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ABSTRACT OF THESIS 

 

 

INVESTIGATION OF CARDIAC ELECTROPHYSIOLOGY 
 IN HUMAN VENTRICULAR TISSUE 

 

Individuals with cardiomyopathy are at higher risk to die from sudden cardiac arrest than 
those with non-failing (NF) hearts. This study examined the differences in electrical 
properties of failing and NF human hearts in terms of cardiac memory through explicit 
control of diastolic intervals in a sinusoidal fashion, restitution of action potential 
duration (APD) through standard and dynamic pacing protocols, maximum rate of 
depolarization and APD alternans. Recordings of transmembrane potentials were made in 
tissues extracted from patients with heart failure and one donor NF heart. Computational 
simulations were performed using the O’Hara Rudy model for generating surrogates of 
control data. Significant differences were seen between left ventricular (LV) tissue and 
NF LV tissue in tilt, and measures of memory in terms of area and thickness during the 
sinusoidal 400ms protocol. Minimum delay was also significantly higher in the failing 
LV during the sinusoidal 150ms protocol. Failing tissues showed a higher restitution 
slope and prolonged AP which is consistent with previous studies and is hypothesized to 
contribute to the increased susceptibility to unstable alternans. This study further 
explored how disease alters the electrical functioning of the heart and why these patients 
are at a higher risk of ventricular arrhythmia.  

KEYWORDS: Restitution, Ventricle, Cardiac Memory, Action Potential Duration, Heart 
Failure 
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Chapter 1 INTRODUCTION 

More than 350,000 Americans die from cardiac arrest, i.e. sudden cardiac death (SCD) 

each year.1 The majority of SCDs are caused by abnormal electrical activity in the heart, 

specifically the degeneration of ventricular tachycardia to ventricular fibrillation (v-fib). 

During v-fib, quivering of the ventricles prevents the normal contractions and relaxations 

needed to pump blood. Functioning of the heart is dependent on both electrical and 

mechanical factors. Those individuals with heart failure (HF), or previously mechanically 

weakened tissue, are more likely to suffer from ventricular arrhythmias and therefore 

SCD.1, 2 Individuals with cardiomyopathy have substrates which differ from healthy 

hearts such as fibrosis, altered communication pathways and ion currents. These changed 

properties affect the electrical path, which may result in arrhythmia, not allowing uniform 

contractions from the ventricles. The study of cardiac electrophysiology of healthy and 

diseased hearts has led to a better understanding of mechanisms and prediction factors of 

lethal arrhythmia. This has been made possible by the organ-level study of 

electrocardiography (ECG) most commonly used in the clinical setting, and the cellular 

and tissue-level recordings of action potentials (APs) from myocytes. Cardiac restitution 

and memory are thought to play primary roles in dynamics of electrical activity in the 

heart. Restitution explains the relationship between action potential duration (APD) based 

on the previous diastolic interval (DI), while memory is exhibited by the dependence of 

APD on the previous APs. The characteristics of these properties have been studied with 

the hypothesis that a lower restitution slope and more memory allow for a more stable 

system that is not as likely to degenerate. Alternans of APD, which is beat-to-beat 

variability in properties of APs, has been heavily correlated with risk of arrhythmia.3 In 

addition to the APD and repolarization characteristics, the rate of depolarization, dV/dt, is 

also a primary factor affecting conduction. In the present study, we characterized 

differences in memory, restitution, dV/dt and APD alternans between failing and non-

failing (NF) ventricular tissues from patients undergoing left ventricular assist device 

(LVAD) placement or heart transplants at the University of Kentucky Hospital. 

Computational modeling was also used as a supplement to generate control data when 

examining differences in restitution.    
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Chapter 2 BACKGROUND 

2.1 Electrical Activation of the Heart 
 
Electrical activity begins at the sinoatrial node containing pacemaker cells. The 

conduction travels to the atrioventricular node which delays the activation, allowing the 

atria time to empty blood into the ventricles. The path then continues down the bundle of 

His, purkinje fibers, and apex before branching along the outer walls of the ventricles, 

expanding from endocardium to epicardium. The precise coordination between the 

electrochemical propagation of activity and mechanical movement is needed for normal 

cardiac functioning. These regular, coupled contractions from the ventricle are possible 

due to the functional syncytium created by gap junctions, which allows for the rapid flow 

of current between myocytes. Gap junctions are found in the intercalated discs between 

cells and are composed of a family of proteins, specifically connexin43 (Cx43). The 

change in voltage as each cell is activated can be measured through a transmembrane 

potential (TMP). 

2.2 Transmembrane Potentials 
 
The TMP is determined by the difference of intra- and extracellular ion concentrations. 

When a cell is stimulated, or electrically activated, an AP is produced by the flux of ions 

through transmembrane ion channels. Phases 0 through 4 of the cardiac ventricular AP 

are shown in Figure 2.1.   
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Figure 2.1 The phases of the ventricular cardiac action potential. Phases are shown 

from left to right with phase 0 (red), phase 1 (yellow), phase 2 (green), phase 3 (blue), 

and phase 4 (purple).  

Phase 0: The cell is electrically stimulated and once the threshold potential has been met, 

an AP fires in an all-or-none manner. The quick depolarization results in the upstroke of 

the AP. The rate at which the depolarization occurs is computed using dV/dt. The 

maximum rate of depolarization is referred to by dV/dtmax. Depolarization is caused by 

the opening of Na+ channels, which prompts Na+ ions to rush into the cell.  

Phase 1: After depolarization, there is a small dip in the AP when inactivation of the Na+ 

channels occurs. Transient outward currents of K+ and Cl- occur and are known as Ito1 

and Ito2, respectively. Ito1 is known as the major contributor to the notch seen in the peak 

of the AP.   

Phase 2: A plateau phase consists of inward Ca2+ (ICa) and outward K+ through slow 

delayed rectifier K+ channels (IKs). This phase aligns with the contraction of the muscle.  

 

Phase 3: The cell then repolarizes when K+ rushes out of the cell, and Ca2+ channels 

close. The net outward current then activates more K+ channels to open including the 

inward rectifying IK1 and rapid delayed rectifier IKr.  

Time 

V
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Phase 4: The TMP then returns to a baseline known as the resting potential. The resting 

potential for ventricular myocytes is near -90mV. This potential is caused by the average 

of all ions’ equilibrium potential and is most strongly controlled by K+.   

The combination of these and more minor currents is crucial in the continuation of the 

electrical activity across the tissue. The APD is defined as the duration from the 

beginning of depolarization to the end of the AP based on a determined percent 

repolarization, e.g. APD90 would be 90% repolarization. The time between APs is known 

as DI, the relaxation period which occurs during phase 4. Cycle length (CL) can be 

defined as the sum of APD and the preceding DI, or the time between activations of APs. 

The relationship between APD and DI has been widely used as a theoretical determinant 

of risk of arrhythmia.   

2.3 Alternans of APD 
 
APD alternans is changes in APD resulting in long-short-long durations for every other 

beat (See Figure 2.2). Alternans may be DI independent or DI dependent, i.e. existing 

with a constant DI or with alternating DI values, respectively.4 

 

Figure 2.2 Example of APD alternans. APs with alternating APDs (as well as 

alternating AP amplitudes) from the human ventricle are shown. The notch prior to each 

AP is the stimulus artifact from artificial pacing. Note that the triangular shaped AP 

exists at faster pacing rates. 
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Unstable alternans may lead to block, where an AP is no longer fired from the cell, 

resulting in wave break up and potential v-fib. Alternans are seen on an organ-level scale 

in the ECG as microvolt T wave alternans (mTWA).  

2.4 Electrical Restitution 
 
Restitution of APD is where a change in APD is functionally related to a change in 

preceding DI as shown in Figure 2.3.  

If there is a sudden decrease in DI, i.e. a beat or stimulus comes earlier than expected, the 

resulting APD will be shortened and vice versa. In this way, the heart preserves time for 

the next DI, allowing the ventricles to fill with blood. Nolasco and Dahlen first described 

the importance of the slope, i.e. ΔAPD/ΔDI, of the restitution function.3 The slope has 

been used to predict occurrence of APD alternans with a slope of 1 defining the boundary 

of potential degeneration. The hypothesis states that a slope greater than 1 leads to 

unstable alternans while a slope less than 1 would create an environment free of 

alternans. A slope greater than 1 has been shown to lead to spiral wave break up.5 

Figure 2.3 Schematic representation of the standard restitution curve.  APD is 

shown as a function of DI. The curve has a higher slope at faster pacing rates and flattens 

out as DI increases. 
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Flattening of the slope has been shown in pharmacological use and simulation to produce 

stabilizing, antiarrhythmic effects in some studies.6, 7 This restitution function is thought 

to be one of the primary mechanisms of arrhythmia in addition to memory. 

2.5 Cardiac Memory  
 
Cardiac memory, where APD is dependent on several previous APs, also impacts 

electrical stability. First termed by Rosenbaum, cardiac memory is a characteristic seen in 

the T-wave of the ECG after induced pacing.8 After pacing is completed, the T-wave 

continues to reflect the QRS complex (the beginning of contraction) vector from the 

previous pacing, until returning to normal after a certain period of time which is known 

as long-term memory. This phenomenon is also seen in APD, often referred to as short-

term memory, where the effect only exists for seconds to minutes9—which is the type of 

cardiac memory this study focused on. Our lab has previously created protocols which 

explicitly control DI to allow for quantification of memory.10 By stimulating the tissue in 

an oscillatory fashion, it is shown that two values of APD may exist at the same DI. The 

hysteresis that results from this method of pacing is used to quantify memory (See 

Methods for details). Memory has been shown to flatten the restitution curve, therefore it 

is hypothesized (or theorized) to make the tissue stable and move it away from a situation 

that would activate arrhythmia.10-12 The effects of memory are argued to be as  important 

as restitution in the mechanisms of arrhythmia.13  

2.6 Heart Failure 
 
Of Americans greater than 20 years of age, it is estimated that 5.1 million have HF.14 HF 

may result from conditions including hypertension, myocardial infarction and various 

types of cardiomyopathy.  The most common type of cardiomyopathy, dilated 

cardiomyopathy (DCM), results in weak, thin-walled ventricles. Ischemic 

cardiomyopathy (ICM) is caused by the loss of oxygen and glucose otherwise provided 

by normal blood flow to the tissue, and also results in weak, thin-walled ventricles. 

Hypertrophic cardiomyopathy (HCM) is the most common inherited heart condition and 

occurs in 1 in 500 individuals.15 The thickening of the ventricular walls causes a loss in 

volume of the chambers—resulting in diastolic heart failure (DHF). Some populations 
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exhibit twice likely occurrence of SCD with a maximum wall thickness greater than 

30mm.16, 17  

Hypertrophic, ischemic and dilated hearts display altered gap junction distribution and 

density through the measurement of Cx43 in areas of structural damage, which 

contributes importantly to changes in conduction.18-21 Studies have shown that an 

overwhelming majority of patients with ventricular arrhythmia also have structural heart 

disease (SHD).22, 23 Ion currents such as IK1 and IKr have been shown to be downregulated 

in failing hearts resulting in delayed repolarization of the AP.24 Changes in ion 

concentration, gap junctions, and structural integrity affect the propagation of conduction 

through the heart. The enhanced heterogeneity of these properties in failing hearts may 

lead to an association with higher occurrence of SCD.25 These altered properties are 

manifestations of disease which may then induce additional deficiencies such as irregular 

electrical activity.   
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Chapter 3 METHODS AND ANALYSIS 

3.1 Preparation of Samples and Experimental Setup 
 
Tissues were excised from patients undergoing total heart replacement (THR) i.e. 

transplant or artificial heart implantation, or LVAD implantation. All procedures were 

approved by the University of Kentucky Institutional Review Board and subjects gave 

informed consent. Data were collected from 7 human hearts, 6 of which were failing.  Of 

the failing hearts, 5 were from male patients with an average age of 49 years. Both RV 

and LV samples were obtained from two of the hearts (patients 2 and 3). Patient 

diagnoses consisted of DCM, ICM and idiopathic cardiomyopathy. For one tissue sample 

(patient 6), the only diagnosis that was available was DHF, but the tissue was noticeably 

hypertrophic. One LV tissue sample was available from a non-failing (NF) donor heart 

(M, 33 years). Patient and tissue details are shown in Table 3.1. 

Table 3.1 Patient demographics and sample information. Sample type, procedure, 

diagnosis, age and sex are shown. 

Patient Samples Procedure Diagnosis Age Sex 
1 LV LVAD DCM 32 F 
2 LV, RV THR Idiopathic cardiomyopathy 21 M 
3 LV, RV THR Idiopathic cardiomyopathy 52 M 
4 LV LVAD ICM 51 M 
5 LV THR ICM 64 M 
6 RV THR DHF 72 M 

NF LV THR Non-Failing 33 M 
 

After excision by the surgeon, the samples were preserved in ice cold saline solution in 

the operating room before transfer to an intermediate facility. The samples were placed in 

chilled Tyrode’s solution for transport to the laboratory. Sample size varied from 

approximately 10x10x3 mm to 10x40x5 mm. Samples were pinned in a plastic chamber 

and superfused with Tyrode’s solution bubbled with 95% O2 and 5% CO2, and 

maintained at 37±1˚C. The composition of the solution (for transport and superfusion) 

was (mmol/L): NaCl 137, KCl 4, MgCl2 0.5, NaH2PO4 1.8, CaCl2 2.7, glucose 5.5. The 

composition was modeled after Dangman et al26 with a 25% increase in glucose in all 
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samples excluding tissue from patient 1. NaHCO3 was added to the bubbled solution until 

a pH level of 7.35 ± 0.05 was reached. Tissues were stimulated with platinum-iridium bi-

polar electrodes with a 3 ms pulse, amplitude of which was three to four times diastolic 

threshold at a basic constant CL of 850 ms. Tissue from patient 1 was paced at 500 ms. 

Transmembrane potential (TMP) recordings were made from the endocardial surface of 

the tissues with a glass microelectrode filled with 3M KCl. The TMPs were 

simultaneously digitized by two systems. In one, a custom developed control program 

made in LabVIEW digitized the TMPs and analyzed them in real time to control DIs 

independent of APDs. Details of this real time control of DIs are provided elsewhere.10 

At the same time, a commercial data acquisition system was used to digitize TMPs at a 

rate of 50,000 samples/s for storage. All subsequent analyses were conducted on the 

TMPs recorded using the commercial data acquisition system. Figure 3.1 shows the 

process described above.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Process flow chart of experimental stimulation and recording. The 

process of stimulating and recording from the tissue is shown including the custom DI 

control. The dotted box represents the tissue chamber. 
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A custom program written in MATLAB (Mathworks, Natick MA, USA) was used to 

process the digitized TMPs offline.  Before analyzing, data were digitally lowpass filtered 

with a cutoff frequency of 1000 Hz. The beginning of an AP was determined as the 

lowest point in the upstroke independent of the stimulus artifact. APD was calculated at 

either 90% or 70% repolarization. Although an automated program identified start and 

end of APs, all identifications were visualized and manually checked to confirm correct 

quantification of APDs.  

3.2 Sinusoidal Protocols 

 

In order to quantify memory in restitution of APD, two pacing protocols were used which 

consisted of twenty values of constant DI followed by two cycles of DIs oscillating in a 

sinusoidal pattern. The protocols, SIN 400 and SIN 150, consisted of a baseline DI of 400 

(150) ms which oscillated between 100 (10) and 700 (290) ms and are illustrated in 

Figure 3.2.   

 

 

If there was drift in the APDs due to adaptation, a trend line fit between the two minima 

in the APD curves was subtracted from the APDs. Parameters of the hysteresis were 

measured from the second cycle of the protocols and included loop thickness, area, tilt, 
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Figure 3.2 Sinusoidal protocols used to quantify memory. A baseline DI of 400ms (a) 

and 150ms (b) were used in protocols to quantify memory. 
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maximum delay and minimum delay. The second cycle was used to allow for adequate 

adaptation of the tissues to take place. Loop thickness was measured as the difference in 

APDs at the center value of the DI. Loop area was calculated by using the MATLAB 

function polyarea. Loop tilt was calculated as the slope of a line fitted between the points 

of maximum and minimum DIs and their corresponding APDs.  Maximum and minimum 

delays were calculated by first fitting a 2nd degree polynomial to the center 21 points 

surrounding a peak or a nadir in APDs and DIs. The delay was computed as the interval, 

in beats, between the maximum (or minimum) DI and maximum (or minimum) APD. An 

example of DIs and APDs resulting during a SIN 400 protocol, resulting hysteresis loop 

in restitution, and measured characteristics are shown in Figure 3.3.  

 

 

 

 

 

 

 

 

 

Average values for the group were calculated by first averaging all of the computed 

measures from multiple trials within a tissue and then across all tissue samples.  

3.3 Standard and Dynamic Protocols 
 
In order to obtain the standard restitution curve, the protocol consisted of a basic CL 

s1=500 ms with n=10 beats, and the s1-s2 interval was decremented in steps of 20 ms 

from 500 to 300 ms, steps of 10 ms from 300 ms until block (when the cell is unable to 

1 50 99
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i 

ii 
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Figure 3.3 Example of SIN400 protocol and resulting hysteresis loop.  (a) APD (gray) 

and DI (black) values from LV tissue from patient 1 with parameters of maximum delay 

(i) and minimum delay (ii). (b) This pacing results in a hysteresis loop with parameters of 

loop thickness (i), tilt (ii) and the area enclosed by the loop. 
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fire an AP) occurred, as previously used by Narayan et al.27 To obtain the dynamic 

restitution curve, stepwise pacing started at a CL of 800 ms with n=50 in each step. Steps 

were defined in decrements of 100 ms (for 800 ms to 500 ms), 50 ms (500 ms to 400 ms), 

20 ms (400 ms to 300 ms) and 10 ms (300 ms  until block occurred), as previously used 

by Runze and Patwardhan.10 The standard and dynamic pacing protocols are shown in 

Figure 3.4. 

All trials from each tissue were averaged to form an average restitution curve 

representative of that tissue. Slope of the restitution curve was determined by averaging 

the slopes between each pair of points within the range of DIs which contained all tissue 

samples. 

3.4 Measurement of APD Alternans and dV/dt  
 
Tissue from patient 2 and the non-failing data were not used in APD or dV/dt alternans 

analysis due to noise contamination. Because this analysis determines changes that occur 

on a beat by beat basis, we considered that the effect of noise on quantification of 

alternans of APD and dV/dt would be unacceptable and thus data from this tissue were 

not used in this analysis. Small fluctuations in data for restitution and hysteresis analysis 

were not as detrimental, because those measurements were taken from data across 
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Figure 3.4 Standard and dynamic protocols. (a) Standard protocol with an s1 of 500 

ms and decrementing steps of s1-s2 interval. (b) Dynamic stepwise protocol beginning at 

800 ms until block. 
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multiple beats in which the resulting change in APD was greater than the contribution of 

noise. We investigated incidence of alternans of APD for those trials where the CL ≤500 

ms. This limit was chosen based on a similar range that is used when detecting mTWA 

during stress tests, which is the contemporary clinical method of assessing risk of 

ventricular arrhythmia. Alternans was considered to occur when a beat by beat change in 

APD of ≥4 ms (same threshold as that used previously by Pruvot et al28), occurred on at 

least 5 successive beats. Incidence of occurrence of alternans was calculated as the 

percentage of pairs of alternating beats out of total pairs of beats. A 10-point smooth 

differentiation and low pass filter, “smooth_diff.m”, was used on un-filtered TMPs to 

calculate the rate of depolarization in MATLAB.  The maximum rate of depolarization, 

i.e. dV/dtmax, was quantified as the maximal dV/dt in the upstroke of the AP. As with 

quantification of APDs, all located dV/dtmax points were manually verified by the use to 

ensure independence of stimulus artifacts.  Alternans of dV/dtmax was considered when 

there was an alternating magnitude change in dV/dtmax for successive beats (i.e. an 

increase-decrease-increase or decrease-increase-decrease). Alternans of dV/dtmax was 

considered in (out of) phase with APD alternans when the larger (smaller) dV/dtmax 

preceded the longer of the long-short APD sequence.29 In calculations of incidences of 

alternans, because some trials had more APs than others, no more than 575 APs (the 

average number of APs from all trials) from any one trial were included in the 

percentages in order to avoid trials with substantially more APs weighing the percentage 

of incidence.  

3.5 Computational Modeling 
 
While we did receive one NF tissue for the study, lack of control, i.e. non-diseased heart 

tissues, is a limitation of our study. In order to obtain data to serve as surrogate for 

control tissues, simulations were performed using the O’Hara Rudy dynamic (ORd) 

model developed and made available by the Rudy Laboratory.30 The ORd simulates 

human ventricular myocytes from endocardium, mid-myocardium and epicardium—the 

endocardium option was selected to match the experimental data. The code was modified 

to control the CL and DI as in the tissue experiments. Initial conditions were obtained by 

pacing the model at a constant CL of 850 ms until a steady state was reached to replicate 
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experimental conditions. Standard and dynamic restitution protocols were simulated for 

comparison with experimental data. Sinusoidal protocols were run in the simulation but 

the experimentally observed hysteresis was not replicated by the model (See Limitations). 

3.6 Statistical Analysis 
 
A one-sample, two-tailed  t Test was used to compare the single values of restitution 

slopes and APD from simulation and NF with the multiple values from failing LV, i.e. 

assuming either the NF or simulation value was representative of the population mean 

(NF tissue). The n values from failing LV were tested against either NF or simulation to 

determine if there was a significant difference, meaning that the failing LV were from a 

different population than either NF tissue or simulation. A p value less than 0.05 was 

used to determine significance. The primary objective in our study was demonstration of 

phenomenon, i.e. the study was primarily of a discovery type. However, as a supplement 

to the analysis, statistical testing was performed when possible. 
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Chapter 4 RESULTS 

4.1 AP Characteristics 
 
An example of the TMPs recorded at basic pacing CL of 850 ms is shown in Figure 4.1. 

Average APDs at pacing CL of 850 ms for LV (n=4), RV (n=2), NF LV and simulation 

were 359.5, 339.4, 244.2 and 247.5 ms, respectively. Failing tissues showed prolonged 

APDs in comparison to the APDs from NF and from simulations, although the 

differences were not statistically significant (a consequence of large variation in the 

APDs in failing hearts and small sample size). The height of APs, i.e. AP amplitudes 

(APAs), was similar among all tissue samples, i.e. we did not see any systematic 

differences in APAs. 

4.2 Cardiac Memory 
 
Hysteresis in restitution was observed in both failing and NF tissues. Successful 

protocols, i.e. those without spontaneous beats, and with a 1:1 response from stimulus to 

activation, were run in the failing LV for SIN 400 (n=5), SIN 150 (n=3), and in the 

failing RV for SIN 400 (n=3), and SIN 150 (n=1). Both SIN 400 and SIN 150 protocols 

40
 m

V
 

200 ms 

Figure 4.1 Representative single APs from tissues and simulation. NF LV (dotted), 

simulation (small dashed), failing RV (large dashed) and failing LV (solid) are shown at 

850 ms CL. 
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were successful in the NF LV tissue. As stated before, hysteresis in restitution could not 

be replicated in the simulation.  

Of the calculated parameters of hysteresis, the largest differences between failing and NF 

LV tissues were seen in loop thickness, tilt and area in SIN400 protocols. Failing LV had 

a loop thickness of 17.6 ± 1.3 compared to the 8.05 ms thickness in NF tissue. Average 

loop tilt, an indicator of the slope of restitution, was 0.13 in failing LV vs 0.05 in NF LV. 

Area was also larger, 8745.6 in failing compared to 3709.1 ms2 in NF. The differences 

between maximum and minimum delays were not statistically significant. Parameters of 

hysteresis computed during the SIN 400 protocols for all tissues are given in Table 4.1.  

Table 4.1 Average hysteresis parameters of SIN400.. Thickness, tilt, area, maximum 

delay and minimum delay are shown in NF LV (n=1), LV (n=5) and RV (n=3) tissues 

with mean ± SEM. †Data were only available from one tissue sample with replicates. 

*p<0.05  

Parameter Non-Failing† LV RV 
Thickness (ms) 8.05 17.6 ± 1.3* 22.6 ± 1.4 

Tilt 0.05 0.13 ± 0.018* 0.14 ± 0.015 
Area (ms2 ) 3709.1 8745.6 ± 939.2* 10649 ± 1298 

Max Delay (beats) 12.5 10.3 ± 1.5 8.7 ± 2.5 
Min Delay (beats) 3 3 ± 0.4 3.2 ± 0.17 

 

Examples of hysteresis loops from the LV during the SIN 400 protocol are shown in 

Figure 4.2. The results in Figure 4.2(a) illustrate the variation in hysteresis characteristics 

and baseline APDs that existed among diseased tissues. The differences between failing 

and NF LV in thickness, area and tilt are seen in Figure 4.2(b). 
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Figure 4.2 SIN400 LV hysteresis loops. (a) Average loops from SIN400 in failing LV 

tissues are shown. Tissues top to bottom are from patients 3 (blue), 2 (red), 5 (green), 1 

(purple), 4 (orange). (b) Average loops from SIN400 failing LV (top) and non-failing LV 

(bottom) tissues are shown. 

There was a significant difference between NF (1 beat) and failing (2.5 beats) LV tissue 

in the measurement of minimum delay during SIN150 protocols. No statistically 

significant differences were seen in the other characteristics of the SIN150 protocols (see 

Table 4.2).  

Table 4.2 Average hysteresis parameters of SIN150. Thickness, tilt, area, maximum 

delay and minimum delay are shown in NF LV (n=1), LV (n=5), and RV (n=1) tissues 

with mean ± SEM. †Data were only available from one tissue sample with replicates. 

‡Data were only available from one tissue sample and one trial. *p<0.05  

Parameter Non-Failing ‡ LV RV † 
Thickness (ms) 13.3 14.3 ± 1.5 17.2 

Tilt 0.23 0.28 ± 0.057 0.25 
Area (ms2) 2357 2851.7 ± 285.8 3311.8 

Max Delay (beats) 7 5.2 ± 0.73 5.5 
Min Delay (beats) 1 2.5 ± 0.29* 2.5 

 

Average loops from failing and non-failing LV during SIN150 are shown in Figure 4.3. 

In the NF tissue, the actual DI was slightly larger than the targeted DI due to conduction 
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delay, therefore shifting the protocol closer to DI 200, resulting in an increase of area and 

thickness and a decrease of tilt. This change counteracted any statistically significant 

differences which may have existed between the NF and failing LV tissues in the SIN150 

protocols. 

 

Figure 4.3 SIN150 LV hysteresis loops. (a) Average loops from SIN150 in failing LV 

tissues are shown. Tissues top to bottom are from patient 2 (blue), 3 (red), and 1 (green). 

(b) Average loops from SIN150 in failing (top) and non-failing (bottom) tissues are 

shown. 

Thickness and area were higher in the RV compared to the LV, while tilt, maximum and 

minimum delays were mixed in both protocols. Loops characteristics within RV tissues 

were more similar than characteristics within LV tissues. The RV loops from SIN400 and 

SIN150 protocols are shown in Figure 4.4. Tissues 2 and 3, which both had diagnoses of 

idiopathic heart failure, had more similar loops in both the RV and LV as shown in 

Figures 4.2-4.   
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Figure 4.4 SIN400 and SIN150 RV hysteresis loops. (a) Average loops from SIN400 in 

failing RV tissues are shown. Tissues from top to bottom are from patients 2 (blue), 3 

(single trial, red), and 6 (green). (b) Average loop from SIN150 in failing RV tissue from 

patient 6 is shown. 

4.3 Electrical Restitution 
 
Standard restitution curves were obtained in failing LV tissues (n=2), RV (n=2), NF LV, 

and in simulation. Dynamic restitution curves were obtained in LV (n=2), RV (n=3), NF 

LV, and in simulation. Slopes were calculated within the DI range where data were 

present from all tissue samples, which was DIs from 106 to 199 ms for the standard 

restitution and 210 to 484 ms for the dynamic restitution.  Averaged slopes of restitution 

are shown in Table 4.3.  

Table 4.3 Standard and dynamic restitution slopes.  RV, LV, NF LV tissues and 

simulation slopes are shown as mean ± SEM. Slopes were obtained from the DI range 

which included all tissues.   

Tissue Standard  n Dynamic  n 
RV 0.62 ± 0.2 2 0.25 ± 0.1 3 
LV 0.81 ± 0.4 2 0.48 ± 0.3 2 
NF 0.14 1 0.16 1 
SIM 0.14 1 0.09 1 
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Slopes from simulation and NF LV were lower than those from failing LV in standard 

and dynamic restitution protocols. Figure 4.5 illustrates the average curves from 

simulation, NF and failing LV tissues.  

 

Figure 4.5 Standard and dynamic restitution curves in LV. (a) Standard restitution 

curves obtained from simulation (dotted) and non-failing LV tissue (solid). (b) Curves 

obtained from failing tissues from patient 5 (top) and patient 4 (bottom) are overlaid with 

the NF and simulation curves. (c) Dynamic restitution curves obtained from simulation 

(dotted) and non-failing LV tissue (solid).  (d) Failing tissues from patient 3 (top) and 

patient 4 (bottom) are overlaid with the NF and simulation curves. 
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Slopes from RV in both standard and dynamic protocols were lower than failing LV but 

higher than simulation and NF LV. Figure 4.6 shows standard and dynamic restitution 

curves from the RV. 

 

 

 

 

 

 

 

 

 

4.4 APD Alternans and dV/dt Phase Behavior 
 
TMPs recorded at all CLs 500 ms or shorter (i.e. faster activation rates) were analyzed for 

occurrence of alternans. As previously mentioned, trials from patient 2 (RV and LV), as 

well as the NF tissue, were not used due to noise. The total percentage of occurrence of 

alternans in LV (n=4) was 52% and RV (n=2) was 21%.  Within this subset, i.e. when 

alternans of APD occurred, the percentage of in and out of phase relationship with 

dV/dtmax alternans was determined. Table 4.4 shows percentage of APs which had 

alternating behavior in each tissue and the phase relationship with dV/dtmax alternans. 
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Figure 4.6 Standard and dynamic restitution curves in RV. (a) Standard restitution 

curves from failing RV patients 6 (top) and 3 (bottom). (b) Dynamic restitution curves 

from failing RV patients 3 (solid), 2 (dotted), and 6 (dashed). 
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Table 4.4 APD alternans, dV/dtmax and phase behavior.  Occurrence of APD 

alternans, incidence of in-phase behavior, and the percent change in dV/dtmax during 

alternans are shown for tissues with data from CL≤500 ms. Data from patient 2 and NF 

LV tissue were not used due to noise. 

 

Out of phase behavior was seen in all LV samples but the incidence varied; around 40% 

of APD alternans were out of phase with dV/dtmax alternans in patient 5, while other 

tissues showed less than 15% out of phase. The percent change in dV/dtmax during 

alternans of dV/dtmax ranged from very small to exceeding 105% in LV and 340% in RV 

in individual CL recordings. Figure 4.7 depicts the in phase and out of phase behavior 

seen in a single recording in tissue from patient 4.  

 

 

 

 

 

 

 

 

 

 

Tissue Patient APs 
(n) 

Alternating APs 
(n) 

APD Alternans 
(%) 

In Phase 
(%) 

dV/dtmax 
(%) 

LV 

1 4092 2635 64.4 97.6 77 
3 3364 529 15.7 99.7 2.5 
4 2164 1909 88.3 85.5 3.8 
5 551 252 45.7 59.1 2.2 

RV 3 1699 1546 91.0 100 149.6 
6 5783 0 0 -- -- 
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Figure 4.7 Example of in and out of phase behavior. (a) LV tissue from patient 4 was 

paced at CL 290 ms and exhibited in phase behavior between alternans of APD and 

dV/dtmax and (b) also exhibited out of phase behavior within the same trial. 
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Chapter 5 DISCUSSION 

5.1 AP Characteristics 
 
Although we were unable to obtain control data from RV tissues, consistent with our 

results from the LV, Lou et al showed a significant increase in APD in failing RV tissue, 

caused by downregulation of IK1 and IKr.31 Beuckelmann showed a prolonged APD in 

patients with HF as well as a reduced IK1 and Ito1.32 These K+ currents have a strong 

effect on phase 1 repolarization and the plateau shown in failing isolated cells.33 Such 

decreases in K+ currents can lead to early after depolarizations and arrhythmia. Longer 

APDs seen in failing tissues suggest these alterations exist and that these mechanically 

failing hearts provide favorable conditions for arrhythmia. Similar to the results reported 

by Glukhov et al, the tendency for prolongation of APD in failing LV, although not 

statistically significant, was also seen in our study.34  

5.2 Cardiac Memory 
 
Hysteresis in restitution of APD has been previously shown to exist in canine and swine 

tissues, two common animal models used during investigation of electrical stability.10, 35 

In this study, precisely controlled oscillatory changes in DI were used to demonstrate that 

in human ventricular tissues, restitution of APD also displays bifurcation and hysteresis 

similar to that seen in canines and swine. While there could be species differences, 

compared to healthy control tissues in swine reported by Jing et al, tilt was higher and 

maximum and minimum delays were smaller in the failing human tissue.36 A higher tilt 

or equivalent for slope in this case, and lower measures of memory could be explained by 

the manifestation of disease in the human tissue. Calcium handling has been proposed to 

be a contributing variable of the existence of hysteresis.11 Differences also exist in Ca2+, 

such as reduced Ca2+ sequestration by the sarcoplasmic reticulum in diseased cells.37 This 

reduction of Ca2+ in failing hearts could explain a decrease in memory. Our results of the 

sinusoidal protocol agree with the concept that there is a buildup of memory during 

increase in DI and a release of memory during a decrease in DI.38, 39 Toal et al showed in 

humans, using monophasic action potential (MAP) recordings in ischemic hearts that 

short term memory (APDn and APDn-1) was more strongly correlated than restitution 
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(APDn and DIn-1) to APD variation during ventricular fibrillation (VF).40 While the 

measures of hysteresis were mixed, the study of memory in addition to restitution is 

important for understanding and predicting electrical stability.  

5.3 Electrical Restitution  
 
Koller et al showed using MAP recordings that slopes of standard and dynamic 

restitution were larger in those with SHD compared to those without, but the differences 

were not statistically significant, similar to the results from our study.41 The failing curve 

more obviously diverges with a higher slope from the NF and simulation curves, which 

remain somewhat flattened at higher pacing rates, as shown in Figure 4.5-6. The higher 

slope is consistent with decreased stability in the tissue, therefore increased probability 

for the tissue to degenerate into arrhythmia according to the contemporary hypothesis. It 

should be noted the slopes from the standard curve are from protocols which started at a 

CL of 500 ms, an already fast pacing rate compared to the dynamic restitution curves 

which began at a CL of 800 ms. Slopes measured across a range of values which included 

all tissue samples showed that the slopes in LV were greater than those in RV. Yue et al 

found that the slopes of activation recovery intervals (the duration between the maximum 

negative slope of the QRS complex and the maximum positive slope of the T wave in a 

unipolar extracellular ECG) were significantly higher in the LV than RV, using non-

contact mapping in hearts without SHD.42 An increase in heterogeneity between the 

ventricles, as seen in our study through the average values of APD and restitution slopes, 

may contribute to instability in those patients with failing hearts.  

5.4 APD Alternans & dV/dt Phase Behavior 
 
There have been mixed results on rate of depolarization of healthy and diseased tissues. 

Studies have found dV/dtmax in healthy human endocardial tissue to be 234 ± 28 V/s 

measured through microelectrode recordings43 and 231 ± 30 V/s using patch clamp 

techniques.44 Another study reported an average dV/dtmax of 297 ± 19 V/s found in 

diseased human endocardial tissues, in addition to a significantly longer APD in infarcted 

areas compared to non-infarcted zones.26 In our study, dV/dtmax values varied and were 

often comparable to those reported previously even though the tissues were from failing 
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and NF hearts.  Average dV/dtmax of the NF tissue at a CL of 850 was measured to be 

103.0 V/s while average failing tissue (n=4) values ranged from 111.8 to 273.3 V/s. An 

average dV/dtmax as high as 364.85 was seen in a single recording from failing tissue.  

In terms of incidence of alternans, we observed that recordings made at a CL 500 ms and 

shorter had an average 53.5% incidence of APD alternans in LV (n=4) and 45.5% in RV 

(n=2). Although we were unable to examine alternans in NF tissue, Koller et al showed 

that APD alternans first appeared at slower pacing rates in those with SHD and the 

magnitude of APD alternans was also greater in the failing tissues.41 This supports the 

correlation between failing hearts and increased risk of ventricular arrhythmia as mTWA 

measured in ECG commonly occur with those at greater risk for ventricular arrhythmia.45 

Chauhan shows that individuals with cardiomyopathy and mTWA had higher 

heterogeneity in electrical properties across the tissue than control subjects. They claimed 

that those with mTWA therefore possessed a substrate favorable for conduction block 

and reentrant ventricular arrhythmias due to a steep repolarization gradient.46 

Jing et al previously reported the existence of a phenomenon in swine and canines where 

dV/dtmax of the short AP was larger than that of the long AP, i.e. out of phase behavior 

between APD and dV/dtmax alternans.29 That study showed that out of phase behavior 

prevented the transition of concordant alternans to discord and thus increased electrical 

stability. Results from this study show not only that this out of phase behavior also occurs 

in failing human ventricles, but that this phase also does change spontaneously. While it 

is unclear whether the incidence of out of phase behavior in failing hearts is more or less 

than that in normal healthy hearts, these results do support further investigation about the 

relationship between the independent changes in depolarization and repolarization phases 

during alternans of APD. 

5.5 Heterogeneity 
 
Heterogeneity in the tissue which is often caused by remodeling from disease, results in a 

pro arrhythmic substrate that is more vulnerable to SCD.47-49 Specifically in HCM, there 

is an increase of heterogeneity within conduction of the ventricle50 and increased 

activation delay in fibrotic tissue51. Large transmural APD gradients are seen in areas 
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with lowered Cx43 expression. The lack of Cx43 between tissue layers leads to lowered 

communication pathways, slowing conduction and may contribute to a pro-arrhythmic 

substrate.52 The tissues in the current study often had fatty deposits and/or fibrosis. 

Although diagnosis of the failing tissues varied, similar characteristics were exhibited 

such as prolonged APD and increased restitution slopes which align with other studies. 

This study examined the electrophysiological properties in human ventricular tissue, 

specifically the differences in hearts from patients with and without heart failure. We 

have shown for the first time in failing and non-failing human ventricular cells, the 

hysteresis in restitution of APD for quantification of memory and existence of 

spontaneous phase change between alternans of APD and dV/dtmax. These observational 

studies have allowed insight into how the electrical properties are altered in diseased 

tissue. Further understanding of these electrophysiological characteristics will help to 

elucidate the mechanisms which influence arrhythmia in diseased hearts.  
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Chapter 6 LIMITATIONS 

As the tissues used in these experiments were explanted during transplant or LVAD 

implant, there were limitations in quantity and quality of the samples. Such limitations 

include not having an equal sized NF sample set or uniform diagnoses across patients. 

Additional control data would be needed for comparison of APD and dV/dtmax alternans 

between healthy and failing tissues. Sinusoidal protocols were simulated for comparison 

with experimental data; however, the ORd model did not replicate the hysteresis as was 

observed experimentally. The patient from whom the NF tissue was obtained suffered 

from head trauma and also had a history of barbiturates; it is unknown whether the 

barbiturates were in the patient’s system at the time of death. The structural integrity and 

activity of the donor heart was assumed to be normal as the subject was free of heart 

disease. We also note, again, that the statistical analyses were included only as 

supplementary information because of very limited sample sizes for control tissues.  
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APPENDIX A 

Tissue from patient 1 of the human study showed a double component bump in the foot 

and upstroke of the AP, independent of the stimulus artifact. When looking through other 

recordings, this phenomenon was also seen in swine RV post-chromanol and mouse 

ventricular tissue (unpublished data). An additional bump (as seen in human and mice) 

was displayed higher in the upstroke of the AP, sometimes creating a notch in the peak of 

the AP. The shape of the bump increased in sharpness with faster pacing rates. The 

double component AP occurred in the presence of APD and dV/dt alternans and without 

them in our data. Figure 1 shows an example of the characteristic seen in dilated human 

LV endocardium at a pacing CL of 220ms. The phenomenon is more subtle when looking 

at a string of APs (Figure 1a) and is detailed in Figure 1b-c of the upstroke of the AP.  

 

Figure 1. (a) APs from patient 1 with a pacing cycle length of 220ms. (b) A single AP 

shows the convex curve of the foot in the upstroke. (c) A second bump is seen higher in 

the upstroke of the AP while examining the depolarization of the AP. 

a 

b c 

28 
 



As dV/dtmax decreased with increasing pacing rates, the dV/dtmax of the bump also 

decreased. The time between the two dV/dtmax values increased with pacing rate, showing 

the sharpness of the bump as seen in Figure 2 in the mouse.  

Figure 2. Traces of APs from mouse ventricle are shown at 140 (a), 120 (b) and 115ms 

(c) cycle length illustrating the morphology of the double component seen in the foot and 

upstroke. The second bump is seen interacting with the peak of the AP, creating a notch. 

a 

c 

b 
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This accentuated foot in the AP has been shown to exist due to conduction across high 

resistance gaps in silico. Simulation of conduction across sucrose gaps resulted in a 

pronounced foot.53 Vasquez and Moreno showed in simulation that conduction across 

fibroblasts through electrotonic interaction was possible—the same bump existed, 

coupled with  a slower conduction velocity (CV) and lower dV/dt.54 Longer electrotonic 

feet have been seen in the AP in addition to Wenckebach sequences when examining 

conduction across a sucrose gap.55 Wenckebach sequence, known as Type1 AV heart 

block, is caused by increasing PR interval (the second portion of the diastolic interval) 

until the next beat is unable to be conducted, resulting in block. The cycle then repeats 

when the cell is able to fire again. This bump results in an increased conduction delay. 

The same pattern was shown to exist due to ischemia vs normal tissue and included 

slower upstrokes.56  This double component has been seen in rabbit cells and shown to 

increase the latency period.57 As shown previously in the mouse, the bump was much 

more noticeable and distinctly at the foot of the AP, almost isolated during very fast 

pacing rates. Hoshino also showed the response of the double component morphed as 

cycle length changed.58 Double components of the AP may result from a mismatch, or 

difficulty transferring current across certain cells.59, 60 Hoshino showed the existence of 

postrepolarization refractoriness and Wenckebach patterns in guinea pig ventricular 

myocytes due to the effects of IKs on the refractory period and IK1 on the shape of the foot 

potentials. Amin showed the decrease in INa in patients with Brugada syndrome, resulting 

in a sloped upstroke and decreased dV/dt. Sometimes a delayed after depolarization 

(DAD) masked under the following AP as a bump in the foot potential.61  

Previous studies indicate that the double component behavior observed in tissues from 

our lab is probably due to electrotonic interactions of a changed substrate, whether a 

physical or chemical alteration. The phenomenon was observed over a wide range of 

cycle lengths recorded and was shown to exist across multiple species, diagnoses and 

drug treatments. While the mouse and swine tissues were assumed to be healthy, local 

differences in pathways may have contributed to the bumps observed. The mouse 

ventricles were not isolated from the rest of the organ, allowing for additional pathways 

and increased heterogeneity. Drug treatment with Chromanol, an IKs antagonist, was 

shown to prolong APD and increase restitution slope, thickness and area in swine right 
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ventricle.36 This reduction in IKs, as previously mentioned, affects the refractory period 

which may result in abnormal behavior, e.g. Wenckebach sequence. The cause of the 

phenomenon observed in diseased human tissue could be attributed to more diverse 

factors such as ion currents and fibrosis. A higher resistance path could be explained in 

part due to the dilated nature of the tissue from patient 1. These interactions result in 

increased conduction delay, i.e. slower CV, which may lead to block. These examples 

found through observational discovery illustrate that ventricular tissues across multiple 

species may exhibit the same characterized “bump” phenomenon. Whether tissues which 

have multiple irregular properties (i.e. more vulnerable substrates) result in a higher 

likelihood of such bumps, and whether these bumps contribute to arrhythmic events is 

uncertain.  
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