury.  Endothelial progenitor cells (EPC) are circulating bone marrow-derived stem cells 

that have the capability to differentiate into mature endothelial cells210.  EPC are 

mobilized from the bone marrow into general circulation to assist in regeneration of 

damaged endothelium211.   Exercise training has been considered one of the most 

effective interventions in stimulating EPCs from bone marrow212.  In human studies, both 

healthy and CAD patients have increased the number of circulating EPCs after an 

exercise intervention.  A 280% increase in circulating EPCs was reported in one 

study213.  In an ApoE-/- model, it was found that exercise increased circulating levels of 

EPCs as well172.  Current literature supports exercise as an effective therapy in 

enhancing endothelial regenerative capacity.  

1.4.5. Exercise is Anti-inflammatory 

 Atherosclerosis is recognized as a chronic inflammatory disorder.  Because 

systemic markers of inflammation are elevated in the plasma in atherosclerosis, 

reducing their levels through exercise or another pharmaceutical therapies (e.g. statins) 

may be of interest in treating disease.  The pathogenesis of atherosclerosis involves 

several cytokines including IL-1, -4, -6, -8, -10) and macrophage-associated cytokines 

including TNF-a, IFN-y, and colony stimulating factors214.  Cytokines are further 

categorized into pro-inflammatory or anti-inflammatory.  The pro-inflammatory cytokines 

have several roles including the induction of other cytokines and chemokines, the 

expression of adhesion molecules on EC, the stimulation of cell proliferation and 

differentiation, the release of matrix-degrading enzymes, and the regulation of the acute-

phase reaction214.  Anti-inflammatory cytokines inhibit pro-inflammatory responses, thus 

having an atheroprotective role.   
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The anti-inflammatory effect of exercise has been well-established in human and animal 

models (reviewed in215).  During acute exercise, skeletal muscle releases IL-6 which 

recruits IL-10 and other anti-inflammatory mediators while proinflammatory cytokines 

such as IL-1 and TNF-a are not increased216. Several studies have demonstrated 

chronic exercise training reduces vascular wall inflammation while increasing levels of 

IL-10, and reducing levels of proinflammatory cytokines217–220.  Consistent with these 

findings, another study reported a 58% reduction in the production of the pro-

inflammatory cytokines IFN-y, TNF-a, and IL-1B  in cultured mononuclear cells as well 

as circulating levels of CRP from patients who underwent a 6 month intervention of 

exercise training221.  

 C-reactive protein is an acute phase protein produced by the liver in response to 

inflammatory cytokines including IL-6222.  CRP is a biomarker used by clinicians to 

indicate a person’s chronic vascular inflammation223.  There is evidence that CRP is a 

proinflammatory mediator that contributes to atherosclerosis by increasing LDL uptake 

by macrophages224, increased expression of MCP-1 and cellular adhesion molecules225, 

and decreased production of NO by endothelial cells226. Several prospective studies 

have examined the effects of exercise training on CRP level and suggest an anti-

inflammatory effect; however, none of these studies were RCTs.  In a RCT study, 101 

patients with stable CAD were assigned to percutaneous intervention with a stent or to 

aerobic exercise training.  After 24 months of training, there was a 41% reduction in CRP 

levels217.  These results were independent from statin therapy In a different study, 

patients underwent 7 weeks of aerobic physical activity, but the 17.4% reduction in CRP 

failed to reach statistical significance227.  These studies suggest that duration of 

intervention is important to the reduction of inflammation.  It has been suggested that 

exercise reduces CRP levels because of its overall effect on cytokine production 

(primarily reductions in IL-1 and TNFa228).  Additionally, reductions in obesity lead to a 

decrease in adipocyte production of proinflammatory cytokines229.  The decreased 

production of cytokines in other tissues could be a potential mechanism as well.   

1.4.6. Exercise Increases the Antioxidant Defense System 

Under physiological conditions, ROS is removed by the cellular antioxidant 

systems which include antioxidant vitamins, protein and non-protein thiols, and 

antioxidant enzymes.  Acute aerobic and anaerobic exercise increase vascular oxidative 

stress and damage cellular proteins, lipids, and nucleic acids.  In 1982, Davies et al. 
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demonstrated that rat skeletal muscle produced free radical after exhaustive exercise230.  

A small study of Tour de France participants were found to have tissue damage induced 

by xanthine oxidase (XO) from exhaustive exercise231.  This data was confirmed in 

marathon runners and demonstrates that XO is a source of free radicals during aerobic 

exercise.  Although high levels of oxidative stress are damaging to cellular function, 

“mild” levels of oxidative stress such as those produced during endurance exercise, may 

be beneficial for cellular adaptation.  Low to moderate amounts of ROS produced during 

endurance exercise may be described as a “hormesis,” which is characterized by a 

dose-response relationship in which a low dose is stimulatory and a high dose is 

inhibitory232.  In this context, free radicals can be seen as beneficial since they act as 

signals to increase the antioxidative and defense systems.   

Animals exposed to chronic training show less oxidative damage after exhaustive 

exercise compared to trained animals.  This protection occurs because endogenous 

antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase, 

and gamma-glutamylcysteine synthetase (GCS) are upregulated233.  Another study in 

Yucatan miniature pigs reported upregulation of SOD1 in the aortic endothelium 

following exercise training234.  In a study with C57Bl/6 mice , 3 weeks of exercise training 

had a 3-fold increase in SOD-3192.      Upregulation of vascular SOD by exercise 

provides an efficient way to detoxify superoxide and reduces the generation of 

peroxynitrite, a potent ROS formed from NO and superoxide184.  A recent clinical trial 

examined the effects of exercise training in male patients with stable CAD.  This study 

found a significant reduction in NADPH oxidase which is a ROS-producing enzyme.  

These changes in gene expression were accompanied with a reduced generation of 

ROS and an improvement in EDD.  These results suggest that exercise training 

increases vascular levels of eNOS and SOD1 while decreasing levels of pro-oxidant 

enzymes including NOX235.  Exercise training initially increases levels of oxidative stress 

but contributes to beneficial changes in vascular gene expression observed after several 

weeks of exercise training.   

There is a growing body of evidence that antioxidant supplementation prevents 

the hormesis effect of aerobic exercise.  In 1971, it was reported that vitamin E reduced 

athletic performance in swimmers236.  In triathletes receiving antioxidant supplementation 

of coenzyme Q10, Vitamin C and E, there were no improvements on maximal oxygen 

uptake, muscle fatigue, or muscle energy metabolism237.  In runners receiving Vitamin C 

supplementation, delayed muscle onset soreness (DOMS) persisted failed to decrease 
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the recovery process238.  Within marathon runners, supplementation of Vitamin C 

decreased improvements in running capacity239.   In a study utilizing LDLr-/- mice, 

supplementation with Vitamin E prevented the beneficial effects of exercise by 

preventing upregulation of catalase and eNOS which led to increased atherosclerotic 

lesions167.  These studies indicate that ROS generated by exercise signal to increase the 

expression and activity of antioxidant enzymes.  Furthermore, supplementation with 

antioxidants has been shown to blunt these cellular adaptations.  Because ROS 

generated from exercise leads to these adaptations, exercise can be considered as an 

antioxidant.  

1.4.7. Nuclear factor erythroid 2-related factor 2 (Nrf2)  

Oxidative stress has been implicated in the development of atherosclerosis, 

particularly within endothelial cells240.  While the use of direct antioxidant 

supplementation has been largely unsuccessful in reducing cardiovascular 

mortality241,242, physical activity or bioactive metabolites that activate the antioxidant 

response within the cell may be a non-invasive strategy for protecting against 

cardiovascular disease.  Nuclear factor erythroid 2-related factor 2 (Nrf2) is a 

transcription factor that responds to increased oxidative stress within the cell.  Nrf2 binds 

to cis-enhance sequence known as antioxidant-response elements (AREs) in the 

promoters of target genes243. Target genes for Nrf2 include a diverse set of antioxidant 

enzymes and cytoprotective genes and such as heme oxygenase 1 (HO-1), 

NAD(P)H:quinone oxidoreductase-1 (NQO1), thioredoxin, glutathione metabolism genes 

including  glutathione peroxidase 2 (Gpx2), glutathione S-transferases (GSTs), as well 

as genes involved in cell survival244.  

Under normal physiological conditions, Nrf2 is located in the cytosol and kept 

dormant by the inhibitory protein, Kelch-like ECH-associated protein 1 (Keap 1), which is 

a substrate adaptor protein that associates with cullin3 to form a functional E3 ubiquitin 

ligase complex, which targets Nrf2 for ubiquitination at the proteasome245.  In response 

to oxidative stress or other inducers, Nrf2 dissociates from Keap1, translocates to the 

nucleus, and binds to antioxidant-response elements (AREs) in the promoter region of 

target genes.  Known Nrf2 inducers include flavonoids (e.g. epigallocatechin gallate and 

quercetin), stilbenes (e.g. resveratrol and piceatannol), diferuloylmethanes (e.g. 

curcumin) and organosulfur compounds (e.g. allilcin and diallyl trisulfide) which are 

considered “xenohormetic” phytochemicals246.  
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Nrf2 activation can provide protection against a variety of chemical insults.  Nrf2 

activation has been considered in chemoprevention because electrophilic insult by 

environmental carcinogenesis is a hallmark of initiation of cancer.  Zerumbone, a 

sesquiterpene derived from tropical ginger and activator of Nrf2, suppressed chemically 

induced papilloma formation in mouse skin247.  Another class of electrophilic 

phytochemicals include isothiocyanates such as sulforaphane, which has been shown to 

strongly induce carcinogen detoxifying enzymes through activation of Nrf2248.  

Nrf2 signaling is recognized as an adaptive response to environmental stressors, 

thus it can provide protection against a variety of toxicants including persistent organic 

pollutants.  PCB exposure leads to proinflammatory signaling which is mediated by 

increased cellular levels of ROS83 and can be exacerbated by glutathione depletion89.   

Because Nrf2 activation upregulates several genes involved in glutathione metabolism 

including gamma-glutamylcysteine synthetase, Nrf2 activation might provide protection 

from PCB and its deleterious effects on the vasculature.  Previous studies from our 

laboratory have shown a reduction in proinflammatory signaling when endothelial cells102 

or C57BL/6 mice249 were exposed to EGCG, a known Nrf2 inducer.  Oxidized DHA 

prevents pro-inflammatory signaling in endothelial cells exposed to PCB77 due to Nrf2 

activation and induction of NQO1, a downstream target106.   Additionally, PCB 

metabolism often produces toxic quinones.  NQO1, a downstream target of Nrf2, could 

provide protection from PCB toxicity by detoxifying quinone metabolites250.   

Although high levels of oxidative stress are damaging to cellular function, “mild” 

levels of oxidative stress such as those produced during endurance exercise, may be 

beneficial for cellular adaptation.  In fact, when redox signaling is blunted through 

exogenous antioxidant supplementation, many beneficial exercise adaptations including 

lesion regression167  are blunted239.  Low to moderate amounts of ROS produced during 

endurance exercise are a part of “hormesis”, or a generally favorable biological response 

to low exposure to toxins and other stressors.  Exercise results in increased levels of 

oxidative stress, thus upregulating antioxidant enzymes in various tissues (described 

above), including GSH.  In response to exercise-induced oxidative stress, Nrf2 

dissociates from Keap1 and translocates to the nucleus, and binds to antioxidant 

response elemends (AREs).  There is a growing body of literature suggesting that Nrf2 

activation occurs during exercise251–254.  Research from animal studies have shown a 

56% increase in Nrf2 expression in mice after an acute bout of swimming255.  Nrf2 levels 

increased 5-fold in skeletal muscle cells of trained male cyclists after an acute bout of 
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cycling256.  Moderate intensity exercise in aged C57BL/6 mice led to increased 

expression of several Nrf2 target genes including GST, GCLC, HO-1, and NQO1 in heart 

tissue suggesting that moderate exercise training can prevent some of the age-induced 

ROS that leads to heart disease252. In a recent study, Nrf2-/- mice had increased levels 

of ROS in cardiac tissue that were not reversed with exercise training.  The authors 

suggest that disruption of Nrf2 increased the heart’s vulnerability to oxidative damage 

thus increasing risk for cardiovascular diseases257.  

Since atherosclerosis is a low-grade inflammatory disorder characterized by 

increased levels of oxidative stress2, Nrf2 has recently been explored as a 

pharmacological target in cardiovascular disease.  Several studies have demonstrated in 

cultured endothelial cells exposed to laminar shear stress, an activation of Nrf2 and 

subsequent upregulation of its target  genes, which was implicated to be the cause for 

reduction in atheroma in these areas of “atheroprotective” flow.103,258–261  Overexpression 

of Nrf2 in endothelial cells prevented ROS-induced cytotoxicity and MCP-1 

upregulation262.  Nrf2 activation by pharmacological agents such as phytochemicals and 

now endurance exercise, are emerging as promising therapies to reduce cardiovascular 

disease.   
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1.5 Scope of Dissertation 

1.5.1. Aims of dissertation   

The main purpose of this project was to determine if voluntary exercise could 

protect against polychlorinated biphenyl-induced cardiovascular disease.  The 

secondary purpose of this project was to evaluate the mechanism of protection by 

assessing the role of nitric oxide and Nrf2-mediated signaling pathways.  

1.5.2. Rationale  

PCB exposure is associated with hyperlipidemia, type II diabetes, obesity, 

hypertension and cardiovascular mortality.  It has become well-established that 

individuals who engage in regular exercise have a reduced risk of developing chronic 

disease including atherosclerosis.  Exercise is considered a ‘natural” anti-atherogenic 

activity because it prevents atherosclerotic plaque development, decreases inflammation 

and adiposity, reduces hypertension, improves insulin sensitivity, and preserves 

endothelial function.  Previous findings in our laboratory have positioned nutrition as a 

non-invasive therapy against polychlorinated biphenyl exposure within the vascular 

endothelium.   Administration of EGCG, a catechin found in green tea, upregulates the 

antioxidant response through a Nrf2-dependent mechanism.  Signaling pathways that 

are modulated through nutrition intervention are also upregulated during exercise.  

However, no one has yet examined whether exercise could protect against PCB-induced 

cardiovascular disease. Furthermore, no studies have examined whether those who 

engage in regular physical activity have lower body burdens of PCBs and other 

persistent organic pollutants.   

Determining the effects of exercise on PCB exposure will provide insight into 

signaling pathways mediated by exercise within the vascular endothelium.  Additionally, 

these findings could encourage humans to remain or become physically active in order 

to prevent the deleterious effects of pollutant exposure.  Physicians and registered 

dietitians maybe more likely to recommend exercise regimens to their patient at high risk 

for environmental pollutant exposure as more studies reveal the link between 

environmental exposure and chronic disease.   
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1.5.3. Hypothesis and Specific Aims:  

In the following studies, we have selected PCB 77 as an example of a coplanar 

PCB that exhibits dioxin-like activity.  The general hypothesis of the research described 

in this dissertation is that exercise will protect against PCB-induced cardiovascular 

disease Furthermore, we hypothesized that this mechanism of protection is mediated 

within the vascular endothelium through an increase in bioavailability of nitric oxide. To 

test these hypotheses the specific aims were proposed:  

:  

 
Specific Aim 1: To define PCB-induced cardiovascular disease and to 

demonstrate that exercise protects against this pathology.  

 
Specific Aim 2: To demonstrate that PCB toxicity leads to endothelial cell 

dysfunction and that exercise prevents endothelial dysfunction through NO 

signaling and redox status.   
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Figure 1.1. Structure and nomenclature of polychlorinated biphenyls. 

A) A biphenyl molecule showing the numbering and substitution (ortho, meta, para) 

system that consists of 209 congeners.  

B) Specific structure of PCB77 (3, 3’, 4, 4’-tetrachlorobiphenyl) that is studied 

throughout this dissertation.  
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Chapter 2: Effect of exercise on PCB 77-induced toxicity in LDL-R-/- mice 
fed a high-fat diet 

2.1 Synopsis 

 Atherosclerosis, the primary cause of heart disease and stroke, is initiated at the 

vascular endothelium; and risk factors include exposure to environmental pollutants.   

Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that promote 

proinflammatory signaling in the vascular endothelium.  Previous work in our laboratory 

has examined the potential role of nutrition in modulating the toxicity of PCBs in vascular 

endothelial cells.   It has been well-established that exercise can reduce the risk of 

cardiovascular disease; however, it has not been examined whether or not exercise can 

modulate PCB-induced cardiovascular inflammation and dysfunction.  In the current 

study, LDLr-/- mice were fed a Western diet (42% fat, 0.02% cholesterol) for 12 weeks to 

promote an atherogenic phenotype and were divided into sedentary and exercise groups 

at week 4.  Mice in the exercise group were individually housed with a running wheel 

while their sedentary counterparts were individually housed with no wheel.  The mice 

were further divided into two groups which were intraperitoneally injected with PCB77 at 

a dose of 170 µM/kg mouse or safflower oil vehicle during weeks 6, 8, 10, and 12.  The 

major finding of this study was that 8 weeks of voluntary exercise led to a reduction in 

plasma and hepatic cholesterol levels in PCB 77-treated animals as well as a trend 

towards reduction in atherosclerotic lesions. A surprising finding was that exercise 

appears to accelerate the inflammatory response in PCB-treated animals and increases 

liver: body weight ratio suggesting that exercise may accelerate PCB toxicity.  Results 

from this study  suggest that exercise has minimal effects on PCB-induced vascular 

dysfunction using the LDL-R-/- mouse model. 

2.2. Introduction 

Cardiovascular disease remains the leading cause of death the in developed 

world.  Atherosclerosis is complex disease characterized by chronic low-grade 

inflammation within the vascular wall2.  Mouse models of atherosclerosis provide useful 

tools for studying the development and progression of this disease157.  Low density 

lipoprotein receptor-deficient (LDLr-/-) mice are a model of familial hypercholesterolemia 

with plasma lipoprotein levels mimicking that of humans263.  There is an accumulating 
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body of evidence that exposure to environmental pollution (e.g. polychlorinated 

biphenyls (PCBs) is linked to the development of cardiovascular disease.  For example, 

workers exposed to phenoxy herbicides and PCBs in waste transformer oil had a much 

higher incidence of cardiovascular mortality264.  Yusho patients whom accidentally 

ingested contaminated rice-bran oil had elevated levels of triglycerides and plasma 

cholesterol, which are risk factors for CVD.  A major route of PCB exposure for humans 

is dietary intake of contaminated food primarily from animal sources265. 

Research from our laboratory and others have shown that PCBs initiate 

endothelial dysfunction, which is characterized by increased permeability, upregulation 

cytokines and cellular adhesion molecules which recruit blood mononuclear cells, 

proinflammatory signaling, and a decreased bioavailability of nitric oxide (NO)266.  

Endothelial dysfunction is an independent risk factor for cardiovascular disease27.  

Coplanar PCBs (e.g. PCB 77) bind to the aryl hydrocarbon receptor (AhR) which is a 

transcription factor that binds to xenobiotic response elements (XREs) within the 

promoters of downstream target genes66.  Target genes of the AhR include cytochrome 

P450 1A1 (CYP1A1), a phase I enzyme that becomes uncoupled during the metabolism 

of coplanar PCBs68, thus producing oxidative stress within the endothelium and 

subsequent endothelial dysfunction267.   

 Research from our laboratory and other groups has shown that nutrition can 

modulate the toxicity of coplanar PCBs86,87,102,104,106,249.  Specifically, our lab has 

demonstrated that certain polyphenols found in fruits and vegetables including 

quercetin101 and EGCG102 can attenuate PCB-induced pro-inflammatory signaling within 

cultured endothelial cells.  Diets high in polyphenols are associated with a reduction in 

cardiovascular mortality268.  In addition to diet, it has been highly documented that 

exercise is an effective prevention against cardiovascular disease.  The American Heart 

Association publishes guidelines for prescribing exercise as primary and secondary 

interventions in patients with CVD10.  Exercise improves traditional risk factors of CVD 

including hyperlipidemia144, hypertension142, adiposity269, inflammation152, and endothelial 

function174.  In LDLr-/- mice, treadmill running for 12 weeks led to a regression of the 

disease166.    

By using LDLr-/- mice, a well-documented model of atherosclerosis, we studied 

the relationship between exercise and PCB 77 exposure.  We chose a voluntary running 

model to reduce potential stress of forced activity and the C57BL/6 background 

possesses a high capacity for nocturnal running activity270.  Our results indicate that 
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exercise may protect against PCB 77-induced CVD by reducing atherosclerosis and 

adiposity. Exercise failed to reduce PCB 77-associated risk factors of CVD including 

hypertension, elevated LDL levels, and inflammation.  Additionally, exercise further 

upregulated CYP1A1 in PCB 77 exposed animals suggesting enhanced exposure to 

PCBs as evidenced by higher plasma levels.   

2.3. Materials and Methods 

2.3.1. Chemicals 

PCB77 was purchased from Accustandard, Inc. (New Haven, CT).    Tocopherol-

stripped safflower oil (vehicle) was obtained from Dyets (Bethlehem, PA). Reverse 

transcriptase reagents were purchased from Fisher Scientific (Waltham, MA).  Reagents 

used for mRNA isolation and qPCR were purchased from Life Technologies (Grand 

Island, NY). 

2.3.2 Animal treatment 

All experimental procedures were approved by the Animal Care and Use 

Committee of the University of Kentucky. Animals were treated humanely with regard for 

alleviation of pain. Male LDLr-/- mice (2 months of age, The Jackson Laboratory, Bar 

Harbor, ME) were given ad libitum access to food and water and housed in a pathogen-

free environment with a 12 h light: 12 h dark cycle for 12 weeks.  Mice were fed the 

Western Diet (Harlan TD.88137) for the length of the study.  The Western diet is a 

purified diet wit 21% anhydrous milkfat (butterfat), 34% sucrose, and 0.2% cholesterol.  

Body weight was measured weekly.  Mice were administered vehicle (tocopherol-

stripped safflower oil, 0.2 mL)), or PCB-77 (170 µM/kg) by intraperitoneal injection as 

separate doses during weeks 6, 8, 10, and 12.  IP injection administers PCB 77 directly 

into the peritoneal cavity, thus bypassing potential gut microbiome and intestional 

absorption effects.  At the study end point, mice were euthanized with CO2 and 

exsanguinated.  Mice were not fasted before euthanasia.  Ethylenediaminetetraacetic 

acid (EDTA) was added to collected blood samples, briefly mixed, and centrifuged at 

5000g for 5 min at 4o C to separate plasma.  Plasma and tissue samples were frozen in 

liquid nitrogen and stored at -80 o C.   
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2.3.3. Exercise Protocol 

Our model of exercise was the widely used voluntary running-wheel model, 

previously described271.  Each mouse randomized to exercise was placed in a modified 

cage with wheel attached to a magnetic sensing mechanism.  This allowed the running 

activity of each mouse to be tracked by a computer, from which the corresponding 

distance, speed, and amount of time spent running were obtained via ClockLab software 

(Actimetrics, Wilmette, IL).  The bout threshold was set at 20 rotations/min to measure 

activity.  This meant that any time the mouse was on the wheel and the rate of rotation 

exceeded 20 r/min the data were included in the analysis.  Exercise was completely 

voluntary; mice were not forced in any way to exercise.  The mice predominantly ran at 

night for a total of 8 weeks. Individually caged sedentary controls were handled for the 

same procedures and amount of time as the exercised mice.     

2.3.4. Echo Magnetic Resonance Imaging 

Fat mass and lean body mass were measured during week 12 by an echo 

nuclear magnetic resonance imaging system (Echo-MRI; Echo Medical Systems, 

Houston, TX, USA).  This system uses the distinct resonance frequency of protons in 

lipid and water to determine body mass.  This system was available through the support 

of the Center of Obesity and Cardiovascular Disease (COCVD) Center for Biomedical 

Research Excellence (COBRE) grant from the National Institute of General Medical 

Sciences (8 P20 GM103527-05) of the National Institutes of Health. 

2.3.5. Quantification of PCBs 

  Tissue samples and serum were flash frozen and stored at -80C until analysis.   

For the separation of analytes, we used a fully automated Dionex ASE 200 system 

(Dionex Corporation, Sunnyvale, CA) for assisted solvent extraction and gel permeability 

chromatography/mass spectrometry.  Hexane is pumped into the top of an 

electrochemical detection cell, which contains the sample and any in-cell cleanup 

options.  The cell is brought to elevated pressure and temperature, and then the extract 

is forced out of the bottom of the cell and collected in a vial for additional cleanup if 

necessary.  Detection was performed with two microelectron capture detectors; we used 

Chemstation software (Agilent, Palo Alto, CA) to run the system and interpret the 

chromatograms.  An external standard mixture of PCBs, at known concentrations was 
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used to test for recovery of the extraction and quantification of PCBs.  The limits for 

detection for PCBs were 0.1 ng/g of tissue (or 0.05 ppm), with coefficient of variability 

<3.5% and accuracy (error <1.5%).  

2.3.6. Plasma cholesterol measurement 

 Plasma cholesterol concentrations were measured using an enzymatic kit (Wako 

Chemicals USA, Richmond, VA, USA).  Plasma lipoprotein distribution (n=6) was 

resolved by fast performance liquid chromatography.  Eluted fractions of samples from 

individual mice were collected and measured to determine lipoprotein cholesterol 

distribution.  Lipoprotein cholesterol distribution of very low density (VLDL), low density 

(LDL), and high density lipoproteins (HDL) was analyzed using Peak-Fit Software 4.1 

version (Seasolve Software Inc., San Jose, CA, USA).   

2.3.7. Liver cholesterol measurement 

Liver cholesterol was measured as previously described272.  Briefly, livers were 

homogenized in Krebs-Ringer Solution through repeated low speed sonication for 30 

seconds, 10 times.  Liver cholesterol concentrations were measured using the enzymatic 

kit described above.  Data are expressed as cholesterol per mg wet tissue weight. 

2.3.8. Blood pressure  

Systolic blood pressure was measured using a non-invasive tail cuff method 

(Kent Scientific) as described previously273.  Briefly, mice were measured on a heated 

platform at the same time of day for five consecutive days.  Twenty measurements for 

each mouse were obtained each day.   

2.3.9 Quantification of atherosclerosis  

Frozen aortic root tissues from mice in each treatment group were sequentially 

sectioned from the origin of the aortic values to the region in the ascending aortic arch.  

In our studies, we cut 10 um frozen sections of the aortic root.  Nine tissue sections of 

aortic sinus at 80 µm intervals were placed on a single slide.  This creates serial sections 

from the entire aortic root. Lesions were then stained with oil red O and quantified by 

image analysis software (Image Pro, version 7.)  We orientated the section relative to 
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the disappearance of the aortic valve cusps and represented the lesion throughout the 

root274.   

2.3.10. Quantification of plasma components 

For cytokine and chemokine measurement, blood samples were collected from 

anesthetized mice by right ventricular puncture. Clotted blood was treated with EDTA 

and spun at 1,200 g for 5 minutes, and the plasma was obtained and flash frozen and 

stored at -80C.  At analysis, all samples were thawed and multiple cytokines were 

measured simultaneously by using an 18-plex kit (Millipore, St. Charles, MO) by 

following the manufacturer’s instructions.    

2.3.11. Quantification of mRNA using RT-PCR.  

Total RNA was extracted from tissues using the TRIZOL reagent (Invitrogen Life 

Technologies, Carlsbad, CA) according to the manufacturer’s protocol.  Reverse 

transcription was performed using the AMV reverse transcription system (Promega, 

Madison, WI). The levels of mRNA expression were then assessed by RT-PCR using 

7300 Real Time PCR System (Applied Biosystems, Foster City, CA) and SYBR Green 

master mix (Applied Biosystems). Data analysis was performed using the relative 

quantification method (ΔΔCt), in which relative mRNA expression for target mRNAs (i.e., 

VCAM-1 and MCP-1) was compared to a constitutively expressed gene (i.e., β-actin) in 

the mRNA samples from tissues. β-Actin, CYP1A1, and catalase primer sequences for 

SYBR Green chemistry were designed using the Primer Express Software 3.0 for RT-

PCR (Applied Biosystems) and synthesized by Integrated DNA Technologies, Inc. 

(Coralville, IA). β-actin sequences were Forward: TGTCCACCTTCCAGCAGATGT, 

Reverse: GCTCAGTAACAGTCCGCCTAGAA; CYP1A1: Forward: 

TGGAGCTTCCCCGATCCT, Reverse: CATACATGGCATGATCTAGGT. 

2.3.12. Statistical analysis 

Data are represented as mean ± SEM. Two-way ANOVA was used, followed by 

a post-hoc Tukey’s test to measure differences using SigmaPlot (version 12) software.  

A student’s t-test was performed to measure differences among PCB concentrations 

between sedentary and exercise groups.  Differences with a value of p<0.05 were 

considered statistically significant.  
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2.4 Results  

2.4.1. Exercise decreases body weight and fat mass in PCB 77-treated animals 

All mice were weighted weekly throughout the study.  At baseline, there were no 

statistical differences among groups.  During the first week, all mice were switched to the 

Western diet and statistical differences were noted among groups (control, exercise 

versus PCB, exercise; p<0.05) after the first week even though no exercise or PCBs had 

been administered.  These trends continued for weeks 2-3 with additional groups being 

significantly different from each other (vehicle control, exercise compared to vehicle 

control sedentary; p<0.05).  At the beginning of week 4, half of the mice began the 

voluntary wheel intervention.  Mice from the control exercise group weighed significantly 

more than other groups (p<0.05) which could be attributed to an increase in lean body 

mass as Echo-MRI revealed.  This trend continued through week 6.  At week 6, mice 

were dosed with 170 µM/kg of PCB 77 or vehicle.    At week 7, all groups lost weight 

most likely due to the intraperitoneal injection; however, there were no statistical 

differences noted among groups suggesting that the injection itself and not the 

administration of PCB 77 led to weight loss. During the 8th week, all groups gained 

weight suggesting recovery from the injection with no statistical differences among 

groups noted.  Another injection was given at week 8 with no observed weight loss.  At 

week 9 exercise groups continued to gain weight with the vehicle control having a 

significant weight gain compared to PCB77-treated, exercised animals (p<0.05).  At 

week 10, all groups continued to gain weight with no statistical differences among each 

other.  During week 10, another injection was administered.  Both groups treated with 

PCB77 lost weight during this week with significant differences between vehicle control, 

exercised mice noted (p<0.05).     This trend continued through week 12 with vehicle 

control, exercise group weighing significantly more than PCB-exercise group and 

sedentary groups (p<0.05).  During week 12, an additional dose of 170 µM/kg PCB 77 or 

vehicle was administered.  At the conclusion of the study, vehicle control exercise mice 

weighed significantly more than PCB 77-treated exercise mice and sedentary groups.   

Body weight was quite varied throughout the study suggesting potential confounders 

including Western diet and intraperitoneal injection.  It should be noted that 3 mice in the 

PCB, sedentary group died during the experiment. Autopsy revealed inflammation 

around surrounding peritoneal injection.   Exercise may have protected the PCB 77 

group since no deaths occurred in this group during the study.  
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Body composition was measured using an Echo-MRI system during week 12 of 

the study.  Two-way ANOVA revealed a statistical interaction between PCB77 and 

exercise.  A significant increase in lean mass was found among the exercise groups 

(p<0.001, Figure 2-2A).    Among the exercise groups, mice treated with PCB 77 had 

significantly less fat mass (p<0.001) Figure 2-2B).  Compared to sedentary animals, 

animals exposed to voluntary wheel running and PCB 77 had significantly less fat mass 

as well (p<0.05).  

2.4.2. Exercise increases liver size relative to body weight in PCB77-treated mice 

Liver weights were weighed at the conclusion of the study.  Statistical differences 

were not found among liver weights in different groups; however, when liver size was 

normalized to body weight, a significant difference was found between PCB77-treated 

mice who exercised compared to vehicle control, exercised animals as well as 

sedentary, PCB77-treated mice (p<0.05, Figure 2-3).   

2.4.3. Running activity 

After 4 weeks, 12 week-old male LDLr-/- mice were divided into 2 groups: 

sedentary and exercise.  Wheel-running activity was monitored continuously during the 

entire 8 weeks of the exercise intervention.  The results in Figure 2-3 show that control 

mice ran approximately 7.2 km/day compared to 6.99 km/day for PCB77-treated mice.  

Consistent with running distance, control mice ran at higher speeds (0.98 km/hour) 

compared to PCB77-treated mice (0.87 km/hour).  Interestingly, PCB77-treated mice 

spent more time on average running (7.73 hours/day) compared to control mice (6.84 

hours/day).   Lerman et al. reported C57Bl/6 mice run approximately 7.5 km/day for 

approximately 5 hours each day with a speed of 1.32 km/hour.  LDLr-/- mice are bred on 

the C57Bl6 background, but when exposed to PCBs, two aspects of voluntary wheel 

running were reduced with average daily running distance of 93% and daily running 

speed of 65% despite a 154% increase in time spent running.  Further examination of 

running data demonstrated no differences in distance or time run on a weekly basis, but 

PCB-exposed mice did run significantly slower during weeks 4 and 5 (Figure 2-4).   

2.4.4. Quantification of PCB77 in exercise and sedentary animals 

PCB 77 was quantified through gas chromatography (GC)-mass spectrometry 

system on frozen tissue samples including liver, soleus, and plasma.  Plasma samples 
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were pooled from 3 animals for each group.  PCB 77 levels were undetectable in tissues 

or plasma from vehicle-treated mice.  PCB77 levels in liver and soleus samples did not 

differ among sedentary or exercise groups.  PCB 77 levels were tended to be elevated in 

the exercise group compared to sedentary (Figure 2-5) suggesting that exercise leads to 

mobilization of PCB from other tissues into the plasma. These results are consistent with 

human findings which demonstrated that plasma concentrations of PCBs increased in 

obese subjects who underwent weight loss.   

2.4.5. Exercise reduces atherosclerosis in PCB 77-treated mice 

Atherosclerotic lesion area was measured in the aortic root.  Due to technical 

difficulties, a sample size of 3 was examined in all groups.  In control, sedentary animals 

a mean lesion area of 0.206 mm^2 was determined.  In sedentary animals administered 

PCB 77, mean lesion area was 43% higher compared to control, sedentary animals 

(0.206 mm^2 versus 0.294 mm^2 p=0.06).  In control, exercise animals, mean lesion area 

was 0.137 mm^2 (33% reduction compared to control sedentary, 53% reduction 

compared to PCB, sedentary).  In PCB 77, exercise animals, mean lesion area was 

0.200 which is comparable to control, sedentary animals and approximately 32% smaller 

than PCB, sedentary animals (p=0.051).  Exercise led to a significant reduction in mean 

lesion size regardless of PCB exposure. Due to a small sample size, only trends can be 

noted.  

2.4.6. Exercise reduces total plasma and liver cholesterol in PCB 77-treated mice 

Because hypercholesterolemia is associated with PCB 77 exposure in both 

human and animal studies and exercise has been shown to lower cholesterol, plasma 

cholesterol concentrations were measured at 12 weeks.  Exercise lowered plasma 

cholesterol concentrations in both control and PCB77-treated animals (Figure 2-7A, 

p=0.058). Resolution of lipoproteins through size exclusion chromatography followed by 

nonlinear curve fitting analysis determined that exercise significantly decreased the HDL 

concentration (Figure 2-7C, p<0.05).  Exercise lowered LDL fraction in PCB 77-treated 

mice, however, the results were not statistically significant.  PCB 77 exposure 

significantly elevated hepatic cholesterol; however, exercised animals had significantly 

lower levels of hepatic cholesterol (Figure 2-7D, p<0.05).  
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2.4.7. Exercise does not attenuate PCB 77 increases in systolic blood pressure 

Systolic blood pressure at baseline in all study groups was similar. Although 

exercise reduced systolic blood pressure in vehicle control-treated animals (Figure 2-8, 

p=0.07), exercise did not lower systolic blood pressure in PCB 77-treated animals. 

2.4.8. Exercise increases inflammatory parameters within the plasma of PCB 77-
exposed animals 

To investigate the effect of exercise on inflammatory parameters in PCB 77-

treated mice, a mouse adipokine LINCOPLEX kit was utilized.  In mice exposed to both 

PCB 77 and exercise, significantly higher levels of t-PAI-1, TNF-α, IL-6, and MCP-1 were 

seen compared to control, sedentary mice (Figure 2-9, p<0.05).  TNF-a is an acute 

phase reactant protein and risk factor for cardiovascular disease275.  T-PAI-1 is a serine 

protease inhibitor that prevents fibrinolysis and has been shown to accelerate 

atherosclerosis276.  IL-6 is a member of the interleukin family and has also been 

implicated as a risk factor for cardiovascular disease214. MCP-1 is a chemokine involved 

in the recruitment of monocytes from the bloodstream to the intima, a hallmark of the 

initiation of atherosclerosis30.  These data suggest that exercise accelerates PCB 77-

induced inflammation.   

2.4.9. Exercise reduces leptin in PCB 77-treated animals 

Leptin is an adipokine that plays a role in regulating energy intake and 

expenditure and is proportionate to the level of adiposity. Leptin was measured in the 

plasma and was found to be significantly lower in PCB, exercised animals in comparison 

to the remaining groups (Figure 2-10, p<0,05).  Leptin has been shown to be chronically 

reduced during physical training and is proportional to body adiposity277.   

2.4.10. PCB 77 exposure significantly increases expression of CYP1A1  

To examine the effect of exercise on gene expression, CYP1A1 was measured in 

livers using RT-PCR.  CYP1A1 exposure was significantly elevated in PCB, sedentary 

animals compared to control counterparts (Figure 2-11, p<0.05) and even more elevated 

in PCB, exercise animals compared to PCB, control (p<0.01).  These findings suggest 

that exercise may have accelerated phase I metabolism as seen by the elevated 

expression of CYP1A1 within the liver of these mice.   
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2.5 Discussion  

Exercise has been shown to have a positive effect on primary and secondary 

prevention of cardiovascular disease.  However, the effect of exercise on PCB-induced 

cardiovascular disease has not been examined.  In the current study, we propose that 

exercise will protect against PCB-induced cardiovascular disease.  To test this 

hypothesis, we utilized male LDLr-/- mice fed a Western diet that were exposed to a 

chronic dosing of PCB 77 with voluntary wheel running as an intervention.  The major 

finding of this study was that 8 weeks of voluntary exercise led to a reduction in plasma 

and hepatic cholesterol levels with a trend toward a reduction in atherosclerotic lesion 

size. A surprising finding was that exercise appears to accelerate the inflammatory 

response in PCB-treated animals, increases liver: body weight ratio, and elevates 

CYP1A1, thus suggesting that exercise accelerated PCB toxicity. 

When LDLr-/- mice were exposed to PCBs, two aspects of voluntary wheel 

running were reduced including an average daily running distance daily running speed of 

65%.  In a previous study it was reported that male LDLr-/- mice ran progressively less 

throughout the study (6.4 hours and 10 km/day verus 5.5 km/day and 4 hours at end of 

study173.  Despite a reduction in average daily running distance, PCB-treated animals 

had lower levels of plasma cholesterol and lesion size.   

To the best of our knowledge, this is the first study to report the effects of 

exercise against PCB-induced cardiovascular disease.  We report a 32% reduction in 

atherosclerotic lesion size in exercise, PCB-exposed animals compared to sedentary 

counterparts.  Previous studies in LDLr-/- mice have reported a 33% reduction in lesion 

size173 compared to a 40% reduction in LDLr-/- mice that underwent forced exercise (i.e., 

treadmill running167 or swimming162.)  Additionally, studies in other hypercholesterolemic 

mice (e.g., the ApoE-/-) report lesion reductions between 30-54%.   Because 

hypercholesterolemia is a risk factor for atherosclerosis10, we examined hepatic and 

plasma cholesterol levels.  Running led to a small but significant reduction in plasma 

levels of cholesterol.  Additionally exercise reduced hepatic cholesterol content in PCB 

77-exposed animals.  Few studies are available that describe the effects of voluntary 

exercise on hepatic lipids in hypercholesterolemic mouse models.  It has recently been 

reported that voluntary exercise reduces plasma levels of cholesterol including VLDL 

and LDL sized lipoproteins while increasing hepatic lipoprotein lipase with lower hepatic 

cholesterol storage in LDLr-/- mice173.    Another group reported reduction in hepatic 
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triglycerides after treadmill exercise 278.  Control LDLR-/- fed a Western diet have 2.5 

times greater hepatic triglyceride and cholesterol contents than chow-fed wild type 

mice279. These previous studies along with our study suggest favorable effects on 

hepatic lipid storage through exercise.   

The protective effects of exercise on cholesterol turnover are not fully 

understood. In one study, 12 weeks of aerobic exercise led to increase expression of 

SRBI, LDLr, and Cyp27 within the liver suggesting that exercise could increase 

cholesterol metabolism280.  LDLr clears ApoB-containing lipoproteins from circulation281; 

SRB1 promotes selective uptake of HDL-cholesterol within the liver282, and Cyp27 is the 

rate limiting enzyme in the conversion of cholesterol to bile acids283. This study suggests 

that a potential mechanism for exercise training is improvement in cholesterol clearance 

which supports our findings of lower hepatic and plasma cholesterol levels.  Increasing 

cholesterol excretion within the feces is a strategy for preventing atherosclerosis 

because it reduces plasma cholesterol.  Surprisingly, studies describing the effect of 

physical activity on enterohepatic circulation in humans and animal models are lacking, 

however there are some early studies in humans demonstrating that exercise increases 

sterol output and feces production284.  Interrupting intestinal reabsorption during 

enterohepatic circulation which causes enhanced excretion of PCB 77 and its polar 

metabolites is another strategy that has been proposed to reduce body burden and 

deleterious effects of PCB toxicity105.  Because these animals were not orally gavaged, 

initial metabolism was bypassed in the intestine, thus oral gavage may be more 

appropriate model to investigate whether exercise may have an effect on intestinal 

reabsorption and excretion of PCB 77.  

Because  atherosclerosis is an inflammatory disorder2, we examined the effects 

of exercise on pro-inflammatory cytokines within the plasma.  Circulating levels of IL-6, 

TNF-α, t-PAI-1, and MCP-1 have emerged as independent risk factors for CVD275. The 

anti-inflammatory effects of exercise have been well-documented in a number of studies 

(reviewed in 215); however, few studies have been conducted within the LDLr-/- model. 

Specifically, 8 weeks of voluntary exercise in the ApoE-/- model demonstrated a 

significant reduction in the proinflammatory cytokines IL-6, TNF -α, and MCP-1172.  In 

another study, aged ApoE-/- mice fed a high fat diet for 4.5 months followed by 12 

weeks of voluntary exercise had an 8-fold reduction in circulating IL-6 levels176.  A recent 

study reported that 12 weeks of voluntary exercise in LDLr-/- mice had no effect on 

plasma levels of TNF-α, IFNγ, MCP-1, IL-6, IL-10173.  This may indicate that within this 
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model, voluntary exercise will not reduce inflammation even though atherosclerosis 

lesion size was reduced.  Our lab has previously reported that administration of PCB 77 

(2 doses of 170 μM/kg body weight at days 1 and 7) upregulates MCP-1 and IL-6 in 

male LDLr-/- mice fed a standardized diet containing 20% calories from fat285.   Previous 

studies have shown that administration of PCB 77 increases aortic expression of 

vascular cellular adhesion molecule-1 (VCAM-1)104.  

A surprising finding from this study was that exercised animals exposed to PCBs 

had an increase liver: body fat ratio. Exercise suppresses accumulation of lipids within 

organs and has been reported to reduce liver weight286 suggesting that the increase in 

liver: body weight are due to PCB administration. Our lab reported PCB 77 exposure 

significantly increased liver-to-body weight ratio in animals on a high fat diet and a 

concurrent reduction in PPARα signalling81.   

Other groups have reported that exposure to PCB 77 causes lipid peroxidation, 

hepatomegaly, and increased oxidative stress within the liver58,287.  Additionally, 

reduction in PPARα signaling has been linked fatty acid accumulation and cirrhosis288.  

Epidemiological studies from the 2003-2004 NHANES data have demonstrated an 

association between PCB exposure and nonalcoholic liver disease289.    LDLr-/- mice are 

commonly used in studies assessing nonalcoholic steatohepatitis290 and it has been 

recently demonstrated that administration of PCBs can accelerate nonalcoholic fatty liver 

disease in mice fed a high fat diet (42% milk fat)291. Inflammation is a hallmark of 

nonalcoholic fatty liver disease with a number of proinflammatory signaling pathways 

upregulated including NOD-like receptors, DAMPs as well as the cytokines IL-6, TNF α, 

and MCP-1292.  Exercised animals exposed to PCB 77 had much higher levels of 

inflammation including t-PAI-1, TNF- α, IL-6, and MCP-1 which could indicate 

steatohepatitis. This suggests that exercise may not overcome the proinflammatory 

effects of PCB 77 exposure within the LDLr-/- model of atherosclerosis.   Additionally, 

exercise led to a significant upregulation of hepatic CYP1A1 in PCB 77 exposed 

animals.  Although no group has examined the effect of exercise on CYP1A1 

expression, flavonoids including quercetin and EGCG have been shown to downregulate 

PCB 77 induced expression of CYP1A1.  A potential explanation for this phenomenon 

could be the dosing regimen (animals were exposed to PCB 77 24 hours before 

euthanasia) and enhanced lipolysis from exercise which could have led to increased 

plasma concentrations of PCB 77 and its metabolites.  In obese individuals who 

underwent gastric bypass surgery, increased serum levels of persistent organic 
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pollutants were observed.  Before weight loss, POP body burden and induction of AhR-

target genes including CYP1A1 were elevated as well as deteriorating liver function, and 

hyperlipidemia.  Weight loss led to gradual increases in concentration of POPs, but 

within 6-12 months of drastic weight loss, the overall body burden of such compounds 

was significantly reduced by 10-15%293.   

There are several limitations within this study.  We found that voluntary exercise 

reduced adiposity in PCB-treated animals despite consumption of a HFD.  Although we 

did not monitor food consumption, others have reported that exercise leads to an 

increase in food consumption with a reduction in adiposity likely due to increased energy 

expenditure from voluntary exercise269.   Since PCB- treated animals exposed to 

exercise had a reduction in adiposity but vehicle-treated animals did not, food 

consumption should be examined in future studies to determine if PCB administration in 

conjunction with HFD affects appetite.  Because of small sample size in atherosclerotic 

lesion analysis, additional studies are required to substantiate these initial findings.  

Because sedentary animals gained a considerable amount of weight compared to the 

exercised animals, we cannot conclude that these findings were caused by exercise 

alone.  Although we observed a reduction in hepatic cholesterol levels, we did not 

measure total hepatic lipid content or cirrhosis. Future studies should assess the extent 

of liver cirrhosis as well as monitoring changes in biliary excretion and overall body 

burden.  Although inflammation was not prevented, exercise may decrease overall body 

burden of these environmental pollutants over time.  Future studies should examine the 

effect of exercise on PCB metabolism/excretion and overall body burden over an 

extended length of time.  An additional limitation could be the potential confounder of 

high fat feeding.  The majority of in vivo work within the fields of exercise and 

cardiovascular disease utilize the ApoE-/- model and demonstrate positive outcomes in 

exercised animals related to cardiovascular disease and its associated risk factors. 

Additionally, the ApoE-/- model does not require high fat feeding for induction of 

atherosclerosis, which would limit the confounder of high fat feeding.  Future studies 

should examine whether exercise can prevent PCB-induced cardiovascular risk factors 

including glucose intolerance, endothelial function, antioxidative potential, and 

hypertension within the ApoE-/- model.  This work warrants additional studies to 

substantiate a new role for exercise.  
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Figure 2-1 Exercise Increases Body Weight in Vehicle-treated Animals 
 
Body weights were measured weekly.   Data represent the mean ± SEM.  Two-way 

ANOVA revealed a statistical difference between vehicle control and PCB groups for 

body weight.  (*p<0.05 compared to vehicle control for body weight).   
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 Figure 2-2 Exercise Increases Lean Body Mass and Reduces Fat Mass in PCB-
treated animals 
 

A) Lean Mass and B) fat mass were measured through Echo-MRI.  Two-way ANOVA 

revealed a statistical difference between exercise and sedentary groups for lean body 

mass   (#p<0.001.)  Two-way ANOVA revealed a significant interaction between PCB77 

and exercise.  *Significantly different compared to PCB77-treated sedentary animals.  

#Significantly different compared to vehicle control exercise animals.  
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Figure 2-3 Exercise increases liver: body weight in PCB77-treated mice 

 

Liver and body weights were weighed at conclusion of the study.  Data represent mean 

± SEM.  Two-way ANOVA revealed a statistical interaction between PCB77 and 

exercise.  *Significantly different from control, exercise (p<0.05) #Significantly different 

from sedentary, PCB77-treated animals (p<0.05).   
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Figure 2-4  Voluntary wheel-running performance in control and PCB77-treated 
mice 
 

Male LDLr-/- mice were housed singly in cages mounted with a running wheel with one 

week of acclimation.  Wheel-running activity was monitored continuously and analyzed 

using a Clock-Lab Analysis program.  A) Mean daily running distance B) Mean weekly 

running time C) Mean running velocity (km/h) during the 9 weeks of observation.  A 

student’s t-test demonstrated that PCB77-treated mice spent more time running at lower 

speeds during week 5 and 6 (p<0.05).  

  



47 
  

 
Figure 2-5 Concentrations of PCB in tissues  
 

PCB77 was quantified through gas chromatography (GC)-mass spectrometry system on 

frozen tissue samples (liver, soleus, plasma).  Data are mean ± SEM from 5 animals. 

Plasma samples were pooled from 3 animals  
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Figure 2-6 Exercise Reduces Mean Aortic Lesion Area. 
 

The aortic root was serially sectioned on a cryostat with 10 µm sections. Lesions were 

quantified through oil red O. The average lesion area spanning -240 to 240 µm is 

depicted.   Data represent the mean ± SEM (n=3).  * compared to vehicle control, 

sedentary (p=0.061). # compared to PCB77-treated sedentary mice (p=0.051). 
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Figure 2-7 Exercise reduced total plasma cholesterol and HDL total cholesterol 
levels  
 

Liver and plasma cholesterol concentrations were measured at termination. A) Liver B) 

Plasma cholesterol was measured through enzymatic kit (p=.058 compared to PCB77-

treated sedentary mice).  C) Lipoproteins were resolved by size exclusion 

chromatography.  D) Plasma cholesterol concentrations of Lipoprotein fractions were 

calculated using a nonlinear curve fitting approach.  Data represent the mean ± SEM of 

5 animals.  Two-way ANOVA revealed a statistically significant interaction between 

exercise and PCB77 for HDL total cholesterol levels. * Significantly different compared to 

vehicle control, exercise (p<0.05).# Significantly different compared to PCB77-treated 

sedentary mice (p<0.05). 
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Figure 2-8 Exercise fails to attenuate PCB77 increases in systolic blood pressure 
 

Blood pressure was measured non-invasively through tail-cuff method (Coda).  Data 

represent mean ± SEM of 4 animals.  (*p=0.07 compared to control, sedentary). 
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Figure 2-9 Exercise increases serum t-PAI-1 and TNF-α levels in PCB77-treated 
animals  
 

Plasma samples were analyzed for t-PAI-1 and TNF-α levels using mouse adipokine 

LINCOPLEX kit.  Two-way ANOVA revealed a statistically significant interaction between 

exercise and PCB77. *Significantly different between PCB, sedentary animals. (p<0.05) 

# Significantly different from control, exercise animals (p<0.05)   
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Figure 2-10 Exercise increases plasma levels of IL-6 and MCP-1 in PCB77-treated 
animals 
 

Plasma samples were analyzed for IL-6 and MCP-1 levels using mouse adipokine 

LINCOPLEX kit.  Two-way ANOVA revealed a statistically significant difference between 

PCB and Control groups.   *Significantly different between PCB, sedentary animals. 

(p<0.05) 
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Figure 2-11 Exercise reduces plasma leptin levels in PCB77-treated animals  
 
Plasma samples were analyzed for leptin levels using mouse adipokine LINCOPLEX kit.  

Two-way ANOVA revealed a statistically significant interaction between exercise and 

PCB77.  * Significantly different compared to control, exercise. 
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Figure 2-12 Exercise upregulates CYP1A1 in PCB77 treated mice.  
 

 Liver mRNA was Isolated and CYP1A1 m RNA levels were measured using RT-PCR.  

Two-way ANOVA revealed a statistically significant interaction between exercise and 

PCB77.  *Significantly different compared to vehicle control, sedentary (p<0.05)  

#Significantly different compared to PCB77-treated sedentary mice (p<0.01) 
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Chapter 3: The Effects of Physical Activity on PCB-Induced Cardiovascular 
Disease in ApoE-/- mice 

3.1 Synopsis 

Cardiovascular disease is the leading cause of mortality in developed countries. 

Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute 

to the initiation of cardiovascular disease.  There is strong evidence that exercise can 

reduce the risk of cardiovascular disease; however, whether exercise can modulate 

PCB-induced inflammation, endothelial dysfunction and atherosclerosis is unknown.  In 

this study we examined the in vivo effects of exercise on coplanar PCB- induced 

cardiovascular disease and associated risk factors including impaired glucose tolerance, 

hypercholesteremia, oxidative stress, inflammation and endothelium-dependent 

vasodilation. Male ApoE-/- mice were divided into sedentary and exercise groups 

(voluntary wheel running) over a 12 week period. Half of each group was exposed to 

vehicle or PCB 77 (170 µM/kg) at weeks 1, 2, 9, and 10.  Exposure to coplanar PCB 

increased atherosclerosis and several risk factors associated with cardiovascular 

disease, including glucose intolerance, hyperlipidemia, oxidative stress and systemic 

inflammation.  The 12 week exercise intervention significantly reduced several of these 

pro-atherogenic parameters induced by PCB exposure.  Exercise also lowered PCB-

induced oxidative stress and upregulated some antioxidant enzymes including phase II 

enzymes.  There was a trend towards induction of atherosclerotic lesions and protection 

by exercise. 

3.2. Introduction 

Cardiovascular disease remains the leading cause of death in developed nations.  

A number of different factors including environmental and chemical exposures are 

contributors to cardiovascular diseases.  An accumulating body of evidence from 

epidemiological, in vitro, and in vivo studies link cardiovascular disease to environmental 

pollution, including exposure to persistent organic pollutants such as dioxins and 

polychlorinated biphenyls (PCBs) 11.  Dioxin exposure appears to be associated with 

mortality from cardiovascular disease 294. Furthermore, residing near sites contaminated 

with PCBs is associated with increased rates of hospitalization for coronary heart 
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disease and acute myocardial infarction 295, and circulating levels of PCBs were 

associated with atherosclerotic plaques in humans 296.  

Because the endothelium is in immediate contact with blood, endothelial cells are 

particularly vulnerable to environmental contaminants present in the circulation and 

which can induce inflammation and endothelial dysfunction 83,297.  The majority of pro-

inflammatory effects from coplanar PCBs are mediated through the aryl hydrocarbon 

receptor (AhR) (reviewed in 298).  Activation of the AhR leads to transcription of the 

detoxifying enzyme cytochrome p450 1A1 (CYP1A1) which when in the presence of 

PCB can increase the levels of cellular reactive oxygen species (ROS), leading to 

induction of pro-inflammatory genes and subsequent vascular dysfunction 267.  Our 

laboratory has demonstrated previously that exposure to PCB 77 increases the 

expression of vascular cell adhesion molecule-1 (VCAM-1) 299, endothelial-derived 

monocyte chemoattractant protein-1 (MCP-1) 285, and interleukin-6 (IL-6).  Other groups 

have shown that PCBs impair endothelium-dependent dilation 84 and promote obesity-

associated atherosclerosis 82.   

As pollutant emissions continue to increase (i.e., manufacturing and agriculture), 

human exposure to these pollutants will rise, thus leading to the need for physiological 

buffers to protect against pollutant-induced adverse health effects such as 

cardiovascular disease.  Data from our laboratory and other groups have provided 

strong evidence that nutrition can modulate cardiovascular toxicity of environmental 

pollutants 86,87,102,106,300; however, the effect of other lifestyle modifications such as 

exercise on health risks associated with exposure to persistent organic pollutants 

remains relatively unexplored.  One such PCB study examined the effects of exercise on 

the gut microbiome and found that 5 weeks of voluntary exercise attenuated PCB-

induced alterations in proteobacteria 301. Exercise has been well-established as an 

effective primary and secondary intervention for atherosclerotic cardiovascular disease.  

Studies in both human and animal models have provided evidence that exercise exerts 

beneficial effects on atherogenesis and coronary artery disease (reviewed in 302–304).  

Exercise improves traditional cardiovascular disease risk factors including, 

hyperlipidemia, obesity, insulin sensitivity and hypertension, as well as vascular function 

affected by changes in redox status and inflammation 114.  It has been shown that 

aerobic exercise decreases atherosclerotic plaque formation 163,213,305 and reduces 

neointima formation after carotid artery injury 168.  Exercise has also been shown to 

reduce proinflammatory cytokines in humans with coronary artery disease 218 and in 
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animal models of cardiovascular disease 209.  In ApoE-/- mice, exercise improves 

endothelium-dependent vasodilation or relaxation in isolated aortas and decreases 

vascular oxidative stress 172,174.  

By using ApoE-/- mice, a well-documented model of atherosclerosis 157, we 

studied the relationship between exercise and PCB 77 exposure.  Our results indicate 

that exposure to a coplanar PCB increased cardiovascular disease-related risk factors 

including oxidative stress, vascular inflammation, hyperlipidemia, and glucose 

intolerance, which may have contributed to the observed increase in atherosclerosis in 

mice exposed to PCB.  Exercise reduced atherosclerotic lesions as well as associated 

risk factors in PCB-treated animals.  

3.3. Methods  

3.3.1. Chemicals 

PCB 77 was purchased from Accustandard Inc. (New Haven, CT).  Acetonitrile, 

Oil Red O and other chemicals utilized were obtained from Sigma Aldrich (St. Louis, 

MO).  

3.3.2. Animal treatment & sample collection 

Male ApoE-/- mice were obtained from the Jackson Laboratories (Bar Harbor, 

ME). Each mouse was individually caged, handled, and used in compliance w3ith the 

Animal Care and Use Committee of the University of Kentucky.  Mice were given ad 

libitum access to food (rodent standard chow) and water and housed in a pathogen-free 

environment for 12 weeks.  Body weight was measured weekly.  Mice were administered 

vehicle (0.2 mL tocopherol-stripped safflower oil, Dyets, Inc. Bethlehem, PA), or PCB 77 

(170 µM/kg) by oral gavage as separate doses during weeks 1, 2, 9, and 10, and the 

dosage was based on earlier studies demonstrating glucose intolerance306.  Our model 

of exercise was the widely used voluntary running-wheel model, previously described271.  

We chose a voluntary running model to avoid the potential stressor of forced activity, 

and the C57BL/6 background has been shown to have a high capacity for nocturnal 

running activity.   Each mouse randomized to exercise was placed in a modified cage 

with the wheel attached to a magnetic sensing mechanism.  This allowed the running 

activity of each mouse to be tracked by a computer, from which the corresponding 

distance, speed, and amount of time spent running were obtained via ClockLab software 
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(Actimetrics, Wilmette, IL).  Individually caged sedentary controls were handled for the 

same procedures and amount of time as the exercised mice.   Food intake was recorded 

for 12 weeks.  Mice were placed in a metabolic cage system (Techniplast, Inc., 

Philadelphia, PA) during week 12 to collect urine and feces.  Fat mass and lean body 

mass were measured by an echo magnetic resonance imaging system (Echo-MRI; Echo 

Medical Systems, Houston, TX).  At the study end point, mice were euthanized with CO2 

and exsanguinated.  Ethylenediaminetetraacetic acid (EDTA) was added to collected 

blood samples, briefly mixed, and centrifuged at 5000g for 5 min at 4o C to separate 

plasma.  Plasma and tissue samples were frozen in liquid nitrogen and stored at -80 o C.   

3.3.3. Glucose tolerance test 

Mice were individually housed and fasted for 6 hours prior to the glucose 

tolerance test performed during week 6 of the study. Blood was collected from the tail 

vein and tested for glucose concentration with a glucometer (Freedom Freestyle Lite; 

Abbott Laboratories, Abbott Park, IL).  Mice were administered D-glucose (20% in saline, 

oral gavage) and blood glucose was quantified at the following time points: 0 min, 15 

min, 30 min, 60 min, 90 min, and 120 min.   Total area under the curve (AUC; arbitrary 

units) calculates the area below the observed concentrations without the presence of a 

baseline value306.   

3.3.4. Quantification of plasma cholesterol, lipoproteins and 
cytokines/chemokines   

We determined plasma cholesterol concentrations using an enzymatic kit (Wako 

Chemicals USA, Richmond, VA, USA).  Plasma lipoprotein distribution was resolved by 

fast performance liquid chromatography.  Eluted fractions of samples from individual 

mice were collected and measured to determine lipoprotein cholesterol distribution.  

Lipoprotein cholesterol distribution of very low density (VLDL), low density (LDL), and 

high density lipoproteins (HDL) was analyzed using Peak-Fit Software 4.1 version 

(Seasolve Software Inc., San Jose, CA, USA)273.  Cytokines and chemokines were 

measured simultaneously by using an 18-plex kit (Millipore, St. Charles, MO)285.  Briefly, 

analytes were read with a Luminex-200 machine (Invitrogen) according to 

manufacturer’s instructions.   
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3.3.5. Liver cholesterol measurement 

Liver cholesterol was measured as previously described272.  Briefly, livers were 

homogenized in Krebs-Ringer Solution through repeated low speed sonication for 30 

seconds, 10 times.  Liver cholesterol concentrations were measured using the enzymatic 

kit described above.  Data are expressed as cholesterol per mg wet tissue weight. 

3.3.6. Quantification of atherosclerosis 

Frozen aortic root tissues from ApoE-/- mice within each treatment group were 

sequentially sectioned from the origin of the aortic values to the region in the ascending 

aortic arch as previously described274.  Briefly, 10 μm frozen sections of the aortic root 

were cut.  Nine tissue sections of aortic sinus at 80 μm intervals were placed on a single 

slide (Probe-On Plus; Fisher Scientific, Pittsburgh, PA).  This created serial sections for 

the entire length of the aortic root.  Lesions were then stained with oil red O (Sigma 

Aldrich, St. Louis, MO) and quantified by image analysis software (Image Pro, version 

7).  Sections were orientated relative to the disappearance of the aortic valve cusps and 

represented the lesion throughout the root.   

3.3.7. Quantification of PCBs and F2-isoprostanes 

To determine systemic PCB and metabolite concentrations, PCB 77 and its 

hydroxyl metabolites were isolated from plasma and tissue samples.  Briefly, tissues 

were homogenized (GenoGrinder, Thomas Scientific, Swedesboro, NJ) in deionized 

water.  Homogenates were extracted in acetonitrile with the following internal standards: 

10 μM 13C12-labeled PCB126 internal standard (IS) and d6-PCB77 (Cambridge Isotope 

Laboratories, Tewksbury, MA).  Samples underwent sonication and centrifugation at 

15,000 rpm for 5 min to remove plasma and tissue debris and repeated twice.  

Supernatants (3 mL) were dried under N2 and reconstituted in 99:1 methanol: dl H2O 

solvent mixture with 0.5% formic acid and 0.1% 5 M ammonium formate249.  

 Measurement of urinary F2-Isoprostanes (F2-IsoPs) is considered the gold 

standard for assessment of in vivo oxidative stress307, and the assay was performed as 

described by us elsewhere249.  Briefly, Ethyl acetate:methanol (5:1) + 0.5% acetic acid 

(v/v) + 10μM 8-iso-PGF2α-D4 (internal standard, Cayman Chemical, Ann Arbor, MI) was 

added to urinary samples, vortexed, and centrifuged at 15,000 rpm for 5 min.  

Supernatants were dried under N2 and reconstituted in methanol and acetic acid before 
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solid phase extraction (SPE).   Supel-Select HLB SPE columns (Sigma-Aldrich, St. 

Louis, MO) were preconditioned with methanol and 0.5% acetic acid.  Reconstituted F2-

IsoP samples were loaded onto Supel-Select HLB SPE columns (Sigma-Aldrich, St. 

Louis, MO) and washed with 0.5% acetic acid followed by a wash containing 0.5% acetic 

acid and 20% methanol.  Analytes were eluted with methanol and dried under N2 before 

reconstitution with 50:50 methanol: dl H2O. 

After extractions were performed, plasma, tissue, and urinary levels of PCB 77 

and its metabolites were analyzed using a Shimadzu ultra fast liquid chromatography 

system coupled with an AB Sciex 4000-Qtrap hybrid linear ion trap triple quadrupole 

mass spectrometer in multiple reaction monitoring (MRM) mode249.   MRM transitions 

monitored included 291.9/ 222.1 and 291.9/220 for PCB 77; 338/268.1 and 338/196.1 for 

13C12 PCB 126 and 297.9/228.1 and 297.9/226.2 for d6-PCB77.  In the MRM ion 

transition the precursor ion represents the M⁺∙ and the product ion represents either [M-

Cl] ⁺ or [M-2Cl] ⁺.   MRM transitions monitored for PCB 77 metabolites: 352.8/306.9 for 

hydroxy PCB77 and 368.8/322.9 for dihydroxy PCB 77.   The precursor ion of the ion 

transition is a formic acid adduct [M+FA-H]-, and product ion is [M-H]-.  F2-IsoPs were 

analyzed by integrating peak area i.e., area under the curve, AUC, relative to known 

internal standard concentrations (AUC/IS).  All values were normalized to urinary 

creatinine values (Cayman Chemical, Ann Arbor, MI) and compared to ion transitions of 

the internal standard (13C12 PCB126) with known concentration to calculate PCB 

parent and metabolite pmol concentrations.  

3.3.8. Gene expression of CYP1A1 and antioxidant enzymes 

Total RNA was extracted from tissues using the TRIZOL reagent (Invitrogen Life 

Technologies, Carlsbad, CA) according to the manufacturer’s protoco249.  RNA 

concentrations were quantified via the NanoDrop 2000 spectrophotometer (Thermo 

Scientific, Waltham, MA) and reverse transcription was performed using the AMV 

reverse transcription system (Promega, Madison, WI). The levels of mRNA expression 

were assessed by quantitative real-time PCR using 7300 Real Time PCR System 

(Applied Biosystems, Foster City, CA) and SYBR Green master mix (Applied 

Biosystems). Data analysis was performed using the relative quantification method 

(ΔΔCt), in which relative mRNA expression for target mRNAs was compared to a 

constitutively expressed gene (i.e., β-actin) within mRNA samples from tissues.  Primer 

sequences (see Table 1) for SYBR Green chemistry were designed using the Primer 
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Express Software 3.0 for RT-PCR (Applied Biosystems) and procured from Integrated 

DNA Technologies, Inc. (Coralville, IA).  

3.3.9. Statistical analysis 

Data are represented as mean ± SEM. Two-way ANOVA was used, followed by 

a post-hoc Tukey’s test to measure differences using SigmaStat software (Systat 

Software, Point Richmond, CA).  Differences with a value of p<0.05 were considered 

statistically significant.  

3.4. Results  

3.4.1. Exercise reduces cardiovascular disease and associated risk factors in 
PCB77-treated mice 

We examined the effects of exercise on specific risk factors associated with 

cardiovascular disease including obesity, glucose tolerance, hypertension, and 

hypercholesterolemia.  All groups gained weight during the study with sedentary groups 

gaining approximately 3 grams of body weight and exercise groups gaining 5 grams of 

body weight during the 12 week study, independently of PCB exposure (p<0.05, 

Supplementary Figure 1A).   Body composition was measured using an Echo-MRI 

during week 12 of the study and a trend was seen in the exercise, PCB-treated group as 

they exhibited less fat mass than sedentary counterparts (p=0.053) with a significant 

increase in lean mass  among exercise groups independent of treatment (p<.001 

Supplementary Figure 1B).  Because all treatment groups gained weight specifically in 

lean body mass, this dosing regimen did not produce signs of PCB toxicity.  Control mice 

ran approximately 5 km/day for approximately 7 hours per day at a speed of 0.65 

km/hour.  PCB-treated mice ran less distance during weeks 10 and 11 for a shorter 

period of time (approximately 6 hours per day and 5 km/day).  Speed was not different 

among groups.  The running capacity in ApoE-/- mice is  less than that of the LDLr-/- 

mice.   During weeks 10 and 11, both groups had significantly lower distance and time 

spent running.  Actogram analysis revealed disturbances in circadian rhythm which 

could indicate interrupted light: dark cycles within the facility. Sedentary animals treated 

with PCB 77 (170 µM/kg) showed a significant increase in blood glucose concentrations, 

compared with vehicle control and exercise groups, in response to a bolus of 

administered glucose (Figure 1A, p<0.05).  The total AUC for blood glucose was 
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significantly increased in sedentary mice treated with PCB 77 (Figure 1B, p<0.05) but 

exercise attenuated this response (p<0.05)  

Because hypercholesterolemia and hypertension82,308,309 are associated with PCB 

77 exposure  and exercise has been shown by several groups to lower cholesterol as 

well as hypertension117,310,311, plasma cholesterol and systolic blood pressure  were 

measured.  Exercise significantly reduced plasma cholesterol levels in PCB 77-treated 

mice (Figure 3-2A, p<0.001).  Resolution of lipoproteins through size exclusion 

chromatography followed by nonlinear curve fitting analysis determined that exercise 

significantly decreased both the VLDL (Figure 3-2b p<0.001) and I/LDL cholesterol 

concentrations (p<0.01) in PCB 77-treated mice compared to sedentary counterparts. 

No differences in HDL concentrations were found among groups. Similarly, exercise 

significantly reduced hepatic levels of cholesterol in PCB 77-treated mice 

(Supplementary Figure 4, p<0.05).   Among sedentary animals, PCB 77 significantly 

increased systolic blood pressure at the end of the study (Figure 3-3, p<0.001).  

Exercised animals exposed to vehicle treatment displayed significantly lower systolic 

blood pressure compared to vehicle-treated sedentary animals while animals exposed to 

PCB 77 during exercise displayed significantly lower blood pressure than PCB-treated 

sedentary animals (138 mmHg versus 149 mmHg, p<0.001) but remained comparable to 

vehicle, sedentary levels (139 mmHg).   Because atherosclerosis is recognized as an 

inflammatory disease2, selected inflammatory parameters were investigated.  To 

determine the effect of exercise on inflammation, we measured an array of plasma 

cytokine and adipokine concentrations.  Significant decreases in interleukin 6 (IL-6), 

monocyte chemoattractant protein 1 (MCP-1), chemokine (C-X-C motif) ligan1 (CXC1 or 

KC), macrophage colony stimulating factor (M-CSF), and (monokine induced by gamma 

interferon) MIG were detected in exercised mice exposed to PCB 77 compared to 

sedentary counterparts (Figure 3-4A-E, p<0.05).  

Administration of PCB77 tended to increase atherosclerosis more in both 

sedentary than exercised animals (Figure 3-5).  Exercised animals administered vehicle 

had significantly lower levels of atherosclerosis compared to sedentary animals which 

supports others’ findings (p<0.05; 17739.5 μm2 versus  48511.6 μm2).  Exercise did not 

significantly reduce mean atherosclerotic lesion size compared to sedentary animals in 

PCB-treated animals  (p=0.392) although the mean lesion size was reduced in these 

animals.  Due to the limited sample size within this study, a repeated study with more 

power would better delineate the effect of exercise on mean atherosclerotic lesion size.   
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3.4.2. Exercise reduces systemic oxidative stress and upregulates antioxidant 
enzymes  

Because inflammatory diseases, such as atherosclerosis, are redox sensitive, we 

also assessed in vivo systemic oxidative stress.  F2-isoprostanes (F2-IsoPs), 

prostaglandin-like eicosanoids formed during fatty acid peroxidation, were measured in 

urinary samples from all treatment groups.  In PCB-treated animals, exercised mice had 

significantly lower levels of 8-iPF2 α and iPF2 α-VI (p<0.05) compared to sedentary 

animals.  Because of an 8-fold reduction of oxidative stress in exercised animals, we 

next examined expression of antioxidant genes. Overall, exercise significantly 

upregulated the expression of catalase, glutathione peroxidase (Gpx), glutathione S-

reductase (GSR) and glutathione S-transferase (GST) and led to downregulation of the 

inhibitor of Nrf2, Keap1 (Figure 7). 

Additionally, exercised groups exposed to PCB 77 had a significant 

downregulation of CYP1A1 compared to sedentary counterparts, which could contribute 

to the lower levels of oxidative stress.  To assess whether exercise had an effect on 

body burden, PCB 77 and its hydroxyl metabolite OH-PCB 77 were  quantified in the 

plasma and several tissues including liver, lungs, soleus, kidney, retroperitoneal white 

adipose tissue, epididymal white adipose tissue, and subcutaneous white adipose 

tissue. PCB 77 and OH-PCB 77 levels were undetectable in tissues or serum from 

vehicle-treated mice or PCB 77 treated mice at the conclusion of the study.  OH-PCB 77 

levels in feces from sedentary mice were approximately 4 fold higher than those from 

exercised mice, (Figure 8, p<0.05).   

3.5. Discussion  

There is substantial evidence that exposure to persistent organic pollutants 

including dioxin and PCBs are linked to the incidence of cardiovascular disease and 

heart failure which remain the leading cause of death in developed nations294,296,312 

Dioxin and coplanar PCBs exhibit their toxicity by binding to the aryl hydrocarbon 

receptor (AhR) which causes the upregulation of CYP1A1 expression which leads to an 

increase in oxidative stress due to the uncoupling of CYP1A1 68. We have shown 

previously that coplanar PCBs, including PCB 77 and PCB 126 are proinflammatory and 

atherogenic in vascular endothelial cells 83,313.  Coplanar PCBs have also been shown to 

promote obesity 82, atherosclerosis 79, and diabetes 306,314.  
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In most people, body burdens of environmental pollutants are prevalent, and 

prevention against environmental chemical-induced disease pathologies remains a 

challenge.  Positive lifestyle changes such as healthful nutrition and an increase in 

physical activity tend to protect against the development of inflammatory diseases such 

as atherosclerosis, obesity and diabetes315–317.  Evidence from our laboratory suggests 

that antioxidant nutrients and related bioactive compounds found in fruits and vegetables 

protect against environmental toxic insult to the vascular endothelium by increasing 

antioxidant defense and by down-regulation of proinflammatory signaling 98,249; however, 

the role of exercise remains largely unknown. 

Data from this study provide evidence for the protective properties of physical 

activity against cardiovascular disease.  Exposure to PCB 77 in sedentary animals 

elevated several risk factors associated with cardiovascular disease including glucose 

intolerance, hypercholesteremia, hypertension, systemic inflammation, oxidative stress, 

as well as increased atherosclerosis.  Baker et al. have previously reported that coplanar 

PCBs induce rapid and sustained glucose intolerance in an AhR-dependent manner306.   

We demonstrate glucose intolerance in sedentary, PCB-treated animals that is 

prevented in exercised animals. In the current study, sedentary, PCB-treated animals 

had significantly higher levels of liver and plasma cholesterol, predominately in the VLDL 

and LDL fractions.  Our results extend previous findings which have shown that dietary 

exposure to PCB77 significantly increases hypercholesteremia specifically within the 

VLDL fraction that is associated with increased atherosclerosis82.  Voluntary exercise 

attenuated the hypercholesteremia but failed to significantly reduce the subsequent 

increase in atherosclerosis. Within this study, voluntary running reduced lesion size by 

22% compared to sedentary, PCB-treated animals.  In vehicle-treated animals, exercise 

reduced lesion size by 68% which supports previous findings159,169.  These findings 

suggest that exercise can prevent and/or delay the development of atherosclerosis in 

vehicle-treated animals only.  Additional studies that utilize a greater sample size are 

needed to determine if exercise can prevent PCB-induced atherosclerosis.     

Low-grade inflammation is a hallmark of endothelial dysfunction and 

atherosclerosis2.  We have demonstrated previously that coplanar PCBs can cause 

endothelial dysfunction as evidenced by an upregulation of inflammatory mediators 

including the cytokines IL-6 and MCP-183,102,285,297. In fact, PCB 77-treated animals that 

were exposed to exercise had levels of inflammation that were similar to control, 

sedentary animals. Exercise attenuated the PCB 77-mediated induction of inflammatory 
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cytokines and chemokines including MCP-1, IL-6, and M-CSF (Figure 6).  Because 

inflammation is sensitive to redox changes or an increase in oxidative stress, we also 

assessed in vivo systemic oxidative stress.  Results from our study indicate that 

exposure to PCB 77 leads to a dramatic increase in F2-isoprostanes in sedentary mice, 

with much lower levels (8-fold) found in exercised animals, suggesting that exercise 

protects against systemic oxidative stress associated with PCB 77 exposure. 

Mechanisms of protective properties of physical exercise such as voluntary 

exercise are not simple and may involve induction of phase II antioxidant enzymes254.  

Under normal physiological conditions, Nuclear factor erythroid 2 like 2 (Nrf2) is dormant 

within the cytoplasm while bound to its inhibitor, Kelch-like ECH-associated protein 1 

(Keap1)245.  In response to oxidative stress, Nrf2 dissociates from Keap1, translocates to 

the nucleus, and binds to antioxidant response elements (AREs) to upregulate cellular 

defense genes including GSH-dependent antioxidant enzymes (glutathione peroxidases 

and glutathione S-transferases)244.   Exercise training results in increased levels of 

oxidative stress, which upregulates antioxidant defense mechanisms in various tissues 

including the liver318.  This phenomenon is known as hormesis, defined as a generally 

favorable biological response to low exposure of toxins or other environmental 

stressors.319  Our findings demonstrate a downregulation of the inhibitor protein Keap1 

with an upregulation of several Nrf2 target genes including phase II antioxidant enzymes 

Gpx1, GST, and GSR.  Additionally, our results show a downregulation of the phase I 

enzyme, CYP1A1, which has been implicated in contributing to oxidative stress in the 

presence of coplanar PCBs68.  Superoxide can uncouple eNOS320, the enzyme 

responsible for the production of the potent dilator nitric oxide, thus producing 

peroxynitrite and reducing endothelial-dependent dilation.   We have previously shown in 

cultured endothelial cells, exposure to PCB 77 leads to an increase in peroxynitrite.90 

In addition to well-established protective mechanisms of exercise, including 

down-regulation of inflammation through upregulation of antioxidant genes, our data with 

PCBs also implicate increased metabolism of lipophilic compounds such as PCBs.   

Compared  to sedentary animals, we found that exercised animals exposed to PCB 77 

had significantly less OH-PCB 77 metabolites within their feces.  This suggests indirectly 

that exercise increased drug metabolism and that most of the PCB 77 may have been 

metabolized and/or excreted prior to the time of measurements (at the end of study).  

Exercise can alter pharmacokinetics by affecting drug absorption and hepatic and renal 

clearance of drugs 321.   Four weeks of voluntary exercise in C57Bl/6 mice led to an 
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upregulation of CYP7A1 and CYP27 which could aid in the secretion of cholesterol into 

bile acids322.   Our findings warrant further investigation to determine the effect of 

exercise on coplanar PCB metabolism and excretion.     

Although this is the first study to examine the effect of exercise on metabolism 

and overall body burden of PCBs, other groups have investigated the role of bioactive 

nutrients such as olestra105 and chitosan323 on excretion of toxicants including coplanar 

PCBs.  These studies demonstrate that these nutrients including charcoal and choric 

acid324 inhibit the body from absorbing these compounds while chlolella325 and 

chlorophyll326 promote its excretion from the body by disrupting gastrointestinal 

absorption. To our knowledge, there is no published work examining the effect of 

exercise on the metabolism, absorption, and excretion of environmental toxicants; 

however, other groups have studied flavanones metabolism.  Triathletes excrete 

flavanones five-fold, which  the authors propose occurs because of the overactivation of 

the microbiota metabolism caused by physical exercise327.   Future studies will 

investigate levels of PCB 77 and its metabolites in a time course study in an attempt to 

determine if exercise interferes with the absorption through overactivation of gut 

microbiome or if exercise accelerates excretion, thus reducing body burden.  We 

propose that exercise may enhance the clearance of coplanar PCBs through an Nrf2-

dependent mechanism resulting in upregulation of phase II enzymes leading to 

enhanced metabolism (Figure 9).    

In summary, our study provides experimental evidence that exercise is beneficial 

for protecting the vasculature against PCB-induced oxidative stress and inflammation. 

Coplanar PCBs are persistent and a significant risk factor for endothelial injury and 

associated cardiovascular disease.  This is the first study to suggest that exercise can 

increase the metabolism and clearance of environmental pollutants, thus implying the 

need for additional studies to determine an effective regimen for protection.  More 

studies are needed to determine if exercise can delay or prevent adverse health effects 

including atherosclerosis associated with PCB exposure.  
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Figure 3-1.  Exercise attenuates PCB 77-impaired glucose intolerance.  

 A) Blood glucose concentrations were examined in mice administered vehicle or PCB 

77 (50 mg/kg).  B) Total area under the curve (AUC) calculates the area below the 

observed concentrations.  Data present mean ± SEM (n=8). *Significantly different 

compared to vehicle control, sedentary (p<0.05) # Significantly different compared to 

PCB 77-treated, sedentary mice (p<0.05)   

* 
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Figure 3-2. Exercise reduces systolic blood pressure in PCB 77-treated mice.   
 
Blood pressure was measured non-invasively via the tail cuff method (Coda).  Data 

represent mean±SEM (n=8). *Significantly different compared to vehicle control, 

sedentary (p<0.05)# Significantly different compared to PCB 77-treated, sedentary mice 

(p<0.05)  
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Figure 3-3. Exercise reduces total plasma cholesterol and VLDL and LDL 
cholesterol concentrations.   
(A) Plasma cholesterol concentrations were measured at termination (B) Lipoproteins 

were resolved by size exclusion chromatography. Circles of each point represent mean 

values of each fraction from six individual mice of each group, and bars are SEMs. (C) 

Plasma cholesterol concentrations of lipoprotein fractions were calculated using a 

nonlinear curve fitting approach.  Data represent the mean±SEM of 6 animals. Two-way 

ANOVA revealed a statistically significant interaction between exercise and PCB77.  * 

Significantly different compared to vehicle control, sedentary (p<0.05). # Significantly 

different compared to PCB77-treated sedentary mice (p<0.01). 

  

* 
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Figure 3-4. Exercise prevents upregulation of proinflammatory cytokines by 
PCB77 exposure.   

Plasma samples were analyzed for IL-6, MCP-1, and M-CSF levels using mouse 

adipokine LINCOplex kit.  Data represent the mean± SEM (n=5).  * Significantly different 

compared to vehicle control, sedentary (p<0.05). # Significantly different compared to 

PCB77-treated sedentary mice (p<0.05) 
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Figure 3-5. Exercise reduces atherosclerosis in PCB77-treated mice.  

The aortic root was serially sectioned on a cryostat with 10 µm sections. Lesions were 

quantified through oil red O. The average lesion area spanning -240 to 240 µm is 

depicted.   Data represent the mean ± SEM (n=6-8).   Scale bar represents 500 µm 

* Significantly different compared to vehicle control, sedentary (p<0.05).  
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Figure 3-6. Exercise modulates PCB 77-induced oxidative stress.   
Urine F2-isoprostane levels were measured by HPLC/MS MS to assess in vivo oxidative 

stress induced by PCB77.  All values were normalized to urine creatinine levels and for 

IS recovery.  Data are represented as mean± SEM (n=5). *Significantly different 

compared to vehicle control, sedentary (p<0.05). # Significantly different compared to 

PCB77-treated sedentary mice (p<0.05).  
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Figure 3-7. Exercise upregulates antioxidant and phase II enzymes.   

mRNA levels were measured using RT-PCR.  Two-way ANOVA revealed a statistically 

significant interaction between exercise and PCB77. Data are represented as mean 

±SEM (n=8).  *Significantly different  compared to vehicle control, sedentary (p<0.05) 

#Significantly different compared to PCB77-treated sedentary mice (p<0.05) 
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Figure 3-8. Exercise decreases level of OH-PCB 77 in feces  

PCB 77 and its hydroxy metabolites were measured in plasma and liver by UFLC/MS 

MS and normalized to IS recovery.    Data are mean ± SEM (n=5).  A student’s t-test 

revealed statistical differences compared to sedentary animals (*p<0.05). 
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Figure 3-9.  Proposed signaling pathway for PCB detoxification in vivo. 

 PCB 77 is an AhR ligand and causes CYP1A1 upregulation, which when in the 

presence of PCB 77 leads to superoxide production.  Exercise effectively upregulates 

the antioxidant response in the presence of PCB77 which allows for a more efficient 

antioxidant response to environmental insult. (Adapted from Newsome et al JNB, 2013) 
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Supplementary Figure 1. Exercise increases body weight and lean body mass. 

 A) Body weights were measured weekly. B) Food consumption was measured weekly.  

C) Lean mass and D) fat mass were measured through Echo-MRI. Data represent the 

mean ± SEM. Two-way ANOVA revealed a statistically significant interaction between 

exercise and sedentary groups.  * Significantly different compared to vehicle sedentary 

groups (p<0.05).# Significantly different compared to sedentary groups (p<0.001) 
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Supplementary Figure 3-2 Exercise increases liver: body weight in PCB77-treated 
mice 

Liver and body weights were weighed at conclusion of the study.  Data represent mean 

± SEM.  Two-way ANOVA revealed a statistical interaction between PCB 77 and 

exercise.  *Significantly different from control, sedentary (p<0.05)  #Significantly different 

from sedentary, PCB77-treated animals and control, exercise animals (p<0.001).    
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Supplementary Figure 3-3 Voluntary wheel-running performance in control and 
PCB77 treated mice 

8 week old male ApoE-/- mice were housed singly in cages mounted with a running  

wheel.  Wheel-running activity was monitored continuously and analyzed using a Clock-

Lab Analysis program.  A) Mean daily running distance B) Mean weekly running time 

C) Mean running velocity (km/h) during the 12 weeks of observation.  A student’s t test  

demonstrated a trend that PCB77-treated mice spent less time running (p<0.05).  
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Supplementary Figure 3-4  Voluntary wheel-running performance in control and 
PCB77-treated mice 

Male ApoE-/- mice were housed singly in cages mounted with a running wheel.  Wheel 

lrunning activity was monitored continuously and analyzed using a Clock-Lab Analysis 

program.A) Mean daily running distance B) Mean weekly running time C) Mean running 

velocity(km/h) during the experiment.  A student’s t-test demonstrated that PCB77-

treated mice spent less time running during weeks 7, 9, 10, and 11 and covered less 

distance during weeks 10 and 11 (p<0.05).  
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Supplementary Figure 3-5 Exercise reduces hepatic cholesterol levels.   

Data represent mean ± SEM.  Two-way ANOVA revealed a statistical interaction 

between PCB 77 and exercise.  *Significantly different from control, sedentary (p<0.05)   

#Significantly different from sedentary, PCB77-treated animals and control, exercise 

animals (p<0.05).   

  

Sedentary Exercise
0

5

10

15

20
Control
PCB

ch
ol

es
te

ro
l (

m
g/

g 
liv

er
)

* 

# 



81 
  

Table 3-1 
Primers used for qRT-PCR 
Gene name Forward Primer   Reverse Primer 5’-3’  Fragment size 
______________________________________________________________________________________ 
CYP1A1  TGGAGCTTCCCCGATCCT  CATACATGGAAGGCATGATCTAGGT 100 bp 
Nrf2   GAGTCGCTTGCCCTGGATATC  TCATGGCTGCCTCCAGAGAA   100 bp 
Catalase  CAGAGAGCGGATTCCTGAGAGA  CTTTGCCTTGGAGTATCTGGTGAT  100 bp 
GSR    TCGGAATTCATGCACGATCA  GGCTCACATAGGCATCCCTTT   100 bp 
GSTm2   ACACCCGCATACAGTTGGC  TGCTTGCCCAGAAACTCAGAG   118 bp 
Gpx1    GTGGCGTCACTCTGAGGAACA  CAGTTCTCCTGATGTCCGAACTG  125 bp 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Margaret O’Bryan Murphy 2014 
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Chapter 4:  Effect of exercise on PCB 77-induced endothelial dysfunction in 
C57BL/6 mice 

4.1 Synopsis 

Polychlorinated biphenyls (PCBs) are persistent environmental chemicals, and 

coplanar PCBs can induce oxidative stress and activate pro-inflammatory signaling 

cascades which are associated with atherosclerosis. Physical inactivity is considered an 

independent risk factor for CVD and has been shown to cause endothelial dysfunction. 

Numerous studies in both humans and animal models have demonstrated a beneficial 

role for exercise in the prevention and treatment of CVD. Thus, we hypothesized that 

voluntary exercise can modulate PCB-induced endothelial dysfunction. To test this 

hypothesis, C57BL/6 mice were placed on a voluntary exercise regimen for 5 weeks 

before administration of PCB 77, 24 hours before euthanasia. Ex vivo vascular reactivity 

studies were performed to measure endothelial function.  Sedentary animals exposed to 

PCB77 exhibited endothelial dysfunction as demonstrated by significant impairment of 

endothelium-dependent-dilation (EDD), which was prevented in exercised animals.  

Administration of tempol, a superoxide dismutase (SOD) mimetic restored endothelium-

dependent vasodilation implicating increased superoxide levels as a cause of endothelial 

dysfunction in these animals. Voluntary exercise decreased plasma F2-isoprostane 

levels, an in vivo marker of oxidative stress. Furthermore, CYP1A1, a phase I detoxifying 

enzyme was downregulated in exercised animals although liver and plasma levels of 

PCB 77 were not different between groups.  These data suggest that voluntary exercise 

provides vascular protection by preventing PCB 77-induced endothelial dysfunction.  

4.2. Introduction 

Polychlorinated biphenyls (PCBs) are environmental pollutants that were 

manufactured for use in dielectric and coolant fluids, lubricants, and flame retardants 

due to their chemical stability.  PCB production was banned in the United States in 1979 

due to their carcinogenic nature41. Because of their chemical stability, PCBs continue to 

persist in the environment.  Human exposure occurs primarily through dietary intake of 

contaminated food and continues to bioaccumulate within individuals328.  
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The toxicity of coplanar PCBs is similar to dioxin and is mediated through 

activation of the aryl hydrocarbon receptor (AhR), an orphan receptor that is classified as 

a basic helix-loop-helix Per-ARNT-Sim transcription factor65.  Upon ligand binding (e.g., 

PCB 77), AhR translocates to the nucleus and binds to xenobiotic response elements 

(XREs) within the promoters of downstream target genes66.  Coplanar PCBs increase 

cellular oxidative stress through an uncoupling of cytochrome P450 (CYP1A1)-mediated 

uncoupling mechanism68.   

Human exposure to coplanar PCBs has been associated with cardiovascular 

disease and its associated risk factors including diabetes77, hypertension48, 

dyslipidemia329, and endothelial dysfunction84,313,330. Endothelial dysfunction is an 

independent risk factor for cardiovascular disease27 and precedes the development of 

atherosclerosis331.    Endothelial dysfunction is very common in patients with 

atherosclerosis and hypertension332.  Nitric oxide (NO) is a key regulator of normal 

endothelial function.  NO is produced by endothelial nitric oxide synthase (eNOS) during 

the conversion of L-arginine to L-citrulline through receptor activation (e.g., muscarinic 

receptors) or mechanical force (e.g., shear stress)320.  NO relaxes blood vessels, 

prevents platelet aggregation and adhesion, limits oxidation of low-density lipoprotein 

(LDL) cholesterol, inhibits proliferation of vascular smooth muscle cells, and decreases 

expression of proinflammatory cytokines187.   

Oxidative stress is regulated by mechanisms that keep a tight balance between reactive 

oxygen species and antioxidant enzymes that remove ROS.  Excessive ROS leads to 

cellular damage of DNA, lipid, and proteins333.  We have previously shown in cultured 

porcine aortic endothelial cells, administration of PCB 77 leads to an increase in reactive 

oxygen species (ROS)313 and subsequent dysfunctional eNOS signaling90.  eNOS 

becomes uncoupled and produces superoxide instead of NO which reacts very rapidly 

with existing NO to form peroxynitrite leading to endothelial dysfunction and subsequent 

NFκB-mediated proinflammatory signaling.  Endothelial dysfunction is most commonly 

assessed by vascular reactivity studies that measure the vasodilator response in 

isolated vessels to various pharmacological agonists334.  Acetylcholine (ACh) is 

commonly used to assess endothelial dependent vasodilation because it acts via 

muscarinic membrane receptors with signal transduction through adaptor proteins that 

lead to the release of NO.  NO diffuses from the endothelial cell to smooth muscle cells 

where it activates guanylate cyclase to produce cyclic GMP leading to smooth muscle 

relaxation335.  Ex vivo studies have demonstrated impaired acetylcholine-induced 
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endothelium-dependent vasorelaxation in hypercholesterolemic animals158 as well as 

C57BL/6 mice exposed to dioxin336.  However, numerous studies have demonstrated the 

benefits of exercise in restoring endothelial function d158,164,171,174,337.  This likely occurs 

by increasing NO bioavailability; however, the mechanisms are not fully understood.   

Because ApoE-/- mice do not undergo endothelial dysfunction until later in life338 

and LDL-/- mice require high fat feeding339, we utilized C57BL/6 mice to avoid such 

confounders including age and diet.   In this study, we hypothesize that exercise will 

prevent PCB-induced endothelium-dependent dilation by reducing systemic oxidative 

stress and increasing the bioavailability of NO. 

4.3 Methods 

4.3.1. Chemicals 

We purchased PCB 77 from Accustandard Inc. (New Haven, 

CT).  Phenylephrine, Sodium Nitroprusside, Acetylcholine, Tempol, and L-NG-

Nitroarginine Methyl Ester (L-NAME) were obtained from Sigma Aldrich (St. Louis, MO).  

4.3.2. Animal treatment 

Male C57BL/6 mice were obtained from the Jackson Laboratories. (Bar Harbor, 

ME).  C57BL/6 mice have been shown to exhibit high running behavior340. Each mouse 

was individually caged, handled, and used in compliance with the Animal Care and Use 

Committee of the University of Kentucky.  Mice were given ad libitum access to food 

(rodent standard chow) and water and housed in a pathogen-free environment for 5 

weeks.  Body weight was measured weekly. Urine and fecal samples were not obtained 

in order to minimize stress within these animals. Mice were administered a single dose 

of vehicle (tocopherol-stripped safflower oil, 0.2 mL)), or PCB 77 (170 µM/kg) by 

intraperitoneal injection 24 hours before euthanasia.  This dose has been shown to 

produce endothelial dysfunction as measured by impaired endothelial-dependent 

vasodilation (data not shown). At the study end point, mice were euthanized with 

ketamine/xylene and exsanguinated.   Ethylenediaminetetraacetic acid (EDTA) was 

added to collected blood samples, briefly mixed, and centrifuged at 5000g for 5 min at 4o 

C to separate plasma.  Plasma and tissue samples were frozen in liquid nitrogen and 

stored at -80 o C.   
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4.3.3. Exercise 

Our model of exercise was the widely used voluntary running-wheel model, 

previously described271.  Each mouse randomized to exercise was placed in a modified 

cage with wheel attached to a magnetic sensing mechanism.  This allowed the running 

activity of each mouse to be tracked by a computer with Clock lab and Mat lab software 

(Actimetrics, Wilmette, IL) from which the corresponding distance, speed, and amount of 

time spent running were obtained.   

4.3.4. Ex vivo vascular reactivity studies 

Forty Male C57BL/6 mice were randomized to exercise or sedentary groups for 

five weeks based on previous findings implicating a beneficial role of exercise when 

exposed to PCB 301.  Mice were anesthetized with ketamine/xylene.  Aortas from each 

mouse were perfused with Krebs Henseleit solution via the left ventricle and then 

removed.  Adventitia was carefully dissected free.  Measurement of contractile activity 

was performed using aortic rings as described previously341.  Briefly, ascending (3 mm) 

aortic segments were mounted by passing two tungsten wires through the arterial lumen 

while immersed in Krebs Henseleit solution.  Tension (1g) was maintained continuously 

and recorded on a Micro-Med instrument.  Krebs Henseleit solution was refreshed in 

tissue baths every 10 min.  After 30 min of equilibration, tissue viability was tested with 

80 mM potassium chloride for 5 min.  For dilation studies, vessels were pre-constricted  

for 3 minutes with 10-6 M Phenylephrine and then exposed to a cumulative dose of 

Acetylcholine (10-9 to 10-5 M).  For endothelium independent studies, vessels were pre-

constricted with 10-6 M PE and exposed to a cumulative dose of SNP (10-9 to 10-5M).  

Following a 30 min washout period, aortas were pre-incubated with TEMPOL (1 mM) or 

L-NAME (10 μM) for 3 min prior to repeating the ACh dose response in pre-constricted 

vessels.   

4.3.5. Quantification of PCBs and F2- isoprostanes 

PCB 77 and its hydroxyl metabolites were extracted from plasma and tissue 

samples to determine systemic PCB and metabolite concentrations.  PCB 77 and its 

hydroxyl metabolites were isolated from plasma and liver samples (plus 10 μM 13C12-

labeled PCB126 internal standard (IS) and d6-PCB77, Cambridge Isotope Laboratories, 

Tewksbury, MA) through extraction with acetonitrile and subsequent sonication and 
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centrifugation at 15,000 rpm for 5 min to pellet plasma and tissue debris.  Supernatants 

were dried under N2 and reconstituted in 99:1 methanol: dl H2O solvent mixture with 

0.5% formic acid and 0.1% 5M ammonium formate249. 

 Measurement of urinary F2-Isoprostanes (F2-IsoPs) is considered the gold 

standard for assessment of in vivo oxidative stress307.   We did not collect urine samples 

for this study, however, plasma was obtained and has been shown to be a reliable index 

for in vivo oxidative stress249.For F2-IsoP analysis, plasma samples were added to 5:1 

ethyl acetate:methanol + 0.5% acetic acid (v/v) + 10μM 8-iso-PGF2α-D4 (internal 

standard, Cayman Chemical, Ann Arbor, MI), vortexed briefly, and centrifuged to pellet 

debris.  Supernatants were transferred and dried under N2 and reconstituted in methanol 

and acetic acid before solid phase extraction (SPE).  Reconstituted F2-IsoP samples 

were loaded onto pre-conditioned Supel-Select HLB SPE columns (Sigma-Aldrich, St. 

Louis, MO) and washed with 0.5% acetic acid followed by washing with 0.5% acetic acid 

containing 20% methanol.  Columns were eluted with methanol, eluent was dried under 

N2 and samples were reconstituted with 50:50 methanol: dl H2O. 

Plasma and tissue levels of PCB77 and its hydroxyl metabolites as well as 

plasmaF2-IsoPs were analyzed using a Shimadzu ultrafast liquid chromatography 

(UFLC) coupled with an AB Sciex 4000-Qtrap hybrid linear ion trap triple quadrupole 

mass spectrometer in multiple reaction monitoring (MRM) mode. MRM transitions 

monitored: 291.9/ 222.1 and 291.9/220 for PCB 77; 338/268.1 and 338/196.1 for 13C12 

PCB 126 and 297.9/228.1 and 297.9/226.2 for d6-PCB77. In the MRM ion transition the 

precursor ion represents the M⁺∙ and the product ion represents either [M-Cl] ⁺ or [M-2Cl] 

⁺.MRM transitions monitored for PCB77 metabolites: 352.8/306.9 for hydroxy PCB77 

and 368.8/322.9 for dihydroxy PCB77.   Precursor ion of the ion transition is a formic 

acid adduct: [M+FA-H]- and product ion is [M-H]-.  F2-IsoPs were analyzed by integrating 

peak area (area under the curve, AUC) with regard to known internal standard 

concentrations (AUC/IS).  All values were subsequently normalized according to plasma 

volume and compared to ion transitions of internal standard (13C12 PCB126) with 

known concentration to determine PCB parent and metabolite concentrations (pmol/μL 

plasma).  

4.3.6. Plasma and liver cholesterol measurement 

 Plasma cholesterol concentrations were measured using an enzymatic kit (Wako 

Chemicals USA, Richmond, VA.).  Liver cholesterol was measured as previously 
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described272.  Briefly, liver tissue (30-50 mg) was homogenized in Krebs-Ringer Solution 

through repeated low speed sonication for 30 seconds, 10 times.  Liver cholesterol 

concentrations were measured using the enzymatic kit described above.  Data are 

expressed as cholesterol per mg wet tissue weight. 

4.3.7. Quantification of mRNA using RT-PCR  

Total RNA was extracted from tissues using the TRIZOL reagent (Invitrogen Life 

Technologies, Carlsbad, CA) according to the manufacturer’s protocol249.  mRNA 

concentrations were determined using a NanoDrop 2000 spectrophotometer (Thermo 

Scientific, Waltham, MA). Reverse transcription was performed using the AMV reverse 

transcription system (Promega, Madison, WI). The levels of mRNA expression were then 

assessed by quantitative real-time PCR using 7300 Real Time PCR System (Applied 

Biosystems, Foster City, CA) and SYBR Green master mix (Applied Biosystems). Data 

analysis was performed using the relative quantification method (ΔΔCt), in which relative 

mRNA expression for target mRNAs was compared to a constitutively expressed gene 

(i.e., β-actin) in the mRNA samples from tissues. Primer sequences (see Table 1) for 

SYBR Green chemistry were designed using the Primer Express Software 3.0 for RT-

PCR (Applied Biosystems) and synthesized by Integrated DNA Technologies, Inc. 

(Coralville, IA).  

4.3.8. Statistical analysis 

Data are represented as mean ± SEM. Two-way ANOVA was used, followed by 

a post-hoc Tukey’s test to measure differences using SigmaStat software (Systat 

Software, Point Richmond, CA).   Differences with a value of p<0.05 were considered 

statistically significant.   For vascular function studies, Two-way Repeated Measures 

ANOVA was performed. 

4.4 Results 

Exercise training did not significantly change body weight among groups during 

the study nor did an acute dose of 170 µM/kg of PCB 77 24 hours before euthanasia 

(Figure 1).  After one week of acclimation, mice ran predominantly at night for a total of 5 

weeks for 6.2 h/day on average. The average speed of mice was 0.89 km/hour with 

average distance 6.34 km/day (Figure 2). No differences were noted between 
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experimental groups.  PCB 77 concentration in plasma and liver samples were 

examined to determine the systemic body burden and to determine whether acute 

exercise would have an effect on metabolism and excretion of this toxicant. As seen in 

Figure 3, plasma and liver levels of PCB 77 were much lower than its hydroxyl 

metabolites.  Sedentary animals had approximately 113 pmoles PCB 77 within the liver 

compared to 118 pmoles in exercised animals.  Exercise did not significantly change the 

amount of parent compound in either liver or plasma levels; however, there was a trend 

towards less OH-PCB 77 within the plasma compared to sedentary animals (64.6 

pmoles in sedentary animals versus 42.4 pmoles in exercised animals; p=0.09).  The 

exercised animals had higher levels of hydroxyl metabolites within the liver (996 pmoles) 

compared to sedentary animals (609 pmoles).  Although there were not significant 

differences among parent compound, the increase in hydroxyl metabolites within the 

liver could suggest enhanced metabolism within exercised animals.   

4.4.1. Exercise lowers F2-isoprostane levels 

Analysis of F2-isoprostanes, prostaglandin-like eicosanoids derived from 

arachadonic acid metabolism, is considered the most reliable marker of in vivo oxidative 

stress. Plasma samples from mice that were sedentary or exercised and subsequently 

exposed to PCB 77 were analyzed to determine whether exercise could decrease 

toxicant-induced oxidative stress.  Plasma F2-IsoP (including 8-isoPF2α, iPF2α-III, 

PGF2α-IV, PGF2α-V, and PGF2α-VI) and F2-isoP metabolites (13, 14-dihydro-15-

ketoPGF2α) concentrations were determined. 13, 14-dihydro-15-ketoPGF2α and 8-

isoPF2α levels were not detectable within these animals.  As seen in figure 4-5, exercise 

led to a significant reduction in F2-isoPs including PGF2α-IV and PGF2α-V in mice 

exposed to PCB 77, suggesting that exercise has potent antioxidative effects.    

4.4.2. Exercise did not lower plasma and liver cholesterol levels 

Because PCB 77 administration has been shown to increase plasma and hepatic 

cholesterol82,342, we examined whether exercise could mitigate this effect.  Acute 

administration of PCB 77 did not increase plasma or hepatic cholesterol.  Male C57BL/6 

are resistant to hypercholesteremia unless dietary manipulation occurs339, thus our 

findings support this notion.   
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4.4.3. Exercise restores endothelium-dependent vasodilation in PCB 77-treated 
mice 

To substantiate the PCB-induced dysfunction of the vascular endothelium and 

subsequent increase in atherosclerosis, vascular functional studies with isolated vessels 

were performed.  PCB 77 impaired ACh-dependent relaxation, an endothelial-dependent 

event (Figure 7A).  Two way ANOVA RM revealed that a statistically significant 

interaction between treatment groups and concentration (p=0.002).  Further analysis 

revealed a statistical difference This reduced relaxation was rescued in vessels derived 

from exercised but not from sedentary animals.  Pre-incubation with Tempol, a 

superoxide dismutase mimetic, was necessary to improve the PCB-induced relaxation 

impairment observed in sedentary animals (Figure 7C).  Pre-incubation with L-NAME, a 

NO inhibitor, significantly reduced endothelium dependent relaxation (Figure 7D).  As 

previously reported 336, there were no differences in endothelium independent 

vasodilation among all treatment groups implicating the importance of the vascular 

endothelium and not smooth muscle cells in PCB-induced endothelial dysfunction.   

4.4.4. Exercise reduces expression of CYP1A1  

Cytochrome P450-1A1 (CYP1A1), a phase I metabolizing enzyme, as well as 

several antioxidant enzymes were analyzed in liver samples.  Significant CYP1A1 

expression was seen in the presence of PCB 77, which has been shown previously, 

while exercise attenuated this response (Figure 4-8).  Surprisingly, exercise did not lead 

to the upregulation of any antioxidant enzymes we analyzed including Nrf2 downstream 

targets:  GSR, GST, catalase, SOD-1, NQO1, and HO-1.  This data suggests that 

exercise led to decreased expression of CYP1A1, which could explain the significant 

reduction in oxidative stress in exercised animals.  

4.5 Discussion 

Lifestyle changes such as nutrition and physical activity may modulate 

environmental pollutant toxicity.  Exercise has been shown to prevent endothelial 

dysfunction and subsequent cardiovascular disease184.  However, the effects of exercise 

on coplanar PCB-induced endothelial dysfunction are unknown.  In the current study, we 

propose that reduction in oxidative stress and subsequent increased bioavailability of 

NO is the main mechanism for the protective effects of exercise against PCB-induced 
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cardiovascular toxicity.  To test this hypothesis, male C57BL/6 mice were exposed to 

voluntary wheel running for 5 weeks.  Our previous work has demonstrated that exercise 

can reduce atherosclerotic lesion development within the aortic sinus (Chapter 3 of this 

dissertation), thus we isolated aorta from exercised mice to perform vascular reactivity 

studies in order to examine the effect exercise and PCB exposure have on endothelial-

dependent vasodilation. 

Endothelial cells play an active role in regulation of vessel tone, blood 

coagulation, and permeability.  Endothelial dysfunction is a critical step in the 

development of cardiovascular disease including atherosclerosis 333,343  . To further 

investigate the role of the vascular endothelium in PCB exposure, we performed ex vivo 

vascular reactivity studies.  Exposure to PCB 77 led to severe impairment of 

endothelium dependent vasodilation in sedentary animals.  Exercise was able to prevent 

the PCB-induced impairment.   Reduced NO bioavailability is thought to be a primary 

cause of endothelial dysfunction 332.  Our data show that ACh-induced relaxation is 

blocked in all groups but PCB 77-treated sedentary animals.  Because the relaxation 

response in exercised and control groups is significantly blunted when treated with the 

NO inhibitor L-NAME, one could argue that increased bioavailability of NO is one of the 

protective mechanisms of exercise within the vascular endothelium.  In fact, pre-

incubation with L-NAME significantly reduced endothelium dependent relaxation in all 

groups, except in PCB-treated sedentary animals.   Because pre-incubation with L-

NAME, a NO inhibitor, significantly reduced endothelium dependent vasodilation in all 

groups, except in PCB-treated sedentary animals, NO-mediated mechanism may also 

contribute to the protective effects of exercise against PCB-induced endothelial 

dysfunction.  Our work in cultured endothelial cells suggests that PCB can cause 

dysfunctional NO signaling and subsequent rise in peroxynitrite 90. Interestingly, our data 

did not show exercise modulating several cardiovascular disease risk factors including 

plasma lipids or body weight, but there was a significant improvement in vascular 

function.  A potential explanation for this could be enhanced eNOS activity through 

phosphorylation of ser1177344.  Other groups have reported that despite changes in body 

weight or glucose sensitivity, exercise led to an upregulation of phosphorylation levels of 

eNOS following exercise345.  Although we did not measure aortic levels of eNOS or p-

eNOS, future measurements would substantiate our proposed mechanism of increased 

bioavailability of NO especially since exercise has been shown to increase eNOS activity 

in db/db knockout mice190.     
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The superoxide mimetic Tempol rescued the impaired vasodilation in PCB-

treated sedentary animals, suggesting a relationship between PCB exposure, increased 

oxidative stress and dysfunction of the vascular endothelium.  Previous publications 

have reported rescue of dioxin-induced endothelial dysfunction by Tempol in sedentary 

mice 267.  This implies that exercise might normalize the redox status within the vascular 

endothelium by reducing production of superoxide, thus improving vasodilation. Exercise 

did not significantly change the amount of parent PCB 77 within liver or plasma; 

however, there was a trend towards an increase of OH-PCB 77 within the liver and lower 

plasma levels in these mice.  We did not quantify adipose levels of PCB 77, which is a 

limitation within this work as it has been reported that PCB 77 accumulates within the 

adipose tissue306 and whether exercise affects this storage depot remains unknown.    

Despite similar levels of parent compound of PCB 77 among exercise and sedentary 

groups, exercise led to a significant downregulation of the phase I metabolizing enzyme, 

CYP1A1 (Figure 4-8).  This downregulation of CYP1A1 could explain the reduction in 

superoxide levels since PCB 77 administration has been reported to lead to the 

enzyme’s uncoupling and enhanced production of superoxide.  Furthermore CYP1A1 

KO mice are resistant to dioxin-induced endothelial dysfunction336.  Surprisingly, our 

results did not show an antioxidant response in many Nrf2 downstream targets including 

HO-1, NQO1, GST, and GSR.  Because Nrf2 is redox sensitive, this suggests that a lack 

of oxidative stress in exercised animals (Figure 4-4) prevented its activation and 

subsequent downstream gene expression. Stimulation of Nrf2 appears to require 

induction of oxidative stress by a damaging agent such as PCB 77 which has been 

reported in a similar study examining the effect of resveratrol on PCB 77-induced 

glucose intolerance346. Because CYP1A1 was downregulated in these animals and less 

oxidative stress was present systematically, Nrf2 may not have had the proper stimuli to 

become activated.  Together this data suggests that exercise attenuates PCB-induced 

endothelial dysfunction by reducing levels of oxidative stress through downregulation of 

CYP1A1 expression.    

Another mechanism of PCB 77-induced endothelial dysfunction could be an 

upregulation of Caveolin-1.  Our lab has shown that PCB 77 administration increases 

formation of caveolae and expression of Caveolin-192.  A recent study demonstrated in 

ApoE-/- mice that an increase expression in caveolin-1 protein expression is associated 

with impaired endothelial dependent vasodilation.  Additionally, there was a decreased 

ratio of p-eNOS to eNOS in thoracic aortas of these mice suggesting a decreased 
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activation of eNOS347.  eNOS can directly interact with the scaffolding domain of Cav-1 

and become inhibited348.  Determining whether exercise could modulate caveolae-and its 

associated signaling would be an exciting area of future research since studies are 

currently lacking. One study has demonstrated that voluntary exercise can attenuate the 

upregulation of caveolae-associated NAD(P)H oxidase subunits p47 and gp91 and 

protects against glutathione depletion in mice exposed to methamphetamine through a 

Nrf-2 mediated mechanism within cerebral microvessels340.  Caveolin-1 can interact with 

Nrf2 leading to inhibition of specific antioxidant enzymes as well as suppress its 

transcriptional activity349. The recent discovery of Nrf2: Caveolin-1 cross talk is a new 

area of research within our lab and whether exercise plays a role in downregulation of 

Caveolin-1 thus increasing NO bioavailability through eNOS as well as enhanced activity 

of Nrf2 is an exciting area to further explore.   

Additionally, the same group has examined the effect of exercise on PCB-

induced changes in the gut microbiome.  Exercise was able to prevent PCB changes of 

gut bacteria including the decreased population of Proteobacteria.  PCB exposure can 

disrupt intestinal cells and lead to a  “leaky” intestinal mucosal barrier by disrupting tight 

junction proteins which is likely to increase concentrations of PCBs in the systemic 

circulation and lead to enhanced PCB accumulation in tissues350. In addition to 

mediating changes of the vascular endothelium, exercise could lead to alterations in gut 

microbiome as well as increased metabolism and excretion of these compounds by 

preventing intestinal barrier disruption, increasing cholesterol turnover and subsequent 

PCB clearance.  Future studies are needed to further delineate the beneficial effects of 

exercise on PCB-induced cardiovascular disease.    

In conclusion, our results indicate that an acute dose of PCB 77 leads to 

increased oxidative stress, upregulation of CYP1A1, and impaired endothelial-

dependent vasodilation in C57BL/6 mice. Voluntary wheel running prevented these 

effects and prevented endothelial dysfunction. This study supports a new role for 

exercise in preventing environmental pollutant-induced endothelial dysfunction by 

decreasing systemic levels of oxidative stress and downregulation of CYP1A1. 
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Figure 4-1 Voluntary exercise had no effect on body weight  
 
Body weights were measured weekly.  Body weight remained relatively constant in each  

experimental group throughout the study.  Data represent the mean ± SEM.   
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Figure 4-2 Voluntary wheel-running performance  
 
Male C57BL/6 mice were housed singly in cages mounted with a running wheel. Wheel-

running activity was monitored continuously and analyzed using a Clock-Lab  Analysis 

program.  A) Mean daily running distance B) Mean weekly running timeC) Mean running 

velocity during the 5 weeks of observation. Data represent the mean ± SEM (n= 8-9).  
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Figure 4-3 The effect of exercise on PCB 77 and OH-PCB 77 concentration.   

PCB 77 was measured in A) liver and B) plasma by UFLC/MS MS and normalized to 

sample volume and IS recovery.  Hydroxyl metabolites of PCB 77 were measured in C) 

liver and D) plasma.  Exercise did not significantly alter the amount of PCB 77 within 

liver or plasma; however, there was a trend towards an increase of OH-PCB 77 within 

the liver and lower systemic levels.  Data are represented as mean ±SEM (n=5).  

  



96 
  

 
Figure 4-4 PCB 77 induced oxidative stress is reduced in exercised animals.  

 Plasma F2-isoprostane levels were measured by HPLC/MS MS to assess in vivo 

oxidative stress induced by PCB 77.  Data are represented as mean ± SEM (n=5).  

Exercise groups had reduced oxidative stress levels compared to sedentary groups 

(*p<0.05).   
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Figure 4-5 Exercise does not reduce plasma or liver cholesterol levels 
 

A) Plasma and B) liver cholesterol concentrations were measured at termination through 

an enzymatic kit.  Data represent the mean ±SEM (n=8-9).   
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Figure 4-6 Confirmation of Tissue Viability.   

Aortic vessels were pre-constricted with KCl to assess tissue viability.  Data represent 

the mean ± SEM.   
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Figure  4.7 Exercise restores endothelium-dependent dilation in PCB77 impaired 
vessels  Isolated aortic rings were dilated in response to ACh in a concentration-

dependent manner.  A) ACh-induced vasodilation was significantly attenuated in PCB, 

Sedentary mice. B) No differences in vasorelaxation response to SNP. C) Pre-incubation 

with Tempol (10-3M) restored vasodilation in PCB, Sedentary animals. (n=7)  

D) Incubation of L-NAME (10-5M) significantly reduced ACh-dependent dilation in mice. 

(n=7)   
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Figure 4-8 Exercise reduces CYP1A1 and MCP-1 levels in PCB 77-treated animals.  

mRNA levels were measured using RT-PCR.  Two-way ANOVA revealed a statistically 

significant interaction between exercise and PCB77. Data are represented as mean 

±SEM (n=5-8). *Significantly different  compared to vehicle control, sedentary (p<0.05)  

#Significantly different compared to PCB77-treated sedentary mice (p<0.05) 

  



101 
  

Table 4-1 
Primers used for qRT-PCR 
 
Gene name Forward Primer   Reverse Primer 5’-3’  Fragment size 
______________________________________________________________________________________ 
CYP1A1  TGGAGCTTCCCCGATCCT  CATACATGGAAGGCATGATCTAGGT 100 bp 
MCP-1  GCAGTTAACGCCCCACTCA  CCTACTCATTGGGATCATCTTGCT  63 bp  
Nrf2  GAGTCGCTTGCCCTGGATATC  TCATGGCTGCCTCCAGAGAA   100 bp 
Catalase  CAGAGAGCGGATTCCTGAGAGA  CTTTGCCTTGGAGTATCTGGTGAT  100 bp 
GSR    TCGGAATTCATGCACGATCA  GGCTCACATAGGCATCCCTTT   100 bp 
NQO1   GGCATCCAGTCCTCCATCAA  GTTAGTCCCTCGGCCATTGTT   100 bp 
SOD1   GAAACAAGATGACTTGGGCAAAG TTACTGCGCAATCCCAATCA   100 bp  
GSTa1  AAGCCCGTGCTTCACTACTTC  GGGCACTTGGTCAAACATCAAA   159 bp 
GSTa4   TACCTCGCTGCCAAGTACAAC  GAGCCACGGCAATCATCATCA   109 bp 
GSTm1  ATACTGGGATACTGGAACGTCC  AGTCAGGGTTGTAACAGAGCAT   349 bp 
GSTm2   ACACCCGCATACAGTTGGC  TGCTTGCCCAGAAACTCAGAG   118 bp 
GSTm3  CCCCAACTTTGACCGAAGC  GGTGTCCATAACTTGGTTCTCCA  208bp 
Gpx1   GTGGCGTCACTCTGAGGAACA  CAGTTCTCCTGATGTCCGAACTG  125 bp 
Gpx2   GTGGCGTCACTCTGAGGAACA  CAGTTCTCCTGATGTCCGAACTG  125 bp 
Gpx3   CATACCGGTTATGCGCTGGTA  CCTGCCGCCTCATGTAAGAC   80 bp 
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Chapter Five: General Discussion  

5.1 Discussion 

5.1.1 Summary  

 The purpose of this dissertation was to test the hypothesis that voluntary 

exercise protects against polychlorinated biphenyl-induced cardiovascular disease and 

that this protection is mediated through enhanced nitric oxide (NO) bioavailability and 

Nrf2-mediated signaling pathways.  The work presented in this dissertation 

demonstrates a novel approach of how cardiovascular toxicity due to coplanar PCBs can 

be mediated through aerobic endurance exercise.  Within the LDLr-/- mouse model, 

there is evidence suggesting exercise could reduce PCB-induced atherosclerosis; 

however, confounding variables including problems from high-fat feeding and 

intraperitoneal injection led us to switch models to the ApoE-/- mouse.  Within this 

model, we were able to show that exercise improved cardiovascular disease risk factors 

including glucose intolerance, dyslipidemia, hypertension, systemic inflammation, and 

oxidative stress compared to sedentary, PCB-treated animals.  Additionally, exercise 

reduced atherosclerotic lesions while upregulating antioxidant enzymes, which are 

involved in phase II metabolism of PCB 77 and reduce oxidative stress.  However, 

exercise did not significantly reduce mean atherosclerotic lesion in PCB-treated animals. 

This work suggests that exercise may increase the metabolism; in addition to, excretion 

of coplanar PCBs.  Exercise was identified as a treatment which prevented impaired 

endothelial vasodilation due to acute exposure to PCB 77, our proven model for 

coplanar PCB induced endothelial dysfunction.  This work demonstrates several 

protective properties of exercise within these models. 

5.1.2. Effect of Exercise on PCB 77-induced toxicity in LDLr-/- mice 

 Atherosclerosis is the primary cause of myocardial infarction and stroke and 

remains the leading cause of death within in the United States10.  Mouse models that 

mimic human disease including the LDLr-/- model are useful tools for examining 

atherosclerosis157.  The LDLr-/- requires feeding of a diet enriched in saturated fat as 

well as cholesterol (0.15-1.25%), colloquially known as the “Western” diet because it 

mimics the average dietary composition consumed by humans in the Western 

hemisphere in order to develop atherosclerosis within the timeframe of our study157.   
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Environmental pollutants, specifically polychlorinated biphenyls (PCBs), a type of 

persistent organic pollutant, are linked to cardiovascular disease11.  Specifically, 

exposure to PCBs contributes to cardiovascular-related mortality73 and accelerate 

atherosclerotic lesion formation82.  Within this dissertation, we identify several risk 

factors associated with cardiovascular disease including hypertension, inflammation, and 

hyperlipidemia that are accelerated with PCB exposure, as well as provide further 

evidence supporting that PCBs contribute to CVD.  

There have been several mechanisms proposed to explain how PCB exposure 

leads to CVD.  Previous studies from our laboratory and others have shown that PCBs 

bind to the aryl hydrocarbon receptor (AhR) on endothelial cells which is a transcription 

factor that binds to xenobiotic response elements (XREs) within the promoters of 

downstream target genes including cytochrome P450 1A1 (CYP1A1) to initiate 

endothelial dysfunction, a common first step in CVD83.  Once CYP1A1 becomes 

uncoupled from the metabolism of PCBs oxidative stress begins within the endothelial 

cells68.  Elevated levels of oxidative stress (e.g. Reactive oxygen species) can lead to 

the activation of redox sensitive transcription factors including Nκ-KB and AP-1 that 

upregulate proinflammatory signaling molecules including monocyte chemoattractant 

protein-1 (MCP-1) and interleukin-6 (IL-6)285.   

Within this dissertation, male LDLr-/- mice were chronically exposed to PCB 77 

(170 µM/kg) during weeks 6, 8, 10, 12.  The major finding of this dissertation was that 8 

weeks of voluntary exercise led to a reduction in plasma and hepatic cholesterol (Figure 

2-7) as well as a trend towards reduced atherosclerotic lesions, after PCB exposure 

(Figure 2-6).  We examined plasma cholesterol levels because cholesterol constitutes a 

major portion of atherosclerotic lesions and PCB exposure has been associated with 

hyperlipidemia. We hypothesized that exercise would reduce plasma cholesterol levels 

within PCB-treated animals.  Recently, it has been shown that voluntary exercise 

reduces plasma levels of cholesterol including, VLDL and LDL sized lipoproteins, 

suggested to be from increased hepatic lipoprotein lipase that lowers hepatic cholesterol 

storage in LDLr-/- mice173.  Our findings demonstrate that exercise reduced plasma 

cholesterol, thus supporting our hypothesis.  This study suggests that aerobic exercise 

training improves cholesterol clearance that in turn, reduces PCB toxicity, which is 

supported by data from other labs173.  Several studies have shown that one strategy to 

prevent atherosclerosis is to increase cholesterol excretion to the feces because it 

reduces plasma cholesterol173,351.  Because PCBs are primarily excreted through feces 
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upon metabolism into more hydrophilic compounds, a therapeutic approach such as 

exercise which has been shown to improve cholesterol clearance through enhanced 

biliary excretion is an exciting candidate. Future studies should further investigate the 

effects of exercise on cholesterol metabolism and excretion by measuring fecal (e.g. 

neutral sterols, bile acids, and PCB metabolites) and biliary secretions (e.g. cholesterol, 

bile acids, and bile flow) in addition to jejunal NPC1I1 expression which is a known 

cholesterol efflux protein.   

A surprising finding was that exercised mice exposed to PCBs had significantly 

lower levels of HDL.  A review of the current literature suggests that exercise slightly 

raises HDL levels with caveats including diet, reduction in body fat, and numerous single 

nucleotide polymorphisms (SNPs) in Apo A-I, ABCA1, LPL, CETP, LIPC and GALNT2 

that collectively may explain how a person’s HDL-C will response to exercise.   

Additionally, we show that exercise leads to an accelerated inflammatory response in 

PCB-treated animals and increased liver: body weight ratio compared to sedentary, 

PCB-treated animals.  Because exercise suppresses the accumulation of lipids within 

the liver and reduces liver weight286, our findings indicate that the increased liver: body 

weight ratio is due to administration of PCB 77.  Our lab has previously reported PCB 77 

exposure significantly increased liver-to-body weight ratio in animals on a high fat diet81.  

Other groups have reported that exposure to PCB 77 causes lipid peroxidation, 

hepatomegaly, and increased oxidative stress within the liver58,287.  Although we 

observed a reduction in hepatic cholesterol levels, we did not measure total hepatic lipid 

content or cirrhosis. Future studies should assess the extent of liver cirrhosis as well as 

monitoring changes in biliary excretion and overall body burden.  PCB quantification in 

tissues reveals elevated levels of PCB 77 in the plasma of exercised PCB-treated mice.  

These findings suggest that exercise enhances lipolysis which leads to increased 

plasma concentrations of PCB 77 and its metabolites.   

Additionally, it should be noted that body weight varies significantly with a high-

fat diet alone, prior to treatments.  This demonstrates that feeding of the Western diet 

represents a potential confounding variable within this study; however, we did not 

measure how PCB-77 affected appetite.  Administration of PCB 77 in conjunction with 

Ang II infusion was examined in both LDLr-/- and ApoE-/- mice to assess the extent of 

atherosclerosis and abdominal aortic aneurysm (AAA) formation .  There was less AAA 

formation in the LDLr-/- mice and the authors propose that the Western diet, which 

increases adiposity, may be causing the sequestration of PCBs in the adipose tissue.  A 
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limitation within this study is that we did not quantify PCB 77 within the adipose tissue of 

these mice so we do not have the results to determine if Western diet feeding led to a 

redistribution of PCB77 within adipose tissue.  

Because of the potential confounding factor of the Western diet, future studies 

should utilize a different murine model of atherosclerosis, the ApoE-/- mouse. The 

majority of in vivo work within the fields of exercise and cardiovascular disease utilize the 

ApoE-/- model and demonstrate positive outcomes in exercised animals related to 

cardiovascular disease and its associated risk factors159,168,172,175,352.  The ApoE-/- mouse 

develops atherosclerotic lesions similar to that of humans but does not require high fat 

feeding for atherosclerosis to occur338.   

5.1.3 The Effects of Physical Activity on PCB-Induced Cardiovascular Disease in 
ApoE-/- mice 

As pollutant emissions continue to increase (i.e., manufacturing and agriculture), 

human exposure to these pollutants will rise, thus leading to the need for buffers to 

protect against pollutant-induced adverse health effects such as cardiovascular disease.  

The most logical being physiological.  Exercise has been shown to improve 

cardiovascular disease risk factors including hyperlipidemia, obesity, insulin sensitivity, 

hypertension, inflammation as well as the disease itself (reviewed extensively in Chapter 

1).  In this dissertation, we hypothesized that voluntary exercise protects against PCB-

induced cardiovascular disease and its associated risk factors including hyperlipidemia, 

glucose intolerance, hypertension, inflammation, and oxidative stress,   

We utilized the ApoE-/- mouse model and opted for oral gavage administration of 

PCB 77 in order to prevent injection-associated inflammation.  Oral gavage of PCB 77 

subjects the toxin to intestinal absorption and the microbiome which may have played a 

role in metabolism as well.  The dosing regimen was modified to a dosage of 170 µM/kg 

administered during weeks 1, 2, 9, and 10 based on another colleague’s data that this 

paradigm sustained glucose intolerance through week 12306.  The exercise intervention 

was lengthened to 12 weeks instead of 8 weeks based on the majority of studies utilizing 

exercise as an intervention against cardiovascular disease 169,172,173,176,177,279.  In this 

dissertation, we demonstrate that voluntary exercise prevents several risk factors of 

cardiovascular disease including glucose intolerance, hypercholesterolemia, 

hypertension, systemic inflammation, oxidative stress, as well as atherosclerosis.  Baker 

et al. demonstrated that PCB 77 administration leads to impaired glucose intolerance 
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that is associated with adipose tissue inflammation306.  Although we did not investigate 

the signaling pathways associated with adipose tissue or skeletal muscle glucose 

uptake, exercise enhances insulin signaling and increases expression of GLUT4, a 

transporter that allows glucose to enter the cell from circulation353.  We showed that 

exercise improved glucose tolerance in PCB-treated animals, Sedentary, PCB-treated 

animals had significantly higher levels of hepatic and plasma cholesterol, predominately 

in the VLDL and LDL fractions.  Our results provide further insight that dietary exposure 

to PCB77 significantly increases hypercholesteremia specifically within the VLDL fraction 

that is associated with increased atherosclerosis82.  Our laboratory previously 

demonstrated that PCB77 administration leads to decreased expression of ATP-binding 

cassette A1 which is responsible for cholesterol export from the liver as well as, 

decreased expression of genes associated with fatty acid metabolism including fatty acid 

synthesi and lipid transport/export, 104.  There is considerable evidence that exposure to 

PCBs leads to lipid changes in both plasma and liver tissues82,104,329,354.  Multiple studies 

have reported that an increases in liver microsomal lipids (e.g. total lipids, phospholipids, 

neutral lipids, and cholesterol) after PCB administration342,354,355.    Voluntary exercise 

has been shown to lower hepatic content and within our studies, voluntary exercise 

lowered PCB-induced hepatic and plasma increased cholesterol levels.  Epidemiological 

evidence demonstrates a link between serum PCB level and the prevalence of 

hypertension, regardless of age48.  Hence, hypertension is an easily identifiable risk 

factor for cardiovascular disease.  Although we do not specifically investigate 

mechanisms of PCB-induced hypertension within this dissertation, Chapter four provides 

data that increased bioavailability of NO improving endothelial-dependent vasodilation in 

affected vessels may be a possible mechanism. 

Atherosclerosis is an inflammatory disorder, leading to the increased expression 

of specific inflammatory molecules2.  To determine if inflammation is a result of PCB-

exposure, we next assessed the presence of a diagnostic series of inflammatory 

molecules within the plasma of these animals.  Significant decreases in interleukin 6 (IL-

6), monocyte chemoattractant protein 1 (MCP-1), chemokine (C-X-C motif) ligan1 (CXC1 

or KC), macrophage colony stimulating factor (M-CSF), and (monokine induced by 

gamma interferon) MIG are detected in PCB77-treated, exercised mice compared to 

sedentary counterparts (Figure 3-4A-E) suggesting improvements in the inflammatory 

state.  MCP-1 is a chemokine that attracts monocytes into the subendothelial space in 

early stages of atherosclerosis.  The recruitment of monocytes into the artery wall 
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followed by their differentiation into macrophages and subsequently foam cells is an 

early event in the pathology of atherosclerosis.  Our lab has shown through in vitro and 

in vivo studies that PCB 77 significantly upregulates MCP-1.  An exercise regimen of 

low-intensity (10,000 steps, 3 times per week for 8 weeks) among healthy human adults 

(mean age 45) led to a significant reduction in proinflammatory cytokines IL-6, MCP-1, 

and TNF-α. Reduction in circulating levels of MCP-1 could be atheroprotective since less 

recruitment of monocytes would occur. KC is C-X-C chemokine that regulates monocyte 

arrest (or anchoring to the luminal surface of a vessel) in early atherosclerosis and has 

been shown to be reduced in aerobic exercise within several different models including 

hind limb ischemia356 and acute lung injury357 further supporting the anti-inflammatory 

effects of exercise.  M-CSF (macrophage-colony stimulating factor) is a cytokine that 

recruits monocytes to the sites of endothelial injury and is found within atherosclerotic 

plaques in addition to in the circulation, where it is recognized as a biomarker of disease 

progression.   Deletion of M-CSF leads to reduced atherosclerosis from a reduction in 

circulating monocytes358.  The present dissertation provides the first report that aerobic 

exercise leads to a decrease in circulating M-CSF.  MIG or monokine induced by 

interferon gamma is a chemoattractant expressed in the atheroma that recruits T cells to 

inflammatory sites359.  The data demonstrates that exercise significantly reduces 

expression of MIG which supports previous findings that increased laminar flow (such as 

during exercise) also reduces MIG expression in endothelial cells360. 

PCB 77 exposure has been associated with increased levels of oxidative stress.  

To address this, we examined urinary levels of F2-isoprostanes.  F2-isoprostanes are 

prostaglandin-like compounds formed from a non-enzymatic mechanism of free radical 

peroxidation of arachadonic acid361. There are several end products of lipid peroxidation 

including thiobarbituric reactive substances (TBARS), gaseous alkanes, and F2-

isoprostanes; however, measurement of F2-isoprostanes has proven to be a more 

accurate marker of oxidative stress in vivo in human and other animals362.  Advantages 

of mass spectrometry over immunoassays include the high sensitivity and specificity for 

molecules, which provides resolution to the picogram range (1 x 10-12).  In humans, 

levels of F2-isoprostanes are ~4-fold higher in atherosclerotic plaques compared to 

normal vascular tissue363.   Additionally patients with hypercholesterolemia had 3.4 fold 

higher levels of F2-isoprostanes compared to normal controls307 and there was no 

correlation with serum cholesterol, triglycerides, LDL-c, or arachadonic acid suggesting 

that patients have increased oxidative stress versus increased lipid substrate.  A 12 
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month random controlled trial that included an intervention of aerobic exercise (60 

minutes, 5 days per week) in previously sedentary women demonstrated a decrease in 

oxidative stress as measured through urinary F2-isoprostane with little change in body 

mass364.  Results from this dissertation indicate that exposure to PCB 77 leads to a 

dramatic increase in F2-isoprostanes in sedentary mice, whereas, exercised mice have 

8-fold lower levels, suggesting that exercise protects against systemic oxidative stress 

associated with PCB 77 exposure. 

In addition to a reduction in risk factors for cardiovascular disease, we 

demonstrate that exercise significantly reduced mean atherosclerotic lesion size in PCB-

treated animals compared to sedentary, PCB-treated animals. Our findings are 

supported by twenty-three published studies that have examined the effect of exercise 

training in mouse models of atherosclerosis.  Regardless of exercise intervention utilized 

(swimming158–163, treadmill running164–170, or voluntary running171–177), each of these 

studies reported a decrease in atherosclerosis following exercise, providing a basis to 

test our hypothesis.  Our findings are the first to report the beneficial effects of exercise 

against atherosclerosis accelerated by an environmental pollutant; however, we are not 

the first group to report that exercise can protect against PCB toxicity301.   

Within this dissertation, voluntary exercise prevented PCB-induced gut 

microbiome changes by preventing decreases in the population of Proteobacteria.  

Another group assessed the effects of exercise and dietary supplementation with phytic 

acid on Cadium toxicity and suggested that exercise provides a protective effect in 

relation to weight loss, cholesterol levels, and liver damage; however CVD parameters 

were not investigated365.   

Exercised animals have reduced levels of oxidative stress, thus we assessed 

several antioxidant enzymes to determine if they provided a potential mechanism of 

protection.  A growing body of evidence suggests that exercise can activate Nrf2251–254.  

Since our lab previously demonstratd the reduction in proinflammatory signaling after 

EGCG102 249, a known inducer of Nuclear factor erythroid 2-related factor 2 (Nrf2), we 

examined downstream Nrf2 gene targets.  Nrf2 is a transcription factor that responds to 

increased oxidative stress within the cell.  Target genes for Nrf2 include a diverse set of 

antioxidant enzymes and cytoprotective genes including heme oxygenase 1 (HO-1), 

NAD(P)H:quinone oxidoreductase-1 (NQO1), thioredoxin, and glutathione metabolism 

genes including  glutathione peroxidase 2 (Gpx2), glutathione S-transferases (GSTs).  

Our findings demonstrate downregulation of the inhibitor protein, Keap1.  We also see 
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an upregulation of several Nrf2 target genes including phase II antioxidant enzymes 

Gpx1, GST, and GSR; however, we did not see changes in NQO1 or HO-1 expression.  

To confirm that these findings are biologically relevant future studies should examine 

antioxidant expression through Western blot analysis.  Additionally, Nrf2 nuclear 

translocation should be measured to test if exercise increases Nrf2 activation.  

Electromobility shift assays could be performed to determine the extent of ARE binding 

in exercised animals which would be another indication of Nrf2 activation.   

Our results show a downregulation of the phase I enzyme, CYP1A1, which has 

been implicated in contributing to oxidative stress in the presence of coplanar PCBs68.  

Superoxide can uncouple eNOS320, the enzyme responsible for the production of the 

potent dilator nitric oxide, thus producing peroxynitrite and reducing endothelial-

dependent dilation.   We have previously shown in cultured endothelial cells that 

exposure to PCB 77 leads to an increase in peroxynitrite.90  In future studies, we will 

further test how exercise regulates NO-mediated signaling and endothelial dependent 

dilation.  

We measured PCB 77 and its hydroxyl metabolites in several tissues to 

determine if exercise had an effect on metabolism of PCB77.  PCB 77 was not 

detectable in any tissues, and OH-PCB 77 was found in the feces of these animals.  

Exercised animals had significantly less OH-PCB 77 metabolites in their feces compared 

to sedentary animals.  Because of the rapid metabolism of PCB77, these results are not 

surprising; however, this suggests indirectly that exercise increased drug metabolism 

and that most of the PCB 77 may have been metabolized and/or excreted prior to the 

time of measurements (at the end of study) since the last dose was during week 10.  

Future studies should utilize a different dosing regimen that accounts for PCB 77’s half-

life in order to detect potential changes in tissue distribution as well as excretion of PCB 

and its metabolites.  

With regard to toxicokinetics of PCBs, it has been reported that gastrointestinal 

absorption of individual congeners varies from 66-96% in rats366.  The distribution of 

PCBs in the body depends on the dose as well as, the degree of chlorination.  

Hydroxylated PCBs are the major metabolites with others including arene oxides that 

highly reactive and converted to phenols, dihydrodiols, and glutathione conjugates which 

are excreted.  Sulfur-containing metabolites (e.g., methyl sulfones) have additionally 

been identified.  A major limitation of our current system is the inability to measure a 

limited number of metabolites, specifically hydroxylated metabolites. Additional studies 
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should examine the above metabolites.  This would require collaborations with the 

Superfund group at the University of Iowa which have synthesized internal standards for 

measuring sulfated metabolites.  Excretion of PCB congeners is dependent on their rate 

of metabolism to more hydrophilic compounds367.  Most congeners show a biphasic 

elimination, where the initial half-life is relatively short but the later half-life is much 

longer and more structure specific.  The half-lives of PCB congeners vary from a few 

days to 450 days depending on degree of chlorination.  Within ICR mice, the half-life of 

PCB 77 was reported at 1.07 days with the majority distributing from serum to adipose, 

liver, and thymic tissues368.  Within this study, ICR mice received 8 mg/kg every other 

day for 10 doses before toxicological endpoints were measured.  Because PCB 

metabolites are eliminated primarily through the bile and feces, feces should be 

gathered at different time points throughout the study in order to quantify excretion rates 

between sedentary and exercise animals to determine whether exercise increases 

metabolism and subsequent excretion of these compounds.   

5.1.4. Effect of exercise on PCB 77-induced endothelial dysfunction in C57BL6 
mice 

Human exposure to coplanar PCBs has been associated with cardiovascular 

disease and its associated risk factors including diabetes77, hypertension48, 

dyslipidemia329, and endothelial dysfunction84,313,330.  Endothelial dysfunction is an 

independent risk factor for cardiovascular disease27 and is an initiating step in the 

development of atherosclerosis331.  .  NO is produced by endothelial nitric oxide 

synthase (eNOS) during the conversion of L-arginine to L-citrulline through receptor 

activation (e.g., muscarinic receptors) or mechanical force (e.g., shear stress)320.  NO 

relaxes blood vessels, prevents platelet aggregation and adhesion, limits oxidation of 

low-density lipoprotein (LDL) cholesterol, inhibits proliferation of vascular smooth muscle 

cells, and decreases expression of proinflammatory cytokines187.    All of these functions 

of NO play in role in optimal endothelial health, thus preventing atherosclerosis.  

The previous work within this dissertation, specifically Chapter 3, demonstrated 

the effects of exercise in PCB-induced cardiovascular disease in an observational 

manner.  The aim of this dissertation was to determine a mechanism of protection 

against PCB-induced CVD within the vasculature.  Because our laboratory has shown 

that PCB 77 exerts toxicity within the vascular endothelium in an AhR-dependent 

mechanism, we examined the role of exercise in PCB-induced endothelial dysfunction 
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utilizing the ex vivo vascular reactivity assay.  Several studies, in both human and animal 

models, have demonstrated that exercise can reverse endothelial dysfunction171,369–371. 

We hypothesized that exercise protects against cardiovascular disease by preventing 

endothelial dysfunction through increased bioavailability of NO.   

We demonstrate that exposure to PCB 77 led to severe impairment of 

endothelium dependent vasodilation in sedentary animals (Figure 4-7).  Exercise is able 

to prevent the PCB-induced impairment. Our data show that ACh-induced relaxation is 

blocked in all groups but PCB 77-treated sedentary animals.  The NO inhibitor L-NAME 

inhibited the relaxation response in both exercised and control groups equally, one could 

argue that increased bioavailability of NO is one of the protective mechanisms of 

exercise within the vascular endothelium.  In fact, pre-incubation with L-NAME 

significantly reduced endothelium dependent relaxation in all groups, except in PCB-

treated sedentary animals.  , NO-mediated mechanism may also contribute to the 

protective effects of exercise against PCB-induced endothelial dysfunction.  Other 

groups have demonstrated that exercise leads to increased activity of eNOS through 

phosphorylation of ser1177.  A limitation to this study is not confirming aortic expression 

of eNOS within these animals to substantiate this finding.   

The superoxide mimetic Tempol rescued the impaired vasodilation in PCB-

treated sedentary animals, suggesting a relationship between PCB exposure, increased 

oxidative stress and endothelial dysfunction.  Previous publications have reported 

rescue of dioxin-induced endothelial dysfunction by Tempol in sedentary mice 267.  This 

implies that exercise might normalize the redox status within the vascular endothelium 

by reducing production of superoxide, thus improving vasodilation. 

Examination of tissue distribution demonstrated that exercise did not significantly 

change the amount of PCB 77 or its metabolites within liver or plasma.  Measurement of 

adipose, skeletal muscle, and fecal concentrations would have allowed us to make a 

better estimate to the effects of exercise on metabolism, excretion, and body burden. 

Interestingly, exercised animals had a significant downregulation of CYP1A1 which could 

explain the reduction of superoxide in these animals.  Furthermore, this reduction in 

superoxide may explain why Nrf2-mediated antioxidants were not stimulated.  

Stimulation of Nrf2 appears to require induction of oxidative stress by a damaging agent 

that increases ROS such as PCB 77.  A limitation of this work is we did not measure 

ROS specifically.   This data suggests that exercise attenuated endothelial function may 

occur by a reduction in oxidative stress and decreased CYP1A1 expression.   
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   .  The major limitation being this study is the artificial nature of this type of 

functional analysis where the experimental conditions do not include the physical 

stresses of shear stress and cyclical wall stretch that endothelial cells within the isolated 

vessel would normally experience334.  Although traditional organ-bath pharmacology is 

artificial, we were able to isolate elements of endothelial function by treating with 

pharmacological inhibitors including L-NAME and Tempol.  Because isolation of aorta to 

preserve tissue viability was essential to the success of this experiment, I had limited 

time to collect tissue from these animals.  In hindsight, a subset of animals or a co-

worker to assist in weighing of liver tissue as well as harvesting skeletal muscle, adipose 

tissue, kidneys, the remaining thoracic aorta and lungs would have enabled more data to 

be collected.  Additional measurements would include antioxidant enzymes and p-

eNOS/eNOS expression within the aorta as well as measuring tissue levels of PCB 77 

and its metabolites to determine the effects of voluntary exercise on metabolism, 

excretion and body burden. Fecal collection would have allowed us to compare the 

effects of chronic versus acute exercise on PCB excretion rates.  An additional limitation 

to this study is the acute dosing schedule that is not reflective of human exposure.  

Future studies should examine the effect of exercise on endothelial function in mice that 

were chronically exposed to PCB 77 (dosing regimen in Chapter 3) to determine if 

exercise remains protective.   

5.1.5  Implications From Different Mouse Models 

 The data presented in this dissertation support the hypothesis that exercise 

provides beneficial effects within the vasculature particularly in vehicle-treated animals.    

Because of the changes in diet, dosing regimen, ways PCBs were quantified, and 

differences in animal strains it is difficult to accurately compare results between these 

two studies.  Because these different aims utilized different mouse models, a further 

discussion of differences among strains and recommendations to address these 

limitations are discussed below. 

 Several animal models are available to study atherosclerosis including the 

mouse, rabbits, pigs, and nonhuman primates.  Due to the well-established murine 

models as well as housing costs and feasibility, we utilized the mouse for these studies.  

Mice are generally resistant to atherosclerosis due to low cholesterol levels (<100 mg/dl) 

which is present predominately as HDL cholesterol274.  By genetic and dietary 

manipulations, specifically by increasing apoB-containing lipoproteins, mice will develop 
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atherosclerosis.  The two major mouse models, the ApoE-/- and the LDLr-/-, are widely 

accepted within the scientific community.  ApoE is mainly produced in the liver and acts 

as a ligand on the surface of lipoproteins ultimately for their clearance through uptake by 

the LDLr.  Genetic deletion of ApoE delays clearance of lipoproteins and raises plasma 

levels to 300-400 mg/dl as well as atherosclerosis on a low-fat diet339. Feeding a high-

fat/high-cholesterol diet can raise plasma cholesterol levels to >1000 mg/dl and 

accelerates atherosclerosis.  The discovery of the LDLr by Brown and Goldstein while 

studying familial hypercholesterolemia led to the honored Nobel Prize in 1985.  LDLr 

recognizes apoB100 on LDL and apoE on VLDL and chylomicrons for their clearance 

from the blood.  Unlike the ApoE-/- mouse, LDLr-/- mice require a high fat diet (40% 

calories from saturated fat and 0.1-0.2% cholesterol by weight colloquially known as the 

Western diet) to develop atherosclerosis and elevated cholesterol levels (>1000 mg/dl).  

From a practical standpoint, both models are commercially available and are 

backcrossed to the C57BL/6 background.  

 The lesion stage and timeframe for development of atherosclerosis has been 

well-characterized within the literature.  LDLr-/- mice fed a Western diet will develop 

stage I lesions within 4-6  weeks and present with stage III at 16-20 weeks whereas 

ApoE-/- fed a standard diet present with stage I lesions at 1-2 months and do not 

develop stage III lesions until 7-9 months of age372.  Apoe-/- mice fed a Western diet will 

develop atherosclerosis at a similar rate to the LDLr-/- mice.  Stages I-III lesions consist 

of an abnormal accumulation of lipoproteins, T-cells, and macrophages, which can be 

measured through staining techniques.   Stage IV lesion is considered as an advanced 

lesion because these lesions consist of a lipid core as well as thickening of the tunica 

intima.  When the lipid core accumulates fibrous material or a cap, this is considered 

stage V as the lumen becomes narrowed372.   

These discrepancies could explain the differences seen between the two studies.  

It is important to note that despite different timeframes, the mean lesion size between 

the two studies was roughly similar (in both LDLr-/- mice and ApoE-/- mean lesion sizes 

ranged from 0.1-0.3 mm2, refer to Chapter 2 and Chapter 3).  Furthermore, a complete 

histological analysis of the aortic root was not conducted to better determine which 

lesion stage these animals were in and whether exercise could decrease macrophage 

infiltration within the lesion. . We did not see a significant change in lesion area, but that 

does not necessarily mean that the atherogenic process was the same between PCB, 

sedentary, and PCB, exercise groups.   Additional studies should quantify the infiltration 
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of macrophages within the aortic root especially since differences were seen in the 

inflammatory response systemically between the two strains. The amount of technical 

skill required to collect all of the serial sections spanning a 400 + μm region of the 

ascending aorta is a major limitation within this body of work.  Future studies should 

utilize an expert with the technical skill to reduce variability and potential human error.  

Upon statistical consultation, it has been recommended that this additional study should 

utilize a greater sample size (n=15-20) would account for the inherent variability seen in 

mean atherosclerotic lesion size and this would allow us to determine if exercise would 

be an appropriate therapy for reducing body burden and preventing cardiovascular 

disease. Another consideration to this work is that we examined a relatively short time 

frame of the disease.  Atherosclerosis and body burden of PCBs may be alleviated by 

continued voluntary exercise for longer periods of time based on other studies that have 

indicated reduction in POP body burden over a 2 year time frame.  An additional factor 

to account for is the role of diet.  Other studies within the literature have demonstrated 

that a diet consisting of protein and heart healthy fats was required for exercise to 

protect against dyslipidemia, inflammation, and atherosclerosis in ApoE-/-176.  Potentially 

supplementing rodents with olestra or EGCG may offer protective while PCBs are 

mobilized into the plasma for further metabolism and excretion.  Although exercise 

prevented many of the adverse side effects of PCB exposure, a diet supplemented with 

phenols may be required protect against the development and progression of 

atherosclerosis. 

 Specifically within the LDLr-/- study, systemic inflammation was significantly 

increased in the PCB, exercised animals.  The dosing regimen could account for these 

changes since mice were exposed to PCB 77 24 hours before euthanasia.  Within the 

ApoE-/- study, systemic inflammation was largely attenuated; however the last dose 

occurred 3 weeks before plasma was analyzed.  To determine the effect of exercise on 

PCB-induced inflammation, time course studies that examine inflammatory markers 

throughout the duration of the study would provide insight   

 Within both studies, exercise led to a reduction in hepatic cholesterol despite 

increased liver:body weight.  This finding suggests that exercise does not fully protect 

against PCB-associated liver pathologies; however, we did not quantify total lipids or 

fibrosis in either study.  Other difficulties that arise for accurate comparison is missing 

parameters from the LDLr-/- study including systemic oxidative stress, antioxidant status 

and glucose tolerance test that were measured in the ApoE-/- study.  Having oxidative 
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stress data would help us better assess why the LDLr-/- mice had significantly elevated 

CYP1A1 expression which could be merely the result of the dosing regimen but this 

remains unknown.   It is quite interesting that exercise significantly reduced CYP1A1 

expression in ApoE-/- but this could be explained by the dosing regimen as well.   

In summary, exercise modulates cholesterol particularly in the VLDL and LDL 

fractions, reduces hepatic cholesterol, and reduces adiposity in both strains exposed to 

PCB 77.   In ApoE-/- mice, exercise reduces systemic oxidative stress, glucose 

intolerance, inflammation, and hepatic CYP1A1 expression while upregulating phase II 

enzymes including GST and GSR. Exercised animals had lower mean atherosclerotic 

lesion size; however, future studies with a larger sample size are needed.  The section 

below outlines future studies that will further delineate the potential protective role of 

exercise against the adverse health effects of PCB exposure.    

5.2. Future Directions 

The work presented here demonstrates the cardiovascular toxicity of coplanar PCBs and 

examines the role of lifestyle modifications including aerobic exercise.  Providing 

guidelines to humans for physical activity based on this project is not recommended due 

to the infancy of this work.  In order to provide clear physical activity guidelines for 

populations exposed to PCBs and other persistent environmental chemicals, the 

following questions should be addressed.  

In chapter 3, our data indicates that exercise may have an effect on the 

metabolism of PCB 77, which is a novel finding.  One unsolved piece of the puzzle are 

the pharmacokinetics of the metabolism of PCB 77 and future studies should address it.  

To assess the effect of olestra on PCB 77 metabolism, Jandacek et al. utilized radio-

labeled PCB 77 and determined absorption and excretion rates through fecal 

samples105.  Feces should be collected for 48 hours immediately after gavage (if 

radiolabeled congeners are available and within a reasonable price range)  to measure 

initial dietary absorption (reported as % of dose in 48 hours) and then for an additional 

48 hours 7 days after administration to measure enterohepatic circulation.  At this 

endpoint, tissues should be collected to measure distribution of PCB in adipose, plasma, 

and liver tissue.  If radiolabeled congeners are not available, concentration within the 

adipose tissue could be utilized as an estimate of body burden. This would allow the 

researcher to make a more thorough report on the potential role of exercise in increasing 
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metabolism and excretion of PCB 77 through interrupted enterohepatic circulation and 

enhanced excretion of these compounds.  

More recently, Jandacek et al. administered olestra potato chips (15 g 

olestra/day) to reduce PCB body burden in Anniston residents for 12 months in a 

double-blind placebo-controlled, 1 year trial. Results from this pilot study demonstrate 

elimination rate of 37 non-coplanar PCBs to be faster in olestra-consuming patients than 

before the trial373.  This study is very important because it demonstrates a dietary 

intervention that can safely reduce body burden of PCBs.  These findings support the 

need to continue a larger intervention trial to determine whether reduction in PCB body 

burden will improve metabolic parameters such as hypertension, cardiovascular disease, 

and diabetes.  To date, there is a single case study that reports metabolic improvement 

(hyperlipidemia and hyperglycemia) in a patient whose PCB body burden was 

reduced374.    

Additional in vivo studies should examine the effects of chronic exposure of PCB 

77 on endothelial dependent vasodilation.  Walker and Kopf measured the effect of 

dioxin exposure (35 days which was the amount of time required for C57BL/6 mice to 

become hypertensive) on vascular reactivity and found significant impairment267.  A 

group of Spolana plant workers in the Czech Republic were heavily exposed to dioxin 

and vascular function was examined by laser Doppler fluxmetry. Workers were found to 

have significant endothelial dysfunction in four of the six parameters of microvascular 

reactivity within the brachial artery (maximal perfusion during hyperemia, time needed to 

reach maximal perfusion during hyperemia, velocity of perfusion increase, and thermal 

reactivity)375.  We hypothesize that chronic exposure of PCB 77 will lead to impaired 

vasodilation based on our findings regarding increased atherosclerosis, oxidative stress, 

and inflammation but that exercise will prevent this endothelial dysfunction.     

Previous work in our laboratory provides strong evidence that PCB transport 

requires functional caveolae and its associated scaffolding protein Caveolin-1 (Cav-1), 

enhancing its toxicity.  PCB 77 administration in endothelial cells increases caveolin-1 

and PCB 77 accumulates within the caveolae fraction92.  Because caveolae play a role 

in the development of atherosclerosis, therapies that decrease caveolae and modulate 

its associated inflammatory signaling are attractive targets.  We did not see changes in 

Cav-1 expression within the liver of exercised mice; however, future studies should 

examine expression of caveolin-1 in aorta of exercised mice to determine if exercise 

reduces its expression.  Because eNOS is bound to caveolin-1 in its inhibitory state348, a 
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potential scenario is that the lipid bilayer undergoes a conformational change due to 

mechanotransduction, thus increasing NO bioavailability by freeing eNOS from Cav-1.  

This hypothesis remains untested and would be an exciting mechanism to explore.   

 Because shear stress is a potential mechanism with which exercise exerts its 

cardioprotective effects,   porcine endothelial cells should be cultured and exposed to a 

newly developed system that exerts “physiological” flow instead of the traditional models 

that apply a controlled level of fluid shear stress.  Uzarski et al. have developed a 

hemodynamic flow model that mimics complex and variable shear fields based on short-

term changes in blood flow that were observed in vivo.  They compared physiological 

flow (PF) to static culture and steady flow (SF) that was set at a consistent pulse 

frequency of 1.3. Hz.   Their findings demonstrate that PF led to a significant 

upregulation of eNOS, upregulation of atheroprotective genes including SOD-1 and 

downregulation of MCP-1.  Additionally these endothelial cells had a lower TNF-α 

induced HL-60 leukocyte adhesion376.  This flow model mimics atheroprotective flow and 

may be a suitable model to mimic flow seen during exercise.   Quantification of shear 

stress in human pulmonary arteries reports that shear changes 19.8 +/- 4.0 to 51.8+/- 

6.7 dynes/cm2377.    If this collaboration cannot occur, a suitable alternative would be 

collaborate with Hainsworth Shin to utilize his micropipette shear device to administer 

shear stress to cultured endothelial cells.  His work has previously shown that 

membrane cholesterol influences mechanotransduction of shear stress by PMNLs by 

affecting membrane fluidity378 which has implications for testing whether or not exercise 

can modulate caveolin-1 (a membrane protein) and its associated signaling during PCB 

administration.   These cells then should be exposed to doses of PCB 77 to determine if 

PF flow (or shear stress representing laminar flow) can prevent proinflammatory 

signaling mediated by NF-κB and potentially upregulate anti-inflammatory signaling 

molecules.  

5.3 Conclusions 

In conclusion, this dissertation demonstrates that voluntary exercise protects 

against PCB-induced cardiovascular disease risk factors including glucose intolerance, 

dyslipidemia, hypertension, systemic inflammation, and oxidative stress.  Additionally, 

exercise reduced atherosclerotic lesions while upregulating antioxidant enzymes.  This 
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work suggests that exercise may increase the metabolism and excretion of these 

compounds as well.   

Acute exposure to PCB 77 led to impaired endothelial-dependent dilation, an ex 

vivo measure of endothelial function; however, exercise was able to prevent this PCB-

impaired endothelial dependent vasodilation.  The mechanisms involved in PCB-induced 

endothelial dysfunction involve production of superoxide and reduced bioavailability of 

NO; however the mechanisms involved in eNOS regulation should be studied in further 

detail including the role of Cav-1.   

 Lifestyle modifications such as physical activity have been shown to protect 

against cardiovascular disease.  This dissertation provides evidence that exercise can 

modulate several adverse health effects of PCB 77 but additional studies are required 

before exercise recommendations can be made for groups residing in Superfund 

hazardous waste sites.  
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Figure 5 -1.  Proposed signaling pathway for PCB detoxification in vivo.  

PCB 77 is an AhR ligand and causes CYP1A1 upregulation, which when in the presence 

of PCB 77 leads to superoxide production.  Exercise effectively upregulates the 

antioxidant response in the presence of PCB77 which allows for a more efficient 

antioxidant response to environmental insult. (Adapted from Newsome et al JNB, 2013) 
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Appendix A: Vascular Reactivity Protocol 
 
 

Tissue Force Analysis 
 
Before tissue harvest 
(Modified)Krebs buffer preparation:  
 - For 2 liters: 
   ~ 1650mls of diH20  
    -add NaCl dry chemical and stir ;add dextrose dry chemical stir  
    

-add 60 mls KCl, KH2PO4, MgSo4-7H20 and NaHCO3 stocks and stir for 5    
              min 
  

  - q.s. with diH20 
 

- pour into reservoir; turn on heater and O2/CO2 tank to aerate the buffer.  Let buffer 
aerate ~ 20 mins 
 - drain solution, add CaCl2-2H20 and re-stir 5 min 
 - return to reservoir and aerate additional 10 mins before using 
  
80mM KCl solution preparation: 
 - For 500 mls :         
    ~ 300 mls of diH20 
 - add KCl dry chemical and stir; add dextrose dry chemical stir  
 - add 15 mls KH2PO4, MgSo4-7H20 and NaHCO3 stocks and stir for 5 min 
 - q.s. with diH20 
- pour into reservoir; turn on heater and O2/CO2 tank to aerate the buffer.  Let buffer 
aerate ~ 20 mins 
 - drain solution, add CaCl2-2H20 and re-stir 
 - return to reservoir; aerate an additional 10 mins prior to use. 
  
Balance and calibrate each transducer  
  
 Turn on analyzer: the screen will be in the set up mode and read as follows: 
1- SET 
2- bASE 
3- CAL 
4- [0.00] 
 
 To balance -from set up menu 
  Press 2 - bASE 
   Balance/baseline menu will appear as follows: 
   1 bASE 
   2 BLANK 
   3 [current force] 
   4 [baseline force] 
Press 2 - a red light will appear next to button 2, when the red light goes out the 
transducer is balance. The screen will read as follows: 
   1 bASE 
   2 BLANK 
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   3 [0.00] 
   4 [0.00] 
Press button 1 to return to set up mode. 
  
To calibrate - In set up mode 
  Press 3 - CAL 
   The calibration menu will appear as follows: 
   1 CAL 
   2 [20] 
   3 BLANK 
   4 [2.0] 
  Place the 2 gram weight on the transducer 
Press button 3 - a red light will appear next to button  three, when the red    light goes 
out the transducer is calibrated 
Press button 1 (mode) to return to set up Menu 
From set up Menu press Button 1 to enter pre-stimulation mode 
       
 
 
 
The display should read as follows 
   1 [2.0] 
   2 BLANK 
   3 BLANK 
   4 [00:01] 
  Remove the 2 g weight 
   The value in display box 1 should return to zero  
   (If this value exceeds 0.02g than repeat calibration) 
 
Open up DMSI software on computer; choose “all”, then “force” 
        - In “window”, choose “tile horizontally” and arrange windows to preference 
        - When ready to begin experiment, hit “start experiment” to record 
 
Tissue Harvest 
  
1. Anesthetize mice with IP injection of ketamine/rompun/saline cocktail 
2. Perform a thoracotomy, drain blood and perfuse the aorta with mod. Kreb’s buffer 
3. Carefully remove the entire aorta, with or without the heart, being careful to 
create no tears in the vessel. 
4. Place whole aorta in fresh Kreb’s buffer and remove all adventitia under a 
microscope 
5. Measuring sections of interest: 
Arch- 3mm section superior starting from the ascending arch at the base of the heart 
  Thoracic- 4mm section inferior to the left subclavian artery 
Suprarenal- 4mm section from the superior mesenteric artery toward the superior end of 
the aorta 
Infrarenal- 4mm section from left renal artery toward the bifurcation   
 
6) After each segment has been cut, mount the rings on the isometric triangles. 
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Mounting Tissues in Baths 
 

1. Fill reservoirs with fresh Kreb’s buffer. 
 

2. Using the mounting wires, secure each tissue segment to its transducer and fixed 
point within the glass baths. 

 
3. Create minimal tension (0.5-0.6 g) after tissue segment is successfully mounted 

 
4. When all tissues are mounted, increase tension to 1 g, drain baths and refill with 

fresh buffer 
 

5. For the next 30 min, readjust tension to 1 g and replace with fresh Kreb’s buffer 
every 10 min to equilibrate tissue segments  

 
Administering Agonists/antagonists 

KCL, if being used, should be given first to establish tissue viability and a baseline vaso-
reaction for future relaxation trials 

**our protocol adds KCL as a solution, so the entire bath is drained of buffer then filled 
with 80mM KCL for this step. Other drugs/agonists are usually added to the buffer in the 
baths 

The first time a drug dose is added to the chamber, hit “contract” or “relax” (whichever 
applies) and record the reference force. At each subsequent addition, repeat and record 
the max. force for that time interval 

Tissue should be ”washed” at least 3 times after each agonist by filling the baths and 
draining them 

Tissue should be allowed to equilibrate for at least 30 min after the washes (replacing 
with fresh buffer every 10 min) between agonists 

If using antagonists, administer these first and allow equilibrating 30 min before adding 
the secondary drugs 

 

Drug calculations: 

*All drugs dissolved in dH2O unless otherwise noted 

*All drugs diluted with fresh Kreb’s buffer 

*Stocks are good at 4 C for 2-3 days (5HT and PE are light sensitive) 

*Aliquots may be frozen for up to 12 weeks - do not freeze/thaw more than once 

5HT (serotonin)  MW=212.7        

PE (phenylephrine)   MW=203.7  
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AngII (angiotensin II)  MW=1166  

Ach (acetylcholine)      MW=181.66  

Cbl (carbachol)  MW=182.6   

L-NAME   MW=269.7        

Ind (indomethacin)     MW=357.8 *dissolve in ethanol, dilute in dH2O 
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