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ABSTRACT OF DISSERTATION

EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT
2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS

In 1976, Uhlenbeck used transversality theory to show that for certain families of
elliptic operators, the property of having only simple eigenvalues is generic. As one
application, she proved that on a closed Riemannian manifold, the eigenvalues of
the Laplace-Beltrami operator ∆g are all simple for a residual set of Cr metrics. In
2012, Enciso and Peralta-Salas established an analogue of Uhlenbeck’s theorem for
differential forms, showing that on a closed 3-manifold, there exists a residual set of
Cr metrics such that the nonzero eigenvalues of the Hodge Laplacian ∆

(k)
g on k-forms

are all simple for 0 ≤ k ≤ 3. In this dissertation, we continue to address the question
of whether Uhlenbeck’s theorem can be extended to differential forms. In particular,
we prove that for a residual set of Cr metrics, the nonzero eigenvalues of the Hodge
Laplacian ∆

(2)
g acting on coexact 2-forms on a closed 5-manifold have multiplicity 2.

To prove our main result, we structure our argument around a study of the Beltrami
operator ∗gd, which is related to the Hodge Laplacian by ∆

(2)
g = −(∗gd)2 when the

operators are restricted to coexact 2-forms on a 5-manifold. We use techniques from
perturbation theory to show that the Beltrami operator has only simple eigenvalues
for a residual set of metrics. We further establish even eigenvalue multiplicities for
the Hodge Laplacian acting on coexact k-forms in the more general setting n = 4`+1
and k = 2` for ` ∈ N.

KEYWORDS: Hodge Laplacian, Beltrami operator, perturbation theory, eigenvalue
multiplicities, geometric analysis

Author’s signature: Megan E. Gier

Date: April 22, 2014



EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT
2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS

By
Megan E. Gier

Director of Dissertation: Peter Hislop

Director of Graduate Studies: Peter Perry

Date: April 22, 2014



To my grandparents, Paul and Rae Grimmig.



ACKNOWLEDGMENTS

As I complete this dissertation, I am deeply thankful for the people whose guidance

and support have helped me through these past six years of graduate school.

Dr. Peter Hislop has been an advisor in the truest sense, offering constructive

feedback on my work and providing insight whenever a line of inquiry appeared to

hit a dead end. Through his patient training and mentorship, I have learned much

about being an active scholar and effective teacher in the mathematical community.

In addition to Dr. Hislop, Dr. Russell Brown, Dr. Caicheng Lu, Dr. Peter Perry,

and Dr. Alfred Shapere served on my dissertation committee. I am grateful for their

thoughtful review of my dissertation and their ideas on how I might extend my results

in the future.

Dr. Paul Eakin has been a wonderful source of advice and encouragement during

my time at the University of Kentucky. He, Dr. Hislop, Dr. Brown, and Dr. Perry

were my tireless advocates when I was on the job market this past year.

Many thanks to Sheri Rhine for keeping the math department functioning and

always reminding me of the deadlines I needed to meet. When graduate school became

hectic, talking with Sheri was just what I needed to restore sanity.

I have been blessed by the camaraderie and friendship of my fellow graduate

students in the math department. I will leave the University of Kentucky with many

happy memories of climbing trips, Bible studies, concerts, and Halloween parties.

I cannot express enough gratitude for my family. In graduate school and all of my

endeavors, they have cheered for me, prayed for me, and offered their unconditional

love and support. From my father, I learned to think critically and work diligently,

while my mother taught me to find joy in life’s small blessings. My brother, Daniel,

iii



doubles as the best roommate I could ask for, always ready for a tennis match or

Harry Potter marathon when I need a distraction from math.

Finally, I offer my heartfelt thanks to God, who has proved himself faithful over

and over again these past six years.

Praise be to the name of God for ever and ever;

wisdom and power are his.

He gives wisdom to the wise

and knowledge to the discerning.

He reveals deep and hidden things;

he knows what lies in darkness,

and light dwells with him.

Daniel 3:20-22

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Tangent Vectors and Vector Fields . . . . . . . . . . . . . . . . . . . 6
2.2 Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Operators on Differential Forms . . . . . . . . . . . . . . . . . . . . . 9
2.4 Hodge Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Spaces of Differential Forms . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3 Generic Simplicity of the Eigenvalues of the Beltrami Operator . . 22
3.1 Explanation of Approach . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The Beltrami Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Variation of the Beltrami Operator in Local Coordinates . . . . . . . 27
3.4 Eigenvalue Perturbation for the Beltrami Operator . . . . . . . . . . 32

Chapter 4 The Hodge Laplacian on Coexact 2-Forms . . . . . . . . . . . . . 39
4.1 The Spectrum of the Hodge Laplacian . . . . . . . . . . . . . . . . . 39
4.2 Generic Eigenvalue Multiplicities of the Hodge Laplacian on Coexact

2-Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 5 Concluding Comments . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 The Hodge Laplacian on a Closed 5-Manifold . . . . . . . . . . . . . 46
5.2 The Hodge Laplacian on a Closed n-Manifold . . . . . . . . . . . . . 47
5.3 Perturbation of Boundary . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendix A Computation of Derivatives . . . . . . . . . . . . . . . . . . . . 53

Appendix B Kernel of Sylvester Equation . . . . . . . . . . . . . . . . . . . . 60

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

v



Chapter 1 Introduction

Determining the spectrum of linear operators is a prominent topic in functional analy-

sis. Let A be a linear operator on a Banach space X with domain D(A). The spectrum

σ(A) of A consists of all values λ ∈ C such that the operator A− λ is not boundedly

invertible. A point λ ∈ σ(A) is called an eigenvalue of A if ker(A − λ) 6= {0}. The

eigenspace of A at λ is defined to be E(A, λ) = ker(A − λ), and the dimension of

E(A, λ) is the multiplicity of λ.

The spectrum of a self-adjoint elliptic operator on a compact manifold consists

of isolated eigenvalues, each of which has finite multiplicity. One such operator is

the Laplacian ∆ on L2(S2), where S2 is the unit sphere in R3. Its eigenvalues are

given by λ = `(` + 1) for ` = 0, 1, 2, . . . and have multiplicity 2` + 1. While each

eigenspace is finite-dimensional, the dimension of E(∆, λ) grows unboundedly large

as λ approaches infinity.

The example of the Laplacian on L2(S2) might cause one to suppose that multi-

dimensional eigenspaces are typical of self-adjoint elliptic operators. However, Uhlen-

beck [28] showed in 1976 that for certain families of elliptic operators, the property

of having only simple eigenvalues − that is, eigenvalues of multiplicity 1 − is generic.

Theorem 1.0.1. (Uhlenbeck, [28]) Let M be a connected compact manifold and Lb

be a family of self-adjoint second order elliptic operators on M , where the parameter

b lies in an open subset of a Banach space B. Let

Spk = {u ∈ Hp
k(M) ∩H1,0(M) | ‖u‖L2(M) = 1},

and define ϕ : Spk × R×B → Hp
k−2(M) by

ϕ(u, λ, b) = (Lb + λ)u.
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If 0 is a regular value of ϕ, then the set

{b ∈ B |Lb has one-dimensional eigenspaces}

is residual in B.

Theorem 1.0.1 indicates that self-adjoint second order elliptic operators on a com-

pact manifold will in general have simple eigenvalues. This result may seem counterin-

tuitive given that many operators with computable eigenvalues, such as the Laplacian

on L2(S2), have multidimensional eigenspaces. However, the repeated eigenvalues

often spring from the high degree of symmetry present in these examples, and as

symmetry is an exceptional property, it is reasonable that the operators will more

typically have simple eigenvalues. Uhlenbeck’s proof of Theorem 1.0.1 employs tech-

niques from infinite-dimensional transversality theory based on works by Abraham

[1], Smale [27], and Quinn [23].

As an application of Theorem 1.0.1, Uhlenbeck gives the example of the family

of operators Lb = L + b, where L is any self-adjoint second order elliptic operator

with smooth coefficients and b comes from the space B = Ck
0 (U) for some open

subset U ⊂M . This family of operators had been studied in 1975 by Albert [3], who

likewise proved the genericty of simple eigenvalues. While Albert’s approach from

perturbation theory is more direct than Uhlenbeck’s proof based on transversality, it

requires him to take the space of functions to be B = C∞(M), making Uhlenbeck’s

the stronger of the two results.

Uhlenbeck’s second example applies Theorem 1.0.1 to the family of Laplace-

Beltrami operators ∆g. In this setting, the parameter space is

Mr = {g ∈ Gr(M) | (g − g0)|M−U = 0},

the set of all Cr metrics on a manifold M which differ from a fixed metric g0 only on

some open subset U ⊂M . In particular, she establishes the following:
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Theorem 1.0.2. (Uhlenbeck, [28]) Let ∆g be the Laplace-Beltrami operator for a

metric g ∈Mr for r > n+ 3. Then the set

{g ∈Mr |∆g has one-dimensional eigenspaces}

is residual in Mr.

In 1980, Bleecker and Wilson [9] proved a similar result using eigenvalue per-

turbation theory. They show that under conformal perturbations gf = efg0 of a

fixed metric g0, the Laplace-Beltrami operator ∆gf has only simple eigenvalues for

a residual set of functions f ∈ C∞(M). Their method is more constructive than

Uhlenbeck’s, but they lose the ability to restrict the metrics’ deviance from g0 to an

open set U ⊂M .

In light of Uhlenbeck’s result for the Laplace-Beltrami operator on functions, one

might wonder if the eigenvalues of the Hodge Laplacian ∆
(k)
g acting on k-forms might

likewise be simple for a residual set of metrics. However, Theorem 1.0.2 does not

have an automatic analogue to the Hodge Laplacian. In 1980, Millman [20] observed

that on a manifold of dimension n = 2k, the McKean-Singer Télescopage Theorem

[7] implies that all eigenvalues of the Hodge Laplacian acting on k-forms have even

multiplicity. Consequently, when M is a manifold of even dimension, the eigenvalues

of the Hodge Laplacian acting on forms of middle rank cannot be simple.

While Millman’s observation precludes a general extension of Uhlenbeck’s theorem

to the Hodge Laplacian, the possibility remains that an analogue might hold under

appropriate hypotheses. In 2012, Enciso and Peralta-Salas [12] established a result

similar to Theorem 1.0.2 for the Hodge Laplacian on a closed manifold of dimension

3.

Theorem 1.0.3. (Enciso and Peralta-Salas, [12]) Let M be a closed 3-manifold and

r ≥ 2 be an integer. There exists a residual subset Γ of the space of Cr metrics on
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M such that, for all g ∈ Γ, the nonzero eigenvalues of the Hodge Laplacian ∆g on

k-forms have multiplicity 1 for all 0 ≤ k ≤ 3.

Enciso and Peralta-Salas structure their proof around the study of the Beltrami

operator ∗gd on coexact 1-forms, which they show to have simple spectrum using

transversality theory. This fact, when combined with Uhlenbeck’s Theorem 1.0.2,

allows them to conclude that on a 3-manifold, the nonzero eigenvalues of the Hodge

Laplacian are generically simple.

In light of Millman’s comment regarding manifolds of even dimension, the next

natural case to which we might hope to extend Uhlenbeck’s Theorem 1.0.2 is the

Hodge Laplacian on a five-dimensional manifold. In this dissertation, we use pertur-

bation theory to study the generic eigenvalue multiplicities of the Hodge Laplacian

on a closed 5-manifold. In particular, we prove the following result:

Theorem 4.2.4. Let M be a closed 5-manifold, and let r be an integer, r ≥ 2. There

exists a residual subset Γ of the space of all Cr metrics on M such that, for all g ∈ Γ,

the eigenvalues of the restriction of the Hodge Laplacian ∆
(2)
g to coexact 2-forms have

multiplicity 2.

Note that Theorem 4.2.4 is not a direct extension of Theorem 1.0.2, for the generic

behavior of the nonzero eigenvalues of ∆
(2)
g on coexact 2-forms is to have multiplicity

2, not 1.

To provide context for Theorem 4.2.4 and justify its validity, we structure this

dissertation as follows. In Chapter 2, we review definitions from Riemannian geometry

and introduce several operators on differential forms which will be used extensively

throughout the dissertation. Chapter 3 provides a study of the Beltrami operator

∗gd, which is related to the Hodge Laplacian by

∆(2)
g = −(∗gd)2

4



when the operators are restricted to coexact 2-forms on a 5-manifold. We use per-

turbation theory to show that the Beltrami operator has only simple eigenvalues for

a residual set of metrics (Theorem 3.4.3). In Chapter 4, we make observations on

the eigenspaces of the Hodge Laplacian and apply Theorem 3.4.3 to show that for

a residual set of metrics, the eigenvalues of the restriction of the Hodge Laplacian

to coexact 2-forms have multiplicity 2, thereby proving Theorem 4.2.4. Chapter 5

offers concluding comments about related problems and establishes even eigenvalue

multiplicities for the Hodge Laplacian acting on coexact k-forms in the more general

setting n = 4`+ 1 and k = 2` for ` ∈ N (Theorem 5.2.1).

Copyright c© Megan E. Gier, 2014.
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Chapter 2 Background

In this chapter, we introduce the definitions, notation, and concepts which provide

context for our subsequent discussion. We begin with an overview of tangent spaces

and differential forms. We then define several key operators before considering how

to decompose the spaces Λk(M) into harmonic, exact, and coexact forms using the

Hodge Decomposition Theorem 2.4.1.

2.1 Tangent Vectors and Vector Fields

We begin with a brief review of differential forms on Riemannian manifolds, as dis-

cussed in [11, 21, 26]. Let M be a closed Riemannian manifold of dimension n with at-

las {Uα, φα}. A tangent vector to M at a point p ∈M is a linear map v : C∞(M)→ R

that satisfies the property v(fg) = v(f)g(p) + f(p)v(g) for all f, g ∈ C∞(M). The

set of all tangent vectors at p ∈ M is called the tangent space at the point p of M ,

which we denote by TpM .

If (U, φ) is a local coordinate system about p with coordinate functions x1, . . . , xn,

of special interest are the tangent vectors

(
∂

∂xi

)
p

∈ TpM , 1 ≤ i ≤ n, defined by

(
∂

∂xi

)
p

(f) =
∂(f ◦ φ−1)

∂xi
(φ(p))

for f ∈ C∞(M). When the point p is made clear from context, we sometimes write

∂

∂xi
for these vectors. The tangent space TpM is an n-dimensional vector space with

basis elements (
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

.

Therefore, we may uniquely represent each tangent vector Xp ∈ TpM as

Xp =
n∑
i=1

ai
∂

∂xi
.
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Here, we use the alternate notation Xp for tangent vectors, which will be convenient

in our subsequent discussion.

The tangent bundle of M is the union

TM =
⋃
p∈M

TpM

consisting of points (p,Xp) ∈M × TpM . The tangent bundle is structured so that if

π : TM →M is the projection from the tangent bundle onto M , then π−1(p) = TpM .

A vector field X on M is a mapping X : M → TM that takes each p ∈ M to a

tangent vector X(p) = Xp ∈ TpM so that Xp is of class C∞ with respect to p. Let

X(M) denote the space of all smooth vector fields on M . In local coordinates, we

may write

Xp =
n∑
i=1

ai(p)
∂

∂xi

for p ∈ U and smooth functions ai : U → R. Observe, then, that a vector field

X ∈ X(M) acts on a function f ∈ C∞(M) to produce a new function Xf ∈ C∞(M)

given by

(Xf)(p) = Xp(f) =
n∑
i=1

ai(p)
∂f

∂xi
(p).

2.2 Differential Forms

Consider now the cotangent space T ∗pM , which is the dual space of TpM at a point

p ∈ M and hence contains all bounded linear functionals mapping TpM to R. We

define dxi to be the dual of
∂

∂xi
for 1 ≤ i ≤ n; that is,

dxi

(
∂

∂xj

)
= δij,

where δij is the Kronecker delta function. Thus, {dx1, . . . , dxn} forms the dual basis

of T ∗pM . We call

T ∗M =
⋃
p∈M

T ∗pM

7



the cotangent bundle of M .

A differential form of degree k, or k-form, is a smooth section of the kth exterior

power of the cotangent bundle of M . As such, a k-form ω assigns to each point p ∈M

an alternating multilinear map

ωp : TpM × · · · × TpM︸ ︷︷ ︸
k factors

→ R.

We use Λk(M) to denote the space of all C∞ k-forms on M .

As an alternative approach to k-forms, let x1, . . . , xn be coordinate functions on

a coordinate neighborhood U in M . Consider the algebra generated by

dx1, . . . , dxn

over R with unity 1 and product ∧ defined so that dxi ∧ dxj = −dxj ∧ dxi for

1 ≤ i, j ≤ n. The antisymmetry of the wedge product implies dxi ∧ dxi = 0 for all

i = 1, . . . , n, and hence dxi1 ∧ · · · ∧ dxik = 0 for k ≥ n + 1. In local coordinates, a

k-form ω can be written uniquely as

ω =
∑

i1<···<ik

ωi1...ikdxi1 ∧ · · · ∧ dxik

for functions ωi1···ik ∈ C∞(U). The action of the elements

{dxi1 ∧ · · · ∧ dxik |1 ≤ i1 < · · · < ik ≤ n} (2.1)

upon tangent vectors X1, . . . , Xk ∈ TpM is defined by

dxi1 ∧ · · · ∧ dxik(X1, . . . , Xk) =
1

k!
det(dxi`(Xj)).

By linearity, we may extend this definition to a general k-form ω ∈ Λk(M).

Though antisymmetry of the wedge product allows us to define a k-form locally

in terms of dxi1 ∧· · ·∧dxik , where the indices are strictly increasing, we will hereafter

use the Einstein convention that summation from 1 to n takes place over repeated

8



indices. To accommodate this convention, we define coefficients of ω for nonincreasing

indices by ωσ(i1)...σ(ik) = εσ(i1)···σ(ik)ωi1...ik , where i1 < · · · < ik, σ is a permutation on

{i1, . . . , ik}, and

εσ(i1)···σ(ik) =

 1, if σ is even;

−1, if σ is odd.

In this way, we may write

ω =
1

k!
ωi1...ikdxi1 ∧ · · · ∧ dxik ,

where the sum now ranges over all indices.

The wedge product of two differential forms ω ∈ Λk(M) and η ∈ Λ`(M) is a

(k + `)-form ω ∧ η. If ω =
1

k!
ωi1...ikdxi1 ∧ dxik and η =

1

`!
ωj1...j`dxj1 ∧ dxj` in local

coordinates, then

ω ∧ η =
1

k!`!
ωi1...ikηj1...j`dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxj` .

Observe that if k + ` > n, then ω ∧ η = 0. Moreover,

η ∧ ω = (−1)k`ω ∧ η. (2.2)

2.3 Operators on Differential Forms

In this section, we will introduce several operators on differential forms which will

feature prominently in the following chapters: the exterior differential operator, the

Hodge star operator, the codifferential operator, and the Hodge Laplacian. Our

primary references are [10] and [21].

Exterior Differential Operator

One of our main operators of interest is the exterior differential operator

d : Λk(M)→ Λk+1(M),

9



defined by

dω(X0, . . . , Xk) =
k∑
i=0

(−1)iXi

(
ω(X0, . . . , X̂i, . . . , Xk)

)
+
∑
i<j

(−1)i+jω
(

[Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk

)
for ω ∈ Λk(M) and X0, . . . , Xk ∈ X(M). The notation X̂i indicates that the vector

field Xi is omitted. Given a k-form ω =
1

k!
ωi1...ikdxi1 ∧ dxik , the local expression of

the components of dω ∈ Λk+1(M) is

(dω)i1···ik+1
=

k+1∑
`=1

(−1)`−1∂ωi1...i`−1i`+1···ik+1

∂xi`
. (2.3)

The exterior differential is a first order linear operator and satisfies the following

properties:

d ◦ d = 0; (2.4)

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2 (2.5)

for all ω1 ∈ Λk(M) and ω2 ∈ Λ`(M).

The Hodge Star Operator

When M is an n-dimensional manifold, it is evident from (2.1) that as a vector space,

Λk(M) has dimension

(
n

k

)
. Since Λk(M) and Λn−k(M) can be viewed as vector

spaces of the same dimension, there is an isomorphism ∗g : Λk(M) → Λn−k(M)

between the two spaces. We call ∗g the Hodge star operator and include the subscript

g to highlight the operator’s dependence on the metric.

Definition 2.3.1. The Hodge star operator

∗g : Λk(M)→ Λn−k(M)

is the zeroth order differential operator defined as follows:

10



(i) ∗g is a C∞(M)-linear mapping, that is,

∗g(f1ω1 + f2ω2) = f1 ∗g ω1 + f2 ∗g ω2

for all f1, f2 ∈ C∞(M) and ω1, ω2 ∈ Λk(M);

(ii) In local coordinates,

∗g(dxi1 ∧ · · · ∧ dxik) =
1

(n− k)!
|g|1/2εj1···jk,jk+1···jng

i1j1 · · · gikjkdxjk+1
∧ . . . ∧ dxjn ,

where |g| = det g and εj1···jn is the Levi-Civita symbol defined by

εj1···jn =


1, if (j1, . . . , jn) is an even permutation of (1, . . . , n);

−1, if (j1, . . . , jn) is an odd permutation of (1, . . . , n);

0, otherwise.

In subsequent computations, it will be useful to note that Definition 2.3.1 implies

that for ω ∈ Λk(M), the local coordinate expression of ∗gω ∈ Λn−k(M) is

(∗gω)i1···in−k =
1

k!
|g|1/2εj1···jki1···in−kgj1`1 · · · gjk`kω`1···`k . (2.6)

We also observe from Definition 2.3.1 that

∗g(1) = dµg and ∗g (dµg) = 1,

where dµg = |g|1/2dx1 ∧ · · · ∧ dxn is the volume element of (M, g). Moreover, the

Hodge star operator has the property that

∗g ∗g ω = (−1)k(n−k)ω (2.7)

for any ω ∈ Λk(M).

The Codifferential Operator

The de Rham complex for (M, g) consists of the spaces Λk(M) of k-forms on M and

the exterior differential operators d : Λk(M)→ Λk+1(M) for k = 0, . . . , n. Each space

11



Λk(M) is equipped with inner product given by

(α, β)g =

∫
M

α ∧ ∗gβ for α, β ∈ Λk(M). (2.8)

As a consequence of (2.2) and (2.7), the inner product satisfies

(∗g ω, ∗g η)g = (ω, η)g (2.9)

for all ω, η ∈ Λk(M).

The adjoint of d with respect to the inner product (2.8) is the codifferential oper-

ator

δg : Λk+1(M)→ Λk(M),

defined by

δg = (−1)n(k+1)+1 ∗g d ∗g . (2.10)

As with the Hodge star operator, we include the subscript g in our notation δg to

indicate that the codifferential operator is dependent on the choice of metric. From

(2.7) and (2.10), we obtain the following useful identities on Λk(M):

∗gδg = (−1)kd∗g; (2.11)

δg∗g = (−1)k+1 ∗g d; (2.12)

δg ◦ δg = 0. (2.13)

To prove our claim that δg is the adjoint of d under the inner product (2.8), we

take M to be a closed manifold and follow the argument found in [21]. Let ω ∈ Λk(M)

and η ∈ Λk+1(M). By equations (2.5) and (2.11), we find

dω ∧ ∗gη = d(ω ∧ ∗gη)− (−1)kω ∧ d ∗g η

= d(ω ∧ ∗gη) + ω ∧ ∗gδgη.

We integrate each side over M and apply Stokes’ Theorem to obtain

(dω, η)g =

∫
M

d(ω ∧ ∗gη) + (ω, δgη)g = (ω, δgη)g

as desired. �
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The Hodge Laplacian

Our primary operator of interest is the Hodge Laplacian, the second order differential

operator

∆(k)
g : Λk(M)→ Λk(M)

given by

∆(k)
g = dδg + δgd. (2.14)

Note that on 0-forms, the Hodge Laplacian ∆
(0)
g is simply the Laplace-Beltrami op-

erator, defined locally by

∆f = −|g|−1/2 ∂

∂xi

(
|g|1/2gij ∂f

∂xj

)
for f ∈ C∞(M). The next proposition outlines a few convenient properties of the

Hodge Laplacian.

Proposition 2.3.2. ([10]) The Hodge Laplacian ∆
(k)
g , for 0 ≤ k ≤ n, has the follow-

ing properties:

(i) ∆
(k)
g is formally self-adjoint;

(ii) ∆
(k)
g is formally non-negative;

(iii) ∆
(k)
g ω = 0 if and only if dω = 0 and δgω = 0.

Proof. In the following computations, context will determine the rank of the forms

upon which d and δg act.
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(i) Let ω, η ∈ Λk(M). Expressing ∆
(k)
g using (2.14) and noting that δg is the adjoint

of d, we obtain

(∆(k)
g ω, η)g = (dδgω, η)g + (δgdω, η)g

= (δgω, δgη)g + (dω, dη)g

= (ω, dδgη)g + (ω, δgdη)g

= (ω,∆(k)
g η)g.

Thus, ∆
(k)
g is formally self-adjoint.

(ii) For each ω ∈ Λk(M), we have

(∆(k)
g ω, ω)g = (dδgω, ω)g + (δgdω, ω)g

= (δgω, δgω)g + (dω, dω)g

= ‖δgω‖2
g + ‖dω‖2

g

≥ 0,

and so ∆
(k)
g is formally a non-negative operator.

(iii) Let ω ∈ Λk(M). First, suppose ∆
(k)
g ω = 0. By our computation in (ii), we find

that

‖δgω‖2
g + ‖dω‖2

g = (∆(k)
g ω, ω)g = 0,

thereby implying δgω = 0 and dω = 0.

Conversely, suppose that δgω = 0 and dω = 0. Then

∆(k)
g ω = dδgω + δgdω = 0.

�

In addition to satisfying the properties of Proposition 2.3.2, the Hodge Laplacian

commutes with the operators ∗g, d, and δg.
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Proposition 2.3.3. ([10]) Let 0 ≤ k ≤ n. For all ω ∈ Λk(M), the following equalities

hold:

(i) ∗g(∆(k)
g ω) = ∆

(n−k)
g (∗gω);

(ii) d(∆
(k)
g ω) = ∆

(k+1)
g (dω);

(iii) δg(∆
(k)
g ω) = ∆

(k−1)
g (δgω).

Proof. Let ω ∈ Λk(M). In the computations which follow, the rank of the forms

upon which the operators ∗g, d, and δg act will be clear from context.

(i) By the identities given in (2.11) and (2.12), we obtain

∗g(∆(k)
g ω) = (∗gd)δgω + (∗gδg)dω

= (−1)kδg(∗gδg)ω + (−1)k+1d(∗gd)ω

= (−1)2kδgd ∗g ω + (−1)2(k+1)dδg ∗g ω

= ∆(n−k)
g (∗gω).

Thus, the Hodge Laplacian and Hodge star operators commute.

(ii) We apply (2.4) to find

d(∆(k)
g ω) = d(dδg + δgd)ω

= dδgdω

= (dδg + δgd)dω

= ∆(k+1)
g (dω),

thereby establishing the commutativity of the Hodge Laplacian and exterior

differential operator.
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(iii) Using (2.13), we compute

δg(∆
(k)
g ω) = δg(dδg + δgd)ω

= δgdδgω

= (δgd+ dδg)δgω

= ∆(k−1)
g (δgω)

to verify that the Hodge Laplacian and codifferential operator commute. �

2.4 Hodge Decomposition

One reason why the operators ∆
(k)
g , d, and δg are so fundamental is that they decom-

pose Λk(M) into orthogonal subspaces. We define the space of harmonic k-forms on

(M, g) by

Hk(M) = {ω ∈ Λk(M)|∆(k)
g ω = 0},

the space of exact k-forms by

dΛk−1(M) = {ω ∈ Λk(M)|ω = dη for some η ∈ Λk−1(M)}, (2.15)

and the space of coexact k-forms by

δgΛ
k+1(M) = {ω ∈ Λk(M)|ω = δgζ for some ζ ∈ Λk+1(M)}.

The Hodge Decomposition Theorem guarantees that any k-form can be uniquely

written as the sum of a harmonic form, an exact form, and a coexact form.

Theorem 2.4.1. (Hodge Decomposition Theorem, [21]) On an oriented compact

Riemannian manifold (M, g), the space Λk(M) can be decomposed as

Λk(M) = Hk(M)⊕g dΛk−1(M)⊕g δgΛk+1(M).
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Many of our computations in subsequent chapters will make use of the decompo-

sition given in Theorem 2.4.1. For now, we will consider the behavior of the operators

defined in the previous section when restricted to the subspaces Hk(M), dΛk−1(M),

and δgΛ
k+1(M).

Proposition 2.4.2. The Hodge star operator ∗g has the following properties:

(i) ∗g : dΛk−1(M) → δgΛ
n−k+1(M) is an isomorphism between exact k-forms and

coexact (n− k)-forms;

(ii) ∗g : Hk(M) → Hn−k(M) is an isomorphism between harmonic k-forms and

harmonic (n− k)-forms.

Proof. We first observe that identity (2.7) implies that the linear operator

(−1)k(n−k)∗g : Λn−k(M)→ Λk(M)

is the inverse of ∗g : Λk(M)→ Λn−k(M).

(i) Suppose ω ∈ dΛk−1(M) so that ω = dη for some η ∈ Λk−1(M). Then

∗gω = ∗g(dη) = (−1)kδg(∗gη)

is in δgΛ
n−k+1(M). To show that ∗g is injective, note that ∗gω = 0 implies that

ω = (−1)k(n−k) ∗g (∗gω) = (−1)k(n−k) ∗g (0) = 0.

For surjectivity, let τ ∈ δgΛn−k+1(M) so that τ = δgζ for some ζ ∈ Λn−k+1(M).

The k-form ω = (−1)k(n−k) ∗g τ satisfies

∗gω = ∗g[(−1)k(n−k) ∗g τ ] = τ

and belongs to dΛk−1(M) since

ω = (−1)k(n−k) ∗g (δgζ) = (−1)n(k+1)+1d ∗g ζ.

Thus, ∗g provides an isomorphism between exact k-forms and coexact (n− k)-

forms.
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(ii) Let ω ∈ Hk(M). By the commutativity of the Hodge Laplacian and Hodge star

operator established in Proposition 2.3.3, we have

∆(n−k)
g (∗gω) = ∗g(∆(k)

g ω) = 0

so that ∗gω ∈ Hn−k(M). As in part (i), we find that ∗gω = 0 implies ω = 0,

thereby proving the injectivity of ∗g. Moreover, for each ζ ∈ Hn−k(M), the

k-form ω = (−1)k(n−k) ∗g ζ belongs to Hk(M) and satisfies

∗gω = (−1)k(n−k) ∗g ∗gζ = ζ,

so ∗g : Hk(M) → Hn−k(M) is surjective. Therefore, ∗g is an isomorphism

between harmonic k-forms and harmonic (n− k)-forms. �

By identity (2.4) and Proposition 2.3.2, we have dω = 0 whenever ω is in the sub-

space Hk(M)⊕dΛk−1(M). However, when restricted to coexact k-forms, the exterior

differential operator provides an isomorphism between δgΛ
k+1(M) and dΛk(M).

Proposition 2.4.3. The exterior differential operator d : δgΛ
k+1(M) → dΛk(M) is

an isomorphism between the spaces of coexact k-forms and exact (k + 1)-forms.

Proof. By (2.15), we readily see that the range of d is contained in dΛk(M). To

show that d : δgΛ
k+1(M)→ dΛk(M) is injective, suppose that ω = δgη is an element

of δgΛ
k+1(M) such that dω = 0. Since ω also satisfies

δgω = δg(δgη) = 0,

Proposition 2.3.2 implies that ω is in Hk(M). However, the spaces Hk(M) and

δgΛ
k+1(M) are orthogonal by the Hodge Decomposition Theorem 2.4.1, thereby im-

plying that ω = 0.

For surjectivity, let τ ∈ dΛk(M). Then τ = dω for some ω ∈ Λk(M), which can

be written ω = α + dζ + δgη for some α ∈ Hk(M), ζ ∈ Λk−1(M), and η ∈ Λk+1(M)
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by the Hodge Decomposition Theorem 2.4.1. Consequently,

τ = dω = d(α + dζ + δgη) = d(δgη)

for δgη ∈ δgΛ
k+1(M), and so d : δgΛ

k+1(M) → dΛk(M) is surjective. Hence, d

provides a linear isomorphism between the spaces of coexact k-forms and exact (k+1)-

forms. �

Parallel to our observations regarding the exterior differential operator, equation

(2.13) and Proposition 2.3.2 imply that the range of the restriction of the codifferential

operator to Hk(M)⊕ δgΛk+1(M) is {0}. When the domain of δg is restricted to exact

forms, we obtain a result analogous to Proposition 2.4.3.

Proposition 2.4.4. The codifferential operator δg : dΛk−1(M) → δgΛ
k(M) is an

isomorphism between the spaces of exact k-forms and coexact (k − 1)-forms.

The proof of Proposition 2.4.4 is similar to that of Proposition 2.4.3 and will be

left to the reader. As a final observation, we consider the restriction of the Hodge

Laplacian to the spaces of exact and of coexact k-forms.

Proposition 2.4.5. The Hodge Laplacian ∆
(k)
g is an automorphism when its domain

is restricted to either dΛk−1(M) or δgΛ
k+1(M).

Proof. Consider the Hodge Laplacian ∆
(k)
g : dΛk−1(M)→ dΛk−1(M) restricted to

exact k-forms. In this case, the Hodge Laplacian reduces to

∆(k)
g = dδg.

Since the operators d : δgΛ
k(M) → dΛk−1(M) and δg : dΛk−1(M) → δgΛ

k(M) are

both isomorphisms by Propositions 2.4.3 and 2.4.4, we conclude that

∆(k)
g : dΛk−1(M)→ dΛk−1(M)

is an automorphism. The proof for the restriction of ∆
(k)
g to δgΛ

k+1(M) is similar. �
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2.5 Spaces of Differential Forms

Up to this point, we have considered the spaces Λk(M) of k-forms on M with smooth,

real-valued coefficient functions. Define the pointwise inner product 〈ω, η〉g for k-

forms ω, η ∈ Λk(M) to be the function on M satisfying

〈ω, η〉gdµg = ω ∧ ∗gη, (2.16)

where dµg = |g|1/2dx1 ∧ . . . ∧ dxn is the volume element of (M, g). Following [6], we

define the space Lp(M,Λk) of Lp k-forms on M to be the completion of Λk(M) with

respect to the norm

‖ω‖Lp =

(∫
M

|ω|pg dµg
)1/p

, (2.17)

where |ω|g = 〈ω, ω〉1/2g is the pointwise norm of the k-form ω. Likewise, the Sobolev

space Hs(M,Λk) is the completion of Λk(M) in the norm

‖ω‖Hs =

(
s∑
`=0

∫
M

|∇`ω|2g dµg

)1/2

, (2.18)

where ∇`ω is the `-th covariant derivative of ω. Note that while the pointwise inner

product (2.16) depends on the Cr metric g, the choice of metric does not affect

Lp(M,Λk) or Hs(M,Λk) when viewed as topological vector spaces.

While we are primarily concerned with real differential forms, the skew-symmetry

of the Beltrami operator will require us to consider differential forms with complex

coefficients throughout much of Chapter 3. By extending the underlying field of

scalars to include complex numbers, we obtain the complexification of Λk(M), defined

as

Λk
C(M) = {α + iβ |α, β ∈ Λk(M)}.

To account for complex-valued coefficients, we define the pointwise inner product

〈ω, η〉gdµg = ω ∧ (∗gη) (2.19)
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and corresponding global inner product

(ω, η)g =

∫
M

ω ∧ (∗gη) (2.20)

for ω, η ∈ Λk
C(M). By substituting the complex pointwise inner product (2.19) in

the norms (2.17) and (2.18) and considering complex forms, we obtain the spaces

L2(M,Λk
C) and Hs(M,Λk

C) of L2 and Hs complex k-forms, respectively. The Hodge

Decomposition Theorem 2.4.1 extends to complex forms to give

Λk
C(M) = Hk

C(M)⊕ dΛk−1
C (M)⊕ δgΛk+1

C (M),

where Hk
C(M), dΛk−1

C (M) and δgΛ
k+1
C (M) respectively denote the spaces of harmonic,

exact, and coexact complex k-forms.

Copyright c© Megan E. Gier, 2014.
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Chapter 3 Generic Simplicity of the Eigenvalues of the Beltrami

Operator

Given the background provided in Chapter 2, the next two chapters will build towards

a proof of our main result, Theorem 4.2.4. Let M be a closed 5-manifold, and let

Gr(M) denote the space of metrics on M of class Cr for some integer r ≥ 2. Within

this setting, we wish to formulate a theorem in the spirit of Uhlenbeck, which would

predict the eigenvalue multiplicities of the Hodge Laplacian ∆
(k)
g for a residual set of

metrics in Gr(M).

3.1 Explanation of Approach

To provide justification for why we restrict our attention to coexact 2-forms and study

the Beltrami operator rather than work directly with ∆
(2)
g , we make a few preliminary

comments regarding the eigenvalues of the Hodge Laplacian on a 5-manifold. First,

observe that since 0-forms are simply functions, Uhlenbeck’s Theorem 1.0.2 guaran-

tees the nonzero eigenvalues of ∆
(0)
g will all be simple for a residual set of metrics in

Gr(M). The commutativity of the Hodge Laplacian and ∗g established in Proposition

2.3.3 implies that the nonzero eigenvalues of ∆
(5)
g are also generically simple. The

same conclusion holds for ∆
(1)
g restricted to exact 1-forms and to ∆

(4)
g restricted to

coexact 4-forms by Corollary 4.1.3.

Our observations above reveal that Uhlenbeck’s Theorem 1.0.2 is sufficient to

ensure generic simplicity of the nonzero eigenvalues of the Hodge Laplacian when

its domain is restricted to the space of 0-forms, exact 1-forms, coexact 4-forms, or

5-forms. However, Theorem 1.0.2 has no direct implications for the Hodge Laplacian

restricted to coexact 1-forms, 2-forms, 3-forms, or exact 4-forms. Fortunately, we do

not have to consider each of these remaining types of forms individually. The results
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of Section 4.1 imply that the following operators have isomorphic eigenspaces:

1. ∆
(1)
g restricted to coexact 1-forms

2. ∆
(2)
g restricted to exact 2-forms

3. ∆
(3)
g restricted to coexact 3-forms

4. ∆
(4)
g restricted to exact 4-forms

Likewise, ∆
(2)
g and ∆

(3)
g acting on coexact 2-forms and exact 3-forms, respectively,

have isomorphic eigenspaces. Therefore, if we could determine the generic eigenvalue

multiplicities of the Hodge Laplacian restricted to coexact 1-forms and to coexact 2-

forms, we would obtain a full characterization of the generic eigenvalue multiplicities

of the Hodge Laplacian on a 5-manifold.

Following the approach of Enciso and Peralta-Salas [12], we determine the generic

eigenvalue multiplicities of the Hodge-Laplacian on coexact 2-forms by first studying

the eigenvalues of the related Beltrami operator. Lemma 3.2.1 and equation (3.1)

indicate that the Beltrami operator will only give insight into the eigenvalues of the

Hodge Laplacian when ∆
(2)
g is restricted to coexact 2-forms, and thus our discussion

will focus on forms of this type. We build our argument around the Beltrami operator

because it has simpler structure than the Hodge Laplacian, which makes computations

in local coordinates more manageable.

As a final note, we focus on the nonzero eigenvalues of the Hodge-Laplacian since

the set of all eigenforms of ∆
(k)
g with eigenvalue 0 is precisely the space of harmonic

forms Hk(M). Since M is a closed manifold, the Hodge Theorem implies Hk(M) is

isomorphic to the k-th dimensional de Rham cohomology group of M and therefore

has dimension equal to bk(M), the k-th Betti number of M . Now, bk(M) is a topo-

logical invariant, and thus the dimension of Hk(M) is independent of the Riemannian

metric g ∈ Gr(M).
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One might observe that Theorems 3.4.3 and 4.2.4 do not specify that the eigen-

values of ∗gd and ∆
(2)
g restricted to coexact 2-forms must be nonzero. As we just

observed, all eigenforms of the Hodge Laplacian with eigenvalue 0 are harmonic, so 0

will not be an eigenvalue of ∆
(2)
g when restricted to coexact 2-forms. In the case of the

Beltrami operator, ∗gdu = 0 for u ∈ H1(M,Λ2
C) implies that the coexact component

of u is 0. Thus, 0 is not an eigenvalue of ∗gd or ∆
(2)
g when the operators act on spaces

of coexact forms.

3.2 The Beltrami Operator

Our objective is to determine the eigenvalue multiplicities of the Hodge Laplacian

acting on coexact 2-forms for a residual set of metrics. We would like to use pertur-

bation theory to obtain this residual set of metrics, but local coordinate computations

are difficult if we work directly with ∆
(2)
g . We observe, however, that if ω is a coexact

2-form then

∆(2)
g ω = δgdω = −(∗gd)2ω.

Thus, in order to gain insight into the eigenvalue multiplicities of the Hodge Laplacian,

we first direct our attention to the unbounded first order operator ∗gd, which is more

conducive to perturbation theory and thus has more easily determined eigenvalue

multiplicities. We call ∗gd the Beltrami operator.

Before narrowing our focus to coexact 2-forms on a 5-manifold, we consider the

more general properties of the Beltrami operator acting on k-forms on an n-manifold.

First, observe that since the Beltrami operator is the composition of ∗g and d, Propo-

sitions 2.4.2 and 2.4.3 imply it is an isomorphism between δgΛ
k+1(M) and δgΛ

n−k(M),

that is, the spaces of real coexact k-forms and coexact (n−k−1)-forms. By extension

to complex forms, ∗gd : δgΛ
k+1
C (M) → δgΛ

n−k
C (M) is also an isomorphism. We have

already noted that ∆
(2)
g = −(∗gd)2 on coexact 2-forms when n = 5, which is a special

case of a more general relationship.
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Lemma 3.2.1. Let M be an n-manifold. Then

∆(k)
g = (−1)nk+1(∗gd)2

when restricted to coexact k-forms.

Proof. If ω ∈ δgΛk+1
C (M), then

∆(k)
g ω = δgdω

= (−1)n(k+2)+1(∗gd∗g)dω

= (−1)nk+1(∗gd)2ω.

�

Lemma 3.2.1 implies that when restricted to coexact forms, the Hodge Laplacian

is given by ∆
(k)
g = (∗gd)2 if n and k are both odd; otherwise ∆

(k)
g = −(∗gd)2. The

parity of n and k also determine whether the Beltrami operator is self-adjoint or

skew-adjoint.

Lemma 3.2.2. Let M be an n-manifold, ω ∈ H1(M,Λk
C), and η ∈ H1(M,Λn−k−1

C ).

Then

(∗gdω, η)g = (−1)nk+1(ω, ∗gdη)g.

Proof: Let ω ∈ H1(M,Λk
C) and η ∈ H1(M,Λn−k−1

C ). By applying properties

(2.9),(2.7), and (2.12), we obtain

(∗gdω, η)g = (∗g(∗gdω), ∗gη)g

= (−1)(k+1)(n−k−1)(dω, ∗gη)g

= (−1)(k+1)(n−k−1)(ω, δg ∗g η)g

= (−1)(k+1)(n−k−1)+(n−k)(ω, ∗gdη)g

= (−1)nk+1(ω, ∗gdη)g.

�
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In general, the Beltrami operator maps k-forms to (n− k − 1)-forms so that the

ranks of the forms in its domain and range coincide precisely when

k =
n− 1

2
. (3.1)

In this case, Lemma 3.2.2 reveals that ∗gd is self-adjoint if n and k are both odd and

is skew-adjoint otherwise. In particular, the Beltrami operator will be skew-adjoint

when n = 5 and k = 2, our case of interest.

In order for the Beltrami operator to have eigenvalues, k and n must satisfy

equation (3.1). In particular, (3.1) can only hold if M is an odd-dimensional manifold,

and so the Beltrami operator will not give insight into the eigenvalue multiplicities

of the Hodge-Laplacian when M has even dimension. Since n = 5 and k = 2 satisfy

(3.1), it is reasonable to discuss the eigenvalues of ∗gd acting on 2-forms on a 5-

manifold. As a consequence of the skew-adjointness of the Beltrami operator in this

case, all of its eigenvalues must be purely imaginary.

Lemma 3.2.3. Let M be a manifold of odd dimension n, and consider ∗gd acting on

H1(M,Λk
C), where k = (n − 1)/2. If k is odd, then ∗gd has only real eigenvalues. If

k is even, then all eigenvalues of ∗gd are purely imaginary.

Proof: Let ω ∈ H1(M,Λk
C) be an eigenform of ∗gd with eigenvalue λ ∈ C. By

Lemma 3.2.2,

λ‖ω‖2
g = (∗gdω, ω)g = (−1)nk+1(ω, ∗gdω)g = (−1)nk+1λ̄‖ω‖2

g.

If k is even, the relationship λ = λ̄ implies λ is real. If k is odd, then λ = −λ̄ implies

λ is purely imaginary. �

To accommodate for the fact that ∗gd has purely imaginary eigenvalues when

n = 5 and k = 2, we will primarily be working with complex differential forms for

the remainder of this chapter.
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3.3 Variation of the Beltrami Operator in Local Coordinates

Now that we have established general properties of the Beltrami operator ∗gd on a

manifold of dimension n, we hereafter assume that M is a closed 5-manifold and the

metrics g belong to Gr(M) for r ≥ 2. Define

K = {u ∈ L2(M,Λ2) | du = 0},

which is the set of all L2 exact and harmonic 2-forms on M . Because we will be

switching between metrics in the arguments that follow, we will use ⊥g to specify

orthogonality with respect to the inner product (·, ·)g. By Hodge decomposition, K⊥g

is the set of all L2 coexact 2-forms on (M, g). The spaces K and K⊥g consist of real

2-forms and will be pertinent to our discussion in Chapter 4. In this chapter, however,

we will focus on the analogous spaces of complex 2-forms, KC and K⊥gC .

To prove the generic simplicity of the nonzero eigenvalues of the Beltrami op-

erator, we will be using methods from perturbation theory. In particular, we must

determine how ∗gd behaves under variation of the metric, which we will do using local

coordinates. A few comments regarding notation in local coordinates are in order.

We use gij and gij to signify the components of the metric tensor g ∈ Gr(M) and its

inverse matrix g−1, respectively. The inverse g−1 can be used to raise the indices of

a covariant (0, k)-tensor field Tj1...jk to produce a contravariant (k, 0)-tensor field

T i1...ik = gi1j1 · · · gikjkTj1...jk .

The trace of a (0, 2)-tensor h is given by trgh = gijhij.

The space Sr(M) consists of all symmetric tensor fields of class Cr and type (0, 2)

and can be identified with the tangent space TgGr(M) at any g ∈ Gr(M). Thus,

D(∗d)g(h) represents the variation of the Beltrami operator at the metric g ∈ Gr(M)

in the direction of a Cr symmetric (0, 2)-tensor h. The following lemma gives the

local coordinate representation of D(∗d)g(h) acting on an eigenform of the Beltrami

operator.
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Lemma 3.3.1. Let u ∈ H1(M,Λ2
C) be an eigenform of ∗gd with eigenvalue iλ. Then

for any h ∈ Sr(M),

(D(∗d)g(h)u)ij = iλ

[
−1

2
(trgh)uij + gmthtiumj + gmthtjuim

]
.

The full proof of Lemma 3.3.1 is given in Appendix A, but we will here provide

an overview of the computations involved. First, we express the Beltrami operator

in local coordinates by

(∗gdu)ij =
1

6
εklmij|g|1/2gknglpgmq

(
∂unp
∂xq

− ∂unq
∂xp

+
∂upq
∂xn

)
.

Using the formulas

D(gij)(h) = −hij and D(|g|s)(h) = s|g|s(trgh) for s > 0,

we compute

(D(∗d)g(h)u)ij =
1

6
εklmij|g|1/2

(
∂unp
∂xq

− ∂unq
∂xp

+
∂upq
∂xn

)
×
[

1

2
(trgh)gknglpgmq − gknglphmq − gkngmqhlp − glpgmqhkn

]
.

Finally, we utilize the relationship ∗gdu = iλu and simplify the expression for

(D(∗d)g(h)u)ij to arrive at the desired formula.

In our proof that the eigenvalues of the Beltrami operator are generically simple,

we will need the following density result, which allows any compactly-supported 2-

form to be locally expressed in terms of a given non-vanishing form and a symmetric

(0, 2)-tensor.

Lemma 3.3.2. Let w ∈ Cr(M,Λ2
C), r ≥ 1, and consider a compact subset K ⊂

M\w−1(0). Then for any v ∈ Cr(M,Λ2
C) with supp v ⊂ K, there exists a symmetric

complex (0, 2)-tensor t ∈ SrC(M) such that vij = tikg
klwlj + wikg

kltlj.

Proof. Let w ∈ Cr(M,Λ2
C), let K be a compact subset of M\w−1(0), and let v be

any 2-form in Cr(M,Λ2
C) with supp v ⊂ K. To make our computations clearer, we
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will use matrix representations of the various forms and tensors. The 2-forms w and

v correspond to the antisymmetric 5× 5 matrices

W =



0 w12 w13 w14 w15

−w12 0 w23 w24 w25

−w13 −w23 0 w34 w35

−w14 −w24 −w34 0 w45

−w15 −w25 −w35 −w45 0


and V =



0 v12 v13 v14 v15

−v12 0 v23 v24 v25

−v13 −v23 0 v34 v35

−v14 −v24 −v34 0 v45

−v15 −v25 −v35 −v45 0


,

while g−1 and t naturally correspond to the symmetric matrices

G−1 =



g11 g12 g13 g14 g15

g12 g22 g23 g24 g25

g13 g23 g33 g34 g35

g14 g24 g34 g44 g45

g15 g25 g35 g45 g55


and T =



t11 t12 t13 t14 t15

t12 t22 t23 t24 t25

t13 t23 t33 t34 t35

t14 t24 t34 t44 t45

t15 t25 t35 t45 t55


.

Note that the entries of W,V,G−1, and T are functions of p ∈ M , so these matrices

are in fact matrix-valued functions. For ease of notation, we suppress the point of

evaluation p.

The condition vij = tikg
klwlj +wikg

kltlj for 1 ≤ i, j ≤ 5 translates into the matrix

equation

V = TG−1W +WG−1T.

Since G−1 is a symmetric positive-definite matrix, it has a symmetric positive-definite

square root G−1/2. We thus obtain the equivalent equation

Ṽ = T̃ W̃ + W̃ T̃ , (3.2)

where the matrices Ṽ = G−1/2V G−1/2 and W̃ = G−1/2WG−1/2 are antisymmetric

and T̃ = G−1/2TG−1/2 is symmetric.
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LetM denote the set of all Cr 5× 5 matrix-valued functions on M , and define a

linear operator L :M→M by

L(X) = XW̃ + W̃X. (3.3)

Satisfying condition (3.2) amounts to finding a symmetric T̃ ∈M such that L(T̃ ) =

Ṽ . The Sylvester equation

L(X) = XW̃ + W̃X = Ṽ

has a solution if Ṽ is orthogonal to kerL. We show in Appendix C that each E ∈ kerL

is symmetric. By the antisymmetry of Ṽ , the matrix inner product of Ṽ with each

E ∈ kerL is

E · Ṽ =
5∑

i,j=1

eij ṽij

=
∑
i<j

eij ṽij +
∑
i>j

eij ṽij

=
∑
i<j

eij ṽij +
∑
i>j

eji(−ṽji)

=
∑
i<j

eij ṽij −
∑
i<j

eij ṽij (reindexing)

= 0.

Since Ṽ is orthogonal to kerL, there exists an X ∈M such that Ṽ = XW̃ + W̃X on

K. The antisymmetry of Ṽ and W̃ gives

(XW̃ + W̃X)T = Ṽ T

W̃ TXT +XT W̃ T = Ṽ T

−W̃XT −XT W̃ = −Ṽ

XT W̃ + W̃XT = Ṽ

so thatXT solves the same equation asX. Thus, we define T̃ to be the symmetrization

T̃ =
1

2
[X +XT ].
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Hence, T = G1/2T̃G1/2 is a symmetric Cr matrix-valued function such that

V = TG−1W +WG−1T,

and thus we obtain from T the desired symmetric complex (0, 2)-tensor t ∈ SrC(M).

�

In (2.20), we defined the global inner product of α, β ∈ Λk
C(M) to be

(α, β)g =

∫
M

α ∧ (∗β).

In our case n = 5 and k = 2, we wish to express this inner product using local co-

ordinate representations of the differential forms. We claim that the local coordinate

representation of the pointwise inner product (2.19) is given by

〈α, β〉g =
1

2
gikgj`αijβk` (3.4)

for complex 2-forms α =
1

2
αst dxs ∧ dxt and β =

1

2
βk` dxk ∧ dx`. Indeed, observe that

α ∧ (∗gβ) =

(
1

2
αst dxs ∧ dxt

)
∧
(

1

3!
· 1

2
|g|1/2εijpqrgikgj`βk` dxp ∧ dxq ∧ dxr

)
=

1

24
|g|1/2εstpqrεijpqrgikgj`αstβk` dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5

=
1

2
|g|1/2gikgj`αijβk` dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5

=
1

2
gikgj`αijβk` dµg

= 〈α, β〉g dµg,

where dµg = |g|1/2dx1∧· · ·∧dx5 is the volume element. We may thereby use the local

inner product (3.4) to express the global inner product in terms of local coordinates

as

(α, β)g =

∫
M

α ∧ (∗β) =

∫
M

〈α, β〉g dµg =
1

2

∫
M

gikgj`αijβk` dµg (3.5)

for α, β ∈ Λ2
C(M).
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3.4 Eigenvalue Perturbation for the Beltrami Operator

To establish the generic simplicity of the eigenvalues of the Beltrami operator, we

use standard results from perturbation theory as discussed in Rellich [24] and Kato

[19]. In particular, observe that the skew-adjointness of the Beltrami operator ∗gd

when n = 5 and k = 2 implies that the operator i∗g d : H1(M,Λ2
C) ∩ K⊥gC → K⊥gC

is self-adjoint with respect to the metric g and has real, isolated eigenvalues of finite

multiplicity. We consequently have the following perturbation theorem for linear

perturbations of the metric:

Theorem 3.4.1. Let λ be an eigenvalue of i∗g d : H1(M,Λ2
C) ∩ K⊥gC → K⊥gC of

multiplicity m, and let g(ε) = g + εh for some h ∈ Sr(M). Then there are m

functions `h1(ε), . . . , `hm(ε) real-analytic at ε = 0, and m functions Uh
1 (ε), . . . , Uh

m(ε)

analytic in H1(M,Λ2
C) at ε = 0 such that the following conditions hold:

(1) `hj (0) = λ for j = 1, . . . ,m;

(2) i∗g(ε) dUh
j (ε) = `hj (ε)U

h
j (ε) for j = 1, . . . ,m;

(3) For ε in a small enough neighborhood of 0, {Uh
1 (ε), . . . , Uh

m(ε)} is an orthonormal

set in H1(M,Λ2
C) ∩ K⊥g(ε)C ;

(4) For every open interval (a, b) ⊂ R such that λ is the only eigenvalue of i∗g d in

[a, b], there are exactly m eigenvalues (counting multiplicity) `h1(ε), . . . , `hm(ε) of

i∗g(ε) d in (a, b), for ε sufficiently small.

As a technical point, we may apply perturbation theory when the domains of the

perturbed operators i∗g(ε) d are taken to be H1(M,Λ2
C) ∩ K⊥g(ε)C since there exists a

bijection between the spaces K⊥gC and K⊥g(ε)C . To see this, let P ḡ : L2(M,Λ2
C)→ K⊥ḡC

denote the ḡ-orthogonal projection onto K⊥ḡC for a metric ḡ ∈ Gr(M), and consider
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the restriction P ḡ
g : K⊥gC → K

⊥ḡ
C defined by

P ḡ
g = P ḡ|K⊥gC

.

We have the following lemma:

Lemma 3.4.2. For any g, ḡ ∈ Gr(M), the bounded operator P ḡ
g : K⊥gC → K⊥ḡC is a

bijection.

Proof. Let g, ḡ ∈ Gr(M). If ω ∈ K⊥gC satisfies P ḡ
g ω = 0, then ω is also contained

in KC. Since K⊥gC ∩ KC = {0}, we conclude that P ḡ
g is injective. Moreover, since

P ḡ : L2(M,Λ2
C) = KC ⊕g K⊥gC → K

⊥ḡ
C

is surjective and P ḡ(KC) = {0}, the restriction P ḡ|K⊥gC
= P ḡ

g is surjective. Hence, P ḡ
g

is a bijection. �

Given the perturbation theorem 3.4.1, we may now proceed to show that the

eigenvalues of ∗gd on coexact 2-forms are generically simple.

Theorem 3.4.3. The eigenvalues of the Beltrami operator ∗gd acting on the space

H1(M,Λ2
C) ∩ K⊥gC are all simple for a residual set of Cr metrics.

Proof. For a metric g ∈ Gr(M), we label the eigenvalues iλn of the Beltrami

operator ∗gd so that

λ2
n+1(g) ≥ λ2

n(g).

Define the subsets

Γ = {g ∈ Gr(M) | all eigenvalues of ∗g d|H1(M,Λ2
C)∩K⊥gC

are simple}

and

Γn = {g ∈ Gr(M) | the first n eigenvalues of ∗g d|H1(M,Λ2
C)∩K⊥gC

are simple}
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so that

Γ ⊂ · · · ⊂ Γn ⊂ Γn+1 ⊂ · · · ⊂ Γ1 ⊂ Γ0 = Gr(M)

and

Γ =
∞⋂
n=0

Γn.

By the stability of simple eigenvalues under small perturbations of the metric, each

set Γn is open in Gr(M). Thus, to prove that Γ is residual in Gr(M), it is sufficient

to show that Γn+1 is dense in Γn for all n = 0, 1, 2, . . ..

Let g ∈ Γn so that the first n eigenvalues of

∗gd : H1(M,Λ2
C) ∩ K⊥gC → K

⊥g
C

are simple. Suppose that the (n + 1)-st eigenvalue iλ 6= 0 of ∗gd has multiplicity

m, and define g(ε) = g + εh for some h ∈ Sr(M). Theorem 3.4.1 implies there are

m functions `h1(ε), . . . , `hm(ε) real-analytic at ε = 0, and m functions Uh
1 (ε), . . . , Uh

m(ε)

analytic in H1(M,Λ2
C) at ε = 0 such that the following conditions hold:

(1) `hj (0) = λ for j = 1, . . . ,m;

(2) ∗g(ε)dUh
j (ε) = i`hj (ε)U

h
j (ε) for j = 1, . . . ,m;

(3) For ε in a small enough neighborhood of 0, {Uh
1 (ε), . . . , Uh

m(ε)} is an orthonormal

set in H1(M,Λ2
C) ∩ K⊥g(ε)C ;

(4) If λ ∈ (a, b) ⊂ R and no other eigenvalue iµ of ∗gd satisfies µ ∈ [a, b], then for ε

sufficiently small, i`h1(ε), . . . , i`hm(ε) are the only eigenvalues of ∗g(ε)d of the form

iµ for µ ∈ (a, b).

When ε = 0, each set {Uh
1 (0), . . . , Uh

m(0)} forms an orthonormal basis of E(∗gd, iλ).

However, the basis may depend on our choice of h ∈ Sr(M) in the linear perturbation

g(ε) = g + εh, which is why we include the superscript in our notation.
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If we differentiate

∗g(ε)dUh
j (ε) = i`hj (ε)U

h
j (ε)

with respect to ε and evaluate at ε = 0, we obtain

D(∗d)g(h)Uh
j (0) + ∗gd(Uh

j )′(0) = i(`hj )
′(0)Uh

j (0) + i`hj (0)(Uh
j )′(0)

D(∗d)g(h)Uh
j (0) + (∗gd− iλ)(Uh

j )′(0) = i(`hj )
′(0)Uh

j (0)

D(∗d)g(h)uhj + (∗gd− iλ)(Uh
j )′(0) = i(`hj )

′(0)uhj , (3.6)

where we have introduced the notation uhj = Uh
j (0). Observing that {uh1 , . . . , uhm} is

an orthonormal basis of E(∗gd, iλ) and taking the inner product of (3.6) with another

eigenform uhk, we find

i(`hj )
′(0)(uhj , u

h
k)g = (D(∗d)g(h)uhj , u

h
k)g + ((∗gd− iλ)(Uh

j )′(0), uhk)g

i(`hj )
′(0)δjk = (D(∗d)g(h)uhj , u

h
k)g.

We may express the inner product (D(∗d)g(h)uhj , u
h
k)g in local coordinates using (3.5)

and Lemma 3.3.1 to obtain

(`hj )
′(0)δjk =

λ

2

∫
gprgqs

[
−1

2
(trgh)(uhj )pq + glthtp(u

h
j )lq + glthtq(u

h
j )pl

]
(uhk)rs dµg,

which we may express more concisely as

(`hj )
′(0)δjk = λ(S(h, uhj ), u

h
k)g (3.7)

by defining S : SrC(M)× L2(M,Λ2
C)→ L2(M,Λ2

C) by

[S(h,w)]pq = −1

2
(trgh)wpq + glthtpwlq + glthtqwpl

for h ∈ SrC(M) and w ∈ L2(M,Λ2
C). Observe that S is linear in both h and w.

Our goal is to show that there exists an h ∈ Sr(M) such that

(`hj )
′(0) 6= (`hk)

′(0)
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for some pair j, k ∈ {1, . . . ,m}. This fact implies that under the metric perturbation

g(ε) = g + εh for ε sufficiently small, the perturbed eigenvalues i`hj (ε) and i`hk(ε) of

∗g(ε)d are distinct. While i`hn(ε) and i`hk(ε) are not guaranteed to be simple, they each

have multiplicity less than m, so we may repeat the argument finitely many times to

obtain g(ε) ∈ Γn+1.

To this end, assume to the contrary that (`hj )
′(0) = (`hk)

′(0) for all h ∈ Sr(M) and

all j, k ∈ {1, . . . ,m}. By (3.7), this assumption implies

(S(h, uhj ), u
h
j )g = (S(h, uhk), u

h
k), 1 ≤ j, k ≤ m (3.8)

(S(h, uhj ), u
h
k)g = 0, j 6= k (3.9)

for all h ∈ Sr(M). As previously noted, each set {uh1 , . . . , uhm} forms an orthonormal

basis of E(∗gd, iλ), but we cannot assume that uh1
j = uh2

j when h1 6= h2. Let us

therefore fix an orthonormal basis {u1, . . . , um} of E(∗gd, iλ). For a given h ∈ Sr(M),

we may write each uj in terms of the basis elements {uh1 , . . . , uhm} as

uj = cj,1u
h
1 + · · ·+ cj,mu

h
m

for constants cj,1, . . . , cj,m ∈ C. The fact that {u1, . . . , um} and {uh1 , . . . , uhm} are both

orthonormal bases of E(∗gd, iλ) implies

δjk = (uj, uk)g

= (cj,1u
h
1 + · · ·+ cj,mu

h
m, ck,1u

h
1 + · · ·+ ck,mu

h
m)g

= cj,1ck,1 + · · ·+ cj,mck,m. (3.10)

Combining (3.10) with (3.8) and (3.9) yields

(S(h, uj), uk)g = cj,1(S(h, uh1), uk)g + · · ·+ cj,m(S(h, uhm), uk)g

= cj,1ck,1(S(h, uh1), uh1)g + · · ·+ cj,mck,m(S(h, uhm), uhm)g

= (cj,1ck,1 + · · ·+ cj,mck,m)(S(h, uhj ), u
h
j )g

= δjk(S(h, uhj ), u
h
j )g.

36



Thus, for all h ∈ Sr(M), the elements in the orthonormal basis {u1, . . . , um} satisfy

(S(h, uj), uj)g = (S(h, uk), uk)g, 1 ≤ j, k ≤ m

(S(h, uj), uk)g = 0, j 6= k.

Observe that setting

hT = T − (trgT )g

for T ∈ Sr(M) yields

[S(hT , uj)]pq = −1

2
[(trgT )− 5(trgT )](uj)pq + glt[Ttp − (trgT )gtp](uj)lq

+glt[Ttq − (trgT )gtq](uj)pl

= 2(trgT )(uj)pq + gltTtp(uj)lq − (trgT )(uj)pq + gltTtq(uj)pl

−(trgT )(uj)pq

= Tptg
tl(uj)lq + (uj)plg

ltTtq.

By decomposing a complex symmetric (0, 2)-tensor T ∈ SrC(M) into T = T1 + iT2 for

T1, T2 ∈ Sr(M), we find that

[S(hT1+iT2 , uj)]pq = [S(hT1 , uj)]pq + i[S(hT2 , uj)]pq,

thereby implying

(S(hT , uj), uj)g = (S(hT1+iT2 , uj), uj)g

= (S(hT1 , uj), uj)g + i(S(hT2 , uj), uj)g

= (S(hT1 , uk), uk)g + i(S(hT2 , uk), uk)g

= (S(hT1+iT2 , uk), uk)g

= (S(hT , uk), uk)g

for all T ∈ SrC(M). Likewise, we obtain

(S(hT , uj), uk)g = 0, j 6= k (3.11)
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for all complex tensors T ∈ SrC(M).

Without loss of generality, fix j = 1 and k = 2. Equation (3.11) implies

(S(hT , u1), u2)g = 0 (3.12)

for all T ∈ SrC(M). Now, it follows from (∗gd− iλ)u1 = 0 that

∆(2)
g u1 = −(∗gd)2u1 = λ2u1,

and so u1 is an eigenform of the Hodge Laplacian ∆
(2)
g with eigenvalue λ2. Unique

continuation then indicates that u1 cannot vanish in any open subset of M [4, 5], and

consequently, the set

S = {S(hT , u1) |T ∈ SrC(M)}

is dense in L2(M,Λ2
C) by Lemma 3.3.2. Since (3.12) implies u2 is orthogonal to the

dense set S , we obtain u2 = 0 on M , contradicting that u2 is an eigenform.

We hence conclude that there exists an h ∈ Sr(M) such that (`hj )
′(0) 6= (`hk)

′(0)

for some j, k ∈ {1, . . . ,m}. Repeating the above argument as necessary, we obtain a

metric g(ε) = g+εh in Γn+1 for ε sufficiently small. Since g(ε) can be taken arbitrarily

close to g in the Cr topology, we conclude that Γn+1 is dense in Γn. Additionally,

each Γn is open in Gr(M), so we infer that

Γ =
∞⋂
n=1

Γn

is residual Gr(M). Thus, for a residual set of metrics Γ ⊂ Gr(M), the Beltrami

operator acting on H1(M,Λ2
C) ∩ K⊥gC has only simple eigenvalues. �

Copyright c© Megan E. Gier, 2014.
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Chapter 4 The Hodge Laplacian on Coexact 2-Forms

In the previous chapter, we established that when M is a 5-manifold, the Beltrami

operator ∗gd acting on H1(M,Λ2
C) ∩ K⊥gC has only simple eigenvalues for a residual

set of metrics in Gr(M). We will utilize this fact in proving our main result, Theorem

4.2.4, which establishes the generic eigenvalue multiplicities of the Hodge Laplacian

acting on coexact 2-forms.

4.1 The Spectrum of the Hodge Laplacian

Before continuing our discussion of coexact 2-forms on a 5-manifold, we pause to

make a few general observations about the spectrum of the Hodge Laplacian ∆
(k)
g

on a manifold (M, g) of dimension n. Since we will not be varying the metric in

this section, we temporarily suppress the subscript in our notation for the Hodge

Laplacian and codifferential operators. The following spectral theorem holds for the

Hodge Laplacian.

Theorem 4.1.1. ([10]) Let (M, g) be a closed, connected, oriented, n-dimensional

Riemannian manifold. The eigenvalue problem

∆(k)ω = λω

has a complete orthonormal system ω1, ω2, . . . of smooth eigenforms in L2(M,Λk) with

corresponding eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · , where λj →∞ as j →∞.

Let E(∆(k), λ) denote the space of eigenforms of ∆(k) in L2(M,Λk) with eigenvalue

λ. In light of the decomposition

Λk(M) = Hk(M)⊕ dΛk−1(M)⊕ δΛk+1(M)
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given in Theorem 2.4.1, the following theorem allows us to decompose the eigenspace

E(∆(k), λ) into exact and coexact subspaces. Let Ek
d (λ) and Ek

δ (λ) denote the spaces

of exact and coexact eigenforms of ∆(k) with eigenvalue λ 6= 0. We adopt the con-

vention of adding a superscript to the operators d and δ to indicate the rank of the

forms upon which they are acting.

Theorem 4.1.2. ([10]) The following equalities are valid:

(i) E(∆(k), λ) = Ek
d (λ)⊕ Ek

δ (λ),

(ii) Ek
d (λ) = dk−1Ek−1

δ (λ),

(iii) Ek
δ (λ) = δk+1Ek+1

d (λ).

Proof. (i) The linearity of ∆(k) implies Ek
d (λ)⊕Ek

δ (λ) ⊂ E(∆(k), λ). For the reverse

inclusion, suppose ω ∈ E(∆(k), λ) so that ∆(k)ω = λω. By the Hodge Decomposition

Theorem 2.4.1, there exists a unique decomposition

ω = ωH + ωd + ωδ

such that ωH ∈ Hk(M), ωd ∈ dΛk−1(M), and ωδ ∈ δΛk+1(M). We then obtain

∆(k)ω = λω

∆(k)(ωH + ωd + ωδ) = λ(ωH + ωd + ωδ)

∆(k)ωd + ∆(k)ωδ = λωH + λωd + λωδ.

Proposition 2.4.5 implies that ∆(k)ωd ∈ dΛk−1(M) and ∆(k)ωδ ∈ δΛk+1(M), so

uniqueness of the Hodge decomposition gives

ωH = 0, ∆(k)ωd = λωd, and ∆(k)ωδ = λωδ.

Thus, ω = ωd + ωδ is contained in Ek
d (λ)⊕ Ek

δ (λ).
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(ii) Let ω ∈ Ek
d (λ). Since dk−1 : δkΛk(M) → dk−1Λk−1(M) is an isomorphism

by Proposition 2.4.3, there exists a unique η ∈ δkΛk(M) such that ω = dk−1η. The

commutativity of the Hodge Laplacian and d established in Proposition 2.3.3 gives

dk−1(∆(k−1)η) = ∆kω = λω = dk−1(λη).

By the injectivity of dk−1 restricted to coexact forms, we conclude ∆(k−1)η = λη so

that η ∈ Ek−1
δ (λ). The reverse inclusion dk−1Ek−1

δ (λ) ⊂ Ek
d (λ) easily follows from the

commutativity of ∆(k) and d.

(iii) Using that δk+1 : dkΛk(M) → δk+1Λk+1(M) is an isomorphism (Proposition

2.4.4), the proof of the equality

Ek
δ (λ) = δk+1Ek+1

d (λ)

mirrors the argument given in (ii). �

As a consequence of Theorem 4.1.2 (i), all eigenforms in E(∆(k), λ) can be decom-

posed into exact and coexact components which are individually eigenforms of ∆(k)

with eigenvalue λ. Statement (ii) can be improved upon in the following corollary:

Corollary 4.1.3. ([10]) For every k = 1, . . . , n, the linear mapping

dk−1 : Ek−1
δ (λ)→ Ek

d (λ)

induced by the exterior derivative dk−1 is an isomorphism of norm ‖dk−1‖ =
√
λ.

Corollary 4.1.3 implies that λ is a simple eigenvalue of ∆
(k)
g acting on exact k-

forms if and only if it is a simple eigenvalue of ∆
(k−1)
g acting on coexact (k−1)-forms.

In addition to Ek
d (λ) being isomorphic to Ek−1

δ (λ), the commutativity of ∗g and ∆(k)

established in Proposition 2.3.3 implies that Ek
d (λ) is also isomorphic to En−k

δ (λ). As

a consequence of these isomorphisms, determining the eigenvalues of the operators

∆(k), 0 ≤ k ≤ n, reduces to identifying the eigenvalues of the restriction of ∆(k) to

exact forms for select values of k.
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Corollary 4.1.4. ([10]) The eigenvalues of the operators ∆(k), 0 ≤ k ≤ n are com-

pletely determined by the eigenvalues of the restriction of ∆(k) to exact k-forms for

0 < k ≤ b(n+ 1)/2c.

Note that we could just as easily determine the eigenvalues of ∆(k), 0 ≤ k ≤ n by

studying the restriction of ∆(k) to coexact forms.

4.2 Generic Eigenvalue Multiplicities of the Hodge Laplacian on Coexact

2-Forms

In order to determine the generic eigenvalue multiplicities of the Hodge Laplacian

on coexact 2-forms on a 5 manifold, we must determine the relationship between the

eigenvalues and eigenforms of the Hodge Laplacian and the Beltrami operator. Our

next two lemmas hold in the more general setting of n = 4`+ 1 and k = 2` for some

` ∈ N and in particular apply when n = 5 and k = 2.

Lemma 4.2.1. Let M be a manifold of dimension n = 4`+1 for some ` ∈ N, and let

k = 2`. Let ω = α + iβ be a nonzero complex k-form with α, β ∈ H1(M,Λk). Then

∗gdω = iλω if and only if

∗gdα = −λβ and ∗g dβ = λα. (4.1)

Proof. First, suppose that ω = α + iβ ∈ H1(M,Λk
C) solves ∗gdω = iλω. Then

∗gdω = iλω

∗gd(α + iβ) = iλ(α + iβ)

∗gdα + i ∗g dβ = −λβ + iλα,

so equating real and imaginary parts yields (4.1).

Conversely, suppose that α, β ∈ H1(M,Λk) satisfy (4.1), and let ω = α+iβ. Then

∗gdω = ∗gdα + i ∗g dβ = −λβ + iλα = iλ(α + iβ) = iλω
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so that ω is an eigenfunction of ∗gd with eigenvalue iλ. �

Note 4.2.2. It is important to recognize that condition (4.1) implies that α and β

are nonzero, linearly independent forms over R. To see this, observe that β = cα

implies

β = cα =
c

λ
∗g dβ =

c2

λ
∗g dα = −c2β,

which gives c = ±i in contradiction to c ∈ R. Even more notably,

(α, β)g =
1

λ
(∗gdβ, β)g = −1

λ
(β, ∗gdβ)g = −(β, α)g

reveals that

(α, β)g = 0.

The next lemma follows from our observations in Lemma 4.2.1.

Lemma 4.2.3. Let M be a manifold of dimension n = 4` + 1 for some ` ∈ N, and

let k = 2`. Let α, β ∈ H2(M,Λk) ∩ K⊥g . If ω = α + iβ is an eigenform of the

Beltrami operator ∗gd with eigenvalue iλ, then both α and β are eigenforms of the

Hodge Laplacian ∆
(k)
g with eigenvalue λ2.

Proof. Let α, β ∈ H2(M,Λk) ∩ K⊥g , and suppose ω = α + iβ is an eigenform of

∗gd with eigenvalue iλ. By Lemma 4.2.1, α and β satisfy

∗gdα = −λβ and ∗g dβ = λα.

Since α is a coexact form, n = 4`+ 1 is odd, and k = 2` is even, Lemma 3.2.1 implies

∆(k)
g α = −(∗gd)2α = λ ∗g dβ = λ2α.

Similarly,

∆(k)
g β = −(∗gd)2β = −λ ∗g dα = λ2β

so that α and β are both eigenforms of ∆
(k)
g with eigenvalue λ2. �

43



Given that Lemmas 4.2.1 and 4.2.3 apply in the case n = 5 and k = 2, we are

now ready to prove our main theorem.

Theorem 4.2.4. Let M be a closed 5-manifold, and let r be an integer, r ≥ 2. There

exists a residual subset Γ of the space of all Cr metrics on M such that, for all g ∈ Γ,

the eigenvalues of the restriction of the Hodge Laplacian ∆
(2)
g to H2(M,Λ2) ∩ K⊥g

have multiplicity 2.

Proof. By Theorem 3.4.3, there exists a residual set Γ of Cr metrics on M such

that the eigenvalues of the Beltrami operator ∗gd acting on H1(M,Λ2
C) ∩K⊥gC are all

simple. Take g ∈ Γ, and consider an eigenvalue λ2 > 0 of the restriction of ∆
(2)
g to

coexact 2-forms. Let η ∈ H2(M,Λ2) ∩ K⊥g be an eigenform of ∆
(2)
g with eigenvalue

λ2. Since η is coexact, Lemma 3.2.1 implies that

−(∗gd)2η = λ2η. (4.2)

Now, since ∗gd maps H2(M,Λ2) ∩ K⊥g to H1(M,Λ2) ∩ K⊥g , we have ∗gdη = λζ for

some ζ ∈ H1(M,Λ2) ∩ K⊥g . Equation (4.2) then yields

− ∗g d(λζ) = λ2η

∗gdζ = −λη

so that ζ is in fact contained in H2(M,Λ2) ∩ K⊥g . Since η and ζ together satisfy

condition (4.1), Lemma 4.2.1 implies that ζ+iη is an eigenform of ∗gd with eigenvalue

iλ. It follows from Lemma 4.2.3 that ζ is also an eigenform of ∆
(2)
g with eigenvalue λ2.

As mentioned in 4.2.2, the eigenforms η and ζ are linearly independent, indicating

that the eigenvalue λ2 of ∆
(2)
g has multiplicity of at least 2.

To prove that λ2 has a multiplicity of precisely 2, suppose that ∆
(2)
g τ = λ2τ for

some τ ∈ H2(M,Λ2) ∩ K⊥g . By our previous argument, there must exist a coexact

2-form ξ ∈ H2(M,Λ2) ∩ K⊥g such that ξ + iτ is an eigenform of ∗gd with eigenvalue
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iλ. Since g is contained in the residual set Γ, the eigenvalue iλ is simple. Thus, ξ+ iτ

must be a complex multiple of the eigenform ζ + iη; that is,

ξ + iτ = (a+ ib)(ζ + iη) = (aζ − bη) + i(bζ + aη) (4.3)

for some a+ ib ∈ C. Equating the imaginary parts of equation (4.3) gives

τ = bζ + aη

so that τ is a linear combination of the eigenforms η and ζ of ∆
(2)
g . Thus, λ2 has

multiplicity 2. We therefore conclude that for a residual set of metrics Γ ⊂ Gr(M), all

eigenvalues of the restriction of the Hodge Laplacian ∆
(2)
g to H2(M,Λ2) ∩ K⊥g have

multiplicity 2. �

As an immediate consequence of Corollary 4.1.3, we obtain an analogous result

for exact 3-forms.

Corollary 4.2.5. Let M be a closed 5-manifold, and let r be an integer, r ≥ 2. There

exists a residual subset Γ of the space of all Cr metrics on M such that, for all g ∈ Γ,

the eigenvalues of the restriction of the Hodge Laplacian ∆
(3)
g to the space of exact

forms in H2(M,Λ3) have multiplicity 2.

Copyright c© Megan E. Gier, 2014.
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Chapter 5 Concluding Comments

Uhlenbeck’s Theorem 1.0.1 is a powerful result with many applications. While The-

orem 4.2.4 provides an analogue to Uhlenbeck’s Theorem 1.0.2 in the case of the

Hodge Laplacian acting on coexact 2-forms on a closed 5-manifold, there are still

many questions to be explored.

5.1 The Hodge Laplacian on a Closed 5-Manifold

Our goal for this dissertation was to establish the nonzero eigenvalue multiplicities of

the Hodge Laplacian ∆
(k)
g on a closed 5-manifold for a residual set of Cr metrics. As

outlined in Section 3.1, Uhlenbeck’s Theorem 1.0.2 ensures the generic simplicity of

the nonzero eigenvalues of following operators:

(i) ∆
(0)
g ;

(ii) ∆
(1)
g restricted to exact 1-forms;

(iii) ∆
(4)
g restricted to coexact 4-forms;

(iv) ∆
(5)
g .

Moreover, there exists a residual set of Cr metrics such that the operators

(v) ∆
(2)
g restricted to coexact 2-forms,

(vi) ∆
(3)
g restricted to exact 3-forms

have eigenvalues of multiplicity 2 (Theorem 4.2.4 and Corollary 4.2.5). In order to

completely characterize the generic nonzero eigenvalue multiplicities of the Hodge

Laplacian on a closed 5-manifold, we still need information about the eigenspaces of

the operators
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(vii) ∆
(1)
g restricted to coexact 1-forms,

(viii) ∆
(2)
g restricted to exact 2-forms,

(ix) ∆
(3)
g restricted to coexact 3-forms,

(x) ∆
(4)
g restricted to exact 4-forms.

Since operators (vii)-(x) have isomorphic eigenspaces, it suffices to determine the

eigenvalue multiplicities of the Hodge Laplacian restricted to coexact 1-forms. How-

ever, it is unclear how to best approach this problem. On a 5-manifold, (3.1) implies

that the Beltrami operator only has eigenvalues when acting on 2-forms. Thus, the

eigenvalue multiplicities of the Beltrami operator will not give insight into the eigen-

values of ∆
(1)
g on coexact 1-forms, and so we cannot rely on the methods of Chapters

3 and 4. It may be possible, however, to apply perturbation theory or transversal-

ity theory directly to the Hodge Laplacian in this case, though the local coordinate

computations might prove difficult.

5.2 The Hodge Laplacian on a Closed n-Manifold

Thus far, the results regarding the eigenvalue multiplicities of the Hodge Laplacian on

a closed manifold M have been highly dependent on the dimension n of the manifold.

In the case n = 3, Theorem 1.0.3 establishes that all nonzero eigenvalues of ∆
(k)
g ,

0 ≤ k ≤ 3, are simple for a residual set of Cr metrics. When n = 5, generic simplicity

of nonzero eigenvalues holds for the operators (i)-(iv), while the eigenspaces of the

operators (v) and (vi) have dimension 2 (Theorem 4.2.4).

We hope to employ our methods to study the generic eigenvalue multiplicities of

the Hodge Laplacian in the more general context of a closed n-manifold, where n is

odd. When k = (n − 1)/2, the Hodge Laplacian on coexact k-forms can be written

∆
(k)
g = (−1)nk+1(∗gd)2 (Lemma 3.2.1), implying that the Beltrami operator is self-

adjoint when k is odd and skew-adjoint when k is even. This leads us to conjecture
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that on a closed n-manifold, n odd, the nonzero eigenvalues of ∆
(k)
g on coexact k-

forms generically have multiplicity 1 when k = (n−1)/2 is odd and have multiplicity

2 when k is even. At the very least, the relationship between the eigenvalues of the

Beltrami operator and Hodge Laplacian on coexact forms established in Chapter 4

indicate that all eigenvalues of ∆
(k)
g restricted to coexact forms have even multiplicity

when n = 4`+ 1 and k = 2`. Redefining

K = {u ∈ L2(M,Λk) | du = 0}

to be the space of L2 coexact k-forms for k = 2`, we have the following theorem.

Theorem 5.2.1. Let (M, g) be a closed Riemannian manifold of dimension n = 4`+1

for some ` ∈ N, and let k = 2`. Then all eigenvalues of the restriction of ∆
(k)
g to

H2(M,Λk) ∩ K⊥g have even multiplicity.

Proof. Let (M, g) be a closed Riemannian manifold of dimension n = 4`+ 1, and

let k = 2`. Suppose λ2 > 0 is an eigenvalue of the restriction of ∆
(k)
g to coexact

2-forms. We will show that the eigenspace E(∆
(k)
g , λ2) has a basis

{α1, . . . , αm, β1, . . . , βm}

of 2m linearly independent eigenforms of ∆
(k)
g with eigenvalue λ2. Let η be an eigen-

form of ∆
(k)
g in H2(M,Λk) ∩ K⊥g with eigenvalue λ2. Since n = 4` + 1 is odd and

k = 2` is even, Lemma 3.2.1 implies that the action of ∆
(k)
g on the coexact form η is

given by

∆(k)
g η = −(∗gd)2η = λ2η. (5.1)

Now,

n− 1

2
=

(4`+ 1)− 1

2
= 2` = k,

so k and n satisfy relationship (3.1). Then

∗gd : H2(M,Λk) ∩ K⊥g → H1(M,Λk) ∩ K⊥g
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maps coexact k-forms in H2(M,Λk) to coexact k-forms in H1(M,Λk), yielding

∗gdη = λζ

for some ζ ∈ H1(M,Λk) ∩ K⊥g . Equation (5.1) then implies

− ∗g d(λζ) = λ2η

∗gdζ = −λη

so that ζ is in fact contained in H2(M,Λk)∩K⊥g . Since η and ζ together satisfy con-

dition (4.1), Lemma 4.2.1 indicates that ζ + iη is an eigenform of ∗gd with eigenvalue

iλ. It follows from Lemma 4.2.3 that ζ is also an eigenform of ∆
(k)
g with eigenvalue

λ2.

Suppose that the eigenvalue iλ of ∗gd has multiplicity m ∈ N. Then E(∗gd, iλ) is

spanned by m eigenforms

α1 + iβ1, . . . , αm + iβm

that are linearly independent over C. We may therefore write

ζ + iη =
m∑
j=1

(pj + iqj)(αj + iβj)

=
m∑
j=1

[(pjαj − qjβj) + i(qjαj + pjβj)] (5.2)

for some pj, qj ∈ R. By equating the imaginary parts of (5.2), we find

η =
m∑
j=1

(qjαj + pjβj). (5.3)

Lemma 4.2.3 implies that all αj and βj are eigenforms of ∆
(k)
g with eigenvalue λ2,

so it only remains to establish that

{α1, . . . , αm, β1, . . . , βm}

is a linearly independent set over R. Without loss of generality, suppose, to the

contrary, that there exist pj, qj ∈ R such that

αm =
m−1∑
j=1

(pjαj + qjβj). (5.4)
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Note that we may exclude βm from the sum since αm and βm are linearly independent

over R by 4.2.2. Lemma 4.2.1 gives the equalities

∗gdαj = −λβj and ∗g dβj = λαj

for 1 ≤ j ≤ m, so applying the Beltrami operator to (5.4) yields

−λβm = ∗gdαm

=
m−1∑
j=1

(pj ∗g dαj + qj ∗g dβj)

=
m−1∑
j=1

(−λpjβj + λqjαj)

= −λ
m−1∑
j=1

(pjβj − qjαj).

Thus, βm =
∑m−1

j=1 (pjβj − qjαj). We therefore obtain

αm + iβm =
m−1∑
j=1

[(pjαj + qjβj) + i(pjβ − qjα)]

=
m−1∑
j=1

(pj − iqj)(αj + iβj),

which contradicts the independence of the forms α1+iβ1, . . . , αm+iβm over C. Hence,

the set

S = {α1, . . . , αm, β1, . . . , βm}

is linearly independent over R. Since (5.3) implies any eigenform η ∈ E(∆
(k)
g , λ2) can

be written as a linear combination of forms in S, we conclude that E(∆
(k)
g , λ2) has

dimension 2m. Therefore, all nonzero eigenvalues of ∆
(k)
g have even multiplicity. �

By Corollary 4.1.3, the eigenvalues of the restriction of the Hodge Laplacian to

exact (2`+ 1)-forms will likewise have even multiplicities.

Corollary 5.2.2. Let (M, g) be a closed Riemannian manifold of dimension n = 4`+1

for some ` ∈ N, and let k = 2`+ 1. Then all eigenvalues of the restriction of ∆
(k)
g to

exact forms in H2(M,Λk) have even multiplicity.

50



In the case of closed manifolds of even dimension n = 2k, little is known regarding

the eigenvalue multiplicities of the Hodge Laplacian beyond Millman’s observation

that ∆
(k)
g has eigenvalues of even multiplicity [20]. Enciso and Peralta-Salas [12] note

that when n = 2, Uhlenbeck’s Theorem 1.0.2 implies that the nonzero eigenvalues of

the Hodge Laplacian on k-forms are generically simple when k = 0 and k = 2 and

have multiplicity 2 when k = 1. To justify this last claim, observe that if λ is a simple

eigenvalue of ∆
(0)
g then it is also a simple eigenvalue of ∆

(1)
g restricted to exact forms

by Theorem 4.1.2. Since λ is likewise a simple eigenvalue of ∆
(2)
g , and hence of ∆

(1)
g

restricted to coexact forms, we find that E(∆
(1)
g , λ) = E1

d(λ) ⊕ E1
δ (λ) has dimension

2. We will need to develop new techniques to study the eigenvalue multiplicities of

the Hodge Laplacian on manifolds of even dimension n > 2, for (3.1) indicates the

Beltrami operator will not be of use.

5.3 Perturbation of Boundary

The applications of Uhlenbeck’s Theorem 1.0.1 extend beyond metric perturbations.

As another example, she establishes that if N is a compact n-manifold with boundary,

then the Laplacian on Im(F ) will have simple eigenvalues for generic Cr embeddings

F : N → Rn.

Theorem 5.3.1. (Uhlenbeck, [28]) Let r > n−2, and let ∆Im(F ) denote the Laplace-

Beltrami operator on the image of F with Dirichlet boundary conditions. Then the

set

{F ∈ Embr(N,Rn) |∆Im(F ) has one-dimensional eigenspaces}

is residual in Embr(N,Rn).

Henry [15] likewise considers the generic simplicity of eigenvalues of partial differential

operators under perturbation of the boundary.
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We ask whether an analogue of Theorem 5.3.1 might hold for the Hodge Laplacian

with relative boundary conditions. Ho [17] raises this question in his consideration of

the Hodge Laplacian acting on a family of symmetric regions in Rn consisting of two

cavities connected by a thin tube. He assumes simple first relative eigenvalues of the

Hodge Laplacian with relative boundary conditions, noting that there is no general

classification of domains which satisfy this assumption.

Copyright c© Megan E. Gier, 2014.
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Appendix A Computation of Derivatives

We here provide the proof of Lemma 3.3.1 by calculating the variation of the Beltrami

operator at the metric g ∈ Gr(M) in the direction of a symmetric (0, 2)-tensor h in

Sr(M). A preliminary step in this computation is determining how variation of

the metric effects the local coordinate expressions of the inverse metric g−1 and the

determinant |g|.

Lemma A1. Let g ∈ Gr(M). Then D(gij) = −hij for all h ∈ Sr(M).

Proof. We wish to compute

D(gij)(h) = lim
t→0

1

t
[(g + th)ij − gij].

Utilizing the geometric series expansion, we write

(g + th)−1 = (1 + tg−1h)−1g−1 =

(
∞∑
m=0

(−1)mtm(g−1h)m

)
g−1,

which allows us to compute

D(g−1)(h) = lim
t→0

1

t
[(g + th)−1 − g−1]

= lim
t→0

1

t

[(
g−1 +

∞∑
m=1

(−1)mtm(g−1h)mg−1

)
− g−1

]
= lim

t→0

1

t
[−tg−1hg−1 +O(t2)]

= −g−1hg−1.

Since the ij-th component of the matrix (−g−1hg−1) is −gilgkjhlk = −hij, we see

that D(gij)(h) = −hij as claimed. �

Lemma A2. Let g ∈ Gr(M). Then D(|g|s)(h) = s|g|s(trgh) for all h ∈ Sr(M).
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Proof. For any s > 0, we compute

D(|g|s)(h) = lim
t→0

1

t
(|g + th|s − |g|s)

= lim
t→0

1

t
(|g|s|1 + tg−1h|s − |g|s)

= lim
t→0

1

t
[|g|s(1 + tgijhij +O(t2))s − |g|s]

= lim
t→0

1

t
[|g|s(1 + st(trgh) +O(t2))− |g|s]

= s|g|s(trgh).

�

Lemmas A1 and A2 allow us to calculate the derivative of ∗gd under variation of

the metric.

Lemma 3.3.1. Let u ∈ H1(M,Λ2
C) be an eigenform of ∗gd with eigenvalue iλ. Then

for any h ∈ Sr(M),

(D(∗d)g(h)u)ij = iλ

[
−1

2
(trgh)uij + gmthtiumj + gmthtjuim

]
.

Proof. Let u ∈ H1(M,Λ2
C) be an eigenform of ∗gd with eigenvalue iλ. Since u is a

2-form, (2.3) allows us to express the differential du in local coordinates as

(du)npq =
∂unp
∂xq

− ∂unq
∂xp

+
∂upq
∂xn

,

and thus by (2.6), the Beltrami operator acting on u has local coordinate expression

(∗gdu)ij =
1

6
εklmij|g|1/2gknglpgmq

(
∂unp
∂xq

− ∂unq
∂xp

+
∂upq
∂xn

)
.

Utilizing the calculations D(gij)(h) = −hij and D(|g|s)(h) = s|g|s(trgh) of Lemmas

A1 and A2, we find that the ij-th component of the differential of ∗gd with respect

to g in the direction of h ∈ Sr(M) acting on u is

(D(∗d)g(h)u)ij =
1

6
εklmij|g|1/2

(
∂unp
∂xq

− ∂unq
∂xp

+
∂upq
∂xn

)
(5)

×
[

1

2
(trgh)gknglpgmq − gknglphmq − gkngmqhlp − glpgmqhkn

]
.
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The formula A−1 = (detA)−1adj(A) implies that

|g|εklmij εnpqrsgkn = glpgmqgirgjs − glpgmqgisgjr − glpgmrgiqgjs + glpgmrgisgjq

+glpgmsgiqgjr − glpgmsgirgjq − glqgmpgirgjs + glqgmpgisgjr

+glqgmrgipgjs − glqgmrgisgjp − glqgmsgipgjr + glqgmsgirgjp

+glrgmpgiqgjs − glrgmpgisgjq − glrgmqgipgjs + glrgmqgisgjp

+glrgmsgipgjq − glrgmsgiqgjp − glsgmpgiqgjr + glsgmpgirgjq

+glsgmqgipgjr − glsgmqgirgjp − glsgmrgipgjq + glsgmrgiqgjp.

By this formula and the fact that u is an eigenform of ∗gd with eigenvalue iλ, we

55



obtain

iλεnpqrs|g|1/2urs = εnpqrs|g|1/2grigsj(iλuij)

= εnpqrs|g|1/2grigsj(∗gdu)ij

=
1

6
(|g|εnpqrsεklmijgsj)gkaglbgmcgri

(
∂uab
∂xc
− ∂uac

∂xb
+
∂ubc
∂xa

)
=

1

6
(gnkgplgqmgri − gnkgplgqigrm − gnkgpmgqlgri + gnkgpmgqigrl

+gnkgpigqlgrm − gnkgpigqmgrl − gnlgpkgqmgri + gnlgpkgqigrm

+gnlgpmgqkgri − gnlgpmgqigrk − gnlgpigqkgrm + gnlgpigqmgrk

+gnmgpkgqlgri − gnmgpkgqigrl − gnmgplgqkgri + gnmgplgqigrk

+gnmgpigqkgrl − gnmgpigqlgrk − gnigpkgqlgrm + gnigpkgqmgrl

+gnigplgqkgrm − gnigplgqmgrk − gnigpmgqkgrl + gnigpmgqlgrk)

×gkaglbgmcgri
(
∂uab
∂xc
− ∂uac

∂xb
+
∂ubc
∂xa

)
=

1

6

(
5δanδ

b
pδ
c
q − δanδbpδrqδcr − 5δanδ

c
pδ
b
q + δanδ

c
pδ
r
qδ
b
r + δanδ

r
pδ
b
aδ
c
r

−δanδrpδcqδbr − 5δbnδ
a
pδ

c
q + δbnδ

c
pδ
r
qδ
a
r + 5δbnδ

c
pδ
a
q − δbnδcpδrqδar

−δbnδrpδaq δcr + δbnδ
r
pδ
c
qδ
a
r + 5δcnδ

a
pδ

b
q − δcnδapδrqδbr − 5δcnδ

b
pδ
a
q

+δcnδ
b
pδ
r
qδ
a
r + δcnδ

r
pδ
a
q δ

b
r − δcnδrpδbqδar − δrnδapδbqδcr + δrnδ

a
pδ

c
qδ
b
r

+δrnδ
b
pδ
a
q δ

c
r − δrnδbpδcqδar − δrnδcpδaq δbr + δrnδ

c
pδ
b
qδ
a
r

)
×
(
∂uab
∂xc
− ∂uac

∂xb
+
∂ubc
∂xa

)
=

1

6

[
2

(
∂unp
∂xq

− ∂unq
∂xp

+
∂upq
∂xn

)
− 2

(
∂unq
∂xp

− ∂unp
∂xq

+
∂uqp
∂xn

)
−2

(
∂upn
∂xq

− ∂upq
∂xn

+
∂unq
∂xp

)
+ 2

(
∂uqn
∂xp

− ∂uqp
∂xn

+
∂unp
∂xq

)
+2

(
∂upq
∂xn

− ∂upn
∂xq

+
∂uqn
∂xp

)
− 2

(
∂uqp
∂xn

− ∂uqn
∂xp

+
∂upn
∂xq

)]
= 2

(
∂unp
∂xq

− ∂unq
∂xp

+
∂upq
∂xn

)
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Substituting this expression for ∂unp
∂xq
− ∂unq

∂xp
+ ∂upq

∂xn
into (5) yields

(D(∗d)g(h)u)ij =
iλ

12
εklmijεnpqrs|g|urs ×[

1

2
(trgh)gknglpgmq − gknglphmq − gkngmqhlp − glpgmqhkn

]
= A+B + C +D

where

A =
iλ

24
|g|(trgh) εklmij εnpqrs g

knglpgmqgragsbuab

B = − iλ
12
|g| εklmij εnpqrs gknglpgragsbhmquab

C = − iλ
12
|g| εklmij εnpqrs gkngmqgragsbhlpuab

D = − iλ
12
|g| εklmij εnpqrs glpgmqgragsbhknuab.
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Note that by symmetry, B = C = D. We compute

A =
iλ

24
(trgh)(|g| εklmij εnpqrs gkn)glpgmqgragsbuab

=
iλ

24
(trgh) (glpgmqgirgjs − glpgmqgisgjr − glpgmrgiqgjs + glpgmrgisgjq

+glpgmsgiqgjr − glpgmsgirgjq − glqgmpgirgjs + glqgmpgisgjr

+glqgmrgipgjs − glqgmrgisgjp − glqgmsgipgjr + glqgmsgirgjp

+glrgmpgiqgjs − glrgmpgisgjq − glrgmqgipgjs + glrgmqgisgjp

+glrgmsgipgjq − glrgmsgiqgjp − glsgmpgiqgjr + glsgmpgirgjq

+glsgmqgipgjr − glsgmqgirgjp − glsgmrgipgjq + glsgmrgiqgjp)

×glpgmqgragsbuab

=
iλ

24
(trgh)

(
25δai δ

b
j − 25δbi δ

a
j − 5δamδ

m
i δ

b
j + 5δamδ

b
i δ
m
j + 5δbmδ

m
i δ

a
j − 5δbmδ

a
i δ

m
j

−δml δlmδai δbj + δml δ
l
mδ

b
i δ
a
j + δml δ

a
mδ

l
iδ
b
j − δml δamδbi δlj − δml δbmδliδaj + δml δ

b
mδ

a
i δ

l
j

+δal δ
l
mδ

m
i δ

b
j − δal δlmδbi δmj − 5δal δ

l
iδ
b
j + 5δal δ

b
i δ
l
j + δal δ

b
mδ

l
iδ
m
j − δal δbmδmi δlj

−δbl δlmδmi δaj + δbl δ
l
mδ

a
i δ

m
j + 5δbl δ

l
iδ
a
j − 5δbl δ

a
i δ

l
j − δbl δamδliδmj + δbl δ

a
mδ

m
i δ

l
j

)
uab

=
iλ

24
(trgh)(6uij − 6uji)

=
iλ

2
(trgh)uij.
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Similarly, we obtain

B = − iλ
12

(|g| εklmij εnpqrs gkn)glpgqvgragsbgmthtvuab

= − iλ
12

(glpgmqgirgjs − glpgmqgisgjr − glpgmrgiqgjs + glpgmrgisgjq

+glpgmsgiqgjr − glpgmsgirgjq − glqgmpgirgjs + glqgmpgisgjr

+glqgmrgipgjs − glqgmrgisgjp − glqgmsgipgjr + glqgmsgirgjp

+glrgmpgiqgjs − glrgmpgisgjq − glrgmqgipgjs + glrgmqgisgjp

+glrgmsgipgjq − glrgmsgiqgjp − glsgmpgiqgjr + glsgmpgirgjq

+glsgmqgipgjr − glsgmqgirgjp − glsgmrgipgjq + glsgmrgiqgjp)

×glpgqvgragsbgmthtvuab

= − iλ
12

(
5δvmδ

a
i δ

b
j − 5δvmδ

b
i δ
a
j − 5δamδ

v
i δ
b
j + 5δamδ

b
i δ
v
j + 5δbmδ

v
i δ
a
j − 5δbmδ

a
i δ

v
j

−δvl δlmδai δbj + δvl δ
l
mδ

b
i δ
a
j + δvl δ

a
mδ

l
iδ
b
j − δvl δamδbi δlj − δvl δbmδliδaj + δvl δ

b
mδ

a
i δ

l
j

+δal δ
l
mδ

v
i δ
b
j − δal δlmδbi δvj − δal δvmδliδbj + δal δ

v
mδ

b
i δ
l
j + δal δ

b
mδ

l
iδ
v
j − δal δbmδvi δlj

−δbl δlmδvi δaj + δbl δ
l
mδ

a
i δ

v
j + δbl δ

v
mδ

l
iδ
a
j − δbl δvmδai δlj − δbl δamδliδvj + δbl δ

a
mδ

v
i δ
l
j

)
×gmthtvuab

= − iλ
12

(
2gmthtmuij − 2gmthtmuji − 2gmthtiumj + 2gmthtjumi + 2gmthtiujm

−2gmthtjuim
)

= −iλ
3

[(trgh)uij − gmthtiumj − gmthtjuim].

We combine the expressions for A and B to obtain

(D(∗d)g(h)u)ij = A+ 3B

=
iλ

2
(trgh)uij − iλ[(trgh)uij − gmthtiumj − gmthtjuim]

= iλ

[
−1

2
(trgh)uij + gmthtiumj + gmthtjuim

]
.

�

Copyright c© Megan E. Gier, 2014.
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Appendix B Kernel of Sylvester Equation

In the proof of Lemma 3.3.2, we defined M to be the set of Cr 5× 5 matrix-valued

functions on M and introduced the linear operator L :M→M given by

L(X) = XW̃ + W̃X, (3.3)

where W̃ was a given antisymmetric matrix corresponding to a 2-form. We stated

that all matrices E ∈ kerL are symmetric, a claim which we now prove.

Lemma B1. Let U ∈ C5×5 be an antisymmetric matrix with zeros along the diagonal,

and define the linear operator L : C5×5 → C5×5 by

L(X) = UX +XU.

Then each matrix in the kernel of L is symmetric.

Proof. Let U ∈ C5×5 be an antisymmetric matrix of the form

U =



0 u12 u13 u14 u15

−u12 0 u23 u24 u25

−u13 −u23 0 u34 u35

−u14 −u24 −u34 0 u45

−u15 −u25 −u35 −u45 0


.

A matrix

E =



e11 e12 e13 e14 e15

e21 e22 e23 e24 e25

e31 e32 e33 e34 e35

e41 e42 e43 e44 e45

e51 e52 e53 e54 e55


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is contained in kerL if

UE + EU = 0. (6)

We wish to show that all such matrices E ∈ kerL are symmetric.

Since UE+EU is a 5×5 matrix, the matrix equation (6) corresponds to a system

of 25 linear equations in which the eij are unknown. From these 25 equations, we

obtain the equivalent matrix equation

Kv = 0, (7)

where

v = [e11, . . . , e15, e21, . . . , e25, e31, . . . , e35, e41, . . . , e45, e51, . . . , e55]T

is the vectorization of E and K is the 25× 25 matrix

K =



UT J12 J13 J14 J15

−J12 UT J23 J24 J25

−J13 −J23 UT J34 J35

−J14 −J24 −J34 UT J45

−J15 −J25 −J35 −J45 UT


,

where Jij = uijI5×5 for 1 ≤ i < j ≤ 5.

Using Maple, we find that the reduced row echelon form of K is the matrix

A =

 I20×20 B20×5

05×25

 .
Since the last 5 rows of A are zero, the system of equations given by

Av = 0 (8)

is underdetermined, indicating there exist nonzero solutions v. We claim that all such

v satisfy the symmetry condition eij = eji. To see this, first consider the condition

61



e12 = e21. Letting bij denote the (i, j)-th entry of B, the second row of (8) gives the

equation

e12 + b21e51 + b22e52 + b23e53 + b24e54 + b25e55 = 0, (9)

while the sixth row yields

e21 + b61e51 + b62e52 + b63e53 + b64e54 + b65e55 = 0. (10)

By Maple, we find that b2i = b6i for 1 ≤ i ≤ 5, and hence equations (9) and (10)

combine to give e12 = e21. A similar comparison shows

e13 = e31, e14 = e41, e23 = e32, e24 = e42, and e34 = e43.

Furthermore, Maple indicates that the fifth row of B is[
−1 0 0 0 0

]
,

and so we obtain the equation

e15 − e51 = 0

from the fifth row of (8). We likewise find

e25 = e52, e35 = e53, and e45 = e54

by examining rows 10, 15, and 20 of (8), respectively. Therefore, we conclude that

all E ∈ kerL are symmetric. �
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>with(LinearAlgebra) :

> interface(rtablesize= 25) :

> U :=



0 u12 u13 u14 u15

−u12 0 u23 u24 u25

−u13 −u23 0 u34 u35

−u14 −u24 −u34 0 u45

−u15 −u25 −u35 −u45 0


:

> E :=



e11 e12 e13 e14 e15

e21 e22 e23 e24 e25

e31 e32 e33 e34 e35

e41 e42 e43 e44 e45

e51 e52 e53 e54 e55


:

> U.E + E.U

[ [u12e21 + u13e31 + u14e41 + u15e51 − u12e12 − u13e13 − u14e14 − u15e15,

u12e22 + u13e32 + u14e42 + u15e52 + u12e11 − e13u23 − e14u24 − e15u25,

u12e23 + u13e33 + u14e43 + u15e53 + u13e11 + e12u23 − e14u34 − e15u35,

u12e24 + u13e34 + u14e44 + u15e54 + u14e11 + e12u24 + e13u34 − e15u45,

u12e25 + u13e35 + u14e45 + u15e55 + u15e11 + e12u25 + e13u35 + e14u45] ,

[−u12e11 + u23e31 + u24e41 + u25e51 − u12e22 − e23u13 − e24u14 − e25u15,

−u12e12 + u23e32 + u24e42 + u25e52 + u12e21 − u23e23 − u24e24 − u25e25,

−u12e13 + u23e33 + u24e43 + u25e53 + e21u13 + u23e22 − e24u34 − e25u35,

−u12e14 + u23e34 + u24e44 + u25e54 + e21u14 + u24e22 + e23u34 − e25u45,

−u12e15 + u23e35 + u24e45 + u25e55 + e21u15 + u25e22 + e23u35 + e24u45] ,

[−u13e11 − u23e21 + u34e41 + u35e51 − e32u12 − u13e33 − e34u14 − e35u15,

−u13e12 − u23e22 + u34e42 + u35e52 + e31u12 − u23e33 − e34u24 − e35u25,

−u13e13 − u23e23 + u34e43 + u35e53 + u13e31 + u23e32 − u34e34 − u35e35,

−u13e14 − u23e24 + u34e44 + u35e54 + e31u14 + e32u24 + u34e33 − e35u45,
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−u13e15 − u23e25 + u34e45 + u35e55 + e31u15 + e32u25 + u35e33 + e34u45] ,

[−u14e11 − u24e21 − u34e31 + u45e51 − e42u12 − e43u13 − u14e44 − e45u15,

−u14e12 − u24e22 − u34e32 + u45e52 + e41u12 − e43u23 − u24e44 − e45u25,

−u14e13 − u24e23 − u34e33 + u45e53 + e41u13 + e42u23 − u34e44 − e45u35,

−u14e14 − u24e24 − u34e34 + u45e54 + u14e41 + u24e42 + u34e43 − u45e45,

−u14e15 − u24e25 − u34e35 + u45e55 + e41u15 + e42u25 + e43u35 + u45e44] ,

[−u15e11 − u25e21 − u35e31 − u45e41 − e52u12 − e53u13 − e54u14 − u15e55,

−u15e12 − u25e22 − u35e32 − u45e42 + e51u12 − e53u23 − e54u24 − u25e55,

−u15e13 − u25e23 − u35e33 − u45e43 + e51u13 + e52u23 − e54u34 − u35e55,

−u15e14 − u25e24 − u35e34 − u45e44 + e51u14 + e52u24 + e53u34 − u45e55,

−u15e15 − u25e25 − u35e35 − u45e45 + u15e51 + u25e52 + u35e53 + u45e54] ]

> K :=Matrix ( [ [0,−u12,−u13,−u14,−u15, u12, 0, 0, 0, 0, u13, 0, 0, 0, 0, u14, 0, 0, 0,

0, u15, 0, 0, 0, 0] ,

[u12, 0,−u23,−u24,−u25, 0, u12, 0, 0, 0, 0, u13, 0, 0, 0, 0, u14, 0, 0, 0, 0, u15, 0, 0, 0],

[u13, u23, 0,−u34,−u35, 0, 0, u12, 0, 0, 0, 0, u13, 0, 0, 0, 0, u14, 0, 0, 0, 0, u15, 0, 0],

[u14, u24, u34, 0,−u45, 0, 0, 0, u12, 0, 0, 0, 0, u13, 0, 0, 0, 0, u14, 0, 0, 0, 0, u15, 0],

[u15, u25, u35, u45, 0, 0, 0, 0, 0, u12, 0, 0, 0, 0, u13, 0, 0, 0, 0, u14, 0, 0, 0, 0, u15],

[−u12, 0, 0, 0, 0, 0,−u12,−u13,−u14,−u15, u23, 0, 0, 0, 0, u24, 0, 0, 0, 0, u25, 0, 0, 0, 0],

[0,−u12, 0, 0, 0, u12, 0,−u23,−u24,−u25, 0, u23, 0, 0, 0, 0, u24, 0, 0, 0, 0, u25, 0, 0, 0],

[0, 0,−u12, 0, 0, u13, u23, 0,−u34,−u35, 0, 0, u23, 0, 0, 0, 0, u24, 0, 0, 0, 0, u25, 0, 0],

[0, 0, 0,−u12, 0, u14, u24, u34, 0,−u45, 0, 0, 0, u23, 0, 0, 0, 0, u24, 0, 0, 0, 0, u25, 0],

[0, 0, 0, 0,−u12, u15, u25, u35, u45, 0, 0, 0, 0, 0, u23, 0, 0, 0, 0, u24, 0, 0, 0, 0, u25],

[−u13, 0, 0, 0, 0,−u23, 0, 0, 0, 0, 0,−u12,−u13,−u14,−u15, u34, 0, 0, 0, 0, u35, 0, 0, 0, 0],

[0,−u13, 0, 0, 0, 0,−u23, 0, 0, 0, u12, 0,−u23,−u24,−u25, 0, u34, 0, 0, 0, 0, u35, 0, 0, 0],

[0, 0,−u13, 0, 0, 0, 0,−u23, 0, 0, u13, u23, 0,−u34,−u35, 0, 0, u34, 0, 0, 0, 0, u35, 0, 0],

[0, 0, 0,−u13, 0, 0, 0, 0,−u23, 0, u14, u24, u34, 0,−u45, 0, 0, 0, u34, 0, 0, 0, 0, u35, 0],

[0, 0, 0, 0,−u13, 0, 0, 0, 0,−u23, u15, u25, u35, u45, 0, 0, 0, 0, 0, u34, 0, 0, 0, 0, u35],
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[−u14, 0, 0, 0, 0,−u24, 0, 0, 0, 0,−u34, 0, 0, 0, 0, 0,−u12,−u13,−u14,−u15, u45, 0, 0,

0, 0] ,

[0,−u14, 0, 0, 0, 0,−u24, 0, 0, 0, 0,−u34, 0, 0, 0, u12, 0,−u23,−u24,−u25, 0, u45, 0, 0, 0],

[0, 0,−u14, 0, 0, 0, 0,−u24, 0, 0, 0, 0,−u34, 0, 0, u13, u23, 0,−u34,−u35, 0, 0, u45, 0, 0],

[0, 0, 0,−u14, 0, 0, 0, 0,−u24, 0, 0, 0, 0,−u34, 0, u14, u24, u34, 0,−u45, 0, 0, 0, u45, 0],

[0, 0, 0, 0,−u14, 0, 0, 0, 0,−u24, 0, 0, 0, 0,−u34, u15, u25, u35, u45, 0, 0, 0, 0, 0, u45],

[−u15, 0, 0, 0, 0,−u25, 0, 0, 0, 0,−u35, 0, 0, 0, 0,−u45, 0, 0, 0, 0, 0,−u12,−u13,−u14,

−u15] ,

[0,−u15, 0, 0, 0, 0,−u25, 0, 0, 0, 0,−u35, 0, 0, 0, 0,−u45, 0, 0, 0, u12, 0,−u23,−u24,

−u25] ,

[0, 0,−u15, 0, 0, 0, 0,−u25, 0, 0, 0, 0,−u35, 0, 0, 0, 0,−u45, 0, 0, u13, u23, 0,−u34,−u35],

[0, 0, 0,−u15, 0, 0, 0, 0,−u25, 0, 0, 0, 0,−u35, 0, 0, 0, 0,−u45, 0, u14, u24, u34, 0,−u45],

[0, 0, 0, 0,−u15, 0, 0, 0, 0,−u25, 0, 0, 0, 0,−u35, 0, 0, 0, 0,−u45, u15, u25, u35, u45, 0] ] ) :

> A := ReducedRowEchelonFormQ(K)

[Length of output exceeds limit of 1000000]
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> A[1..20, 1..20]

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



66



> A[21..25 1..25]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


> A[2, 21..25]− A[6, 21..25] [

0 0 0 0 0

]
> A[3, 21..25]− A[11, 21..25] [

0 0 0 0 0

]
> A[4, 21..25]− A[16, 21..25] [

0 0 0 0 0

]
> A[8, 21..25]− A[12, 21..25] [

0 0 0 0 0

]
> A[9, 21..25]− A[17, 21..25] [

0 0 0 0 0

]
> A[14, 21..25]− A[18, 21..25] [

0 0 0 0 0

]
> A[5, 21..25] [

−1 0 0 0 0

]
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> A[10, 21..25] [
0 −1 0 0 0

]
> A[15, 21..25] [

0 0 −1 0 0

]
> A[20, 21..25] [

0 0 0 −1 0

]

Copyright c© Megan E. Gier, 2014.
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