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ABSTRACT OF DISSERTATION

TIME DEPENDENT HOLOGRAPHY

One of the most important results emerging from string theory is the gauge gravity
duality (AdS/CFT correspondence) which tells us that certain problems in particular
gravitational backgrounds can be exactly mapped to a particular dual gauge theory
a quantum theory very similar to the one explaining the interactions between funda-
mental subatomic particles. The chief merit of the duality is that a difficult problem
in one theory can be mapped to a simpler and solvable problem in the other theory.
The duality can be used both ways.

Most of the current theoretical framework is suited to study equilibrium systems,
or systems where time dependence is at most adiabatic. However in the real world,
systems are almost always out of equilibrium. Generically these scenarios are de-
scribed by quenches, where a parameter of the theory is made time dependent. In
this dissertation I describe some of the work done in the context of studying quantum
quench using the AdS/CFT correspondence. We recover certain universal scaling
type of behavior as the quenching is done through a quantum critical point. Another
question that has been explored in the dissertation is time dependence of the gravity
theory. Present cosmological observations indicate that our universe is accelerating
and is described by a spacetime called de-Sitter(dS). In 2011 there had been a spec-
ulation over a possible duality between de-Sitter gravity and a particular field theory
(Euclidean SP(N) CFT). However a concrete realization of this proposition was still
lacking. Here we explicitly derive the dS/CFT duality using well known methods in
field theory. We discovered that the time dimension emerges naturally in the deriva-
tion. We also describe further applications and extensions of dS/CFT.

KEYWORDS: Holography, AdS/CFT correspondence, Quantum Quench, dS/CFT
correspondence, Chaos
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Chapter 1

Introduction

1.1 The problem of time dependence

Almost all systems in our real life are governed by dynamics which is time dependent.
Two phenomena where this is strikingly obvious is the case of quench and cosmology.
The problem of quantum quench is the response of a quantum system to a time
dependent coupling[1]. Due to a plethora of experimental results[2] especially in cold
atom physics this has attracted a lot of attention. When such quenches are carried
out across critical points universal scaling laws for observables emerge. Suppose the
coupling approaches the critical coupling linearly, i.e,

g − gc ∼ vt

Then Kibble-Zurek [3, 4] type of arguments show that the one point function of an
operator with conformal dimension x at the critical point has the following scaling
behavior:

〈O(t)〉 ∼ (v)
xν
zν+1F (tv

zν
zν+1 )

The arguments which lead to this scaling makes the assumption that as the coupling
approaches critical value the quantum state of the system stays frozen. This is a very
drastic assumption and hence the problem is conceptually unclear. In this disserta-
tion we will use Gauge-Gravity duality to address this question.
The gauge-gravity duality or the AdS/CFT correspondence[5] is one of the recent
developments of string theory. The statement of the correspondence is that certain
d-dimensional quantum field theories are exactly equivalent to a d + 1-dimensional
theory of quantum gravity. This duality is extremely useful: when the field theory
is strongly coupled the dual gravity theory is weakly coupled and classical, and in-
deed one can now use it to calculate field theory observables and critical properties
which normally would have been utterly inaccessible. There are also regimes where
the gravity problem is no longer classical and does not admit a direct analysis, but is
mapped to a simpler problem in a weakly interacting gauge theory: the duality can
thus be used both ways. As we shall see in more detail in the next two subsections,
the duality relates the couplings of the field theory to the boundary conditions of the
gravitational theory. Thus for quench in a strongly coupled field theory, the problem
of time-dependent coupling translates to a problem of time-dependent boundary con-
ditions in the gravity side. By analyzing the gravity equations we will be able to find
hints of a mechanism that explains the emergence of the Kibble-Zurek type of scalings.

The theory of gravity in the present formulation of holography is gravity in asymp-
totically Anti-de Sitter spacetime. Pure AdS in Poincare patch and in d+1 dimensions

1



is described by the following metric[6] :

ds2 =
L2
AdS

z2
(−dt2 + dz2 +

d−1∑
i=1

dx2
i )

where LAdS is the associated lengthscale of AdS. It is however well known from cos-
mological observations that we exist in an expanding universe. The geometry of
this spacetime is asymptotically de Sitter. Pure dS in Poincare patch and in d + 1
dimensions is described by the following metric :

ds2 =
L2
dS

t2
(−dt2 +

d∑
i=1

dx2
i )

The coordinate t is identified with ‘time’. This time-dependent geometry which de-
scribes our universe is expanding at an accelerated rate. If this expansion persists,
we will eventually head towards a cold and lonely world. The large structures in our
universe will slowly dilute away, and after even longer time scales, all cosmic radia-
tion will have stretched to sizes beyond the horizon[7]. Our whole observable world
will be governed by thermal and quantum fluctuations at a Hawking temperature of
∼ 10−29K. What will be the relevant physics in the far future? From the perspec-
tive of an observer the basic theoretical problem that arises is the lack of a set of
sharp observables, due to lack of any asymptotic accessible boundary[8]. A gauge-
gravity duality for de Sitter will be a solution to this problem since it will identify
a gauge theory which comes with a set of precise observables. Looking at the above
two metrics it is clear that they share many symmetries and are also connected by
analytic continuation. Hence it is natural to explore if AdS/CFT can be extended to
dS/CFT , where the aim now is to find a precise correspondence which will help us
to understand problems of quantum gravity in de Sitter space by mapping them to a
field theory. In this dissertation we look at the dS/CFT proposition[9–12] in detail.
We shall also see in subsection 1.3 that the holographic direction is to be identified
with the energy scale of the field theory. In the field theory side, the renormalization
group equations describe the evolutions of the couplings as we change energy. On the
other hand if there exists a dS/CFT correspondence then the holographic coordinate
is time. As the dual gravity theory is unitary, there is a well-defined time evolution
of the bulk wavefunction. Thus one expects a connection between the β-functions of
the field theory, and the time evolution in de Sitter via the duality which we explore
in the dissertation.

An interesting regime of time-dependent dynamics is chaos. It is known that
classical string dynamics in pure AdS5 × S5 is integrable [13] and hence is non-
chaotic. On the other hand there has been a huge concentration of efforts to construct
particle physics models from string theory. One of the goals is to reproduce quantum
chromodynamics or the theory of hadrons which exhibits confinement[14]. It turns out
that this particular feature arises not in pure AdS but in a certain class of geometries
which are asymptotically AdS and caps off in the interior. It is not known if classical
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string motion will continue to be integrable in such confining geometries, and this is
another subject that we explore in this dissertation.

1.2 Holography in a nutshell

Holographic duality relates certain gauge theories to theories of gravity. When the
rank of the gauge group N is taken large, the corresponding gravity theory is classical.
Let us completely forget about gravity for a moment and think only about gauge
theory with gauge group SU(N), where we consider N to be large. Consider gauge
invariant operators made from the gluon fields Oi, where we normalize them so that
they have a well-defined large-N limit. By a simple power counting[15] it is easy to
show that the connected correlator of m of these satisfies,

〈O1...Om〉C ∼ N2−2m

In particular for the variance,

〈(O − 〈O〉)2〉 = 〈OO〉c ∼ N−2

Thus in the large N limit all the operators are peaked about their mean values, which
is the very definition of what it means to be “classical”. All observables are thus
peaked about some “gauge field configuration” that dominates the functional integral
as N → ∞. Historically this solution is called the “master field”[16] and it should
satisfy classical equations. But they should contain the information of infinitely many
degrees of freedom per spacetime point, as N =∞.
Keeping these thoughts in mind let us now turn to a question of gravity, how are the
degrees of freedom encoded in spacetime? At the easiest level: if the gravitational
coupling GN is taken to be small, it is sensible to think of a theory of gravity and
matter as an ordinary quantum field theory on a fixed background. If we consider a
region of volume V and energy E, it is well known that the entropy scales like,

S ∼ V F (
E

V
)

Let us now consider turning GN on. General relativity tells us that something very
interesting happens when we make V small while holding E constant. Once the linear
dimension characterizing V is smaller than the Schwarzchild radius rs(E),

rs(E) =
2GNE

c4

our system collapses into a black hole. Now one of the great results of semi-classical
general relativity tells us that the counting of entropy has to be done differently, the
answer is the Bekenstein-Hawking[17] entropy,

S =
Ac3

4GN~

3



where, A is the area (and not the volume) of the event horizon of the resulting black
hole. This indicates that a theory of gravity behaves like it has one less dimension
than expected.
Thus on one side, in d-dimensional large N gauge theory, we are looking for “classical”
field configurations that somehow contain infinitely more degrees of freedom, and on
the other hand in classical gravity in d + 1-dimensions we see that somehow the
counting of degrees of freedom enforces us to think gravity as a conventional (non-
gravitational) theory in d dimensions. Thus, the N → ∞ limit of gauge theories
is related to classical gravity in one higher dimension. What happens if N is finite?
One now expects that the fluctuations about the master field will also contribute.
On the gravitational side, these fluctuations can be mapped to traditional quantum
fluctuations about a bulk spacetime. Thus,
Certain finite N gauge theories are exactly equivalent to quantum gravity in one higher
dimension.
There are many explicit examples of the duality arising from string theory. The most
well-studied example is between maximally supersymmetric Yang-Mills theory with
gauge group SU(N) in four dimensions and Type IIB string theory on the product
of a five dimensional Anti-de Sitter space with a 5 sphere, S5. This example leads to
a precise mapping of the parameters of the two theories:

λ

N2
= gs (

LAdS
ls

)4 = 4πλ

where λ is the Yang-Mills t‘Hooft coupling (g2
YMN), LAdS is the curvature radius of

the bulk spacetime, ls is the string length and gs the string coupling. Notice when N
is large the string coupling (which controls the bulk gravity effects) is small. Notice
also that when λ is large the curvature is small. Thus, classical gravity is a good
description for strongly coupled gauge theory.

1.3 Calculations in Holography

In this subsection we briefly review some of the basic aspects of gauge/gravity du-
ality that will be required later. It is useful to keep in mind that the duality is a
strong/weak correspondence : when the field theory side is strongly correlated, the
gravitational description is weakly coupled. In the most well-studied examples of the
correspondence gravity and matter fields propagating on a weakly curved Anti-de
Sitter spacetime in d + 1 dimensions is mapped to a strongly coupled conformally
invariant quantum field theory that lives in d dimensions. In this limit the relevant
gravity action in d+ 1-dimensions is the Einstein-Hilbert action:

Sbulk[g] =
1

16πGN

∫
dd+1x

√
g

(
R+

d(d− 1)

L2
AdS

)
Where R is the Ricci scalar built out of the bulk metric whose determinant is g. The
AdSd+1 metric which has already been introduced is one of the solutions of the above
action. This simplest solution represents the vacuum of the CFT. The vacuum is
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invariant under the conformal group in d-dimensions, which is precisely the group of
isometry of AdSd+1 as well. One special isometry is scaling :

xµ → λxµ z → λz

We see that as we scale the energy we must scale the holographic coordinate z as well.
It turns out that z represents the energy scale at which we consider the field theory
with the UV at z → 0 (boundary) and IR at z →∞. Thus the bulk geometrizes the
RG flow of the field theory.
To answer most field theory questions it is sufficient to disturb the CFT vacuum with
scalar operators O:

δSCFT =

∫
ddx J(x)O(x).

How do we study these excitations using gravity? There are two possible quantization
schemes for the field theory. In the standard quantization, AdS/CFT gives us the
following dictionary:

Field Theory Gravity
Operator O Scalar field φ
Source J φ0 = φ(z → 0)

Thus to study the perturbed strongly coupled CFT it is sufficient to consider a min-
imally coupled massive scalar field in the AdSd+1 background:

Sφ = −1

2

∫
dd+1x

√
−g
(

(∇φ)2 +m2φ2

)
From the equation of motion arising from the above action one can show that near
the boundary the scalar has the expansion:

φ(z → 0, xµ) ∼ A(x)z∆− +B(x)z∆+

where,

∆± =
d

2
± ν ν =

√
d2

4
+m2L2

AdS

∆+ is the conformal dimension of the dual operator O. The idea of AdS/CFT
(referred to as the GKPW prescription[18, 19]) is that the generating functionals on
both sides are equal. Schematically,

Z[J ] =

〈
e−

∫
ddxO(x)J(x)

〉
= Zstring[b.c depends on J ] ∼ exp

(
− Sgrav

)
|A(x)=J(x)

(1.3.1)
where the last approximation holds when gravity is classical, and the gravity path
integral has been done by saddle point, i.e, Sgrav is the on-shell action subject to the
boundary condition A(x) = J(x). Note however that since the equation of motion
is second order we need another boundary condition to fully specify the solution.
Generally one finds that by demanding that the solution be regular everywhere in
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the interior, this will fix the coefficient B(x) in terms of A(x). To use (1.3.1) to
perform field theory computations are we note a key result : by taking functional
derivatives of a regulated version of (1.3.1) one can show that the expectation value
of O is

〈O(x)〉 = 2νB(x)

For instance if one finds a regular solution with A(x) = 0 and B(x) 6= 0 this implies
that even in the absence of the source the operator has spontaneously developed an
expectation value. Note by studying the scaling properties of B(x) one can verify
that the conformal dimension of O is ∆+. Similarly one can show that the two-point
function 〈OO〉 is related to the ratio, B

A
.

In our quench investigations we will repeatedly use the above results, where now
a time-dependent coupling translates to time-dependent boundary conditions in the
gravity side. For dS/CFT we will be interested to arrive at an analogous prescription
like (1.3.1).

1.4 Contents of the dissertation

In chapter 2 we study quantum quench in a holographic model of a zero tempera-
ture insulator-superfluid transition. The model is a modification of that of [20] and
involves a self-coupled complex scalar field, Einstein gravity with a negative cosmo-
logical constant, and Maxwell field with one of the spatial directions compact. In a
suitable regime of parameters, the scalar field can be treated as a probe field whose
backreaction to both the metric and the gauge field can be ignored. We show that
when the chemical potential of the dual field theory lies between two critical values,
the equilibrium background geometry is a AdS soliton with a constant gauge field,
while the complex scalar condenses leading to broken symmetry. We then turn on a
time dependent source for the order parameter which interpolates between constant
values and crosses the order-disorder critical point. In the critical region adiabaticity
breaks down, but for a small rate of change of the source v there is a new small-v
expansion in fractional powers of v. The resulting critical dynamics is dominated by
a zero mode of the bulk field. To lowest order in this small-v expansion, the order
parameter satisfies a time dependent Landau-Ginsburg equation which has z = 2,
but non-dissipative. These predictions are verified by explicit numerical solutions of
the bulk equations of motion.

We consider quantum quench by a time dependent double trace coupling in a
strongly coupled large N field theory which has a gravity dual via the AdS/CFT
correspondence in chapter 3. The bulk theory contains a self coupled neutral scalar
field coupled to gravity with negative cosmological constant. We study the scalar dy-
namics in the probe approximation in two backgrounds: AdS soliton and AdS black
brane. In either case we find that in equilibrium there is a critical phase transition at
a negative value of the double trace coupling κ below which the scalar condenses. For
a slowly varying homogeneous time dependent coupling crossing the critical point, we
show that the dynamics in the critical region is dominated by a single mode of the
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bulk field. This mode satisfies a Landau-Ginsburg equation with a time dependent
mass, and leads to Kibble Zurek type scaling behavior. For the AdS soliton the sys-
tem is non-dissipative and has z = 1, while for the black brane one has dissipative
z = 2 dynamics. We also discuss the features of a holographic model which would
describe the non-equilibrium dynamics around quantum critical points with arbitrary
dynamical critical exponent z and correlation length exponent ν. These analytical
results are supported by direct numerical solutions.

In chapter 4 we derive a collective field theory of the singlet sector of the Sp(2N)
sigma model. Interestingly the hamiltonian for the bilocal collective field is the same
as that of the O(N) model. However, the large-N saddle points of the two models
differ by a sign. This leads to a fluctuation hamiltonian with a negative quadratic
term and alternating signs in the nonlinear terms which correctly reproduces the
correlation functions of the singlet sector. Assuming the validity of the connection
between O(N) collective fields and higher spin fields in AdS, we argue that a natu-
ral interpretation of this theory is by a double analytic continuation, leading to the
dS/CFT correspondence proposed by Anninos, Hartman and Strominger. The bi-
local construction gives a map into the bulk of de Sitter space-time. Its geometric
pseudospin-representation provides a framework for quantization and definition of the
Hilbert space. We argue that this is consistent with finite N grassmanian constraints,
establishing the bi-local representation as a nonperturbative framework for quantiza-
tion of Higher Spin Gravity in de Sitter space.

If there is a dS/CFT correspondence, time evolution in the bulk should translate
to RG flows in the dual euclidean field theory. Consequently, although the dual field
is expected to be non-unitary, its RG flows will carry an imprint of the unitary time
evolution in the bulk. In chapter 5 we examine the prediction of holographic RG in de
Sitter space for the flow of double and triple trace couplings in any proposed dual. We
show quite generally that the correct form of the field theory beta functions for the
double trace couplings is obtained from holography, provided one identifies the scale
of the field theory with (i|T |) where T is the ‘time’ in conformal coordinates. For dS4,
we find that with an appropriate choice of operator normalization, it is possible to
have real n-point correlation functions as well as beta functions with real coefficients.
This choice leads to an RG flow with an IR fixed point at negative coupling unlike
in a unitary theory where the IR fixed point is at positive coupling. The proposed
correspondence of Sp(2N) vector models with de Sitter Vasiliev gravity provides a
specific example of such a phenomenon. For dSd+1 with even d, however, we find that
no choice of operator normalization exists which ensures reality of coefficients of the
beta-functions as well as absence of n-dependent phases for various n-point functions,
as long as one assumes real coupling constants in the bulk Lagrangian.

In chapter 6 we describe a class of spacetimes that are asymptotically de Sitter in
the Poincare slicing. Assuming that a dS/CFT correspondence exists, we argue that
these are gravity duals to a CFT on a circle leading to uniform energy-momentum
density, and are equivalent to an analytic continuation of the Euclidean AdS black

7



brane. These are solutions with a complex parameter which then gives a real energy-
momentum density. We also discuss a related solution with the parameter continued
to a real number, which we refer to as a de Sitter “bluewall”. This spacetime has two
asymptotic de Sitter universes and Cauchy horizons cloaking timelike singularities.
We argue that the Cauchy horizons give rise to a blue-shift instability.

In chapter 7 we investigate similar classical integrability for a more realistic con-
fining background and provide a negative answer. The dynamics of a class of simple
string configurations in AdS soliton background can be mapped to the dynamics of
a set of non-linearly coupled oscillators. In a suitable limit of small fluctuations we
discuss a quasi-periodic analytic solution of the system. However numerics indicates
chaotic behavior as the fluctuations are not small. Integrability implies the existence
of a regular foliation of the phase space by invariant manifolds. Our numerics shows
how this nice foliation structure is eventually lost due to chaotic motion. We also ver-
ify a positive Lyapunov index for chaotic orbits. Our dynamics is roughly similar to
other known non-integrable coupled oscillators systems like Henon-Heiles equations.

Using methods of Hamiltonian dynamical systems, we show analytically in chap-
ter 8 that a dynamical system connected to the classical spinning string solution
holographically dual to the principal Regge trajectory is non-integrable. The Regge
trajectories themselves form an integrable island in the total phase space of the dy-
namical system. Our argument applies to any gravity background dual to confin-
ing field theories and we verify it explicitly in various supergravity backgrounds:
Klebanov-Strassler, Maldacena-Nunez, Witten QCD and the AdS soliton. Having
established non-integrability for this general class of supergravity backgrounds, we
show explicitly by direct computation of the Poincare sections and the largest Lya-
punov exponent, that such strings have chaotic motion.

Copyright c© Diptarka Das 2014
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Chapter 2

Quantum Quench Across a Zero Temperature Holographic Superfluid
Transition

2.1 Introduction and summary

Recently there has been several efforts to understand the problem of quantum or ther-
mal quench [1, 21, 2, 22–26] in strongly coupled field theories using the AdS/CFT
correspondence [5, 27, 28, 15]. This approach has been used to explore two interest-
ing issues. The first relates to the question of thermalization. In this problem one
typically considers a coupling in the hamiltonian which varies appreciably with time
over some finite time interval. Starting with a nice initial state (e.g. the vacuum) the
question is whether the system evolves into some steady state and whether this steady
state resembles a thermal state in a suitably defined sense. In the bulk description a
time dependent coupling of the boundary field theory is a time dependent boundary
condition. For example, with an initial AdS this leads to black hole formation under
suitable conditions. This is a holographic description of thermalization, which has
been widely studied over the past several years [29–44] with other initial conditions
as well.

Many interesting applications of AdS/CFT duality involve a subset of bulk fields
whose backreaction to gravity can be ignored, so that they can be treated in a probe
approximation. One set of examples concern probe branes in AdS which lead to hy-
permultiplet fields in the original dual field theory. Even though the background does
not change in the leading order, it turns out that thermalization of the hypermultiplet
sector is still visible - this manifests itself in the formation of apparent horizons on
the worldvolume [45–51].

The second issue relates to quench across critical points [1, 21, 2, 22–26]. Con-
sider for example starting in a gapped phase, with a parameter in the Hamiltonian
varying slowly compared to the initial gap, bringing the system close to a value of the
parameter where there would be an equilibrium critical point. As one comes close to
this critical point, adiabaticity is inevitably broken. Kibble and Zurek [3, 4, 1, 52, 53]
argued that in the critical region the dynamics reflects universal features leading to
scaling of various quantities. These arguments are based on rather drastic approxima-
tions, and for strongly coupled systems there is no theoretical framework analogous
to renormalization group which leads to such scaling. For two-dimensional theories
which are suddenly quenched to a critical point, powerful techniques of boundary
conformal field theory have been used in [24–26] to show that ratios of relaxation
times of one point functions, as well as the length/time scales associated with the
behavior of two point functions of different operators, are given in terms of ratios of
their conformal dimensions at the critical point, and hence universal.

In [20] quench dynamics in the critical region of a finite chemical potential holo-
graphic critical point was studied in a probe approximation. The “phenomenolog-
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ical” model used was that of [54] which involves a neutral scalar field with quartic
self-coupling with a mass-squared lying in the range −9/4 < m2 < −3/2 in the back-
ground of a charged AdS4 black brane. The self coupling is large so that the back-
reaction of the scalar dynamics on the background geometry can be ignored. The
background Maxwell field gives rise to a nonzero chemical potential in the boundary
field theory. In [54] it was shown that for low enough temperatures, this system
undergoes a critical phase transition at a mass m2

c . For m2 < m2
c the scalar field

condenses, in a manner similar to holographic superfluids [55–62]. The critical point
at m2 = m2

c is a standard mean field transition at any non-zero temperature, and
becomes a Berezinski-Kosterlitz-Thouless transition at zero temperature, as in sev-
eral other examples of quantum critical transitions. In [20] the critical point was
probed by turning on a time dependent source for the dual operator, with the mass
kept exactly at the critical value, i.e. a time dependent boundary value of one of the
modes of the bulk scalar. The source asymptotes to constant values at early and late
times, and crosses the critical point at zero source at some intermediate time. The
rate of time variation v is slow compared to the initial gap. As expected, adiabaticity
fails as the equilibrium critical point at vanishing source is approached. However, it
was shown that for any non-zero temperature and small enough v, the bulk solution
in the critical region can be expanded in fractional powers of v. To lowest order in
this expansion, the dynamics is dominated by a single mode - the zero mode of the
linearized bulk equation, which appears exactly at m2 = m2

c . The resulting dynamics
of this zero mode is in fact a dissipative Landau-Ginsburg dynamics with a dynamical
critical exponent z = 2, and the order parameter was shown to obey Kibble-Zurek
type scaling.

The work of [20] is at finite temperature - the dissipation in this model is of course
due to the presence of a black hole horizon and is expected at any finite temperature.
It is interesting to ask what happens at zero temperatures. It turns out that the
model of [54] used in [20] becomes subtle at zero temperature. In this case, there is
no conventional adiabatic expansion even away from the critical point (though there
is a different low energy expansion, as in [63]). Furthermore, the susceptibility is
finite at the transition, indicating there is no zero mode. While it should be possible
to examine quantum quench in this model by numerical methods, we have not been
able to get much analytic insight.

In this paper we study a different model of a quantum critical point, which is
a variation of the model of insulator-superconductor transition of [64]. The model
of [64] involves a charged scalar field minimally coupled to gravity with a negative
cosmological constant and a Maxwell field. One of the spatial directions is compact
with some radius R, and in addition one can have a non-zero temperature T and a
non-zero chemical potential µ corresponding to the boundary value of the Maxwell
field. In the absence of the scalar field this model has a line of Hawking-Page type
first order phase transitions in the T -µ plane which separates an (hot) AdS soliton
and a (charged) black brane. Exactly on the T = 0 line, the two phases correspond to
the AdS soliton with a constant Maxwell scalar potential, and an extremal black hole.
In [64] it was shown that in the presence of a minimally coupled charged scalar, the
phase diagram changes. When the charge is large the scalar and the gauge fields can
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be regarded as probe fields which do not affect the geometry. Now there is a phase
with a trivial scalar and a phase with a scalar condensate. In the boundary theory
the latter is a superfluid phase. This phase transition persists at zero temperature,
where it separates an unbroken phase at low chemical potential and a broken phase
- in both cases the background geometry is the AdS soliton, while the gauge field is
non-trivial in the superfluid phase. The phase diagram is given in Figure 9 of [64].

The idea now is to probe the dynamics of this insulator-superfluid transition at
zero temperature by turning on a time dependent source for the operator dual to the
charged field. So long as the scalar is minimally coupled and the charge q is large,
this would involve analyzing a coupled set of equations of the scalar field and the
gauge field.

However, it turns out that a slight modification of the model allows us to ignore
the backreaction of the scalar to the gauge field as well. This involves the introduction
of a quartic self coupling of the scalar λ. Then in the regime λ � q2 and λ � κ2

(where κ is the gravitational coupling), we can consider the dynamics of the charged
scalar in isolation.

In this work we first show that in this regime of the parameters the insulator-
superfluid transition persists. Concretely, for a sufficiently small negative m2, there
is a critical value of the background chemical potential beyond which a nontrivial
static solution for the scalar becomes thermodynamically favored. Note that unlike
other models of holographic superconductors the trivial solution does not become dy-
namically unstable. Rather the non-trivial solution has lower energy. The transition
is a standard mean field critical transition. The background geometry remains an AdS
soliton and the background gauge potential remains a constant, which is the chemical
potential µ. At the transition, the linearized equation has a zero mode solution which
is regular both at the boundary and at the tip.

We then turn on a time dependent boundary condition and find that the break-
down of adiabaticity for a small rate v is characterized by exponents which are appro-
priate for a dynamical critical exponent z = 2. In a way quite similar to [20] we find
that in the critical region there is a new small v expansion in fractional powers of v,
and the dynamics is once again dominated by a zero mode. The real and imaginary
parts of the zero mode now satisfy a coupled set of Landau-Ginsburg type equation
with first order time derivatives. However the resulting system is oscillatory rather
than dissipative - this is expected since the background geometry has no horizon so
that we have is a closed system. The order parameter is shown to obey a Kibble-Zurek
type scaling. Finally we solve the bulk equations numerically and verify the scaling
property obtained from the above small-v expansion.

Thermal quench in holographic superfluids with backreaction has been recently
studied in [65, 66]. This work addresses a different issue - here the quench is applied
to the system in the ordered phase away from the critical point and the resulting
late time relaxation of the order parameter is studied. Our emphasis is on probing a
possible Kibble-Zurek scaling when the quench crosses the critical point.

In Section 2 we define the model and discuss its equilibrium phases. In Section
3 we study quantum quench in this model by turning on a time dependent source,
discuss the breakdown of adiabaticity and show that the critical region dynamics is
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dominated by the zero mode, leading to scaling behavior. In Section 4 we present
the results of a numerical solution of the equations, verifying the scaling behavior. In
an appendix we discuss a Landau-Ginsburg model similar to the critical dynamics of
our holographic model.

2.2 The model and equilibrium phases

The “phenomenological” holographic model we consider is a slight variation of the
model of [64]. The bulk action in (d+ 2)-dimensions is

S =

∫
dd+2x

√
g

[
1

2κ2

(
R +

d(d+ 1)

L2

)
− 1

4
FµνF

µν − 1

λ

(
|∇µΦ− iqAµΦ|2 −m2|Φ|2 − 1

2
|Φ|4

)]
,

(2.2.1)
where Φ is a complex scalar field and Aµ is an abelian gauge field, and the other
notations are standard. Henceforth we will use L = 1 units.

One of the spatial directions, which we will denote by θ will be considered to be
compact. We will consider the regime

λ� q2 , λ� κ2 . (2.2.2)

In this regime the scalar field is a probe field, and its backreaction to both the metric
and the gauge field can be ignored.

2.2.1 The background

The background metric and the gauge field can be then obtained by solving the
Einstein-Maxwell equations with the appropriate periodicity condition on θ. It is
well known that there are two possible solutions. The first is the AdSd+2 soliton,

ds2 =
dr2

r2fsl(r)
+ r2

(
−dt2 +

d−1∑
i=1

dx2
i

)
+ r2fsl(r)dθ

2 ,

fsl(r) = 1−
(r0

r

)d+1

,

At = µ , (2.2.3)

with constant parameters µ and r0. The periodicity of θ in this solution is

θ ∼ θ +
4π

(d+ 1)r0

, (2.2.4)

while the temperature can be arbitrary. The second solution is a AdSd+2 charged
black hole

ds2 = −r2fbh(r)dt
2 +

dr2

r2fbh(r)
+ r2

(
d−1∑
i=1

dx2
i + dθ2

)
,
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fbh(r) = 1−

[
1 +

d− 1

2d

(
µ

r+

)2
](r+

r

)d+1

+
d− 1

2d

(
µ

r+

)2 (r+

r

)2d

,

At = µ

[
1−

(r+

r

)d−1
]
. (2.2.5)

The temperature of this black brane is

T =
r+

4π

[
d+ 1− (d− 1)2

2d

(
µ

r+

)2
]
, (2.2.6)

while the period of θ is arbitrary. As shown in [64], this system undergoes a phase
transition between these two solutions when

rd+1
0 = rd+1

+

[
1 +

d− 1

2d

(
µ

r+

)2
]
. (2.2.7)

The AdS soliton is stable when the temperature and the chemical potential are small.
At T = 0 the transition happens at a critical chemical potential µc2 given by

µc2 =
r0(d+ 1)(2d)

d−1
2(d+1)

(d− 1)
d
d+1 (d+ 1)1/2

. (2.2.8)

2.2.2 Scalar condensate

Consider now the scalar wave equation in the AdS soliton background (2.2.3). We
first rescale

r → r

r0

, t→ tr0 , µ→ µ

r0

. (2.2.9)

In the rest of the paper we will use these rescaled coordinates (i.e., r0 = 1) and
chemical potentials.

For fields which depend only on t and r, the equation of motion is given by[
− 1

r2
(∂t − iµ)2 +

1

rd
∂r
(
rd+2fsl(r)∂r

)]
Φ−m2Φ− Φ|Φ|2 = 0 . (2.2.10)

In this paper we will consider − (d+1)2

4
< m2 < −d(d−1)

4
. The asymptotic behavior of

the solution at the AdS boundary r →∞ is of the standard form

Φ(r, t) = J(t) r−∆− [1 +O(1/r2)] + A(t)r−∆+ [1 +O(1/r2)] + · · · , (2.2.11)

where

∆± =
d+ 1

2
±
√
m2 +

(d+ 1)2

4
. (2.2.12)

In “standard quantization” J(t) is the source, while the expectation value of the dual
operator is given by

〈O〉 = A(t) . (2.2.13)
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In “alternative quantization” the role of J(t) and A(t) are interchanged. In this mass
range both ∆± are positive and both the solutions of the linear equation vanish at
the boundary. Thus the nonlinear terms in the equation (2.2.10) are subdominant -
which is why the leading solution near the boundary is the same as those of the linear
equation, as written above.

We need to find time independent solutions of the equation (2.2.11). Because
of gauge invariance, we need to specify a gauge to qualify what we mean by time
independence. For the equilibrium solution we require the solution to be real - this
fixes the gauge. Note that the tip of the soliton is locally two-dimensional flat space.
Therefore we need to require the solution to be regular at the tip r = 1. This leads
to the following boundary condition at r = 1

Φ(r) = Φh + Φ′h(r − 1) + · · · , (2.2.14)

where regularity requires

Φ′h =
1

(d+ 1)
Φh(Φ

2
h +m2) +

1

(d+ 1)
Φhµ

2 . (2.2.15)

To examine the phase structure we need to find time independent solutions with a
vanishing source.

Clearly Φ = 0 is always a solution. We have solved the equations numerically
and found that there is a critical value of the chemical potential µc1 beyond which
there is another solution with a non-trivial r dependence which is thermodynamically
preferred. This means that for µ > µc1, the operator dual to the bulk scalar has
a vacuum expectation value, i.e., the global U(1) symmetry of the boundary theory
is spontaneously broken. Although this could happen both in the standard and
alternative quantizations, we need to check the critical value is less that that of the
phase transition between the AdS soliton and AdS black hole: µc1 < µc2. Otherwise,
the scalar condensate phase is not available on the AdS soliton.

Figure 2.1 shows the behavior of the expectation value 〈O〉 for m2 = −15/4 for
standard and quantization. We are plotting the condensation with respect to µq
and the phase transition happens at µc1q ∼ 1.89, which means the critical chemical
potential is very small of order O(1/q) in the probe limit. It follows from (2.2.8) that
µc1 is always much smaller than µc2 ∼ 1.86 and there exists a scalar condensate phase
on the AdS soliton. Similarly for any given m2, µ = µc1 is a critical point by letting
q be large enough.

This transition was first found in [64] for a minimally coupled complex scalar - in
this case the backreaction to the gauge field cannot be ignored, and the result follows
from an analysis of the coupled set of equations for the scalar and the gauge field. In
this case the gauge field introduces non-linearity in the problem which is necessary
for condensation of the scalar. What we found is that a self-coupling does the same
same job.
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Figure 2.1: The condensations of the scalar operators.

2.2.3 The zero mode at the critical point

To get some insight into this transition it is useful to write the equation (2.2.10) as a
Schrödinger problem. First define a new coordinate

ρ(r) =

∫ ∞
r

ds

s2f
1/2
sl (s)

, (2.2.16)

which is the “tortoise coordinate” for the AdS soliton. ρ(r) is a monotonic function
of r with the behavior

ρ ∼ 1/r , r →∞ ,

ρ → ρ? +
2
√
r − 1√
d+ 1

, r → 1 . (2.2.17)

For example, for d = 3 (asymptotically AdS5 spacetime) soliton ρ? = 1.311. Let us
now redefine the field by

Φ(r, t) =
1

[r(ρ)]
(d−2)

2

(
dρ

dr

)1/2

Ψ(ρ, t) . (2.2.18)

Then Ψ(ρ, t) satisfies the equation

[
−∂2

t + 2iµ∂t
]

Ψ = PΨ− µ2Ψ +
r2−d√
fsl(r)

|Ψ|2Ψ . (2.2.19)

The operator P is

P = −∂2
ρ + V0(ρ) ,

V0(ρ) = m2r2 +
4d(d+ 2)r2d+2 − 4d(d+ 3)rd+1 − (d− 1)2

16rd−1(rd+1 − 1)
, (2.2.20)

where r has to be expressed as a function of ρ using (2.2.16).
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The potential V0(ρ) has the following behavior near the boundary and the tip

V0(ρ) =
m2 + d(d+2)

4

ρ2
+O(ρ2) , ρ→ 0 ,

V0(ρ) = − 1

4(ρ? − ρ)2
+O(1) , ρ→ ρ? . (2.2.21)

The behavior at the boundary ρ = 0 is of course the same as in pure AdSd+2. The
behavior near the tip ρ = ρ? is in fact the correct behavior expected from a flat two
dimensional space. Near the tip of the soliton the space becomes R2 × Rd−1 with
y ≡ (ρ? − ρ) playing the role of a radial variable and θ playing the role of the polar
angle. Indeed with the redefined field

Ψ̃(y) =
Ψ(ρ)√
ρ? − ρ

, (2.2.22)

the operator P becomes, near y = 0, the zero angular momentum Laplacian in two
dimensions

P →
y→0
−1

y
∂y(y∂y) = −(∇2)2|0 + constant . (2.2.23)

In fact the eigenvalues of the operator P which acts on Ψ̃

P = −(∇2)2|0 + V1(y) ,

(
V1(y) ≡ V0(y) +

1

4y2

)
, (2.2.24)

are all positive. For d = 3 the proof is the following. Let us rewrite the potential
V1(y) as follows

V1(y) = (m2 +
15

4
)r2 + V2(y) (2.2.25)

where

V2(y) =
1

4

[
1 + 3r4

r2 − r6
+

1

y(r)2

]
(2.2.26)

The term V2(y) is explicitly positive for all r. This may be seen as follows. The
condition for positivity of V2(y) is√

r6 − r2

1 + 3r4
− y(r) ≥ 0 (2.2.27)

The inequality is saturated for y = 0 (r = 1). Furthermore the first derivative of the
left hand side becomes

1√
r4 − 1

[
3r8 + 6r4 − 1

(1 + 3r4)3/2
− 1

]
(2.2.28)

This can be explicitly checked to be positive for all r > 1 (e.g. by squaring the
expression). Therefore V2(y) ≥ 0 for all r > 1. The first term in V1(y) in (2.2.25) is
the asymptotic potential in AdS5 - when m2 + 15

4
> −1

4
(which is the BF bound), this

potential does not have any bound state. Since V2(y) differs from this asymptotic
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potential by a positive function, the full potential V1(y) does not have any bound
state.

To look for a condensate in standard quantization, we need to find time indepen-
dent solutions of the equation (2.2.19) which satisfy the boundary condition J = 0 at
ρ = 0 and is regular at the tip ρ = ρ?. With these boundary conditions the operator
P has a discrete and positive spectrum. This means that for sufficiently large µ the
operator

D ≡ P − µ2 , (2.2.29)

will have a negative eigenvalue. This is what we found numerically.
At the critical value µ = µc1 the operator D has a zero eigenvalue, i.e. a zero

mode which satisfies the appropriate boundary conditions both at the tip and at the
boundary. This zero mode will play a key role in the following.

Note that even though the operator D has negative eigenvalues in the condensed
phase, the trivial solution does not become unstable. This is clear from (2.2.19) and
from the fact the spectrum of P is positive, which shows that the frequencies of the
solutions to the linearized equation are all real.

Following the arguments of [54] it can be easily checked that the transition is
standard mean field. This means that

〈O〉J=0 ∼
√
|µc1 − µ| ,

〈O〉µ=µc1 ∼ |J |1/3 . (2.2.30)

We expect that this transition extends to non-zero temperature, though we have not
checked this explicitly.

2.3 Quantum quench with a time dependent source

We will now probe the quantum critical point by quantum quench with a time depen-
dent homogeneous source J(t) for the dual operator O, with the chemical potential
tuned to µ = µc1. The function J(t) will be chosen to asymptote to constants at early
and late times, e.g.

J(t) = J0 tanh(vt) . (2.3.1)

Note that we are using units with r0 = 1. The system then crosses the equilibrium
critical point at time t = 0. The idea is to start at some early time with initial con-
ditions provided by the instantaneous solution and calculate the one point function
〈O(t)〉. In standard quantization this means that we impose a time dependent bound-
ary condition as in (2.2.11) and calculate A(t). In alternative quantization the source
should equal A(t). In this paper we discuss the problem in standard quantization :
the treatment in alternative quantization is similar.

2.3.1 Breakdown of adiabaticity

With a J(t) of the form described above (e.g. (2.3.1)), one would expect that the
initial time evolution is adiabatic for small v so long as J0 is not too small. As one
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approaches t = 0 adiabaticity inevitably breaks down and the system gets excited.
In this subsection we determine the manner in which this happens.

An adiabatic solution of (2.2.19) is of the form

Ψ(ρ, t) = Ψ(0)(ρ, J(t)) + εΨ(1)(ρ, t) + ε2Ψ(2) + · · · , (2.3.2)

where ε is the adiabaticity parameter. The leading term is the instantaneous solution
of (2.2.19), which is (using the definition (2.2.29))

DΨ(0) +G(ρ)|Ψ(0)|2Ψ(0) = 0 , (2.3.3)

satisfying the required boundary condition. Here we have defined

G(ρ) ≡ r2−d√
fsl(r)

. (2.3.4)

From (2.2.30) we know that for a real J(t), this is real and has a form

Ψ(0) ∼ ραJ(t)
[
1 +O(ρ2)

]
+ ρ1−α [J(t)]1/3

[
1 +O(ρ2)

]
, (2.3.5)

where
α ≡ ∆− − d/2 . (2.3.6)

This follows from the equations (2.2.17), (2.2.18) and (3.1.10). The adiabatic expan-
sion now proceeds by replacing ∂t → ε∂t in (2.2.19) substituting (2.3.2) and equating
terms order by order in ε. The n-th order contribution Ψ(n) satisfies a linear, inho-
mogeneous ordinary differential equation with a source term which depends on the
previous order solution Ψ(n−1). To lowest order we have the following equations for
the real and imaginary parts of Ψ(1)[

D + 3G(ρ)(Ψ(0))2
]

(Re Ψ(1)) = 0 ,[
D +G(ρ)(Ψ(0))2

]
(Im Ψ(1)) = 2µ ∂tΨ

(0) . (2.3.7)

Note that in these equations the time dependence of J(t) should be ignored. The full
function Ψ must satisfy the boundary condition lim

ρ→0
[ρ−αΨ(ρ, t)] = J(t). This means

that the adiabatic corrections must start with the subleading terms, Ψ(1) ∼ ρ1−α as
ρ → 0 and has to be regular as ρ → ρ?. These provide the boundary conditions for
solving the equations (2.3.7). Consider first the equation for Im Ψ(1). Since the time
dependence of Ψ(0) is entirely through J(t) the solution may be written as

Im Ψ(1)(ρ, t) = 2µ J̇(t)

∫ ρ?

0

dρ′ G(ρ, ρ′)
∂Ψ(0)

∂J(t)
(ρ′, J(t)) , (2.3.8)

where G(ρ, ρ′) is the Green’s function for the operator D +G(ρ)(Ψ(0))2,

G(ρ, ρ′) =
1

W (ψ1, ψ2)
ψ1(ρ′)ψ2(ρ) , ρ < ρ′ , (2.3.9)

18



=
1

W (ψ1, ψ2)
ψ2(ρ′)ψ1(ρ) , ρ > ρ′, (2.3.10)

where ψ1 and ψ2 are solutions of the homogeneous equation
[
D +G(ρ)(Ψ(0))2

]
ψ1,2 =

0 which satisfy the appropriate boundary conditions at the tip ρ = ρ? and at the
boundary ρ = 0 respectively. The Wronskian W (ψ1, ψ2) for this operator is clearly
constant and is conveniently evaluated near the tip. Near ρ = ρ? these solutions
behave as

ψ1 ∼ C
√
ρ? − ρ , ψ2 ∼ A

√
ρ? − ρ+B

√
ρ? − ρ log(ρ? − ρ) , (2.3.11)

where A,B,C are constants which depends on J(t) 1. Thus the Wronskian is

W (ψ1, ψ2) = −BC . (2.3.12)

As noted in the previous section, the operatorD has a zero mode, i.e.
[
D +G(ρ)(Ψ(0))2

]
has a zero mode when Ψ(0) = 0, i.e. exactly at the equilibrium critical point. Thus, at
this point we must have B = 0. This is why the first adiabatic correction Im Ψ(1)(ρ, t)
diverges at this point. For small J(t) we can use perturbation theory to estimate
the value of B. For small J the zeroth order solution Ψ(0) behaves as J1/3 (the first
term in (2.3.5) is subdominant). This is explicit to all orders in the expansion of
the solution around the boundary. However, this is also justified by the results of
the next section where we show that in the critical region the dynamics is dominated
by a zero mode. The coefficient of the zero mode can be seen to be proportional to
J1/3 using a regularity argument similar to that in [54] so that the additional term in
the operator behaves as G(ρ)(Ψ(0))2 ∼ [J(t)]2/3. This yields B ∼ J2/3 as well. Thus
the Green’s function which appears in (2.3.8) behaves as J−2/3 so that the correction
behaves as

Im Ψ(1) ∼ J̇(t)

J2/3

∂Ψ(0)

∂J(t)
∼ J̇(t)

J4/3
. (2.3.13)

The same argument shows that Re Ψ(1) = 0, so that |Ψ(1)| ∼ J̇
J4/3 as well. Therefore

adiabaticity breaks when

|Ψ(1)| ∼ |Ψ(0)| =⇒ J̇(t) ∼ J5/3 . (2.3.14)

For sources which vanish linearly at t = 0, i.e. J(t) ∼ vt (e.g. of the form (2.3.1))
this means that if the source is turned on at some early time, adiabaticity breaks at
a time

tadia ∼ v−2/5 . (2.3.15)

while at this time the value of the order parameter 〈O〉 is

〈O(tadia)〉 ∼ [J(tadia)]
1/3 = [vtadia]

1/3 ∼ v1/5 . (2.3.16)

With the usual adiabatic-diabatic assumption, these exponents lead to Kibble-Zurek
scaling for a dynamical critical exponent z = 2, even though the underlying dynamics
is relativistic and non-dissipative. From the above analysis it is clear that this hap-
pened because the leading adiabatic correction is provided by the chemical potential
term, which multiplies a first order time derivative of the bulk field.

1Note that in the equations (2.3.7) the time is simply a parameter.
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2.3.2 Critical dynamics of the order parameter

The breakdown of adiabaticity means that an expansion in time derivatives fail. In
this subsection we show, following closely the treatment of [20], that we now have a
different small v expansion in fractional powers of v during the period when the sources
passes through zero. This will lead to a scaling form of the order parameter in the
critical region. In the following we will demonstrate this for the case where J(t) ∼ vt
near t ≈ 0. However the treatment can be easily generalized to a J(t) ∼ (vt)n for any
integer n.

To establish this, it is convenient to separate out the source term in the field
Ψ(ρ, t),

Ψ(ρ, t) = ραJ(t) + Ψs(ρ, t) , α = ∆− − d/2 , (2.3.17)

where we have used the relation (2.2.18) and the fact that near the boundary ρ ∼ 1/r.
The equation of motion (2.2.19) then becomes

−∂2
t Ψs + 2iµ ∂tΨs = (Dρα)J(t) +DΨs +G(ρ)

[
ρ3α[J(t)]3 + ρ2α[J(t)]2(2Ψs + Ψ?

s)
]

+G(ρ)
[
ραJ(t)(2|Ψs|2 + Ψ2

s) + |Ψs|2Ψs

]
+ρα[∂2

t J − 2iµ∂tJ ] . (2.3.18)

This separation is useful because we know that in the presence of a constant source
J(t) = J̄ , the static solution has the asymptotic form

Ψs ∼ ρ1−α [|J̄ |1/3 +O(ρ2)
]

+ J̄ρα+2
[
1 +O(ρ2)

]
, (2.3.19)

which follows from (2.2.30).
The scaling relations (2.3.15) and (3.2.25) suggest that we perform the following

rescaling of the time and the field

t = v−2/5η , Ψs = v1/5χ . (2.3.20)

In the critical region we can now use J(t) = vt = v3/5η and rewrite (2.3.18) as an
expansion in powers of v2/5,

Dχ = v2/5
[
2iµ∂ηχ−G(ρ)|χ|2χ− η(Dρα)

]
+O(v4/5) . (2.3.21)

As noted above, because of the boundary condition at ρ = 0 and the regularity
condition at ρ = ρ? the spectrum of D is discrete. Let ϕn be the orthonormal set of
eigenfunctions of the operator D

Dϕn(ρ) = λnϕn(ρ) , n = 0, 1, · · · , (2.3.22)

with λ0 = 0. ϕ0(ρ) is the zero mode which we discussed earlier. Since µ has been
tuned to be equal to µc1, all the higher eigenvalues are positive.

We now expand

χ(ρ, η) =
∑
n

χn(η)ϕn(ρ) , (2.3.23)
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and rewrite the equation (2.3.21) in terms of the modes χn(η)

λnχn = v2/5

[
2iµ(∂ηχn)−

∑
n1n2n3

Cnn1n2n3
χ?n3

χn2χn1 + Jnη

]
+O(v4/5) , (2.3.24)

where we have defined

Jn =

∫
dρϕ?n(ρ)(Dρα) ,

Cnn1n2n3
=

∫
dρϕ?n(ρ)ϕ?n3

(ρ)ϕn2(ρ)ϕn1(ρ)G(ρ) . (2.3.25)

It is clear from (2.3.24) that the zero mode part of the bulk field dominates the
dynamics in the critical region. In fact for small v a solution is of the form

χn(η) = δn0ξ0(η) + v2/5ξn +O(v4/5) . (2.3.26)

The zero mode satisfies a z = 2 Landau-Ginsburg equation

− 2iµ∂ηξ0 + C0
000|ξ0|2ξ0 + J0η = 0 . (2.3.27)

Reverting back to the original variables we therefore have

Ψs(ρ, t, v) = v1/5Ψs(ρ, tv
2/5, 1) , (2.3.28)

which implies a Kibble-Zurek scaling for the order parameter with z = 2

〈O(t, v)〉 = v1/5〈O(v2/5t, 1)〉 . (2.3.29)

Note that the effective Landau-Ginsburg equation (2.3.27) is not dissipative because
the first order time derivative is multiplied by a purely imaginary constant. In fact,
in the absence of a source term the quantity 1

2
(|ξ0|2)2 is independent of time.

Beyond the critical region, we cannot use the approximation J(t) ∼ vt and there is
no useful simplification in terms of the zero mode. However, the boundary conditions
at the tip are perfectly reflecting boundary conditions (as appropriate for the origin
of polar coordinates in two dimensions) so that there is a conserved energy in the
problem. This is in contrast to a black hole background where there is a net ingoing
flux at the horizon causing the system to be dissipative. Indeed in the quench problem
considered in [20] arguments similar to those used in this section also led to an effective
Landau-Ginsburg dynamics with z = 2, but which is dissipative.

In the appendix we analyze a Landau-Ginsburg toy model motivated by the results
of this section.

2.4 Numerical results

In this section we summarize our numerical results. We have solved the bulk equation
of motion numerically for d = 3. The results for different values of m2 are similar.
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We present detailed results for m2 = −15/4. In this case the critical value of the
chemical potential is µc1q ≈ 1.88.

We discretize the partial differential equations (PDEs) (2.2.19) (written in the
y-coordinate) in a radial Chebyshev grid to study the numerical problem. Once dis-
cretized in radial direction, the PDEs become a series of ordinary differential equations
(ODEs) in the temporal variable. The resulting ODEs are solved with a standard
ODE solver (e.g. CVODE). The time dependence is chosen to be of the form depen-
dent source as in (2.3.1). In principle one may study with any kind of time dependent
source.

We will consider the problem in two regimes. The first is the “slow” regime where
we expect our analytic arguments to be accurate, the other is a “fast” regime where
there is no adiabatic region whatsoever. In the slow regime we will try to zoom on
the scaling region around the phase transition. In the fast regime we will find a large
deviation from the adiabatic behavior and possible chaotic behavior.

2.4.1 Slow regime

Since our main interest is quench through the critical point, we concentrate mainly
near the phase transition. We choose µq = µc1q (≈ 1.88), so that the system is critical
in the absence of any source. In the presence of a time dependent source of the form
(2.3.1) we calculate the bulk field Ψ̃(t) and extract from this the value of 〈O(t)〉 of
the dual field theory. A typical plot of the real part of 〈O(t)〉 for slow quench through
the phase transition is presented in Figure 2.2.
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Figure 2.2: The plot of Re 〈O(t)〉 with v = 0.02.

Clearly the late time behavior is oscillatory, reflecting the fact that we are dealing
with a closed and non-dissipative system.

We then zoom on the critical region near t = 0 for various value of v to look for
any scaling behavior. One way to look for this is to consider the behavior of 〈O〉 at
t = 0. Equation (2.3.29) then predicts a scaling behavior 〈O(0)〉 ∼ v1/5.

Figure 2.3 shows a plot of log(Re 〈O(0)〉) for different v. We fit the data points
with a function f(x) = A + Bx + C/x, where x is log(v). Here we kept a sublinear
(O(1/x)) term to understand how the fit function approaches a linear regime. From
our analytic argument we expect B = 1/5. A fit of the numerical results yields
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f(x) = 0.794 − 0.490/x + 0.206x. Changing the number of fit points and range
changes the values of fit parameters a bit, however we always get a value of B which
is close to 1/5 with only a few percentage deviation. The imaginary part (Im 〈O(0)〉)
also satisfies the same scaling.
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Figure 2.3: The plot of log(Re 〈O(0)〉) vs log(v). We also plotted the closest fit (see
text).

2.4.2 Fast regime

In the fast regime we see a large deviation from the adiabatic behavior, as shown in
Figure 2.4.
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Figure 2.4: Plot of Re 〈O(t)〉 showing chaotic behavior with a large value of v = 2.0
and µ = 1.

The motion in this regime becomes possibly chaotic. Here we have a system with a
conserved energy. Once we put some energy in the system, the non-linearity possibly
takes the system over the whole phase space (Arnold diffusion). It is expected that if
we wait long enough the probe approximation actually breaks down [67, 68] and we
have to consider the fully backreacted problem. We plan to attack this problem in
the near future.

Copyright c© Diptarka Das 2014
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Chapter 3

Quantum Quench and Double Trace Couplings

3.1 Introduction and Summary

There has been a lot of interest in understanding the problem of thermal or quantum
quench [1, 21, 2, 22–26] using gauge-gravity duality [5, 27, 28, 15]. One set of works
concentrate on the question of thermalization by horizon formation [29–51] and pos-
sible resolutions of spacelike singularities [69–71]. Recently there have been several
studies of holographic quench which involve critical points. In [20] two of us initi-
ated the study of holographic quench across finite temperature and finite chemical
potential critical points, and found hints of a mechanism which gives rise to Kibble-
Zurek scaling in critical dynamics [3, 4, 1, 21, 2]. This mechanism was confirmed
for a zero temperature but nonzero chemical potential quantum critical point in [72].
In slightly different directions [65, 66] studied relaxation dynamics following a ther-
mal quench from a broken symmetry phase and [73–75] studied scaling behavior of
final values of observables due to a thermal quench. Quantum quench in solvable
large-N field theories without the use of gauge-gravity duality has been studied in
[76, 77, 52, 53, 78].

In [20] and [72] the quench was due to a homogeneous time dependent source for
a scalar order parameter which translates to a time dependent Dirichlet boundary
condition on the strongly self-coupled bulk scalar field. The other parameters in the
theory were tuned such that in the absence of a source the theory is critical. The
dynamics was then studied in the probe approximation by considering a source which
is slowly varying at early and late times and which crosses zero (i.e. the location of
the critical point) at some intermediate time. In this setup scaling behavior appears
due to a few key facts

• At the equilibrium critical point the linearized bulk equation of motion for the
scalar has a zero mode. This results in a breakdown of adiabaticity when the
source becomes small characterized by a power law in the rate of change of the
source v.

• In the critical region, and only in this region, there a new expansion for small
v. This is an expansion in fractional powers of v, with exponents determined
by the equilibrium critical exponents.

• In the lowest order of this expansion in fractional powers of v, the bulk dynamics
is dominated by the zero mode. This zero mode then satisfies an ordinary
differential equation which is basically the dynamics of the order parameter. In
this equation, the boundary condition appears as a source term. This equation
has a scaling solution displaying Kibble-Zurek scaling.
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The setup in [20] and [72] involved a nonzero chemical potential and/or nonzero
temperature. The background in [20] is a charged black brane with a neutral self
coupled scalar [54], while that in [72] is an AdS soliton with a constant gauge field
and a self coupled scalar - a variation of the setup of [64, 79]. In both cases the
resulting dynamics of the order parameter is non-relativistic with dynamical critical
exponent z = 2, even though the underlying bulk dynamics is relativistic. It is
possible that the zero temperature limit of the setup of [20] may lead to a z = 1
dynamics. However the zero temperature limit the phase transition found in [54] and
probed in [20] becomes a Berezinski-Kosterlitz-Thouless transition and we were not
able to get any analytic handle on the dynamics.

So far all studies of quantum or thermal quench using holographic methods have
dealt with time dependent external sources. A useful example to keep in mind is
a magnet in the presence of a time dependent magnetic field. Critical dynamics
can be then studied by tuning the temperature to the critical value. In a Landau-
Ginsburg language this corresponds to a time dependent inhomogeneous term in the
LG equation. In many situations, this is not a natural thing to do. For example
in a superconductor an external source for the order parameter is not very natural,
though it can be achieved by considering junctions. On the other hand, the standard
tuning parameter in a critical transition is the term in a LG hamiltonian which is
quadratic in the order parameter: we will call this a LG mass term.

In this paper we initiate the study of quench by such a time dependent LG mass
using holographic techniques. While studying holographic quench with time depen-
dent external source is straightforward because it maps to a time dependent boundary
condition for the dual field, a time dependent LG mass quench would involve addition
of a double trace deformation with a time dependent coefficient, κ(t). As is well known
this implies a modified boundary condition for the bulk scalar [80–86]. In equilibrium
[87] found that for a class of scalar potentials, there is a critical phase transition at
κ = κc where κc < 0. Naively, from the field theory viewpoint, a deformation with
negative κ appears to lead to an instability. However it has been shown in [87] and
[88] this is not necessarily correct - typically there is a stable ground state with scalar
hair for κ < κc. For vanishing temperature and vanishing chemical potential κc = 0,
while for a nonzero temperature (i.e a black hole background) T one has κc ∝ T . In
the following we will show, not surprisingly, that there is a similar transition when
the background is a AdS soliton.

We consider the simplest situation where such a transition occurs. The bulk action
is given in LAdS = 1 units

S =

∫
dd+2x

√
g

[
1

8πGN

(R + d(d+ 1))− 1

λ

(
(∇φ)2 +m2φ2 + V (φ)

)]
(3.1.1)

where φ is a neutral bulk scalar. We will consider the limit λ � GN so that the
scalar can be treated as a probe field whose dynamics does not affect the gravity
background. We will consider potentials V (φ) which have a power series expansion
in φ. As will become clear soon, the critical behavior is determined by the leading
nonlinearity in V (φ), so it would be sufficient to consider monomials.
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First we study the equilibrium transition in three such backgrounds. The first
is pure AdSd+2, which is the relevant geometry when all the spatial directions are
noncompact,

ds2 = r2(−dt2 + d~x2 + dw2) +
dr2

r2
(3.1.2)

The second is a AdSd+2 soliton which is the relevant geometry when one of the spatial
directions, w is compact with some radius R0,

ds2 = r2(−dt2 + d~x2 + fs(r)du
2) +

dr2

r2fs(r)

fs(r) = 1−
(r0

r

)d+1

, r0 =
4π

(d+ 1)R0

(3.1.3)

The third is a AdSd+2 black brane with all boundary directions non-compact. The
metric is

ds2 = −r2fb(r)dt
2 + r2(d~x2 + dw2) +

dr2

r2fb(r)

fb(r) = 1−
( r̄0

r

)d+1

, r̄0 =
4πT

(d+ 1)
(3.1.4)

In all these cases the asymptotic form of the solution for the scalar has the form

φ(r, ~x, t, u)→ r−∆−A(~x, u, t)
(
1 +O(1/r2)

)
+ r−∆+B(~x, u, t)

(
1 +O(1/r2)

)
(3.1.5)

provided the solution becomes small near the boundary. In (3.1.5)

∆± = (d+ 1)/2±
√

(d+ 1)2/4 +m2 (3.1.6)

We will work in the mass range −(d + 1)2/4 ≤ m2 ≤ −(d + 1)2/4 + 1 so that we
have two possible quantizations [89]: the standard quantization with A as the source
and the alternative quantization with B as the source. The dimensions of the dual
operator O in these two quantizations are ∆+ and ∆− respectively.

It is also possible to impose boundary conditions

B(~x, u, t) = κ(~x, u, t)A(~x, u, t) (3.1.7)

As is well known, this corresponds to addition of a term [80]∫
dd+1x κO2 (3.1.8)

to the field theory action.
We will first show explicitly for suitable potentials that for a constant κ all these

backgrounds admit critical points. For AdSd+2 the critical value is κ = 0 : for κ < 0
there is a nontrivial solution of the equations of motion which is regular everywhere
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and satisfies the specified boundary conditions. This means that for the dual operator
〈O〉 6= 0. Near the critical point we verify that

〈O〉 ∼ (−κ)∆−/(∆+−∆−) (3.1.9)

as required by scale symmetry. The scaling behavior is independent of the nature of
the potential whose properties enter only in the overall coefficient.

For the AdSd+2 soliton as well as the AdSd+2 black brane, the critical value of κ
is at some finite value κc < 0 and the condensate appears for κ < κc. This is shown
by a direct numerical solution. It turns out that the value of κc can be determined
analytically in closed form, following the treatment of [87] and is independent of the
nature of the non-linearity. As is usual in such situations, there is a zero mode of
the linearized equation at κ = κc : here the zero mode has a closed form in terms
of hypergeometric functions. We verify that our numerical solution for φ4 and φ6

potentials agrees with this. The critical exponent can be also determined analytically.
When the leading nonlinearity is φn+1 , one gets

〈O〉 ∼ (κc − κ)1/(n−1) (3.1.10)

Note that in standard notation the critical exponent β is given by

β = 1/(n− 1) (3.1.11)

Our numerical results are consistent with the behavior (3.1.10). We also verify nu-
merically that the critical behavior is indeed determined by the leading non-linearity.

We then consider the response of the system to a time dependent but homogeneous
κ(t) for the AdSd+2 soliton and AdSd+2 black brane backgrounds, staying in the probe
approximation. For these backgrounds, the radius of the compact dimension (for the
soliton) or the temperature (for the black brane) provides a scale, so that we can
meaningfully talk about slow and fast quenches. We concentrate on slow quench
starting deep in the ordered phase, crossing the critical point κc at some intermediate
point and asymptoting to some other constant value at late times. Following the lines
of [20, 72] we study the breakdown of adiabaticity and show that in a way similar to
these works the critical region is characterized by an expansion in fractional powers
of the rate and by the dominance of the zero mode. For a fast quench we expect a
chaotic behavior to set in [90]. Unlike these previous works, the function κ(t) now
appears as a time dependent mass term in the effective LG dynamics of the zero
mode and hence the order parameter. This is consistent with the fact that in the
field theory, κ(t) is indeed the coefficient of O2.

The ensuing critical dynamics for the soliton and the black brane are different.
For the soliton, the dynamics is relativistic and non-dissipative. This is expected
since in the field theory is at zero temperature and there is no chemical potential.
The dynamics in the black brane background has z = 2 and is dissipative, as would
be expected for a finite temperature situation.

Finally we solve the time evolution numerically and provide evidence for the scal-
ing behavior discussed above.
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In Section 2 we set up the equilibrium problems, show the existence of the critical
point for negative constant κ and derive the critical exponents. Sections 3 and 4
deal with quantum quench due to a time dependent κ(t) for the soliton and black
brane backgrounds respectively. In section 5 we present our numerical results. In
section 6 we discuss arbitrary critical exponents z and ν and the relationship of our
scaling solutions with standard Kibble-Zurek scaling. Section 7 contains brief remarks
and the appendix B discusses the solution of a toy model which justifies some key
ingredients in our discussion of section 4.

3.2 The equilibrium critical point

In the probe approximation the only relevant equation we need to solve is the scalar
field equation. For the backgrounds (3.1.2) or (3.1.3) and fields which depend only
on t and r this equation is

− 1

h(r)
∂2
t φ+

1

rd−2
∂r(r

dg(r)∂rφ)−m2r2φ− r2V ′(φ) = 0 (3.2.1)

where

g(r) =


r2, for AdSd+2

r2fs(r) for AdSd+2 soliton

r2fb(r) for AdSd+2black brane

(3.2.2)

and

h(r) =

{
1 for AdSd+2and AdSd+2 soliton

fb(r) for AdSd+2 black brane
(3.2.3)

We first need to find static solutions of (3.2.1) which are regular in the interior and
which satisfy the boundary condition (3.1.7) at the boundary (with constant A,B, κ).

3.2.1 Pure AdSd+2

For pure AdSd+2 and a φ4 potential regularity means that the value of the field at
r = 0 is fixed to the attractor value

φ(r = 0)AdS =
√
−m2 (3.2.4)

To find a solution to the non-linear equation consider integrating the equation by
imposing the condition at small ε

φ(ε) = φ(r = 0)AdS − cε∆v c > 0 ∆v =
√

(d+ 1)2/4− 2m2 − (d+ 1)/4 (3.2.5)

This form is dictated by the solution near r = 0 where the departure from the attractor
value is small so that the equation can be linearized. The solution to the full nonlinear
equation may be therefore written as φ(r, c), which gives us a one parameter class of
solutions. However the equation has a scaling symmetry under

r → λr φ→ φ (3.2.6)
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which immediately implies that the solution satisfies

φAdS(r, c) = φAdS(rc−1/∆v , 1) (3.2.7)

The solution near the boundary r =∞ is of the form (3.1.5) with constant A and B
- the scaling symmetry then implies

|A| ∼ c
∆−
∆v |B| ∼ c

∆+
∆v =⇒ |κ| ∼ c

∆+−∆−
∆v (3.2.8)

In alternative quantization, A is the expectation value of the dual operator and the
above relations immediately implies (3.1.9).

The solution φ(r, c) can be found easily by numerically solving the nonlinear equa-
tion. We find that there is a nonsingular solution for any negative κ which satisfies
the above scaling behavior.

Note that the scaling argument given above does not depend on the potential
being φ4, and is valid for any potential V (φ) with n 6= 1. The value of the attractor
is generally given by

m2φ+ V ′(φ) = 0 (3.2.9)

and the behavior for small r becomes a bit complicated, though still determined by
a linear equation. Nevertheless the same scaling behavior (3.1.9) would follow. The
numerical coefficient will of course depend on the details of the potential.

3.2.2 AdSd+2 soliton

For the AdSd+2 soliton (3.1.3) regularity at the tip r = r0 = 1 implies that the field
can attain any value φ0 at r = r0 while the derivative is given by

dφ

dr
(r = r0) =

1

d+ 1

[
m2φ0 + V ′(φ0)

]
(3.2.10)

The static solution may be now obtained by starting at some φ0 and integrating out
to r = ∞. As we will see below, straightforward numerical integration then shows
that a non-trivial regular solution exists only when κ < κc where the critical value κc
is a negative number to be determined shortly.

In the rest of the paper we will use r0 = 1 units
As is usual in such cases (e.g. for holographic superconductors [56, 57] ) the

trivial solution with φ = 0 is in fact unstable for κ < κc. To see this, let us write the
linearized equation of motion as

−∂2
t φ = D̃φ

D̃ ≡ −r2−d ∂

∂r

(
rd+2fs(r)

∂

∂r

)
+m2r2 (3.2.11)

This equation can be cast into a Schrodinger form by changing coordinates to ρ

ρ(r) =

∫ ∞
r

ds

s2f
1/2
s (s)

(3.2.12)
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and redefining the field to ψ(ρ, t)

φ(r, t) =
1

[r(ρ)]
d
2
−1

(
dρ

dr

)1/2

ψ(ρ, t) (3.2.13)

Note that

ρ ∼ 1/r r →∞

ρ ∼ ρ? +
2
√
r − 1√
d+ 1

r → 1 (3.2.14)

where ρ? is finite. For d = 3 we get ρ? = 1.311. Using the explicit form of fs(r) the
equation (3.2.11) becomes

− ∂2
t ψ = Dψ (3.2.15)

where

D = −∂2
ρ + V0(ρ)

V0(ρ) = m2r2 +
4d[(d+ 2)r2d+2 − (d+ 3)rd+1]− (d− 1)2

16rd−1(rd+1 − 1)
(3.2.16)

This operator appeared in [72] where it was shown that with boundary conditions
corresponding to either standard or alternative quantization this has a positive spec-
trum. However with the modified boundary condition B = κA with κ < 0 this is no
longer true. In fact there is a specific value of κ where the operator D has a zero
mode. The equation D̃φ = 0 (which is equivalent to Dψ = 0) is in fact the same as
equation (B.1) in [87] and we can borrow the results. The solution which is regular
at r = 1 is given by

φ0(r) = A

(
r−∆−F 2

1

[
∆−
d+ 1

,
∆−
d+ 1

,
2∆−
d+ 1

, r−(d+1)

]
+Br−∆+F 2

1

[
∆+

d+ 1
,

∆+

d+ 1
,

2∆+

d+ 1
, r−(d+1)

])
(3.2.17)

where

B = −
Γ(2∆−

d+1
)[Γ(1− ∆−

d+1
]2

Γ(2− 2∆−
d+1

)[Γ( ∆−
d+1

)]2
. (3.2.18)

The asymptotic expansion of this solution at r =∞ can be read off trivially. Clearly
the κ for this solution is κ = B. This must be the critical value, κc which is thus
determined to be

κc = −B (r0)d+1−2∆− (3.2.19)

where we have restored factors of r0. The zero mode φ0 will play a key role in what
follows.

For κ < κc the operator has negative eigenvalues which implies that the trivial
solution is unstable.

In the following we will also need the behavior of the lowest eigenvalue λ0 of D
for κ < κc. Generically one would expect that this would vanish linearly,

λ0(κ) = −c0(κc − κ). (3.2.20)
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We have checked this numerically for d = 3 and m2 = −15/4 and obtained c0 =
0.762589. We also checked that κc = −0.495 which is consistent with (3.2.19) and
3.2.18). This behavior will be important in the dynamics.

3.2.2.1 Effect of non-linearity

We now consider the effect of non-linearity in the static solution. Consider a Z2

invariant potential of the form 1

V (φ) =
∞∑
q=2

λqφ
2q. (3.2.21)

For simplicity we will assume all the λq’s to be positive. We want to find solutions of
the full nonlinear equation with specified boundary conditions at r =∞ and regular
in the interior. Such solutions can be constructed by numerical integration starting
with a given value of φ0 and obtaining the solution φ(r;φ0) from which the leading
and subleading terms in the asymptotic expansion, A and B can be calculated, thus
determining κ(φ0). In all the cases we have studied, the solution is trivial for any
κ > κc while for κ < κc there is a nontrivial solution, leading to a nonzero order
parameter in the boundary theory. It is expected (and we can also verify numerically)
that κc is only a function of m2 and it is independent of λq. Furthermore, as is usual
in mean field theory, the critical exponent is determined by the leading nonlinearity.
For example, if lowest nonvanishing term is V (φ) = 1

4
φ4 then one expects

〈O〉soliton ∼ (κc − κ)1/2. (3.2.22)

This is standard mean field behavior. The exponent should not be affected by the
presence of nonvanishing λq with q > 2.

Figure (3.1) shows the result of a numerical solution of the static equations of
motion for d = 3,m2 = −15/4 for two potenitals : (i) λ2 = 1 with all the other λq
vanishing and (ii) λ2 = 1, λ3 = 20 with the other λq vanishing

The critical coupling κc is found to be κc = −0.495129 which is the same for both
potentials and consistent with (3.2.18) and (3.2.19) for this value of d,m2. Clearly the
behavior of the order parameter near the critical point is the same for both potentials
while the behavior differs far away from the critical point. Figure (3.2) shows the
determination of the critical exponent for bth potentials.

If the leading non-vanishing non-linear term is of O(φn+1), i.e. V (φ) = 1
n+1

φn+1 +
· · · , then we get,

〈O〉soliton ∼ (κc − κ)β (3.2.23)

where β = 1
(n−1)

. This is standard mean field multicritical behavior (for a numerical

verification see Fig 3.4).
The critical exponent in fact follows from the equation itself. In terms of the

redefined field ψ(ρ, t) ( see Eqs. (3.2.11) - (3.2.16)), the static equation of motion is

Dψ +G(ρ)ψn = 0 (3.2.24)

1See [91] for a discussion of scalar effective potential in AdS background.
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Figure 3.1: The order parameter as a function of κ for φ4 (blue) and φ4 + φ6 (red)
theory. The critical value is around -0.495129
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Figure 3.2: Plot of log〈O〉 versus log(κc − κ) for φ4 (blue) and φ4 + φ6 (red) theory.
The fit for blue line is, log〈O〉 = 1.01802 + 0.500572 log(κc − κ) and that for the red
line is log〈O〉 = 0.96698 + 0.495077 log(κc − κ)
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where

G(ρ) ≡ r2−d

fs(r)1/2
(3.2.25)

Near κ = κc the solution itself is small and may be expanded as

ψ(ρ;κ) = εβ
(
ψ(0)(ρ) + εψ(1)(ρ) + ε2ψ(2)(ρ) + · · ·

)
(3.2.26)

where
ε ≡ (κc − κ) (3.2.27)

where the number β has to be determined by substituting the expansion in (3.2.25)
and equating terms order by order in ε. This may be easily seen to determine β =

1
(n−1)

.
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Figure 3.3: The order parameter as a
function of κ for φ6 theory. The critical
value is around -0.495129.
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Figure 3.4: Plot of log〈O〉 versus log(κc−
κ) for φ6 theory. The fit is log〈O〉 =
1.07161 + 0.250041 log(κc − κ)

3.2.3 AdSd+2 Black Brane

The equilibrium solutions for the AdSd+2 black brane are identical to those for the
AdSd+2 soliton with the replacement r0 → r̄0. This is clear from the full equation
(3.2.1) and the form of the functions fb(r) and fs(r) in (3.1.3) and (3.1.4).

However, the passage to the Schrodinger form of the equations is different, which
leads to a different dynamics. As explained below, it is useful to use Eddington-
Finkelstein coordinates which are regular at the horizon,

u = ρ̄− t dρ̄ = − dr

r2fb(r)
(3.2.28)

so that the metric becomes

ds2 = r2(d~x2 + dw2)− 2dudr − r2fb(r)du
2 (3.2.29)

In terms of fields
χ(u, ρ̄) = rd/2φ(r, t) (3.2.30)
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The full equation of motion becomes

− 2∂u∂ρ̄χ = Pχ+ Ḡ(ρ̄)χ3 (3.2.31)

where

P ≡ −∂2
ρ̄ + V̄0(ρ̄)

V̄0(ρ̄) ≡ r2fb(r)

[
d

2
r∂rfb(r) +

d(d+ 2)

4
fb(r) +m2

]
Ḡ(ρ̄) ≡ fb(r)

rd−2

(3.2.32)

In the following we will use this form of the equations of motion to examine the
dynamics.

The discussion of multicritical points is exactly the same as that in the AdS soliton
background in the previous section and will not be repeated here.

3.3 Slow Quench with a time dependent κ in AdSd+2 soliton background

We now study the response of the system in the AdSd+2 soliton background to a
time dependent κ which starts off slowly at early times in the ordered phase κi < κc,
crosses κc and asymptotes at late times for some other value κf > κc. The details of
the protocol are not important - however the manner in which the coupling crosses
the critical value is relevant. We consider a quench which is linear near κ ∼ κc,
though all the considerations can be trivially extended to nonlinear quenches. For
concreteness we consider the protocol

κ(t) = κc + a tanh(vt) (3.3.1)

with v � 1. Note that we are using units r0 = 1 so what we really mean is that
v � r0.

3.3.1 Breakdown of Adiabaticity

At early times, the response of the system is adiabatic. The solution to the equation
of motion (3.2.24) can be then obtained in an adiabatic expansion

ψ(ρ, t;κ) = ψ0(ρ;κ(t)) + εψ1(ρ, t;κ) + ε2ψ2(ρ, t;κ) + · · · , (3.3.2)

where the static solution is denoted by φ0(r;κ) and ε is the adiabaticity parameter.
In the left hand side of equation (3.2.24) we now need to replace ∂t → ε∂t and equate
terms with the same power of ε. The n-th order contribution to the solution, φn
satisfies a linear, inhomogeneous equation with the source being determined by the
φm with m < n.

For the φ4 theory the two lowest order corrections satisfy[
D + 3G(ρ)ψ2

0

]
ψ1 = 0
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[
D + 3G(ρ)ψ2

0

]
ψ2 = −∂2

t ψ0 − 3G(ρ)ψ2
1ψ0 (3.3.3)

Note that ψn for n > 0 satisfy vanishing boundary conditions at infinity and regularity
conditions in the interior. Since ψ1 satisfies a homogeneous equation there is no
nontrivial solution. The lowest order correction to the adiabatic solution is therefore
ψ2

ψ2(ρ, t;κ) = −
∫ ρ?

0

dρ′G(ρ, ρ′)∂2
t ψ0(ρ′, κ(t)) (3.3.4)

where G(ρ, ρ′) is the Green’s function of the operator [D + 3G(ρ)ψ2
0].

Exactly at κ = κc the operator D has a zero mode. At this point the Green’s
function diverges and adiabaticity fails. As found in the previous section, the smallest
eigenvalue for a κ close to κc is proportional to (κ− κc). Furthermore we also found
that ψ0 ∼ (κc−κ)1/2. Thus the lowest eigenvalue of the entire operator [D + 3G(ρ)ψ2

0]
is proportional to (κc − κ). This gives an estimate of ψ2 as we approach the critical
point,

ψ2 ∼
1

κc − κ(t)
∂2
t

√
κc − κ(t) =

1

2(κc − κ)3/2

[
∂2
t κ(t) +

(∂tκ)2

κc − κ(t)

]
(3.3.5)

The adiabatic expansion breaks down once ψ2 ∼ ψ0 which leads to the condition[
∂2
t κ(t) +

(∂tκ)2

κc − κ(t)

]
∼ (κc − κ)2 (3.3.6)

For the protocol like (3.3.1), or any other protocol which is linear in time as it crosses
κc this leads to the estimate for the time when adiabaticity fails, tad

tad ∼ v−1/3 (3.3.7)

At this time the value of the order parameter is then

〈O〉 ∼ (vtad)
1/2 ∼ v1/3 (3.3.8)

This analysis can be easily repeated for multicritical points - this will be discussed in
detail in a separate section.

3.3.2 Dynamics in the critical region

Once adiabaticity is broken there is no power series expansion in v. We will now show
that there is nevertheless an expansion for small v, but in fractional powers of v. To
see this let us rescale

ψ(ρ, t) = v1/3ϕ(ρ, t) t = v−1/3η (3.3.9)

The equation of motion (3.2.15) now becomes

Dϕ = v2/3
(
−∂2

ηϕ−G(ρ)ϕ3
)

(3.3.10)
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Now decompose the field in terms of eigenfunctions of D

ϕ(ρ, η) =
∑
n

χn(ρ)ξn(η)

Dχn = λn(κ)χn (3.3.11)

The eigenvalues of course depend on the boundary conditions. We have expressed
this explicitly by denoting them by λn(κ). The equation (3.3.10) becomes

λn(κ)ξn(η) = v2/3
(
−∂2

ηξn − Cn
m1,m2,m3

ξm1ξm2ξm3

)
(3.3.12)

where

Cn
m1,m2,m3

≡
∫ ρ?

0

dρG(ρ)ϕ?n(ρ)ϕm1(ρ)ϕm2(ρ)ϕm3(ρ) (3.3.13)

In the previous section we showed explicitly that the lowest eigenvalue of D is of order
(κc − κ). In fact generically for theories with ν = 1/2

λn(κ) = λn(κc)− cn(κc − κ) +O[(κc − κ)2] cn > 0 (3.3.14)

Using the fact that

κc − κ(t) ∼ −a(vt) = −av2/3η (3.3.15)

in the critical region, the equation (3-12) becomes

λn(κc)ξn(η) = v2/3
(
−∂2

ηξn − acnηξn − Cn
m1,m2,m3

ξm1ξm2ξm3

)
(3.3.16)

The boundary condition gives rise to a time dependent mass term in the equation for
the mode functions. Recall that λ0(κc) = 0. The dominance of this zero mode for
small v is manifest in this equation. All the other modes are at least O(v2/3). The
zero mode satisfies an effective Landau-Ginsburg dynamics,

∂2
ηξ0 + c0η + C0

000ξ
3
0 = 0 (3.3.17)

The order parameter, which is given in terms of the asymptotic behavior of the field,
also satisfies this equation to lowest order. Reverting to the original variables we see
that the order parameter as a function of time has the scaling behavior

〈O〉(t; v) = v1/3〈O〉(tv1/3; 1) (3.3.18)

The dynamics is relativistic and, as will be discussed in a later section, consistent
with z = 1 Kibble Zurek scaling.

Once again the scaling solution for multicritical points follow along similar lines,
as discussed below.
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3.4 Slow quench with a time dependent κ: AdSd+2 black brane

The analysis for the response to a slow quench in a black brane background is quite
similar to above, but the results are rather different. We will not detail the analysis,
but give the essential equations, highlighting the results. The key difference arises
from the presence of a horizon in this geometry. We need to impose ingoing boundary
conditions at the horizon. Equivalently, in the ingoing Eddington-Finkelstein coor-
dinates we are using we need to impose a regularity at the horizon r = 1 (in r̄0 = 1
units) [92, 93].

The time coordinate is now u, so that the protocol is

κ(u) = κc + a tanh(vu) (3.4.1)

Note that on the boundary u becomes the same as the usual time t and in fact for
any r we have ∂t|r = ∂u|r, so that on the boundary this represents a time dependence
identical to (3.3.1).

3.4.1 Breakdown of Adiabaticity

Let us first discuss usual critical points (φ4 potential). Since the equation of motion
(3.2.31) is first order in u derivatives the first order correction to the adiabatic result
is non-vanishing. In the expansion

χ(ρ̄, u;κ) = χ0(ρ̄, κ(u)) + εχ1(ρ̄, u) + · · · (3.4.2)

the first order correction χ1 satisfies[
P + 3Ḡ(ρ̄)χ2

0

]
χ1 = −2∂u∂ρ̄χ0 (3.4.3)

An analysis identical to the one between equations (3.3.3) and (3.3.5) then leads to

χ1 ∼
1

κc − κ(u)
∂u
√
κc − κ(u) (3.4.4)

The condition χ0 ∼ χ1 then leads to the adiabaticity breaking time

uad ∼ v−1/2 (3.4.5)

while the expectation value of the operator at this time is

〈O〉 ∼ v1/4 (3.4.6)

The extension of these results to multicritical points with the leading term in the
potential being φn+1 is straightforward, leading to

uad ∼ v−1/2 〈O〉 ∼ v
1

2(n−1) = vβ/2 (3.4.7)

We will show below that these results are consistent with the general Kibble-Zurek
relations.
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3.4.2 Dynamics in The Critical Region

For the φ4 theory we first rescale

χ(ρ̄, u) = v1/4χ̄(ρ̄, η) u = v−1/2η (3.4.8)

so that the equation (3.2.31) becomes

Pχ̄ = −v1/2
[
2∂ρ̄∂ηχ̄+ Ḡ(ρ̄)χ̄3

]
(3.4.9)

Unlike the soliton, the spectrum of P is now continuous. Therefore the mode decom-
position (3.3.11) is replaced by

χ̄(ρ̄, η) =

∫
dk χ̄k(ρ̄;κ)ξ̄k(η) (3.4.10)

where
Pχ̄k(ρ̄;κ) = λ̄(k;κ)χ̄k(ρ̄;κ) (3.4.11)

so that instead of (3.3.12) we get

λ̄(k;κ)ξ̄k = −v1/2

[∫
dk′B̄kk′∂η ξ̄

k′(η) +

∫
dk1dk2dk3 C̄

k
k1k2k3

ξ̄k1 ξ̄k2 ξ̄k3

]
(3.4.12)

where

B̄kk′ =

∫
dρ̄ χ̄k(ρ̄)∂ρ̄χ̄k′(ρ̄)

C̄k
k1k2k3

=

∫
dρ̄ Ḡ(ρ̄)χ̄k(ρ̄)χ̄k1(ρ̄)χ̄k2(ρ̄)χ̄k3(ρ̄) (3.4.13)

Since the operator P is related to the operator D in (3.2.11) by a similarity
transformation (with the replacement r̄0 → r0) the behavior of the eigenvalues λ̄(k;κ)
near κ = κc is the same as that of λn in (3.3.14)

λ̄(k;κ) = λ̄(k;κc)− c̄(k)(κc − κ) +O((κc − κ)2) (3.4.14)

and using the time dependence of κ(u) near κc we get

λ̄(k;κc)ξ̄k = −v1/2

[
ac̄(k)ηξ̄k +

∫
dk′B̄kk′∂η ξ̄

k′(η) +

∫
dk1dk2dk3 C̄

k
k1k2k3

ξ̄k1 ξ̄k2 ξ̄k3

]
(3.4.15)

Recall that there is a zero mode at κ = κc where the left hand side of (3.4.15) vanishes.
If the spectrum of λ̄(k;κc) were discrete it is clear from (3.4.15) that the zero mode
dominates the dynamics. This is what happens for the AdS soliton in the previous
section. However the operator P with κ = κc has a continuous spectrum and one has
to careful. This analysis is, however, identical to that of [? ].

The equation (3.4.15) suggests a solution which is an expansion in v1/2 as follows

ξ̄k(η) = δ(k)ξ̃0(η) + v1/2ξ̃k(η) +O(v) (3.4.16)
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where again to lowest order in small v

0 = B00∂η ξ̃
0(η) + ac̄0ηξ̃

0(η) + C̄0
000(ξ̃0)3

ξ̃k = − 1

λ̄(k;κc)

[
Bk0∂η ξ̃

0(η) + ac̄kηξ̃
0(η) + C̄k

000(ξ̃0)3
]

(3.4.17)

Combining the two equations in (3.4.17) one has

ξ̃k = − 1

λ̄(k;κc)

[
(Bk0 − B00)∂η ξ̃

0(η) + a(c̄k − c̄0)ηξ̃0(η) + (C̄k
000 − C̄0

000)(ξ̃0)3
]

(3.4.18)
We know that all the eigenvalues λ̄(k;κc) are positive except the one which is zero.
Since these positive eigenvalues form a continuum we can, without loss of generality,
write λ(k;κc) = k2. This means that our expansion (3.4.16) is valid only if the
quantities (Bk0 − B00), (c̄k − c̄0), (C̄k

000 − C̄0
000) go to zero at least as fast as k2. In a

way quite similar to [20] it turns out that this is indeed true - precisely when κ = κc.
This is shown in detail for a toy model which is quite similar to our case in the
appendix B.

We therefore conclude that the dynamics in the critical region is again dominated
by the zero mode which now satisfies a Landau-Ginsburg equation with a first order
time derivative - the first equation in (3.4.17). This clearly yields a dissipative time
evolution. The dissipation is of course due to a finite temperature and is caused by
inflow into the horizon. Reverting to the original variables and noting that on the
boundary u = t, the time of the field theory, we get a scaling solution

〈O〉(t; v) = v1/4〈O(tv1/2; 1)〉 (3.4.19)

This will be shown to be consistent with Kibble-Zurek scaling with z = 2, ν = 1/2.

3.5 Numerical Results

3.5.1 Soliton background

After suitable changes of variables and field redefinitions for simplification, we solved
the resulting equation of motion on a Chebyshev grid using pseudo-spectral derivative
method. The k-th lattice point on a Chebyshev grid is defined in the following way,

ρk = ρ?

(
1− cos

kπ

N

)
(3.5.1)

where, N denotes the total number of points on the grid. At the center of the soliton
we put a regularity condition on the field φ.

We dealt with a specific case of the AdSd+2 soliton, taking d = 3 and m2 = −15/4
on a grid with total number of points, N = 61. Setting the mass parameter at the
conformal value simplifies the numerics. The numerical calculation of the critical
exponent involves following steps :

39



• First we calculated κc using the linear static equation and obtained κc ≈
−0.495129.

• Next, we solved the non-linear static equation on the Chebyshev grid iteratively
using a κ = κc−a in the boundary condition. a is an arbitrary constant chosen
to be a = 0.1.

• The above field configuration was used to specify the initial conditions at some
early time t = −tmax in the full dynamic equation, which was solved using a
time dependent κ-profile of the form κ(t) = κc + a tanh(vt). Near the phase
transition point (i.e. t = 0) κ behaves linearly like κ ≈ κc + a vt.

• This was done for various values of v. Using small numerical values of v we
expect to find the system in a scaling regime. At time t = 0 the value of the
order parameter, 〈O〉 was numerically calculated from the solution and then
the suitable plot [see Figure(3.5)] was made to check the scaling.
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Figure 3.5: The scaling behavior of the order parameter O as a function of v in in a
φ4 theory in AdS soliton geometry. The fit gives, ln〈O〉 = −0.791971 + 0.332643 ln v.

The above fit clearly confirms our analytical expectation, viz.,

〈O(0)〉 ∼ v1/3 (3.5.2)

We also checked that changing dκ and N does not significantly change the exponent.
To understand the full time dependence and the scaling of time (Eq. 3.3.18) one can
plot the scaled response (Fig 3.6).

3.5.2 Black Brane background

Here we solve the PDE’s by slightly different method by calculating finite difference
derivative on a lattice. We choose lattice size to be npoints = 500. The resulting
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Figure 3.6: The scaling behavior of the order parameter O as a function of t in in a
φ4 theory in AdS soliton geometry. Plots from the top are for v = 0.03, 0.024. These
plots show scaling consistent with Eq. 3.3.18.

discretized equations are again solved by method of lines. Near the black hole horizon
we impose an ingoing boundary condition. The main steps of the numerics, including
the value of κc and the time dependent profile k(t), are identical to the soliton case :
we do not repeat the details. The best fit here [see Figure(3.7)] is given by, ln〈O〉 =
0.253967 ln(v)− 0.195079 which conforms with our analytic result,

〈O(0)〉 ∼ v1/4. (3.5.3)

Like the soliton case, we have also checked that the temporal scaling matches with
Eq. 3.4.19.

In the probe approximation the late time behavior of the scalar field in black hole
and soliton backgrounds are very different due to presence of the horizon in a black
hole background. Any excess energy in bulk is gradually engulfed by the black hole
and at very late time we have a almost static scalar profile. The late time decay
of excitations of the scalar is determined by the quasi-normal modes. In a soliton
background, the excess energy does not dissipate once the quenching is stopped and
the scalar field shows temporal oscillation at late time. Our numerics confirm these
assertions.

3.6 Arbitrary exponents and Kibble-Zurek Scaling

In this section we discuss the connection of the holographic derivation for scaling
behavior in critical dynamics with the standard arguments leading to Kibble Zurek
scaling.
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Figure 3.7: The scaling behavior of the order parameter O as a function of v for a
φ4 theory in the AdS blackhole background. The fit gives, ln〈O〉 = 0.253967 ln(v)−
0.195079.

The standard argument for Kibble-Zurek scaling for a quantum critical point
proceeds as follows [3, 4, 1, 21, 2]. In the vicinity of such a transition the energy gap
∆ depends on the control parameter λ (with the critical value of λ chosen to zero
without loss of generality) as ∆ ∼ λzν , where z is the dynamical critical exponent and
the ν the correlation length exponents. Consider quenching this control parameter
across this transition so that near the critical point λ ∼ (vt)α. Then the instantaneous
value of the energy gap in this region is given by ∆inst ∼ (vt)αzν . The criteria for the
breakdown of adaibaticity during such a quench is [1] d∆/dt ∼ ∆2. Substituting the
expression for ∆ and noting that the critical point is reached at t = 0, one finds that
the time spent by the system in the non-adiabatic regime is

T ∼ v−αzν/(αzν+1) (3.6.1)

Next one makes the important assumption that the time evolution after the break-
down of adiabaticity is diabatic. This means that one can then argue that the order
parameter is determined by the instantaneous value at time T . Furthermore, for slow
quenches, the breakdown of adiabaticity occurs in the critical region sufficiently close
to the critical point so that one can assume standard critical scaling holds. Since in
this region the order parameter O varies with the control parameter λ as O ∼ λβ we
get

〈O >∼ (vT )αβ ∼ vαβ/(αzν+1) (3.6.2)

The adiabatic-diabatic assumption is rather drastic. In contrast, the holographic
treatment of the present paper as well as that in [20] and [72] we derived a set
of scaling relations from the properties of the solutions to the bulk equations of
motion without any assumption about the nature of time evolution after breakdown
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of adiabaticity. The physics of the bulk is essential in this derivation, which is not at
all transparent in the boundary field theory description. We will now show that the
scaling relations we obtained are, nevertheless, consistent with the standard Kibble
Zurek results described above.

There are several critical exponents involved in these relations. First, the static
exponent β follows from the leading nonlinearity of the bulk potential, as argued in
section 2. If the leading term in the potential is φn+1 the value of β is given by
equation (3.2.23), β = 1/(n − 1). To find the values of z and ν we need to look at
the dispersion relation of small fluctuations around the static solution. The linearized
fluctuations would satisfy an equation of the form

∂mt δψ =
[
Q+ nF (ρ)ψn−1

0

]
δψ (3.6.3)

where ψ0 is the static solution, and in the examples described in this paper we have
m = 2,Q = D, F (ρ) = G(ρ) for the soliton and m = 1,Q = P , F (ρ) = Ḡ(ρ̄) for the
black hole. The control parameter is λ = (κc − κ). The second term on the right
hand side is therefore always of the order O(λ). The dependence of the first term on
λ is determined by the nature of the background. Suppose the smallest eigenvalue of
Q is O(λ1/p). In both the soliton and the black hole we had p = 1 : here we have
allowed for the possibility of other backgrounds with arbitrary p. Then the energy of
excitations E is given by

Em ∼ λ1/p p > 1

Em ∼ λ p < 1 (3.6.4)

From the definition of the standard exponents we therefore have

zν =
1

pm
p > 1

zν =
1

m
p < 1 (3.6.5)

Now consider the condition for breakdown of adiabaticity. This again involves a
solution of an equation of the form

∂mt ψ0 =
[
Q+ nF (ρ)ψn−1

0

]
ψ′ (3.6.6)

where ψ′ denotes the leading correction to the adiabatic result. It is then clear that
the condition ψ′ ∼ ψ0 leads to an adiabaticity breaking time tad

tad ∼ (v)−
α

α+pm p > 1

tad ∼ (v)−
α

α+m p < 1 (3.6.7)

With the value of (zν) obtained in (3.6.5) this reproduces the relation (3.6.1). The
instantaneous value of ψ, and therefore the order parameter at this time is then clearly
seen to be

〈O〉(tad) ∼ (v)
mα

(n−1)(α+m) = Oad p > 1
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〈O〉(tad) ∼ (v)
mpα

(n−1)(α+mp) = Oad p < 1 (3.6.8)

The value of z requires knowledge of the way space derivatives appear in the equation
of motion. In the examples we have discussed in this paper (as well as in [20, 72]) the
bulk equation of motion contains two space derivatives. Thus with m time derivatives
we have z = 2/m. It is then clear that (3.6.8) reproduces (3.6.2) with β = 1/(n− 1)
as derived above.

Once the scalings of tad and O are known the rescaling of fields and time required
to expose the dynamics in the critical region after breakdown of adiabaticity is clear
- we need to perform

t→ η =
t

tad
ψ → χ =

ψ

Oad
(3.6.9)

The analysis of sections (3.1) and (4.2) can be carried out in a straightforward fashion
leading to a scaling solution

〈O〉(t, v) = (v)
mpα

(n−1)(α+mp) 〈O〉(t/tad, 1) (3.6.10)

which agrees with the Kibble-Zurek solution obtained earlier.
In the above discussion we have indicated what should be the nature of the bulk

theory which leads to nontrivial values of z and ν. In a relativistic bulk theory,
we always start with two time derivatives in the equations of motion. However the
presence of a gauge field and/or a black hole horizon effectively leads to m = 1.
Values of m ≥ 3 would be rather pathological in a bulk theory.

3.7 Remarks

As in [20] and [72] we have demonstrated the emergence of a scaling solution in the
critical region in the probe approximation for a quench which is more natural from the
boundary field theory point of view. The next obvious step is to study this issue with
gravitational backreaction, particularly for the soliton background. Pretty much like
global AdS we expect that for a slow quench which does not come close to a critical
point, a black hole is not formed immediately [33]. A black hole may, however, form
a late times [67, 68, 94]. However near the critical point we expect that a breakdown
of adiabatic evolution leads to a black hole formation at early times, and it would be
interesting to look for critical behavior in this collapse. This would involve coupled
partial differential equations - nevertheless we expect that the zero mode will continue
to play a key role and dominate critical dynamics. In the full problem, however, it is
important to consider potentials which follow from a superpotential [87, 88] so that
the static solution is stable. However once again we expect that near the critical point
the leading non-linearity determines the dynamics. These issues are being explored
at the moment.

Copyright c© Diptarka Das 2014
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Chapter 4

Bi-local Construction of Sp(2N)/dS Higher Spin Correspondence

4.1 Introduction and summary

The proposed duality [95] of the singlet sector of theO(N) vector model in three space-
time dimensions and Vasiliev’s higher spin gauge theory in AdS4 [96] has received
a definite verification[97, 98] and has also thrown valuable light on the origins of
holography. Since the field theory is solvable in the large-N limit, one might hope
that there is an explicit derivation of the higher spin gauge theory from the vector
model, thus providing an explicit understanding of the emergence of the holographic
direction. Indeed, the singlet sector of the O(N) model can be expressed in terms of
a Hamiltonian for the bi-local collective field, σ(~x, ~y) = φi(~x)φi(~y) where φi(~x), i =
1 · · ·N is the O(N) vector field . In [99] it was proposed that Vasiliev’s fields are in fact
components of σ(~x, ~y). The precise connection between the bi-local and HS bulk fields
was written explicitly in the light cone frame[100–102] : the correspondence in general
involves a nonlocal transformation corresponding to a canonical transformation in
phase space. This provides a direct understanding of the emergence of a holographic
direction from the large-N degrees of freedom, in a way similar to the well known
example of the c = 1 Matrix model [103]. In both these models, the large-N degrees
of freedom gave rise to an additional dimension which had to be interpreted as a
spatial dimension 1.

In contrast to AdS/CFT correspondence, any dS/CFT correspondence [9, 10]
involves an emergent holographic direction which is timelike. It is then of interest to
understand how a timelike dimension is generated from large-N degrees of freedom.
Recently, Anninos, Hartman and Strominger [107] put forward a conjecture that the
euclidean Sp(2N) vector model in three dimensions is dual to Vasiliev higher spin
theory in four dimensional de Sitter space.

In this work we construct a collective field theory of the Lorentzian Sp(2N) model
which captures the singlet state dynamics of the Sp(2N) vector model. Using the
results of [99] and [100] we then argue that a natural interpretation of the resulting
action is by double analytic continuation which makes the emergent direction time-
like, relating this to higher spin theory in dS4, in a way reminiscent of the way the
Louiville mode in worldsheet string theory has to be interpreted as a time beyond
critical dimensions [108]. Our map establishes the bi-local theory as the bulk space-
time representation of de Sitter higher spin gravity.

The bilocal collective field is a composite of two Grassmann variables and therefore
might not appear to be a genuine bosonic field. In particular for finite N a sufficiently

1Other instances of emergence of dimensions from large-N degrees of freedom, e.g. Eguchi-Kawai
models [104], Matrix Theory [105, 106] also lead to spatial directions in Lorentzian signature or
Euclidean theories.
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large power of the field operator vanishes, reflecting its Grassmannian origin 2. This
is further reflected on the size of its Hilbert space. The bulk theory cannot be a
usual bosonic theory defined on dS space, though it may be regarded as such in a
perturbative 1/N expansion.

The implementation of the Grassmann origin of the Hilbert space will be given a
central attention in the present work. For this we will describe a geometric (pseudo-
spin) version of the collective theory which will be seen to incorporate these effects.
For dS/CFT, this implies that the true number of degrees of freedom in the dual higher
spin theory in dS is in this framework reduced from what is seen perturbatively (with
G = R2

dS/N being the coupling constant squared). The issue of the size of the Hilbert
space is of central relevance for possible accounting of entropy of de Sitter space. For
pure Gravity in de Sitter space, it has argued that the Entropy being S = A/4G
with a finite area of the horizon requires a finite dimensional Hilbert space [110–112].
Interesting quantum mechanical models have been proposed [111, 113–115] to account
for this. But apparent conflicts between a finite entropy of de Sitter space with the
usual formulations of dS/CFT have been discussed for example in in [116, 117]. In
the present case of dS/CFT we are dealing with N-component quantum field theory
with d=3 dimensional space so clearly the number of degrees of freedom must be
infinite. Consequently the question of Entropy remains open and is an interesting
topic for further investigations.

4.2 The Sp(2N) vector model

The Sp(2N) vector model in d spacetime dimensions is defined by the action

S = i

∫
dtdd−1x

[
{∂tφi1∂tφi2 −∇φi1∇φi2} − V (iφi1φ

i
2)
]

(4.2.1)

where φi1, φ
i
2 with i = 1 · · ·N are N pairs of Grassmann fields. This is of course a

model of ghosts.
In this section we will quantize this model following [118, 119] and [120]. In

this quantization, the fields φi1 and φi2 are hermitian operators, while the canonically
conjugate momenta

P i
1 = i∂tφ

i
2 , P i

2 = −i∂tφi1 (4.2.2)

are anti-hermitian. The Hamiltonian H is hermitian

H = i

∫
dd−1x

[
P i

2P
i
1 +∇φi1∇φi2 + V (iφi1φ

i
2)
]

(4.2.3)

The (equal time) canonical anticommutation relations are

{φai (~x), P b
j (~y)} = −iδijδabδd−1(~x− ~x′)

{φia(~x), φjb(~y)} = {P i
a(~x), P j

b (~y)} = 0 , (a, b = 1, 2) (4.2.4)

2This property of higher spin currents has been already recognized in [109]
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with all other anticommutators vanishing. With these anticommutators the equations
of motion for the corresponding Heisenberg picture operators

∂2
t φ

i
a −∇2φia + V ′ = 0 (4.2.5)

follow. The operator relations (4.2.4) allow a representation of the operators as follows

φai (~x)→ φai (~x) , P a
i → −i

δ

δφai (~x)
(4.2.6)

where φia are now Grassmann fields.
For the free theory, the solution to the equation of motion is

φia(~x, t) =

∫
dd−1k

(2π)d−1
√

2|k|

[
αia(

~k)e−i(|k|t−
~k·~x) + αi†a (~k)ei(|k|t−

~k·~x)
]

(4.2.7)

and the operators αia satisfy

{αi1(~k), α†j2 (~k′)} = iδijδ(~k − ~k′) , {α†i1 (~k), αj2(~k′)} = −iδijδ(~k − ~k′) (4.2.8)

with all the other anticommutators vanishing. The Hamiltonian is given by

H = i

∫
[d~k] |~k|

[
α1(~k)†α2(~k)− α2(~k)†α1(~k)

]
(4.2.9)

The basic commutators lead to

[H,αia(k)] = −kαia(k) , [H,αi†a ] = kαi†a (k) (4.2.10)

To discuss the quantization of the free theory it is useful to review the quantization
of the Sp(2N) oscillator, following [120] 3. The Hamiltonian is

H = i(− ∂2

∂φi2∂φ
i
1

+ k2φi1φ
i
2) (4.2.11)

where φi1, φ
i
2 are N pairs of Grassmann numbers. Because of the Grassmann nature

of the variables the spectrum of the theory is bounded both from below and from
above. The oscillators are defined by (in the Schrodinger picture)

φia =
1√
2k

[αia + αi†a ] (4.2.12)

while the momenta are

P i
a = εab

√
k

2
(αib − α

i†
b ) (4.2.13)

The ground state |0〉 and the highest state |2N〉 are then given by the conditions

αia|0〉 = 0 , αi†a |2N〉 = 0 (4.2.14)

3Note that our notation is different from that of [120]
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with the wavefunctions

Ψ0 = exp[−ikφi1φi2] , Ψ2N = exp[ikφi1φ
i
2] (4.2.15)

and the energy spectrum is given by

En = k[n−N ] , n = 0, 1, · · · , 2N (4.2.16)

Finally, the Feynman correlator of the Grassmann coordinates may be easily seen to
be

〈0|T [φi1(t)φj2(t′)]|0〉 =
iδij

2k
e−ik|t−t

′| (4.2.17)

Extension of these results to the free field theory is straight forward: for each mo-
mentum ~k, we have a fock space with a finite number of states.

4.3 Collective Field Theory for the Sp(2N) model

In the representation (4.2.6) a general wavefunctional is given by Ψ[φia(~x), t]. Our
aim is to obtain a description of the singlet sector of the theory, i.e. wavefunctionals
which are invariant under the Sp(2N) rotations of the fields φia(~x). All the invariants
in field space are functions of the bilocal collective fields

ρ(~x, ~y) ≡ iεabφia(~x)φib(~y) (4.3.1)

We have defined this collective field to be hermitian (which is why there is a i in
the definition). Clearly ρ(~x, ~y) = ρ(~y, ~x). The aim now is to rewrite the theory in
terms of a Hamiltonian which is a functional of ρ(~x, ~y) and its canonical conjugate
−i δ

δρ(~x,~y)
which acts on wavefunctionals which are functionals of ρ(~x, ~y).

It is important to remember that ρ(~x, ~y) is not a genuine bosonic field. This
will have important consequences at finite N . In a perturbative expansion in 1/N ,
however, there is no problem [121] in treating ρ(~x, ~y) as a bosonic field.

Before dealing with the Sp(2N) field theory, it is useful to review some aspects of
the collective theory for the usual O(N) model, starting with the O(N) oscillator.

4.3.1 Collective fields for the O(N) theory

In this section we review the bi-local collective field theory construction for the O(N)
field theory, starting with the O(N) oscillator. This has a Hamiltonian

H =
1

2
[P iP i + k2X iX i] (4.3.2)

The collective variable is the square of the radial coordinate σ = X iX i and the
Jacobian for transformation from X i to σ and the angles is

J(σ) =
1

2
tσ(N−2)/2ΩN−1 (4.3.3)
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where ΩN−1 is the volume of unit SN−1. The idea is to find the Hamiltonain H(σ, ∂
∂σ

)
which acts on wavefunctions [J(σ)]1/2Ψ(σ). The key observation of [122] is that this
can also be obtained by requiring that H(σ, ∂

∂σ
) acting on wavefunctions [J(σ)]1/2Ψ(σ)

is hermitian with the trivial measure dσ. This determines both the Jacobian and the
Hamiltonian and the technique generalizes to higher dimensional field theory. The
final result is well known,

Hcoll = −2
∂

∂σ
σ
∂

∂σ
+

(N − 2)2

8σ
+

1

2
k2σ (4.3.4)

The large-N expansion then proceeds as usual by expanding around the saddle point
solution σ0 which minimizes the potential 4,

σ2
0 =

N2

4k2
(4.3.5)

Clearly, we have to choose the positive sign since in this case σ is a positive real
quantity,

σ0 =
N

2k
(4.3.6)

which reproduces the coincident time two point function 〈0|X i(t)X i(t)|0〉 and the cor-
rect ground state energy, E0 = N

2
k. The subleading contributions are then obtained

by expanding around the saddle point,

σ = σ0 +

√
2N

k
η , Πσ =

√
k

2N
πη (4.3.7)

The quadratic part of the Hamiltonian becomes

H(2) =
1

2

[
π2
η + 4k2η2

]
(4.3.8)

This leads to the excitation spectrum to O(1), En = 2nk with n = 0, 1, · · · ,∞.
The Hamiltonian of course contains all powers of η. Terms with even number of the
fluctuations (πη, η) come with odd factors of σ0. This fact will play a key role in the
following.

In the following it will be necessary to consider wavefunctions. It follows directly
from (4.3.2) that the ground state wavefunction is given by (up to a normalization
which is not important for our purposes)

Ψ0(X i) = exp[−k
2
σ] ∼ exp[−

√
Nk

2
η] (4.3.9)

where we have expanded σ as in (4.3.7), used (4.3.6) and ignored an overall constant.
We should get the same result from the collective theory. Recalling that the collective

4To see why the saddle point approximation is valid, rescale σ → Nσ and Πσ → 1
NΠσ so that

there is an overall factor of N in front of the potential energy term. We will, however, stick to the
unrescaled fields.
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wavefunction is related to the original wavefunction by a Jacobian factor, the ground
state wavefunction follows from (4.3.8)

Ψ′0(η) = [J(σ)]−
1
2 exp[−kη2] (4.3.10)

The presence of the Jacobian is crucial in obtaining agreement with (4.3.9) [123].
Expanding the argument in the Jacobian in powers of η according to (4.3.7) it is easy
to see that the quadratic term in η coming from the Jacobian exactly cancels the
explicit quadratic term in (4.3.10) and the linear term in η is in exact agreement with
(4.3.9). The expression (4.3.10) of course contain all powers of η once exponentiated
- these should also cancel once one takes into account the cubic and higher terms in
the collective Hamiltonian as well as finite N corrections which we have ignored to
begin with. The above formalism can be easily generalized to an additional invariant
potential, since the latter would be a function of σ.

The collective theory for O(N) field theory can be constructed along identical
lines. We reproduce the relevant formulae from [122] which are direct generalizations
of the formulae for the oscillator. The O(N) model has the Hamiltonian

H =
1

2

∫
dd−1x

[
− δ2

δφi(~x)δφi(~x)
+∇φi(~x)∇φi(~x) + U [φi(~x)φi(~x)]

]
(4.3.11)

The singlet sector Hamiltonian in terms of the bi-local collective field σ(~x, ~y) =
φi(~x)φi(~y) and its canonically conjugate momentum Πσ(~x, ~y) is, to leading order in
1/N 5

H
O(N)
coll = 2Tr

[
(ΠσσΠσ) +

N2

16
σ−1

]
− 1

2

∫
d~x∇2

xσ(~x, ~y)|~y=~x + U(σ(~x, ~x)) (4.3.12)

where the spatial coordinates are treated as matrix indices.
So far our considerations are valid for an arbitrary interaction potential U . Let

us now restrict ourselves to the free theory, U = 0 to discuss the large-N solution
explicitly. In momentum space the saddle point solution is

σ(~k1, ~k2) =
N

2|~k1|
δ(~k1 − ~k2) (4.3.13)

Once again we have chosen the positive sign in the solution of the saddle point equa-
tion, and the saddle point value of the collective field agrees with the two point
correlation function of the basic vector field, which should be positive. The 1/N
expansion is generated in a fashion identical to the single oscillator,

σ(~k1, ~k2) = σ0(~k1, ~k2)+

(
|~k1||~k2|

N(|~k1|+ |~k2|)

)− 1
2

η(~k1, ~k2) , Πσ =

(
|~k1||~k2|

N(|~k1|+ |~k2|)

) 1
2

πη(~k1, ~k2)

(4.3.14)

5To subleading order there are singular terms which are crucial for reproducing the correct 1/N
contributions.
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the quadratic piece becomes

H(2) =
1

2

∫
d~k1d~k2

[
πη(~k1, ~k2)πη(~k1, ~k2) + (|~k1|+ |~k2|)2η(~k1, ~k2)η(~k1, ~k2)

]
(4.3.15)

so that the energy spectrum is given by

E(~k1, ~k2) = |~k1|+ |~k2| (4.3.16)

as it should be. It is easy to check that the unequal time two point function of
the fluctuations reproduces the connected part of the two point function of the full
collective field as calculated from the free field theory. A nontrivial U can be reinstated
easily (see e.g. the treatment of the (~φ2)2 model in [99], which discusses the RG flow
to the nontrivial IR fixed point).

4.3.2 Collective theory for the Sp(2N) oscillator

Since there is a representation of the field operator and the conjugate momentum
operator of the Sp(2N) theory in terms of Grassmann fields, (4.2.6), it is clear that
the derivation of the collective field theory of the Sp(2N) model closely parallels
that of the O(N) theory. In this subsection we consider the Sp(2N) oscillator. The
Hamiltonian is given by (4.2.11. The collective variable is

ρ = iεabφiaφ
i
b (4.3.17)

The fully connected correlators of this collective variable have a simple relationship
with those of the O(2N) harmonic oscillator,

〈ρ(t1)ρ(t2) · · · ρ(tn)〉connSp(2N) = −〈σ(t1)σ(t2) · · ·σ(tn)〉connSO(2N) (4.3.18)

This result follows from (4.2.17) and the application of Wick’s theorem for Grassmann
variables.

The collective variable ρ is a Grassmann even variable - it is not an usual bosonic
variable. This key fact is intimately related to the finite number of states of the
Sp(2N) oscillator. In this section we will show that in a 1/N expansion we can
nevertheless proceed, defering a proper discussion of this point to a later section.

The Hamiltonian for the collective theory is obtained by the same method used
to obtain the collective theory in the bosonic case, with various negative sign coming
from the Grassmann nature of the variables. Using the chain rule and taking care of
negative signs coming because of Grassmann numbers, one gets the Jacobian J ′(ρ)
(determined by requiring the hermicity of J−1/2HJ1/2)

J ′(ρ) = A′ ρ−(N+1) (4.3.19)

where A′ is a constant. The negative power of ρ of course reflects the Grassmann
nature of the variables 6 Despite this difference, the final collective Hamiltonian is in

6This ρ dependence of the Jacobian follows from a direct calculation J ′(ρ) =
∫
dφi1dφ

i
2δ(ρ −

iφi1φ
i
2) =

∫
dλeiλρ

∫
dφi1dφ

i
2 e
−iλφi

1φ
i
2 ∼ ρ−(N+1)
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fact identical to the O(2N) oscillator collective Hamiltonian

H
Sp(2N)
coll = −2

∂

∂ρ
ρ
∂

∂ρ
+
N2

2ρ
+

1

2
k2ρ (4.3.20)

This leads to the same saddle point equation, and the solutions satisfy the same
equation as (4.3.5) with N → 2N .

In the O(2N) oscillator, we had to choose the positive sign, since σ is by definition
a real positive variable. In this case, there is no reason for ρ to be positive. In fact we
need to choose the negative sign, since (4.3.18) requires that the one point function
of ρ must be the negative of the one point function of σ.

ρ0 = −N
k

(4.3.21)

It is interesting that the singlet sectors of the O(2N) and Sp(2N) models are described
by two different solutions of the same collective theory.

The leading order ground state energy is the Hamiltonian evaluated on the saddle
point,

Egs = −Nk (4.3.22)

in agreement with (4.2.16). The fluctuation Hamiltonian is obtained as usual by
expanding

ρ = ρ0 +

√
4N

k
ξ , Πρ =

√
k

4N
πξ (4.3.23)

The quadratic Hamiltonian is now negative, essentially because of the negative sign
in the saddle point,

H
(2)
ξ = −1

2

[
π2
ξ + 4k2ξ2

]
(4.3.24)

A standard quantization of this theory leads to a spectrum which is unbounded from
below. We will now argue that we need to quantize this theory rather differently,
in a way similar to the treatment of [124]. This involves defining annihilation and
creation operators aξ, a

†
ξ

ξ =
1√
4k

[aξ + a†ξ] , πξ = i
√
k[aξ − a†ξ] (4.3.25)

which now satisfy

[aξ, a
†
ξ] = −1 , [H, aξ] = −2kaξ , [H, a†ξ] = 2ka†ξ (4.3.26)

Because of the negative sign of the first commutator in (4.3.26) a standard quanti-
zation will lead to a highest energy state annihilated by a†ξ, and then the action of
powers of aξ leads to an infinite tower of states with lower and lower energies. The
highest state has a normalizable wavefunction of the standard form e−kξ

2
(Note that

the expression for πξ has a negative sign compared to the usual harmonic oscillator).
It is easy to see that this standard quantization does not reproduce the correct two-
point function of the Sp(2N) theory, does not lead to the correct spectrum (4.2.16)
and, as shown below, does not lead to the correct wavefunction.
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All this happens because ρ and hence ξ is not really a bosonic variable, and
this allows other possibilities. Consider now a state |0〉ξ which is annihilated by the
annihilation operator aξ. This leads to a wavefunction exp[kξ2], which is inadmissible
if ξ is really a bosonic variable since it would be non-normalizable. However the true
integration is over the Grassmann partons of these collective fields, and in terms of
Grassmann integration this wavefunction is perfectly fine. This is in fact the state
which has to be identified with the ground state of the Sp(2N) oscillator. Including
the factor of the Jacobian, the full wavefunction is (at large N)

Ψ′0ξ[ξ] = [J ′(ρ)]−1/2exp[kξ2] = [−N
k

+ 2

√
N

k
ξ]N/2exp[kξ2] (4.3.27)

Expanding the Jacobian factor in powers of ξ one now sees that the term which is
quadratic in ξ cancels exactly, leaving with

Ψ′0ξ[ξ] = exp[−
√
Nkξ +O(ξ3)] (4.3.28)

This is easily seen to exactly agree with Ψ0 in (4.2.15)

Ψ0 ∼ exp[−1

2
kρ] ∼ exp[−

√
Nkξ] (4.3.29)

up to a constant. Once again we need to take into account the interaction terms in the
collective Hamiltonian to check that the O(ξ3) terms cancel. It can be easily verified
that the propagator of fluctuations ξ will now be negative of the usual harmonic
oscillator propagator. Furthermore the action of a†ξ now generates a tower of states
with the energies (4.2.16) - except that the integer n is not bounded by N .

The fact that we get an unbounded (from above) spectrum from the collective
theory is not a surprise. This is an expansion around N = ∞ and at N = ∞
the spectrum of Sp(2N) is also unbounded. At finite N a change of variables to
ρ is not useful because of the constraints coming from the Grassmann origin of ρ.
Nevertheless, even in the 1/N expansion, the Grassmann origin allows us to consider
wavefunctions which would be otherwise considered inadmissible.

The negative propagator ensures that the relationship (4.3.18) is satisfied for the
2 point functions. Once this choice is made, the relationship (4.3.18) holds for all
m-point functions to the leading order in the large-N limit. As commented earlier,
a term with even number of πξ or ξ would have an odd number of factors of ρ0.
Therefore a n-point vertex in the theory will differ from the corresponding n-point
vertex of the O(N) theory by a factor of (−1)n+1. The connected correlator which
appears in (4.3.18) is the sum of all connected tree diagrams with n external legs.
The collective theory gives us the following Feynman rules

1 Every propagator contributes to a negative sign.

2 A p point vertex has a factor of (−1)p+1

We now argue that these rules ensure the validity of the basic relation (4.3.17). We
do it by the following simple diagrammatic method:
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Figure 4.1: Connected tree level correlators of the collective theory

Consider first the simplest diagram for a n-point function, figure A, which is a
star graph. The net sign of the diagram is (−1)n+1 × (−1)n = −1, where the first
factor is from the vertex a0 and the second one from the number of lines. Now we
proceed to construct all other tree level diagrams from A, by pulling ‘r’ lines resulting
in figure B, which now has vertices, a1 and b1 joined by a new line. It is easy to see,
that the sign of figure A is not changed by this operation. The net sign of figure
B is (−1)(n−r+1)+1 × (−1)(r+1)+1 × (−1)(n+1) = −1, where the 3 factors are from a1,
b1 and the number of lines respectively. In figure C we repeat this method for the
substar diagrams until we exhaust all possibilities. It is easy to see that the sign stays
invariant. Assigning a sign α to the blob, we first find the net sign of the left diagram
in figure C. It turns out to be, α× (−1)(k+1)+1 × (−1)k+1 = −α. After the “pulling”
operation we get α×(−1)(k−r+2)+1×(−1)(r+1)+1×(−1)k+1+1 = −α. Thus it is proved
that in every move the sign is preserved. This proves the relationship (4.3.18) for all
correlation functions.

4.3.3 Sp(2N) Correlators

Our discussion of the bosonic O(N) collective field theory shows that the Sp(2N)
collective field theory in momentum space is a straightforward generalization. In this
subsection we discuss the relevant features of the collective theory for the free Sp(2N)
model.

The collective Hamiltonian is again exactly the same as in the O(N) theory, given
by (4.3.12) with σ → ρ. Since the connected correlators of the collective fields satisfy

〈ρ(~k1, ~k
′
1, t1)ρ(~k2, ~k

′
2, t2) · · · ρ(~kn, ~k

′
n, tn)〉connSp(2N) = −〈σ(~k1, ~k

′
1, t1)σ(~k2, ~k

′
2, t2) · · ·σ(~kn, ~k

′
n, tn)〉connSO(2N)

(4.3.30)
we now need to choose the negative saddle point,

ρ0(~k,~k′, t) = −N
|~k|
δ(~k − ~k′) (4.3.31)
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The fluctuation Hamiltonian once again has a factor of (−1)n+1 for the n-point vertex.
In particular, the propagator of the collective field is negative of that of the O(N) col-
lective field - the quadratic Hamiltonian has an overall negative sign! This is required
- the diagramatic argument for the Sp(2N) oscillator generalizes in a straightforward
fashion, ensuring that (4.3.30) holds.

4.4 Bulk Dual of the Sp(2N) model

In [99], it was proposed that the collective field theory for the d dimensional free
O(N) theory is in fact Vasiliev’s higher spin theory in AdSd+1. It is easy to see that
the collective field has the right collection of fields. Consider for example d = 3. The
field depends on four spatial variables, which may be reorganized as three spatial
coordinates one of which is restricted to be positive and an angle. A fourier series in
the angle then gives rise to a set of fields χ±n which depend on three spatial variables,
with the integer n denoting the conjugate to the angle. Symmetry under interchange
of the arguments of the collective field then requires n to be even integers. But this
is precisely the content of a theory of massless even spin fields in four space-time
dimensions, with n labelling the spin and the two signs corresponding to the two
helicities. (Recall that in four space-time dimensions massless fields with any spin
have just two helicity states).

The precise relationship between collective fields and higher spin fields in AdS was
found in [100] which we now summarize for d = 3. The correspondence is formulated
in the light front quantization. Denote the usual Minkowski coordinates on the space-
time on which the O(N) fields live by t, y, x and define light cone coordinates

x± =
1√
2

(t± y) (4.4.1)

The conjugate momenta to x+, x− are denoted by p−, p+. Then in light front quanti-
zation where x+ is treated as time, the Schrodinger picture fields are φi(x−, x) while
the momentum space fields are given by φi(p+, p). The corresponding collective field
is then defined as

σ(p+
1 , p1; p+

2 , p2) = φi(p+
1 , p1)φi(p+

2 , p2) (4.4.2)

The fluctuation of this field around the saddle point is denoted by Ψ(p+
1 , p1; p+

2 , p2).
Now define the following bilocal field

Φ(p+, px, z, θ) =

∫
dpzdp+

1 dp
+
2 dp1dp2 K(p+, px, z, θ; p+

1 , p1, p
+
2 , p2)Ψ(p+

1 , p1; p+
2 , p2)

(4.4.3)
where the kernel is given by

K(p+, px, z, θ; p+
1 , p1, p

+
2 , p2) = z eizpz δ(p+

1 + p+
2 − p+) δ(p1 + p2 − p)

δ(p1

√
p+

2

p+
1

− p2

√
p+

1

p+
2

− pz) δ(2 tan−1

√
p+

2

p+
1

− θ)
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In [100] it was shown that the Fourier transforms of the field Φ(p+, px, z, θ) with
respect to θ satisfy the same linearized equation of motion as the physical helicity
modes of higher spin gauge fields in AdS4 in light cone gauge. The metric of this
AdS4 is given by the standard Poincare form

ds2 =
1

z2
[−2dx+dx− + dx2 + dz2] =

1

z2
[−dt2 + dy2 + dx2 + dz2] (4.4.4)

The momenta p+, p are conjugate to x−, x. The additional dimension generated from
the large-N degrees of freedom is z, which is canonically conjugate to pz and is given
in terms of the phase space coordinate of the bi-locals by

z =
(x1 − x2)

√
p+

1 p
+
2

p+
1 + p+

2

(4.4.5)

In particular, the linearized equation for the spin zero field, ϕ(x−, x, z), follows from
the quadratic action

S =
1

2

∫
dx+dx−dzdx

[
1

z2

(
−2∂+ϕ∂−ϕ− (∂xϕ)2 − (∂zϕ)2

)
+

2

z4
ϕ2

]
(4.4.6)

which is of course the action of a conformally coupled scalar in the AdS4 with coor-
dinates given by (4.4.5). The actions for the spin-2s fields can be similarly written
down. Even though these actions are derived using light cone coordinates, they can be
covariantized easily since these are free actions. In terms of the coordinates t, y, x, z
the scalar action is given by

S =
1

2

∫
dtdzdxdy

[
1

z2

(
(∂tϕ)2 − (∂yϕ)2 − (∂xϕ)2 − (∂zϕ)2

)
+

2

z4
ϕ2

]
(4.4.7)

Let us now turn to the Sp(2N) collective theory. One can define once again
the fields as in (4.4.3) and (4.4.4). The coordinates (x+, x−, x, z) will continue to
transform appropriately under AdS isometries. However, we saw earlier that the
quadratic part of the Hamiltonian, and therefore the quadratic part of the action will
have an overall negative sign.

A negative kinetic term signifies a pathology. Indeed we derived this theory with
the Lorentzian signature Sp(2N) model, which has negative norm states. The nega-
tive kinetic term of the collective theory is possibly intimately related to this lack of
unitarity.

However, the form of the action (4.4.7) cries out for a analytic continuation

z = iτ , t = −iw (4.4.8)

Under this continuation the action, S becomes

S ′ =
1

2

∫
dτdwdxdy

[
1

τ 2

(
(∂τϕ)2 − (∂yϕ)2 − (∂xϕ)2 − (∂wϕ)2

)
− 2

τ 4
ϕ2

]
(4.4.9)
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The sign of the mass term has not changed in this analytic continuation, and this
action has become the action of a conformally coupled scalar field in de Sitter space
with the metric

ds2 =
1

τ 2
[−dτ 2 + dx2 + dy2 + dw2] (4.4.10)

This mechanism works for all even higher spin fields at the quadratic level.
To summarize, the collective field theory of the three dimensional Lorentzian

Sp(2N) model can be written as a theory of massless even spin fields in AdS4, but with
negative kinetic terms. Under a double analytic continuation this becomes the action
in dS4 with positive kinetic terms. This is consistent with the conjecture of [107]
that the euclidean Sp(N) model is dual to Vasiliev theory in dS4. It is interesting
to note that the way an emergent holographic direction is similar to the way the
Liouville mode has to be interpeted as a time dimension in worldsheet supercritical
string theory [108]. In this latter case, the sign of the kinetic term for the Liouville
mode is negative for d > dcr.

Even for the O(N) model, the collective field is an represents seemingly an over-
complete description, since for a finite number of points in space K, one replaces at
most NK variables by K2 variables, which is much larger in the thermodynamic and
continuum limit. However, in the perturbative 1/N expansion this is not an issue and
the collective theory is known to reproduce the standard results of the O(N) model.
The issue becomes of significance at finite N level.The relevance of incorporating for
such features has been noted in [109, 125].

For the fermionic Sp(2N) model, there appears potentially an even more im-
portant redundancy related to the Grassmannian origin of the construction. Conse-
quently the fields are to obey nontrivial constraint relationships and the Hilbert space
is subject to a cutoff of highly excited states. This ‘exclusion principle’ was noted
already in the AdS correspondence involving SN orbifolds[126–128].

In an expansion around N =∞ most effects of this are invisible and our discussion
shows that this can be regarded as a theory of higher spin fields in dS is insensitive
to these effects. However, as we saw above, the Grassmann origin was already of
importance in choosing the correct saddle point and the correct quanization of the
quadratic hamiltonian. In the next section we will address the question of finite N and
the Hilbert space of the bi-local theory. In the framework of geometric (pseudospin)
representation we will give evidence that the bi-local theory is non-perturbatively
satisfactory at the finite N level.

4.5 Geometric Representation and The Hilbert Space

The bi-local collective field representation is seen to give a bulk description dS space
and the Higher Spin fields. It provides an interacting theory with vertices governed
by G = 1/N as the coupling constant. We would now to show that the collective
theory has an equivalent geometric (Pseudo) Spin variable description appropriate
for nonperturbative considerations. The essence of this (geometric) description is in
reinterpreting the bi-local collective fields (and their canonical conjugates) as matrix
variables (of infinite dimensionality) endowed with a Kahler structure.This geometric
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description will provide a tractable framework for quantization and non-perturbative
definition of the bi-local and HS de Sitter theory. It will be seen capable to incorporate
non-perturbative features related to the Grassmannian origin of bi-local fields and
its Hilbert space. Pseudo-spin collective variables represent all Sp(2N) invariant
variables of the theory (both commuting and non-commuting). These close a compact
algebra and at large N are constrained by the corresponding Casimir operator. One
therefore has an algebraic pseudo-spin system whose nonlinearity is governed by the
coupling constant G = 1/N . As such they have been employed earlier for developing
a large N expansion [129] and as a model for quantization [130]. This version of
the theory is in its perturbative (1/N) expansion identical to the bi-local collective
representation. It therefore has the same map to and correspondence with Higher
Spin dS4 at perturbative level. We will see however that the geometric representation
becomes of use for defining (and evaluating) the Hilbert space and its quantization.

To describe the pseudo-spin description of the Sp(2N) theory we will follow the
quantization procedure of [131]. In this approach one starts from the action:

S =

∫
ddx dt(∂µηi1∂µη

i
2) (4.5.1)

and deduces the canonical anti-commutation relations

{ηi1(x, t)∂tη
j
2(x′, t)} = −{ηi2(x, t)∂tη

j
1(x′, t)} = iδd(x− x′)δij (4.5.2)

The quantization based on the mode expansion

ηi1(x) =

∫
ddk

(2π)d/2
√

2ωk
(ai†k+e

−ikx + aik−e
ikx)

ηi2(x) =

∫
ddk

(2π)d/2
√

2ωk
(−ai†k−e

−ikx + aik+e
ikx) (4.5.3)

with

{aik−, a
j†
k′−} = {aik+, a

j†
k′+} = δd(k − k′)δij (4.5.4)

Note that in this approach the operators ηia are not hermitian, but pseudo-hermitian
in the sense of [132].

Pseudo-spin bi-local variables will be introduced based on Sp(2N) invariance, we
have the vectors:

η = (η1
1, η

1
2, η

2
1, η

2
2, · · · , ηN1 , ηN2 )

a(k) = (a1
k−, a

1
k+, a

2
k−, a

2
k+, · · · , aNk−, aNk+)

ã(k) = (a1†
k+,−a

1†
k−, a

2†
k+,−a

2†
k−, · · · , a

N+
k† ,−a

N†
k−) (4.5.5)

and the notation:

η(x) =

∫
ddk

(2π)d/2
√

2ωk
(ã(k)e−ikx + a(k)eikx) (4.5.6)
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so that a complete set of Sp(2N) invariant operators now follows:

S(p1, p2) =
−i

2
√
N
aT (p1)εNa(p2) =

i

2
√
N

N∑
i=1

(aip1+a
i
p2− + aip2+a

i
p1−)

S†(p1, p2) =
−i

2
√
N
ãT (p1)εN ã(p2) =

i

2
√
N

N∑
i=1

(ai†p1+a
i†
p2− + ai†p2+a

i†
p1−)

B(p1, p2) = ãT (p1)εNa(p2) =
N∑
i=1

ai†p1+a
i
p2+ + ai†p1−a

i
p2− (4.5.7)

and εN = ε⊗ IN , ε =

(
0 1
−1 0

)
These invariant operators close an invariant algebra. The commutation relations

are found to equal:[
S(~p1, ~p2), S†(~p3, ~p4)

]
=

1

2
(δ~p2,~p3δ~p4,~p1 + δ~p2,~p4δ~p3,~p1)− 1

4N
[δ~p2,~p3B(~p4, ~p1) + δ~p2,~p4B(~p3, ~p1)

+ δ~p1,~p3B(~p4, ~p2) + δ~p1,~p4B(~p3, ~p2)][
B(~p1, ~p2), S†(~p3, ~p4)

]
= δ~p2,~p3S

†(~p1, ~p4) + δ~p2,~p4S
†(~p1, ~p3)[

B(~p1, ~p2), S(~p3, ~p4)
]

= −δ~p1,~p3S(~p2, ~p4)− δ~p1,~p4S(~p2, ~p3) (4.5.8)

The singlet sector of the original Sp(2N) theory is characterized by a further
constraint. This constraint is is associated with the Casimir operator of of the algebra
and can be shown to take the form:

4

N
S† ? S + (1− 1

N
B) ? (1− 1

N
B) = I (4.5.9)

Here we have used the matrix star product notation: ? product as: with A ? B =∫
d~p2A(~p1~p2)B(~p2~p3).

The form of the Casimir, which commutes with the above pseudo-spin fields points
to the compact nature of the bi-local pseudo-spin algebra associated with the Sp(2N)
theory. This will have major consequences which we will highlight later.

Indeed it is interesting to compare the algebra with the bosonic case, where we
have:

S(p1, p2) =
1

2
√
N

2N∑
i=1

ai(p1)ai(p2)

S†(p1, p2) =
1

2
√
N

2N∑
i=1

a†i (p1)a†i (p2)

B(p1, p2) =
2N∑
i=1

a†i (p1)ai(p2) (4.5.10)

with the commutation relations:[
S(~p1, ~p2), S†(~p3, ~p4)

]
=

1

2
(δ~p2,~p3δ~p4,~p1 + δ~p2,~p4δ~p3,~p1) +

1

4N
[δ~p2,~p3B(~p4, ~p1) + δ~p2,~p4B(~p3, ~p1)
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+ δ~p1,~p3B(~p4, ~p2) + δ~p1,~p4B(~p3, ~p2)][
B(~p1, ~p2), S†(~p3, ~p4)

]
= δ~p2,~p3S

†(~p1, ~p4) + δ~p2,~p4S
†(~p1, ~p3)[

B(~p1, ~p2), S(~p3, ~p4)
]

= −δ~p1,~p3S(~p2, ~p4)− δ~p1,~p4S(~p2, ~p3) (4.5.11)

In this case the Casimir constraint is found to equal:

− 4

N
S† ? S + (1 +

1

N
B) ? (1 +

1

N
B) = I (4.5.12)

featuring the non-compact nature of the bosonic problem.
We can see therefore that the singlet sectors of the fermionic Sp(2N) theory

and the bosonic O(2N) theory can be described in analogous a bi-local pseudo-spin
algebraic formulations with a quadratic Casimir taking the form:

4γS† ? S + (1− γB) ? (1− γB) = I (4.5.13)

the difference being that with γ = 1
N

(− 1
N

) for the fermionic (bosonic) case respec-
tively. This signifies the compact versus the non-compact nature of the algebra, but
also exhibits the relationship obtained through the N ↔ −N switch that was central
in the argument for de Sitter correspondence in [107].

From this algebraic bi-local formulation one can easily see the the Collective field
representation(s) that we have discussed in sections 2 and 3. Very simply, the Casimir
constraints can be solved, and the algebra implemented in terms of a canonical pair
of bi-local fields:

S(p1p2) =

√
−γ
2

∫
dy1dy2e

−i(p1y2+p2y2){− 2

κp1κp2

Π ?Ψ ? Π(y1y2)− 1

2γ2κp1κp2

1

Ψ
(y1y2)

+
κp1κp2

2
Ψ(y1y2)− iκp1

κp2

Ψ ? Π(y1y2)− iκp2

κp1

Π ?Ψ(y1y2)}

S†(p1p2) =

√
−γ
2

∫
dy1dy2e

−i(p1y2+p2y2){− 2

κp1κp2

Π ?Ψ ? Π(y1y2)− 1

2γ2κp1κp2

1

Ψ
(y1y2)

+
κp1κp2

2
Ψ(y1y2) + i

κp1

κp2

Ψ ? Π(y1y2) + i
κp2

κp1

Π ?Ψ(y1y2)}

B(p1p2) =
1

γ
+

∫
dy1dy2e

−i(p1y2+p2y2){ 2

κp1κp2

Π ?Ψ ? Π(y1y2) +
1

2γ2κp1κp2

1

Ψ
(y1y2)

+
κp1κp2

2
Ψ(y1y2)− iκp1

κp2

Ψ ? Π(y1y2) + i
κp2

κp1

Π ?Ψ(y1y2)} (4.5.14)

where κp =
√
ωp.

Recalling that the Hamiltonian is given in terms of B we now see that its bi-
local form is the same in the fermionic and the bosonic case. This explains the
feature that we have established by direct construction in Sec. 2,3. While the bi-
local field representation of B is the same in the fermionic and bosonic cases, the
difference is seen in the representations of operators S and S†. These operators
create singlet states in the Hilbert space and the difference contained in the sign of
gamma implies the opposite shifts for the background fields that we have identified
in Sec. 2,3. The algebraic pseudo spin reformulation is therefore seen to account for
all the perturbative (1/N) features of the the bi-local theory that we have identified
in Sec. 2,3. However, in addition and we would like to emphasize that, the algebraic
formulation provides a proper framework for defining the bi-local Hilbert space.
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4.5.1 Quantization and the Hilbert Space

The bi-local pseudo-spin algebra has several equivalent representations that turn out
to be useful. Beside that collective representation that we have explained above, one
has the simple oscillator representation:

S(p1, p2) = α ? (1− 1

N
α† ? α)

1
2 (p1, p2)

S†(p1, p2) = (1− 1

N
α† ? α)

1
2 ? α†(p1, p2)

B(p1, p2) = 2 α† ? α(p1, p2) (4.5.15)

with standard canonical canonical commutators (or Poisson brackets).
A more relevant geometric representation is obtained through a change:

α = Z(1 +
1

N
Z̄Z)−

1
2

α† = (1 +
1

N
Z̄Z)−

1
2 Z̄ (4.5.16)

The pseudo-spins in the Z representation are given by:

S(p1, p2) = Z ? (1 +
1

N
Z̄ ? Z)−1(p1, p2)

S†(p1, p2) = (1 +
1

N
Z̄ ? Z)−1 ? Z̄(p1, p2)

B(p1, p2) = 2 Z ? (1 +
1

N
Z̄ ? Z)−1 ? Z̄(p1, p2) (4.5.17)

It’s easy to see that this satisfy the Casimir constraint: 4
N
S† ? S + (1− 1

N
B)2 = 1

One can write the Lagrangian in this Z representation as:

L = i

∫
dt tr[Z(1 +

1

N
Z̄Z)−1 ˙̄Z − Ż(1 +

1

N
Z̄Z)−1Z̄]−H (4.5.18)

For regularization purposes, it is useful to consider putting ~x in a box and limiting
the momenta by a cutoff Λ: this makes the bi-local fields into finite dimensional
matrices (which we will take to be a size K). For Sp(2N) one deals with a K ×
K dimensional complex matrix Z and we have obtained in the above a compact
symmetric (Kahler) space :

ds2 = tr[dZ(1− Z̄Z)−1dZ̄(1− ZZ̄)−1] (4.5.19)

According to the classification of [133], this would correspond to manifoldMI(K,K).
We note that the standard fermionic problem which was considered in detail in [130]
corresponds to manifold MIII(K,K) of complex antisymmetric matrices.

Quantization on Kahler manifolds in general has been formulated in detail by
Berezin [130]. We also note that the usefullnes of Kahler quantization for discretizing
de Sitter space was pointed out by A. Volovich in a quantum mechanical scenario[113].
In the present Quantization we are dealing with a field theory with infinitely many
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degrees of freedom and infinite Khaler matrix variables. We will now summarize
some of the results of quantization which are directly relevant to the Sp(2N) bi-
local collective fields theory. Commutation relations of this system follow from the
Poisson Brackets associated with the Lagrangian L(Z̄, Z). States in the Hilbert space
are represented by (holomorphic) functions (functionals) of the bi-locals Z(k, l). A
Kahler scalar product defining the bi-local Hilbert space reads:

(F1, F2) = C(N,K)

∫
dµ(Z̄, Z)F1(Z)F2(Z̄) det[1 + Z̄Z]−N (4.5.20)

with the (Kahler) integration measure:

dµ = det[1 + Z̄Z]−2KdZ̄dZ (4.5.21)

The normalization constant is found from requiring (F1, F1) = 1 for F = 1. Let:

a(N,K) =
1

C(N,K)
=

∫
dµ(Z̄, Z) det[1 + Z̄Z]−N (4.5.22)

This leads to the matrix integral (complex Penner Model)

a(N,K) =
1

C(N,K)
=

∫ K∏
k,l=1

dZ̄(k, l)dZ(k, l) det[1 + Z̄Z]−2K−N (4.5.23)

which determines C(N,K).
The following results on quantization of this type of Kahler system are of note:

First, the parameter N : much like for ordinary spin, one can show that N (and
thereforeG in Higher Spin Theory) can only take integer values, i.e. N = 0, 1, 2, 3, · · · .
Next, one has question about the total number of states in the above Hilbert space.
Naively, bi-local theory would seem to grossly overcount the number of states of the
original fermionic theory. Originally one essentially had 2NK fermionic degrees of
freedom with a finite Hilbert space. The bi-local description is based on (complex)
bosonic variables of dimensions K2 and the corresponding Hilbert space would appear
to be much larger. But due to the compact nature of the phase space, the number of
states much smaller.

We will now evaluate this number (at finite N and K) for the present case of
Sp(2N) (in [130] ordinary fermions were studied) and show that the exact dimen-
sion of the bi-local Hilbert space in geometric (Kahler) quantization agrees with the
dimension of the singlet Hilbert space of the Sp(2N) fermionic theory.

The dimension of quantized Hilbert space is found as follows: Considering the
operator Ô = I one has that:

Tr(I) = C(N,K)

∫ K∏
k,l=1

dZ̄(k, l)dZ(k, l) det[1 + Z̄Z]−2K (4.5.24)

Consequently the dimension of the bi-local Hilbert space is given by:

Dim HB =
C(N,K)

C(0, K)
=

a(0, K)

a(N,K)
(4.5.25)
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The evaluation of the matrix (Penner) integral therefore also determines the di-
mension of the bi-local Hilbert space. Since this evaluation is a little bit involved, we
present it in the following. Evaluation of matrix integrals (for real matrices) is given
in [134] the extension to the complex case was considered in[135].

We will use results of [133], whereby every (complex) matrix can be reduced
through (symmetry) transformations to a diagonal form:

Z(k, l)→


ω1

ω2 0
ω3

0 . . .

ωK

 (4.5.26)

and the matrix integration measure becomes:

[dZ̄dZ] = |∆(ω)|2
K∏
l=1

dωldΩ (4.5.27)

where dΩ denotes “angular” parts of the integration and ∆(x1, · · · , xK) =
∏

k<l(xk−
xl) is a Vandermonde determinant, with xi = ω2

i . Consequently the matrix integral
for a(N,K) (and C(N,K)) becomes:

a(N,K) =
Vol Ω

K!

∫
∆(x1, · · · , xK)2

∏
l

(1 + ω2
l )
−2K−N

∏
l

dωl (4.5.28)

changing variables: xi = − yi
1−yi , we get:

a(N,K) =
Vol Ω

2KK!

∫ Λ

0

K∏
i

dyi∆(y1, · · · , yK)2
∏
i

(1− yi)N (4.5.29)

This integral can be evaluated exactly. It belongs to a class of integrals evaluated
by Selberg in 1944 [136]:

I(α, β, γ, n) =

∫ 1

0

dx1 · · ·
∫ 1

0

dxn|∆(x)|2γ
n∏
j=1

xα−1
j (1− xj)β−1

=
n−1∏
j=0

Γ(1 + γ + jγ)Γ(α + jγ)Γ(β + jγ)

Γ(1 + γ)Γ(α + β + (n+ j − 1)γ)
(4.5.30)

we have the case with α = 1, β = N + 1, γ = 1, n = K and

I(1, N + 1, 1, K) =
K−1∏
j=0

Γ(2 + j)Γ(1 + j)Γ(N + 1 + j)

Γ(2)Γ(N +K + j + 1)
(4.5.31)
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We therefore obtain the following formula for the number of states in our Bi-local
Sp(2N) Hilbert space:

Dim HB =
K−1∏
j=0

Γ(j + 1)Γ(N +K + j + 1)

Γ(K + j + 1)Γ(N + j + 1)
(4.5.32)

We have compared this number with explicit enumeration of Sp(2N) invariant
states in the fermionic Hilbert space (for low values of N and K) and found com-
plete agreement. It is probably not that difficult to prove agreement for all N,K.
This settles however the potential problem of overcompletness of the bi-local repre-
sentation. Since the Sp(2N) counting uses the fermionic nature of creation operators
and features exclusion when occupation numbers grow above certain limit it is seen
that bi-local geometric quantization elegantly incorporates these effects. The com-
pact nature of the associated infinite dimensional Kahler manifold secures the correct
dimensionality of the the singlet Hilbert space. By using Stirling’s approximation
for the number of states in the bi-local Hilbert space (4.5.32), we see the dimension
growing linearly in N (with K � N):

ln(Dim HB) ∼ 2NK ln 2 at the leading order (4.5.33)

This is a clear demonstration of the presence of an N -dependent cutoff in agreement
with the fermionic nature of the original Sp(2N) Hilbert space. So in the nonlinear
bi-local theory with G = 1/N as coupling constant, we have the desired effect that
the Hilbert space is cutoff through 1/G effects. Consequently we conclude that the
geometric bi-local representation with infinite dimensional matrices Z(k, l) provides
a complete framework for quantization of the bi-local theory and of de Sitter HS
Gravity.

4.6 Comments

We have motivated the use of double analytic continuation and hence the connection
between the Sp(2N) model and de Sitter higher field theory for the quadratic action
for the collective field. To establish this connection one of course needs to establish
this for the interaction terms. This is of course highly nontrivial, and in fact the
connection between the collective theory for the O(N) model and the AdS higher spin
theory is only beginning to be understood. We believe that once this is understood
well enough one can address the question for the Sp(2N)-dS connection.

In this paper we have dealt mostly with the free Sp(2N) vector model. As the
parallel O(N)/AdS case this theory is characterized with an infinite sequence of con-
served higher spin currents and associated conserved charges. The question regarding
the implementation of the Coleman-Mandula theorem then arises, this question was
discussed recently in [137–139]. One can expected that identical conclusions hold for
the present Sp(2N) case. The bi-local collective field theory technqiue is trivially ex-
tendible to the linear sigma model based on Sp(2N), as commented in section (4.2).
Of particular interest is the IR behavior of the theory which presumably takes the
theory from the Gaussian fixed point to a nontrivial fixed point.
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It is well known that dS/CFT correspondence is quite different from AdS/CFT
correspondence, particularly in the interpretation of bulk correlation functions [9–12].
We have not addressed these issues in this paper. Recently it has been proposed that
the Sp(2N)/dS connection can be used to understand subtle points about dS/CFT
[109]. We hope that an explicit construction as described in this paper will be valuable
for a deeper understanding of these issues.

The bi-local formulation that we have presented was cast in a geometric, pseudo-
spin framework. We have suggested that this representation offers the best framework
for quantization of the bi-local theory and consequently the Hilbert space in dS/CFT.
We have demonstrated through counting of the size of the Hilbert space that it in-
corporates finite N effects through a cutoff which depends on the coupling constant
of the theory: G = 1/N . Most importantly it incorporates the finite N exclusion
principle and provides an explanation on the quantization of G = 1/N from the bulk
point of view. These features are obviously of definite relevance for understanding
quantization of Gravity in de Sitter space-time. Nevertheless the question of under-
standing de Sitter Entropy from this 3 dimensional CFT remains an interesting and
challenging problem.

It would be interesting to consider the analogues of Sp(2N)/dS correspondence in
the CFT2/Chern-Simons version[140–142], as well as to three dimensional conformal
theories which have a line of fixed points, as in [143]. Finally higher spin theories
arise as limits of string theory in several contexts, e.g. [144] and [143]. It would be
interesting to see if these models can be modified to realize a dS/CFT correspondence
in string theory.

Copyright c© Diptarka Das 2014
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Chapter 5

Double Trace Flows and Holographic RG in dS/CFT correspondence

5.1 Introduction

The dS/CFT correspondence [110, 9, 11] proposes that quantum gravity in asymp-
totically de Sitter space is dual to a Euclidean conformal field theory which lives
on I + or I −. Specifically, it has been proposed that the partition function of the
CFT deformed by single trace operators (which equals the generating functional for
correlators of the CFT) is the Bunch-Davies wavefunctional obtained by performing
the bulk path integral with Dirichlet boundary conditions on I + and Bunch-Davies
condition in the infinite past. Unlike in AdS/CFT [5]-[15], the meaning of this cor-
respondence is not completely clear, particularly because of the difficulty in defining
observables in de Sitter space [110]. While these issues are obviously important, one
can nevertheless perform computation in the dS bulk where gravity is treated semi-
classically [11]. Keeping this in view, in this note we will address the question: if a
dS/CFT correspondence does exist, what does it say about the dual field theory?

To begin with, the dual field theory cannot be unitary in the usual sense [11, 107].
The symmetry group of the putative d-dimensional Euclidean CFT, SO(d + 1, 1),
is the isometry group of both dSd+1 and Euclidean AdSd+1. If the CFT is unitary,
one would expect that the dual is a bulk theory living in Euclidean AdSd+1. Thus,
the CFT dual to dSd+1 is non-unitary. On the other hand, there is a unitary time
evolution in the dSd+1 bulk (examples of which we will consider explicitly below); if
the holographic correspondence is true, this will clearly imply some constraints on
the dual field theory. In this note, we will explore these constraints on the RG flow
of double and triple trace deformations in the dual field theory. For double trace
couplings, the story for AdS is well known [80, 83, 85]: for a relevant deformation
with positive coupling, the theory flows into a IR fixed point, in complete agreement
with the prediction of the dual large-N field theory.

We will calculate the beta function for the double and triple trace couplings of a
proposed CFT dual to de Sitter space using the holographic renormalization group
techniques of [145] and [146] (for previous work on the subject, see [147]-[148]). We will
show that the beta function has the same structure as that expected from general
field theory considerations, along with holographically determined coefficients. In
particular the coefficient of the quadratic term of the double trace beta function
equals the normalization of the two point function; similar statements are true for
the triple trace beta function. For dS4, we find that the specific choice of operator
normalization which leads to real n-point correlation functions [107] also leads to
beta functions with real coefficients. This leads to a beta function whose quadratic
term differs in sign from that in Euclidean AdS4, so that the IR fixed point now
appears at negative rather than positive coupling. The recent proposal of a duality
between Sp(N) vector models in three Euclidean dimensions and Vasiliev theory in

66



dS4 [107]-[149] provides a specific realization of the above result.
For dSd+1 with even d, however, we find, first of all, that no choice of operator

normalization exists which ensures absolute reality of the n-point functions; further-
more, any choice of operator normalization which ensures reality of coefficients of
the beta-functions forces us to have n-point functions with very specific n-dependent
complex phases, 〈O1 · · ·On〉 ∼ i(n−2)(1−d)/2 as explained in Section 5.7. These asser-
tions are proved in Section 5.7 under the general condition of real coupling constants
in the bulk Lagrangian. It is important to note that the reality of the coefficients of
the bulk Lagrangian, which is tied to the unitarity of the bulk field theory, plays a
crucial role here.

5.2 The main result

In this section we first derive the field theory beta function at leading order of 1/N .
We then summarize our findings for the holographic beta function.

5.2.1 Field theory: 2-pt function vs. double trace beta-function

Consider the two-point function of an operator O(x) in a d-dimensional Euclidean
CFT:

〈O(k1)O(k2)〉0 = G0(k)(2π)dδ(k1 + k2), G0(k) = bk−2ν , 2ν ≡ d− 2∆ (5.2.1)

where O is a scalar operator of dimension ∆ 1. The exponent of k follows from
dimensional analysis; the subscript 0 implies that the correlator is computed in the
unperturbed CFT. The constant b denotes the normalization of the operator O.

In the following we will assume that, for large central charge c of the CFT, the
leading contribution to the 2n-point function of O has a factorized form (similar to
Wick’s theorem):

〈O(k1)O(k2)....O(k2n〉 =

[ ∑
permutations

〈O(ki1)O(ki2)〉...〈O(ki2N−1
)O(ki2N )〉

]
+ ...

(5.2.2)
where the ... terms at the end denote O(1/c) corrections. Well-known CFT’s with
such properties are conformal large N gauge theories with O a single trace operator
(or conformal large N vector theories with O some appropriate bilinear of vectors)2.

This has the following consequences:

1. The dimension of the “double trace” operator O2 is 2∆. 3

1 In the context of (A)dS/CFT, we will consider alternative quantization, where O will be iden-
tified with O−, as in (5.3.15). In that case, ∆ = ∆− (see (5.3.6)), and the value of ν follows the
usual definition. Among other things, the choice of alternative quantization ensures that the double
trace flow is relevant.

2 For more general examples, see, e.g. [150].
3We will call O and O2 “single trace” and “double trace” operators, respectively, by analogy

with large N gauge theories; however, at least for the purposes of this section, this only implies the
factorization property (5.2.2).
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2. Under a double trace deformation (f0 is a bare coupling)

S = S0 +
f0

2

∫
ddxO(x)2 (5.2.3)

the Green’s function (5.2.1) changes to 4

Gf (k) = G0(k)− f0G0(k)2 + ... =
G0(k)

1 + f0G0(k)
(5.2.4)

We will derive the same equation in (5.4.4) from a dS bulk dual.

The above Green’s function implies the following ‘running coupling constant’ 5

f(k) =
f0

1 + f0G0(k)
(5.2.5)

Let us define a dimensionless renormalized coupling λ(µ) by the relation 6

f(µ) = λ(µ)µ2ν (5.2.6)

By using the above equations, we get

λ(µ) =
f0

µ2ν + f0b

Since f0 is a bare coupling, it should not depend on µ. By differentiating the above
with respect to µ, we get

µ
dλ(µ)

dµ
= −2νλ+ 2νbλ2 (5.2.7)

At this stage the constant b is arbitrary and is not necessarily real; holography allows
us to determine the value of b, as in (5.3.18) (for a dS/CFT) where b is complex
and (5.3.21) (for AdS/CFT) where b is real and positive. For unitary theories, on
general grounds, b must be real and positive and we have the well-known result that
the theory flows to a IR fixed point at positive coupling.

Note that we have arrived at (5.2.7) with minimal assumptions about the CFT
and about the operator O (essentially its scaling and factorization).

5.2.2 Bulk dual

Let us now assume that our CFT has a bulk dual. The SO(d + 1, 1) conformal
symmetry implies that the bulk must be either AdSd+1 or dSd+1. A double trace
deformation then translates to modified boundary conditions for the dual bulk field

4This is easy to derive by expanding exp[−S] = exp[−S0](1−Sint+ 1
2S

2
int− ...), and using (5.2.2).

5We define the running coupling f(k) by Gf (k) =: G0(k) − f(k)G0(k)2 (thus f(k) represents
the Dyson Schwinger sum of an infinite number of Feynman diagrams in the middle expression of
(5.2.4)).

6Note that f(k) is of dimension 2ν ≡ d− 2∆ since O2 is of dimension 2∆.
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[80]. For ν > 0 in (5.2.1) the deformation has to be around alternative quantization.
Following the procedure of integrating out geometry devised in [145] and [146] we
will derive the beta-function of the field theory from bulk Schrodinger equations. For
AdS the time in the Schrodinger equation is euclidean and identified with the radial
coordinate, which is identified with the RG scale of the field theory: this derivation
is already contained in [145, 146]. For dS, bulk evolution is in real time, and the
precise relationship of time with the field theory scale is less clear. If T denotes the
bulk time in inflationary coordinates (which in our convention is negative), we will
find that the beta function (5.2.7) is again reproduced, provided we identify (−iT )
with the RG scale of the dual theory.

We will find below that, the equation (5.2.4) is reproduced holographically both in
the case of AdS and dS (see (5.4.3) and (5.4.4)). Further, with the above holographic
identification of the field theory cut-off, the beta-function (5.2.7) is reproduced exactly
in both cases. For dS, unlike in AdS we cannot demand that b > 0 or even real in the
field theory. However, for dS4 it was argued in [107] that the only way to ensure real
n point functions is to have b real and negative. This is the normalization used in [11]
as well. This leads to the conclusion that the IR fixed point of the dual theory is at
negative coupling. This is consistent with the conjecture of [107]: indeed a calculation
of the beta function of Sp(N) field theory leads to the same beta function (this has
been calculated to one loop in [131]).

However, for dSd+1 with even d, as explained at the end of the Introduction,
reality of b is only possible if one allows for specific n-dependent complex phases of
the n-point correlation functions (see Section 5.7 for details).

5.3 Holographic dictionaries

5.3.1 dS/CFT dictionary

We will consider the inflationary patch of dSd+1 with a metric

ds2 =
L2
dS

T 2

[
−dT 2 + d~x2

]
(5.3.1)

with −∞ ≤ T ≤ 0 We will consider a massive minimally coupled scalar in this
geometry with the action

Sε = Sgr +
1

2GN

∫ ε

−∞
dT

∫
ddx

(
LdS
−T

)d+1
[(
−T
LdS

)2

[(∂Tφ)2 − (∇φ)2]−m2φ2

]
(5.3.2)

where Sgr is the gravity action and ε is a cutoff. In the following we will consider the
dynamics of the scalar - we will therefore drop the gravity part. We will work in a
probe approximation and ignore the backreaction on gravity. A bulk wavefunction
can be now defined by the path integral

Ψ[φ0(~x), ε] =

∫
φ(ε,~x)=φ0(~x)

Dφ(T, ~x)exp (iSε) (5.3.3)
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where the field satisfies Bunch-Davies conditions at T = −∞. Sε is the action ob-
tained by integrating from T = −∞ to T = ε, and ε < 0.

In the following we will use a notation

ρ ≡

√
Ld−1
dS

GN

(5.3.4)

The dS/CFT correspondence as interpreted in [11, 12, 107, 149] then claims that
this wavefunctional is related to the partition function of a dual CFT in the presence
of a source. More precisely, in the standard quantization of the CFT

〈exp

[∫
ddxφ0(~x)Z(ε)O+(~x)

]
〉st = Ψ[φ0(~x), ε], Z(ε) =

ρ
√
γ

(−iε)−∆− (5.3.5)

where

∆± = d/2± ν, ν ≡
√
d2/4−m2L2

dS (5.3.6)

Here Z(ε) is a normalization factor used to define the GKPW relation (5.3.5). The
important part of this factor is the numerical coefficient γ which we treat a priori
to be complex. This constant is taken to be γ = 1 in [12, 107, 149]. We will come
back to a detailed discussion of this coefficient later. Note that the factor (−iε) is
naturally identified with the field theory UV cutoff [107].

We will be concerned with the semiclassical limit where the functional integral on
the right hand side of (5.3.3) can be evaluated by saddle point. The classical solution
which satisfies the Bunch-Davies condition at T = −∞ and the specified boundary
condition at T = ε is given, in momentum space, by

φ(T, k) =

(
T

ε

)d/2
H

(2)
ν (−kT )

H
(2)
ν (−kε)

φ0(~k) (5.3.7)

where ν is given by (5.3.6). This leads to the following on-shell action

iSon = − i

2GN

∫
[dk] Ld−1

dS

(
∆−

(−ε)d
−

kεH
(2)
ν−1(−kε)

(−ε)dH(2)
ν (−kε)

)
φ0(~k)φ0(−~k) (5.3.8)

At late times k|ε| � 1

iSon = −iρ
2

2

∫
[dk]

(
∆−

(−ε)d
− Γ(1− ν)

Γ(2− ν)

k2

2(−ε)d−2

)
φ0(~k)φ0(−~k)

+
ρ2

2

∫
[dk]φ0(~k)φ0(−~k)(−iε)−2∆− H(k) (5.3.9)

where

H(k) = (i)d−1C1(ν)k2ν , C1(ν) ≡ −2ν
Γ(1− ν)

Γ(1 + ν)
2−2ν (5.3.10)

In the semiclassical limit the wavefunction is then

Ψ[φ0(~x), ε] ∼ exp[iSon] (5.3.11)
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It may be easily checked that at early times k|ε| � 1 this reproduces the ground state

of a bunch of harmonic oscillators with “coordinates” χε(k) = (−ε) 1−d
2 φ(k). At late

times k|ε| � 1 we need to remove the divergent piece by holographic renormalization
and define the wavefunction by

Ψ[φ0(~x), ε] ∼ exp[iS ′on] (5.3.12)

where

iS ′on =
Ld−1
dS

2GN

∫
[dk]φ0(~k)φ0(−~k)(−iε)−2∆− H(k) (5.3.13)

is the finite part of the on-shell action. The divergent first term in (5.3.9) has to
be removed by addition of a counterterm to the action. Using (5.3.5) the two point
correlator of the dual operator O+, is given by

〈O+(k)O+(−k)〉st = Gst(k) = γH(k) = γ id−1C1(ν) k2ν (5.3.14)

We will be interested in alternative quantization. The generating functional for
correlators in the appropriate CFT in this case is obtained by extending the corre-
sponding prescription in AdS [89],

〈exp

[∫
ddxJ(~x)O−(~x)

]
〉alt =

∫
Dφ0(~x)〈exp

[∫
ddxφ0(~x)Z(ε)O+(~x)

]
〉st exp

[
Z(ε)

∫
ddx

J(~x)

2ν
φ0(~x)

]
(5.3.15)

In the semiclassical approximation we may replace the generating functional of stan-
dard quantization by the wavefunction (5.3.12). Performing the φ0 integral leads to
a two point correlator in alternative quantization

Galt(k) =
δ2

δJ(k)δJ(−k)
〈e

∫
ddxJ(~x)O−(~x)〉alt = − 1

(2ν)2Gst(k)
(5.3.16)

This inverse relation between the Green’s function is exactly the same as in AdS/CFT
[89]. Combining (5.3.16),(5.3.14) and (5.3.10) we get

〈O−(k)O−(−k)〉alt = Galt(k) =
i1−d

γ
C(ν)k−2ν , C(ν) ≡ 22ν

(2ν)3

Γ(1 + ν)

Γ(1− ν)
(5.3.17)

Comparing with (5.2.1), we get the following holographically determined value of b:

bdS =
i1−d

γ
C(ν) (5.3.18)

In case of dS4, Ref. [107] chose γ = 1 in keeping with the reality of the n-point
functions, which was also reproduced by a CFT calculation using SP (N). However,
in this paper we are dealing with dSd+1 for arbitrary d and will keep γ arbitrary
and in principle complex. We will come back to the important issue of the phase
of γ (equivalently of Z) and its relation to the phases of the n-point functions and
beta-function coefficients in detail in Section 5.7.

The relationship (5.3.15) can be inverted to rewrite the Bunch-Davies wavefunc-
tion in terms of the generating functional in alternative quantization,

Ψ[φ0(~x), ε] =

∫
DJ(~x) exp

[
−Z(ε)

∫
ddx

J(~x)

2ν
φ0(~x)

]
〈exp

[∫
ddxJ(~x)O−(~x)

]
〉alt

(5.3.19)
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5.3.2 The formulae for AdS

It will be useful to record the corresponding well known formulae in euclidean AdS
space. The GKPW prescription for the generating functional for correlators in stan-
dard quantization reads

〈exp

[∫
ddx(ε)−∆−φ0(~x)Z̃(ε)O+(~x)

]
〉st = Z[φ0(~x), ε] Z̃(ε) ≡ ρ

√
γ

(ε)−∆− (5.3.20)

where we of course need to replace LdS → LAdS. There are no factors of i in the
formulae, the rescaling factor γ has to be real, the Hankel functions are replaced
by Modified Bessel functions and the quantity in square brackets in (5.3.10) is the
boundary Green’s function in AdSd+1 leading to the proportionality constant

bAdS =
1

γ
C(ν) (5.3.21)

where C(ν) is defined in (5.3.17). Since everything needs to be real, (5.3.20) requires
γ to be real and positive, leading to a real positive bAdS. Finally, the analog of (5.3.19)
for AdS may be obtained by replacing (−iε)→ ε.

5.4 Double Trace deformations

In the following we will be interested in the deformation of the CFT dual to alternative
quantization in dSd+1 by a double trace operator. The Euclidean field theory action
is given by (5.2.3). As argued in Sec 5.2.1, to leading order in large N, the dimension
of O2 is then 2∆. We require the perturbation to be relevant, which means that
the CFT action S0 must correspond to alternative quantization (see also footnote 1),
ensuring that 2∆ = 2∆− < d (see (5.3.6)). The generating function for correlators in
the presence of the deformation may be now written using a Hubbard-Stratanovich
transformation,

〈exp

[∫
ddxJ(~x)O(~x)

]
〉f0

alt =

∫
Dσexp

[
1

2f0

∫
ddx σ(~x)2

]
〈exp

[∫
ddx(J(~x) + σ(~x))O(~x)

]
〉alt

(5.4.1)
where the notation 〈...〉f0

alt denotes correlations in presence of the double trace defor-
mation (5.2.3). Using (5.3.5),(5.3.12) and (5.3.15) we get

〈exp

[∫
ddxJ(~x)O(~x)

]
〉f0

alt =

∫
Dφ0 exp[iIf0(φ0)] (5.4.2)

where

iIf0(φ0) = iS ′on(φ0) +

∫
ddx

[
Z(ε)

J(~x)

2ν
φ0(~x)−Z(ε)2f0

2

(
φ0(~x)

2ν

)2
]

(5.4.3)

Using (5.3.13) and performing the integral over φ0 this leads to the prediction that
the deformed CFT has a Green’s function

Gf (k) =
Galt(k)

1 + f0Galt(k)
(5.4.4)

72



This relation can be of course obtained directly from the large-N field theory (5.2.3)
(see Eq. (5.2.4)). The holographic derivation of this formula is a consistency check
on the above dS/CFT prescription.

5.5 Holographic RG

We now adapt the holographic renormalization group procedure developed in [145,
146] to de Sitter space. we rewrite the right hand side of (5.3.3) by introducing a
floating cutoff at T = l,

Ψ[φ0(~x), ε] =

∫
Dφ̃(~x)ΨIR[φ̃, l]ΨUV [φ̃, φ0] (5.5.1)

where
ΨIR[φ̃] = Ψ[φ̃(~x), l] (5.5.2)

and

ΨUV [φ̃, φ0] =

∫ φ(ε,~x)=φ0(~x)

φ(l,~x)=φ̃(~x)

Dφ(T, ~x)exp

(
i

∫ ε

l

dT L

)
(5.5.3)

where L is the Lagrangian.
The idea is now to obtain an effective action of the dual theory at a finite cutoff

l by extending the dS/CFT relationship (5.3.19) for ΨIR[φ̃, l],

〈e−Seff (l)〉alt =

∫
Dφ̃(~x)

∫
DJ(~x) ΨUV [φ̃, φ0]exp

[
−Z(l)

∫
ddx

J(~x)

2ν
φ̃(~x)

]
〈exp

[∫
ddxJ(~x)O−(~x)

]
〉alt

where Z(l) is defined as in (5.3.5), with ε replaced by l. This relates the parameters
in ΨUV to couplings in the effective action. The expression for 〈e

∫
ddxJ(~x)O−(~x)〉alt in

terms of bulk quantities in (5.3.12) and (5.3.15) are valid in the ε → 0 limit. When
we use these expressions for finite l, there is a freedom of choosing counterterms
[151, 152]. We will stick to the counterterm implied in (5.3.12), and comment on the
implications of this freedom later.

From the definition (5.5.3), ΨUV satisfies a Schrodinger equation with the Hamil-
tonian derived from the Lagrangian,

iGN
∂

∂(−l)
ΨUV (φ̃, l) = H(l)ΨUV (φ̃, l) (5.5.4)

which give flow equations for the parameters in ΨUV and hence couplings in the
effective action. The negative sign in the left hand side of (5.5.4) comes because time
evolution corresponds to decreasing l, which appears as the lower limit of integration
in (5.5.3).

For the free scalar field we are considering the hamiltonian at some time slice T
is given by

H(T ) =
1

2

∫
ddx

[
−G2

N

(
−T
LdS

)d−1
δ2

δφ2
+

(
LdS
−T

)d−1

(∇φ)2 +

(
LdS
−T

)d+1

m2φ2

]
(5.5.5)
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In the semiclassical limit GN � Ld−1
dS the Schrodinger equation reduces to a Hamilton-

Jacobi equation. For a wavefunction

ΨUV = exp[iK] (5.5.6)

the Hamilton-Jacobi equation is given by

1

2

[
G2
N

(
−l
LdS

)d−1(
δK

δφ

)2

+

(
LdS
−l

)d−1

(∇φ)2 +

(
LdS
−l

)d+1

m2φ2

]
+GN

∂K

∂(−l)
= 0

(5.5.7)
Consider now a general quadratic form for K

K = ρ2 (−l)−d
∫
ddx

[
−1

2
g(l)φ̃2 + h(l)φ̃+ c(l)

]
(5.5.8)

Note that the parameters in (5.5.8) depend on the cutoff l. The flow equations for
these parameters follow from substituting (5.5.8) in (5.5.7). For consistency we really
need to replace these parameters by space-dependent parameters (e.g. g(x)). However
as shown in [145] and [153] the flow equations for the zero momentum modes of these
couplings decouple from the non-zero momentum modes. With this understanding,

βg = −(−il) ∂g

∂(−il)
= −g2 − dg −m2L2

dS

βh = −(−il) ∂h

∂(−il)
= −h(g + d) (5.5.9)

As is clear from the discussion of [151] and [152], the freedom of choosing different
counterterms at finite l modifies the last term in the first equation of (5.5.9). We have
written the equations (5.5.9) using (−il) as a cutoff scale. This is a natural choice
(as will be discussed further below).

The zeroes of βg are at g± = −∆± and alternative quantization means we have to
expand the coupling as

g = g− + δg (5.5.10)

The beta function for δg is given by

βδg = −(−il) ∂δg

∂(−il)
= −2ν(δg)− (δg)2 (5.5.11)

To relate this flow equations to beta functions of the dual field theory we need to
establish a relationship between g, f and the couplings of the field theory. This may
be done by substituting (5.5.8) in (5.5.4) and performing the integrals over J(~x) and
φ̃(~x) by saddle point method. This leads to a field theory effective action

Seff =
f

2

∫
ddx O2

− + j

∫
ddx O− + c (5.5.12)

where

j = −2νρ
√
γ(i)d+1(−il)−∆+h(l) (5.5.13)
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f = (i)d+1(−il)−2ν(2ν)2g γ = −(2ν)2C(ν)
1

bdS
(−il)−2ν g (5.5.14)

and c is a constant independent of the operator O. In the above we have used the
expression for bdS in (5.3.18).

The fixed point values of the parameter g simply corresponds to the minimal
counterterm in the bulk action . The field theory couplings, which are defined as
departures from a CFT have to be related to the departure from the fixed point.

The couplings f, j and hence δf and δj have the appropriate dimensions 2ν and
∆+ respectively, as is clear from the powers of l which appear in (5.5.14). The beta
functions of the field theory are, however, those of dimensionless couplings. In the
field theory this is done by multiplying by an appropriate power of the cutoff or
renormalization scale, as in (5.2.6). In the holographic setup this requires specifying
a relationship between the cutoff in the bulk with a UV cutoff on the boundary. As
is quite clear from all the formulae above, it is natural to identify (−il) as the renor-
malization scale µ of the field theory. Let us identify the field theory renormalization
scale µ to be a1/(2ν) times the holographic cut-off scale 1/(−il), for some positive con-
stant a. With this choice, we have the following identification of the dimensionless
coupling of the field theory λ with the departure from the fixed point,

λ a
(
(−il)−1

)2ν ≡ δf = −(2ν)2C(ν)
1

bdS
(−il)−2ν δg (5.5.15)

where we have used (5.2.6). Making the convenient choice a = (2ν)3C(ν) (which
gives a specific choice of the field theory renormalization scale), we get

δg = −2νbdS λ (5.5.16)

Substituting this in (5.5.11) finally leads to a beta function for λ

βλ = −2νλ+ 2ν bdSλ
2 = −2νλ+ 2ν

i1−d

γ
C(ν)λ2 (5.5.17)

This is the same as the general field theory answer, (5.2.7).
As we have remarked above and will discuss in detail in Section 5.7, the require-

ment that there are no relative phases between various n-point functions of the dual
field theory 7 implies that bdS ∼ id−1. This implies, in turn, that for even d we have
purely imaginary bdS and hence a complex beta function.

5.5.1 Results in AdS

For comparison let us recall the results of the above analysis in euclidean AdS. In this
case the range of the radial coordinate is 0 ≤ z ≤ ∞. The radial evolution equation
satisfied by ΨUV.AdS is

GN
∂

∂(l)
ΨUV,AdS(φ̃, l) = −HAdS(l)ΨUV,AdS(φ̃, l) (5.5.18)

7It is clear from our discussion in Section 5.7 that under no circumstance can the n-point functions
be all real.
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where

H(l) =
1

2

∫
ddx

[
−G2

N

(
l

LAdS

)d−1
δ2

δφ2
+

(
LAdS
l

)d−1

(∇φ)2 +

(
LAdS
l

)d+1

m2φ2

]
(5.5.19)

With the form

ΨUV,AdS = exp

[(
Ld−1
AdS

GN

)
l−d
∫
ddx

[
−1

2
g′(l)φ̃2 + h′(l)φ̃+ c′(l)

]]
(5.5.20)

which leads to the flow equation

l
∂g′

∂l
= −(g′)2 − dg′ +m2L2

AdS (5.5.21)

The expressions for the fixed points are changed appropriately, but the flow equation
for the departure from the fixed point δg′ is, instead of (5.5.11)

βδg′ = −l ∂δg
′

∂l
= −2ν(δg′) + (δg′)2 (5.5.22)

Finally the relationship between the field theory dimensionless coupling and δg′ is

λ = γ(2ν)2 δg′ = (2ν)22ν Γ(1 + ν)

Γ(1− ν)

1

bAdS
δg′ (5.5.23)

which leads once again to a beta function of the expected form (5.2.7)

5.6 Beta function of Triple and Higher trace couplings

In this section we will discuss a generalization of the above methods to derive the holo-
graphic beta-function of triple and higher trace couplings (in perturbation theory).
We will be brief, emphasizing mainly the new features.

For concreteness, we will focus on triple trace couplings, of the form O3
−; however,

the generalization to higher trace operators is straightforward. Triple trace operators
are induced in a holographic RG, as we will see, when the dual scalar field theory has
a cubic coupling

∆Sε =
1

GN

∫ ε

−∞
dT

∫
ddx

(
LdS
−T

)d+1 [
−r

3
φ3
]

(5.6.1)

in additional to the quadratic action (5.3.2). The Hamilton-Jacobi equation (5.5.7)
gets modified by the addition of a cubic term(

LdS
−l

)d+1
2r

3
φ3
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to the term inside the square bracket. It is easy to see that a quadratic ansatz for
the kernel K such as (5.5.8) will not satisfy such a Hamilton-Jacobi equation. Let us,
therefore, take K to be cubic, viz. of the form

K = ρ2ε−d
∫
ddx

(
− g

2
φ̃2 + hφ̃+ c+ A

φ̃3

3

)
(5.6.2)

By repeating the steps leading to (5.5.9), and equating the coefficients of φ̃, φ̃2 and
φ̃3 in the Hamilton-Jacobi equation,8 we now get the following cut-off dependence of
the couplings in (5.6.2)

βg = −g2 − d g − m̄2 − 2hA, m̄ = mLdS,

βA = (−3g − d)A+ r̄, r̄ = rL2
dS,

βh = (−g − d)h (5.6.3)

Note that this generalizes (5.5.9), and reduces to it for A = 0. It is easy to find the
following UV fixed point (near which βg is negative):

hc = 0, gc = −∆−, Ac = r̄/(d− 3∆−) (5.6.4)

The linearized beta-functions for the deformations δh, δg and δA (measured from this
fixed point) are

βδg = −2νδg, βδA = (3∆− − d)δA, βδh = (∆− − d)δh (5.6.5)

How does one read off the field theory beta-functions from these? We can, once again,
use (5.5.4), and show that it leads to a field theory with the following effective action

Seff =

∫
ddx

(
f

2
O2
− + jO− +

B

3
O3
− + c

)
(5.6.6)

where

j = −(i)d+1(−il)−∆+h(l)2ν
√
γρ

f = (i)d+1(−il)−2ν(2ν)2g(l) γ

B = −(i)d+1(−il)3∆−−d(2ν)3A(l)
γ3/2

ρ
(5.6.7)

which generalizes the equation (5.5.14) encountered for double trace couplings. The
beta-function for the field theory couplings f, j, B can easily be read off from the
above identifications (5.6.7) with the bulk couplings g, h, A and their beta-functions

8Our approach here is perturbative; the Hamilton-Jacobi analysis generates φ̃4 terms. We imagine
them to be taken care of by higher couplings, and focus here on couplings up to cubic order. It
is straightforward, although cumbersome, to write more general beta-functions involving arbitrary
Wilsonian couplings.
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(5.6.3) or (5.6.5). The beta function for the dimensionless cubic trace coupling (δB̄),
which measures the deviation from the fixed point, turns out to be,

βδB̄ = −3∆−δB̄ + 3
i1−d

(2ν)2γ
δf̄δB̄ = −3∆−δB̄ + 3 bdS δf̄ δB̄

Γ(1− ν)

22ν(2ν)Γ(1 + ν)
(5.6.8)

where, δf̄ is the deviation of the dimensionless double trace coupling from the fixed
point. One can easily check that the field theory beta-functions have the correct
form. E.g., βδB̄ includes a term ∝ δf̄δB̄; to see this from a field theory reasoning,
one needs to simply note that the three-point function 〈O−(x)O−(y)O−(z)〉 has a
perturbative expansion of the schematic form δB̄

∫
ddwG0(x − w)G0(y − w)G0(z −

w)+δf̄δB̄
∫
ddw ddw′G0(x−w)G0(y−w)G0(z−w′)G0(w−w′) (where we have shown

only the first two terms). Using large N methods, one can organize such perturbation
expansions [80, 83, 85].

Significantly, the beta function for A does not have an A2 term (in field theory

terms, βδB̄ does not have a δB̄
2

term), and is in fact the same as in AdS. For
the special case where d = 3,∆− = 1 (which implies m̄2 = 2,∆+ = 2, ν = 1/2)
the linearized beta-function indicates correctly the fact that the cubic coupling is
marginal 9. This is consistent with the known field theory result for vector models
that a [(~φ)2]3 coupling acquires a nontrivial beta function only due to 1/N corrections.
Our holographic result shows that this is a general result in large-N field theories.

5.7 Complex Phases

Here we focus on the structure of complex phases of the n-point correlation functions
of the field theory. As seen in [107] even with interactions present in the bulk, the
overall factor in iIon−shell is id−1. This implies the following schematic relations for
leading order contributions to the first few n-point correlation functions,

id−1 = Z2〈OO〉 = γ−1bdS

r3i
d−1 = Z3〈OOO〉

r4i
d−1 = Z4〈OOOO〉 (5.7.1)

In these equations, we display only those quantities which possibly contain complex
phases. The quantity Z is defined in (5.3.5); since −iε has been identified with a real
cut-off of the field theory, i.e. −iε ∝ 1/ΛUV , Z is essentially equal to 1/

√
γ so far as

keeping track of complex phases is concerned. Similarly, we have written 〈OO〉 ∝ bdS.
The left hand sides of the above set of equations are obtained from the bulk; e.g. the
LHS of the top equation displays the complex phase of (5.3.13). The couplings r3, r4

represent cubic, quartic, etc. couplings of the scalar Lagrangian (e.g. r3 is the same
as r in (5.6.1)). In keeping with unitarity of the bulk field theory, we will assume that

9The fixed point value of A is infinite for these values, as can be seen from (5.6.4). However, as
remarked earlier, the fixed point value of holographic couplings is non-universal as they are affected
by the choice of holographic counterterms. The linearized beta-functions (5.6.5) are free of such
non-universalities.
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these coefficients are all real. The right hand sides of equations (5.7.1) are obtained
by the GKPW prescription, i.e. by expanding Ψ[φ0(x), ε] in (5.3.5) in powers of φ0(x).
Now, if we require that there is no relative phase between the correlation functions,
i.e, the phase of 〈O1 · · ·On〉 = the phase of 〈O1 · · ·On+1〉, then we must have Z real.
Recalling that Z(ε) ∝ 1/

√
γ (where the proportionality constant is positive), the

reality of Z implies that γ is real. Thus, so far as keeping track of complex phases is
concerned, it can be taken to be 1. It then follows immediately that bdS is complex
for even d leading to complex beta functions.
Alternatively if we want to require the beta function to be always real, i.e, bdS to be
real, then we must choose the phase of Z to be i(d−1)/2. However since the phases of
the left hand sides of (5.7.1) are all equal, this will now imply the following relative
complex phase,

〈O1 · · ·On+1〉 = i(1−d)/2〈O1 · · ·On〉 (5.7.2)

In particular, since in this choice 〈OO〉 is real, we get that the phase of 〈O1 · · ·On〉 is
i(n−2)(1−d)/2. This clearly shows that we cannot have both the beta function as real
and the absence of n-dependent phases.
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Chapter 6

dS/CFT at uniform energy density

and a de Sitter “bluewall”

6.1 Introduction and summary

One version of the dS/CFT correspondence [9, 110, 11] states that quantum gravity
in de Sitter space is dual to a Euclidean CFT living on the boundary I+ or I−. More
specifically, the partition function of the CFT with specified sources φi0(~x) coupled to
operators Oi is identified with the wavefunctional of the bulk theory as a functional
of the boundary values of the fields dual to Oi given by φi0(~x). In the semiclassical
regime this becomes

Ψ[φi0(~x)] = exp [iIcl(φi0)] (6.1.1)

where we need to impose regularity conditions on the cosmological horizon. This has
been developed further in [12]. Unlike AdS/CFT, there are few concrete realizations
of dS/CFT (for a recent proposal see [107] and e.g. [109, 154, 155, 149, 156–159] for
related work). Nevertheless, it is interesting to explore the consequences of such a
correspondence, assuming it exists.

In this note we address the question of what the bulk dual is of a euclidean CFT
with constant spatially uniform energy-momentum density. One way to achieve this
is to put the CFT on a circle. It is well known that the dual CFT to de Sitter space
cannot be a usual unitary (more precisely reflection-positive) quantum field theory.
The bulk dual of such a theory would be euclidean AdS. Such a CFT on a circle has
a uniform energy-momentum density, describing the corresponding Lorentzian theory
in a thermal state. The dual of this is a Euclidean AdS black brane, not a Lorentzian
geometry.

In this context, consider a class of asymptotically de Sitter spacetimes

ds2 = − R2
dSdτ

2

τ 2(1 + C
τd

)
+

τ 2

R2
dS

(
1 +

C

τ d

)
dw2 +

τ 2

R2
dS

dx2
i , C ∝ τ d0 , (6.1.2)

with C a general complex parameter and τ0 is real. This metric should be regared
as a (generally complex) saddle point in a functional integral. Motivated by this, we
impose a requirement that the euclidean metric obtained by Wick rotation of the time
coordinate τ is real and regular – this fixes the parameter C = −idτ d0 , and requires w
to be periodic. However, as will be clear in the following, the Lorentzian metric can
become singular for even d. Our solutions are similar to those in [149] who considered
solutions with Sd−1×S1 boundaries. In fact (6.1.2) can be obtained as a limit of the
solution [149] when the radius of the S1 is much smaller than the radius of Sd−1 (or
equivalently, as Sd−1 decompactifies).

The resulting spacetime can equivalently be obtained from the Euclidean AdS
black brane by the analytic continuation from AdS to dS familiar in dS/CFT [9, 11].

80



Clearly this leads to a complex solution for odd d. This is in fact quite common in the
dS/CFT correspondence [11, 12]. Indeed we will show that the energy-momentum
tensor Tij ∼ δΨ

δhij
in the CFT which follows from (6.1.1) is real for odd d. This is

consistent with known results for correlators in pure dS 1. For example in d = 3 we

get 〈Tij〉 ∝ τ3
0

G4R4
dS

, which is exactly what we need. For even d, the solution (6.1.2) is

real and the boundary energy-momentum tensor is purely imaginary.
While real energy momentum tensors are thus obtained only for complex solu-

tions, it is interesting to consider the geometry of the solutions with real parameters.
The geometry is bounded by asymptotically de Sitter spacelike I± and time-like sin-
gularities at the two ends of space. The null lines τ = τ0 are Cauchy horizons. In
fact the geometry bears some resemblance to the interior of the Reissner-Nordstrom
black hole [160, 6]. The physics of physical observers is also quite similar. Timelike
geodesics originating from I− are repelled by the singularities. As an observer ap-
proaches the horizon, light coming from I− is infinitely blueshifted, just as in the RN
interior. It is natural to expect that this blueshift signals an instability, preserving
cosmic censorship and distinguishing these from naked singularities. It is intriguing
to note that from a dS/CFT perspective, the energy-momentum tensor is purely
imaginary. It is tempting to think of this imaginary Tij as a possible dual signature
of the Cauchy horizon blue-shift instability that we have seen. It would be interest-
ing to explore this and more generally cosmic censorship in dS/CFT . We dub these
solutions “bluewalls”.

6.2 dS/CFT at uniform energy-momentum density

The CFT correlation functions in dS/CFT correspondence follow from analytic con-
tinuation from euclidean AdS (or double analytic continuation from lorentzian AdS),
with the interpretation that the wavefunctional is the generating functional of corre-
lators. One half of dSd+1, e.g. the upper patch being I+ at τ =∞ with a coordinate
horizon at τ = 0 is described in the planar coordinate foliation by the metric

ds2 = −R2
dS

dτ 2

τ 2
+

τ 2

R2
dS

δijdx
idxj . (6.2.1)

This may be obtained by analytic continuation of a Poincare slicing of EAdS,

r → −iτ , RAdS → −iRdS . (6.2.2)

In fact the analytic continuation of the smooth euclidean solutions lead to Bunch-
Davies initial conditions on the cosmological horizon.

Consider the asymptotically de Sitter spacetime

ds2 = − R2
dSdτ

2

τ 2(1 + C
τd

)
+

τ 2

R2
dS

(
1 +

C

τ d

)
dw2 +

τ 2

R2
dS

dx2
i , (6.2.3)

1One may wonder if there could be an additional factor of i in this relation. However, the
requirement that the n-point correlator does not have a n-dependent phase rules this out [107].
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with C a general complex parameter. This is a complex metric which satisfies Ein-
stein’s equation with a positive cosmological constant

RMN =
d

R2
dS

gMN , Λ =
d(d− 1)

2R2
dS

. (6.2.4)

With a view to requiring an analog of regularity in the interior for an asymptotically
AdS solution, consider a Wick rotation of the time coordinate τ above. Then (6.2.3)
becomes

τ = il ⇒ ds2
E = − R2

dSdl
2

l2(1 + C
idld

)
− l2

R2
dS

(
1 +

C

idld

)
dw2 − l2

R2
dS

dx2
i . (6.2.5)

With a further continuation RdS → iR′, this is in general a complex euclidean metric.
We require that this euclidean spacetime is real and regular in the interior, by which
we demand that the spacetime in the interior approaches flat Euclidean space in the
(l, w)-plane with no conical singularity. This is true if

C = −idτ d0 , l ≥ τ0 , w ' w +
4π

(d− 1)τ0

, (6.2.6)

where τ0 is some real parameter of dimension length, and the w-coordinate is com-
pactified with the periodicity fixed by demanding that there is no conical singularity.

This requirement of regularity is similar to the one we use in an asymptotically
AdS spacetime, where e.g. Wick rotating the time coordinate renders the resulting
Euclidean space regular if the time coordinate is regarded as compact with a period-
icity that removes any conical singularity (thus rendering it sensible for a Euclidean
path integral). A sharp difference in the asymptotically de Sitter case is that we Wick
rotate the asymptotic bulk time coordinate but the absence of a conical singularity
fixes the w-coordinate to be compact with appropriate periodicity. This, however, is
at odds with the regularity of the real time metric with this value of C when d is
even. In that case, a periodic w leads to a conical type singularity at τ = τ0 pretty
much like the Milne universe with a compact spatial direction. In this regard, it is
interesting to consider the asymptotically dS5 solution above: then the above Wick
rotation procedure fixes C = −τ 4

0 and the periodicity of the w-coordinate and the
solution is

ds2 = − R2
dSdτ

2

τ 2(1− τ4
0

τ4 )
+

τ 2

R2
dS

(
1− τ 4

0

τ d

)
dw2 +

τ 2

R2
dS

dx2
i . (6.2.7)

The metric in the vicinity of l = τ0 is ds2 ∼ −dT 2 + T 2dw2 + τ 2
0 dx

2
i , where T ∼

l− τ0. This is Milne space in the (T,w)-plane, with w compact (and thus a resulting
singularity). We note that Wick rotating the coordinate T does not give a Euclidean
space and is not equivalent to the above procedure of Wick rotating the asymptotic
time coordinate τ .

As expected, this entire procedure is equivalent to analytically continuing from
the Euclidean AdS black brane

ds2 = R2
AdS

dr2

r2(1− rd0
rd

)
+

r2

R2
AdS

(
1− rd0

rd

)
dθ2 + +

r2

R2
AdS

d−1∑
i=1

dxidxi , (6.2.8)
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where θ ∼ θ+ 4π
(d−1)r0

, to the asymptotically de Sitter spacetime (6.2.3) using (6.2.2)

and we identify r0 ≡ τ0. The phase obtained by this analytic continuation is −1
(−i)d

which can be seen as identical to −id in (6.2.6). The regularity criterion (6.2.6) itself
is then seen to simply be the analog of regularity of the EAdS black brane. The
condition l ≥ τ0 is equivalent to the radial coordinate having the range r ≥ r0. In
the Lorentzian signature spacetime (6.2.3), the time τ -coordinate extends to τ → 0.
The curvature invariant RµνρσR

µνρσ diverges as τ → 0.
Near I+, i.e. τ → ∞, the metric (6.2.3) approaches that of de Sitter space with

a Fefferman-Graham expansion

ds2 = −R
2
dS

τ 2
dτ 2 + hijdy

idyj = −R
2
dS

τ 2
dτ 2 +

τ 2

R2
dS

[
g

(0)
ij (yi) +

R2
dS

τ 2
g

(2)
ij (yi) + . . .

]
dyidyj .

(6.2.9)
It is clear from (6.2.9) that “normalizable” metric pieces are turned on in (6.2.3) 2. We
then expect a nonzero expectation value for the energy-momentum tensor here, as in
the AdS context [161–163, 148]. For concreteness, let us consider the asymptotically
dS4 solution (6.2.3) with the regularity conditions (6.2.6),

ds2 = − R2
dSdτ

2

τ 2(1 +
iτ3

0

τ3 )
+

τ 2

R2
dS

(
1 +

iτ 3
0

τ 3

)
dw2 +

τ 2

R2
dS

dx2
i . (6.2.10)

The calculation of the energy momentum tensor proceeds in a way entirely analogous
to that in AdS. The total action, obtained by adding suitable Gibbons-Hawking
surface terms and counterterms to the bulk action is

I =
1

16πG4

∫
M
dτd3x

√
−g (R− 2Λ) +

1

8πG4

∫
∂M

d3x
√
h
(
K +

2

RdS

)
(6.2.11)

The counterterms have been engineered to remove divergences in the bulk action
coming from the boundary at τ →∞ . Here hij is the boundary metric and K is the
trace of the extrinsic curvature. This renormalized action appears in (6.1.1). This
leads to the energy momentum tensor3

Tij = lim
τ→∞

τ

RdS

2√
h

δΨ

δhij
∼ lim

τ→∞

τ

RdS

i

G4

(
Kij −Khij −

2

RdS

hij

)
, (6.2.12)

We have used the standard relationship
√
hBhBµνT

νρ =
√
hhµντ

νρ between the energy
momentum tensor of the boundary theory and the quasi-local stress tensor τµν , with

hBµν = limτ→∞
R2
dS

τ2 hµν the boundary metric. The above energy-momentum tensor
vanishes for pure dS4 as expected. For the spacetime (6.2.10), we obtain

Tww = −2Tii ∼
i

G4

( iτ 3
0

R4
dS

)
= − τ 3

0

G4R4
dS

, (6.2.13)

2Scalar modes in dSd+1 near the boundary are φ ∼ τ∆, with ∆(∆− d) = −m2R2. For m2 = 0,
we have ∆ = d as analogous to a “normalizable” mode (in AdS): this is the mode turned on in
(6.2.10).

3Note that our definition is consistent with [11] (also [107]), but differs from e.g. [9, 164] which
use a derivative of the action rather than the wavefunction.
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which is a real and spatially uniform energy-momentum density. Since (6.2.10) is a
complex solution, its conjugate is also a solution (obtained by analytically continuing
the opposite way), giving Tij of the opposite sign as above. In the AdS case, space-
times of this sort which are solutions in pure gravity have Ibulk = 1

16πG4

∫
M drd3x

√
−g (R−

2Λ) = 1
16πG4

∫
drd3xR

4

r4 (−6
R2 ). Under the analytic continuation (6.2.2), we have

IEAdS →
1

16πG4

∫
(−idτ)d3x

R4
dS

τ 4

( −6

−R2
dS

)
= −iIdS , (6.2.14)

where IdS is the action for the asymptotically de Sitter solution4. Thus the energy-
momentum tensor is continued as 2√

h

δ(−IEAdS)
δhµν

→ 2√
h

δ(iIdS)
δhij

. Note that Tij in (6.2.13)

is traceless (Tww + 2Tii = 0) as expected for a CFT.
Thus this asymptotically dS4 complex solution is dual to a euclidean CFT with

spatially uniform energy-momentum density, i.e. uniform Tij expectation value (6.2.13)
in the Euclidean CFT dual to dS4 (in Poincare slicing). Loosely speaking, this
Euclidean partition corresponds to a thermal state of the would-be corresponding
Lorentzian theory (on R × R2), analogous to the AdS4 Schwarzschild black brane
dual to a thermal state in the SYM CFT with uniform Tµν .

Similar arguments apply in other dimensions but with different results. Using the
Fefferman-Graham expansion (6.2.9) for an asymptotically dSd+1 spacetime, we see

that “normalizable” metric modes g
(d)
µν turned on give rise to a nonzero expectation

value for the holographic energy-momentum tensor

Tij = lim
τ→∞

τ d−2

Rd−2
dS

2√
h

δΨ

δhij
∼ lim

τ→∞

τ d−2

Rd−2
dS

i

Gd+1

(
Kij−Khij−

d− 1

RdS

hij

)
∝ i

Gd+1RdS

g
(d)
ij ,

(6.2.15)

where the form of (6.2.9) shows g
(d)
ij to be the dimensionless coefficient of the nor-

malizable 1
τd−2 term, and the i arises from Ψ, the wavefunction of the universe. In

effect, this dS/CFT energy-momentum tensor can be thought of as the analytic con-
tinuation of the EAdS one, with the i arising from RAdS → −iRdS, and the metric
modes also continuing correspondingly. The spacetime (6.2.3) with the parameter
C = −idτ d0 in (6.2.6) gives

g(d)
ww ∼ −

idτ d0
Rd
dS

⇒ Tww ∼ −
id+1τ d0

Gd+1R
d+1
dS

=
id−1τ d0

Gd+1R
d+1
dS

, (6.2.16)

with Tww + (d − 1)Tii = 0. The phase id−1 is equivalent to that in general dS/CFT
correlation functions arising from the analytic continuation (6.2.2) from EAdS cor-
relators [157], following the arguments of [107]. For even d the energy momentum
tensor is imaginary – this is also the case when the Lorentzian signature metric is
singular at τ = τ0.

4As we saw, the divergent terms in IdS cancel: this gives a single new term from the τ -location
where hij departs from the dS4 value. The on-shell wavefunction for these solutions becomes Ψ ∼
ΨdS exp[

V3τ
3
0

8πG4R4
dS

].
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We thus see that a real energy-momentum density must arise from a metric mode
g(d) that is pure imaginary: in other words, the spacetime (6.2.3) with a pure imag-
inary parameter C is dual to a CFT with real spatially uniform energy-momentum
density. For the dS5 case, we see that the regularity criterion for the Euclidean so-
lution (or equivalently the analytic continuation from the EAdS black brane) gives
the spacetime (6.2.7) which is real: this metric which is singular gives an imaginary
Tij above.

In summary, we have described asymptotically de Sitter spacetimes (6.2.3) which
under a Wick rotation are regular in the interior for certain values of the general com-
plex parameter (6.2.6). The resulting spacetime can then be equivalently obtained
by analytic continuation (6.2.2) from the Euclidean AdS black brane (6.2.8). These
spacetimes give rise to a spatially uniform holographic energy-momentum density
(6.2.15), which is real if the spacetime is complex (for odd d). Conversely, given a
Tij expectation value in dS/CFT , we could ask what the gravity dual is. An asymp-
totically de Sitter spacetime with the Fefferman-Graham series expansion (6.2.9) and
thus corresponding Tij then in fact sums to the closed form expression (6.2.3).

6.3 Real parameter C: a de Sitter “bluewall”

Even though the metric needs to be complex to yield a real energy momentum tensor,
it is interesting to explore the properties of metrics of the form (6.2.3), (6.2.6), but
with the parameter τ d0 also continued to be real, i.e.

ds2 = − dτ 2

f(τ)
+ f(τ)dw2 + τ 2dx2

i , f(τ) = τ 2
(

1− τ d0
τ d

)
, (6.3.1)

with a nonzero parameter τ0, and xi are d − 1 of the d spatial dimensions. The
w-coordinate here has the range −∞ ≤ w ≤ ∞. This can be recast in FRW form
as an asymptotically deSitter cosmology with anisotropy in the w-direction. The
metric (6.3.1) is simply the analytic continuation of AdS-Schwarzschild with a further
continuation of the mass parameter. We do not speculate about the significance of
this real solution for dS/CFT for odd d.

The lines τ = τ0 are coordinate singularities whose nature will be explored below.
For concreteness, we focus on d = 3. The maximally extended geometry in Kruskal
type coordinates (Appendix A, eq.(C.0.2)) is

ds2 = τ 2

[
−4

9

(
1 +

τ0

τ
+
τ 2

0

τ 2

)3/2

e
−
√

3 tan−1(
2 ττ0

+1
√

3
)
dũdṽ + dx2

i

]
. (6.3.2)

The Penrose diagram5 Figure 6.1 shows the following key features of the geometry.
Two asymptotic dS-regions: v2−u2 = ũṽ > 0 both map to τ � τ0, using (C.0.2).
Cauchy horizons: τ = τ0 ⇒ ũṽ = 0 , i .e. u = ±v.
Using (C.0.2), we see that tanh 3wτ0

2
= ũ−ṽ

ũ+ṽ
so that the two horizons are ũ = 0⇒ τ =

5The Penrose diagram Figure 6.1 also appears in [165] but corresponds to a distinct spacetime
(with an inhomogenuous energy-momentum tensor).

85



II

asymptotic deSitter region

singularity

horizonhorizon

asymptotic deSitter region

singularity

IV III

I

=

=

=

=

=

=

00

0 0

Figure 6.1: de Sitter “bluewall” Penrose diagram.

This resembles the Penrose diagram of the

AdS Schwarzschild black brane rotated by π
2 .

τ0, w = −∞, and ṽ = 0 ⇒ τ = τ0, w = +∞. These are Cauchy horizons, as we
discuss later. We refer to the intersection of the horizons ũ = 0 = ṽ, i.e. u = 0 = v or
τ = τ0 as the bifurcation region: the w-coordinate can take any value here.
Timelike singularities: τ = 0 ⇒ ũṽ = −e

π
2
√

3 ∼ v2 − u2

In the Kruskal diagram these are hyperbolae with u2 > v2. There are two singularity
loci ṽ = − c

ũ
with ũ > 0 and ũ < 0. The curvature invariants for (6.3.1) are

R = d(d+ 1) , RµνR
µν = d2(d+ 1) , RµνρσR

µνρσ = 2d
(
d+ 1 + (d−2)(d−1)2

2

τ2d
0

τ2d

)
.

The divergence in RµνρσR
µνρσ implies a curvature singularity as τ → 0: this is what

the Schwarzschild interior singularity becomes after analytic continuation. Interest-
ingly, the dS3 solution is singularity-free: the metric in this case is isomorphic to dS3

in static coordinates.
Near τ → 0, the metric approaches ds2 ∼ − dw2

τd−2 +τ d−2dτ 2+
dx2
i

τ2 ∼ 1
τ
dũdṽ+τ 2dx2

i .
For τ < τ0, the τ -coordinate is spacelike while w is timelike. Then the singularity
which occurs on a constant-τ slice is timelike (metric approaching ds2 ∼ − dw2

τd−2 ).
Note that these features (Cauchy horizons, timelike singularities) resemble the

interior of the Reissner-Nordstrom black hole or “wormhole” (discussed in e.g. [6]).
Recall that the latter geometry is of the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2 , f(r) = (r − r+)(r − r−) . (6.3.3)

Near the inner horizon r− this can be approximated as ds2 ∼ − dr2

k(r−r−)
+ k(r −

r−)dt2 +r2dΩ2, where k = r+−r−. In the region r− < r < r+, the radial coordinate r
is timelike. Thus we see that the geometry near the inner horizon r− in fact resembles
the geometry ds2 ∼ − dτ2

τ−τ0 + (τ − τ0)dw2 + τ 2dx2
i near the horizon τ0 in the present

dS-case. Thus it is not surprising that the Penrose diagram and associated physics
are similar in both cases.

For general timelike geodesic trajectories the momenta satisfy pµp
µ = −m2 and

the action is S =
∫
dτ m

2
gµν ẋ

µẋν , with λ the affine parameter. Sinc ∂w is a Killing
vector the associated momentum pw is conserved

pw
m

=
(
τ 2 − τ 3

0

τ

)dw
dλ

,
τ̇ 2 − p2

w/m
2

τ 2 − τ3
0

τ

= 1,
dw

dτ
=

±pw
m

τ 2(1− τ3
0

τ3 )

√
p2
w

m2 + τ 2(1− τ3
0

τ3 )
.

(6.3.4)
In these coordinates static observers are timelike geodesics at const-w, xi with pw =
0, gττ (

dτ
dλ

)2 = −1. Using (C.0.2), these are u
v

= − tanh 3wτ0
2

= const i.e. straight
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lines crossing from the past universe II to the future one I through the bifurcation
region. Generic observers have pw 6= 0: as τ → τ0, they approach the horizon with
increasing coordinate speed |dw

dτ
| → ∞ and fall through the horizon. They do not hit

the singularity however: the singularity appears to be repulsive. This can be seen

from (6.3.4) by noting that τ̇ 2 = p2
w

m2 + τ 2 − τ3
0

τ
> 0 implies a turning point τmin =

τ3
0

p2
w

,

and likewise (dw
dτ

)2 > 0 ⇒ τ ≥ τmin, so that timelike geodesic trajectories never
reach the singularity. We see that in this “deSitter bluewall” solution, particles can
apparently pass from the past universe through the horizons avoiding the timelike
singularities behind the horizons and emerge in the future universe. Whether such
trajectories can actually go across is unclear due to a blue-shift instability stemming
from the Cauchy horizons, as we discuss now.
Bluewalls: We now discuss the role of the Cauchy horizons and the possibility of
traversing from the past universe to the future one. First recall that the horizons are
ũ = 0 at τ = τ0, w = −∞ and ṽ = 0 at τ = τ0, w = +∞. Thus the horizons are
actually infinitely far away in the w-direction. As we have seen, trajectories from the
past universe (beginning at some point on I−) can pass through the horizons into
the interior regions: however there are timelike and null geodesics which begin in the
interior regions alone and thus cannot be obtained by time development of any Cauchy
data on I−. Thus the past horizons are future Cauchy horizons for Cauchy data on
I−. Likewise the future horizons are causal boundaries for the future universe, so
that these are past Cauchy horizons for data on I+.

P2’

IV

=

=

=

0

0

II

Cauchy horizon

singularity

future universe

past universe

P1

III

I

=const hypersurface

P2

Figure 6.2: Trajectories in the de Sitter bluewall and the Cauchy

horizon. Observers P1 are static while P2 has w-momentum pw,

crosses the horizon, turns around inside and appears to re-emerge

in the future universe. Also shown are incoming lightrays from

infinity which “crowd near” the Cauchy horizon.

Two static observers at different w-locations communicating by lightray signals are
always in contact with each other. Consider observers P1, P2, with P1 a static observer
while P2 is a geodesic infalling observer with some w-momentum. P2 falls freely
through the horizon, turns around somewhere in the interior and then appears to re-
emerge in the future universe. From the point of view of P1, the observer P2 appears to
be going to |w| → ∞. Eventually P2 sends, from |w| → ∞, a “final” lightray which
is the generator of the corresponding horizon. Similarly one can consider signals
received by infalling observers P2 at late times, sent by infalling observers P2′ at early

times. Such observers P2, P2′ have τ̇ 2 ≡ ( dτ
dλ

)2 = p2
w

m2 + τ 2 − τ3
0

τ
, using (6.3.4), so that

we have the proper time intervals

∆λP2 ∼
1

pw
∆τ (near τ0) , ∆λP2′

∼ ∆τ

τ
(early times) . (6.3.5)

Ingoing lightray congruences of the form U = w− τ∗ = c have a cross-sectional vector
v = w + τ∗. To analyse these transmitting-receiving events further, it is convenient

87



to use Eddington-Finkelstein-type coordinates here: defining the ingoing coordinate
v = w + τ∗, the metric (6.3.1) becomes

ds2 = f(τ)dv2 − 2dvdτ + τ 2dx2
i , (6.3.6)

and infalling geodesic observers at const-xi (i.e. τ, w decreasing with proper time λ)
are

fv̇2 − 2v̇τ̇ = −1 , −fv̇ + τ̇ = −fẇ = pv > 0 (i .e. ẇ < 0) , (6.3.7)

⇒ dτ

dλ
= −

√
f(τ) + p2

v < 0 ,
dv

dλ
= −

pv +
√
f(τ) + p2

v

f(τ)
,

dv

dτ
=
pv +

√
f(τ) + p2

v

f(τ)
√
f(τ) + p2

v

.

(6.3.8)
Figure 6.2 shows infalling observers P2 approaching the horizon, receiving at late
times (τ ∼ τ0) light signals that emanate from early times (τ ∼ ∞): the latter can be
thought of as signals transmitted by infalling observers P2′ at early times. It can be
seen from Figure 6.2 that such events (transmission-reception of such light signals)
are consistent with the causal (lightcone) structure of the spacetime. The light rays
in question have constant v which is very large and negative.

Let us denote the conserved momenta for the two geodesics P2 and P2′ by pv and
p′v respectively. Suppose P2′ sends out successive light signals along constant v and
constant v + dv, at coordinate times τ ′ and τ ′ + dτ ′, and these are received by P2 at
coordinate times τ and τ + dτ . The proper time between emission these signals is
dλP ′2 while the proper time between reception of the same two signals by P2 is dλP2 .
Then equations (6.3.8) yield

dλP2

dλP ′2
=
f(τ)

f(τ ′)

p′v +
√
f(τ ′) + (p′v)

2

pv +
√
f(τ) + p2

v

(6.3.9)

When both observers are at rest, pv = p′v = 0 this leads to the standard formula for
the gravitaional redshift/blueshift. In our setup τ ∼ τ0 while τ ′ →∞, so that

f(τ) ∼ 3τ0(τ − τ0) , f(τ ′) ∼ (τ ′)2 , (6.3.10)

which leads to
dλP2

dλP ′2
∼ 3τ0(τ − τ0)

2pvτ ′
. (6.3.11)

We now need to express the ratio in (6.3.11) in terms of v. It is clear from the last
equation in (6.3.8) that at early times the geodesic P2′ is described by

v(τ ′) = − 1

τ ′
+ c′ , (6.3.12)

where c′ is a constant. Note that we are considering light rays which have v ∼ −∞,
so that the integration constant c′ must be large and negative (since (v − c′) = − 1

τ ′

is small as τ ′ →∞). The trajectory P2 is described in the vicinity of τ = τ0 by

τ − τ0 ∼ A exp
[3τ0

2
v
]
, (6.3.13)
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where A is a finite constant of integration. Substituting (6.3.12) and (6.3.13) in
(6.3.11) we get

dλP2

dλP ′2
∼ −3Aτ0

2pv
(v − c′) exp

[3τ0

2
v
]
. (6.3.14)

Thus for a fixed proper time between the signals during emission, the proper time
interval for reception becomes exponentially small as v → −∞.

It is interesting to compare the situation with pure de Sitter. Here f(τ) = τ 2 for
all τ and the cosmological horizon is at τ = 0. In this case the ratio of the proper
time interval (6.3.9) for the observers P2 and P2′ becomes, instead of (6.3.11),

dλP2

dλP ′2
∼ τ 2

2pvτ ′
. (6.3.15)

Near τ = 0, the trajectory P2 can be obtained by solving the second equation in
(6.3.8) with f(τ) = τ 2 ∼ 0. Since u is finite it is easy to see that one needs pv 6= 0
and one gets

v(τ) = −2

τ
+ a , (6.3.16)

where the constant of integration a is finite. The trajectory P2′ is exactly the same
as (6.3.12). Using this, the equation (6.3.15) becomes

dλP2

dλP ′2
∼ − 2(v − c′)

(v − a)2pv
∼ −2(v − c′)

v2pv
, (6.3.17)

where in the second equation above we have used finiteness of a. Once again
dλP2

dλP ′2
→

0, however in a power law fashion. This is a much milder blueshift than what is
experienced for our bluewall solution.

This exponentially vanishing blueshift is a reflection of the “crowding” of lightrays
near the horizon. The energy flux that the infalling observer measures is Tµνv

µvν ∼
Tvvv̇

2. From above, we see that the infalling observer thus crosses a diverging flux of
incoming lightrays in finite proper time as he approaches the horizon6, suggesting an
instability. This is somewhat akin to the Reissner-Nordstrom black hole inner horizon
(see e.g. [167]) where an infalling observer receives signals from the exterior region
in vanishingly small proper time (“seeing entire histories in a flash”). However note
that here, this occurs for the late time infalling observer only as he approaches the
horizon and only from signals emanating at early times from “infinity” (|w| → ∞).
Now applying the energy-momentum calculation earlier gives an imaginary energy
density 〈Tij〉: it is interesting to ask if this is the dual CFT signature of the blue-shift
instability. It would be interesting to explore these further, perhaps keeping in mind
black holes, firewalls and entanglement [168–170].

Copyright c© Diptarka Das 2014

6It is a reasonable assumption that Tvv for the lightrays follows a power law in v, akin to [166].
From (6.3.8), (6.3.13), we have v̇ ∼ e−(3τ0/2)v|v→−∞ →∞. Thus Tvv v̇

2 diverges as τ → τ0.
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Chapter 7

Integrability Lost

7.1 Introduction

AdS/CFT duality [5] was a major step towards the goal of recasting large-N QCD
as a string theory. One of the interesting aspects of AdS/CFT is integrability (see
the review [171]). Integrability has allowed us to obtain many classical solutions of
the theory that would otherwise have been impossible to find [27, 172]. One may
approach integrability from two sides corresponding to the two extreme values of the
’t Hooft coupling. On the supergravity side (which is a good description as λ→∞),
integrability of the classical sigma model on AdS5 × S5 was established for bosonic
sector in [13] and fully completed with the inclusion of fermions in [173]. It has been
shown that classical string motion in AdS5 × S5 has an infinite number of conserved
charges.1 This is the closest to solvability that we can get currently. It is also to be
noted that the study of integrability in non-linear sigma models has a long history
[174, 175]. The other approach to integrability is perturbative in the weakly coupled
gauge theory [171]. We will restrict ourselves to the former approach.

An important open question is whether integrability can be extended to more
QCD-like theories.2 The original form of AdS/CFT duality was for conformally in-
variant N = 4 SYM theory but this can be deformed in various ways to produce
string duals to confining gauge theories with less or no supersymmetry. The con-
struction of [13, 173] does not readily generalize to these less symmetric backgrounds.
One prime example of a confining background is the AdS soliton [176, 28]. Simi-
lar geometries have been used extensively to model various aspects of QCD in the
context of holography [177]. Here we will look at the question of integrability of
bosonic strings on an AdS soliton background. Although it is much more interesting
to explore full quantum integrability, to begin with we may ask whether we can find
enough conserved charges even at a purely classical level. The answer turns out to
be negative. By choosing a class of simple classical string configurations, we show
that the Lagrangian reduces to a set of coupled harmonic and anharmonic oscillators
that correspond to the size fluctuation and the center of mass of motion of the string.
The oscillators decouple in the low energy limit. With increasing energy the oscilla-
tors become nonlinearly coupled. Many such systems are well known to be chaotic
and nonintegrable [178, 179]. It is no surprise that our system also shows a similar
behaviour. Possibly chaotic behaviour of a test string has been argued previously in
black hole backgrounds [180, 181]. However our problem is somewhat different as we
are looking at a zero temperature geometry without a horizon. In a companion paper
[182] non-integrability of string theory in AdS5 × T 1,1 is discussed.

1However the commutator algebra of such charges is not fully understood.
2This is one of the motivations discussed in the introduction of [173].
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We start by discussing the AdS soliton background and our test string ansatz§7.2.
We discuss some quasi-periodic solutions for small oscillation regime. Our argument
for the non-integrability is via numerical solution of the EOM’s§7.3. In a certain
regime of parameter space the system shows a zigzag aperiodic motion characteristic
of a chaotic system. We then look at the phase space. Integrability implies the
existence of a regular foliation of the phase space by invariant manifolds, known
as KAM (Kolmogorov-Arnold-Moser) tori, such that the Hamiltonian vector fields
associated with the invariants of the foliation span the tangent distribution. Our
numerics shows how this nice foliation structure is gradually lost as we increase the
energy of the system§7.3.1. To be complete we also calculate Lyapunov indices for
various parameter ranges and find large positive values in chaotic regimes§8.4.2. We
discuss open questions and possible extensions in the conclusion§7.4.

7.2 Setup

The AdS soliton (M) metric for an asymptotically AdSd+2 background is given by
[176],

ds2 = L2α′
(
e2u(−dt2 + T2π(u)dθ2 + dw2

i ) +
1

T2π(u)
du2

)
,

where T2π(u) = 1−
(
d+ 1

2
eu
)−(d+1)

. (7.2.1)

At large u, T2π(u) ≈ 1 and (7.2.1) reduces toAdSd+2 in Poincaré coordinates. However
one of the spatial boundary coordinates θ is compactified on a circle. The remaining
boundary coordinates wi and t remain non-compact. The dual boundary theory may
be thought of as a Scherk-Schwarz compactification on the θ cycle. The θ cycle shrinks
to zero at a finite value of u, smoothly cutting off the IR region of AdS. This cutoff
dynamically generates a mass scale in the theory, very much like in real QCD. The
resulting theory is confining and has a mass gap.

Here we will work with3 d = 4 and make a coordinate transformation u = u0 +ax2

with u0 = log(2/5) and a = 5/4, such that T2π(u0) = 0 and for small x the x-θ part
of the metric looks flat, ds2 ≈ dx2 + x2 dθ2. In these coordinates the metric is

ds2 = e2u0+2ax2

(−dt2 + T (x)dθ2 + dw2
i ) +

4a2x2

T (x)
dx2 ,

where T (x) = 1− e−5ax2

. (7.2.2)

7.2.1 Classical string in AdS-soliton

We start with the Polyakov action:

SP = − 1

2πα′′

∫
dτdσ

√
−γγabGµν∂aX

µ∂bX
ν (7.2.3)

3The analysis for any other d ≥ 3 proceeds along the same lines and almost identical results can
be obtained.
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where Xµ are the coordinates of the string, Gµν is the spacetime metric of the fixed
background, γab is the worldsheet metric, the indices a, b represent the coordinates on
the worldsheet of the string which we denote as (τ, σ). We work in the conformal gauge
γab = ηab and use the following embedding for a closed string (partially motivated by
[180]):

t = t(τ), θ = θ(τ), x = x(τ),

w1 = R(τ) cos (φ(σ)) , w2 = R(τ) sin (φ(σ)) with φ(σ) = ασ . (7.2.4)

The string is at located at a certain value of u and is wrapped around a pair of
w-directions as a circle of radius R. It is allowed to move along the potential in u
direction and change its radius R. Here α ∈ Z is the winding number of the string.
The test string Lagrangian takes the form:

L ∝ 2

5
e2ax2

{
−ṫ2 + T (x)θ̇2 + ẇ2

i − w′2i
}

+
2a2x2

T (x)
ẋ2 (7.2.5)

=
2

5
e2ax2

{
−ṫ2 + T (x)θ̇2 + Ṙ2 −R2α2

}
+

2a2x2

T (x)
ẋ2 , (7.2.6)

where dot and prime denote derivatives w.r.t τ and σ respectively. The coordinates
t and θ are ignorable and the corresponding momenta are constants of motion. The
test string Lagrangian differs from a test particle Lagrangian because of the potential
term in R(τ). The coordinate R would be ignorable without a potential term. In
general it can be easily argued that for a generic motion of a test particle in an AdS
soliton background, all the coordinates other than x are ignorable and the equations
of motion can be reduced to a Lagrangian dynamics in one variable x. This implies
integrability.

Here the conserved momenta conjugate to t and θ are,

pt = −4

5
e2ax2

ṫ ≡ −E

pθ =
4

5
e2ax2

T (x)θ̇ ≡ k. (7.2.7)

The conjugate momenta corresponding to the other coordinates are:

pR =
4

5
e2ax2

Ṙ

px =
4a2x2

T (x)
ẋ . (7.2.8)

With these we can construct the Hamiltonian density:

H =
5

8

{(
−E2 +

k2

T (x)
+ p2

R

)
e−2ax2

+
T (x)p2

x

5a2x2
+

16

25
R2α2e2ax2

}
(7.2.9)

Hamilton’s equations of motion give:

Ṙ =
5

4
pRe

−2ax2

(7.2.10)
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ṗR = −4

5
Rα2e2ax2

(7.2.11)

ẋ =
T (x)px
4a2x2

(7.2.12)

ṗx = −5

8

{
4ax

[(
E2 − k2

T (x)
− p2

R

)
e−2ax2

+
16

25
R2α2e2ax2

]
−2T (x)p2

x

5a2x3
+

[
p2
x

5a2x2
− k2e−2ax2

T (x)2

]
∂xT (x)

}
(7.2.13)

We also have the constraint equations:

Gµν (∂τX
µ∂τX

ν + ∂σX
µ∂σX

ν) = 0 , (7.2.14)

Gµν∂τX
µ∂σX

ν = 0 . (7.2.15)

The first equation takes the form H = 0 4 and the second equation is automatically
satisfied for our embedding.

7.3 Dynamics of the system

At k = 0, an exact solution to the EOM’s is a fluctuating string at the tip of the
geometry, given by

x(τ) = 0 (7.3.1)

R(τ) = A sin(τ + φ). (7.3.2)

where A, φ are integration constants. No such solution with constant x(τ) exists
for k 6= 0. However one may construct approximate quasi-periodic solutions for
small R(τ), pR(τ). It should be noted that with R, pR = 0 the zero energy condition
Eqn.(7.2.14) becomes similar to the condition for a massless particle and the string
escapes from AdS following a null geodesic. For small nonzero values of R0, pR, the
motion in the x-direction will have a long time period. However the fluctuations
in the radius will have a frequency proportional to the winding number which is of
O(1). This is a perfect setup to do a two scale analysis. In the equation for ṗR
we may replace R(τ)2 by a time average value. With this approximation, motion in
the x-direction becomes an anharmonic problem in one variable which is solvable in
principle. The motion is also periodic [Fig.7.1(a)]. On the other hand to solve for
R(τ) we treat x(τ) as a slowly varying field. In this approximation the solution for
R(τ) is given by

R(τ) ≈ exp(−a x(τ)2)A sin(τ + φ). (7.3.3)

4The Hamiltonian constraint could be tuned to a nonzero value by adding a momentum in a
decoupled compact direction. For example if the space is M× S5 then giving a non-zero angular
momentum in an S5 direction would do the job. However we choose to confine the motion within
M here.
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Hence R(τ) is quasi-periodic [Fig.7.1(a)]. We have verified that in the small R regime,
the semi-analytic solution matches quite well with our numerics.

Once we start moving away from the small R limit the the above two scale analysis
breaks down and the nonlinear coupling between two oscillators gradually becomes
important. In short the coupling between oscillators tends to increase as we increase
the energy of the string. Due to the nonlinearity, the fluctuations in the x- and
R-coordinates influence each other and the motions in both coordinates become ape-
riodic. Eventually the system becomes completely chaotic [Fig.7.1(c)]. The power
spectrum changes from peaked to noisy as chaos sets in [Fig.7.1]. As we discuss in
the next subsection, the pattern follows general expectations from the KAM theorem.
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Figure 7.1: Numerical simulation of the motion of the string and the corresponding
power spectra for small and large values of E. The initial momenta px(0), pR(0) have
been set to zero. For a small value of E = 0.22, we see a (quasi-)periodicity in
the oscillations. The power spectrum shows peaks at discrete harmonic frequencies.
However for a larger value of E = 3.0, the motion is no longer periodic. We only
show x(τ) but R(τ) is similar. The power spectrum is white.

7.3.1 Poincaré sections and the KAM theorem

An integrable system has the same number of conserved quantities as degrees of
freedom. A convenient way to understand these conserved charges is by looking at
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the phase space. Let us assume that we have a system with N position variables qi
with conjugate momenta pi. The phase space is 2N -dimensional. Integrability means
that there are N conserved charges Qi = fi(p, q) which are constants of motion. One
of them is the energy. These charges define a N -dimensional surface in the phase
space which is a topological torus (KAM torus). The 2N -dimensional phase space
is nicely foliated by these N -dimensional tori. In terms of action-angle variables
(Ii, θi) these tori just become surfaces of constant action. With each torus there are
N associated frequencies ωi(Ii), which are the frequencies of motion in each of the
action-angle directions.

It is interesting to study what happens to these tori when an integrable Hamil-
tonian is perturbed by a small nonintegrable piece. The KAM theorem states that
most tori survive, but suffer a small deformation [178, 179]. However the resonant
tori which have rational ratios of frequencies, i.e. miωi = 0 with m ∈ Q, get de-
stroyed and motion on them become chaotic. For small values of the nonintegrable
perturbations, these chaotic regions span a very small portion of the phase space and
are not readily noticeable in a numerical study. As the strength of the nonintegrable
interaction increases, more tori gradually get destroyed. A nicely foliated picture of
the phase space is no longer applicable and the trajectories freely explore the entire
phase space with energy as the only constraint. In such cases the motion is completely
chaotic.

To numerically investigate this gradual disappearance of foliation we look at the
Poincaré sections. For our system, the phase space has four variables x,R, px, pR. If
we fix the energy we are in a three dimensional subspace. Now if we start with some
initial condition and time-evolve, the motion is confined to a two dimensional torus
for the integrable case. This 2d torus intersects the R = 0 hyperplane at a circle.
Taking repeated snapshots of the system as it crosses R = 0 and plotting the value
of (x, px), we can reconstruct this circle. Furthermore varying the initial conditions
(in particular we set R(0) = 0, px(0) = 0, vary x(0) and determine pR(0) from the
energy constraint), we can expect to get the foliation structure typical of an integrable
system.

Indeed we see that for smaller value of energies, a distinct foliation structure ex-
ists in the phase space [Fig.7.3(a)]. However as we increase the energy some tori get
gradually dissolved [Figs.7.3(b)-7.3(f)]. The tori which are destroyed sometimes get
broken down into smaller tori [Figs.7.3(c)-7.3(d)]. Eventually the tori disappear and
become a collection of scattered points known as cantori. However the breadths of
these cantori are restricted by the undissolved tori and other dynamical elements.
Usually they do not span the whole phase space [Figs.7.3(c)-7.3(f)]. For sufficiently
large values of energy there are no well defined tori. In this case phase space trajec-
tories are all jumbled up and trajectories with very different initial conditions come
arbitrary close to each other [Fig.7.3(h)]. The mechanism is very similar to what
happens in well known nonintegrable systems like Hénon-Heiles models [178, 179].

95



7.3.2 Lyapunov exponent

One of the trademark signatures of chaos is the sensitive dependence on initial con-
ditions, which means that for any point X in the phase space, there is (at least) one
point arbitrarily close to X that diverges from X. The separation between the two
is also a function of the initial location and has the form ∆X(X0, τ). The Lyapunov
exponent is a quantity that characterizes the rate of separation of such infinitesimally
close trajectories. Formally it is defined as,

λ = lim
τ→∞

lim
∆X0→0

1

τ
ln

∆X(X0, τ)

∆X(X0, 0)
(7.3.4)

In practice we use an algorithm by Sprott [183], which calculates λ over short intervals
and then takes a time average. We should expect to observe that, as time τ is
increased, λ settles down to oscillate around a given value. For trajectories belonging
to the KAM tori, λ is zero, whereas it is expected to be non-zero for a chaotic orbit.
We verify such expectations for our case. We calculate λ with various initial conditions
and parameters. For apparently chaotic orbits we observe a nicely convergent positive
λ [Fig.7.2].
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Figure 7.2: Lyapunov indices for the same values of parameters as in Fig.(7.1). For
E = 0.22, the Lyapunov exponent falls off to zero. For E = 3.0, the Lyapunov
exponent converges to a positive value of about 0.38.
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Figure 7.3: Poincaré sections demonstrate breaking of the KAM tori en route to
chaos. Each colour represents a different initial condition. For smaller values of E
the sections of the KAM tori are intact curves, except for the resonant ones. The tori
near the resonant ones start breaking as E is increased. For very large values of E
all the colours get mixed – this indicates that all the tori get broken and they fill the
entire phase space.
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7.4 Conclusion

In this work, we argue using numerical techniques that classical string motion in
the AdS soliton background is nonintegrable. This certainly restricts the solvability
of such theories. Also our results give a perspective on how much of classical inte-
grability may be extended to various holographic backgrounds, especially those with
less symmetry than AdS5. Non-integrability is possibly quite generic and might be
demonstrated by studying time evolution of simple string configurations. In partic-
ular, the basic construction of our work seems to be extendible to other confining
backgrounds [184]. It would be nice to explore these directions. Another interesting
extension would be to include world sheet fermions. It is also to be kept in mind that
the AdS soliton is not an exact string background and possibly has α′ corrections.
However these effects are unlikely to change the main result of the current work.

One big question is the implication of our result for the full quantum spectrum.
This is in turn connected with the glueball spectrum of the dual theory. The low-lying
string modes will possibly be decoupled from the center of mass motion and will be
more like the flat space counterpart. However the higher modes will be affected by the
nonlinearity. Many exact results are known for the quantum spectrum of a chaotic
theory. It would be interesting to explore how these results apply in a mini-superspace
quantization of our system.

It would also be interesting understand more on the gauge theory side [185]. The
dual gauge theory is theN = 4 SYM theory with one compact direction with aperiodic
boundary condition for fermions. This breaks supersymmetry and the low energy
dynamics of the theory is confining. Here, a simple change in boundary condition
is changing the integrability of the theory. It is also to be noted that the full SYM
theory with 1

N
corrections is almost surely nonintegrable. Any apparent integrability

would then be a property of the large-N saddle points.

Copyright c© Diptarka Das 2014
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Chapter 8

Chaos around Holographic Regge trajectories

8.1 Introduction

The fact that the quantum numbers of certain operators or states in field theory
can be well described by the corresponding classical string is the idea at the heart
of Regge trajectories where the hadronic relationship J ∼ M2 is realized by a spin-
ning string. This fact has a long history dating back to the Chew-Frautschi plots
[186]. In the context of the AdS/CFT correspondence a better understanding of
the role played by classical trajectories has been at the center of a substantial part
of recent developments. More generally, the AdS/CFT correspondence provides a
dictionary that identifies states in string theory with operators in field theory. One
of the most prominent examples is provided by the Berenstein-Maldacena-Nastase
(BMN) operators. The BMN operators [187] can be described as a string moving at
the speed of light in the large circle of S5, the operator corresponding to the ground
states is given by OJ = (1/

√
JNJ)Tr ZJ . Another interesting class of operators

which are nicely described as semiclassical strings in the AdS5 × S5 background are
the Gubser-Klebanov-Polyakov (GKP) operators discussed in [27]. They are nat-
ural generalizations of twist-two operators in QCD and in the context of N = 4
supersymmetric Yang-Mills they look like TrΦI∇(a1 . . .∇an)Φ

I . A very important
property of these operators is that their anomalous dimension can be computed using
a simple classical calculation and yields a prediction for the result at strong cou-
pling ∆− S = (

√
λ/π) lnS. This expression is similar to the QCD relation obtained

originally by Gross and Wilczek [188].
Right after the original formulation of the AdS/CFT correspondence [5, 19, 18, 15]

an important direction emerged surrounding the question of how to approach more
realistic theories using the methods of the gauge/gravity correspondence. There is
by now a well established body of results in this direction. In particular, general
conditions on the supergravity backgrounds have been found that correspond to the
existence of the area law for the Wilson loop in the field theory [189, 190]. Similarly,
the classical string configuration corresponding to the Regge trajectories have been
extensively studied.

In this paper we study properties of a configuration of classical strings in super-
gravity backgrounds dual to confining field theories. Our study goes beyond particular
trajectories and explores the phase space. We show that a class of strings that natu-
rally generalizes those corresponding to Regge trajectories is non-integrable. Further,
we show explicitly that the motion of such strings is chaotic with the Regge trajec-
tories being an integrable island in the phase space. It turns out that technically
the problem is similar to the study of the spectrum of quadratic fluctuations. The
study of quantum corrections to Regge trajectories in the context of the AdS/CFT
correspondence was initiated in [191] and was extended to other backgrounds [192].
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Other recent studies of chaotic behavior of classical strings in the context of the
gauge/gravity correspondence include [193, 194, 182, 195]. We will in particular draw
on modern Hamiltonian methods used in [195] and the concrete discussion of the AdS
soliton background presented in [194].

One of the questions driving our program is how to interpret chaos in AdS/CFT,
that is, what is the field theory dual of chaotic quantities? We ask whether we can test
some of the ideas in the context of confinement. Are there any universal features of
various confining theories? We come up with a unified approach to study integrability
in a class of confining backgrounds that include many of the commonly-cited examples
of confining geometries like Klebanov-Strassler, Maldacena-Núñez, Witten QCD and
AdS-soliton. QCD, in the asymptotic free regime, has been argued to be possibly
integrable. One particularly important lead in this direction comes from the integrable
Regge trajectories. However our results show that the Regge trajectories are just
integrable islands in a wider sea of nonintegrability. One is naturally led to ask the
question whether there are more similar subdomains of integrability. In this work, we
answer some of the questions above, while some of them still remain open.

The rest of the paper is organized as follows. In section 8.2 we consider two classes
of closed spinning strings and discuss some of their properties in supergravity back-
grounds dual to confining field theories. In section 8.3, for the sake of the readers, we
review the main results of the literature of analytic non-integrability of Hamiltonian
systems. In that section we also show that the motion of the string in supergravity
backgrounds dual to confining field theories is non-integrable using analytic methods.
Since analytic non-integrability is not a sufficient condition for chaotic behavior, we
study numerically a particular background and show strong evidence of chaotic be-
havior in section 8.4. We conclude in section 8.5. In appendix D we present the main
equation in the non-integrability paradigm of various supergravity backgrounds dual
to known confining field theories.

8.2 Closed spinning strings in supergravity backgrounds

The Polyakov action and the Virasoro constraints characterizing the classical motion
of the fundamental string are:

L = − 1

2πα′
√
−ggabGMN∂aX

M∂bX
N , (8.2.1)

where GMN is the spacetime metric of the fixed background, Xµ are the coordinates
of the string, gab is the worldsheet metric, the indices a, b represent the coordinates
on the worldsheet of the string which we denote as (τ, σ). We will use to work in the
conformal gauge in which case the Virasoro constraints are

0 = GMNẊ
MX ′N ,

0 = GMN

(
ẊMẊN +X ′MX ′N

)
, (8.2.2)

where dot and prime denote derivatives with respect to τ and σ respectively.
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We are interested in the classical motion of the strings in background metrics
GMN that preserve Poincaré invariance in the coordinates (X0, X i) where the dual
field theory lives:

ds2 = a2(r)dxµdx
µ + b2(r)dr2 + c2(r)dΩ2

d. (8.2.3)

Here xµ = (t, x1, x2, x3) and dΩ2
d represents the metric on a d-dimensional sub-space

that, can also have r-dependent coefficients. In the case of supergravity backgrounds
in IIB, we have d = 5 but we leave it arbitrary to also accommodate backgrounds in
11-d supergravity in which case d = 6.

The relevant classical equations of motion for the string sigma model in this back-
ground are

∂a(a
2(r)ηab∂bx

µ) = 0,

∂a(b
2(r)ηab∂br) =

1

2
∂r(a

2(r))ηab∂axµ∂bx
µ +

1

2
∂r(b

2(r))ηab∂ar∂br.

(8.2.4)

They are supplemented by the Virasoro constraints. We will construct spinning
strings by starting with the following Ansatz (Ansatz I):

x0 = e τ,

x1 = f1(τ) g1(σ), x2 = f2(τ) g2(σ),

x3 = constant, r = r(σ). (8.2.5)

We will also consider a slight modification of the above Ansatz as follows (Ansatz
II):

x0 = e τ,

x1 = f1(τ) g1(σ), x2 = f2(τ) g2(σ),

x3 = constant, r = r(τ). (8.2.6)

The main modification is that the radial coordinate is now a function of the worldsheet
time r = r(τ).

With Ansatz I (8.2.5) the equation of motion for x0 is trivially satisfied. Let us
first show that the form of the functions fi is fairly universal for this Ansatz. The
equation of motion for xi is

− a2 gif̈i + fi∂σ(a2g′i) = 0, (8.2.7)

where a dot denotes a derivative with respect to τ and a prime denotes a derivative
with respect to σ. Enforcing a natural separation of variables we see that

f̈i + (e ω)2fi = 0, ∂σ(a2 g′i) + (e ω)2a2gi = 0. (8.2.8)

The radial equation of motion is

(b2r′)′ =
1

2
∂r(a

2)
[
e2 − g2

i ḟ
2
i + f 2

i g
′2
i

]
+

1

2
∂r(b

2)r′2. (8.2.9)
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Finally the nontrivial Virasoro constraint becomes

b2r′2 + a2
[
− e2 + g2

i ḟ
2
i + f 2

i g
′2
i

]
= 0. (8.2.10)

We are particularly interested in the integrals of motion describing the energy and
the angular momentum

E =
e

2πα′

∫
a2dσ, (8.2.11)

J =
1

2πα′

∫
a2
[
x1∂τx2 − x2∂τx1

]
dσ =

1

2πα′

∫
a2g1g2

[
f1∂τf2 − f2∂τf1

]
dσ (8.2.12)

The above system can be greatly simplified by further taking the following particular
solution:

f1 = cos eω τ, f2 = sin eω τ, and g1 = g2 = g. (8.2.13)

Under these assumptions the equation of motion for r and the Virasoro constraint
become

(b2r′)′ − 1

2
∂r(a

2)
[
e2 − (eω)2 g2 + g′2

]
− 1

2
∂r(b

2)r′2 = 0, (8.2.14)

b2r′2 + a2
[
− e2 + (eω)2 g2 + g′2

]
= 0. (8.2.15)

The angular momentum is then

J =
eω

2πα′

∫
a2g2dσ. (8.2.16)

Since we are working in Poincaré coordinates the quantity canonically conjugate to
time is the energy of the corresponding state in the four dimensional theory. The
angular momentum of the string describes the spin of the corresponding state. Thus
a spinning string in the Poincaré coordinates is dual to a state of energy E and spin
J . In order for our semiclassical approximation to be valid we need the value of the
action to be large, this imply that we are considering gauge theory states in the IR
region of the gauge theory with large spin and large energy. In the cases we study,
expressions (8.2.11) and (8.2.16) yield a dispersion relation that can be identified with
Regge trajectories.

8.2.1 Regge trajectories from closed spinning strings in confining back-
grounds

Let us show that there exists a simple solution of the equations of motion (8.2.14)
for any gravity background dual to a confining gauge theory. The conditions for a
SUGRA background to be dual to a confining theory have been exhaustively explored
[189, 190] using the fact that the corresponding Wilson loop in field theory should
exhibit area law behavior. The main idea is to translate the condition for the vev of
the rectangular Wilson loop to display an area law into properties that the metric of
the supergravity background must satisfy through the identification of the vacuum
expectation value of the Wilson loop with the value of the action of the corresponding
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classical string. It has been established that one set of necessary conditions is for g00

to have a nonzero minimum at some point r0 usually known as the end of the space
wall [189, 190]. Note that precisely these two conditions ensure the existence of a
solution of (8.2.14). Namely, since g00 = a2 we see that for a point r = r0 = constant
is a solution if

∂r(g00)|r=r0 = 0, g00|r=r0 6= 0. (8.2.17)

The first condition solves the first equation in (8.2.14) and the second condition
makes the second equation nontrivial. Interestingly, the second condition can be
interpreted as enforcing that the quark-antiquark string tension be nonvanishing as
it determines the value of the string action. It is worth mentioning that due to the
UV/IR correspondence in the gauge/gravity duality the radial direction is identified
with the energy scale. In particular, r ≈ r0 is the gravity dual of the IR in the gauge
theory. Thus, the string we are considering spins in the region dual to the IR of the
gauge theory. Therefore we can conclude that it is dual to states in the field theory
that are characteristic of the IR.

Let us now explicitly display the Regge trajectories. The classical solution is
given by (8.2.5) with g(σ) solving the second equation from (8.2.14), that is, g(σ) =
(1/ω) sin(eωσ). Imposing the periodicity σ → σ + 2π implies that eω = 1 and hence

x0 = e τ, x1 = e cos τ sin σ, x2 = e sin τ sin σ. (8.2.18)

The expressions for the energy and angular momentum of the string states are:

E = 4
e g00(r0)

2πα′

∫
dσ = 2πg00(r0)Tse, J = 4

g00(r0)e2

2πα′

∫
sin2 σdσ = πg00(r0)Tse

2.

(8.2.19)
Defining the effective string tension as Ts, eff = g00(r0)/(2πα′) and α′eff = α′/g00

we find that the Regge trajectories take the form

J =
1

4πTs, eff
E2 ≡ 1

2
α′eff t. (8.2.20)

Notice that the main difference with respect to the result in flat space dating back
to the hadronic models of the sixties is that the slope is modified to α′eff = α′/g00.
It is expected that a confining background will have states that align themselves in
Regge trajectories.

8.2.2 Ansatz II

In this subsection we consider the Ansatz given in equation (8.2.6). Note that the
analysis given in the previous sections can be applied mutatis mutandis to this Ansatz.
In particular, the separation of variables described in equation (8.2.8) can be per-
formed in a symmetric way and one obtains:

g′′i + α2gi = 0, ∂τ (a
2 ∂τfi) + α2a2 fi = 0. (8.2.21)
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The Ansatz given in (8.2.6, 8.2.13) becomes

t = t(τ), r = r(τ),

x1 = R(τ) sinασ, x2 = R(τ) cosασ. (8.2.22)

The Polyakov action is:

L ∝ a2(r)
[
− ṫ2 + Ṙ2 − α2R2

]
+ b2(r)ṙ2. (8.2.23)

The above Ansatz satisfies the first constraint automatically and the second constraint
leads to a Hamiltonian constraint:

a2(r)[ṫ2 + Ṙ2 + α2R2] + b2(r)ṙ2 = 0 . (8.2.24)

We also have that
ṫ = E/a2(r), (8.2.25)

where E is an integration constant. This gives

L ∝ − E2

a2(r)
+ a2(r)

[
Ṙ2 − α2R2

]
+ b2(r)ṙ2 . (8.2.26)

From the above Lagrangian density the equations of motion for r(τ) and R(τ) are

d

dτ

(
b2(r)

d

dτ
r(τ)

)
=

E2

a3(r)

d

dr
a(r) + a(r)

d

dr
a(r)

[
Ṙ2 − α2R2

]
+ b(r)

d

dr
b(r)(

d

dτ
r)2,

d

dτ

(
a2(r)

d

dτ
R(τ)

)
= −α2a2(r)R(τ). (8.2.27)

We can once again check the claim that for confining backgrounds there is always a
confining wall which defines a straight line solution. Since one can always argue for
confining backgrounds,

a(r) ≈ a0 − a2(r − r0)2. (8.2.28)

It is easily seen that in this region both equations above can be satisfied. The equation
for r(τ) is satisfied by r = r0 and dr/dτ = 0. The solution for R(τ) is simply

d2

dτ 2
R(τ) + α2R(τ) = 0,−→ R(τ) = A sin(ατ + φ0). (8.2.29)

This is precisely the solution discussed in the previous section that corresponds to
the Regge trajectories in the dual field theory.

8.3 Analytic Non-integrability: From Ziglin to Galois Theory

Let us review, for the benefit of the reader, the main statements of the area of analytic
non-integrability [196–198]. First, the term analytic is identified with meromorphic.
A meromorphic function on an open subset D of the complex plane is a function
that is holomorphic on all D except a set of isolated points, which are poles of the
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function. The central place in the study of integrability and non-integrability of
dynamical systems is occupied by ideas developed in the context of the KAM theory.
The KAM theorem describes how an integrable system reacts to small deformations.
The loss of integrability is readily characterized by the resonant properties of the
corresponding phase space tori, describing integrals of motion in the action-angle
variables. These ideas were already present in Kovalevskaya’s work but were made
precise in the context of KAM theory.

Consider a general system of differential equations ~̇x = ~f(~x). The general basis for
proving nonintegrability of such a system is the analysis of the variational equation
around a particular solution x̄ = x̄(t) which is called the straight line solution. The
variational equation around x̄(t) is a linear system obtained by linearizing the vector
field around x̄(t). If the nonlinear system admits some first integrals so does the
variational equation. Thus, proving that the variational equation does not admit
any first integral within a given class of functions implies that the original nonlinear
system is nonintegrable. In particular when one works in the analytic setting where
inverting the straight line solution x̄(t), one obtains a (noncompact) Riemann surface
Γ given by integrating dt = dw/ ˙̄x(w) with the appropriate limits. Linearizing the
system of differential equations around the straight line solution yields the Normal
Variational Equation (NVE), which is the component of the linearized system which
describes the variational normal to the surface Γ.

The methods described here are useful for Hamiltonian systems, luckily for us,
the Virasoro constraints in string theory provide a Hamiltonian for the systems we
consider. This is particularly interesting as the origin of this constraint is strictly
stringy but allows a very intuitive interpretation from the dynamical system perspec-
tive. One important result at the heart of a analytic non-integrability are Ziglin’s
theorems. Given a Hamiltonian system, the main statement of Ziglin’s theorems is to
relate the existence of a first integral of motion with the monodromy matrices around
the straight line solution [199, 200]. The simplest way to compute such monodromies
is by changing coordinates to bring the normal variational equation into a known
form (hypergeometric, Lamé, Bessel, Heun, etc). Basically one needs to compute the
monodromies around the regular singular points. For example, in the case where the
NVE is a Gauss hypergeometric equation z(1−z)ξ′′+(3/4)(1+z)ξ′+(a/8)ξ = 0, the
monodromy matrices can be expressed in terms of the product of monodromy matri-
ces obtained by taking closed paths around z = 0 and z = 1. In general the answer
depends on the parameters of the equation, that is, on a above. Thus, integrability
is reduced to understanding the possible ranges of the parameter a.

Morales-Ruiz and Ramis proposed a major improvement on Ziglin’s theory by
introducing techniques of differential Galois theory [201–204]. The key observation
is to change the formulation of integrability from a question of monodromy to a
question of the nature of the Galois group of the NVE. In more classical terms, going
back to Kovalevskaya’s formulation, we are interested in understanding whether the
KAM tori are resonant or not. In simpler terms, if their characteristic frequencies
are rational or irrational (see the pedagogical introductions provided in [197, 205]).
This statement turns out to be dealt with most efficiently in terms of the Galois
group of the NVE. The key result is now stated as: If the differential Galois group
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of the NVE is non-virtually Abelian, that is, the identity connected component is a
non-Abelian group, then the Hamiltonian system is non-integrable. The calculation
of the Galois group is rather intricate, as was the calculation of the monodromies,
but the key simplification comes through the application of Kovacic’s algorithm [206].
Kovacic’s algorithm is an algorithmic implementation of Picard-Vessiot theory (Galois
theory applied to linear differential equations) for second order homogeneous linear
differential equations with polynomial coefficients and gives a constructive answer to
the existence of integrability by quadratures. Kovacic’s algorithm is implemented
in most computer algebra software including Maple and Mathematica. It is a little
tedious but straightforward to go through the steps of the algorithm manually. So,
once we write down our NVE in a suitable linear form it becomes a simple task to check
their solvability in quadratures. An important property of the Kovacic’s algorithm
is that it works if and only if the system is integrable, thus a failure of completing
the algorithm equates to a proof of non-integrability. This route of declaring systems
non-integrable has been successfully applied to various situations, some interesting
examples include: [207–210]. See also [211] for nonintegrability of generalizations of
the Hénon-Heiles system [205]. A nice compilation of examples can be found in [197].
In the context of string theory it was first applied in [195].

8.3.1 Analytic Nonintegrability in Confining Backgrounds

8.3.1.1 Ansatz II

For confining backgrounds we have that the conditions on g00 described in (8.2.17)
imply that:

a(r) ≈ a0 − a2(r − r0)2, (8.3.1)

where a0 is the nonzero minimal value of g00(r0) and the absence of a linear terms
indicates that the first derivative at r0 vanishes.

In this region is easy to show that both equations in (8.2.27) can be satisfied. The
equation for r(τ) is satisfied by r = r0 and dr/dτ = 0. The straight line equation for
R(τ) is simply

d2

dτ 2
R(τ) + α2R(τ) = 0,−→ R(τ) = A sin(ατ + φ0). (8.3.2)

We can now write down the NVE equation by considering an expansion around
the straight line solution, that is,

r = r0 + η(τ). (8.3.3)

We obtain

η̈ +
a2E

2

2b2
0a

3
0

[
1 +

2α2A2a4
0

E2
cos 2ατ

]
η = 0. (8.3.4)

The question of integrability of the system (8.2.27) has now turned into whether or
not the NVE above can be solved in quadratures. The above equation can be easily
recognized as the Mathieu equation. The analysis above has naturally appeared in
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the context of quantization of Regge trajectories and other classical string configura-
tions. For example, [191, 192] derived precisely such equation in the study of quantum
corrections to the Regge trajectories, those work went on to compute one-loop cor-
rections in both, fermionic and bosonic sectors. Our goal here is different, for us the
significance of (8.3.4) is as the Normal Variational Equation around the dynamical
system (8.2.27) whose study will inform us about the integrability of the system.

The solution to the above equation (8.3.4) in terms of Mathieu functions is

η(τ) = c1 C(
θ

α2
,
θβ

2α2
, α τ) + c2 S(

θ

α2
,
θβ

2α2
, α τ), (8.3.5)

where c1 and c2 are constants and

θ =
a2E

2

2b2
0a

3
0

, β =
2α2A2a4

0

E2
. (8.3.6)

A beautiful description of a similar situation is presented in [212] where non-
integrability of some Hamiltonians with rational potentials is discussed. In particular,
the extended Mathieu equation is considered as an NVE equation

ÿ = (a+ b sin t+ c cos t)y. (8.3.7)

Our equation 8.3.4 is of this form with 2ατ → t and b = 0. To aid the mathematically
minded reader, and to make connection with our introduction to non-integrability in
the beginning of section 8.3, we show that the extended Mathieu equation can be
brought to an algebraic form using x = eit which leads to:

y′′ +
1

x
y′ +

(b+ c)x2 + 2ax+ c− b
2x3

y = 0. (8.3.8)

The above equation is perfectly ameanable to the application of Kovacic’s algorithm.
It was shown explicitly in [212] that our case (b 6= −c above) corresponds to a non-
integrable equation. More precisely, the Galois group is the connected component
of SL(2,C) and the identity component of the Galois group for (8.3.7) is exactly
SL(2,C), which is a non-Abelian group.

8.4 Explicit Chaotic Behavior

Analytic non-integrability does not, by itself, imply the presence of chaotic behavior.
To logically close the circle we should also show chaotic behavior explicitly by com-
puting chaos indicators such as Poincaré sections and the largest Lyapunov exponent.
Conveniently, the work of some of the authors showed precisely just that. Namely,
in [194] it was shown that the spinning string in the AdS soliton supergravity back-
ground, which is a background in the class of confining backgrounds we are interested
in, is chaotic . Since a separate an exhaustive publication was devoted to strings in the
AdS soliton background here we focus in the Maldacena-Núñez background and show
explicitly that non-integrability is accompanied by positive indicators of chaos. We
find a rather unifying pictures as both systems behave analogously. Our explicit work
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provides strong evidence that, indeed, the dynamical system of the classical string
which include the Regge trajectory as a particular point in phase space is chaotic.

The expression for the functions a and b in the main dynamical system (8.2.27)
can be read directly from the MN background (D.0.10)(see appendix for details of
the background)

a(r)2 = e−φ0

√
sinh(2r)/2

(r coth 2r − r2

sinh2(2r)
− 1

4
)1/4

, b(r)2 = α′ gsNa(r)2. (8.4.1)

It is crucial that
lim
r→0

a(r)2 → e−φ0 , (8.4.2)

which is a nonzero constant that determines the tension of the confining string.

8.4.1 Poincaré sections

An integrable system has the same number of conserved quantities as degrees of
freedom. A convenient way to understand these conserved charges is by looking at
the phase space using action-angle variables. Let us assume that we have a system
with N position variables qi with conjugate momenta pi. The phase space is 2N -
dimensional. Integrability means that there are N conserved charges Qi = fi(p, q)
which are constants of motion. One of them is the energy. These charges define a
N -dimensional surface in phase space which is a topological torus (KAM torus). The
2N -dimensional phase space is nicely foliated by these N -dimensional tori. In terms
of action-angle variables (Ii, θi) these tori just become surfaces of constant action.

It is interesting to study what happens to these tori when an integrable Hamil-
tonian is perturbed by a small nonintegrable piece. The KAM theorem states that
most tori survive, but suffer a small deformation [178, 179]. However the resonant
tori which have rational ratios of frequencies, i.e. miωi = 0 with m ∈ Q, get de-
stroyed and motion on them become chaotic. For small values of the nonintegrable
perturbations, these chaotic regions span a very small portion of the phase space and
are not readily noticeable in a numerical study. As the strength of the nonintegrable
interaction increases, more tori gradually get destroyed. A nicely foliated picture of
the phase space is no longer applicable and the trajectories freely explore the entire
phase space with energy as the only constraint. In such cases the motion is completely
chaotic.

To numerically investigate this gradual disappearance of foliation we look at the
Poincaré sections. For our system, the phase space has four variables r, R, pr, pR. If
we fix the energy we are in a three dimensional subspace. Now if we start with some
initial condition and time-evolve, the motion is confined to a two dimensional torus
for the integrable case. This two-dimensional torus intersects the R = 0 hyperplane
at a circle. Taking repeated snapshots of the system as it crosses R = 0 and plotting
the value of (r, pr), we can reconstruct this circle. Furthermore varying the initial
conditions (in particular we set R(0) = 0, pr(0) = 0, vary r(0) and determine pR(0)
from the Virasoro constraint), we can expect to get the foliation structure typical
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of an integrable system. In the figures below different colors correspond to different
values of r(0). Note that for the MN background the confining wall is located at
r0 = 0 and precisely around that point we see islands of integrability.

The only parameter in the dynamical system is thus E which we might refer as
the energy (being related to the conserved quantity (8.2.25)). Note that this was
precisely the case in the analysis of spinning strings in the AdS soliton [194]. Indeed
we see that for smaller value of energies (E) which is playing the role of the strength
of the non-integrable perturbation in the language of KAM theory, a distinct foliation
structure exists in the phase space [Fig.8.1(a)], as at smaller energy the system may
be thought as two decoupled oscillators in r and R. Recall that the oscillator with
r0 = 0 corresponds to the Regge trajectory as discussed previously. However as we
increase the energy some tori get dissolved [Figs.8.1(b),8.1(c).8.1(d)]. Although there
is no water tight definition of chaos, this destruction of the the KAM tori is one of the
strongest indicators of chaotic behavior. The tori which are destroyed sometimes get
broken down into smaller tori [Figs.8.1(b),8.1(c).8.1(d)]. Eventually the tori disappear
and become a collection of scattered points known as cantori. However the breadths
of these cantori are restricted by the undissolved tori and other dynamical elements.
Usually they do not span the whole phase space [Figs.8.1(d)]. The mechanism is very
similar to what happens in well known chaotic systems like Hénon-Heiles models; our
figures are very typical and we refer the reader to the standard text books in this
field, for example, [178, 179] for qualitative comparison.

8.4.2 Lyapunov exponent

Let us discuss another important indicator of chaos – the largest Lyapunov exponent.
Sensitivity to the initial conditions is one of the most intuitive characteristics of
chaotic systems. More precisely, sensitive dependence on initial conditions means
that for some points X in phase space, there is (at least) one point arbitrarily close
to X that diverges from X. The separation between the two is also a function of
the initial location and has the form ∆X(X0, τ). The largest Lyapunov exponent
is a quantity that characterizes the rate of separation of such infinitesimally close
trajectories. Formally it is defined as,

λ = lim
τ→∞

lim
∆X0→0

1

τ
ln

∆X(X0, τ)

∆X(X0, 0)
(8.4.3)

In practice we use an algorithm by Sprott [183], which calculates λ over short intervals
and then takes a time average. We should expect to observe that, as time τ is
increased, λ settles down to oscillate around a given value. For trajectories belonging
to the KAM tori, λ is zero, whereas it is expected to be non-zero for a chaotic orbit.
We verify such expectations for our case. We calculate λ with various initial conditions
and parameters. For apparently chaotic orbits we observe a nicely convergent positive
λ [Fig.8.4.2]. Our emphasis in not so much in the precise value which might require
extensive use of numerical techniques as done in [193], rather, we are content with
showing that the largest Lyapunov exponent is positive. In figure (8.4.2) we present
a calculation following (8.4.3) of the largest Lyapunov exponent. We consider a
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(a) E = 0.316 (b) E = 0.5

(c) E = 0.71 (d) E = 1.0

Figure 8.1: Poincaré sections demonstrate breaking of the KAM tori en route to
chaos. Each color represents a different initial condition. For smaller values of E the
sections of the KAM tori are intact curves, except for the resonant ones. The tori
near the resonant ones start breaking as E is increased. For very large values of E
all the colors get mixed – this indicates that all the tori get broken and they fill the
entire phase space.

trajectory with r(0) = 2, R(0) = 1.0, pr(0) = 0, pR(0) = 0 and its neighbor which
differs in phase space by r(0) = r(0) + ε with ε = 10−3.
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Lyapunov Exponent for E=3.21344

Figure 8.2: The Lyapunov Exponent converges to a positive value of about 0.2.
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8.5 Conclusions

We have established that the motion of certain classical strings in the general class
of backgrounds dual to confining theory is chaotic. We have shown analytically,
by means of Hamiltonian techniques, that such systems are non-integrable. One
important result of our paper is that non-integrability in confining backgrounds is
a direct consequence of the Wilson loop area law. The conditions (8.2.17) on the
metric, that lead to an area-law behavior of the dual gauge theory thereby implying
confinement [189, 190], are precisely the conditions required to prove that the string
moving in such backgrounds is non-integrable. Non-integrability is thus central to
the approach of AdS/CFT to realistic theories.

Furthermore, we have also shown numerically that in the case of the MN back-
ground the Poincaré sections and the largest Lyapunov exponent return positive tests
for chaotic behavior. Identical results for the AdS soliton background have already
been obtained in [194]. Although, these are the simplest examples in this class of
backgrounds that we can explicitly demonstrate to be chaotic, the same result should
apply to all theories in the class.

There are various topics that we find particularly deserving of further attention.
We have established that the classical string trajectory corresponding to the Regge
trajectory in field theory is an attractor point in the dynamical system. This same
system contains the GKP string which is dual to twist-two operators. It would be
interesting to explore in full detail the connection between these two trajectories.

Along similar lines we established in an appendix that Ansatz I can not be chaotic
as the effective dynamical “time” is periodic. There is a priori nothing surprising
except from the fact that the difference between Ansatzë I and II is largely due to
r(σ)→ r(τ) which conspicuously looks like a T-duality. This topic is certainly worth
exploring.

Lastly, it would be interesting to understand the implication of this classical chaos
on the Regge trajectories themselves. Recall that the spectrum of quantum systems
obtained as the quantization of systems that in their classical limit are chaotic is quite
different from the spectrum of quantum systems obtained from the quantization of
integrable classical systems. This is particularly interesting due to the potential
implications for the spectrum of hadronic matter.
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Appendix A

Adiabatic and scaling analysis of a toy model

In this appendix, we consider a (0 + 1)-dimensional toy model which follows the
equation

2iµφ̇+ (m2 − µ2)φ+ φ|φ|2 = J(t) . (A.0.1)

The function J(t) asymptotes to constants at early and late times and passes through
zero in a linear fashion at some intermediate time, e.g.

J(t) = J0 tanh(vt) . (A.0.2)

A.1 Adiabaticity

We first derive conditions for breakdown of adiabaticity near the critical point m2 =
µ2 and J(t) = 0. We carry out adiabatic expansion as following:

∂t → ε∂t , φ→ φ0(J(t)) + εφ1(t) + · · · , (A.1.1)

where φ0(J(t)) is the (real) adiabatic solution given by

φ0(J(t)) = [J(t)]1/3 . (A.1.2)

The solution to O(ε2) is ,

φ = φ0[J(t)] + ε i
2µ

φ2
0

φ̇0 + ε2
1

3φ2
0

(
8µ2(

φ̇0
2

φ3
0

− φ̈0

2φ2
0

)− 4µ2

φ3
0

φ̇0
2
)

+O(ε3) . (A.1.3)

where The breakdown of adiabaticity happens when,

2µ

φ2
0

φ̇0 ∼ φ0 , (A.1.4)

1

3φ2
0

(
8µ2(

φ̇0
2

φ3
0

− φ̈0

2φ2
0

)− 4µ2

φ3
0

φ̇0
2
)
∼ φ0 , (A.1.5)

For J(t) = tanh(vt) ∼ vt the above two equations translate into,

µ ∼ t5/3v2/3 . (A.1.6)

Thus if µ is of O(1) then the above equations give us,

t ∼ v2/5 . (A.1.7)
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A.2 Scaling behavior

Now sitting at the critical point we study the behavior of the scaling solution with
µ = O(1). From the adiabatic analysis we expect scaled time, t̄ = v2/5t.
We write the field φ as χ+ iξ and the source as JR + iJIm, where both JR and JIm go
as vt. To find the scaling exponents we extract the v dependencies as,

t = vαt̄ , χ = vβχ̄ , ξ = vγ ξ̄ . (A.2.1)

Consistency of the equations demand,

α = −2

5
, β =

1

5
, γ =

1

5
. (A.2.2)

This determines the scaling behavior of the field φ at m2 = µ2 and with µ of O(1) as,

φ(t, v) = v1/5φ(v2/5t, 1) . (A.2.3)

This agrees with our expectation from adiabatic analysis, and also has been confirmed
numerically in Section 4.

A.3 Late time behavior

At late times the source J(t) can be treated to be a constant and the solution can be
obtained by perturbing around the static solution, φstatic = J1/3. It is then straight-
forward to see that the solution φ(t) is oscillatory with a frequency ω = J2/3

√
2µ

.
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Appendix B

Validity of the small v expansion

To argue for the small v expansion of ξ̄k(η) (3.4.16)) we need to consider the eigenvalue
problem

[−∂2
ρ̄ + V0(ρ̄)]χk = k2χk (B.0.1)

The above potential V0(ρ̄)→ −e−ρ̄ as ρ̄→∞.
The basic features of the eigenfunctions can be understood from a simpler problem

in which we replace the potential by the following potential which has the same
qualitative features.

U(ρ̄) =


V0 for ρ̄ = 0

−U0 for 0 ≤ ρ̄ ≤ 1

0 for 1 ≤ ρ̄ ≤ ∞
(B.0.2)

with U0, V0 > 0. The eigenfunctions of the Schrodinger operator with eigenvalue
k2 > 0 are

ψk(ρ̄) =
A(k)√
π

(
sin(
√
k2 + U0 ρ̄) + κ cos(

√
k2 + U0 ρ̄)

)
0 ≤ ρ̄ ≤ 1

ψk(ρ̄) =
1√
π

sin(kρ̄+ θ(ρ̄)) 1 ≤ ρ̄ ≤ ∞ (B.0.3)

Here κ plays the role of the double trace deformation of our original problem, in
the spirit that here too it dictates the modified boundary condition at ρ̄ = 0. The
constants A(k) and θ(k) are determined by matching at ρ̄ = 1,

A(k) =
k√

k2(1 + κ2) +

(
cos(
√
k2 + U0)− κ sin(

√
k2 + U0)

)2

U0

θ(k) = cos−1


(

cos(
√
k2 + U0)− κ sin(

√
k2 + U0)

)√
k2 + U0√

k2(1 + κ2) +

(
cos(
√
k2 + U0)− κ sin(

√
k2 + U0)

)2

U0

− k.(B.0.4)

The solution for k = 0 is

ψ0(ρ̄) =
B√
π

(
sin(
√
U0 ρ̄) + κ cos(

√
U0 ρ̄)

)
0 ≤ ρ̄ ≤ 1

ψ0(ρ̄) =
1√
π

(aρ̄+ b) 1 ≤ ρ̄ ≤ ∞ (B.0.5)
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The matching conditions at ρ̄ = 1 now yield

B
(

sin(
√
U0) + κ cos(

√
U0)
)

= a+ b

B
√
U0

(
cos(

√
U0)− κ sin(

√
U0

)
= a (B.0.6)

For any a 6= 0 the solution blows up at ρ̄ =∞. Thus regular solutions require a = 0.
However the second equation in (B.0.6) then imply that√

U0 = cot−1 κ (B.0.7)

These are the zero modes. In the context of our model this is the potential where we
have a critical point.

The small k behavior of A(k) and θ(k) can be read off from the expressions (B.0.4).
For a generic U0 these are

A(k) ∼ k(
cos(
√
U0)− κ sin(

√
U0

)√
U0

+O(k3)

θ(k) ∼ k[
κ+ tan

√
U0√

U0

(
1− κ tan

√
U0

) − 1] +O(k3) (B.0.8)

whereas for critical potentials we have

A(k) ∼ 1√
1 + κ2

(
1− k2

8
+O(k4)

)
θ(k) ∼ π

2
− k

2
(B.0.9)

This has implications for the coefficients like (Bk0−B00) and (C̄k000− C̄0000) of equa-
tion(3.4.18). Consider the quantity, Bk0. We have,

Bk0 =

∫
dρ̄ χ̄k(ρ̄)∂ρ̄χ̄0(ρ̄)

If we replace the true eigenfunctions by those of our simplified problem, we get

Bk0 = A(k)

∫ 1

0

dρ̄

(
sin(
√
k2 + U0 ρ̄) + κ cos(

√
k2 + U0 ρ̄)

)
B
√
U0

×
(

cos(
√
U0ρ̄)− κ sin(

√
U0ρ̄)

)
(B.0.10)

Using (B.0.8) and (B.0.9) we therefore see that

Bk0 − B00 ∼ k k → 0 (B.0.11)

for generic potentials, whereas

Bk0 − B00 ∼ k2 k → 0 (B.0.12)

for critical potentials. The behavior for (C̄k000 − C̄0000) is similar.
Going back to (3.4.18) we therefore see that the small v expansion is generically

not valid since the corrections diverge at small k. However for the critical potential,
ξ̃k remain finite as k → 0 and the expansion in powers of v1/2 makes sense.
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Appendix C

de Sitter “bluewall” details

We give some details on the dS4-”bluewall” ds2

R2 = − dτ2

τ2(1−τ3
0 /τ

3)
+ τ 2(1− τ 3

0 /τ
3)dw2 +

τ 2dx2
i here. We can analyse the vicinity of τ = τ0 as for the Schwarzschild black hole,

defining a “tortoise” τ -coordinate: for the dS4-solution, this is

τ∗ =

∫
dτ

τ 2(1− τ3
0

τ3 )
=

1

3τ0

(
log

τ − τ0√
τ 2 + ττ0 + τ 2

0

+
√

3 tan−1
2 τ
τ0

+ 1
√

3

)
. (C.0.1)

Analogs of Kruskal-Szekeres coordinates can then be defined as

ũ = e3(τ∗−w)τ0/2 , ṽ = e3(τ∗+w)τ0/2 , ũṽ = e3τ∗τ0 =
τ − τ0√

τ 2 + ττ0 + τ 2
0

e
√

3 tan−1
2 ττ0

+1
√

3 ,

(C.0.2)
and u = ũ− ṽ = −2e3τ∗τ0/2 sinh 3wτ0

2
, v = ũ + ṽ = 2e3τ∗τ0/2 cosh 3wτ0

2
, giving (6.3.2)

and the Penrose diagram Figure 6.1. With T =
∫
dτ/(τ

√
1− τ 3

0 /τ
3) , this is recast in

FRW-form as an accelerating cosmology ds2 = −dT 2+e−2T (e3T +τ 3
0 )4/3 (e3T−τ3

0 )2

(e3T+τ3
0 )2dw

2+

e−2T (e3T +τ 3
0 )4/3dx2

i with w-anisotropy. Further redefining T = log η, we can obtain a
Fefferman-Graham expansion for this asymptotically-dS4 spacetime near the bound-
ary τ → ∞. Following Einstein-Rosen’s description [213] of the “bridge” in the
Schwarzschild black hole (using ρ2 = r− 2m), define t2 = τ − τ0. This coordinate has
the range t : −∞ → ∞ as τ : ∞ → τ0 and then τ : τ0 → ∞, giving two t-sheets of
the asymptotic deSitter region,

ds2 =
−4(t2 + τ0)dt2

(t2 + τ0)2 + τ0(t2 + τ0) + τ 2
0

+
((t2 + τ0)2 + τ0(t2 + τ0) + τ 2

0

t2 + τ0

)
t2dw2+(t2+τ0)2dx2

i .

Thus the two asymptotic universes are connected by a timelike Einstein-Rosen bridge.
At τ = τ0, we have gww = 0 so the w-direction shrinks to vanishing size. Near
τ = τ0, the metric is approximated as ds2 ∼ − dτ2

k(τ−τ0)
+ (τ − τ0)τ 2

0 dw
2 + τ 2

0 dx
2
i ∼

−dt2 + t2dw̃2 + dx̃2
i , which is flat space with the (t, w)-plane in Milne coordinates.

Null geodesics ds2 = 0, in the (τ, w)-plane defining lightcones and causal structure,
are dw = ±dτ∗, dw

dτ
= ± 1

τ2(1−τ3
0 /τ

3)
, with τ∗ given in (C.0.1). Near the horizon, the

trajectories approach w = ±τ∗ + const ∼ ± 1
3τ0

log |τ−τ0|
3τ0

, i.e. w → ±∞. These null

rays intersect the horizon and hit the singularity in the interior at w0 ± 1
3τ0

log 3.

Note that τ = const surfaces are spacelike hyperbolic hypersurfaces with v2−u2 =
const in the region outside the horizons, using (C.0.2). In these exterior regions,

w = const path ⇒ u

v
= − tanh

3wτ0

2
= const , i .e.

ũ

ṽ
=

1− tanh 3wτ0
2

1 + tanh 3wτ0
2

≡ k ,

(C.0.3)
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i.e. straight lines passing through the bifurcation region, crossing over from the past
asymptotic region II to the future one I. The induced worldline metric on such a
w, xi = const trajectory and associated proper time are dl2 = dτ2

τ2−τ3
0 /τ
≡ dT 2, T =

2
3

log(τ 3/2 +
√
τ 3 − τ 3

0 ). The spatial metric on a τ = const hypersurface orthogonal

to these constant-w, xi trajectories is dσ2

R2 = τ 2
(

1− τ3
0

τ3

)
dw2 + τ 2dx2

i . We see that

at the bridge τ → τ0, the spatial metric degenerates and the cross-sectional 3-area
Vw,x1,x2 = ∆w∆2xiτ

3
√

1− τ 3
0 /τ

3 vanishes. The proper time T is consistent with the
equations for timelike geodesics at constant xi in the (τ, w)-plane, and is finite along
such geodesic paths between the horizon τ = τ0 and any point τ < ∞. It can be
seen by studying geodesic deviation for a congruence of such timelike geodesic static
observers with const-w, xi that there are no diverging tidal forces as one crosses the
bifurcation region from the past universe to the future one.

Consider now the spacetime in Kruskal form (6.3.2) written as ds2 = −2f(ũ, ṽ)dũdṽ+
g(ũ, ṽ)dx2

i . A family of generic timelike paths in the Penrose diagram is ũ = kṽ + c,
which are obtained by translating sideways the w = const paths (C.0.3). For c = 0,
these are geodesics passing through the bifurcation region (without intersecting the
horizon). Parametrizing these timelike paths as xα(λ) in the ũ, ṽ-plane (xi = const),
it can be shown that the acceleration components aũ = ¨̃u + Γũαβẋ

αẋβ and similarly
aṽ are finite as τ → τ0, as is the covariant acceleration norm gµνa

µaν . Any arbitrary
smooth timelike trajectory can be approximated as a straight line in the neighbour-
hood of any point, in particular near the horizon. Thus the acceleration vanishes for
any timelike path crossing the horizons. This is perhaps not surprising since the near
horizon geometry is essentially Milne.
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Appendix D

Straight line solution and NVE in Confining Backgrounds

In this appendix we show explicitly that the prototypical supergravity backgrounds
in the gauge/gravity correspondence conform to the analysis presented in the main
text. We consider the KS and MN backgrounds explicitly.

D.0.1 The Klebanov-Strassler background

We begin by reviewing the KS background, which is obtained by considering a col-
lection of N regular and M fractional D3-branes in the geometry of the deformed
conifold [214]. The 10-d metric is of the form:

ds2
10 = h−1/2(τ)dXµdX

µ + h1/2(τ)ds2
6 , (D.0.1)

where ds2
6 is the metric of the deformed conifold:

ds2
6 =

1

2
ε4/3K(τ)

[
1

3K3(τ)
(dτ 2+(g5)2)+cosh2

(τ
2

)
[(g3)2+(g4)2]+sinh2

(τ
2

)
[(g1)2+(g2)2]

]
.

(D.0.2)
where

K(τ) =
(sinh(2τ)− 2τ)1/3

21/3 sinh τ
, (D.0.3)

and

g1 =
1√
2

[
− sin θ1dφ1 − cosψ sin θ2dφ2 + sinψdθ2

]
,

g2 =
1√
2

[
dθ1 − sinψ sin θ2dφ2 − cosψdθ2

]
,

g3 =
1√
2

[
− sin θ1dφ1 + cosψ sin θ2dφ2 − sinψdθ2

]
,

g4 =
1√
2

[
dθ1 + sinψ sin θ2dφ2 + cosψdθ2

]
,

g5 = dψ + cos θ1dφ1 + cos θ2dφ2. (D.0.4)

The warp factor is given by an integral expression for h is

h(τ) = α
22/3

4
I(τ) = (gsMα′)222/3ε−8/3I(τ) , (D.0.5)

where

I(τ) ≡
∫ ∞
τ

dx
x cothx− 1

sinh2 x
(sinh(2x)− 2x)1/3 . (D.0.6)
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The above integral has the following expansion in the IR:

I(τ → 0)→ a0 − a2τ
2 +O(τ 4) , (D.0.7)

where a0 ≈ 0.71805 and a2 = 22/3 32/3/18. The absence of a linear term in τ reassures
us that we are really expanding around the end of space, where the Wilson loop will
find it more favorable to arrange itself.

D.0.1.1 The straight line solution in KS

We consider the quadratic fluctuations and their influence on the Regge trajectories
(8.2.20). In the notation used in the bulk of the paper we have:

a2(r) = h−1/2(r),

b2(r) =
ε4/3

6K2(r)
h1/2(r). (D.0.8)

Let us first consider the metric. The part of the metric perpendicular to the world
volume, which is the deformed conifold metric, does not enter in the classical solution
which involves only world volume fields. Noting that the value r0 of section 8.2.1 is
τ = 0, we expand the deformed conifold up to quadratic terms in the coordinates:

ds2
6 =

ε4/3

22/331/3

[
1

2
g2

5 + g2
3 + g2

4 +
1

2
dτ 2 +

τ 2

4
(g2

1 + g2
2)

]
. (D.0.9)

Let us further discuss the structure of this metric. It is known on very general grounds
that the deformed conifold is a cone over a space that is topologically S3×S2 [215]. We
can see that the S3 roughly spanned by (g3, g4, g5) has finite size, while the S2 spanned
by (g1, g2) shrinks to zero size at the apex of the deformed conifold. More importantly
for us is the fact that, if we do not allow non-trivial behavior in the directions (g1, g2)
they cannot contribute to the NVE around the straight line solution characterized by
τ = 0. Therefore, we have that the NVE equation for the spinning string in the KS
background is precisely of the form (8.3.4).

D.0.2 The Maldacena-Nùñez background

The MN background [216] whose IR regime is associated with N = 1 SYM theory
is that of a large number of D5 branes wrapping an S2. To be more precise: (i) the
dual field theory to this SUGRA background is the N = 1 SYM contaminated with
KK modes which cannot be de–coupled from the IR dynamics, (ii) the IR regime is
described by the SUGRA in the vicinity of the origin where the S2 shrinks to zero
size. The full MN SUGRA background includes the metric, the dilaton and the RR
three-form. It can also be interpreted as uplifting to ten dimensions a solution of seven
dimensional gauged supergravity [217]. The metric and dilaton of the background are

ds2 = eφ
[
dXadXa + α′gsN(dτ 2 + e2g(τ)(e2

1 + e2
2) +

1

4
(e2

3 + e2
4 + e2

5))

]
,
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e2φ = e−2φ0
sinh 2τ

2eg(τ)
,

e2 g(τ) = τ coth 2τ − τ 2

sinh2 2τ
− 1

4
,

(D.0.10)

where,

e1 = dθ1, e2 = sin θ1dφ1,

e3 = cosψ dθ2 + sinψ sin θ2 dφ2 − a(τ)dθ1,

e4 = − sinψ dθ2 + cosψ sin θ2 dφ2 − a(τ) sin θ1dφ1,

e5 = dψ + cos θ2 dφ2 − cos θ1dφ1, a(τ) =
τ 2

sinh2 τ
. (D.0.11)

where µ = 0, 1, 2, 3, we set the integration constant eφD0 =
√
gsN .

Note that we use notation where x0, xi have dimension of length whereas ρ and
the angles θ1, φ1, θ2, φ2, ψ are dimensionless and hence the appearance of the α′ in
front of the transverse part of the metric.

D.0.2.1 The straight line solution in MN

The position referred to as r0 in section (8.2) is τ = 0. Therefore, we will expand the
metric around that value. Let us first identify some structures in the metric that are
similar to the deformed conifold considered in the previous subsection. Notice that
e2

1 + e2
2 is precisely an S2. Moreover, near τ = 0 we have that e2g ≈ τ 2 +O(τ 4). Thus

(τ, e1, e2) span an R3 in the limit

dτ 2 + e2g(τ)(e2
1 + e2

2). (D.0.12)

This means that without exciting the KK modes corresponding to (e1, e2) in our
Ansatz II, the NVE equation is precisely of the form (8.3.4). Certainly e2

3 + e2
4 + e2

5

parametrizes a space that is topologically a three sphere fibered over the S2 spanned
by (e1, e2). However, near τ = 0 we have a situation very similar to the structure
of the metric in the deformed conifold. Namely, at τ = 0 there we have that: e5 →
g5, e3 →

√
2g4, e4 →

√
2g3 (up to a trivial identification θ1 → −θ1, φ1 → −φ1). This

allows us to identify this combination as a round S3 of radius 2 and therefore can not
alter the form of the NVE (8.3.4).

D.0.3 The Witten QCD background

The ten-dimensional string frame metric and dilaton of the Witten QCD model are
given by

ds2 = (
u

R
)3/2(ηµνdx

µdxν +
4R3

9u0

f(u)dθ2) + (
R

u
)3/2 du

2

f(u)
+R3/2u1/2dΩ2

4 ,

f(u) = 1− u3
0

u3
, R = (πNgs)

1
3α′

1
2 ,
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eΦ = gs
u3/4

R3/4
. (D.0.13)

The geometry consists of a warped, flat 4-d part, a radial direction u, a circle param-
eterized by θ with radius vanishing at the horizon u = u0, and a four-sphere whose
volume is instead everywhere non-zero. It is non-singular at u = u0. Notice that in
the u → ∞ limit the dilaton diverges: this implies that in this limit the completion
of the present IIA model has to be found in M-theory. The background is completed
by a constant four-form field strength

F4 = 3R3ω4 , (D.0.14)

where ω4 is the volume form of the transverse S4.
We will be mainly interested in classical string configurations localized at the

horizon u = u0, since this region is dual to the IR regime of the dual field theory. In
this case the coordinate u is not suitable because the metric written in this coordinate
looks singular at u = u0. Then, as a first step, let us introduce the radial coordinate

r2 =
u− u0

u0

, (D.0.15)

so that the metric expanded to quadratic order around r = 0 becomes

ds2 ≈ (
u0

R
)3/2[1 +

3r2

2
](ηµνdx

µdxν) +
4

3
R3/2√u0(dr2 + r2dθ2) +R3/2u

1/2
0 [1 +

r2

2
]dΩ2

4 .

(D.0.16)

D.0.3.1 The straight line solution in WQCD

In this section we consider the closed string configuration corresponding to the glueball
Regge trajectories. The relevant closed folded spinning string configuration dual to
the Regge trajectories and constituting the straight line solution in our analysis is

X0 = kτ , X1 = k cos τ sinσ , X2 = k sin τ sinσ , (D.0.17)

and all the other coordinates fixed.
To understand the NVE around the straight line solution given above, we need

only look at (D.0.16) and realize that the only possible contribution to the NVE given
in (8.3.4) can come only from KK modes in the S4 of equation (D.0.16). We conclude
that, in this case, as well the NVE is precisely of the form given in (8.3.4).
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Appendix E

Comments on Ansatz I

For confining backgrounds we have that the conditions on g00 described in (8.2.17)
imply that:

a(r) ≈ a0 − a2(r − r0)2, (E.0.1)

where a0 is the nonzero minimal value of g00(r0) and the absence of a linear terms
indicates that the first derivative at r0 vanishes.

In this region is easy to show that both equations above can be satisfied. The
equation for r(σ) is satisfied by r = r0 and dr/dσ = 0. The equation for R(σ) is
simply

d2

dσ2
R(σ) + ω2R(σ) = 0,−→ R(σ) = A sin(ωσ + φ0). (E.0.2)

We can now write down the NVE equation by considering an expansion around the
straight line solution, that is,

r = r0 + η(σ). (E.0.3)

We obtain

η′′ − a2E
2

2b2
0a

3
0

[
1− 2ω2A2a4

0

E2
cos 2ωσ

]
η = 0. (E.0.4)

The question of integrability of the system (8.2.27) has now turned into whether or
not the NVE above can be solved in quadratures. The above equation can be easily
recognized as the Mathieu equation. The analysis above has naturally appeared in
the context of quantization of Regge trajectories and other classical string configura-
tions. For example, [191, 192] derived precisely such equation in the study of quantum
corrections to the Regge trajectories, those work went on to compute one-loop cor-
rections in both, fermionic and bosonic sectors. Our goal here is different, for us the
significance of (E.0.4) is as the Normal Variational Equation around the dynamical
system (8.2.27) whose study will inform us about the integrability of the system. The
general solution to the above equation is

η(σ) = c1 C(− α

ω2
,− αβ

2ω2
, ω σ) + c2 S(− α

ω2
,− αβ

2ω2
, ω σ), (E.0.5)

where c1 and c2 are constants and

α =
a2E

2

2b2
0a

3
0

, β =
2ω2A2a4

0

E2
. (E.0.6)

Notice, crucially, that although the system obtain here is similar to the one dis-
cussed in the main text there is a key difference. Namely, that the effective “time”
variable σ is now periodic.
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