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ABSTRACT OF THESIS 

 

 

A PLANT TRAIT-BASED APPROACH TO EVALUATE THE ABILITY OF NATIVE C3 

AND C4 GRASSES TO RESTORE FUNCTIONALITY TO A REMNANT BLUEGRASS 

SAVANNA-WOODLAND IN KENTUCKY, USA. 

 Temperate Midwestern oak savannas are considered imperiled ecosystems with < 1 % remaining 

since European settlement and are identified as critical areas for preservation.  Restoration of Midwestern 

oak savannas is challenging due to several factors including lack of accurate historical data, few intact 

remnants remaining to study, and lack of restoration ecology studies.  A plant trait-based approach was 

used to evaluate the ability of six C3 and three C4 native bunchgrasses to restore functionality to a remnant 

savanna–woodland of the Bluegrass Region of Kentucky.  The response and effect framework was used 

to assess the response of the nine native grasses according to the habitat filters of interannual 

precipitation, inter- vs. intra-specific competition, and simulated grazing.  The effect traits associated with 

plant-soil nitrogen and carbon cycling were also assessed.  The response traits of interannual competition 

and inter- vs. intra-specific competition along with the effect traits plant-soil nitrogen and carbon cycling 

were measured in a monoculture experiment conducted at Griffith Woods WMA.  The simulated grazing 

or clipping experiment was conducted over three months in a heated greenhouse experiment.  

 Four of the C3 species were of the genus Elymus which had significant differences in life history 

traits compared to the other species made them particularly well adapted to the Bluegrass Savanna-

Woodland.  The Elymus species were not well adapted to the most intense clipping treatment (clip to 7 

cm).  For the other two C3 species, C. latifolium would be a better competitor than D. clandestinum under 

normal conditions.  D. clandestinum had the most number of plastic traits and was the only species to 

exhibit all three grazing strategies.   Comparing the C4 species, T. flavus and P. anceps grew well in the 

monoculture but A. virginicus did not.  The life history traits of A. virginicus does not make this species a 

good candidate for restoration at this site.  The three C4 species were well adapted to clipping.  The results 

of this study suggest that the C3 species, particularly the Elymus, are well adapted to the eutrophic mesic 

conditions of the Bluegrass Savanna-Woodland, and that the C4 species are better adapted to disturbance.   

KEYWORDS: savanna, restoration ecology, C3 and C4 grasses, response traits, effect traits.
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Chapter 1: Introduction 
Savannas are grassland ecosystems characterized by the trees being either small or widely spaced 

so that the tree canopy is not closed (McPherson 1997), and are influenced by fire, climate, topography 

and soil type (Nuzzo 1986).  Savannas cover 20 % of the Earth’s land area and can be divided into 

tropical and temperate groups.  Tropical savannas cover 15 % of the Earth’s land area, are generally better 

represented in the scientific literature, and are extensive in Africa, Australia, and S. America (McPherson 

1997).  While temperate savannas of North America were historically common at the time of European 

settlement, most of these landscapes have been reduced to < 1 % of their original area, are considered to 

be endangered (Anderson, Fralish et al. 1999), and are identified as critical areas for preservation 

(Klopatek et. al 1979).  Furthermore, temperate savannas are not as well studied or represented in the 

scientific literature as tropical savannas (McPherson 1997, Anderson, Fralish et al. 1999).   

At the time of European settlement of Midwestern North America, oak savannas occurred in the 

northern half of the central United States in a region that includes Minnesota, Iowa, Missouri, Wisconsin, 

Illinois, Michigan, Indiana, and Ohio (Nuzzo 1986).  The oak savanna was mainly a transitional 

community located between the western prairie and eastern deciduous forest (Nuzzo 1986, McPherson 

1997).  The dominant trees were primarily Quercus sp., giving rise to names for the savanna such as oak 

savanna and oak savanna-woodland.  Bray (1960) and Nuzzo (1986) characterized open savannas as 

usually dominated by burr oak (Quercus macrocarpa) and primarily found on flatter more mesic areas 

than scrub savannas.  Scrub savannas were dominated by white oak (Quercus alba) and black oak 

(Quercus velutina) and were generally found on dry to dry-mesic areas of steeper topography.   

Within 20 to 40 years, after the Midwest was settled by Europeans in the eighteenth century, oak 

savannas all but disappeared due to fire cessation and conversion of land to agricultural or urban 

development (Nuzzo 1986, Anderson, Fralish et al. 1999).  The fact that only 2% of Midwestern Oak 

Savannas remained by 1986 (Nuzzo 1986) has caused this habitat to be listed as a “globally imperiled” 

ecosystem (Heikens and Robertson 1994).  Conservation and restoration efforts of Midwestern Oak 

Savannas are difficult due to: 1) the limited amount of historical data, which were recorded mainly by 

European pioneers and land surveyors, and the unknown validity and motivation for these records (Nuzzo 

1986); and 2) the lack of restoration ecology studies that could guide ecological restoration practices and 

management of these systems (McPherson 1997).   

One potential reason for the lack of research activity on restoration of Midwestern oak savannas 

and temperate savannas in general, is the absence of a professional discipline associated with savannas 

that promotes an understanding of the role and importance of savannas in temperate regions (McPherson 
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1997).  Since Midwestern oak savannas are generally transitional zones between grasslands and oak 

forests (McPherson 1997), boundaries between the three vegetation types are subjective.  Midwestern oak 

savannas can be utilized as grasslands for grazing animal production and managed accordingly or utilized 

as woodlands with forest management.  Another potential reason for the lack of research activity for 

Midwestern oak savannas could be inconsistent definitions and/or interpretations of the term savanna 

(McPherson 1997).  Midwestern oak savannas can be referred to as oak savanna, oak opening, oak 

barrens, scrub prairie, brush prairie, and brush savannas (Nuzzo 1986) Thus, definitions of a Midwestern 

oak savanna are variable and can be site specific (McPherson 1997, Anderson, Fralish et al. 1999).  Bray 

(1960) and Nuzzo (1986) classified Midwestern oak savannas as open savanna or scrub savanna and these 

two savanna types can vary over time and disturbance levels.  The amount of canopy cover in Midwestern 

oak savannas is also highly variable.  According to McPherson (1997), the woody plant cover of 

Midwestern oak savannas can range from < 1% to about 30%, while Nuzzo (1986) reported canopy cover 

of Midwestern oak savannas ranging from 10% to 100%.  The species composition of the understory also 

determines the difference between a forest, grassland, and a savanna.  Nuzzo (1986) categorized the 

savanna understory as having less grass and more forbs and shrubs than a prairie, but more grass and 

fewer forbs, vines, and shrubs than oak forests.  Thus, while the definition of savannas include a grassland 

and tree component, savannas can broadly differ in the way they look and, most likely, the way they 

function.   

The general definition of a savanna found in most textbooks also can be misleading when 

identifying Midwestern oak savannas.  For example, while frequent low intensity fires, a distinct annual 

dry season, extended droughts, and grazing by large herbivores are characteristics often associated with 

savannas (Enger and Smith 2004), these characteristic may be more common to African Tropical 

Savannas than Midwestern oak savannas (McPherson 1997).  The climate of most Midwestern Oak 

savannas does not promote frequent low intensity natural fires or extended droughts, and the dry season is 

generally more variable than in tropical savannas.  While natural fires may not be common in Midwestern 

Oak savannas, fire is considered to be an important disturbance in the maintenance of these savannas, 

with fires started by Native Americans playing an important role historically (Mann 2011).   

With the lack of research conducted on Midwestern oak savannas and few intact oak savannas 

remnants remaining, restoration of a functional savanna community requires an alternative approach.  The 

plant trait-based approach views a species as a set of inter-connected traits that are both the result of its 

evolutionary history and determine the ability of the species to respond to or affect biotic and abiotic 

environmental filters (Adler, Milchunas et al. 2004).  The response-and-effect framework uses this plant 

trait-based approach that views a species as a set of interconnected traits which can both respond to 
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abiotic and biotic habitat filters and can affect ecosystem properties (Garnier and Navas 2012).  The 

response-and-effect framework includes a performance trait (e.g., annual net primary production - 

ANPP), which is an overall indicator of plant fitness that can be explained by morphological or 

physiological response traits (Garnier and Navas 2012).  In this study, morphological traits are referred to 

as macroscopic traits since they are easily observed and measured, and physiological traits are referred to 

as microscopic traits since they are not easily observed or measured.  Macroscopic and microscopic 

response trait values can vary with differing abiotic and biotic habitat filters, which can then affect traits 

that influence ecosystem functioning (Lavorel and Garnier 2002) through the direct effects of habitat 

filters as well as feedback loops that affect ecosystem function (Garnier and Navas 2012).  These 

response and effect traits can be interrelated and may or may not be correlated (Couso and Fernandez 

2012).   

By growing prospective species in monocultures, performance, response and effect traits can be 

measured to determine each species characteristics and niche which then can be used to predict how they 

might function in a mixed species community setting.  The purpose of this restoration ecology study was 

to study the plant traits of six C3 and three C4 perennial grasses to help evaluate possible components of a 

restored functional grassland community for the historic Oak Savanna-Woodland located in the Inner 

Bluegrass Region of Kentucky, USA.  The Bluegrass Savanna-Woodland was considered by Braun 

(1943) to be anomalous or unexpected in the middle of the mixed mesophytic forest biome.  Wharton and 

Barbour (1991) characterized this area as a savanna-woodland with an open forest whereby the trees are 

dominant but with a well-developed grassy undergrowth.  This savanna-woodland was described at the 

time of European settlement in the mid to late 1700’s as having a rolling mildly karst topography, fertile, 

deep, and well drained silt loam soil produced over highly phosphatic Ordovician Limestone, vast cane 

breaks (Arundinaria gigantea), large mature trees including oak (Quercus sp.) and ash (Fraxinus sp.), and 

a graminoid dominated herbaceous layer (McInteer 1952, Wharton and Barbour 1991, Campbell 2004).  

With European settlement, native grasses were rapidly replaced by non-native C3 forage grasses (Poa 

pratensis and Festuca arundinacea) so that no intact savanna grassland remains in this region today 

(Bryant, Wharton et al. 1980).  The native C3 grasses were thought to be dominant in both abundance and 

number of species in woodlands (Wharton and Barbour 1991) with mesic eutrophic soils as well as in the 

more open woods (Campbell 2004).  The native C4 grasses were thought to be fewer in the number of 

species and found in local openings on poorer soils or openings created by disturbance such as fire or 

bison trails (Campbell 2004).  Common prairie grasses of more western prairie regions were not common 

in this region (Campbell 2004).   
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The two experiments included in this study were a field monoculture experiment and a 

greenhouse clipping experiment.  The monoculture experiment was conducted in a relatively flat, tall 

fescue (Festuca arundinacea) dominated abandoned paddock located at Griffith Woods Wildlife 

Management Area (WMA).  Griffith Woods WMA is considered to be the best Bluegrass Savanna-

Woodland remnant in the Inner Bluegrass Region of Kentucky.  It includes 302 hectares in southern 

Harrison County, Kentucky, and lies on the northern edge of the Inner Bluegrass Region of Kentucky.  

While the vegetation of Griffith Woods WMA is known for its remnant Blue Ash-Oak savanna-woodland 

with 150 – 350 year old trees of Fraxinus quadrangulata (Blue Ash), Quercus macrocarpa (Burr Oak), 

Quercus muhlenbergii (Chinquapin Oak), and Quercus shumardii (Shumard Oak), the herbaceous layer is 

dominated by non-native C3 forage grasses (e.g., Festuca arundinacea and Poa pratensis).   

In the field monoculture experiment, characteristics for each of the nine native grass species, the 

performance trait of annual net primary production (ANPP), macroscopic traits and microscopic traits 

were measured in 2010 and 2011.  Since these two years had significant differences in interannual 

precipitation, plant traits for each species were analyzed between the relatively dry year (2010) and the 

wet year (2011).  A species mixture treatment was added to the monoculture experiment to compare how 

the species performed in the monoculture (with only intra-specific competition) and the species mixture 

treatment (with inter-specific competition).  This comparison was analyzed for both the dry year and the 

wet year.   

Chapter 1 includes how each species performed in the monoculture in general, the response trait 

comparisons between the dry vs. wet year (drought effects), and the response trait comparisons between 

inter- vs. intra-specific competition that were measured in both the dry and wet year (competition x 

drought effects).  This information can then be used to predict how they might function in a community 

setting.  My hypotheses included: 1) The C3 and C4 grasses will differ in the macroscopic and 

microscopic plant traits that explain the performance trait (ANPP); 2) ANPP and macroscopic and 

microscopic response traits will be differentially affected by the habitat filters of drought and drought x 

competition; 3) In response to the habitat filter of drought and competition, the C3 species would show 

trait differences in the performance trait and macroscopic traits, and that the C4 species will be more stress 

tolerant and show trait differences only in microscopic traits; 4) The macroscopic and microscopic traits 

of the four Elymus species will not be plastic in response to drought as their plant traits were measured 

before the summer drought of 2010.  The Elymus species should have experienced the least amount of 

precipitation variability as both years had a wet spring.  The macroscopic and microscopic traits of the 

other two C3 species that were actively grow during the summer will show plasticity in traits as they did 

experience summer interannual precipitation variability, and the C4 species will be stress tolerant and only 
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plastic in the microscopic traits; and 5.) Drought and competition will have differing effects on C4 and C3 

species whereby C3 species should be at a competitive advantage over the C4 species in the wet year 

(2011), and the C4 species should be at a competitive advantage over the C3 species in the dry year 

(2010).  Results of this experiment can be used to better understand the dynamics of this Bluegrass 

Savanna-Woodland and how these nine species might perform in a mixed species community.  A variety 

of effect traits associated with plant-soil nitrogen and carbon cycling were also assessed in the 

monoculture experiment and are presented in Chapter 2.  The goal of this study was to determine if the 

species were fast N cycling or slow N cycling species and how these characteristics affected N and C soil 

pools and soil nutrient concentrations.  Chapter 2 included species characteristics, an inorganic N resin 

pools, litter decomposition, and soil nutrient analyses.  I hypothesized that: 1) The C3 grasses will have 

plant traits that promote fast N cycling, and C4 grasses will have plant traits that promote more 

conservative or slow cycling N plant traits; and 2) If N is limiting at the ecosystem level, slow N cycling 

species should store N in more slowly cycling, recalcitrant pools more than fast N cycling species 

according to the resource-competition theory.   

The greenhouse clipping experiment is presented in Chapter 3.  If grazing was an important 

disturbance in the Bluegrass Savanna-Woodland, these native grasses should have evolved grazing 

strategies to tolerate, deter, or avoid grazing.  Since savannas are maintained by disturbance, the goal of 

this experiment was to better understand the ability of the nine grass species to respond to grazing, and to 

recommend effective mowing regimes that would maintain a functional grassland community within the 

Bluegrass Savanna-Woodland.  The clipping experiment had a factorial design with two clipping heights 

(intensities) and two clipping frequencies designed to mimic frequent intense grazing to less intense 

rotational grazing, with a non-clipped control included for comparison.  I hypothesized that: 1) Frequency 

will have a bigger impact on plant traits than intensity as predicted by Augustine and McNaughton 

(1998); 2) The C4 species will be better adapted to grazing than the C3 grasses because they generally 

have higher nitrogen use efficiency, a higher C:N ratio, and a higher water use efficiency that should 

make them less affected by biomass loss; and 3) The grasses may employ different grazing tolerance? 

strategies at different frequency and intensity treatment levels.  Results of this experiment can be used to 

recommend mowing regimes for ecological restoration that will maintain these grasses in a community 

setting, and provide insights for future restoration efforts.   

Considering the response-and-effect framework, this study measured response traits across the 

abiotic habitat filter of drought and the biotic habitat filters of competition and grazing, and effect traits 

that impacted the cycling of N and C and soil nutrient concentrations.  This information was used to help 

inform how these nine species would perform in a community and the biogeochemical effects they might 
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have on the plant-soil system.  The nine native species used in this study were identified as potentially 

good candidates for the ecological restoration of the Bluegrass Savanna-Woodland (Table 1.1).  The six 

C3 grasses included in this study are associated with wooded habitats, and the three C4 species are 

associated with more open habitats (Wharton and Barbour 1991, Campbell 2004).  Of the six C3 species, 

four are from the genus Elymus or wildryes which are well documented in historical records and are 

thought to have been abundant at the time of European settlement in the mid to late 1700’s (Wharton and 

Barbour 1991).  The Elymus species have a different life history pattern with significant niche 

differentiation from the other species.  They flower in the spring or early summer, set seed, and then go 

dormant during the hottest months of the summer.  They regrow tillers in the fall which overwinter and 

produce flowering culms the next spring.  The Elymus species flower before the other five species (Figure 

1.1).  Dichantheilium clandestinum and Chasmanthium latifolium were the last two C3 species to flower 

(Figure 1.1).  D. clandestinum may have been referred to as buffalo grass in historical records where it is 

frequent in open woods, thickets, and fencerows, especially on low ground (Wharton and Barbour 1991).  

D. clandestinum also has life history traits that differ from the other species in this study.  D. 

clandestinum first produces cleistogamous flowering culms, and then later in the season they produce 

self-fertilizing chasmogamous flowers on small inflorescences that are usually hidden within the sheathes.  

Both types of flowers produce viable seeds.  While this species does not produce a lot of tillers, it had the 

greatest ability for tiller branching, so one tiller could be quite large and heavy.  C. latifolium is frequent 

on wooded stream banks, on floodplains, and in other moist habitats (Wharton and Barbour 1991).  C. 

latifolium is also used in horticultural plantings and can be quite invasive.  The three C4 species are 

generally found in more open sites and flowered after the C3 species (Figure 1.1).  P. anceps is found less 

commonly and on moist ground, and T. flavus is common in old fields, woodland borders, open woods, 

pastures, and roadsides (Wharton and Barbour 1991).  Andropogon virginicus is common in old fields and 

overgrazed pastures and is the last of the C4 species to bolt and produce flowering culms (Wharton and 

Barbour 1991).   

Thus, the plant trait method was used evaluate the ability of native grasses to restore functionality 

of the grassland component of the oak savanna-woodland in central KY.  Specific hypothesis were tested 

in a greenhouse and field experiment, and the results provide us with new insights into how to select 

native grasses for use in restoration projects.   
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Tables  

Scientific Name Common Name 
Photosynthetic  

Pathway 

1.  Elymus macgregorii R. Brooks & J.J.N. Campb. Early wildrye 

C3 

2.  Elymus villosus Muhl. ex Willd. Nodding wildrye 

3.  Elymus virginicus L. Virginia wildrye 

4.  Elymus hystrix L. Bottlebrush 

5.  Dichanthelium clandestinum (L.) Gould Deer tongue 

6.  Chasmanthium latifolium (Michx.) Yates River Oats 

7.  Panicum anceps Michx. Beaked panicgrass 

C4 8.  Tridens flavus (L.) Hitchc. Purple top/grease grass 

9.  Andropogon virginicus L, Broomsedge 

Table 1.1: The nine native perennial bunchgrass species used in this experiment listed in order of 

flowering time.   

 

Figures 

 

Figure 1.1: The dates of data collection according to each species time of flowering or peak biomass. 
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 E. macgregorii   E. villosus   E. virginicus 

 
 E. hystrix   D. clandestinum   C. latifolium 

 
 P. anceps    T. flavus   A. virginicus 

 

  Present  absent/not reported 

Figure 1.2: Distribution maps for the nine species taken from the NRCS plants database.   
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Chapter 2: Do C3 and C4 bunchgrasses differ in phenotypic plasticity and stress 

tolerance in response to drought and competition?  

Abstract 

Since oak savannas of North America have been reduced to < 1 % of their historic ranges, 

restoration of these habitats is important to maintain the biodiversity and ecosystem properties of these 

landscapes.  Efforts to restore oak savannas are hindered by the lack of dependable historic data 

describing these savannas before they were converted to other uses, and by lack of guidelines for 

ecological restoration.  Since no intact remnant oak savanna remains to be studied and replicated, 

restoration of a functional savanna community requires an alternative approach.  The goal of this study 

was assess potential vegetation dynamics of the historic Bluegrass Savanna-Woodland grassland 

community in central Kentucky (USA) by studying the plant trait responses of six C3 and three C4 native 

bunchgrass species to the habitat filters of interannual variability in rainfall and inter- vs. intra-specific 

competition.   

Using the plant trait framework, a monoculture experiment was conducted that included a species 

mixture treatment to assess the performance trait of annual net primary production (ANPP), macroscopic 

traits (morphological), and microscopic traits (physiological) for each species, which then can be used to 

predict how they might function in a community setting.  The C3 species were expected to be more 

phenotypically plastic in the performance and macroscopic traits (morphological), and the C4 species 

were expected to be more stress tolerant and show plasticity in only microscopic (physiological) traits.  In 

response to interannual variability in rainfall, the macroscopic trait of plant height was most affected by 

drought, and generally the microscopic traits were more affected than the performance trait and 

macroscopic traits.  In response to competition the performance and macroscopic traits were more 

affected than the microscopic traits.  In response to drought and competition, the C3 species were plastic 

in the performance and macroscopic traits as predicted but were plastic in microscopic traits as well.  The 

C4 species were stress tolerant in response to drought as predicted but in response to competition, the C4 

species were plastic only in the performance and macroscopic traits which was opposite of what was 

predicted.  E. virginicus was the best inter-specific competitor in both the wet and dry year most likely 

due to life history traits which may have a bigger impact on competitive outcomes than plasticity in trait 

values.  The results of this experiment suggests that the C3 species are more plastic and thus, better 

adapted to the heterogeneous environment of the Bluegrass Savanna-Woodland.  The C3 grasses, 

particularly the Elymus species, are recommended for use in ecological restoration and maintenance of a 

functional savanna grassland community not only in the Bluegrass Savanna-Woodland of Kentucky but in 
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other temperate regions with oak savannas.  The plant trait methodology also can be used in other savanna 

systems to better understand savanna grassland community dynamics.   

Introduction 

Savannas are grassland ecosystems characterized by the trees being sufficiently small or widely 

spaced so that the tree canopy is not closed McPherson (1997) and are influenced by fire, climate, 

topography and soil (Nuzzo 1986).  Savannas cover 20 % of the Earth’s land area and can be divided into 

tropical and temperate groups.  Tropical savannas cover 15 % of the Earth’s land area, generally are well 

represented in the scientific literature, and are extensive in Africa, Australia, and S. America (McPherson 

1997).  While temperate savannas of North America were historically common at the time of European 

settlement, most of these landscapes have been reduced to less than 1 % of their original area, are 

considered to be endangered landscapes (Anderson, Fralish et al. 1999), and are identified as critical areas 

for preservation (Klopatek, Olson et al. 1979).  Furthermore, temperate savannas are not as well studied 

or represented in the scientific literature as tropical savannas (McPherson 1997, Anderson, Fralish et al. 

1999).  Some potential reasons for the difference in level of research activity are the absence of a 

professional discipline associated with savannas, limited understanding of the role and importance of 

savannas in temperate regions, and inconsistent definitions and/or interpretations of the term savanna 

(McPherson 1997).  Thus, there is a lack of knowledge of the ecological relationships and ecological 

management practices for temperate savannas compared to adjacent forest, desert, or grassland landscapes 

(McPherson 1997). 

With European settlement in the eighteenth century, Midwestern Oak savannas in the USA all but 

disappeared within 20 to 40 years due to fire cessation and conversion of land to agricultural or urban 

development (Nuzzo 1986, Anderson, Fralish et al. 1999).  The fact that only 2 % of Midwest Oak 

Savannas remained by 1986 (Nuzzo 1986) has caused this habitat to be listed as a “globally imperiled” 

ecosystem (Heikens and Robertson 1994).  Conservation and restoration efforts of oak savannas are 

difficult due to: 1) the limited amount of historical data which was recorded mainly by European pioneers 

and land surveyors, and the unknown validity and motivation for these records (Nuzzo 1986), and 2) lack 

of restoration ecology studies to guide ecological restoration practices in the field (McPherson 1997).   

If no intact remnant oak savanna remains as a reference system, restoration of a functional 

savanna community becomes challenging and requires an alternative approach.  The plant trait-based 

approach views a species as a set of inter-connected traits that are both the result of its’ evolutionary 

history and determine the ability of the species to respond to or affect biotic and abiotic habitat filters 

(Adler, Milchunas et al. 2004).  The plant trait framework (Violle, Navas et al. 2007) includes a 

performance trait (annual net primary productivity ANPP) which is an overall indicator of plant fitness 
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that can be explained by morphological or physiological response traits.  Response traits can vary with 

differing abiotic and biotic habitat filters and can also be interrelated (Couso and Fernandez 2012).  By 

growing prospective species in monocultures, performance and microscopic and macroscopic response 

traits can be measured to determine the characteristics and niche of each species, and the information can 

be used to predict how they might function in a community setting.  The ability of a species to respond to 

abiotic and biotic habitat filters are important in determining that species niche in the community.  While 

fire and grazing are major disturbances in savanna, other factors including competition for light, water, 

and nutrients, and drought tolerance can also play a role in community dynamics.  In addition, a plant 

must respond to multiple abiotic or biotic factors at the same time.   

The phenotypic plasticity vs. stress tolerant tradeoff or the fixed–plastic continuum (Couso and 

Fernandez 2012) predicts that species that grow in eutrophic heterogeneous environments will have more 

traits that are plastic, and species that grow in resource limited or disturbed environments will be stress 

tolerant and less plastic.  While phenotypic plasticity is usually measured on individual plants and varies 

within a species across differing environmental conditions, this study focuses on plasticity at the species 

level, or population phenotypic plasticity (Valladares, Sanchez-Gomez et al. 2006).  Phenotypic plasticity 

is the ability of a species to change a trait value in response to an environmental factor, and is an adaptive 

characteristic that is influenced by, the genotype, the environment, and the plant trait of interest 

(Bradshaw 1965).  Species with phenotypically plastic traits are expected to be adapted to a 

heterogeneous environment where optimizing phenotype to the current environment can increase fitness 

(Avolio and Smith 2013).  Phenotypically plastic traits are usually macroscopic or morphological in 

nature (Violle, Navas et al. 2007, Couso and Fernandez 2012) and are easily observed and measured.  For 

grasses, examples of macroscopic traits are changes in plant height and number of tillers in response to 

drought and grazing (Gilgen and Buchmann 2009, Barbosa, do Nascimento et al. 2011, N'Guessan and 

Hartnett 2011, Ge, Sui et al. 2012).   

Stress tolerance is the ability of a plant species to survive different forms of severe stress (Grime 

1977), resulting in little or no effect on plant growth (Couso and Fernandez 2012).  Stress tolerant species 

are expected to be found in less heterogeneous, more stable environments where selective pressures are 

relatively constant (e.g., aridity in deserts) and fixed trait values promote one optimal phenotype (Couso 

and Fernandez 2012).  This one optimal phenotype may be maintained by plasticity in microscopic or 

physiological trait values in response to environmental variability (Valladares, Sanchez-Gomez et al. 

2006) that are not as easily observed or measured.  For example , microscopic traits of grasses that may 

help them endure stress associated with drought include reduced specific leaf area (SLA) (Gilgen and 
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Buchmann 2009), and increased rhizosheath thickness and fine root development (Hartnett, Wilson et al. 

2013).   

The purpose of this study was to use the plant trait framework to assess the performance and 

response traits of six C3 and three C4 native grasses to help predict a functional grassland community 

assembly as part of the ecological restoration of the historic Oak Savanna-Woodland located in the Inner 

Bluegrass Region of Kentucky, U.S.A.  The Bluegrass Savanna-Woodland was considered by Braun 

(1943) to be anomalous or unexpected in the middle of the mixed mesophytic forest biome.  Wharton and 

Barbour (1991) characterized this area as a savanna-woodland with an open forest whereby the trees are 

dominant but with a well-developed grassy undergrowth.  This savanna-woodland was described at the 

time of European settlement in the mid to late 1700’s as having a rolling mildly karst topography, fertile, 

deep, and well drained silt loam soil produced over highly phosphatic Ordovician Limestone, vast cane 

breaks (Arundinaria gigantea), large mature trees including Oak (Quercus sp.) and Ash (Fraxinus sp.), 

and a graminoid dominated herbaceous layer (McInteer 1952, Wharton and Barbour 1991, Campbell 

2004).  With European settlement, native grasses were rapidly replaced by non-native C3 forage grasses 

(Poa pretensis and Festuca arundinacea) so that no intact savanna grassland remains in this region 

(Bryant, Wharton et al. 1980).  It is thought that C3 grasses were dominant in both abundance and number 

in the original savannas (Wharton and Barbour 1991, Campbell 2004), and that C4 grasses fewer in the 

number of species and occurred in local openings on poorer soils or openings created by disturbance such 

as fire or bison trails (Campbell 2004).   

The goal of this experiment was 1) to compare and explain the performance of these nine grass 

species in general, and 2) assess the traits of these nine grass species in response to the abiotic habitat 

filter of interannual variability in rainfall, the biotic habitat filter of inter vs. intra-specific competition, 

and the interaction between the two habitat filters.  This information can then be used to predict how they 

might function in a community setting.  I hypothesize that  

1) The C3 and C4 grasses will differ in the macroscopic and microscopic plant traits that can explain the 

performance trait (ANPP).   

2) ANPP and macroscopic and microscopic response traits will be differentially affected by the habitat 

filters of drought and drought x competition. 

3) In response to the habitat filter of drought and competition, the C3 species would show trait differences 

in the performance trait and macroscopic traits, and that the C4 species will be more stress tolerant and 

show trait differences only in microscopic traits.   
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4) The macroscopic and microscopic traits of four Elymus species will not be plastic in response to 

drought as their plant traits were measured before the summer drought of 2010.  The Elymus species 

should have experienced the least amount of precipitation variability as both years had a wet spring.  The 

macroscopic and microscopic traits of the other two C3 species that were actively grow during the 

summer will show plasticity in traits as they did experience summer interannual precipitation variability, 

and the C4 species will be stress tolerant and only plastic in microscopic traits.   

5.) Drought and competition will have differing effects on C4 and C3 species whereby C3 species should 

be at a competitive advantage over the C4 species in the wet year (2011), and the C4 species should be at a 

competitive advantage over the C3 species in the dry year (2010).   

Results of this experiment can be used to better understand the dynamics of this Bluegrass 

Savanna-Woodland and how these nine species would assemble in the community.  This study also uses 

methodology that could be used in other savanna landscapes that could guide ecological restoration 

efforts of endangered oak savanna landscapes.   

Materials and Methods 

Study Site 

The experiment was conducted in a relatively flat, tall fescue (Festuca arundinacea) dominated 

abandoned paddock located at Griffith Woods Wildlife Management Area (WMA).  Griffith Woods 

WMA is considered to be the best Bluegrass Savanna-Woodland remnant in the Inner Bluegrass Region 

of Kentucky.  It includes 746 acres in southern Harrison County, Kentucky (Latitude N 38.33457, 

Longitude W -84.354) and lies on the northern edge of the Inner Bluegrass Region of Kentucky.  While 

the vegetation of Griffith Woods WMA is known for its remnant Blue Ash-Oak savanna-woodland with 

150 – 350 year old trees of Fraxinus quadrangulata (Blue Ash), Quercus macrocarpa (Burr Oak), 

Quercus muhlenbergii (Chinquapin Oak), and Quercus shumardii (Shumard Oak), the herbaceous layer is 

dominated by non-native C3 forage grasses (Festuca arundinacea, and Poa pretensis).  While there is a 

long history of human occupation and agricultural use (Wharton and Barbour 1991), one management 

goal is to restore a portion of the property back to pre-European settlement savanna–woodland vegetation.  

Ecological restoration efforts this far have included native tree planting, native cane planting 

(Arundinaria gigantea), and invasive species removal.  However, for a complete restoration native 

grasses need to be introduced.   

The Inner Bluegrass Region of Kentucky encompasses about 2,400 square miles and is underlain 

by Ordovician Limestone which was pushed up over the millennia by the Jessamine Dome of the 

Cincinnati Arch, and produces a mildly karst topography (Wharton and Barbour 1991).  This highly 
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phosphatic limestone generally produces a silt loam soil that is fertile, deep, and well drained (Wharton 

and Barbour 1991).  The warm, temperate, and humid climate is continental and highly variable (Wharton 

and Barbour 1991).  Average yearly precipitation for the Bluegrass Region is 112 cm/year with typical 

wet springs and dry autumns (Wharton and Barbour 1991).  The mean length of the growing season is 

181 days, and mean annual temperature of 13° Celsius with generally mild winters and hot summers 

(Wharton and Barbour 1991).   

Species 

The nine native bunchgrasses (Wharton and Barbour 1991, Campbell 2004) included in this study 

are listed in Table 2.1 in the order of their flowering times.  The nine species are categorized in two 

functional groups C3 (or cool season) grasses and C4 (or warm season) grasses.  The six C3 grasses 

included in this study are associated with wooded habitats, and the three C4 species are associated with 

more open habitats (Wharton and Barbour 1991, Campbell 2004).  Four of the C3 grasses are Elymus 

species or wildryes.  The Elymus species are well documented in historical records and are thought to 

have been abundant at the time of European settlement in the mid to late 1700’s (Wharton and Barbour 

1991).  Elymus virginicus is common in open woods, thickets and old fields, and Elymus villosus is 

frequent in dry and moist open woods (Wharton and Barbour 1991).  Elymus macgregorii can be 

confused with E. virginicus but flowers a month earlier and is also found in woods and thickets 

(Committee 2002), and Elymus hystrix is frequent in the woods (Wharton and Barbour 1991).  The 

Elymus species have a different life history pattern with significant niche differentiation from the other 

five species.  They flower in the spring or early summer, set seed, and then go dormant during the hottest 

months of the summer.  They regrow tillers in the fall which overwinter and produce flowering culms the 

next spring.   

Dichantheilium clandestinum, which may have been referred to as “buffalos grass” in historical 

records, is frequent in open woods, thickets, and fencerows, especially on low ground (Wharton and 

Barbour 1991).  D. clandestinum also has life history traits that differ from the other species in this study.  

D. clandestinum first produces cleistogamous flowering culms, and then later in the season they produce 

self-fertilizing chasmogamous flowers on small inflorescences that are usually hidden within the sheathes.  

Both types of flowers produce viable seeds.  While this species did not produce a lot of tillers, it had the 

greatest ability for tiller branching, so one tiller could be quite large and heavy.  Chasmanthium latifolium 

is frequent on wooded stream banks, on floodplains, and in other moist habitats (Wharton and Barbour 

1991).  C. latifolium also is used for in horticultural plantings and can be quite invasive.  C. latifolium 

also has the ability for tiller branching.   
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The three C4 species generally are found in open sites.  P. anceps is not common and is found on 

moist ground, and T. flavus is common in old fields, woodland borders, open woods, pastures, and 

roadsides (Wharton and Barbour 1991).  Andropogon virginicus is common in old fields and overgrazed 

pastures (Wharton and Barbour 1991).  A. virginicus grew really well the first year it was planted but did 

successively worse each year.  Since the percent cover was very low in the monoculture and particularly 

low in the competition plots, A. virginicus had low replication in the monoculture plots and was 

completely dropped from the competition analysis.   

Experimental procedures 

Seeds for each species were collected in the Bluegrass Region of Kentucky and cold (wet) 

stratification requirements were determined through the seed testing laboratory of the Regulatory Services 

at the University of Kentucky.  The stratified seeds were germinated in a heated greenhouse on a flooding 

table in 72 hole plant trays filled with Pro-Mix potting soil.  These plugs were planted in the field plots at 

169 plugs/2 meter2 plot with a hand trowel to minimize disturbance.   

In a completely randomized design, the nine bunchgrass species monocultures plus one species 

mixture treatment were each replicated 10 times to produce 100-2 meter2 plots.  The species mixture 

treatment was a completely randomized planting with six species: E. virginicus, D. clandestimum, C. 

latifolium, P. anceps, T. flavus, and A. virginicus.  Only one species of Elymus was added to the mixture 

treatment so that the genus Elymus would not be over represented.   

Initial preparation of the field site included mowing after which the grass clippings were raked 

into piles and burned.  The field was then sprayed with Roundup herbicide at recommended 

concentrations to kill all the vegetation.  A second application of Roundup was applied to areas that did 

not die back after the initial Roundup treatment.  The plots were watered as needed with a garden hose 

after initial planting, and rainfall was recorded at the site.  The C3 species were planted in March through 

May, and the C4 species were planted in June and July.  The first field season (2008) Elymus virginicus, 

Elymus villosus, Elymus mcgregorii, Panicum anceps, Tridens flavus, and Andropogon virginicus were 

planted with the remaining species planted the second growing season (2009).  An 18 inch path was 

maintained around each of the plots by mowing.  The experiment and the surrounding area were 

maintained by hand weeding, spot spraying with Roundup, and mowing.   

Environmental Factors 

There was little variation in monthly average temperatures between 2010 and 2011 (Kentucky 

Mesonet), and both years were similar to the long term average (1895 to 2013) of the Bluegrass Region 

(NOAA/ESRL http://www.esrl.noaa.gov/psd/data/timeseries) (Figure 2.1).   
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There was significant precipitation variation between 2010 and 2011.  The year 2010 was 

generally a dry year but with a wet spring, and the year 2011 received near record annual rainfall 

(Kentucky Mesonet) compared to the long term monthly precipitation average for the Bluegrass Region 

(Figure 2.1).  From January to April, 2010 received 43 % less precipitation, and 2011 received 39 % more 

precipitation compared to the long-term average of the Bluegrass Region.  From July to October, 2010 

received 41 % less precipitation, and 2011 received 4 % more precipitation compared to the long-term 

average of the Bluegrass Region.  Compared to 2011, 2010 received 59 % less precipitation from January 

through April, and 43 % less precipitation from July to October (Figure 2.1).   

Plant Trait measurements  

Due to the large seasonal variation of flowering times of the nine grass species, plant trait values 

were taken for each species at peak biomass (or time of flowering) and ranged from May to September 

(Table 2.1).  A fifteen cm2 area was randomly chosen for each plot where maximum plant height was 

measured, the number of tillers and flowering culms was counted, and aboveground biomass 5 cm above 

soil level was clipped, dried at 55º C for several days, and weighed.  Average tiller size was calculated as 

aboveground biomass/tiller number.  The microscopic traits of total organic carbon and nitrogen 

concentrations in plant aboveground biomass material were measured using the Elementar vario MAX 

CNS Analyzer through the soil testing laboratory of the Regulatory Services at the University of 

Kentucky.   

To assess the mobile versus structural carbon component for each species, a palatability study (or 

forage quality analysis) was done for the 2010 and 2011 peak biomass samples.  Procedures for the 

Ankom200 Fiber Analyzer are found at http://www.ANKOM.com under the procedures tab.  The Ankor 

Fiber Analyzer measures neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent 

lignin (ADL).  NDF digests the cell solubles which leaves the total % plant fiber or cell wall including 

hemicellulose, cellulose, and lignin.  ADF measures the % cellulose and % lignin.  Cellulose can only be 

digested by animals with the right bacteria in their rumen.  ADL is a measurement of % lignin which is 

indigestible by animal enzymes.  The different carbon components were calculated as: % cell solutes = 

100% - % ADL, % hemicellulose = % NDF - % ADF, % cellulose = % ADF - % ADL, and % lignin = % 

ADL.  Cell solutes are considered mobile and hemicellulose, cellulose, and lignin are considered 

structural.   

Statistics 

The statistical program PAST (Hammer 2001) was used to normalize the data and ANOVA’s 

were performed in SAS (9.3: SAS Institute, Cary, NorthCarolina, USA) using PROC MIXED.  The 
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ANOVA that looked at drought effects for each plant trait included all nine species, the 2 years (2010 and 

2011) and the interaction between species x year (or drought).  Another ANOVA for each plant trait was 

performed for each species to look at drought effects (or differences between the 2 years).   An overall 

ANOVA for each plant trait was done for the competition x drought which included all five species, two 

levels of competition (monoculture vs. species mixture treatment) and the 2 years of drought (2010 and 

2011).  This included species effects, competition effects, drought effects, and all interactions.  Another 

ANOVA for each species was performed for each plant trait to assess competition effects, drought effects, 

and competition x drought interaction effects.  For each species, to assess differences in competitive 

ability between the wet year and the dry year, for each plant trait, the trait value for the monoculture was 

subtracted from the average trait value of the mixture which created a competition value for each year.  

An ANOVA was then performed for each species to compare this competition value between the two 

years.   

Multivariate analysis was performed in the program PC-ORD (6.08: MjM Software, Gleneden 

Beach, Oregon, U.S.A.) using Principle Components Analysis (PCA)using the Euclidean distance 

measurement (McCune and Mefford 2011).  The data was not standardized and all response variable were 

included in the analysis.  The Euclidean distance measurement was also used with Multi-Response 

Permutation Procedures (MRPP) within PC-ORD to discern significant differences between the nine 

species, and the four competition x drought treatments.   MRPP was also used for pairwise comparisons 

using the Euclidean distance measurement.  For the MRPP analysis, acceptable p values were determined 

by dividing 0.05 by the number of species or treatments.   

Results 

Species performance 

An ANOVA analysis that included all species and both years was performed to assess species 

differences in ANPP (Figure 2.3).  C. latifolium and T. flavus were the top performers followed by E. 

virginicus (Figure 2.3).  E. macgregorii, E. villosus, and D. clandestinum had the lowest ANPP and thus 

had the lowest performance.  C. latifolium grew tall plants with lots of tillers that then produced flowering 

culms (Figure 2.3).  C. latifolium also had a high percentage tissue C mainly in the form of lignin and 

cellulose (Figure 2.4).  T. flavus grew the tallest plants with fewer but larger tillers (Figure 2.3).  E. 

virginicus, was the most prolific in producing tillers that then became flowering culms (Figure 2.3).  E. 

virginicus had a high percentage of tissue C that was allocated mainly to cell solutes.  E. hystrix, P. 

anceps, and A. virginicus were the mid performers.  The lowest performers, E. macgregorii, E. villosus, 

and D. clandestinum generally produced plants with more but smaller tillers (Figure 2.3).  E. macgregorii 

had a lower percentage of tissue C that was allocated mainly to cell solutes (Figure 2.4).  E. villosus and 
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D. clandestinum had a high percentage of tissue C that was allocated to cell solutes and lignin (Figure 

2.4).  D. clandestinum also had a high percentage of tissue N which resulted in a low lignin/N.  The trade-

off to produce ANPP by growing more small tillers or fewer big tillers was observed between the C3 and 

C4 species (Figure 2.2A).  In general, the C4 species compared to the C3 species grew fewer but bigger 

tillers with fewer flowering culms (Figures 2.2 and 2.3), produced smaller seeds which require 

stratification with more seeds per spikelet, and had a higher C:N that allocated more C to structural C than 

cell solutes.  The C3 species generally grew more but smaller tillers that then produced flowering culms 

(Figure 2.2A and Figure 2.3).  The Elymus species and C. latifolium produce bigger seeds with fewer 

seeds per spikelet and allocated more C to cell solutes and lignin.  The seeds of the Elymus species 

requires little or no stratification.  The C3 species generally allocate  

In the multivariate PCA analysis, differences in species means were detected using MRPP and 

pairwise comparisons.  The three top performers in ANPP (dry wt.) and the lowest performer D. 

clandestinum were significantly different from each other and from all other species in the multivariate 

analysis using all traits (Figure 2.2B).  Plant height, tiller size, and the microscopic traits explained the 

variance for axis 1 and the mcroscopic traits explained the variance for axis 2 (Figure 2.2 B).  The species 

means of E. macgregorii, E. villosus, and E. hystrix in multivariate analysis including all traits were 

statistically the same, and the species means of P. anceps and A. virginicus (Broom) were statistically the 

same for the analysis using all traits (Figure 2.2 B).  Species groupings were similar between the analysis 

using all traits and the macroscopic traits analysis (Figure 2.2 B and C).  ANPP (drywt), flowering culms, 

and tiller number explained the variance for axis 1, and plant height and tiller size explained the variance 

for axis 2 (Figure 2.2 C).  In the microscopic trait analysis, only P. anceps and E. virginicus were not 

significantly different, and C. latifolium and E. virginicus were not significantly different (Figure 2.2 D).  

Total % N and C:N explained the most variance for axis 1, and lignin explained the most variance for axis 

2 (Figure 2.2 D).   

Drought effects 

In the ANOVA analysis that included all species and both years, the performance trait (ANPP) 

had a significant species effects (p<.0001), year effect (p=.01) and species x year interaction effect 

(p=.007).  All macroscopic and microscopic traits had a significant species effect (all p<.0001).  

Significant year effects were found for all macroscopic traits (all p<.0009) except for flowering culms 

(p=.60), and significant species x year interactions were found for all macroscopic traits (all p<.004).  The 

microscopic traits of C:N % C and % N had significant year effects (all p<.0001) and species x year 

interaction effects (all p<.003).  For the carbon components, hemicellulose and cellulose had a significant 

year effect (both p=.0004) and hemicellulose and lignin:N had significant species x year interaction 
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effects (both p=.02).  Six separate multivariate PCA analyses were performed for 2010 and 2011 for all 

traits, macroscopic traits only, and microscopic traits only.  While there were no clear species groupings, 

MRPP results revealed significant species effects (all p<.0001) and C3 species vs. C4 species effects (all 

p<.003) for all six PCA multivariate analyses.   

Plant height was the trait that was most affected by drought whereby all species except for T. 

flavus grew significantly shorter plants in the dry than wet year (2010) (21.2 Figure 2.3).  Percent tissue C 

was the next most significantly affected trait by drought whereby five species increased % C in the dry 

year.  Four species decreased C:N and increased % N in the dry year (Table 2.2 and Figure 2.4).  

Hemicellulose significantly increased in the dry year for four species (Table 2.2 and Figure 2.4).  All 

other traits had less species significantly affected by drought (Table 2.2) 

From May to September in 2010 and 2011, plant traits were measured for each species at the time 

of peak biomass for both the monocultures and the species mixture treatment.  Plant traits for the Elymus 

species were measured from mid-May to the beginning of June so these species should have been more 

affected by the winter drought as they overwinter their tillers and flowered before the 2010 summer 

drought (Figure 2.1).  Plant traits for the other two C3 species were measured from the end of May to the 

beginning of July so they may have been more affected by the 2010 summer drought.  Plant traits of the 

C4 species were measured from mid-July to mid-September so these species were actively growing during 

the 2010 summer drought.   

While only E. macgregorii, D. clandestinum, and C. latifolium significantly decreased in the 

performance trait of ANPP in the dry year (2010), E. virginicus showed the same trend.  This loss in 

ANPP may have been caused by the winter drought for E. macgregorii and E. virginicus.  For the other 

two C3 species, ANPP of D. clandestinum, and C. latifolium may have been more negatively affected by 

the summer drought.  E. macgregorii, D. clandestinum, and C. latifolium were also the only species to 

reduce tiller size or tiller number in response to drought, and A. virginicus was the only species to 

increase tiller number in response to drought (Table 2.2 Figure 2.3).  The number of flowering culms 

decreased for C. latifolium and increased for A. virginicus in the dry year (Figure 2.3).  Considering the 

microscopic traits, D. clandestinum was the most affected by drought.  D. clandestinum lowered C:N and 

lignin:N in the dry year by increasing % N and % hemicellulose, and lowering % cellulose.  E. 

macgregorii decreased C:N in response to drought by increasing % N and increasing % C in the form of 

hemicellulose (Table 2.2 and Figure 2.3).  The other three Elymus species decreased % C in response to 

drought.  The microscopic traits of C. latifolium were not affected by drought.   
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Of the three C4 species, A. virginicus was the most affected by drought in the macroscopic traits, 

and P. anceps was the most affected by drought in the microscopic traits.  T. flavus was not affected by 

drought in the macroscopic traits, and A. virginicus was not affected by drought in the microscopic traits 

(Table 2.2).  A. virginicus was the only species to increase ANPP, tiller number and number of flowering 

culms in the dry year.   

Plasticity in plant traits was measured as the change in trait value between the 2 years (dry year – 

wet year) (Figures 1.3 and 1.4, Table 2.3).  An ANOVA s was performed to see if plasticity of traits 

differed between the species.  Plasticity in the performance trait of ANPP was not found to significantly 

differ between the species.  However plasticity in tiller number, tiller size and plant height did 

significantly differ between species (Figure 2.3).  Plasticity in the microscopic traits of % N, % C, C:N, % 

cell solutes, and ash/silica also were found to differ significantly between species.  In the multivariate 

PCA analysis that included all plant traits, all species except D. clandestinum and P. anceps were similar 

in most traits, with the microscopic traits of % tissue N, % lignin, and C:N explaining the most variation 

between species (Figure 2.5).  For the macroscopic traits analysis, plant height and tiller size explained 

the most variation in plasticity between the species.  For the microscopic trait analysis, C:N, and % N 

explained the most variation in plasticity between the species (Figure 2.5).   

To assess the plasticity of traits for each species, if the error bar for the plasticity of a trait mean 

did not cross the x-axis, it was considered plastic (Table 2.3, Figures 2.3 and 2.4).  All species except for 

E. villosus and A. virginicus were plastic in more microscopic traits than macroscopic traits (Table 2.3).  

The four C3 species that were plastic in the performance trait of ANPP also were plastic in the most 

number of traits.  E. macgregorii (nine traits), E. virginicus (ten traits), D. clandestinum (ten traits), and 

C. latifolium (seven traits) were plastic in both macroscopic and microscopic traits (Figures 2.2 and 2.3).  

E. villosus and E. hystrix were plastic in a fewer number of traits (both six traits) but were plastic in both 

macroscopic and microscopic traits.  Of the C4 species, T. flavus was only plastic in the microscopic traits 

(6 traits).  P. anceps also was plastic in the microscopic traits (six traits) and the macroscopic trait plant 

height A. virginicus was plastic in two macroscopic traits and two microscopic traits (Table 2.3, Figures 

2.2 and 2.3).   

Competition x drought 

For the competition x drought analysis, only six species were used in the species mixture 

treatment so the three Elymus species (E. macgregorii, E. villosus and E. hystrix) were not included in this 

analysis.  Also, A. virginicus was excluded from this analysis because it did poorly in the monoculture 

experiment in general.  In the ANOVA analysis that included the five species, inter vs. intraspecific 
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competition, and both years (or drought effects), significant species effects were found for the 

performance trait of ANPP, all macroscopic traits, and all microscopic traits (all p<.0001).  Significant 

drought effects were found for the performance trait (p<.0001), the macroscopic traits of tiller number 

(p<.0001), tiller size (p=.03), and plant height (p<.0001), and for all microscopic traits (all p<.0001).  

Significant competition effects were found for the performance trait (p<.0001) and the macroscopic traits 

(p<.001) but no microscopic traits.  Significant species x competition interactions were found for the 

performance trait (p<.0001), all macroscopic traits (all p< .0017) and all microscopic traits (all p<.02).  

For the species x drought interaction, significant effects were found for the macroscopic traits of plant 

height (p<.0001) and number of flowering culms (p=.0008) along with all three microscopic traits (all 

p<.0001).  For the competition x drought interaction, significant effects were found for only the 

macroscopic traits of tiller number (p=.02), plant height (p=.003) and culms (p=.0006) but no microscopic 

traits.  For the three way interaction, significant effects were found for the performance trait (p=.006), the 

macroscopic traits of tiller size (p=.01) and plant height (p<.0001), and the microscopic trait of % C 

(p=.02).  A multivariate PCA analysis was performed that included all species, inter vs. intraspecific 

competition, and both years.  The MRPP results revealed significant species effects (p<.0001), C3 species 

vs. C4 species effects (p<.0001), inter vs. intraspecific competitive effects (p=.0003), and year effects 

(p<.0001).  All five species were significantly different from each other in multivariate space (p<.025) 

(Figure 2.6).   

The performance trait of ANPP was significantly different between inter vs. intra-specific 

competition treatments for all five species (Table 2.4 and supplemental).  E. virginicus significantly 

increased ANPP in inter-specific competition, while the other four species significantly decreased ANPP 

in inter-specific competition (Figure 2.7).  The number of flowering culms was significantly different 

between inter vs. intra-specific competition treatments for all five species, and tiller number, tiller size, 

and plant height was significantly different for four of the five species (Table 2.4 and supplemental).  For 

P. anceps, tiller size and plant height was not significantly different, and T. flavus was not significantly 

different in tiller number between inter vs. intra-specific competition treatments (Table 2.4 and 

supplemental).  E. virginicus was the only species to perform better inter-specifically for all macroscopic 

traits (Figure 2.7).  The other four species performed better in intra-specific competition.  The 

microscopic traits were much less affected by competition than the macroscopic traits (Figure 2.8).  D. 

clandestinum and C. latifolium significantly lowered % N in interspecific competition, E. virginicus 

significantly lowered % C in interspecific competition, and C. latifolium increased C:N in interspecific 

competition (Figure 2.8).  The three C3 species were significantly affected by competition for the 

performance trait and all macroscopic traits.  For the C4 species, P. anceps was not significantly affected 
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by competition for the macroscopic traits of tiller size and plant height, and T. flavus was not significantly 

affected by competition for the macroscopic trait of tiller number.  Only C3 species showed significant 

differences in microscopic traits (Figure 2.8).    

 To assess how drought affected competitive ability, a measure of competitive plasticity was 

calculated for each trait (average species mixture treatment – monoculture treatment) and then compared 

between the drought year (2010) and the wet year (2011) (Figures 2.7 and 2.8).  A trait was considered 

plastic if the error bar for the plasticity of a trait mean did not cross the x-axis (Figure 2.5, Figures 2.7 and 

2.8).  E. virginicus had higher ANPP in the species mixture treatment in both years and all higher 

macroscopic trait values except that tiller size showed no difference in competitive ability in the wet year.  

The other two C3 species competed better in the monocultures in both years for ANPP and all 

macroscopic traits.  The two C4 species had higher ANPP in the monoculture in both years, and higher 

macroscopic trait values in the dry year.  P. anceps showed no difference in trait values in the wet year for 

tiller size and flowering culms (Table 2.5).  T. flavus showed no difference in trait values in the wet year 

for any macroscopic traits.  D. clandestinum and C. latifolium showed differences in trait values in the 

wet year for all microscopic traits with a higher C:N in the mixture treatment.  E. virginicus, T. flavus, and 

P. anceps showed more differences in trait values for microscopic traits in the dry year compared to the 

wet year.   

A multivariate PCA analysis was performed for each species to determine if there were 

significant differences between the four treatments: the 2010 monoculture treatment, 2011 monoculture 

treatment, 2010 species mixture treatment, and 2011 species mixture treatment (Figure 2.9).  All five 

species had significant competitive effects, and treatment effects (supplemental).  Only E. virginicus did 

not have a significant year effect (supplemental).  All four treatments were significantly different for E. 

virginicus and D. clandestinum.  For E. virginicus, plant height and % C explained differences in drought 

effects, and macroscopic traits explained differences in inter vs. intraspecific competition (Figure 2.9).  

For D. clandestinum, plant height., tiller size, C:N and %N were the main traits that explained differences 

in drought effects, and tiller number and flowering culms explained differences in inter vs. intraspecific 

competition (Figure 2.9).  For C. latifolium, the mixture 2011 treatment and the mono 2010 treatment 

were not significantly different (Figure 2.9)  Plant traits that explained variation in competition and 

drought were not clear.  The two C4 species responded similarly to drought and competition as the PCA 

graphs look similar in both plant traits and species means.  For P. anceps, the monoculture treatment and 

the species mixture treatment were not significantly different in 2011.  The species mixture treatment in 

2010 had lower trait values for all traits except for % N compared to the other three treatments.  For T. 
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flavus, only the mixture treatment was significantly different from the other three treatments (Figure 2.9).  

The mixture 2010 treatment was negatively correlated to all traits except for % N.   

Discussion 

I hypothesized that the C3 and C4 species will differ in the macroscopic and microscopic plant 

traits that can be used to explain the performance trait (ANPP).  The three top performing species used 

different strategies to produce ANPP.  T. flavus grew the tallest plants with fewer but larger tillers that 

were supported by high amounts of recalcitrant C.  C. latifolium grew more but smaller tillers than T. 

flavus that were tall with high amounts of recalcitrant C.  E. virginicus was the most prolific producer of 

tillers, which were shorter and smaller and had high amounts of lignin and cell solutes compared to those 

of C. latifolium and T. flavus.  The other three Elymus species were similar to E. virginicus but produced 

less tillers.  In general, the C3 species produced more smaller tillers with a lower C:N ratio that allocated 

more C to cell solutes than the C4 species.  In general, the C4 species produced bigger but fewer tillers 

with a high C:N and allocated more C to lignin and cellulose than C3 species.  Because the Elymus species 

flower by late spring and are dormant during the hot summer months, allocating C to cell solutes may 

allow more plasticity in C allocation.  The other two C3 species (D. clandestinum and C. latifolium) were 

actively growing during the summer months so allocation to recalcitrant C may be beneficial for tiller 

structure during the dry months of summer.  

My second hypothesis was that plant traits will be differentially affected in response to the habitat 

filters of drought and drought x competition.  Drought affected four of the nine species for the 

performance trait, and plant height was the most affected macroscopic trait whereby eight of the nine 

species grew shorter plants in the dry year.  The microscopic traits of % tissue N, % tissue C, C:N, % 

hemicellulose, and lignin/N were the most affected by drought.  Thus, the microscopic traits were 

generally more effected by drought than the performance or macroscopic traits.  Competition had a 

significant effect on the performance trait and all macroscopic traits, but a small effect on microscopic 

traits.  Significant drought effects were found when interspecific competition was added for the three 

macroscopic traits of tiller number, plant height, and the number of flowering culms.    

My third hypothesis was that in response to the habitat filters of drought and competition, C3 

species would show trait differences in the performance trait and macroscopic traits, and the C4 species 

will be more stress tolerant and show trait differences in only microscopic traits.  Only three C3 species 

had significant performance trait differences in response to drought.  Also, in response to drought, C3 

macroscopic trait values had more differences than the C4 species macroscopic trait values.  While the C4 

species microscopic trait values differed as expected, the C3 species microscopic trait values differed as 

well.  Thus, as predicted, in response to drought, C3 species trait values differed in the performance trait 
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and macroscopic traits, and C4 species trait values differed in the microscopic traits.  However, the C3 

species microscopic trait values also differed which was not predicted.   

In response to competition, differences in ANPP were found for all five species.  The three C3 

species had significant traits differences for all macroscopic traits with fewer microscopic trait 

differences.  For the C3 species, the microscopic trait values of E. virginicus and D. clandestinum differed 

in one trait, and the microscopic trait values of C. latifolium different in two traits.  For the C4 species, 

only macroscopic trait values differed.  Drought had a bigger effect when competing inter-specifically for 

two C3 species (E. virginicus reduced tiller number and D. clandestinum reduced the number of flowering 

culms) and the two C4 species (P. anceps reduced tiller number and T. flavus reduced tiller number and 

plant ht).  Thus, as predicted, in response to competition, the trait values of the C3 species were different 

in the performance trait and the macroscopic traits but were also different in the microscopic traits.  

However, the C4 did not respond to competition as predicted as their trait values only differed in the 

performance trait and the macroscopic traits.  All species except C. latifolium had macroscopic traits that 

were more sensitive to drought when competing inter-specifically compared to competing intra-

specifically.  

E. virginicus was a top performer in monoculture where it was the most prolific species at 

producing small tillers that became flowering culms.  In response to drought, E. virginicus was plastic in 

ANPP, macroscopic traits and the most microscopic traits.  In response to competition, E. virginicus was 

the only species that competed better in the species mixture treatment than the monoculture in both the 

wet and dry year.  This same effect was seen for the macroscopic traits as well.  In the species mixture 

treatment, E. virginicus had a competitive advantage of both light and space as this species began actively 

growing and flowered before the other species.  At the time the other species were actively growing, the 

plants of E. virginicus were dying back which then lodged and further shaded out neighboring plants.  For 

this reason, I think that the life history traits of E. virginicus had a bigger effect on competitive ability 

than plasticity in traits.  The other three Elymus species were not top performers in monoculture as they 

produced less tillers than E. virginicus but have similar life history traits as E. virginicus.  E. macgregorii 

was the earliest flowering species thus, ANPP was most likely negatively affected by the winter drought.  

The traits of E. macgregorii were plastic in both macroscopic and microscopic traits.  The ANPP of E. 

villosus and E. hystrix was not affected by the winter drought.   

Reduced ANPP of other two C3 species were expected to be caused by the onset of the summer 

drought.  C. latifolium was a top performer in the monoculture treatment where it grew a lot of relatively 

big and tall tillers.  D. clandestinum was one of the lowest performers in monoculture where it produced 
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fewer, smaller, and shorter tillers than C. latifolium.  D. clandestinum was more plastic than C. latifolilum 

in both macroscopic and microscopic traits.  D. clandestinum was the only species that was plastic in all 

four macroscopic traits.  In the dry year, D. clandestinum produced short plants with a low number of 

tillers and flowering culms, and in the wet year it produces tall plants with big tillers, which were 

probably due to tiller branching.  D. clandestinum and C. latifolium had higher trait values in the 

monoculture than the species mixture treatment in both the dry year and the wet year for ANPP and all 

macroscopic traits.  While both of these species were plastic in all three microscopic traits in the wet year, 

C. latifolium had no plastic microscopic traits, and D. clandestinum only was plastic in the microscopic 

trait of C:N in the dry year. 

All species grew well in monoculture except for A. virginicus.  The C4 species plots were 

generally weedier in the spring than those of the Elymus species because the overwintered tillers of the 

Elymus began growing early in the spring before the weedy species became established.  The C4 species 

began growing later in the spring after the weedy species were well established.  A. virginicus was the last 

species to begin in the growing season and generally remained in a rosette until it bolted in late summer to 

produce flowering culms.  A. virginicus did not have the ability to bolt through the weedy layer of plants 

like the other two C4 species.  For this reason, A. virginicus was not a good competitor for light, which 

may explain in part why it is found on poor disturbed sites where competition for nutrients may be 

stronger than competition for light.  This may also explain why A. virginicus was the only species to 

increase ANPP, tiller number, and the number of flowering culms in the dry year when the plots were less 

weedy and light competition may have been reduced compared to the wet year.   

The ANPP was not affected by drought for any of the C4 species even though they were actively 

growing during the summer.  T. flavus was a top performer in the monoculture where it produced a low 

number of tillers that were big and taller tillers than the other species.  T. flavus was the only species that 

was not plastic in plant height in response to drought.  P. anceps and A. virginicus produced the same 

number of tillers but smaller and shorter tillers than T. flavus.  In response to drought, T. flavus was not 

plastic in any macroscopic traits and P. anceps was only plastic in the macroscopic trait of plant height 

Both T. flavus and P. anceps were plastic in microscopic traits in response to drought.  T. flavus and P. 

anceps had a higher ANPP in the monoculture compared to the species mixture treatment for both years.  

In the dry year (2010), T. flavus and P. anceps had higher macroscopic trait values in the monoculture.  In 

the wet year (2011), T. flavus and P. anceps competed better in the species mixture treatment in both 

macroscopic and microscopic traits because the macroscopic traits for T. flavus were not different 

between the monoculture and species mixture treatment, and the macroscopic traits of tiller size and the 

number of flowering culms for P. anceps were not different between the monoculture and species mixture 
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treatment.  Also, in the wet year, T. flavus and P. anceps increased %tissue C in the species mixture 

treatment.   

My prediction that the four Elymus species will be the least affected by drought as their plant 

traits were measured before the summer drought was not supported.  E. macgregorii and E. virginicus 

were plastic in ANPP which may have been caused by the winter drought.  All four Elymus species were 

plastic in three macroscopic traits and at least three microscopic traits.  E. macgregorii and E. virginicus 

had more plastic microscopic traits than E. villosus and E. hystrix.  My prediction that the two C3 species 

that were actively growing during the drought would be highly plastic in response to drought was 

partially supported.  Both species were plastic in ANPP, and D. clandestinum was the only species that 

was plastic in all four macroscopic traits.  My prediction that the C4 species would be the least plastic and 

stress tolerant in response to drought was supported.  Excluding A. virginicus, T. flavus was only plastic 

in six microscopic traits and P. anceps was plastic in seven microscopic traits and one macroscopic trait.   

My last prediction that C3 species will be more competitive in wet year and the C4 species will be 

more competitive in the dry year was not supported.  Because of the life history traits of E. virginicus, E. 

virginicus was a better competitor for light and space in the species mixture treatment in both years.  

Opposite of my prediction, the two C4 species competed better in the species mixture treatment in the wet 

year.   

In conclusion, the C3 and C4 grasses did differ in how they performed in the monoculture 

treatment which was generally explained by the trade-off of allocating biomass to fewer but bigger tillers, 

or more but smaller tillers.  In response to interannual rainfall, plant height was most affected 

macroscopic trait in response to drought, and generally the microscopic traits were more affected than the 

performance trait and microscopic traits.  In response to competition the performance and macroscopic 

traits were more affected than the microscopic traits.  In response to interannual rainfall and competition, 

the C3 species were plastic in the performance and macroscopic traits as predicted but were plastic in 

microscopic traits as well.  The C4 were stress tolerant in response to interannual rainfall as predicted but 

in response to competition, the C4 species were plastic only in the performance and macroscopic traits 

which was opposite of what was predicted.  Plasticity in trait values for the Elymus species may have 

been a result of the winter drought, and plasticity in trait values for the other two C3 species may have 

been a result of the summer drought.  E. virginicus was the best inter-specific competitor in both the wet 

and dry year which was most likely due to life history traits that give it a head start over the other species.  

All this evidence supports the idea that the C3 species may be better adapted to the Bluegrass Savanna-

Woodland’s mesic heterogeneous environment.  The Elymus species may be at a particular advantage 
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because they overwinter their tillers which then begins growing early in the spring.  This early growth 

may give them a competitive advantage in both light and space over the later growing species.  Also, the 

Elymus species are actively growing before the canopy closes on the Bluegrass Savanna-Woodland.  All 

these factors would make them good candidate species in the restoration of this savanna-woodland.   
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Tables 

Table 2.1: The nine native perennial bunchgrass species used in this experiment listed in order of 

flowering time.  The abbreviations are used in the tables and graphs. 

Scientific Name 
Abbrev 

iation 
Common Name 

Photosynthetic  

Pathway 

1.  Elymus macgregorii R. Brooks & J.J.N. Campb. Emg Early wildrye 

C3 

2.  Elymus villosus Muhl. ex Willd. Evl Nodding wildrye 

3.  Elymus virginicus L. Evg Virginia wildrye 

4.  Elymus hystrix L. Ehy Bottlebrush 

5.  Dichanthelium clandestinum (L.) Gould Dclan Deer tongue 

6.  Chasmanthium latifolium (Michx.) Yates Clat River Oats 

7.  Panicum anceps Michx. Panc Beaked panicgrass 

C4 8.  Tridens flavus (L.) Hitchc. Tflav Purple top/grease grass 

9.  Andropogon virginicus L, Broom Broomsedge 

 

Table 2.2: Plant traits that were significantly affected by interannual differences in rainfall for each 

species.  (* p= .05, ** p<.001, *** p<.0001).  For the macroscopic traits, the green cell indicates that the 

species did significantly better in the wet year, and the brown cell indicates that the species did 

significantly better in the dry year.  For the microscopic traits, the green cell indicates that the trait value 

was significantly higher in the wet year, and the brown cell indicates that the trait value was significantly 

higher in the dry year. 

Species x Drought Effects 

 C3 species C4 species 

 Emg Evl Evg Ehy Dclan Clat Panc Tflav Broom 

Performance trait 

ANPP ***    * **    

Macroscopic traits 

tiller number ***     ***   * 

tiller size     ***     

Plant ht.  ** *** *** *** *** * ***  *** 

Flowering culms      *   *** 

Microscopic traits 

%tissue N ***    ***  * *  

%tissue C ** *** *** ***   *   

C/N **    ***  * *  

Mobile vs. structural Carbon components 

Lignin/N *   * *     

%cell solutes   *    *   

%hemicellulose *  *  *  *   

%cellulose  *   *     

%lignin    *      

%ash/silica  ***        
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Table 2.3: Trait plasticity was measured as the change in trait value between the two years (dry year – wet 

year).  To assess the plasticity of each trait, if the error bar for the plasticity of a trait mean did not cross 

the x-axis, it was considered plastic.  If the cell is green, the trait value was higher in the wet year.  If the 

cell is brown, the trait value was higher in the dry year.   

Plasticity in response to drought 

 C3 species C4 species 

 Emg Evl Evg Ehy Dclan Clat Panc Tflav Broom 

Performance trait 

ANPP          

Macroscopic traits 

tiller number          

tiller size          

Plant ht.           

Flowering culms          

Microscopic traits 

%tissue N          

%tissue C          

C/N          

Mobile vs. structural Carbon components 

Lignin/N          

%cell solutes          

%hemicellulose          

%cellulose          

%lignin          

%ash/silica          

 

 

 

 

 

 

 

 

 

 

 



32 

   

Table 2.4: Plant traits that were significantly affected by differences in competitive ability (Average 

mixture – monoculture).  Mix indicates that the species had significantly higher trait values in the species 

mixture treatment, and mono indicates that the species had significantly higher trait values in the 

monoculture experiment.  

 

 

 

 

 

 

 

 

 

Table 2.5: Trait plasticity was measured as the change in trait value between inter-specific competition 

(mix) and intra-specific competition (mono).  To assess the plasticity of each trait, if the error bar for the 

plasticity of a trait mean did not cross the x-axis, it was considered plastic.  Mono indicates a higher trait 

value in the monoculture treatment, and mix indicates a higher trait value in the species mixture 

treatment.  Plasticity between inter and intra-specific competition was assessed for 2010 (dry year) and 

2011 (wet year). 

Plasticity in response to competition x drought 

 Evg Dclan Clat Panc Tflav 

2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 

Performance trait 

ANPP mix mix mono mono mono mono mono mono mono mono 

Macroscopic traits 

Tiller # mix mix mono mono mono mono mono mono mono  

Tiller size mix  mono mono mono mono mono  mono  

Plant ht. mix mix mono mono mono mono mono mono mono  

Culms mix mix mono mono mono mono mono  mono  

Microscopic traits 

%tissue N mono mix  mono  mono mix  mix  

%tissue C mono   mono  mono mono mix  mix 

C:N mix mono mix mix  mix mono  mono  

.  

Competitive effects for each species 

 C3 species C4 species 

 Evg Dclan Clat Panc Tflav 

Performance trait 

ANPP mix mono mono mono mono 

Macroscopic traits 

tiller number mix mono mono mono  

tiller size mix mono mono  mono 

Plant ht. mix mono mono  mono 

flowering culms mix mono mono mono mono 

Microscopic traits 

% tissue N  mono mono   

% tissue C mono     

C:N   mix   
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Supplemental 

Table 2.6:ANOVA results for drought effects for all species.  Significant p values are in bold. 

Drought Effects 

Trait Species effects Y effects Drought x species 

 Df F p Df F p Df F p 

Performance trait 

biomass 8,151 12.6 <.0001 1,151 6.28 0.0133 8,151 2.78 .0067 

Macroscopic traits 

tiller number 8,151 31.68 <.0001 1,151 11.52 0.0009 8,151 5.82 <.0001 

tiller size 8,151 6.23 <.0001 1,151 431.4 <.0001 8,151 63.62 <.0001 

plant height 8,151 213.9 <.0001 1,151 857.8 <.0001 8,151 43.48 <.0001 

flowering culms 8,151 22.97 <.0001 1,151 0.28 0.5987 8,151 3.01 0.0036 

Microscopic traits 

%tissue N 8,147 12.44 <.0001 1,147 37.08 <.0001 7,147 3.65 0.0012 

%tissue C 8,147 9.2 <.0001 1,147 40.32 <.0001 7,147 4.61 0.0001 

C/N 8,147 10.93 <.0001 1,147 24.73 <.0001 7,147 3.25 0.0031 

Mobile vs. structural Carbon componentss 

%cell solutes 8,145 35.87 <.0001 1,145 1.81 0.1811 8,145 1.03 0.4138 

%hemicellulose 8,145 8.78 <.0001 1,145 13.05 0.0004 8,145 2.41 0.0182 

%cellulose 8,145 11.90 <.0001 1,145 12.94 0.0004 8,145 0.87 0.5411 

%lignin 8,145 7.01 <.0001 1,145 0.54 0.4631 8,145 1.22 0.2917 

%ash/silica 8,145 5.07 <.0001 1,145 0.03 0.8555 8,145 1.71 0.1017 

Lignin/N 8,143 5.42 <.0001 1,143 2.90 0.0908 7,143 2.39 0.0244 
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Table 2.7: ANOVA results drought effects for each species.  Significant values are in bold.  

Drought effects for each species 

 E. macgregorri E. villosus E. virginicus E. hystrix 

Trait df F p df F p df F p df F p 

Performance trait 

Biomass 1,18 16.63 0.0007 1,18 0 0.9517 1,18 3.81 0.0667 1,17 0.05 0.8323 

Macroscopic traits 

Tiller number 1,18 30.22 <.0001 1,18 3.5 0.4185 1,18 2.81 0.1107 1,17 1.77 0.2013 

Tiller size 1,18 1.03 0.3237 1,18 766.14 0.0778 1,18 3.15 0.093 1,17 2.64 0.1288 

Plant height 1,18 688.89 <.0001 1,18 1.7 <.0001 1,18 286.86 <.0001 1,17 498.26 <.0001 

Culms 1,18 1.14 0.3 1,18 1.7 0.2083 1,18 0.07 0.7889 1,17 0.66 0.2013 

Microscopic traits 

%tissue N 1,18 17.23 0.0006 1,18 17.59 0.6774 1,18 4.24 0.0542 1,17 0.03 0.8596 

%tissue C 1,18 9.64 0.0061 1,18 3.57 0.0005 1,18 83.8 <.0001 1,17 21.19 0.0003 

C/N 1,18 14.91 0.0011 1,18 3.57 0.0749 1,18 1.68 0.2119 1,17 0.02 0.8816 

Mobile vs. structural Carbon components 

%cell solutes 1,18 0 0.9669 1,18 0.24 0.7687 1,17 5.99 0.0256 1,17 1.71 0.2079 

%hemicellulose 1,19 7.34 0.0144 1,18 5.32 0.6294 1,17 6.75 0.0188 1,17 0.1 0.7532 

%cellulose 1,20 3.85 0.0653 1,18 0.19 0.0333 1,17 3.96 0.0631 1,17 0.63 0.4383 

%lignin 1,21 0.76 0.3961 1,18 28.14 0.6715 1,17 2.71 0.1178 1,17 7.37 0.0147 

%ash/silica 1,22 0.42 0.5254 1,18 0.41 <00001 1,17 1.98 0.1776 1,17 0.09 0.7688 

Lignin/N 1,23 5.74 0.0277 1,18  0.5305 1,17 0.12 0.7373 1,17 7.13 0.0162 

%cell solutes 1,17 0.62 0.4429 1,16 5.07 0.0468 1,16 0.51 0.4843 1,6 0.56 0.481 

%hemicellulose 1,17 0 0.9776 1,16 0.01 0.0371 1,16 3.35 0.0858 1,6 4 0.0924 

%cellulose 1,17 1.84 0.1924 1,16 1.59 0.924 1,16 1.72 0.2087 1,6 0 0.9675 

%lignin 1,17 0 0.9852 1,16 3.18 0.2233 1,16 1.3 0.2709 1,6 2.36 0.1754 

%ash/silica 1,17 0.2 0.6584 1,16 1.56 0.0916 1,16 0.87 0.3657 1,6 0.83 0.3972 

Lignin/N 1,17 0.44 0.517 1,16 1.56 0.2283 1,16 0.49 0.4952    
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Drought effects for each species 

 D. clandestinum C. latifolium P. anceps T. flavus 

Trait df F p df F p df F p df F p 

Performance trait 

Biomass 1,18 4.67 0.0444 1,18 12.83 0.0021 1,18 0.01 0.9219 1,16 0.34 0.567 

Macroscopic traits 

Tiller number 1,18 3.47 0.0788 1,18 30.18 <.0001 1,18 1.01 0.3271 1,16 1.01 0.3294 

Tiller size 1,18 15.93 0.0009 1,18 0.03 0.8611 1,18 1.21 0.2854 1,16 0.81 0.3809 

Plant height 1,18 128.4 <.0001 1,18 5.13 0.0362 1,18 28.32 <.0001 1,16 1.78 0.201 

Culms 1,18 2.8 0.1117 1,18 4.36 0.0513 1,18 0.37 0.553 1,16 0 0.9735 

Microscopic traits 

%tissue N 1,18 17.92 0.0005 1,18 1.21 0.2862 1,18 7.92 0.0115 1,16 6.45 0.0218 

%tissue C 1,18 2.62 0.1227 1,18 0.01 0.932 1,18 6.3 0.0218 1,16 3.66 0.0737 

C/N 1,18 19.28 0.0004 1,18 0.67 0.4254 1,18 7.27 0.0148 1,16 7.27 0.0148 

Mobile vs. structural Carbon components 

%cell solutes 1,18 1.43 0.2474 1,17 0.62 0.4429 1,16 4.56 0.0468 1,16 0.51 0.4843 

%hemicellulose 1,18 11.17 0.0036 1,17 0 0.9776 1,16 5.07 0.0371 1,16 3.35 0.0858 

%cellulose 1,18 5.78 0.0272 1,17 1.84 0.1924 1,16 0.01 0.924 1,16 1.72 0.2087 

%lignin 1,18 0.02 0.888 1,17 0 0.9852 1,16 1.59 0.2233 1,16 1.3 0.2709 

%ash/silica 1,18 0.14 0.7087 1,17 0.2 0.6584 1,16 3.18 0.0916 1,16 0.87 0.3657 

Lignin/N 1,18 5.37 0.0324 1,17 0.44 0.517 1,16 1.56 0.2283 1,16 0.49 0.4952 
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 A. virginicus 

Trait df F p 

Performance trait 

Biomass 1,18 2.48 0.146 

Macroscopic traits 

Tiller number 1,18 7.04 0.0242 

Tiller size 1,18 0.48 0.506 

Plant height 1,18 28 0.0004 

Culms 1,18 0.03 0.8771 

Microscopic traits 

%tissue N    

%tissue C    

C/N    

Mobile vs. structural Carbon components 

%cell solutes 1,6 0.56 0.481 

%hemicellulose 1,6 4 0.0924 

%cellulose 1,6 0 0.9675 

%lignin 1,6 2.36 0.1754 

%ash/silica 1,6 0.83 0.3972 

Lignin/N    
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Table2.8: ANOVA results for competition x drought effects for all species including all interactions.  Significant p values are in bold.   
Competition x Drought effects 

Trait Species competition drought Spec*comp Spec*drought 

 df F p df F p df F p df F p df F p 

Performance trait 

ANPP 4,170 49.52 <.0001 1,170 32.89 <.0001 1,170 35.44 <.0001 4,170 18.89 <.0001 4,170 1.41 0.2318 

Macroscopic trait 

tiller 
# 

4,170 96.52 <.0001 1,170 34.61 <.0001 1,170 28.55 <.0001 4,170 12.57 <.0001 4,170 2.34 0.0569 

tiller 
size 

4,170 90.33 <.0001 1,170 11.21 .001 1,170 4.85 0.0291 4,170 4.52 0.0017 4,170 2.36 0.055 

plant 
ht. 

4,170 263.9 <.0001 1,170 35.69 <.0001 1,170 381.44 <.0001 4,170 7.08 <.0001 4,170 30 <.0001 

culms 4,170 152.6 <.0001 1,170 29.82 <.0001 1,170 5.69 0.051 4,170 8.48 <.0001 4,170 5.01 0.0008 

Microscopic traits 

% N 4,169 15.1 <.0001 1,169 0.25 .6172 1,169 101.22 <.0001 4,169 3.7 0.0065 4,169 8.54 <.0001 

% C 4,169 8.16 <.0001 1,169 0.98 .3229 1,169 35.92 <.0001 4,169 3.24 0.0135 4,169 13.65 <.0001 

C/N 4,169 13.51 <.0001 1,169 0.22 0.643 1,169 88.26 <.0001 4,169 3.01 0.0199 4,169 9.23 <.0001 

 

Competition x Drought effects 

Trait Comp*drought Spec*comp*drought 

 df F p df F p 

Performance trait 

ANPP 1,170 3.78 0.0535 4,170 3.76 0.0059 

Macroscopic trait 

tiller # 1,170 5.25 0.0232 4,170 1.77 0.138 

tiller size 1,170 2.45 0.1196 4,170 3.28 0.0127 

plant ht. 1,170 9.04 0.003 4,170 7.7 <.0001 

culms 1,170 12.27 0.0006 4,170 1.71 0.1503 

Microscopic traits 

% N 1,169 2.8 0.0963 4,169 2.13 0.079 

% C 1,169 0.38 0.5367 4,169 2.9 0.0234 

C/N 1,169 3.39 0.0672 4,169 2.26 0.0643 
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Table 2.9:  ANOVA for each species for competition x drought 

 E. virginicus D. clandestinum C. latifolium P. anceps T. flavus 

trait df F p df F p df F p df F p df F p 

Performance trait 

biomass                

Competition 1,36 25.22 <.0001 1,36 52.81 <.0001 1,36 23.13 <.0001 1,36 21.30 <.0001 1,31 7.89 0.0081 

Drought 1,36 0.77 0.3873 1,36 5.96 0.0195 1,36 12.92 0.001 1,36 2.12 0.1545 1,31 0.10 0.7579 

CxD 1,36 1.77 0.1919 1,36 0.39 0.5356 1,36 0.2 0.6541 1,36 2.57 0.1175 1,31 0.71 0.4051 

Macroscopic traits 

tiller number                

Competition 1,36 19.05 0.0001 1,36 61.22 <.0001 1,36 13.84 0.0007 1,36 17.46 0.0002 1,31 2.29 0.1406 

Drought 1,36 6.09 0.0185 1,36 2.01 0.1645 1,36 14.71 0.0005 1,36 5.30 0.0272 1,31 7.94 0.0083 

CxD 1,36 0.04 0.8350 1,36 1.38 0.2474 1,36 0.82 0.3672 1,36 1.33 0.2572 1,31 1.97 0.1701 

tiller size                

Competition 1,36 17.32 0.0002 1,36 5.93 0.0200 1,36 7.59 0.0091 1,36 3.71 0.0620 1,31 6.59 0.0153 

Drought 1,36 2.75 0.1057 1,36 8.87 0.0052 1,36 1.16 0.2893 1,36 0.43 0.5170 1,31 0.76 0.3893 

CxD 1,36 16.54 0.0002 1,36 2.26 0.1416 1,36 1.68 0.2038 1,36 0.29 0.5907 1,31 3.81 0.0599 

plant height                

Competition 1,36 19.25 <.0001 1,36 5.97 0.0199 1,36 63.31 <.0001 1,33 1.37 0.2503 1,31 7.97 0.0082 

Drought 

1,36 

6.09 0.0185 

1,36 

200.5

9 

<.0001 

1,36 27.46 

<.0001 

1,33 37.91 

<.0001 

1,31 5.80 0.0221 

CxD 1,36 0.04 0.8350 1,36 2.04 0.1623 1,36 8.29 0.0067 1,33 0.02 0.8976 1,31 15.85 0.0004 

culms                

Competition 1,36 15.42 0.0004 1,36 5.70 0.0223 1,36 23.32 <.0001 1,36 13.42 0.0008 1,31 6.63 0.0150 

Drought 1,36 0.01 0.9437 1,36 5.17 0.0290 1,36 10.82 0.0023 1,36 0.28 0.5990 1,31 3.44 0.0731 

CxD 1,36 0.23 0.6334 1,36 0.29 0.5939 1,36 0.17 0.6787 1,36 2.07 0.1585 1,31 6.13 0.0189 

 

 

 

 

 

 



39 

   

 E. virginicus D. clandestinum C. latifolium P. anceps T. flavus 

trait df F p df F p df F p df F p df F p 

Microscopic traits 

%tissue N                

Competition 1,36 0.08 0.7733 1,36 5.67 0.0277 1,36 11.09 0.002 1,36 0.00 0.9729 1,30 2.67 0.1130 

Drought 1,36 0.19 0.6663 1,36 45.69 <.0001 1,36 10.86 0.0022 1,36 15.12 0.0004 1,30 35.72 <.0001 

CxD 1,36 5.78 0.0215 1,36 1.77 0.1923 1,36 1.81 0.1872 1,36 0.98 0.3290 1,30 2.56 0.1202 

%tissue C                

Competition 1,36 9.90 0.0033 1,34 1.95 0.1716 1,36 1.72 0.1985 1,36 2.87 0.0989 1,30 1.72 0.1997 

Drought 1,36 124.81 <.0001 1,34 3.52 0.0694 1,36 2.57 0.1176 1,36 0.65 0.4313 1,30 3.45 0.0733 

CxD 1,36 0.0 0.9523 1,34 0.34 0.5641 1,36 6.45 0.0156 1,36 0.21 0.6501 1,30 2.98 0.0946 

C/N                

Competition 1,36 0.03 0.8700 1,34 3.40 0.0741 1,36 7.34 0.0103 1,33 1.65 0.2079 1,30 1.27 0.2691 

Drought 1,36 0.35 0.5570 1,34 38.82 0.0001 1,36 14.08 0.0006 1,33 22.63 <.0001 1,30 22.77 <.0001 

CxD 1,36 4.96 0.0322 1,34 1.72 0.1982 1,36 6.49 0.0153 1,33 0.94 0.3386 1,30 2.80 0.1044 

 

 

 

Table 2.10: ANOVA results for plant trait differences (Avg mixture – monoculture) between the dry year (2010) and the wet year (2011) for each 

species. 

ANOVA results for differences in plant traits between inter vs. intra specific competition between the dry and wet year 

 E. virginicus D. clandestinum C. latifolium P. anceps T. flavus 

trait df F p df F p df F p df F p df F p 

Performance trait 

biomass 1,18 5.54 0.0301 1,18 0.01 0.9111 1,18 1.51 0.2354 1,18 8.64 0.0088 1,17 4.71 0.0444 

Macroscopic traits 

tiller number 1,18 0.12 0.7291 1,18 7.65 0.0127 1,18 4.46 0.0488 1,18 10.73 0.0333 1,17 1.89 0.1871 

tiller size 1,18 35.72 <0.0001 1,18 0.71 0.409 1,18 1.38 0.2559 1,18 2.78 0.113 1,17 2.78 0.1139 

plant height 1,18 0.07 0.7896 1,18 5.54 0.0302 1,18 20.78 0.0002 1,18 0 0.968 1,17 58.51 <.0001 

culms 1,18 3.48 0.0785 1,18 2.75 0.1143 1,18 0.37 0.5512 1,18 6.35 0.0214 1,17 7.33 0.0156 

Microscopic traits 

%tissue N 1,18 10.69 0.0043 1,18 1.95 0.1796 1,18 7.99 0.0112 1,18 2.15 0.1596 1,16 6.85 0.0187 

%tissue C 1,18 5.79 0.027 1,18 1.57 0.2256 1,18 4.2 0.0554 1,18 5.31 0.0333 1,16 3.89 0.0662 

C/N 1,18 11.68 0.0031 1,18 4.89 0.0402 1,18 11.94 0.0028 1,18 1.07 0.315 1,16 4.3 0.0546 
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Table 2.11: ANOVA results for competition (monoculture vs. mixture), drought (dry year vs. wet year), 

and drought x competition interaction .  (* p= .05, ** p<.001, *** p<.0001).  The species shaded in blue 

are the C3 species and the species shaded in orange are the C4 species.  For competition, the pink indicates 

that the species did significantly better in monoculture, and the blue indicates the species did significantly 

better in mixture.  For drought, the green arrow indicates that the species did significantly better in the 

wet year, and the brown arrow indicates it the species did significantly better in the dry year.   

 

 

Competition, Drought, and Competition x Drought 

interactions 

 C3 species C4 species 

 E. vrg D. clan C. lat P.anc T. flav 

Performance trait 

biomass      

Comp *** *** *** *** ** 

Drought  * **   

CxD      

Macroscopic traits 

tiller number 

Comp *** *** *** ***  

Drought *  *** * ** 

CxD      

tiller size 

Comp *** * **  * 

Drought  **    

CxD ***     

Plant ht. 

Comp *** * ***  ** 

Drought * *** *** *** * 

CxD   **  *** 

Flowering culms 

Comp *** * *** *** * 

Drought  * **   

CxD     * 

Microscopic traits 

%tissue N 

Comp  * **   

Drought  *** ** *** *** 

CxD *     

%tissue C 

Comp **     

Drought ***     

CxD   *   

C/N 

Comp   *   

Drought  *** *** *** *** 

CxD *  *   
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Table 2.12: Multivariate competitive results performed for each species.  MRPP pairwise comparisons 

determined by differences between intra vs. interspecific competition (monoculture treatment vs. species 

mixture treatment), between the 2010 and 2011, differences between the four treatments.   

Multivariate analysis for each species using all traits 

 Evg Dclan Clat Panc Tflav 

p values determined by MRPP  

Intra vs. interspecific comp <.0001 .002 <.0001 .01 .005 

Year 0.79 <.0001 .0012 <.0001 .013 

treatment <.0001 <.0001 <.0001 <.0001 <.0001 
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Figures 

Figure 2.1: Monthly temperature averages for the drought year (2010) and the wet year (2011) compared 

to the long term average in the Bluegrass Region of Kentucky (± 1std error).  Monthly precipitation totals 

for the drought year (2010) and the wet year (2011) compared to the long term average in the Bluegrass 

Region of Kentucky (± 1std error).  The color coded numbers are yearly precipitation totals.   

 

Figure 2.2: A. regression of tiller size and tiller number using data from 2010 and and 2011.  B. C. and D. 

PCA results including all traits and both years, macroscopic traits for both years, and microscopic traits 

for both years.  The circles indicate the species means that are not significantly different in pairwise 

comparisons using MRPP (p<.025).  The percent of variance explained for each axis is in parenthesis.    

A

. 

B.  

C. D. 
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Figure 2.3: Drought effects for the Performance trait (ANPP) and macroscopic traits measured at the time 

of peak biomass.  The species are listed on the x-axis in order of their flowering time with mean (± 1 SE).   

The left panel of graphs are species meansg (± SE) for each year (2010= dry year and 2011= wet year).  

The letter indicate significant differences between species with both years combined (p<.05).  The 

asterisks above the bars indicate a significant difference between the years for a species (* p<.05, ** 

p<.001. *** p<.0001).  The right panel of graphs shows the species means (± 1 SE) for plasticity or 

change in trait values between the two years (dry yr – wet yr.)  If the bar is above the line it had a higher 

value in the dry year.  If the bar is below the line it had a higher value in the wet year.  Different letters 

represent significant differences between species means (P value ≤ 0.05) determined by adhoc Tukeys.   
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Figure 2.4: Drought effects for microscopic trait graphs for drought effects measured at the time of peak 

biomass.  The species are listed on the x-axis in order of their flowering time with mean (± 1 SE).   The 

left panel of graphs show species averages (± SE) for each year (2010= dry year and 2011= wet year).  

The letter indicate significant differences (p<.05) between species with both years combined.  The 

asterisks above the bars indicate a significant difference between the years for a species (* p<.05, ** 

p<.001. *** p<.0001).  The right panel of graphs shows the species means (± 1 SE) for plasticity or 

change in trait values between the two years (dry yr – wet yr.)  If the bar is above the line it did better in 

the dry year.  If the bar is below the line it did better in the wet year.  Different letters represent significant 

differences between species means (p<0.05) determined by adhoc Tukeys.   
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Figure 2.5: PCA drought results including all plasticity traits, macroscopic plasticity traits, and 

microscopic plasticity traits.  Plasticity trait values are dry year- wet year.  The circles indicate the species 

means that are not significantly different in pairwise comparisons using MRPP (p<.025).  The percent of 

variance explained for each axis is in parenthesis beside the axis.    
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Figure 2.6: PCA results for competitive effects including all species, all traits, mono vs mixture 

treatments, and both years.  All species means were significantly different determined by pairwise 

comparisons using MRPP (p<.025).  The percent of variance explained for each axis is in parenthesis 

beside the axis.    
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Figure 2.7: Performance and Macroscopic trait graphs for differences in competitive ability between the two years 

(2010= dry year and 2011= wet year).  The left side is the species means raw data and the right side is difference in 

competitive ability (Avg. mixture – monoculture) for the two years.  If the bar is positive, it did better in the mixture 

treatment than the monoculture.  If the bar is negative, it did better in the monoculture.   The bigger the bar, the 

bigger difference there was between Average mixture and the monoculture.  Error bars are ±1std error. (* p<.05, ** 

p<.001. *** p<.0001 
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Figure 2.8: Microscopic trait graphs for differences in competitive ability between the two years (2010= 

dry year and 2011= wet year).  The left side is the raw data and the right side is difference in competitive 

ability (Avg. mixture – monoculture) for the two years.  If the bar is positive, it did better in the mixture 

treatment than the monoculture.  If the bar is negative, it did better in the monoculture.   The bigger the 

bar, the bigger difference there was between Average mixture and the monoculture.  Error bars are ±1std 

error. (* p<.05, ** p<.001. *** p<.0001 
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Figure 2.9: Competition and drought PCA results for each species comparing treatment means for all 

traits.  The circles indicate the species means that are not significantly different in pairwise comparisons 

using MRPP (p<.025).  The percent of variance explained is denoted in parenthesis for each axis.    
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Chapter 3: Differences in ecosystem properties between C3 and C4 grasses native to 

a historic North American Oak Savanna 

Abstract 

Since oak savannas of North America have been reduced to < 1 % of their historic ranges, 

restoration of these habitats are important to maintain the biodiversity and ecosystem functioning of these 

landscapes.  Efforts to restore these oak savannas are hindered by the lack of dependable historic data 

describing these savannas before they were largely converted to other uses and by lack of restoration 

ecology guidelines for ecological restoration.  To better understand the ecosystem dynamics of the 

herbaceous layer of a temperate oak savanna, a field monoculture experiment was performed to assess the 

ecosystem characteristics of six C3 and three C4 native bunchgrasses.  This information can then be used 

to help predict how these species might function in a community setting, and to recommend ecological 

restoration guidelines to restore and maintain a functional grassland community assembly of the historic 

Bluegrass Oak Savanna-Woodland of Kentucky.  This methodology can also be used in other savanna 

systems to better understand savanna grassland ecosystem functioning.   

The monoculture experiment included nine native bunchgrass species that were replicated 10 

times to produce 90-2 meter2 plots in a completely randomized design.  The three experiments included in 

this study are: 1) plant characteristics were measured at peak biomass for each species, 2) a litter 

decomposition experiment was performed over 15 months, 3) a resin nitrate (NO3
-) and ammonium 

(NH4
+) bag experiment was performed during the growing season of 2010, and 4) a soil nutrient study 

was performed in 2008 and again in 2012.  The goal of this study was to measure the plant traits of these 

species and determine if the species were fast N cycling or slow N cycling species.  The C3 species were 

predicted to be fast N cycling species as they were thought to be found in more mesic eutrophic soils 

where N is less likely to be limiting.  The C4 species were predicted to be slow N cycling species as they 

were thought to be found in more nutrient poor and disturbed sites where N is more likely to be limiting.  

My results found that only C3 species had trait values that promoted fast N cycling, but both C3 and C4 

species had traits values that promoted slow N cycling.  I concluded that N is not limiting in this 

experiment because: 1) decomposition of species with low quality litter was not hindered, 2) retention of 

N was found in the litter bags for all species, and 3) resin NO3-N and NH4-N levels were similar for 

species that were predicted to promote both mineralization and immobilization.  Soil nutrient studies 

supported these observations as the nine species were not found to differentially deplete soil N levels.  

These findings do not support the resource-competition theory which is dependent upon N limitation.  

The results of this study suggests that other factors such as fire or grazing may have bigger impacts on the 

community setting of these grasses than competition for limiting N.   
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Introduction 

Savannas are grassland ecosystems characterized by the trees being sufficiently small or widely 

spaced so that the tree canopy is not closed (McPherson 1997) and are influenced by fire, climate, 

topography and soil (Nuzzo 1986).  Savannas constitute 20 % of the Earth’s land area and can be divided 

into tropical and temperate groups.  Tropical savannas cover 15 % of the Earth’s land area, are generally 

well represented in the scientific literature, and are extensive in Africa, Australia, and S. America 

(McPherson 1997).  While temperate savannas of North America were historically common at the time of 

European settlement, most of these landscapes have been reduced to less than 1 % of their original area, 

are considered to be endangered landscapes (Anderson, Fralish et al. 1999), and are identified as critical 

areas for preservation (Klopatek, Olson et al. 1979).  Furthermore, temperate savannas are not as well 

studied or represented in the scientific literature as tropical savannas(McPherson 1997, Anderson, Fralish 

et al. 1999).  Some potential reasons for this difference in the level of research activity are the absence of 

a professional discipline associated with savannas, limited understanding of the role and importance of 

savannas in temperate regions, and inconsistent definitions and/or interpretations of the term savanna 

(McPherson 1997).  Thus, there is a lack of knowledge of the ecological relationships and ecological 

management practices for temperate savannas compared to adjacent forest, desert, or grassland landscapes 

(McPherson 1997). 

With European settlement in the eighteenth century, Midwestern Oak savannas in the USA all but 

disappeared within 20 to 40 years due to fire cessation and conversion of land to agricultural or urban 

development (Nuzzo 1986, Anderson, Fralish et al. 1999).  The fact that only 2 % of Midwest Oak 

Savannas remained by 1986 (Nuzzo 1986) has caused this habitat to be listed as a “globally imperiled” 

ecosystem (Heikens and Robertson 1994).  Conservation and restoration efforts of oak savannas are 

difficult due to: 1) the limited amount of historical data which was recorded mainly by European pioneers 

and land surveyors, and the unknown validity and motivation for these records (Nuzzo 1986), and 2) lack 

of restoration ecology studies to guide ecological restoration practices in the field (McPherson 1997).   

Benefits to restoring these historic landscapes include an increase in biodiversity and restoration 

of ecosystem functioning (McPherson 1997).  Ecosystem functioning is influenced by climate, 

topography, nature of parent material, living organisms, and time (Brady 1990).  Ecosystem functioning 

of oak savannas is further influenced by the more interactive factors such as fire, grazing, biogeochemical 

processes, and biotic interactions (Chapin, Matson et al. 2002).  Savanna grasses can impact ecosystem 

functioning through positive or negative feedback loops that can influence fire or grazing frequencies, 

nutrient cycling, and soil nutrient availability (Bardgett, Mawdsley et al. 1999, Knops, Bradley et al. 

2002).   
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Wei et al. (2013) characterized soil C and N stoichiometry is a main driver of ecosystem functioning of 

temperate grasslands in part because N is found to be a primary limiting nutrient in many grasslands 

(Polley and Detling 1988, Schlesinger 1991, Vitousek and Howarth 1991).  Nitrogen is cycled through 

the plant, soil, and microbial communities and is intricately linked to the C cycle (Knops, Bradley et al. 

2002, Wei, Yu et al. 2013).  Plant species take up available N from the soil, produce biomass which 

eventually decomposes and returns the C and N back to the soil.  Soil microbes regulate mineralization 

and mobilization rates of N in part by the amount of N in soil organic matter, and the quantity and quality 

of C and N of decomposing plant organic matter.  Mineralization and immobilization of N by the soil 

microbes in turn determines the amount N that is available for plant uptake.   

Plant species differ in the amount and quality of biomass and litter they produce, N uptake rates, 

and the efficiency with which they use N (Wedin and Tilman 1990, Knops, Bradley et al. 2002, Jiang, 

Han et al. 2011).  These species differences can result in positive or negative feedback loops (Vitousek 

1982).  A positive feedback loop is the result of a plant species that produces a low C:N biomass with 

high percent N and a low percent C particularly low in the recalcitrant forms of lignin and cellulose.  This 

low C:N biomass produces a high quality litter that is then easily decomposed by the soil microbes.  

When soil microbes are not limited by N, mineralization occurs which coverts organic N to plant 

available inorganic N that is optimized under warm, moist soil conditions (McClellan, Deenik et al. 

2007).  Thus, fast N cycling species cycle nitrogen more rapidly through the plant, litter, and soil, and 

promotes plant available N.  Similarly, a plant species that produces a high C:N biomass with low percent 

N and a high percentage of C particularly recalcitrant C.  This high C:N biomass produces a low quality 

litter that is N limited that promotes immobilization.  Immobilization is the process whereby soil 

microbes use inorganic N to break down the N limited litter that can ultimately result in soil N 

deficiencies and limit plant N availability (McClellan, Deenik et al. 2007).  Thus, slow N cycling species 

cycle less nitrogen more slowly through the plant litter and soil which limits plant available N.  Also since 

lignin in the litter turns into humic substances in soil organic matter, litter with high amounts of lignin 

leads to higher soil organic C and N pools (De Deyn, Cornelissen et al. 2008).  Moreover, slow N cycling 

plants should be selected for when water or nutrients are limiting plant growth.  Thus, N limitation creates 

a positive feedback that results in slower C cycling and an increase of soil organic C and N (De Deyn, 

Cornelissen et al. 2008).   

N cycling is also influenced by a plants ability to retranslocate N from dying aboveground 

biomass to belowground parts, and synchronizing the seasonality of plant activity with precipitation.  

Grass species are known to vary in their ability of retranslocate N from dying aboveground biomass to 

crowns and roots (Norris and Reich 2009).  Retranslocation of N is thought to be favored in N limited 
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environments where the conservation of N is important, and less important in more mesic environments 

where soil N may not limiting (Norris and Reich 2009).  The retranslocation of N increases the C:N of the 

litter and promotes immobilization which in turn further limits plant available N.  Moreover, plant uptake 

of N is also dependent on water availability as uptake of nitrate (NO3
-) and ammonium (NH4

+) happens in 

the root hairs and is dependent on water.  Plants that temporally synchronize N uptake at the time they are 

most actively growing with seasonal precipitation can show an increase of % tissue N.  This would lower 

C:N of litter and promote mineralization and increase plant available N.  Plants that do not synchronize 

plant N uptake with precipitation could experience decreased plant N availability and uptake, and 

possibly the accumulation of nitrates in the soil that then becomes susceptible to leaching (McCulley, 

Burke et al. 2009).   

While these positive and negative feedback loops can have effects at the ecosystem scale, plant 

available N also differs at more local scales that can select for fast or slow N cycling species.  This local 

scale can have major impacts on the spatial distribution of species in a community.  At the ecosystem 

level, the resource-competition theory predicts that in N limited environments, the species that conserves 

N and most efficiently reduces soil N availability will have a competitive advantage over neighboring 

species that have higher N demands (Fargione and Tilman 2006).  In N limiting conditions, slow N 

cycling species are predicted be better competitors than fast N cycling species which would result in 

increased production and abundance of slow N cycling species in the community (Fargione and Tilman 

2006).  However if N is not limiting, faster cycling N species should be at a competitive advantage which 

would result in their increased production and abundance in the community.  At more local scales, fast N 

cycling species would persist on more fertile sites, and slow N species would persist on less fertile and 

more disturbed sites.   

The purpose of this study is to test these theories using six C3 grasses and three C4 perennial 

bunchgrasses to help predict a functional grassland community setting as part of the ecological restoration 

of the historic Oak Savanna-Woodland located in the Inner Bluegrass Region of Kentucky. U.S.A.  The 

Bluegrass Savanna-Woodland was considered by Braun (1943) to be anomalous or unexpected in the 

middle of the mixed mesophytic forest biome.  Wharton and Barbour (1991) characterized this area as a 

savanna-woodland with an open forest dominated by trees but retaining a well-developed grassy 

undergrowth.  This savanna-woodland was best described at the time of European settlement in the mid to 

late 1700’s as having rolling topography that is mildly karst, a highly phosphatic Ordovician Limestone 

parent material that produces a silt loam soil that is fertile, deep, and well drained, vast cane breaks 

(Arundinaria gigantea), large mature trees including Oak (Quercus) and Ash (Fraxinus), and a C3 

graminoid dominated herbaceous layer (McInteer 1952, Wharton and Barbour 1991, Campbell 2004).  



56 

   

With European settlement, native grasses were rapidly replaced by non-native C3 forage grasses (Festuca 

arundinacea, and Poa pretensis) so that no intact savanna grassland remains in this region (Bryant, 

Wharton et al. 1980).  The C3 grasses were thought to be dominant in both abundance and number of 

species where they frequented the woodlands (Wharton and Barbour 1991) with mesic eutrophic soils as 

well as the more open woods (Campbell 2004).  The C4 grasses were predicted to be fewer in the number 

of species and found in local openings on poorer soils or openings created by disturbance such as fire or 

bison trails (Campbell 2004).   

These nine grasses were grown in a monoculture experiment to assess the plant traits associated with N 

and C cycling of each species individually.  I hypothesized that: 

1) The C3 grasses will promote fast N cycling, and C4 grasses will promote more conservative or slow N 

cycling. 

2) If N is limiting at the ecosystem level, fast N cycling species should deplete soil N less than slow N 

cycling species according to the resource-competition theory.   

Results of this experiment can be used to better understand the dynamics of this savanna-

woodland and how these nine species would function in a community.  This study also uses methodology 

that could be used in other savanna landscapes that could guide ecological restoration efforts of these 

endangered oak savanna landscapes.   

Materials and Methods 

Study Site 

The experiment was conducted in a relatively flat, tall fescue (Festuca arundinacea) dominated 

abandoned paddock located at Griffith Woods Wildlife Management Area (WMA).  Griffith Woods 

WMA is considered to be the best Bluegrass Savanna-Woodland remnant in the Inner Bluegrass Region 

of Kentucky.  It includes 746 acres in southern Harrison County, Kentucky (Latitude N 38.33457, 

Longitude W -84.354) and lies on the northern edge of the Inner Bluegrass Region of Kentucky.  While 

the vegetation of Griffith Woods WMA is known for its remnant Blue Ash-Oak savanna-woodland with 

150 – 350 year old trees of Fraxinus quadrangulata (Blue Ash), Quercus macrocarpa (Burr Oak), 

Quercus muhlenbergii (Chinquapin Oak), and Quercus shumardii (Shumard Oak), the herbaceous layer is 

dominated by non-native C3 forage grasses (Festuca arundinacea, and Poa pretensis).  While there is a 

long history of human occupation and agricultural use (Wharton and Barbour 1991), one management 

goal was to restore a portion of the property back to pre-European settlement savanna–woodland 

vegetation.  Ecological restoration efforts include native tree planting, native cane planting (Arundinaria 

gigantea), and invasive species removal.   
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The Inner Bluegrass Region of Kentucky encompasses about 2,400 square miles and is underlain by 

Ordovician Limestone which was pushed up over the millennia by the Jessamine Dome of the Cincinnati 

Arch that has produces a mildly karst rolling topography (Wharton and Barbour 1991).  This highly 

phosphatic limestone produces a silt loam soil that is fertile, deep, and well drained (Wharton and 

Barbour 1991).  The warm, temperate, and humid climate is continental and highly variable (Wharton and 

Barbour 1991).  Average yearly precipitation for the Bluegrass Region is 112 cm/year with typical wet 

springs and dry autumns (Wharton and Barbour 1991).  On Average the growing season is 181 days with 

average annual temperature of 13° Celsius with generally mild winters and hot summers (Wharton and 

Barbour 1991).   

Species 

The nine native bunchgrasses (Wharton and Barbour 1991, Campbell 2004) included in this study 

are listed in Table 3.2.1in the order of their flowering times.  The nine species are categorized in two 

functional groups C3 (or cool season) grasses and C4 (or warm season) grasses.  The six C3 grasses 

included in this study are associated with wooded habitats, and the three C4 species are associated with 

more open habitats (Wharton and Barbour 1991, Campbell 2004).  Four of the C3 grasses are Elymus 

species or wildryes.  The Elymus species are well documented in historical records and are thought to 

have been abundant at the time of European settlement in the mid to late 1700’s (Wharton and Barbour 

1991).  Elymus virginicus is common in open woods, thickets and old fields, and Elymus villosus is 

frequent in dry and moist open woods (Wharton and Barbour 1991).  Elymus macgregorii can be 

confused with E. virginicus but flowers a month earlier and is also found in woods and thickets 

(Committee 2002), and Elymus hystrix is frequent in the woods (Wharton and Barbour 1991).  The 

Elymus species have a different life history pattern with significant niche differentiation from the other 

species.  They flower in the spring or early summer, set seed, and then go dormant during the hottest 

months of the summer.  They regrow tillers in the fall which overwinter and produce flowering culms the 

next spring.   

Dichantheilium clandestinum may have been referred to as buffalos grass in historical records 

where it is frequent in open woods, thickets, and fencerows, especially on low ground (Wharton and 

Barbour 1991).  D. clandestinum also has life history traits that differ from the other species in this study.  

D. clandestinum first produces cleistogamous flowering culms, and then later in the season they produce 

self-fertilizing chasmogamous flowers on small inflorescences that are usually hidden within the sheathes.  

Both types of flowers produce viable seeds.  While this species did not produce a lot of tillers, it had the 

greatest ability for tiller branching, so one tiller could be quite large and heavy.  Clandestinum latifolium 

is frequent on wooded stream banks, on floodplains, and in other moist habitats (Wharton and Barbour 

1991).  C. latifolium is also used for in horticultural plantings and can be known to be quite invasive.   
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The three C4 species are generally found in more open sites.  P. anceps is found less commonly and on 

moist ground, and T. flavus is common in old fields, woodland borders, open woods, pastures, and 

roadsides (Wharton and Barbour 1991).  Andropogon virginicus is common in old fields and overgrazed 

pastures (Wharton and Barbour 1991).  A. virginicus grew really well the first year it was planted, but did 

successively worse each year.   

Experimental procedures 

Seeds for each species were collected in the Bluegrass Region of Kentucky and cold (wet) 

stratification requirements were determined through the seed testing laboratory at the Regulatory Services 

at the University of Kentucky.  The stratified seeds were germinated in a heated greenhouse on a flooding 

table in 72 hole plant trays filled with Pro-Mix potting soil.  These plugs were planted in the field plots at 

169 plugs/2 meter2 plot with a hand trowel to minimize disturbance.   

In a completely randomized design, nine native bunchgrass species monocultures plus one species 

mixture treatment were each replicated 10 times to produce 100-2 meter2 plots.  The species mixture 

treatment was not included in this analysis.   

Initial preparation of the field site included mowing after which the grass clippings were raked into piles 

and burned.  The field was then sprayed with Roundup herbicide at recommended concentrations to kill 

all the vegetation.  A second application of Roundup was applied to areas that did not die back after the 

initial Roundup treatment.  The plots were watered as needed with a garden hose after initial planting, and 

rainfall was recorded at the site.  The C3 species were planted in March through May, and the C4 species 

were planted in June and July.  The first field season (2008) Elymus virginicus, Elymus villosus, Elymus 

mcgregorii, Panicum anceps, Tridens flavus, and Andropogon virginicus were planted with the remaining 

species planted the second growing season (2009).  An 18 inch path was maintained around each of the 

plots by mowing.  The experiment and the surrounding area were maintained by hand weeding, spot 

spraying with Roundup, and mowing.   

In 2010 the net primary production N content data was collected and the inorganic nitrogen plant 

availability study was performed.  There was little variation in monthly average temperatures between 

2010 (Kentucky Mesonet), and the (1895 to 2013) long term average of the Bluegrass Region 

(NOAA/ESRL http://www.esrl.noaa.gov/psd/data/timeseries) (Figure 3.3b).  There was significant 

precipitation variation between 2010 which was a relatively dry year (Kentucky Mesonet), compared to 

the (1895 to 2013) long term monthly precipitation average for the Bluegrass Region (Figure 3.3a).  The 

year 2010 witnessed a 15% decrease in annual precipitation primarily in January to March and August to 

October compared to the Bluegrass Region long term average (Figure 3.6a).   
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Soil analysis 

The soils at the site are well drained uplands of Faywood silty clay loam according to Web Soil 

Survey maintained by the Natural Resources Conservation Service (NRCS).  Available water capacity is 

low (about 12cm) and it is considered not prime farmland.  Soil horizons are: 0 to 15 cm: silty clay loam, 

15 to 76 cm: clay, 76 to 86 cm: and unweathered bedrock.  The soil for this site was a silt loam with an 

average of 17% sand (range 16.42 – 18.29), 68% silt (range 66.48 – 70.43) and 14% clay (range 12.82-

16.5).  The other soil parameters for this site that were assessed at the initiation of the study are shown in 

Table 3.2.  

Site level data were collected in October 2008, soil cores were taken in the top 10 cm of each 

plot.  Those samples were pooled and mixed thoroughly by species and the species mixture treatment to 

create one sample for each species and the species mixture treatment.  Initial assessments of cation 

exchange capacity (CEC), base saturation, soil texture class, and water holding capacity were performed 

on these (Table 3.2).  Bulk density samples were collected in October 2012 with a replication of 5 for 

each species plus the species mixture treatment.  Since bulk density was not measured at the beginning of 

the experiment (2008), “control” soil cores were collected in 2012 in relatively undisturbed spots around 

the perimeter of the experiment as a proxy for initial conditions.  Soil nutrient concentrations were 

converted to pool sizes using the bulk density. 

Additional soil cores for each plot were collected in October 2008 and October 2012.  For individual plot 

samples, the Mehlich 3 test was performed by Regulatory Services at the University of Kentucky to 

determine soil levels of phosphorous, potassium, calcium, magnesium, zinc, pH and buffer pH.  Total % 

soil carbon and % soil nitrogen also were determined by Regulatory Services at the University of 

Kentucky using the Elementar vario MAX CNS Analyzer.   

Net primary production N content 

Due to the large seasonal variation of flowering times of the nine grass species, aboveground net 

primary production (ANPP) values were taken for each species at peak biomass (or time of flowering) 

and ranged from May to September (Table 3.1).  A 15 cm2 area was randomly chosen for each plot where 

aboveground biomass 5 cm above soil level was clipped, dried, and weighed.  Total organic carbon and 

total organic nitrogen concentrations in plant biomass were measured using the Elementar vario MAX 

CNS Analyzer by the soil testing laboratory of the Regulatory Services at the University of Kentucky.  

The acid-fiber digest procedure was used to determine cellulose and lignin concentrations of the 2010 

peak biomass samples using the Ankom200 Fiber Analyzer according to the procedures found at 

http://www.ANKOM.com under the procedures tab.  ANPP-N was calculated by multiplying ANPP times 

the %total tissue Nitrogen and Nitrogen Use Efficiency (NUE) was calculated as 1/%tissue Nitrogen 

(Table 3.6).   
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Inorganic Nitrogen Resin Study 

Plant available inorganic nitrogen was measured for 7 months over the growing season (March 

through October) in 2010 using resin bags that absorb both ammonium (NH4
+) and nitrate (NO3

-) ions.  

Resin bags were constructed using a nylon mesh bag filled with a mixture of 7.4 milliliter of a cation and 

7.4 milliliter of an anion exchange resin.  The bags were knotted on each end and a neon orange fishing 

line was attached to the bag for easy retrieval from the plots.  For each plot, a resin bag was flatly placed 

5 centimeters below the soil surface in April 2010.  The bags were collected and replaced each month 

throughout the growing season until October 2010.  Seven monthly pickups of 100 plots per pickup 

resulted in 700 resin bags analyzed.  Using the KCl extraction technique, one resin bag was placed in 50 

mls of 2N KCl, and the extractants were analyzed colorimetrically for NO3-N and NH4-N using a Bran-

Luebbe auto-analyzer.  Nitrates were analyzed using the hydrazine sulfate - copper sulfate reduction 

method and ammonium was analyzed using the sodium nitroprusside – phenol method.   

Litter decomposition  

To assess litter decomposition rates for each species, 5 grams of standing dead dried leaves and 

stems were collected in the Autumn of 2009, clipped to ~2 cm long pieces, and sealed into 10 x 10 cm2 

bags made of fiberglass-nylon mesh with 1.4 mm2 openings.  The bags were sealed with a TISH-200 

impulse sealer and secured to the soil surface with metal ground staples.  The bags were set out in 

replicates with one replicate consisting of one litter bag for each species or nine bags.  At each pickup 

time four replicates (or 36 bags) were picked up.  There were six pickup times and four replicates picked 

up, resulting in 216 litterbags in total.  When the samples were picked up, they were oven dried at 55º C 

and weighed.  They then were ground using a coffee grinder and sent to the soils laboratory at Regulatory 

Services to be analyzed for total % nitrogen and total % carbon using the Elementar vario MAX CNS 

Analyzer.  Each sample was adjusted for ash free weight by burning ~0.5 grams of a sample in a muffle 

oven for 5 hours at 525°C and then in a drying oven for 2 hours at 105°C.  That weight was recorded and 

divided by the sample weight to get the % ash of the sample.  The % ash was deducted from the total litter 

weight to get the ash free weight of the whole sample.  The bags were set out in January 25, 2010 in a flat 

area adjacent to the monoculture experiment.  The first five pick-up dates were at 2 month intervals from 

March to November 2010.  The last set of replicates was picked up in June 20, 2011 with a 7 month 

interval.   

Statistics 

The statistical program PAST (Hammer 2001) was used to normalize the data and each ANOVA 

was performed in SAS (9.3: SAS Institute, Cary, NorthCarolina, USA) using PROC MIXED (SAS 2010).   

Multivariate analysis was performed in the program PC-ORD (6.08: MjM Software, Gleneden Beach, 

Oregon, U.S.A.) using Principle Components Analysis (PCA) using the Euclidean distance measurement 
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(McCune and Mefford 2011).  The data was not standardized and all response variable were included in 

the analysis.  The Euclidean distance measurement was also used with Multi-Response Permutation 

Procedures (MRPP) within PC-ORD to discern significant species effects.   

Repeated measures analysis was performed in SAS (9.3: SAS Institute, Cary, NorthCarolina, 

USA) using PROC MIXED for the resin data and the litter decomposition data.  For the resin data, a 

repeated measures model was run for NH4-N and NO3-N including species and time effects, and also a 

repeated measures model was run for each species which looked at time effects.   

Results 

Species characteristics 

While significant species differences were found for every species characteristic (Figure 3.2), 

there was no clear pattern between C3 and C4 species.  Plant traits that promote fast N cycling include 

high amounts of N, low NUE, low amounts of C and recalcitrant C, and plants that do not retranslocate 

significant amount of N to crowns and roots.  Plant traits that promote slow N cycling include low 

amounts of N, high NUE, high amounts of C and recalcitrant C, and plants that are effective at 

retranslocating N to crowns and roots.  To characterize the nine species as promoting either fast N cycling 

or slow N cycling, I compared significant differences between species for each plant trait.  E. macgregorii 

had the most traits that promoted fast N cycling (Figure 3.2).  While E. macgregorii did not have high 

amounts of N, it did have low amounts of recalcitrant C and was not effective at retranslocating N.  E. 

hystrix and D. clandestinum had plant trait values that promoted both fast and slow N cycling.  E. hystrix 

had high ANPP, low C:N and low recalcitrant C which promotes fast cycling, but also had high lignin:N, 

low levels of tissue N, high levels of lignin that promotes slow N cycling.  Also, E. hystrix was effective 

at retranslocating N.  The fast N cycling traits for D. clandestinum were low C:N, high % tissue N, and 

low NUE, and the slow N cycling traits were a high percent of cellulose and lignin.  D. clandestinum was 

significantly better than all the other species at retranslocating N.  The other six species had more plant 

trait values that promoted slow N cycling compared to fast N cycling.  E. villosus and E. virginicus 

generally had the same species characteristics with high lignin:N, low % tissue N, high % lignin, and high 

NUE that promoted slow N cycling.  E. villosus and E. virginicus were not effective at retranslocating N.  

For C. latifolium and T. flavus, high ANPP-N was the only trait that promoted fast N cycling.  Slow N 

cycling plant traits for C. latifolium and T. flavus were low % tissue N, high NUE, and high % cellulose.  

T. flavus also had a high lignin:N and high amounts of recalcitrant C.  P. anceps was the only species to 

have just slow N cycling traits with low % tissue N, high NUE, high % cellulose, and was effective at 

retranslocating N.  In conclusion, I found that three C3 species, (E. macgregorii, E. hystrix, and D. 
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clandestinum) had the most number of plant traits that promoted fast N cycling, and the other six species 

had more plant traits that promoted slow N cycling.   

Litter Decomposition 

Significant species differences were found for initial litter quality, litter decomposition rate (k 

value) and C:N at the last pickup date (Figure 3.3).  Litter decomposition characteristics that promote fast 

N cycling are low C:N, high N content, low C content, and a fast litter decomposition rate.  Litter 

decomposition characteristics that promote slow N cycling are high C:N, low N content, high C content, 

and a slow litter decomposition rate.  To characterize the nine species as having either fast N cycling or 

slow N cycling litter, I compared significant differences between species for each litter characteristic.  In 

general I found that the litter characteristics of the C3 species promoted fast N cycling, and the litter 

characteristics of the C4 species promoted slow N cycling.  E. villosus and E. virginicus had the most 

definite litter characteristics that promoted fast N cycling.  E. villosus and E. virginicus had the highest 

initial quality litter compared to the other seven species with significantly higher % litter N, and 

significantly lower litter C:N (Figure 3.3).  Also, the litter of E. villosus decomposed the fastest, and E. 

virginicus had the lowest litter C:N at the last litter bag pickup (Figure 3.3B and C).  The litter of E. 

macgregorri and D. clandetinum promoted fast N cycling with a relatively higher % litter N (Figure 3.3).  

The only C3 species that promoted slow N cycling was E. hystrix that had a high litter C:N.  Significant 

litter characteristics of the three C4 species promoted only slow N cycling.  A. virginicus had the most 

litter characteristics that promoted slow N cycling with low % litter N, and a high litter C:N.  A. 

virginicus also had the slowest decomposition rate and the highest litter C:N at the last litter bag pickup 

date (Figure 3.3).  Litter characteristics of P. anceps were similar to A. virginicus except that P. anceps 

had a faster litter decomposition rate (Figure 3.3).  The high litter C:N of T. flavus promoted slow N 

cycling (Figure 3.3).   

The ANOVA repeated measures analysis for the litter decomposition experiment had significant 

species effects, time (days incubated) effects, and species x time effects for all response variables listed in 

Table 3.4 except that % C did not have a significant species x time interaction.  Therefore, % C tended to 

decline through time for all species.  Since a significant interaction term was detected for all variables 

except for %C, a one way ANOVA was performed for each species.  All species had a significant time 

effect for all variables listed in Table 3.4 except that C. latifolium, P. anceps, and T. flavus did not have a 

significant time effect for litter N.  Therefore, the amount of N in the litter for C. latifolium, P. anceps, 

and T. flavus did not significantly change over the course of this experiment.   
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Litter C concentration, % of initial amount remaining, and total amount tended to decline the over 

the course of the experiment for all species (Figure 3.5).  However, litter N was variable over the course 

of the experiment and between species in both concentration and % of initial amount remaining (Figure 

3.5).  The variation in % N resulted in a relatively constant total amount of N over the course of the 

experiment and for all species (Figure 3.5).  Thus, the litter was losing mass and C but retaining N.  E. 

villosus and E. virginicus had a high amount of N in initial litter, but that N was quickly lost within the 

first 60 days of incubation (Figure 3.5).  Also, E. villosus and E. virginicus were the only species to lower 

% N below initial % N levels (Figure 3.5).  All other species maintained or increased % N during the 

course of the experiment (Figure 3.5).  The C4 species, C. latifolium and E. hystrix increased % N by 50 

% or more by the end of the experiment (Figure 3.5).   

 Patterns of total litter N (% N x litter wt.) and C (% C x litter wt.) from January 2010 to June 

2011 for each species are shown in Figure 3.6.  Since total amounts of litter N and C were graphed, litter 

C generally declines and litter N remains relatively constant over the course of the experiment.  E. 

villosus, E. virginicus, and E. hystrix, had significantly lower amounts of litter N after the first 60 days, 

and then relatively constant litter N amounts for the rest of the experiment.  D. clandestinum also had a 

drop in litter N in the first 60 days, but then increased litter N over the course of the growing season.  All 

species except for P. anceps generally lose carbon until July which is the beginning of the drought and 

temperatures are at the maximum (Figure 3.6).  P. anceps continues to reduce C into September which is 

at the peak of the drought.  D. clandestinum and P. anceps reduced litter C the slowest with D. 

clandestinum retaining the most litter C over the first five intervals (until October).   

Nitrate and ammonium resin data 

Significant species differences were found for NO3-N, NH4-N, total resin N, N soil pools, C soil 

pools, and bulk density (Figure 3.7).  I predicted that fast cycling N species with high litter N and low 

litter C:N should decompose more rapidly and promote mineralization.  Mineralization occurs when litter 

C:N is less than 20:1 (Namuth 2014).  Initial litter C:N of E. villosus and E. virginicus had the lowest 

litter C:N (avg. 23.22 and 20.40 respectively) followed by D. clandestinum (avg. 39.98), E. macgregorii 

(avg. 42.58) (Table 3.3).  A fast cycling N species should then be adapted to quickly take up plant 

available N.  I predicted that slow cycling N species with low litter N and high litter C:N should 

decompose more slowly and promote immobilization.  Immobilization occurs when litter C:N is greater 

than 20:1 (Namuth 2014).  Initial litter C:N of P. anceps was the highest (avg. 70.00) followed by A. 

virginicus (avg. 66.03), T. flavus, E. hystrix, and C. latifolium (Table 3.3).  Immobilization limits plant 

available N and can lower soil N.  Since well decomposed litter has a C:N of around 10:1 (Namuth 2014), 

all nine species were relatively well decomposed at the end of 528 days of incubation with P. anceps 
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(avg. 18.61) and A. virginicus (avg. 17.01) the least decomposed (Table 3.3).  However, by the end of the 

experiment E. villosus and E. virginicus lowered litter C:N by 35% and 30% respectively, while A. 

virginicus, P. anceps, T. flavus and E. hystrix lowered C:N by at least 70 % (Table 3.3).  This suggests 

that N was not limiting litter decomposition for the species with high initial litter C:N.   

Also, species that had higher % lignin were predicted to have high C and N soil pool levels which should 

then lower bulk density.  I did not find a noteworthy positive correlation between % lignin (Figure 3.2) 

and N and C soil pools, and bulk density (Figure 3.2) but E. virginicus, E. hystrix, D. clandestinum, C. 

latifolium, and T.flavus did show the general trend.    

Uptake of plant available N is optimal if it is synced with seasonal precipitation.  Since only the 

amount of resin NO3-N and NH4-N was measured for each species, plant available N and the amount of N 

that was taken up by the plant could not be teased apart.  For this instance, I will assume that there was 

more plant available N for E. macgregorii, E. villosus, E. virginicus, and D. clandestinum which were the 

species with high quality litter.  Of these four species, E. virginicus and D. clandestinum were the only 

two species that efficiently depleted both NO3-N and NH4-N throughout the growing season (Figure 8).  

Although E. villosus had the highest litter quality and decomposed the fastest (Figure 3.3), it was able to 

efficiently deplete NH4-N but not NO3-N (Figure 3.7 and 2.8).  The peak in NO3-N coincides with the 

time E. villosus goes dormant, and also the time the nitrifying bacteria may be most active (McClellan, 

Deenik et al. 2007).  Resin bag levels for E. macgregorii were similar to E. villosus, E. virginicus but E. 

macgregorii did not deplete NH4-N as efficiently as E. villosus.   

The assumption that there was less plant available N for the species that had low litter quality 

does not hold true for my data.  E. hystrix, P. anceps, T. flavus, and A. virginicus had low quality litter but 

did not have low levels resin NO3-N and NH4-N (Figures 2.7 and 2.8).  In fact E. hystrix, P. anceps, and 

A. virginicus had the highest levels of total resin N (Figure 3.7).  Since these four species had higher 

levels of resin N, I have to assume that plant available N is similar between the species and that my resin 

data may be a better measurement of plant uptake.  If this is true, the four species with low quality litter 

(E. hystrix, P. anceps, T. flavus, and A. virginicus) were less efficient at N uptake than the four species 

with high quality litter (E. macgregorii, E. villosus, E, virginicus, and D. clandestinum).   

 Significant species, time, and species x time effects were found in the repeated measures analysis 

for resin NO3-N and NH4-N (Table 3.5).  Since the species x time interaction was significant, a separate 

repeated measures was performed for each species.  For NO3-N, all species had a significant time effect, 

and all species except for E. villosus had a significant time effect for NH4-N (Table 3.5).  In general, NO3-

N levels varied more over the growing season than NH4-N levels (Figures 2.7 and 2.8).  All species 
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except for E. virginicus, D. clandestimnum, and T. flavus showed a significant increase in resin NO3-N in 

July (Figure 3.8) when the monthly temperature average was the highest for the year (~25º C) and 

precipitation fell below the long term average for the Bluegrass Region of Kentucky (Figure 12.).  This 

July spike also coincides with the time the nitrifying bacteria may have been most active which may 

account for the drop in resin NH4-N for E. macgregorii and C. latifolium (Figure 3.8).  The late summer 

drought that lasted from July to October and was most severe in September (Figure 3.1) which coincides 

with the increased NO3-N levels for E. villosus and E. hystrix even though these two species were 

dormant during the beginning of this drought.  Even though the four Elymus species were dormant during 

the month of July, resin NH4-N levels remained relatively constant.   

Soil data 

 At the beginning of the experiment in October 2008, significant species differences were found 

for phosphorous, potassium, magnesium, and pH (Figure 3.9).  The only significant adhoc tukeys species 

pairwise comparisons were found for magnesium and pH (Figure 3.9).  At the end of the experiment in 

October 2012, no significant species effects were found for any of the soil nutrients or pH (Figure 3.9).  

Comparing all species and both years (2012 and 2008), significant species effects and year effects were 

found for pH (spec p = .012, year p<.0001), phosphorous (spec p = .002, year p=.05), potassium (spec 

p<.0001, year p<.0001), calcium (spec p = .0002, year p<.0001), and magnesium (spec p = .012, year 

p<.0001).  No significant species x year interactions were detected.  Soil pH, and levels of potassium, 

calcium, and magnesium were lower in 2012, and soil levels for phosphorous were higher in 2012.   

To determine if the species had differing effects on soil nutrients, an ANOVA analysis was 

performed that analyzed the amount of change between the 2 years (2012 - 2008).  Only pH was found to 

have significant species effects where E. hystrix lowered pH significantly more than T. flavus (Figure 

3.9).  To test if the species significantly varied in multivariate space, the differences between the two 

years for all soil nutrients were plotted using principle components analysis (PCA).  The PCA graph was 

sorted by species and a multi-response Permutation Procedures (MRPP) was performed using Euclidean 

distances to test for significant pairwise differences between species.  No significant species differences 

were detected (p=.604) using differences (2012-2008) for all soil nutrients, pH and buffer pH.  I also 

performed the same PCA analysis excluding pH and buffer pH with similar results.   

Discussion 

My first hypothesis was partially confirmed in that C3 species had plant traits that promoted fast 

N cycling.  My first hypothesis was also partially falsified because both C3 and C4 species had plant traits 

that promoted slow N cycling.  Considering all the C3 species, my hypothesis was supported by three 

Elymus species (E. macgregorii, E. villosus, and E. virginicus), partially supported for D. clandestinum, 
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and generally not supported for E. hystrix, and C. latifolium.  E. virginicus had the most plant traits that 

supported the fast N cycling strategy with high quality litter that rapidly decomposed, and was efficient at 

taking up both NO3-N and NH4-N.  After E. virginicus, E. villosus and E. macgregorii had the most plant 

traits that promoted fast N cycling except that E. villosus was less efficient at NO3-N uptake, and E. 

macgregorii had lower quality litter and was less efficient at taking up both NO3-N and NH4-N.  D. 

clandestinum had traits that promoted both fast N cycling and slow N cycling.  Traits that promoted fast 

N cycling were high litter N and efficiency at taking up both NO3-N and NH4-N.  The slow N cycling 

traits of D. clandestinum were retranslocation of the most N to crowns and roots, and losing litter C the 

slowest compared to all the other species.  My first hypothesis was supported by the C4 species which had 

traits that promoted only slow N cycling.  While all three C4 species had low litter quality and were 

inefficient at taking up both NO3-N and NH4-N, the litter of A. virginicus decomposed the slowest, and P. 

anceps was better at retranslocating N, lost litter C the slowest, and was the least decomposed at the end 

of the experiment.  C. latifolium and E. hystrix were the two C3 species that tended to have slow N 

cycling traits with lower litter quality than the other C3 species, and inefficient at taking up NO3-N.   

My data does not support the second prediction that slow N cycling species will have a positive 

feedback loop where poor litter quality will promote immobilization, and limit plant available N.  For fast 

N cycling species as well as slow N cycling species, similar levels of resin NO3-N and NH4-N were 

observed.  Also decomposition of litter was not limited by N as all species except for E. villosus and E. 

virginicus increased percent litter N over the course of the experiment.  Thus, similar to other litter 

decomposition studies (Melillo, Aber et al. 1982, Hobbie 1996) the litter was losing mass and C but 

retaining N.  Also species with initially high litter C:N reduced litter C:N by over 70 % over the course of 

the experiment which again suggests no N limitation.  Knops et al. (2002) suggests that the negative slow 

N cycling feedback loop does not limit plant available N because species differences in litter quality have 

a limited impact on plant available N compared to the N in the soil organic pool which accounts for 90 % 

of total ecosystem N.  Most N gained from the decomposing litter is retained and incorporated into the 

soil organic matter, which prevents immediate feedbacks to the plants.  The soil organic matter has a 

bigger impact on mineralization and immobilization and ultimately plant available N compared to plant 

and litter characteristics (Knops, Bradley et al. 2002).   

At the ecosystem level, the soil data does not suggest that the species significantly affected soil 

parameters over the four years this experiment was conducted.  Percent C and % N did not significantly 

differ for any species over the course of this experiment.  Thus, these nine species did not differentially 

deplete soil N as was predicted by the resource-competition theory.  All this data is evidence that N may 

not be the primary limiting nutrient for this savanna-woodland which is opposite of what has been found 
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to be true for many temperate grasslands (Polley and Detling 1988, Schlesinger 1991, Vitousek and 

Howarth 1991).  Knops et al (2002) suggested that species differences in quantity and quality of litter did 

not have large impacts on N cycling but by plant species impacts on nitrogen inputs and losses.  

Furthermore other studies suggest that other factors besides plant and litter characteristics have a bigger 

impact on ecosystem N cycling such as the diversity and abundance of soil microbial communities, and 

disturbances such a fire and grazing (Reich, Grigal et al. 1997, Knops, Bradley et al. 2002).   

These results are consistent with the reported species distribution in the field.  The fast N cycling 

species will have traits that make them better adapted for habitats that are not limited by N and water.  

The four fast N cycling C3 species, E. macgregorii, E. villosus, E. virginicus and D. clandestinum do 

frequent the Bluegrass savanna-woodlands with mesic eutrophic soils as well as the more open woods 

(Wharton and Barbour 1991, Campbell 2004).  The Elymus species may also be best adapted at taking up 

plant available N because the time they are actively growing and plant N demands are high, coincides 

with the Bluegrass Region’s wet spring.  Also, the Elymus species produce high quality litter during the 

summer months when soil microbes are most active.  My data also supports the prediction that the slow N 

cycling species will be best adapted for N limited habitats.  The C4 grasses had more conservative N traits 

that promote slow N cycling which would explain why they are found in local openings on poorer soils in 

the Bluegrass savanna-woodland or openings created by disturbance such as fire or bison trails (Campbell 

2004).  The C4 species actively grow during the summer months which was during the summer drought.  

The lack of soil water during the summer drought may have limited the uptake of inorganic N.  Also, 

increased nitrifying bacteria activity during the summer months may partially explain the NO3-N peaks 

during the summer months which can be seen for most of the species (Figure 3.8).   

In conclusion, most C3 species were found to have fast N cycling traits, and C4 species were 

found to have slow N cycling traits that could explain their local distribution for the Bluegrass savanna-

woodland.  Unlike many other temperate grassland systems, N limitation was not found to be a main 

determinant in sorting species in a community assembly.  Other factors besides plant mediated 

competition for N may have bigger impacts on ecosystem N cycling in the savanna-woodland.  Since 

savannas are dependent on disturbance, fire and grazing could have major impacts of N inputs and losses 

at the ecosystem level.  Future restoration ecology studies to investigate the effect of fire and grazing on 

these savannas can provide more effective ecological restoration guidelines.   
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Tables 

Table 3.1: The nine native perennial bunchgrass species used in this experiment listed in order of 

flowering time.  The abbreviations are used in the multivariate graphs. 

Scientific Name 
Abbrev 

iation 
Common Name 

Photosynthetic  

Pathway 

1.  Elymus macgregorii R. Brooks & J.J.N. 

Campb. 

Emg Early wildrye 

C3 

2.  Elymus villosus Muhl. ex Willd. Evl Nodding wildrye 

3.  Elymus virginicus L. Evg Virginia wildrye 

4.  Elymus hystrix L. Ehy Bottlebrush 

5.  Dichanthelium clandestinum (L.) Gould Dclan Deer tongue 

6.  Chasmanthium latifolium (Michx.) Yates Clat River Oats 

7.  Panicum anceps Michx. Panc Beaked panicgrass 

C4 8.  Tridens flavus (L.) Hitchc. Tflav Purple top/grease grass 

9.  Andropogon virginicus L, Broom Broomsedge 

 

Table 3.2: Site level soil parameters that were pooled by species (10 replicates mixed into one 

sample/species measured in 2008).  
Soil parameters for data that was pooled by species (1 sample/species) 

 C3 species C4 species 

E. macg E. vill E. virg E. hyst D. clan C. lat P. anc T. flav A. virg 

TC Silt loam 

%sand 17.26 17.7 17.23 18.04 16.57 16.94 16.65 16.42 17.15 

%silt 68.29 68.56 68.62 69.14 70.43 68.95 66.85 69.68 66.56 

%clay 14.44 13.73 14.15 12.82 13 14.11 16.5 13.9 16.29 

CEC 24.92 24.92 26 26 24.92 24.92 26 24.92 26 

%Base S 91.59 97.89 92.29 87.18 94.19 95.23 90.4 91.18 93.87 

Meq K 1.31 1.84 1.52 1.33 1.62 1.66 1.44 1.65 1.32 

Meq C 18.97 19.88 19.86 18.79 19.24 19.4 19.23 18.49 20.47 

Meq Mg 2.47 2.63 2.56 2.48 2.56 2.63 2.76 2.53 2.57 

Meq Na 0.08 0.05 0.06 0.07 0.05 0.04 0.07 0.05 0.06 

%PAW 21.39 19.69 19.86 18.12 18.72 21.57 21.26 20.49 19.44 

%Field C 44.26 43.21 43.67 42.19 43.12 43.87 44.75 43.41 44.12 

%Wilting 22.87 23.52 23.81 24.07 24.4 22.3 23.49 22.92 24.68 
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Table 3.3: Litter decomposition characteristics showing the one way ANOVA species effect (significant p-vlaues in bold).  Species means (±SE) 

for the litter decomposition rate (k value), initial litter quality, and plant reabsorption of N.  ainitial litter quality of N, C and C:N content is in the 

initial litter at time 0 for each species.  bplant reabsorption of litter is an estimate of how much N each species reabsorbed from the dying 

aboveground biomass (ANPP-N – litter N) 

 

Litter  

Decomp 

rate 

K value 

Initial litter qualitya 
Plant  

Reabsortion 

of Nb 

% litter C:N at 

last pickup date 
% change in litter C:N 

litter N 

(%N x 

biomass) 

litterC 

(%C x biomass) 
litterC:N 

Species effect  .0438 <.0001 <.0001 <.0001 <.0001 .0206  

E. macgregorii .64(.094) 4.89(.22) 207.0(.56) 42.58(1.83) .69(.16) 15.23(.98) 64 

E. villosus .72(.015) 8.72(.47) 200.1(.39) 23.22(1.20)( .51(.12) 15.15(.29) 35 

E. virginicus .64(.092) 10.12(.23) 207.0(.91) 20.40(.54) .41(.10) 14.20(.27) 30 

E. hystrix .64(.094) 3.96(.28) 211.4(.43) 54.24(4.13) 1.32(.07) 16.24(.51) 70 

D. clandestinum .45(.043) 4.84(.32) 190.9(1.7) 39.98(2.94) 1.92(.15) 16.43(.25) 59 

C. latifolium .60(.044) 4.00(.15) 207.6(2.4) 52.10(2.33) .89(.14) 15.87(.43) 58 

P. anceps .60(.060) 3.15(.29) 214.7(2.3) 70.00(7.14) 1.26(.15) 18.61(2.09) 70 

T. flavus .63(.062 4.00(.21) 223.0(.40) 56.17(2.69) .81(.12) 15.37(.34) 73 

A. virginicus .38(.068) 3.48(.24) 226.1(.55) 66.03(4.92)  17.01(.19) 74 
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Table 3.4: Repeated measures ANOVA results for the litter decomposition experiment.  Overall fixed effects for species, pickup times (or days 

incubated) and species x time interaction for litter wt., %C/N, litter C:N, %N, litter N, %C, and litter C.  One way ANOVA results for differences 

in pickup times (or days incubated) for each species 

Repeated measures litter decomposition analysis 

 Litter wt. 

grams 

%C:N 
 

Litter C:N 
(biomass x %C)/(biomass x %N) 

df F p df F p df F p 

All Species 8,144 16.96 <.0001 8,144 45.19 <.0001 8,144 45.19 <.0001 

Days incubated 6,18 191.11 <.0001 6,18 185.49 <.0001 6,18 185.49 <.0001 

Species x time 48,144 2.00 .0009 48,144 7.48 <.0001 48,144 7.48 <.0001 

Time (days incubated) effects for each species 

E. macgregorri 6,18 39.78 <.0001 6,18 17.60 <.0001 6 23.09 <.0001 

E. villosus 6,18 29.76 <.0001 6,18 15.60 <.0001 6 18.09 <.0001 

E. virginicus 6,18 35.44 <.0001 6,18 28.88 <.0001 6 33.22 <.0001 

E. hystrix 6,18 28.59 <.0001 6,18 23.09 <.0001 6 42.74 <.0001 

D. clandestinum 6,18 28.23 <.0001 6,18 44.74 <.0001 6 44.74 <.0001 

C. latifolium 6,18 66.17 <.0001 6,18 111.56 <.0001 6 46.72 <.0001 

P. anceps 6,18 9.73 <.0001 6,18 39.01 <.0001 6 39.01 <.0001 

T. flavus 6,18 24.79 <.0001 6,18 17.44 <.0001 6 22.51 <.0001 

A virginicus 6,18 22.48 <.0001 6,18 77.68 <.0001 6 77.68 <.0001 
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Repeated measures litter decomposition analysis 

 %Nitrogen Litter N 

(biomass x %N) 

%Carbon Litter C  

(biomass x %C) 

df F p df F p df F p df F p 

All Species 8,144 48.41 <.0001 8,144 25.31 <.0001 8,144 3.12 .0028 8,144 16.83 <.0001 

Days incubated 6,18 21.76 <.0001 6,18 12.03 <.0001 6,18 36.69 <.0001 6,18 169.33 <.0001 

Species x time 48,144 5.70 <.0001 48,144 10.84 <.0001 48,144 1.06 0.3817 48,144 2.07 .0005 

Time (days incubated) effects for each species 

E. macgregorri 6 4.94 .0038 6 14.21 <.0001 6 11.63 <.0001 6 79.72 <.0001 

E. villosus 6 7.31 .0004 6 30.65 <.0001 6 14.77 <.0001 6 136.30 .0004 

E. virginicus 6 16.89 <.0001 6 54.64 <.0001 6 15.16 <.0001 6 84.56 <.0001 

E. hystrix 6 16.98 <.0001 6 5.34 .0018 6 14.63 <.0001 6 80.70 <.0001 

D. clandestinum 6 18.67 <.0001 6 9.17 <.0001 6 10.99 <.0001 6 45.01 <.0001 

C. latifolium 6 10.44 <.0001 6 2.18 .0868 6 8.86 .0041 6 51.83 <.0001 

P. anceps 6 14.17 <.0001 6 2.17 .0869 6 11.34 <.0001 6 29.93 <.0001 

T. flavus 6 7.09 .0005 6 1.89 .1302 6 10.44 .0005 6 58.96 <.0001 

A virginicus 6 12.84 <.0001 6 3.75 .0202 6 24.36 <.0001 6 61.47 <.0001 
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Table 3.5: Repeated measures ANOVA results for monthly NO3-N and NH4-N over for the growing season (March thru October) of 2010.  One 

way ANOVA results for differences in season totals between NO3-N and NH4-N for each species. 

Repeated measures Resin data analysis 

Significant difference for 

season totals between NO3-

N and NH4-N 

 NO3-N NH4-N 

 df F p df F p 

All Species 9,90 4.79 <.0001 9,90 3.79 .0004 

Time (monthly) 6,531 62.88 <.0001 6,532 19.75 <.0001 

Species x time 54,531 3.31 <.0001 54,532 2.19 <.0001 

time (monthly) effects for each species  df F p 

E. macgregorri 6,53.5 6.02 <.0001 6,53.4 2.67 .0244 1 0.43 0.5196 

E. villosus 6,53 7.34 <.0001 6,53.2 0.69 .6591 1 15.11 0.0011 

E. virginicus 6,54 7.39 <.0001 6,54 2.50 .0329 1 9.68 0.006 

E. hystrix 6,54 10.66 <.0001 6,54 3.06 .0120 1 19.73 0.0003 

D. clandestinum 6,54 3.42 0.0062 6,54 8.51 <.0001 1 0.27 0.6098 

C. latifolium 6,53.4 6.44 <.0001 6,53.3 8.04 <.0001 1 0.51 0.4849 

P. anceps 6,53.5 14.20 <.0001 6,53.5 4.92 .0004 1 2.47 0.1338 

T. flavus 6,53.3 6.72 <.0001 6,53.8 8.58 <.0001 1 4.33 0.0519 

A virginicus 6,54 41.33 <.0001 6,54 4.61 .0008 1 33.42 <.0001 
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Supplemental 

Table 3.6: Overall ANOVA for all species comparing soil nutrients measured in 2008 and 2012.  Significant values are in bold.   

 
2008 species effects 2012 species effects 

2008 and 2012 Soil Nutrients Effects (Species and year) 

Species effects Year effects Year x species 

Df F p df F p Df F p Df F p Df F p 

Soil Nutrients 

%Nitrogen 9,90 0.88 0.5421 10,43 0.61 .7937 10,84 0.68 .74 1,86 0.73 .3943 9,84 0.5 .763 

%Carbon 9,90 0.56 0.8272 10,45 1.16 .3397 10,86 1.1 .3706 1,86 0.04 0.8481 9,86 0.93 .501 

pH 9,90 2.14 0.0341 10,45 1.83 .0832 10,86 2.48 .0117 1,86 207.1 <.0001 9,86 1.24 .2799 

Buffer pH 9,90 1.33 0.2352 10,45 1.19 .3249 10,86 1.53 .143 1,86 0.32 0.5703 9,86 0.36 .9522 

Soil Nutrients (mg/kg) 

Phosphorous 9,90 2.04 0.0436 10,45 1.20 .3188 10,86 3.13 .0019 1,86 4.05 .0473 9,86 0.67 .7338 

Potassium 9,90 3.07 0.0030 10,45 2.44 .0202 10,86 4.71 <.0001 1,86 40.66 <.0001 9,82 1.22 .2963 

Calcium 9,90 1.04 0.4160 10,45 1.83 .0832 10,86 4.02 .0002 1,86 58.1 <.0001 9,86 0.38 .9403 

Magnesium 9,90 3.64 0.0007 10,45 1.17 .3382 10,86 2.47 .012 1,86 91.02 <.0001 9,86 0.3 .9728 

Zinc 9,90 1.36 0.2164 10,45 1.61 .1355 10,86 2.08 .35 1,84 0.09 .7625 9,84 0.19 .9949 
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Table 3.7: ANOVA results for species effects 

ANOVA results for species effects 

 Df F p value 

Soil nutrient differences between years (2012 – 2008) 

%Carbon 9,41 1.77 .1040 

%Nitrogen 9,39 1.15 0.3504 

Phosphorous mg/kg 9,41 1.92 .0762 

Potassium mg/kg 9,41 1.74 .1115 

Calcium mg/kg 9,41 0.68 .7204 

Magnesium mg/kg 9,41 1.45 .2000 

Zinc mg/kg 9,39 0.67 .7302 

pH 9,41 2.60 .0179 

Buffer pH 9,41 1.24 .2985 

Species characteristics 

%tissue Nitrogen 7,71 8.80 <.0001 

%cellulose 8,72 6.79 <.0001 

%lignin 8,72 4.02 .0005 

C:N 7,71 5.51 <.0001 

Lignin:N 7,70 4.76 .0002 

ANPP-N 7,71 5.65 <.0001 

Recalcitrant C 8,75 7.99 <.0001 

Plant and soil N cycling parameters 

NUE 7,71 6.94 <.0001 

NO3-N 9,90 7.57 <.0001 

NH4-N 9,89 3.88 .0003 

Inorganic N total 9,89 6.63 <.0001 

N soil pool 10,45 3.81 .0009 

C soil pool  10,44 4.13 .0005 

Bulk density 10,44 4.90 <.0001 

Litter decomposition 

Kvalues 8,27 2.38 .0438 

Reabsorption of litter N 7 15.41 <.0001 

%C:N litter at last pickup date 8,27 2.82 .0206 

Initial litter quality 

Litter N 8 45.52 <.0001 

Litter C 8 67.27 <.0001 

Litter C:N 8 22.69 <.0001 
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Table 3.8: Species characteristics determined from peak biomass samples collected in 2010.  One way 

ANOVA p-vlaue for the overall species effect, and mean (±1SE) for each species.  ANPP-N - amount of 

nitrogen in aboveground net primary production.  NUE - nitrogen use efficiency.   

 
%tissue 

N 

%Cellulo

se 

%Ligni

n 
C:N 

Lignin:

N 

ANPP-N 

g N 

NUEa 

1/%N 

Recalcitra

nt C 

%cell + 

%lignin 

Species 

effect p 

vlaue 

<.0001 <.0001 .0005 <.0001 .0002 <.0001 <.0001 <.0001 

E. 

macgregor

ii 

1.7(0.2) 21.5(2.6) 
3.7(0.4

3) 

26.0(2.

3) 
2.2(0.3) 50.3(7.0) 0.62(.05

6) 

25.18(2.45

) 

E. villosus 1.4(0.1) 27.3(1.4) 7.6(1.1) 
33.1(3.

0) 
5.8(0.9) 57.7(9.2) 

0.77(.06

9) 

34.99(1.39

) 

E. 

virginicus 
1.6(0.1) 

28.8(0.76

) 
7.7(0.8) 

28.1(2.

3) 
4.9(0.6) 

96.7(21.3

) 

0.64(.03

8) 

36.58(0.65

) 

E. hystrix 
2.0(0.0

6) 
26.3(1.3) 8.9(1.2) 

22.3(0.

7) 
4.5(0.6) 96.1(8.5) 

0.51(.01

6) 

35.26(0.79

) 

D. 

clandestinu

m 

2.6(0.2) 27.1(1.3) 8.5(1.0) 
16.5(0.

8) 
3.2(0.3) 78.5(9.1) 0.39(.02

3) 

35.62(1.19

) 

C. 

latifolium 
1.8(0.1) 30.8(1.1) 7.3(1.4) 

25.8(2.

2) 
4.8(1.4( 

123.4(12.

4) 

0.59(.05

2) 

42.95(4.60

) 

P. anceps 1.7(0.1) 
30.9(0.92

) 
6.0(0.5) 

27.0(2.

8) 
3.7(0.5) 

79.2(11.5

) 

0.63(.06

5) 

36.93(1.11

) 

T. flavus 1.5(0.1) 
33.95(0.6

4) 
6.4(0.3) 

29.8(2.

5) 
5.0(1.0) 

104.4(14.

2) 

0.69(.05

1) 

40.86(1.00

) 

A. 

virginicus 
 

43.17(8.9

0) 

10.2(2.

9) 
 . . . 

55.33(11.5

1) 
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Table 3.9: Soil N cycling parameters.  One way ANOVA p-vlaue for the overall species effect, and mean 

(±1SE) for each species.   
aNO3-N, NH4-N and Total resin represents the sum of inorganic nitrogen captured in the resin bags that 

were placed 5 cm below the soil surface and collected and replaced throughout the growing season of 

2010.   
bSoil cores were collected in in 2008 and 2012.  Since no significant year effect was detected, 2012 N and 

C soil pool means (±SE) are presented here.   
CBulk density was measured in 2012. 

 
NO3-Na 

mg 

NH4-Na 

mg 

Total resin 

Na 

mg 

N soil 

poolb 

g m-2 

C soil poolb 

g m-2 

Bulk 

densityc 

g cm-3 

Species effect p 

vlaue 
<.0001 .0003 <.0001 .0009 

.0005 <.0001 

E. macgregorii 1.15(.17) 1.14(.180) 2.14(.21) 320.8(28.2) 3226.4(292.5) .857(.055) 

E. villosus 1.51(.17) 0.78(.083) 2.29(.19) 277.5(37.1) 2768.8(331.9) .663(.046) 

E. virginicus 0.88(.10) 0.54(.041) 1.42(.096) 408.6(28.3) 4057.4(258.8) .967(.028) 

E. hystrix 1.78(.20) 0.80(.095) 2.57(.24) 403.8(26.5) 3917.6(240.3) .932(.018) 

D. clandestinum 0.81(.14) 0.73(.076) 1.530.15) 365.7(12.0) 3519.1(167.3) .913(.032) 

C. latifolium 0.96(.20) 0.81(.082) 1.76(.24) 381.0(77.3) 3574.2(695.9) .783(.027 

P. anceps 1.37(.11) 1.13(.112) 2.47(.18) 396.7(35.6) 3821.6(212.8) .877(.027) 

T. flavus 1.24(.17) 0.874(.055) 2.11(.18) 329.2(6.2) 3172.6(127.0) .825(.027) 

A. virginicus 1.64(.10) 0.884(.086) 2.53(.15) 362.8(20.1) 3395.8(206.0) .898(.045) 
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Figures 

Figure 3.1: a. Monthly temperature averages for the year of study (2010) compared to the long term 

average in the Bluegrass Region of Kentucky (± 1 SE).  b. Monthly precipitation totals for the year of 

study (2010) compared to the long term average in the Bluegrass Region of Kentucky (± 1 SE).  The color 

coded numbers are yearly precipitation totals.   
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Figure 3.2: Species characteristics determined 

from peak biomass samples collected in 2010.  

The species are listed on the x-axis in order of 

their flowering time with mean (± 1 SE).  

ANNP-N – Annual Net Primary Production of 

N, NUE – Nitrogen Use Efficiency and 

Recalcitrant Carbon (+/- 1 SE) is cellulose plus 

lignin for each species.  Different letters 

represent significant differences between mean 

(P value ≤ 0.05) determined by adhoc Tukeys.   
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Figure 3.3: Species averages (±SE) for: A. initial litter quality for litter N (%N x biomass) and litter C:N 

(%C x biomass/%N x biomass), B. litter decomposition rates with calculated k value, and C. %C:N of 

litter at the last pickup date.  Different letters represent significant differences between mean (P value ≤ 

0.05).  For graph A. litter N letters are capitalized.   
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Figure 3.4: Litter bag averages (±SE) for the number of days incubated for biomass loss of litter, % of 

initial litter remaining in the litter, and C:N that were collected from January 2010 to June 2011.  Litter 

bag averages (Mean ±SE) for each pickup date for litter C:N (%C x biomass/%N x biomass).   Dark blue 

legend lines represent the Elymus species, light blue legend lines  represent the other two C3 species, and 

the orange legend lines represent the C4 species.   
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Figure 3.5: Litter bag averages (±SE) for the number of days incubated for %Nitrogen and %Carbon in 

the litter, and % of initial Carbon and Nitrogen  remaining in the litter that were collected from January 

2010 to June 2011.  Litter bag averages (±SE) for each pickup date for litter C (%C x biomass) and litter 

N (%N x biomass).  Dark blue legend lines represent the Elymus species, light blue legend lines represent 

the other two C3 species, and the orange legend lines represent the C4 species.  
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Figure 3.6: Litter bag pickup date averages 

(±SE) for litter N (%N x biomass) and litter C 

(%C x biomass) collected from January 2010 

to June 2011.  Different letters represent 

significant differences between mean (P 

value≤0.05).  Litter C letters are capitalized.  

Dark blue titles represent the Elymus species, 

light blue represent the other two C3 species, 

and the orange titles represent the C4 species.   
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Figure 3.7: Soil N cycling parameters.  Season 

totals for NO3-N, NH4-N and inorganic N were 

determined with resin bags.  Differences 

between NH4-N and N03-N season totals show 

significant differences between N types (* 

p<.05, ** p<.001. *** p<.0001) for each 

species.  Nitrogen and carbon soil pools and 

bulk density were determined using 2012 soil 

samples.  (Mean ± 1 SE)  Different letters 

represent significant differences between mean 

(P value ≤ 0.05). 
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Figure 3.8: Monthly averages (Mean ± 1SE) for 

NH4-N and NO3-N extracted from resin bags 

collected throughout the growing season (April to 

October) in 2010.  Monthly precipitation totals for 

2010 were added for comparison.  The dashed line 

represents the time of flowering for each species, 

and the green bars below the x-axis represents the 

time the species was actively growing.  Different 

letters represent significant differences between 

mean (P value ≤ 0.05).  NO3-N letters are captialized.   
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Figure 3.9: Left side panel shows averages (+/- 1 stderr) for soil nutrients (mg/kg), pH and buffer pH for 

2008 and 2012.  P values for species differences for 2008 and 2012 are denoted underneath the legend.  

Different letters represent significant differences between mean (P value ≤ 0.05).  The right side panel 

shows averages (+/- 1 stderr) for the differences between 2012 and 2008 for soil nutrients, pH and buffer 

pH.  Only soil pH had a significant species effect.   
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Chapter 4: Grazing strategies of C3 and C4 bunchgrasses native to a historic Oak 

Savanna-Woodland  

Abstract 

Since oak savannas of North America have been reduced to < 1 % of their historic ranges, 

restoration of these habitats is important to maintain the biodiversity and ecosystem properties of these 

landscapes.  Restoration efforts of oak savannas are hindered by the lack of dependable historic data 

describing these savannas before they were converted to other uses and by lack of guidelines for 

ecological restoration.  To better understand the dynamics associated with grazing effects, nine native 

bunchgrasses were studied in a clipping experiment that was designed to assess the effects of grazing on a 

savanna-woodland where no remnants remain to be studied, to compare the species for evidence of 

differences in grazing strategy (tolerance, deterrence and avoidance) and to recommend effective mowing 

regimes that would maintain a functional grassland community setting of the historic Bluegrass Oak 

Savanna-Woodland of Kentucky.   

This clipping experiment included a factorial design with two clipping frequency treatments and 

two clipping intensity treatments to mimic a range of grazing regimes from frequent intense grazing to 

less intense rotational grazing.  A non-clipped control treatment was added for comparison.  In a heated 

greenhouse, the clipping treatments lasted from June to September of 2010 with 14 weekly clippings and 

4 monthly clippings at both a 7 and 15 cm height (intensity).  Plant height, tiller number, and clipped wt. 

were recorded at each clipping.  Root wt. and shoot wt. were harvested at the end of the experiment.  

Percent tissue C and % tissue N were assessed for the root wt. and shoot wt.  This experiment included 

three C4 and six C3 native perennial bunchgrasses.  Four of the C3 grasses were from the genus Elymus 

which were well recorded in historical documents and have significant life history trait differences 

compared to the other six species.  

I found a significant effect of clipping on grass productivity overall, and a significant intensity 

effect but no significant frequency effect overall, and for the microscopic traits (tissue C/N) considered 

separately.  For the macroscopic traits (productivity, biomass) considered separately, a significant 

frequency effect was detected but only at the most intense clipping treatment.   In general, the three C4 

species and Dichanthelium clandestinum outperformed the Elymus species and Chasmanthium latifolium.  

All species except for Elymus macgregorii and Panicum anceps displayed evidence of more than one 

grazing strategy. While the most obvious strategies were seen at the 1/week 15 cm intensity clipping 

treatment, all nine species also were productive at the 1/month frequency treatments.  Although grazing 

tolerance and deterrence strategies were mostly determined by clipping treatments, the avoidance strategy 

was more species specific with only D. clandestinum and Andropogon virginicus demonstrating an 
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avoidance strategy.  D. clandestinum was the most plastic species, and the only one to demonstrate all 

three grazing strategies.   

The results of this experiment suggest that the Bluegrass Savanna-Woodland grassland was 

historically not frequently and intensively grazed.    Mowing regime recommendations to sustain a 

community setting of these grasses would include less intense more frequent grazing, or more intense less 

frequent mowing treatments.  The diversity of forbs and the control of woody vegetation also should be 

taken into account when determining a mowing regime, particularly when managing the Bluegrass 

Savanna-Woodland without the use of fire.   

Introduction 

Savannas are grassland ecosystems characterized by the trees being sufficiently small or widely 

spaced so that the tree canopy is not closed (McPherson 1997) and are influenced by fire, climate, 

topography and soil (Nuzzo 1986).  Savannas cover 20 % of the Earth’s land area and can be divided into 

tropical and temperate groups.  Tropical savannas cover 15 % of the Earth’s land area, are generally well 

represented in the scientific literature, and are extensive in Africa, Australia, and S. America (McPherson 

1997).  While temperate savannas of North America were historically common at the time of European 

settlement, most of these landscapes have been reduced to < 1 % of their original area, are considered to 

be endangered landscapes (Anderson, Fralish et al. 1999), and are identified as critical areas for 

preservation (Klopatek, Olson et al. 1979).  Furthermore, temperate savannas are not as well studied or 

represented in the scientific literature (McPherson 1997, Anderson, Fralish et al. 1999).  Some potential 

reasons for this difference in level of research activity are the absence of a professional discipline 

associated with savannas, limited understanding of the role and importance of savannas in temperate 

regions, and inconsistent definitions and/or interpretations of the term savanna (McPherson 1997).  Thus, 

there is a lack of knowledge of the ecological relationships and ecological management practices for 

temperate savannas compared to adjacent forest, desert, or grassland landscapes (McPherson 1997). 

With European settlement in the eighteenth century, Midwestern Oak savannas in the U. S. A. all 

but disappeared within 20 to 40 years due to fire cessation and conversion of land to agricultural or urban 

development (Nuzzo 1986, Anderson, Fralish et al. 1999).  The fact that only 2 % of Midwest Oak 

Savanna remained by 1986 (Nuzzo 1986) has caused this habitat to be listed as a “globally imperiled” 

ecosystem (Heikens and Robertson 1994).  Conservation and restoration efforts of Oak Savannas are 

difficult due to: 1) the limited amount of historical data which were recorded, mainly by European 

pioneers and land surveyors, and the unknown validity and motivation for these records (Nuzzo 1986), 

and 2) lack of restoration ecology studies to guide ecological restoration practices in the field (McPherson 

1997).   
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This restoration ecology study is designed to provide ecological guidelines to create and maintain 

a functional grassland community in the region where oak savanna once occurred. However no remnants 

remain to be studied and replicated, and the factors that created and maintained the savannas are 

unknown.  A plant trait approach was used which views a species as a set of inter-connected traits that are 

both the result of its’ evolutionary history and the ability of the species to respond to or affect community 

biotic and abiotic factors (Adler, Milchunas et al. 2004).  This plant trait approach can reveal what 

ecological pressures a species may have evolved under and also help predict how the species will adapt to 

future selective pressures.  With this approach, past ecological pressures and historical disturbance 

regimes can be inferred by studying plant traits in response to different environmental factors.   

Disturbance is important and necessary for the maintenance of savannas.  Frequent low intensity 

fires, a distinct annual dry season, extended droughts, and grazing by large herbivores are disturbances 

that often are associated with savannas (Enger and Smith 2004).  However, these disturbances may be 

more characteristic of African Tropical Savannas than Midwestern Oak savannas (McPherson 1997).  For 

example, the climate of most Midwestern Oak savannas does not promote frequent natural fires or 

extended droughts, and the dry season is generally more variable.  While natural fires may not be 

common in Midwestern Oak savannas, fire is considered to be an important disturbance in the 

maintenance of Oak Savannas with Native Americans playing an important role (Mann 2011).   

The Bluegrass Savanna-Woodland located in the Inner Bluegrass Region of Kentucky was 

considered by Braun (1943) to be anomalous or unexpected in the middle of the mixed mesophytic forest 

biome.  Wharton and Barbour (1991) characterized this area as a savanna-woodland with an open forest 

whereby the trees are dominant but with a well-developed grassy undergrowth.  This savanna-woodland 

was best described at the time of European settlement in the mid to late 1700’s as having a mildly karst 

rolling topography, fertile, deep, and well drained silt loam soil produced over highly phosphatic 

Ordovician Limestone, vast cane breaks (Arundinaria gigantea), large mature trees including Oak 

(Quercus sp.) and Ash (Fraxinus), and a graminoid dominated herbaceous layer (McInteer 1952, Wharton 

and Barbour 1991, Campbell 2004).  With European settlement, native grasses were rapidly replaced by 

non-native C3 forage grasses (Poa pretensis and Festuca arundinacea) so that no intact savanna grassland 

remains in this region (Bryant, Wharton et al. 1980).  It is thought that C3 grasses were dominant in both 

abundance and number in the original savannas (Wharton and Barbour 1991, Campbell 2004), and that C4 

grasses fewer in the number of species and occurred in local openings on poorer soils or openings created 

by disturbance such as fire or bison trails (Campbell 2004).   
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Using Nuzzo’s classification (1986), the Bluegrass savanna-woodland would have been classified as an 

open savanna that was maintained by frequent low intensity fires set by Native Americans (Mann 2011).  

Good evidence that the barrens in the Mississippian Plateau Region just west of the Bluegrass Region of 

Kentucky were created and maintained by anthropogenic fire (Anderson, Fralish et al. 1999) is further 

evidence that fire was used in this area.  The use of fire by Native Americans may have been used in part 

to manage the large grazers or browsers of this system which were bison (Bison bison), elk (Cervus 

canadensis), and white tailed deer (Odocoileus virginianus) at the time of European settlement (Wharton 

and Barbour 1991).   

If these savanna grasslands evolved under heavy grazing, native grasses would be expected to 

have been selected for strategies to tolerate, avoid, or deter grazing.  Furthermore, the grazing history of 

this Bluegrass Savanna-Woodland can be inferred by studying the response of native grasses to differing 

grazing intensities and frequencies.  Augustine and McNaughton’s (1988) review of clipping experiments 

found that the frequency of clipping had a bigger impact than the intensity of clipping.  After grasses are 

grazed, the timing between grazing events was important because competition for the newly available 

light is time sensitive (Augustine and McNaughton 1998).   

The three grazing strategies optimize different suites of traits.  Tolerance grazing strategies 

include rapid regrowth of tillers using the newly available light that was created by the grazing event, thus 

the grazing tolerant plant can outcompete its neighbors for light (Augustine and McNaughton 1998).  

Plant traits associated with grazing tolerance are increased photosynthetic rate, regrowth of 

photosynthetic biomass, lower investment of reproductive shoots, increased relative growth rates, 

increased root/shoot ratio, decreased C:N ratios, plasticity in carbon and nitrogen allocation, and reduced 

transpiration costs (Caldwell, Richards et al. 1981, Vandermeijden, Wijn et al. 1988, Augustine and 

McNaughton 1998, Pontes, Soussana et al. 2007).  Grazing tolerant strategies are optimal under high 

grazing intensity and frequency environments where shading by neighboring plants is not an important 

factor.  Strategies to deter grazing include the production of toxic secondary compounds or with 

mutualistic relationships with endophytes, and the accumulation of silica and/or recalcitrant carbon 

(Augustine and McNaughton 1998, Melo 2010).  Grazing deterrence strategies promote the unpalatability 

of grasses that lower digestibility and nutritional value for herbivores.  The avoidance grazing strategy is 

to be less conspicuous to herbivores and includes a low growth stature with low apical meristems, 

increased allocation to crown and roots, increased root/shoot ratio, and accumulation of standing senesced 

leaves and stems (Milchunas and Noy-Meir 2002, Adler, Milchunas et al. 2004, Quiroga, Golluscio et al. 

2010).  Structural carbon also would be important for the accumulation of aboveground dead biomass.  

Both avoidance and deterrence strategies are dependent on herbivore selection and preference, so these 
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strategies would be most beneficial in environments of intermediate grazing intensity and frequency 

where a variety of plants would be available for the herbivores (Vesk and Westoby 2001).   

A greenhouse clipping experiment was designed using six C3 and three C4 native bunchgrasses 

(Wharton and Barbour 1991, Campbell 2004) to assess tolerance and look for evidence of other grazing 

strategies of these nine grasses and infer the historic grazing pattern for each of them.  A factorial design 

included two clipping heights (intensities) and two clipping frequencies that were designed to mimic a 

range of grazing regimes from intensive grazing to rotational grazing.  A control treatment was added for 

comparison.  I hypothesis that: 1) frequency will have a bigger impact on plant traits than intensity as 

predicted by Augustine and McNaughton (1998), 2) the C4 species will be better adapted to grazing than 

the C3 grasses because they generally have higher nitrogen use efficiency, a higher C:N ratio, and a higher 

water use efficiency that should make them less affected by biomass loss, 3) that the grasses may have 

different grazing strategies at different frequency and intensity treatment levels.  Results of this 

experiment can be used to recommend mowing regimes for ecological restoration that will maintain these 

grasses in a community setting, and provide insights for future restoration efforts.   

Methods  

Experimental Design 

This clipping experiment was conducted using nine perennial bunchgrasses (six C3 and three C4) 

(Table 4.1) in a heated greenhouse at the University of Kentucky.  A factorial design was used that 

included two clipping frequencies (1/week and 1/month) and two clipping heights (hereafter intensities; 

clip down to 7 cm and 15 cm above the soil surface) with a non-clipped control added for comparison.  

With a replication of 5, this completely randomized experiment produced 225 experimental units.  An 

experimental unit consisted of one plant grown in a 16.6 cm depth, 16 cm width pot with drainage holes 

filled with 50% maury silt loam treated with methyl bromide, 50% coarse silica sand, and 15 milliliters of 

osmocote fertilizer.  

 Seeds of each species were collected in the Bluegrass Region of Kentucky and cold (moist) 

stratification requirements were determined by the seed testing laboratory at the Regulatory Services at 

the University of Kentucky.  Plants were stratified as needed, and placed to germinate on a flooding table 

in a heated greenhouse on January 28, 2010.  They were grown in the 72-well plant trays filled with Pro-

Mix potting mix soil before being transferred into the experimental pots on April 6, 2010 when they were 

completely randomized on greenhouse tables.  The plants were hand watered with a hose as needed, and 

maximum and minimum temperatures of the greenhouse were recorded weekly (Figure 4.1).  The grasses 

were grown in the experimental pots for 10 weeks before the clipping treatments began.   
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Clipping treatments began on June 15th and lasted for 14 weeks until September 14th.  Before each 

clipping, maximum plant height, number of tillers, and number flowering culms were recorded.  To clip 

down to 7 cm or 15 cm, a metal collar that was either 7 cm or 15 cm tall was put around the plant and 

rested on the soil surface.  The plant biomass above the collar was then clipped, dried at 55º C for 3 days, 

and weighed.  Fourteen weekly and 4 monthly plant measurements were recorded.  The 1week 7 cm 

treatment was designed to mimic intense grazing.  The 1 week 15 cm treatment represented less intense 

grazing, and the 1 month 7 cm treatment simulated intense rotational grazing and the 1 month 15 cm 

treatment simulated less intense rotational grazing.  The control treatment mimicked no grazing.   

At the end of the experiment, shoots and roots were harvested, dried, and weighed.  The roots were 

thoroughly rinsed over a mesh screen to remove as much sand and soil as possible.  After the roots and 

shoots were dried and weighed, they were ground in a coffee grinder and analyzed for total %carbon and 

total %nitrogen with the Elementar vario MAX CNS Analyzer at the soils laboratory at Regulatory 

Services at the University of Kentucky.   

Species 

The nine native bunchgrasses (Wharton and Barbour 1991, Campbell 2004) included in this study 

are listed in Table 4.1 in the order of their flowering times.  The nine species are categorized in two 

functional groups C3 (or cool season) grasses and C4 (or warm season) grasses.  According to Wharton 

and Barbour (1991), the six C3 grasses included in this study are associated with wooded habitats, and the 

three C4 species are associated with more open habitats.  Of the C3 grasses, four species are from the 

genus Elymus or wildryes.  Elymus species are well documented in historical records and are thought to 

have been abundant at the time of European settlement in the mid to late 1700’s (Wharton and Barbour 

1991).  E. virginicus is common in open woods, thickets and old fields, and E. villosus is frequent in dry 

and moist open woods (Wharton and Barbour 1991).  E. macgregorii can be confused with E. virginicus 

but flowers a month earlier and is also found in woods and thickets (Committee 2002), and E. hystrix is 

frequent in woods (Wharton and Barbour 1991).  The Elymus species have a different life history pattern 

with significant niche differentiation from the other five species used in this study.  They flower in the 

spring or early summer, set seed, and then go dormant during the hottest months of the summer.  Plants 

regrow tillers in the autumn that will overwinter and produce flowering culms the next spring.   

Dichantheilium clandestinum, which may have been referred to as “buffalos grass” in historical 

records, is frequent in open woods, thickets, and fencerows, especially on low ground (Wharton and 

Barbour 1991).  D. clandestinum also has life history traits that differ from the other species in this study.  

D. clandestinum first produces cleistogamous flowering culms in the spring, and then later in the season 

plants produce self-fertilizing chasmogamous flowers on small inflorescences that are usually hidden 
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within the sheathes.  Both types of flowers produce viable seeds.  While this species did not produce a lot 

of tillers, it had the greatest ability for tiller branching, so one tiller could be quite large and heavy.  C. 

latifolium is frequent on wooded stream banks, on floodplains, and in other moist habitats (Wharton and 

Barbour 1991), and it is used for in horticultural plantings and can be quite invasive.   

The three C4 species used in this study generally are found in more open sites.  P. anceps is found 

less commonly and on moist ground, and T. flavus is common in old fields, woodland borders, open 

woods, pastures, and roadsides (Wharton and Barbour 1991).  A. virginicus is common in old fields and 

overgrazed pastures (Wharton and Barbour 1991).   

Plant traits 

 Macroscopic and microscopic traits were recorded for each species.  The macroscopic traits are 

morphological and were counted by observation (tiller number and number of flowering culms), 

measured (plant height), or weighed (shoot wt. root. wt., and clipped wt.).  Tiller size was calculated by 

dividing the shoot wt. by the number of tillers (grams/tiller).  Aboveground Net Primary Production 

(ANPP) represents the shoot wt. plus the clipped wt.  For the control treatment, the shoot wt. was also 

used for ANPP as no clipping occurred.  Total plant biomass is the sum of ANPP and the root wt.  The 

microscopic traits are physiological in nature and include measurements of % total N or % total C and 

were not directly measured or observed.  Percent C and % N in both roots and shoots were analyzed with 

the Elementar vario MAX CNS Analyzer.  Shoot C and Shoot N represent the total amount of C and N in 

the shoot and were calculated by multiplying the biomass of the shoot by the % C or % N of the shoot.  

Root C and root N were calculated in the same way.  % C:N shoots, % C:N roots, shoot C:N and root C:N 

are the ratios of the respective numbers.   

Considering the plant traits that were measured in this experiment, the three grazing strategies 

would optimize different suites of traits.  Grazing tolerant plants would optimize regrowth (% N shoot, 

clipping wt.), which would lower shoot C:N and minimize sexual reproduction (number of flowering 

culms).  The traits that would be optimized are clipped wt., percent shoot N, and root:shoot ratio, and 

minimize the number of flowering culms.  Grazing deterrence strategies would optimize root:shoot ratio, 

% C shoot, shoot C, and C:N ratio, and minimize plant height, and the amount of N in the shoot.  A 

tolerant plant would try to regrow tillers with the new light availability that was created by the grazing 

event, which would increase % N shoot, clipping wt. and plant height (Table 5).   

Statistics 

The statistical program PAST (Hammer 2001) was used to normalize the data and each ANOVA 

was performed in SAS (9.3: SAS Institute, Cary, NorthCarolina, USA) using PROC GLM (SAS 2010).  

Adhoc Tukeys tests were used for pairwise comparisons.  To incorporate the control treatment into the 



115 

 

factorial 2x2 design, a partially hierarchical design was used.  This design included the following factors: 

species (9 levels), group (2 levels: control vs. all others), frequency (nested within group; 2 levels: 

monthly vs. weekly), intensity (nested within group; 2 levels: 7cm vs. 15cm), as well as all identifiable 

two-way and three-way interactions.  The total number of treatment combinations was 45. This analysis 

approach allowed us to test for main and interaction effects for each trait. Type I Sums of Squares were 

used to test these effects. 

Multivariate analysis was performed in the program PC-ORD (6.08: MjM Software, Gleneden 

Beach, Oregon, U.S.A.) using Principle Components Analysis (PCA) using the Euclidean distance 

measurement (McCune and Mefford 2011).  The data were not standardized and all response variables 

were included in the analysis.  The Euclidean distance measurement also was used with Multi-Response 

Permutation Procedures (MRPP) within PC-ORD to discern significant differences between the nine 

species, five treatments (1wk7cm, 1wk15cm, 1mnth7cm, 1mnth15cm, and control), three intensities 

(7cm, 15cm, and control) and three frequencies (1week, 1month, and control).   MRPP also was used for 

pairwise comparisons using the Euclidean distance measurement.  For the MRPP analysis, acceptable p 

values were determined by dividing 0.05 by the number of treatments.  For intensity and frequency 

effects, the acceptable p<0.017, for treatment effects p<0.01, and for species p<0.006.  All pairwise 

comparisons used p<.025. 

Results 

 Maximum weekly temperatures taken in the greenhouse were consistently and significantly 

higher than ambient maximum monthly temperature averages for Fayette County, Kentucky (Figure 4.1).  

Thus, the plants experienced higher than average maximum temperatures in the greenhouse than they 

would have experienced in the field.  The high heat in the greenhouse during this experiment was 

probably most detrimental to the Elymus species because under field conditions, these species would have 

been dormant at that time.  The number of plants that died during the experiment was higher in the 

1/week frequency than the 1/month treatments with only Elymus species dying (Table 4.2).  Also, one 

plant of E. villosus and A. virginicus died in the controls (Table 4.2).   

Group, Species and Treatment Effects:ANOVA 

Overall, there were significant effects of group (C3 vs. C4), species, intensity and frequency on 

macroscopic traits (Table 4.4) as well as numerous interactions.  In multiple comparison, with the 

exception of total clipped weight (Figure 4.5), the three C4 species and D. clandestinum produced 

significantly more total plant biomass, ANPP, and number of flowering culms than the four Elymus 

species and C. latifolium (Figure 4.5).  T. flavus produced more shoot wt. than the four Elymus species 

and C. latifolium (Figure 4.5).  P. anceps, T. flavus, and D.clandestinum produced more root wt. and grew 
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fewer but bigger tillers than the other species (Figure 4.5).  T. flavus, and P. anceps increased plant height 

significantly more than the four Elymus species and D. clandestinum.  P. anceps and D. clandestinum had 

a significantly higher root:shoot compared to E. macgregorri and E. hystrix (Figure 4.5).   

For the microscopic traits (Table 4.5 and Figure 4.6), a significant species effect was detected for all traits 

except for % C roots.  The same as the whole model species pattern (Figure 4.4 D), the C4 species and D. 

clandestinum had significantly higher % C:N root and % N root than the four Elymus species and C. 

latifolium (Figure 4.6).  The C4 species and C. latifolium were significantly higher in % C:N shoots, % N 

shoots, and shoot C:N than the four Elymus species and D. clandestinum (Figure 4.6).  There were no 

clear species grouping patterns for %C shoots, shoot C, shoot N, root C:N, root C, and root N (Figure 

4.6).   

Group, Species and Treatment Effects:PCA 

 To simplify the analysis and examine these overall results in more depth, PCA was used to 

organize the trait responses into more inclusive, correlated categories.   

In the multivariate PCA analysis using all plant traits, significant intensity, frequency, treatment, and 

species differences were found (all p<.0001) (Figure 4.2A-D).  The axes aggregate the traits fairly cleanly 

into macroscopic (Axis 1) and microscopic (Axis 2) traits. Many of the significant differences were 

primarily on Axis 1, but Axis 2 played a role as well. While intensity showed significant differences 

between all three treatments (7cm, 15 cm and control) (all p<.0001), the two frequency treatments 

(1/week and 1/month) were significantly different from the control (p<.0001) but not significantly 

different from each other (p=.06) (Figure 4.2A and B).  When the PCA analysis was grouped by 

treatment, all four factorial clipping treatments were significantly different from the control (Figure 4.2C).  

There was an intensity effect with the two 15 cm treatments being significantly different than the two 7 

cm treatments but no frequency effect.  When the PCA analysis was grouped by species, two species 

groupings were apparent with the four Elymus species and C. latifolium in one group, and the three C4 

species and D. clandestinum in the other group (Figure 4.2D).  In multivariate space, overall, the three C4 

species and D. clandestinum were more productive, and the four Elymus species and C. latifolium were 

the least productive (Figure 4.2D).  T. flavus was the most productive species. 

A separate PCA analysis was performed for the macroscopic and the microscopic traits to discern 

if these two types of traits were affected differently (Figure 4.2E and F).  The macroscopic axes (Figure 

4.2E) now separate out into productivity (Axis 1) and allocation (Axis 2), and the microscopic axes 

(Figure 4.2F) are less clear but appear to be root N (Axis 1) and shoot N (Axis 2).  Both types of traits 

were significantly affected by intensity, frequency, treatment and species (all effects p<.0001) (Figure 

4.2E and F).  For the macroscopic traits, all three intensity treatments (7 cm, 15 cm and control) and all 
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three frequency treatments (1/week, 1/month and control) were significantly different (all effects 

p<.0001).   

Species Differences at each Treatment Level 

 A PCA analysis was performed for each of the five treatments and grouped by species (Figure 

4.4) to compare how the species were grouped at each treatment level compared to the overall model 

pattern using all treatments (Figure 4.2D).  The same general species grouping between the four Elymus 

species plus C. latifolium, and the three C4 species plus D. clandestinum (Figure 4.2 D) was found for 

both of the 15 cm intensity treatments (1week15cm and 1month15cm) (Figure 4.4 B, and D).  The 

1month7cm treatment (Figure 4.4 C) was similar to the overall pattern using all treatments (Figure 4.2 D) 

except T. flavus was significantly more productive than the other species.  For the control treatment, all 

the species are loosely grouped but T. flavus was significantly more productive than the other species 

(Figure 4.4 E).  For the 1week 7cm treatment, there is no clear grouping of species except that E. 

macgregorri did significantly worse than all the other species (Figure 4.4 A).    

Pairwise comparisons were done using MRPP for all treatment combinations, which are shown in Table 

4.3.  The shaded cells represent a significant difference between the two treatments at that frequency or 

intensity level.  If a frequency cell is shaded, the interpretation is that there is a significant intensity effect 

between those two frequency treatments.  If an intensity cell is shaded, the interpretation is that there is a 

significant frequency effect between those two intensity treatments.  When pairwise comparisons were 

done at the treatment level for the macroscopic traits, a significant frequency effect was found between 

the two 7 cm intensity treatments (Table 4.3).  This significant frequency effect between the two 7 cm 

intensity treatments was not detected in the overall model (Table 4.3).  Similar to the overall model, 

significant intensity effects were found when comparing both frequency treatments at both 1/week and 

1/month intensity treatments.  When the analysis was grouped by species, the species groupings also were 

different looking at just the macroscopic traits compared to the overall pattern using all plant traits (Figure 

4.2 D and E) with the four Elymus species being loosely grouped and all other species being significantly 

different from each other.  For the four Elymus species, E. villosus was statistically the same as E. 

macgregorri and E. hystrix, and E. virginicus was statistically the same as E. hystrix. (Figure 4.2E).  

For the microscopic traits, intensity and frequency had the same effects as the whole model using all plant 

traits.  Intensity was significantly different between all three treatments (7 cm, 15 cm and control), and the 

two frequency treatments (1/week and 1/month) were significantly different from the control (both 

p<.0001) but not significantly different from each other (p=.06).  When pairwise comparisons were done 

at the treatment level, significant intensity effects were found between the two levels at the 1/week 

frequency and between the two levels at the 1/month frequency (Table 4.3).  This was the same pattern as 

the overall model using all plant traits.  Species groupings for the microscopic traits were similar to the 



118 

 

overall pattern using all plant traits (Figure 4.2 D and F).  The only difference was that A.virginicus 

(Broom) and P. anceps were not significantly different in the microscopic plant trait analysis (Figure 4.2 

D and F).   

Treatment Differences for each Species  

Another PCA analysis was performed for each species and grouped by treatment using all plant 

traits (Figure 4.7).  E. macgregorri, E. villosus, and E. hystrix were the only species to have treatments 

that were not significantly different from the controls (Figure 4.7).   

Looking at the PCA analysis done for each species that included all plant traits (Figure 4.7), all nine 

species had a significant intensity effect (all species p<.0007) but only E. virginicus and D. clandestinum 

had a significant frequency effect (both species p<.0001).  For each species, pairwise comparisons were 

done using MRPP for all treatment combinations (Table 4.3).  The shaded cells represent a significant 

difference between the two treatments at that frequency or intensity level.  If a frequency cell is shaded, 

the interpretation is that there is a significant intensity effect between those two frequency treatments.  If 

an intensity cell is shaded, the interpretation is that there is a significant frequency effect between those 

two intensity treatments.  No clear patterns were seen between C3 and C4 species.  Looking at all plant 

traits, all nine species had a significant intensity effect between the two 1/week frequency treatments, and 

six species had a significant intensity effect between the two 1/month frequency treatments (Table 4.3).  

Five species had significant frequency effects at both intensity levels (Table 4.3).  Comparing the 

macroscopic and microscopic traits, the macroscopic traits had more species with significant frequency 

effects at both levels of intensity, and the microscopic traits had more species with intensity effects at 

both levels of frequency (Table 4.3).  For the microscopic traits, all nine species had significant intensity 

effects at both frequency levels (Table 4.3) with five species had significant frequency effects at the 7 cm 

intensity level and three species had frequency effects at the 15 cm intensity level (Table 4.3).  For the 

macroscopic traits, seven species had a significant intensity effect between the two 1/week frequency 

treatments, and seven species had a significant frequency effect between the 7 cm intensity treatments 

(Table 4.3).  Four species had significant intensity effects at the 1/month frequency and four species had 

significant frequency effects between the 15 cm intensity treatments.  E. macgregorii was the only species 

with the same effects for all plant traits, macroscopic traits, and microscopic traits (Table 3).  P. anceps 

was the only other species besides E. macgregorri to have the same macroscopic and microscopic effects.  

Four C3 species (E. villosus, E. hystrix, D. clandestinum, and C. latifoium) had the same effects for all 

plant traits and microscopic traits (Table 4.3).  T. flavus and E. virginicus had different effects for all plant 

traits, macroscopic traits, and microscopic traits (Table 4.3).   
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Grazing strategies 

 Since a species was predicted to show different grazing strategies at different treatment levels, a 

PCA analysis was done using all plant traits for each species and grouped by the five treatments (Figure 

4.7).  To discern how each species responded to the clipping treatments, another PCA analysis was 

performed for each species with the control excluded (Figure 4.7).  With the plant traits measured in this 

experiment, I categorized the most important plant traits for each grazing strategy and designated if the 

trait was positively or negatively correlated with that grazing strategy (Table 4.6).  For each species, I 

assessed the grazing strategy at each clipping treatment level by determining what traits were positively 

or negatively correlated on the PCA graph according to each strategy (Table 4.7).  Those predictions were 

verified using Figures 3.5, 3.6 and Supplemental graphs.  If a treatment did not have a discernable pattern, 

it was left blank (Table 4.7).  While these results are somewhat subjective, I found evidence of all three 

grazing strategies.   

A treatment received a tolerance designation if it had an increased level of % N shoot along with 

increased clipped wt. and/or plant ht. (Figures 3.5, 3.6, and 3.7).  Evidence of the tolerance strategy was 

found only at the 1/week frequency level treatments and for every species except for A. virginicus 

(Broom) and D. clandestimum (Table 4.7).  In general, the Elymus species did not grow well at the 

1/week 7cm treatment level and could not sustain the tolerance strategy throughout the experiment 

(Figure 4.5 and Supplemental).  At the 1/week 15cm treatment, E. macgregorii, E. virginicus and E. 

hystrix were able to maintain the tolerance strategy but they did not maintain as much clipped wt. as C. 

latifolium (Supplemental).  At the 1/week 7cm treatment level, D. clandestinum had higher clipped wt. 

than C. latifolium and T. flavus (Figure 4.5 and Supplemental).  E. villosus, P. anceps, and T. flavus were 

designated as tolerant at the 1/week 15 cm treatment because %N shoot was positively correlated to plant 

ht. (Figures 3.5 and 3.6).  P. anceps at the 1/week 7 cm treatment also was designated at tolerant.  At the 

1/week 15 cm treatment, T. flavus produced more total plant biomass compared to the other three clipping 

treatments by investing more in shoot wt. and root wt.  T.flavus also had the highest plant ht., shoot 

carbon, shoot nitrogen, root carbon and root nitrogen at 1/week 15 cm treatment compared to the other 

three clipping treatments (Figures 3.5 and 3.6).  P. anceps responded similarly as T. flavus at the 1/week 

15 cm treatment but also produced significantly more flowering culms at this treatment level (Figure 4.5).   

 To assess the deterrence strategy, I predicted % C:N shoot, shoot C:N (high % C and low % N in 

shoots), and bigger tillers would be increased, while tiller number would be minimized (Table 4.6).  The 

three C4 species and C. latifolium had significantly higher % C:N shoots and shoot C:N and significantly 

lower %N shoots which implies they are better able to deter grazing than the other species (Figure 4.6).  

At the 1/month 7 cm clipping treatment, E. virginicus, E. hystrix, D. clandestinum, C. latifolium, T. 

flavus, and A. virginicus had the highest % C:N shoots compared to all five treatments (Figure 4.6).  
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These same six species plus E. villosus also had the lowest % N shoots at the1/month 7 cm clipping 

treatment (Figure 4.6).   

To assess the avoidance grazing strategy, I predicted that shoot wt., root wt. root:shoot, tiller 

number, root C , and root N would increase, while clipped wt., plant height, and tiller size would decrease 

(Table 4.6).  The clearest evidence of the avoidance grazing strategy was found for D. clandestinum at the 

1/week 15 cm treatment (Table 4.7).  D. clandestinum allocated biomass to leaves and stems below the 15 

cm clipping height, produce little clipped wt. while still producing as much biomass as the control (Figure 

4.5).  At the 1/week 15 cm treatment, D. clandestinum grew more tillers than the other three treatments 

(Supplemental) and invested more biomass in root wt. which gave it a high root:shoot ratio (Figure 4.5).  

D. clandestinum also had significantly more root C and N at the 1/week 15cm treatment than the other 4 

treatments (Figure 4.6).  The only other species that displayed avoidance traits was A. virginicus (Broom) 

which allocated more biomass and nitrogen to the roots, produced more tillers, and grew shorter plants at 

the 15 cm intensity treatments compared to the control treatment (Figures 3.5 and 3.6 and Supplemental).  

A. virginicus (Broom) was also characterized as avoidance at the 1/week 7 cm treatment because it 

responded similarly as at the 15 cm frequency treatment except for producing less root wt, and reducing 

clipped wt. instead of plant ht. (Figure 4.6).   

Discussion 

The intensity of clipping had a bigger effect than the frequency of clipping on the macroscopic 

and microscopic traits for all species except for E. virginicus and D. clandestinum (Table 4.3).  For the 

overall multivariate analysis including all nine species and all plant traits, a significant intensity effect 

was detected but not a significant frequency effect with both levels of frequency with both levels of 

intensity being significantly different from the control (Figure 4.2 A and B).  These results are opposite of 

what Augustine and McNaughton (1988) found in their review of clipping experiments.  My results may 

not support the conclusions of Augustine and McNaughton (1998) because 1) the short length of time the 

experiment was conducted, and 2) temperate bunchgrasses may not be as grazing tolerant as the tropical 

species they generally used in their review.  When a separate PCA analysis was performed on the 

macroscopic and microscopic traits, a significant frequency effect was detected for the macroscopic traits 

between the two 7 cm intensity treatments (Table 4.3).  Thus, frequency became important when the 

grasses were more intensively clipped.  The species were more significantly different between the 

macroscopic than the microscopic traits (Figure 4.3 E and F).  A frequency effect at lowest intensity 

treatment was seen for E. macgregorii, E. virginicus, P. anceps and T. flavus for the macroscopic traits 

and E. macgregorii, P. anceps and T. flavus for the microscopic traits (Table 4.3).  When frequency and 

intensity effects were analyzed at the species level, all species had a significant intensity effect but only E. 

virginicus, and D. clandestinum had a significant frequency effect.  At the treatment level analysis (Table 
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4.3), E. macgregorii, E. hystrix, P. anceps, and T. flavus had significant frequency effects for both 

macroscopic and microscopic traits, C. latifoium and A. virginicus had significant frequency effects for 

only the macroscopic traits, and E. villosus had no frequency effects (Table 3).  It could be that frequency 

has a bigger effect on tropical species because they are better adapted to more intense grazing.  The 

bunchgrass species used in this experiment seem to be better adapted to more frequent but less intense 

grazing events, therefore, they are more sensitive to intensity.   

 Considering how the nine species performed in this greenhouse environment with no imposed 

clipping (control), the C4 species produced the most total biomass, followed by C. latifolium and D. 

clandestinum, with the four Elymus producing the least amount of biomass (Figure 4.4 E).  While the C4 

species were positively correlated to all the macroscopic traits, the C3 species were positively correlated 

to only a few microscopic traits (Figure 4.4 E).  The high heat in the greenhouse (Figure 4.1) and the life 

history traits of the Elymus species may have been partly to blame for the poor performance of the 

Elymus.  When clipping treatments were added to the analysis, the C4 species and D. clandestinum 

performed better than the other five C3 species (Figure 4.2 D).  The C4 species generally outperformed the 

Elymus species in all macroscopic traits except for root:shoot and tiller number ( Figure 4.3B and Figure 

4.5).  Three of the Elymus species (E. macgregorri, E. villosus, and E. hystrix) had 15 cm intensity 

treatments that were not significantly different than the controls (Figure 4.7).  This may indicate that these 

three Elymus species were not significantly affected at those treatment levels.  C. latifolium performed 

similarly to the Elymus species in all macroscopic trait except that C. latifolium grew less tillers.  D. 

clandestinum performed similarly to the C4 species except D. clandestinum grew shorter plants with less 

clipped wt. (Figure 4.5).  For the microscopic traits, the C4 species and C. latifolium had lower tissue 

nitrogen concentrations in the shoots which gave them a higher shoot C:N compared to the other five C3 

species (Figure 4.3C and Figure 4.6).  The C4 species and D. clandestinum had lower tissue N in the roots 

that resulted in a higher C:N in the root compared to the other five species.  Thus, the C4 species had a 

higher a C:N ratio in both the root and shoot compared to the Elymus species, and the Elymus species had 

higher percent tissue N in shoots and roots.   

Grazing strategies 

This experiment was primarily designed to assess grazing tolerance rather than grazing deterrence 

and avoidance.  Grazing deterrence and avoidance are dependent on herbivore selection which was not 

included in this design.  However, the results can be interpreted from this broader perspective. In response 

to clipping, T. flavus was generally the top performer in all clipping treatments with P. anceps performing 

well at the 15 cm treatments, and D. clandestinum performing well at the 1 week 7 cm treatment (Figure 

4.4).  While the Elymus species and C. latifolium were the poorest performers at all treatment levels, E. 
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macgregorii performed the worst at the 7 cm intensity treatments (Figure 4.4).  With higher percent shoot 

tissue N concentrations, the Elymus species and D. clandestimum would be expected to be able to replace 

eaten biomass and therefore be more grazing tolerant.  With higher shoot C:N, the C4 species and C. 

latifolium would generally be expected to be less nutritious and therefore deter grazing.  While evidence 

for both of these strategies were found, these two grazing strategies were determined more by frequency 

and not by the C3 and C4 species grouping (Table 4.7).  Only the avoidance strategy seemed to be species 

specific (Table 4.7).   

Evidence for tolerance strategies was found at the 1/week frequencies.  The most clear example 

of tolerance was for T. flavus at the 1/week 15 cm treatment where increased concentrations of N was 

found in the root and shoot which was allocated to growing taller plants.  Higher amount of N in the roots 

and shoots imply increased N uptake at the 1/week 15 cm treatment.  An explanation for why the Elymus 

did so poorly at the 1/week 7cm treatments may be that plants could not sustain the tolerance strategy 

throughout the experiment.  With the high % N demand of the shoots, N uptake from the soil may have 

become limited as the clipping continued until the plants died or looked necrotic.  Since the Elymus 

species are generally found in more mesic low lands and shaded wooded areas, they may not be adapted 

for frequent high intensity clipping under high heat and light conditions.   

Evidence for the deterrence grazing strategy was found at the 1/month 7 cm treatment for all 

species except for E. macgregorii and P. anceps.  Since the C4 species and C. latifolium had higher C:N 

ratios than the C3 species, they are expected to be better at deterring grazing.  While this pattern was true 

for all of those species except for P. anceps, three of the Elymus species and D. clandestinum also had 

increased shoot C:N at the 1/month 7 cm treatment.  Since species that are found in more open areas (C4 

species) and wooded areas (C3 species) displayed deterrence strategies at the 1/month 7 cm treatment, 

there must be enough time between clippings at this lowest clipping intensity for plants to reallocate C to 

the shoots.   

D. clandestinum and A. virginicus (Broom) were the only species that exhibited traits that 

promoted the avoidance strategy (Table 6).  D. clandestinum exhibited clear avoidance traits at the 

1/week 15 cm treatment where it concentrated biomass below the clipping height and in the roots with 

reduced clipping wt. (Figure 4.5).  D. clandestinum also was the most plastic species, since it responded 

significantly different between all treatments (Figure 4.7).  A. virginicus (Broom) displayed avoidance 

traits at the 15 cm intensity treatments and the 1/week 7 cm treatment by allocating more biomass to 

roots, increasing % N root, increasing tiller number, and growing shorter plants (Figures 3.5 and 3.6 and 

Supplemental).  A. virginicus (Broom) was also considered avoidance at the1/month 15cm treatments and 
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at the 1/week 7cm where it allocated more biomass and nitrogen to the roots, produced more tillers, and 

grew shorter plants (Figures 5 and 6).  The avoidance strategy for A. virginicus may be optimal in habitats 

without intense light competition from other plants which may be why this species is found commonly in 

old fields and overgrazed pastures (Wharton and Barbour 1991).   

Conclusion 

In conclusion, my hypothesis that clipping frequency would have a bigger effect on these nine 

species than clipping intensity was not supported.  I found clipping intensity to have a bigger effect for 

both macroscopic and microscopic traits than clipping frequency, and a clipping frequency effect was 

found for only the macroscopic traits at the most intense (7 cm) clipping treatment.  I predict that these 

bunchgrasses should be more sensitive to intensity if these savanna-woodland grasses historically 

experienced frequent but less intense grazing.  My second hypothesis was partially supported as the C4 

species were more productive than all the C3 species except for D. clandestinum.  D. clandestinum had the 

most plastic response to grazing, and it was the only species to display traits for all three grazing 

strategies.  T. flavus was the most productive of the C4 grasses, and the Elymus species, particularly E. 

macgregorri, were the least productive.  The Elymus species were probably the least adapted to the high 

light and heat environment of the greenhouse which was at the same time they would have been dormant 

under field conditions.  Dormancy of the Elymus species at the same time the other species are active also 

may be a good grazing avoidance strategy that was not assessed in this experiment.  I also predicted that 

the Elymus species would be eliminated from this savanna-woodland grassland community under high 

frequency and intensity grazing regimes.  My third hypothesis that these grasses would have different 

grazing strategies at different frequency and intensity treatment levels was supported for all the species 

except for E. macgregorii and P. anceps.  The most obvious grazing strategies were at the 1/week 15 cm 

treatment where D. clandestinum displayed clear avoidance traits, T. flavus displayed clear tolerance 

traits, and P. anceps optimized sexual reproduction through the production of flowering culms.  The 

results of this experiment suggest the Bluegrass Savanna-Woodland grassland was not historically 

intensively grazed at high frequencies but that these grasses may be able to sustain this level of grazing 

for a short time.  These results also suggest that these grasses are more adapted to less intense more 

frequent grazing, or more intense less frequent grazing.  Mowing regimes at these intensity and frequency 

levels would most likely maintain a community settimg of these grasses.  However, since fire is thought 

to be an important tool to keep woody species at bay, when fire is not used as a management tool, woody 

species management also would have to be taken into account when prescribing mowing regimes to 

maintain the Bluegrass Woodland-Savanna landscape.  In some savannas, light grazing has apparently 

helped to preserve the savanna by inhibiting woody invasion without eliminating the ground layer (Nuzzo 
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1986).  To be able to manage higher diversity of the savanna-woodland, future clipping experiments 

should include other functional groups such as woody species and forbs.  (Braun 1943) 
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Tables 
Table3.1: The nine native perennial bunchgrass species used in this experiment listed in order of 

flowering time.  The abbreviations are used in the multivariate graphs. 

Scientific Name 
Abbrev 

iation 
Common Name 

Photosynthetic  

Pathway 

1.  Elymus macgregorii R. Brooks & J.J.N. Campb. Emg Early wildrye 

C3 

2.  Elymus villosus Muhl. ex Willd. Evl Nodding wildrye 

3.  Elymus virginicus L. Evg Virginia wildrye 

4.  Elymus hystrix L. Ehy Bottlebrush 

5.  Dichanthelium clandestinum (L.) Gould Dclan Deer tongue 

6.  Chasmanthium latifolium (Michx.) Yates Clat River Oats 

7.  Panicum anceps Michx. Panc Beaked panicgrass 

C4 8.  Tridens flavus (L.) Hitchc. Tflav Purple top/grease grass 

9.  Andropogon virginicus L, Broom Broomsedge 

 

Table 4.2.  Number of plant deaths for each species by treatment.   

Species 
Number of dead plants by treatment 

1week7cm 1week15cm 1month7cm 1month15cm control 

Emg 1     

Evl 2    1 

Evg  1    

Ehy 2     

Dclan      

Clat      

Panc      

Tflav      

Broom     1 
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Table 4.3: PCA results for treatment effects for all plant traits combined, macroscopic traits, and 

microscopic traits.  The P value is for the overall model for all species and each species.  The shaded cells 

represent a significant difference (p<.025) between the two treatments at that frequency or intensity level.  

If an intensity cell is shaded, the interpretation is that there is a significant intensity effect between those 

two frequency treatments.  If a frequency cell is shaded, the interpretation is that there is a significant 

frequency effect between those two intensity treatments.   

PCA results for significant treatment effects 

 
All 

species 
Emg Evl Evg Ehy Dclan Clat Panc Tflav Broom 

All plant traits 

P value <.0001 .0004 .005 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

Intensity (p< .025) 

1/week           

1/month           

Frequency (p< .025) 

7cm           

15cm           

 Macroscopic traits 

Pvalue <.0001 <.0001 .15 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 Intensity (p< .025) 

1/week           

1/month           

 Frequency (p< .025) 

7cm           

15cm           

 Microscopic traits 

Pvlaue <.0001 .0004 .005 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

 Intensity (p< .025) 

1/week           

1/month           

 Frequency (p< .025) 

7cm           

15cm           

 

 

 

 

 

 

 



128 

 

Table 4.4 Whole model macroscopic traits ANOVA results including nine species, two clipping 

frequencies (weekly and monthly), 2 clipping intensities (7 cm and 15 cm), plus all interactions.  Type I 

Sums of Squares were used to test these effects. 

 Total biomass 

(grams) 

ANPP 

(grams) 

Shoot wt 

grams 

Root wt. 

(grams) 

Root:shoot 

 

 Df F p F p F p F p F p 

Group 1 63.18 <.0001 60.86 <.0001 300.72 <.0001 38.48 <.0001 26.04 <.0001 

Species  8 120.72 <.0001 145.5 <.0001 52.43 <.0001 50.01 <.0001 13.67 <.0001 

Frequency 1 48.13 <.0001 82.68 <.0001 10.92 .0012 7.91 .0055 1.36 .246 

Intensity 1 120.67 <.0001 101.33 <.0001 305.09 <.0001 84.55 <.0001 53.36 <.0001 

Freq*inten 1 9.91 .0019 5.86 .0165 1.54 .2165 11.1 .0011 12.05 .0007 

Spec*freq 16 3.04 .0002 3.76 <.0001 3.36 <.0001 3.13 <.0001 6.24 <.0001 

Spec*inten 8 2.84 .0055 3.51 .0009 2.50 .0137 2.4 .0176 2.72 .0075 

Sp*fre*int 8 3.00 .0035 3.2 .002 2.76 .0068 1.53 .1487 0.47 .8752 

 

 Plant ht 

(cm) 
Tiller number 

Tiller size 

(tiller#/grams) 

 Df F p F p F p 

Group 1 394.03 <.0001 11.24 .001 204.77 <.0001 

Species  8 46.18 <.0001 31.32 <.0001 87.17 <.0001 

Frequency 1 237.09 <.0001 3.22 .0744 .06 .7992 

Intensity 1 158.15 <.0001 76.79 <.0001 43.88 <.0001 

Freq*inten 1 58.73 <.0001 5.98 .0155 6.20 .0137 

Spec*freq 16 3.5 <.0001 1.76 .0408 10.53 <.0001 

Spec*inten 8 5.18 <.0001 6.83 <.0001 9.24 <.0001 

Sp*fre*int 8 1.97 .0528 0.46 .8839 10.24 <.0001 
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Table 4.5 Whole model microscopic traits ANOVA results including nine species, two clipping frequencies (weekly and monthly), 2 clipping 

intensities (7 cm and 15 cm), plus all interactions.  Type I Sums of Squares were used to test these effects. 
 %C/%N shoot 

%C shoot %N shoot 
C/N shoot 

(grams/grams) 

C shoot  

(grams) 

 Df F p F p F p F p F p 

Group 1 10.02 .0019 164.18 <.0001 14.88 .0002 .57 .4495 285.16 <.0001 

Species  8 124.22 <.0001 7.05 <.0001 121.88 <.0001 138.35 <.0001 37.67 <.0001 

Frequency 1 98.85 <.0001 1.88 .1720 91.87 <.0001 135.03 <.0001 24.33 <.0001 

Intensity 1 6.93 .0093 46.03 <.0001 5.67 .0185 .06 .8104 249.89 <.0001 

Freq*inten 1 24.62 <.0001 .02 .8998 22.58 <.0001 22.30 <.0001 5.67 .0184 

Spec*freq 16 2.82 .0005 .89 .5853 3.31 <.0001 2.86 .0004 4.94 <.0001 

Spec*inten 8 1.58 .1344 1.74 .0925 1.50 .1624 3.21 .0021 .85 .5622 

Sp*fre*int 7 1.08 .3777 1.58 .1444 1.38 .2186 1.79 .0922 1.17 .3257 

 

 N shoot (grams) 
%C:%N root 

%C root %N root C/N root 

(grams/grams)) 

 Df F p F p F p F p F p 

Group 1 361.37 <.0001 5.03 .0262 121.41 <.0001 65.98 <.0001 .27 .6014 

Species  8 23.32 <.0001 42.62 <.0001 1.90 .0628 43.35 <.0001 5.20 <.0001 

Frequency 1 .24 .6273 5.12 .0250 14.25 .0002 20.22 <.0001 2.66 .1050 

Intensity 1 199.62 <.0001 .78 .3773 .86 .3354 0.61 .4345 .94 .3332 

Freq*inten 1 .39 .5327 2.86 .0930 51.02 <.0001 3.98 .0477 1.98 .1615 

Spec*freq 16 3.55 <.0001 4.16 <.0001 2.14 .0089 1.33 .1838 .70 .7949 

Spec*inten 8 6.51 .8475 .78 .6251 .35 .9463 .93 .4932 .38 .9306 

Sp*fre*int 8 1.35 .2306 3.63 .0006 .73 .6650 3.25 .0019 .77 .6262 
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 C root 
(grams) 

N root 
(grams) 

 Df F p  F p 

 

 

      

Group 1 1.54 4.78  2.97 .0868 

Species  8 37.00 <.0001  14.34 <.0001 

Frequency 1 14.29 .0002  2.11 .1487 

Intensity 1 92.06 <.0001  71.20 <.0001 

Freq*inten 1 5.34 .0221  6.74 .0103 

Spec*freq 16 4.78 <.0001  3.53 <.0001 

Spec*inten 8 1.69 .1054  1.33 .2302 

Sp*fre*int 8 .41 .9107  1.08 .3799 

 

Table 4.6: Plant traits that are predicted to signify the three different grazing strategies that are denoted 

with a (  ) if positively correlated and (  ) if negatively correlated.   

 Grazing strategies 

Tolerance Deterrence  Avoidance 

Macroscopic traits 

Total plant biomass    

ANPP    

Shoot wt.    

Total clipped wt.    

Root wt.    

Root:shoot    

Cumulative plant height    

Tiller number    

Tiller size    

Flowering culms    

Microscopic traits 

%C/N shoots    

%C shoots    

%N shoots    

Shoot C/N    

Shoot C    

Shoot N    

%C/N roots    

%C roots    

%N roots    

Root C/N    

Root C    

Root N    
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Table 4.7: Assessment of observed grazing strategy patterns for each species at each clipping treatment.  

The grazing strategy designations were determined by comparing the expected trait correlations for each 

strategy in Table 4.6 and comparing these predictions to Figures 3.5, 3.6, 3.7 and Supplemental.   

Grazing strategy predictions  

Species 1/week 7 cm 1/week 15cm 1/month 7cm 1/month 15cm 
Emg tolerance tolerance   

Evl tolerance tolerance deterrence  

Evg tolerance tolerance deterrence  

Ehy tolerance tolerance deterrence  

Dclan tolerance avoidance deterrence  

Clat tolerance tolerance deterrence  

Panc tolerance tolerance   

Tflav tolerance tolerance deterrence  

Broom avoidance avoidance deterrence avoidance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 

 

Figures 

 

Figure 4.1: Maximum and minimum greenhouse temperatures (ºC) recorded from the time the seeds 

germinated until the end of the 3 month clipping experiment.  Max and min monthly averages for Fayette 

County in 2010 were added for comparison (Ky Mesonet).   
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Figure 4.2: PCA results A.) all traits grouped by intensity, B.) all traits grouped by frequency, C.) 

all traits grouped by the five treatments, D.) all traits grouped by species.  E.) macroscopic traits 

grouped by species, and F.) microscopic traits grouped by species.  The circles represent the 

species means that are not significantly different in pairwise comparisons using MRPP (p<.025).  

The percent of variance explained for each axis is in parenthesis.    
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Figure 4.3: PCA results for the clipping treatments only A.) all traits with the control treatment excluded, 

B.) macroscopic traits with the control treatment excluded, C.) microscopic traits with the control 

treatment excluded.  The circles represent the means that are not significantly different in pairwise 

comparisons using MRPP (p<.025).  The percent of variance explained for each axis is in parenthesis.    
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Figure 4.4. PCA results for each treatment using all traits grouped by species.  The circles represent the 

species means that are not significantly different in pairwise comparisons using MRPP (p<.025).  The 

percent of variance explained for each axis is reported.    

 

 

 

 

 

 

B

.

A

. 

. 

C

.

A

. 

. 

D

.

A

. 

. 

E.

A

. 

. 

A

.

A

. 

. 



110 

 



111 

 



112 

 

 

Figure 4.5: Macroscopic variables with treatment means (±SE) for each species.  The species are listed on 

the x-axis in order of their flowering times.  F and p values for the overall species comparisons over all 

treatments are included with different letters signifying significant differences between species overall 

mean (P value ≤ 0.05) determined by adhoc Tukeys.   
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Figure 4.6: Microscopic variables with treatment means (±SE) for each species.  The species are listed on 

the x-axis in order of their flowering times.  F and p values for the overall species comparisons over all 

treatments are included with different letters signifying significant differences between species overall 

mean (P value ≤ 0.05) determined by adhoc Tukeys.   
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Figure 4.7: PCA results for each species using all traits and grouped by treatment.  The circles represent 

the treatment means that are not significantly different in pairwise comparisons using MRPP (p<.025).  

The percent of variance explained for each axis is reported.   
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Figure 4.8: For each species, clipped wt., plant ht. and tiller number taken at each clipping treatment.  
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Chapter 5: Conclusion 
The goal of this study was to use the plant trait method to evaluate the ability of native grasses to 

restore functionality of the grassland component of the oak savanna-woodland in central KY.  According 

to the response-and-effect framework (Garnier and Navas 2012), this study used ANPP as the 

performance trait, response traits according to the abiotic habitat filter of drought and the biotic habitat 

filters of competition and grazing.  N and C cycling, and soil nutrient concentrations were the effect traits 

measured.  These traits were measured in a field monoculture experiment and a greenhouse clipping 

experiment.  This information was used to help predict how these nine species would perform in a 

community setting according to these response and effect traits.   

In the monoculture experiment, the C3 and C4 grasses differed in how they performed, which was 

generally explained by the trade-off of allocating biomass to more but smaller tillers or fewer but bigger 

tillers.  In general, the C3 species produced more smaller tillers with a lower C:N ratio that allocated more 

C to cell solutes than the C4 species.  In general, the C4 species produced bigger but fewer tillers with a 

high C:N and allocated more C to lignin and cellulose than the C3 species.  The three top performing 

species used different strategies to produce ANPP.  T. flavus grew the tallest plants with fewer but larger 

tillers that were supported by high amounts of recalcitrant C.  C. latifolium grew more but smaller tillers 

than T. flavus with high amounts of recalcitrant C.  E. virginicus was the most prolific producer of tillers, 

which were shorter and smaller and had high amounts of lignin and cell solutes compared to those of C. 

latifolium and T. flavus.  The other three Elymus species were similar to E. virginicus but produced less 

tillers.  D. clandestinum generally grew the shortest plants.   

In response to interannual rainfall variability, only four C3 species were plastic in the 

performance trait, and plant height was the most affected macroscopic trait whereby all species except for 

T. flavus grew shorter plants in the dry year.  Generally, the microscopic traits were more affected by 

drought than the performance trait and macroscopic traits.  As expected, the C3 species generally had 

more macroscopic trait value differences in response to drought than the C4 species macroscopic trait 

values, and the C4 species had more microscopic trait values differences than macroscopic trait 

differences.  Thus, as predicted, in response to drought, C3 species trait values differed in the performance 

trait and macroscopic traits which is consistent with the plasticity strategy, and C4 species trait values 

differed in the microscopic traits which is consistent with the stress tolerant strategy.  However, the C3 

species microscopic trait values also differed which was not consistent with the plasticity strategy.  In 

response to inter- vs. intra-specific competition, E. virginicus was the best inter-specific competitor in 

both the wet and dry year which was most likely due to life history traits that gave it a head start over the 

other species.  Differences in ANPP were found for all five species between inter- vs. intra-specific 
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competition.  Consistent with the plasticity strategy, the trait values of the C3 species were different in the 

performance trait and the macroscopic traits.  However, traits values of the C3 species also differed in the 

microscopic traits which is inconsistent with the plasticity strategy.  The C4 did not respond to 

competition as predicted as their trait values only differed in the performance trait and the macroscopic 

traits which is inconsistent with the stress tolerant strategy.  My last prediction that C3 species will be 

more competitive in the wet year and the C4 species will be more competitive in the dry year was not 

supported.  E. virginicus competed better in the species mixture treatment for both years and the two C4 

species competed better in the species mixture treatment in the wet year.   

My prediction that the four Elymus species would be the least affected by drought as their plant 

traits were measured before the summer drought was not supported.  E. macgregorii and E. virginicus 

were plastic in ANPP which may have been caused by the winter drought.  My prediction that the two C3 

species that were actively growing during the drought would be plastic in response to drought was 

supported.  Both D. clandestinum and C. latifolium species were plastic in ANPP, and D. clandestinum 

was the only species that was plastic in all four macroscopic traits.  My prediction that the C4 species 

would be the least plastic and stress tolerant in response to drought was supported.  All this evidence 

supports the idea that the C3 species may be better adapted to the Bluegrass Savanna-Woodland’s mesic 

heterogeneous environment.  The Elymus species may be at a particular advantage because they 

overwinter their tillers which then begins growing early in the spring.  This early growth may give them a 

competitive advantage in both light and space over the later growing species.  Also, the Elymus species 

are actively growing before the canopy closes on the Bluegrass Savanna-Woodland.  All these factors 

would make them good candidate species in the restoration of this savanna-woodland.   

The results of N and C cycling experiment found that C3 species had plant traits that promoted 

fast N cycling and both C3 and C4 species had plant traits that promoted slow N cycling.  E. virginicus had 

the most plant traits that supported the fast N cycling strategy with high quality litter that rapidly 

decomposed, and was efficient at taking up both NO3-N and NH4-N.  After E. virginicus, E. villosus and 

E. macgregorii had the most plant traits that promoted fast N cycling.  D. clandestinum had traits that 

promoted both fast N cycling and slow N cycling.  C. latifolium and E. hystrix were the two C3 species 

that tended to have slow N cycling traits with lower litter quality than the other C3 species.  The C4 

species had traits that promoted only slow N cycling.  My data did not support the second prediction that 

slow N cycling species will have a positive feedback loop where poor litter quality will promote 

immobilization, and limit plant available N.  For fast N cycling species as well as slow N cycling species, 

similar levels of resin NO3-N and NH4-N were observed.  Also, decomposition of litter was not limited by 

N as all species except for E. villosus and E. virginicus increased percent litter N over the course of the 
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experiment.  Thus, similar to other litter decomposition studies (Melillo, Aber et al. 1982, Hobbie 1996) 

the litter was losing mass and C but retaining N.  Also species with initially high litter C:N reduced litter 

C:N by over 70 % over the course of the experiment which again suggests no N limitation.  Knops et al. 

(2002) suggests that the slow N cycling feedback loop does not limit plant available N because species 

differences in litter quality have a limited impact on plant available N compared to the N in the soil 

organic pool which accounts for 90 % of total ecosystem N.  Most N gained from the decomposing litter 

is retained and incorporated into the soil organic matter, which prevents immediate feedbacks to the 

plants.  Thus, the soil organic matter has a bigger impact on mineralization and immobilization and 

ultimately plant available N compared to plant and litter characteristics (Knops, Bradley et al. 2002).   

The results of the N and C cycling experiment suggest that these nine species did not 

differentially deplete soil N as was predicted by the resource-competition theory.  At the ecosystem level, 

the soil data does not suggest that the species differentially depleted soil nutrients over the four years this 

experiment was conducted.  This data suggests that N may not be the primary limiting nutrient for the 

Bluegrass Savanna-Woodland which is opposite of what has been found to be true for many temperate 

grasslands (Polley and Detling 1988, Schlesinger 1991, Vitousek and Howarth 1991).   

The results of the N and C cycling experiment are consistent with the reported species 

distribution in the field.  The fast N cycling species were expected to have traits that make them better 

adapted for habitats that are not limited by N and water.  The four fast N cycling C3 species, E. 

macgregorii, E. villosus, E. virginicus and D. clandestinum do frequent the Bluegrass savanna-woodlands 

with mesic eutrophic soils as well as the more open woods (Wharton and Barbour 1991, Campbell 2004).  

The Elymus species may also be best adapted at taking up plant available N because the time they are 

actively growing and plant N demands are high coincides with the Bluegrass Region’s wet spring.  Also, 

the Elymus species produces high quality litter during the summer months when soil microbes are most 

active.  My data also supports the prediction that the slow N cycling species will be best adapted for N 

limited habitats.  The C4 grasses had more conservative N traits that promote slow N cycling which would 

explain why they are found in local openings on poorer soils in the Bluegrass savanna-woodland or 

openings created by disturbance such as fire or bison trails (Campbell 2004).  The C4 species actively 

grow during the summer months which was during the summer drought when N uptake may have been 

limited by water availability. 

For the greenhouse clipping experiment, my hypothesis that clipping frequency would have a 

bigger effect than clipping intensity that was reported by Augustine and McNaughton (1988) was not 

supported.  I found a significant clipping intensity effect but no significant frequency effect.  However, a 
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significant frequency effect was detected for the macroscopic trait analysis but only at the most intense (7 

cm) clipping treatment.  Thus, frequency became an important factor only when the grasses were more 

intensively clipped.  My prediction that the C4 species will be better adapted to grazing than the C3 

grasses was partially supported as the C4 species and D. clandestinum had better overall performance than 

the other five C3 species.  In response to clipping, T. flavus was the most productive of the C4 grasses, and 

the Elymus species, particularly E. macgregorii, were the least productive.  P. anceps performed well at 

the 15 cm treatments, and D. clandestinum performed well at the 1 week 7 cm treatment.  While the 

Elymus species and C. latifolium were the poorest performers at all treatment levels, E. macgregorii had 

the lowest performance at the 7 cm intensity treatments.   

My hypothesis that the nine grasses would have different grazing strategies at different frequency 

and intensity treatments was supported for all the species except for E. macgregorii and P. anceps.  D. 

clandestinum had the most plastic traits in response to grazing, and it was the only species to display traits 

for the three grazing strategies of tolerance, avoidance and deterrence.  The most obvious grazing 

strategies were at the 1/week 15 cm treatment where D. clandestinum displayed clear avoidance traits, T. 

flavus displayed clear tolerance traits, and P. anceps optimized sexual reproduction through the 

production of flowering culms.  In general, the strategies of tolerance and deterrence were determined by 

clipping treatment, and the avoidance grazing strategy was species specific.  The grazing tolerance 

strategy was found at the 1/week frequency treatments and the grazing deterrence strategy was found at 

only the 1/month 7 cm clipping treatment.  Only D. clandestinum and A. virginicus had trait values that 

supported the avoidance strategy.  No grazing strategies were detected for the 1/month 15 cm treatment 

except for A. virginicus.   

Greenhouse conditions also had an effect on the performance of the species which in turn, may 

have affected their response to clipping.  For the control treatment, the C4 species performed the best, 

followed by D. clandestinum and C. latifolium with the four Elymus performing the worst.  While the C4 

species were positively correlated to all the macroscopic traits in the control treatment, the C3 species 

were positively correlated to only a few microscopic traits.  The Elymus species were probably the least 

adapted to the high light and heat environment of the greenhouse, and the timing of the clipping 

experiment coincided with the time the Elymus species would have been dormant under field conditions.   

The results of the greenhouse clipping experiment suggests that the Bluegrass Savanna-Woodland 

was not intensively grazed at least for long periods of time.  The fact that clear grazing strategies were 

found at the 1/week 15 cm clipping treatment suggests that the Bluegrass Savanna-Woodland may have 

been historically frequently but less intensely grazed.  At high frequency and intensity grazing regimes, 
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the Elymus species would most likely be eliminated from the community.  However, the Elymus species 

may use an effective avoidance grazing strategy that was not assessed in this experimental design.  In the 

field, the aboveground biomass the Elymus species goes dormant during the summer months when the 

other species are active growing and subject to herbivory.  In response to grazing, these results suggest 

that the C4 species particularly T. flavus are at a competitive advantage over the Elymus species.  While C. 

latifolium was not well adapted to grazing, D. clandestinum was well adapted to grazing.  Less intense 

mowing regimes would be recommended to maintain these grasses in a community setting.  The 

frequency of mowing regimes may also be important for the control of woody growth particularly in the 

absence of fire.   

Using the response-and-effect framework was an effective tool to detect differences between 

species that can then be used to predict how these species will function in a community setting.  This 

plant trait-based approach produced valuable information about the species that can be used to guide 

ecological restoration at Griffith Woods WMA and the Bluegrass Region of Kentucky in general.  The 

two habitat filters of fire and light availability may also be important factors in determining community 

assembly of the Bluegrass Savanna-Woodland that were not included in this study.  This methodology 

could be tailored for other restoration sites to assess the response and effect traits according to the 

important habitat filters of the study system.  This methodology is particularly useful where limited 

information is known of the oak savanna being studied.   

For this study, E. virginicus was one of the top performers in the monoculture and was the best 

inter-specific competitor for both the dry and wet year.  E. virginicus was also the species that was most 

effective at cycling N.  Under normal environmental conditions, I predict that E. virginicus would be the 

best competitor.  I think that the other three Elymus species would be good competitors under normal 

environmental conditions as well which may be partially due to their life history traits.  In the species 

mixture treatment, E. virginicus had a competitive advantage of both light and space as this species began 

actively growing and flowered before the other species.  At the time the other species were actively 

growing, the plants of E. virginicus were dying back which then lodged and further shaded out 

neighboring plants.  For this reason, I think that the life history traits of E. virginicus had a bigger effect 

on competitive ability than plasticity of traits.  In response to clipping, the Elymus species were not well 

adapted to intense clipping regimes.  Less intense and frequent mowing regimes may be important to 

maintain these grasses in a community setting.   

For the other two C3 species, I predict that C. latifolium would be a better competitor than D. 

clandestinum under normal conditions.  I also predict that, with more plastic traits, D. clandestinum is 
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better adapted to a heterogeneous environment and grazing than C. latifolium.  C. latifolium was a top 

performer and D. clandestinum was one of the lowest performing species in the monoculture.  While both 

of these species were plastic in ANPP in response to drought, D. clandestinum was plastic in all 

macroscopic traits and fewer microscopic traits, and C. latifolium was plastic in only macroscopic traits.  

In response to competition, both species were plastic in ANPP and all macroscopic traits and less plastic 

in microscopic traits.  Both D. clandestinum and C. latifolium competed better in the monoculture than 

the species mixture treatment in both the dry and wet year.  C. latifolium had slow N cycling traits with 

lower litter quality than the other C3 species, and D. clandestinum had traits that promoted both fast N 

cycling and slow N cycling.  C. latifolium as not well adapted to clipping particularly at the most intense 

clipping treatments.  Of the C3 grasses, D. clandestinum performed the best in response to clipping.  It 

was the most plastic of all species in response to grazing and was the only species to exhibit all three 

grazing strategies.   

For the C4 species, T. flavus was a top performer in the monoculture where it produced a low 

number of tillers with big and taller tillers than the other species.  P. anceps and A. virginicus produced 

the same number of tillers but smaller and shorter tillers than T. flavus.  All species grew well in 

monoculture except for A. virginicus.  A. virginicus was the last species to begin in the growing season 

and generally remained in a rosette until it bolted in late summer to produce flowering culms.  A. 

virginicus did not show the ability to bolt through the established weedy layer of plants like the other two 

C4 species.  For this reason, I conclude that A. virginicus was not a good competitor for light, which may 

explain in part why it is found on poor disturbed sites where competition for nutrients may be stronger 

than competition for light.  This may also explain why A. virginicus was the only species to increase 

ANPP, tiller number, and the number of flowering culms in the dry year when the plots were less weedy 

and light competition may have been reduced compared to the wet year.  For these reasons, A. virginicus 

is not a good prospective species to use in the restoration of the Bluegrass Savanna-Woodland.  P. anceps 

and T. flavus were generally stress tolerant in response to drought with P. anceps being more plastic in 

both macroscopic and microscopic traits compared to T. flavus.  T. flavus was the only species that was 

not plastic in plant height in response to drought.  While T. flavus and P. anceps competed better in the 

monoculture than the species mixture treatment, these two species (particularly T. flavus) competed better 

in species mixture treatment in the wet year compared to the dry year.  The C4 species had traits that 

promoted only slow N cycling.  All C4 species were well adapted to clipping with T. flavus being the most 

productive species in the clipping experiment.  All three C4 species had plant traits that were the most 

negatively affected in the 1/week 7 cm treatment.  I predict that T. flavus and P. anceps may be better 

competitors for light but may be outcompeted by the earlier developing Elymus species.  The three C4 
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may be at a selective advantage under extended droughts conditions and more intense grazing frequency 

and intensity regimes compared to the C3 species.  Thus, for the Bluegrass Region of Kentucky, the C3 

species (particularly the Elymus species) would be selected for under normal environmental conditions of 

the Bluegrass Region of KY, and the C4 species (particularly T. flavus) would be selected for under 

extended drought conditions and more intense grazing frequencies and intensities.  I conclude that 

management of disturbance levels is important for the community setting of these nine species.   

Literature Cited 

Campbell, J. (2004). Comparitive Ecology of Warm-Season (C4) versus Cool-Season Grass (C3) 

Species in Kentucky, with Reference to Bluegrass Woodlands. 4th Eastern Native Grass 

Symposium University of Kentucky. 

Garnier, E. and M. L. Navas (2012). "A trait-based approach to comparative functional plant 

ecology: concepts, methods and applications for agroecology. A review." Agronomy for 

Sustainable Development 32(2): 365-399. 

Hobbie, S. E. (1996). "Temperature and plant species control over litter decomposition in 

Alaskan tundra." Ecological Monographs 66(4): 503-522. 

Knops, J. M. H., K. L. Bradley and D. A. Wedin (2002). "Mechanisms of plant species impacts 

on ecosystem nitrogen cycling." Ecology Letters 5(3): 454-466. 

Melillo, J. M., J. D. Aber and J. F. Muratore (1982). "NITROGEN AND LIGNIN CONTROL 

OF HARDWOOD LEAF LITTER DECOMPOSITION DYNAMICS." Ecology 63(3): 

621-626. 

Polley, H. W. and J. K. Detling (1988). "HERBIVORY TOLERANCE OF AGROPYRON-

SMITHII POPULATIONS WITH DIFFERENT GRAZING HISTORIES." Oecologia 

77(2): 261-267. 

Schlesinger, W. H. (1991). Biogeochemistry: and analysis of global change., Adademic Press. 

Vitousek, P. M. and R. W. Howarth (1991). "NITROGEN LIMITATION ON LAND AND IN 

THE SEA - HOW CAN IT OCCUR." Biogeochemistry 13(2): 87-115. 

Wharton, M. E. and R. W. Barbour (1991). Bluegrass Land and Life. Lexington, University 

Press of Kentucky. 

 

 

 

 



129 

 

Curriculum Vitae 

Jann Elise Fry 

Place of Birth – Harrisburg, PA 

Education: 

University of Kentucky, Lexington, Kentucky  

 Ph.D. May 2014    

 Major: Biology (Plant Ecology) 

 

University of Kentucky; Lexington, Kentucky 

M.S. 1992-1995 

Major: Biology (Plant Ecology) 

GPA: 3.9 on a 4.0 scale 

 

University of Kentucky; Lexington Kentucky 

 B.S. with Honors, 1992 

 Major: Biology 

 GPA: 3.3 on a 4.0 scale 

 

Professional position held: 

•University of Kentucky; Lexington, Kentucky. 

Teaching Assistant:              1992 - 1995 (during Masters work) 

          2007 -2014 (during PhD work) 

 Ecology Lab – Bio 325 

Plant Kingdom Lab – Bio 351 

 General Biology Lab – Bio 151 and Bio 153 

 Ecology Lab – Bio 452G 

 Plant Anatomy Lab 

 Plant Biology Lab 

 Algology  

 

•Bluegrass Community and Technical College; Lexington, Kentucky 

Adjunct Faculty Position                   Fall 2001 to Spring 2006 

Courses Taught - Human Ecology and General Biology 

Biological Sciences Department 

 

•United States Census Bureau    

Supervisor of Field Operations                January 1999 to July 2000 

 

•Natural Resources and Environmental Protection Commission (NREPC) 

   Kentucky Division of Water 

(Actual employer was University of Kentucky through a grant from Kentucky Water Resources) 

 



130 

 

 Water Quality Branch, Water Quality Certification Section  

Database manager, field assistant         October 1995 to March 1997 

 

 Kentucky Watershed Management Project   

GIS Technician            March 1997 to October 1998 

 

Scholastic and Professional honors: 

Teaching Assistantship for UK Biology Dept.     Fall 2007 to Spring 2013. 

Lyman T. Johnson Fellowship      Fall 2013 

University of Kentucky Woman’s Club Fellowship   Fall 2013 

 

Professional publications 

Gleeson, S. K. and J. E. Fry (1997). "Root proliferation and marginal patch value." Oikos 79(2): 387-393. 

 

 


	A PLANT TRAIT-BASED APPROACH TO EVALUATE THE ABILITY OF NATIVE C3 AND C4 GRASSES TO RESTORE FUNCTIONALITY TO A REMNANT BLUEGRASS SAVANNA-WOODLAND IN KENTUCKY, USA.
	Recommended Citation

	tmp.1399392289.pdf.DYznC

