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ABSTRACT OF DISSERTATION

Visualizing and Predicting the Effects of Rheumatoid Arthritis on Hands

This dissertation was inspired by difficult decisions patients of chronic diseases have
to make about about treatment options in light of uncertainty. We look at rheumatoid
arthritis (RA), a chronic, autoimmune disease that primarily affects the synovial joints of
the hands and causes pain and deformities. In this work, we focus on several parts of a
computer-based decision tool that patients can interact with using gestures, ask questions
about the disease, and visualize possible futures. We propose a hand gesture based interac-
tion method that is easily setup in a doctor’s office and can be trained using a custom set of
gestures that are least painful. Our system is versatile and can be used for operations like
simple selections to navigating a 3D world. We propose a point distribution model (PDM)
that is capable of modeling hand deformities that occur due to RA and a generalized fitting
method for use on radiographs of hands. Using our shape model, we show novel visu-
alization of disease progression. Using expertly staged radiographs, we propose a novel
distance metric learning and embedding technique that can be used to automatically stage
an unlabeled radiograph. Given a large set of expertly labeled radiographs, our data-driven
approach can be used to extract different modes of deformation specific to a disease.
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Chapter 1 Introduction

1.1 Motivation

This dissertation is motivated by the difficult decision making processes that patients fac-

ing a recent diagnosis of a chronic disease must make. In particular, I focus on rheumatoid

arthritis (RA), a chronic inflammatory autoimmune disease that affects the musculoskeletal

system, primarily causing deformities of the hands and pain. The work presented in this

dissertation was inspired by game-based decision aids which take advantage of an interac-

tive environment, distilled medical data and clever risk communication strategies to inform

patients of their disease and available treatment choices. In a standard shared medical de-

cision setting, where patients are expected to take an active role in their health care, several

complicating factors arise:

• Health care economics limit patient-practitioner interaction time.

• Disorder is chronic and the symptoms are difficult to explain.

• Treatment options are complex, with uncertain benefits/side-effects.

This dissertation is the result of attacking a subset of problems associated with engineering

a decision tool that can allow patients to safely explore the effects of RA on their hands.

1.2 Main Contributions and Related Publications

The contributions shown in this work were inspired by an interactive game-based patient

decision aid (DA) intended to help RA patients understand their disease and treatment op-

tions. Most of the work was done jointly with other researchers, thus I use “we” when

describing this work. The coauthors played a critical role in the development of this dis-

sertation and I owe much of my success to my advisors: Drs. Judy Goldsmith and Nathan

1



Jacobs, medical doctors: Drs. Kristine Lohr and Gustav Blomquist, and two undergrad-

uates: Kaitlin Burton and Frederick Hallock, whom I supervised to write C# code and a

resulting paper about visualization of RA damage to hands.

This dissertation presents contributions in the fields of human-computer interaction

(HCI), computational vision, medical information visualization and machine learning. I

focused on three aspects involved in building a game-based decision tool for RA patients:

• Human-Computer Interaction: RA patients have difficulties using a standard key-

board and mouse due to deformities and pain. To this end, we propose a novel

touchless hand gesture recognition system that can be used by patients to perform

actions as simple as selecting an item from a menu to navigating an avatar through a

3D world.

• Computational Vision: Radiographs (X-Rays) are commonly used as supporting ev-

idence in the diagnosis of RA. We propose a novel point distribution model (PDM)

that is capable of capturing two important destructive effects of RA on the synovial

joints in the hand: joint space narrowing and subluxation (shifting and dislocation).

We also present a novel formulation of fitting the PDM to radiographs as inference

in a conditional random field (CRF).

• Information Visualization: We show how our proposed PDM can be used to animate

a 3D hand model using forward kinematics (FK). Using techniques from computer

graphics, we show novel visualizations of RA disease progression.

• Machine Learning: We propose a novel dimensionality reduction technique that ex-

ploits disease stage as a discrete label. This work is inspired by the observation that

variance due to the disease in healthy samples should be low, while variance due to

progressive changes due to disease is high. To this end, we formulate new dimen-

sionality reduction techniques that cluster healthy samples near the origin and more

advanced stage samples away from the origin. We show how these models can be

2



used to sample progression paths conditioned on a series of radiographs from the

same patient.

Human-Computer Interaction (HCI)

In the work on HCI we proposed a novel static hand gesture recognition system that utilizes

two Kinect sensors. The sensors are placed on the front left and right sides of a sensing

area, and can easily be set up in a doctor’s office. We extract a rich point cloud from

the Kinects, out of which gestures and hand orientation are detected in real-time. We

compute histogram-based descriptors from the point cloud and employ the majority rule

voting scheme to detect the gesture. We achieve rotation invariance by using the forearm

as a cue for hand orientation and align the hand with the world coordinate system. We

evaluate our system under different and challenging motion and rotation conditions. This

work has resulted in a joint conference publication:

• Radu P. Mihail, Nathan Jacobs and Judy Goldsmith, “Real Time Gesture Recogni-

tion With 2 Kinect Sensors”, 16th International Conference on Image Processing,

Computer Vision, & Pattern Recognition (IPCV), 2012.

Computational Vision

Postero-anterior (PA) view radiographs are a standard imaging technique used in the diag-

nosis and evaluation of RA disease progression. Since standard radiographs are relatively

inexpensive, many rheumatologists choose to order them. Dr. Gustav Blomquist of the

Radiology Department at the University of Kentucky Chandler Hospital was generous to

provide us with a unique dataset of radiographs. He used his expertise to label them in

4 stages: healthy, early, moderate and late. We show a novel way to extract information

pertinent to the effects of the disease on hands visible in radiographs. Our proposal is a

novel point distribution model (PDM), that is capable of capturing joint space narrowing

and subluxation, which are key indicators of progressive disease activity. We propose a

3



novel formulation of fitting the PDM to radiographs as inference in a conditional random

field (CRF). We engineered potential functions that focus on specific anatomic structures

and a learned shape prior. We evaluate our approach on the UK Radiology dataset as well

and a publicly available dataset, as well as show the relative importance of each potential

function. We show the usefulness of this approach as an initialization step to automatically

estimate bone contours. This work has resulted in a joint conference publication:

• Radu P. Mihail, Gustav Blomquist and Nathan Jacobs, “A CRF Approach to Fitting

a Generalized Hand Skeleton Model”, Winter Conference on Applications of Com-

puter Vision (WACV), 2014.

Information Visualization

When patients plan on the treatment choice with their health care provider, they often ask

about the trade-offs, as well as the consequences of selecting no treatment at all. The

option to choose no treatment should come to the reader as no surprise, since many of the

drugs come with scary, albeit low probability side-effects. This dilemma inspired us to

create a visualization of the progressive damage due to RA on hands. We use our proposed

PDM to deform a hand mesh model using standard graphics techniques. To the best of

our knowledge, this is the first attempt to visualize damage caused by RA using computer

graphics in a data-driven manner. Parts of this work were done under my supervision by

two undergraduate students, Kaitlin Burton and Frederick Hallock. This resulted in a joint

conference publication:

• Kaitlin Burton, Frederick Halloc and Radu P. Mihail, “A Data-Driven Approach to

Visualize the Effects of Rheumatoid Arthritis on Hands”, International Conference

on Computer Games (CGAMES), 2013.

Machine Learning

Dimensionality reduction techniques are useful as a visualization tool for high dimensional
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data (e.g., when the target dimensionality is 2 or 3) and also to improve algorithms which

rely on distance computations such as nearest neighbor, support vector machines and unsu-

pervised clustering algorithms. Similarity measures (i.e., distance metrics) provide insights

into the underlying structure of the data and help build better visualizations through embed-

dings. In the medical image analysis field, data are often extracted as shapes, an example

of which are PDMs. Of particular interest to us are diseases that show progressive damage,

such as RA. Using our PDM as input data, we propose an algorithm to learn a quadratic

Gaussian metric that exploits the progressive nature of RA. Our algorithm is based on the

intuition that variability exists due to two separate factors: differences between patients and

differences due to the progressive damage from RA. The geometric intuition is that PDMs

of healthy hands should ideally collapse to the origin of the embedding space, while the

PDMs with signs of RA should be mapped at a distance from the origin proportional to the

stage at which the PDM was captured. We formulate the optimization framework with the

stage constraints and demonstrate two use cases: classification (e.g., stage given a PDM)

and as progression models given a series of 2 or more PDMs of the same patient.

1.3 Structure of the Dissertation

In this dissertation I will walk the reader through a set of computational tools we developed

and their respective contributions to the field of computer science, inspired by decision

making processes for victims of chronic diseases facing complex treatment decisions.

Chapter 2, Background: This Chapter is intended for readers not familiar with computer

science or mathematics. I will provide the background information necessary to un-

derstand this work as it fits in the areas of computer science where this dissertation

makes contributions: human-computer interaction (HCI), computer vision, visualiza-

tion and machine learning. In Section 2.1 I describe rheumatoid arthritis and some

essential anatomical terminology useful to understand this work. More specifically

the medical image analysis contribution in Chapter 5 is motivated by key anatomical

5



changes specific to RA. In Section 2.2 I provide a brief survey of HCI and existing

methods that focus on individuals with disabilities that prevents normal use of a key-

board and mouse as standard input. In Section 2.4 I give an overview of the field of

machine learning and detail specifics relevant to Chapters 4, 5 and 6. In Section 2.3

I give a brief overview of conditional random fields.

Chapter 3, Decision Aids for RA Patients: This chapter is a review of existing patient

decision aids for patients with RA. I focus on challenges involved in the design of

good DAs such as risk and numerical information delivery, available treatments for

RA, difficulties patients face when choosing a treatment, available DAs for DMARDs

and biologics and I finally conclude with suggestions on DA design and how gaming

technology can improve the decision tools.

Chapter 4, Kinect Based Hand Gesture Recognition: In this chapter I describe the work

we have done on HCI and how it applies to our target audience of RA patients. I de-

scribe the gesture recognition system in Section 4.1 and a comprehensive evaluation

with challenging hand movement and rotation in Section 4.3.

Chapter 5, A CRF-based Approach to Fitting Generalized Hand Skeleton Models: In

this chapter I detail the work on fitting a model to radiographs of hands in the postero-

anterior view. We describe a new point distribution model capable of capture key

anatomical deformations caused by RA and formulate the fitting problem as infer-

ence in a conditional random field (CRF). We evaluate our model on two datasets and

show how it can be used to initialize a contour fitting algorithm to segment bones, a

challenging problem of interest to RA disease progression assessment.

Chapter 7, Visualizing Hands Affected by RA: This chapter describes a visualization tech-

nique for RA progression using the PDMs described in Chapter 5. We show how to

rig a hand model and animate a progression from healthy to late stage RA.
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Chapter 6, Disease Stage Metric Learning: In this chapter, we propose a novel metric

learning algorithm based on the medical intuition that anatomical shape variability

comes from two sources: differences between patients and monotonically increasing

shape variability due to destructive changes from a disease. The metric learned is a

quadratic Gaussian (Mahalanobis) distance that we optimize to embed healthy sam-

ples close to the origin of the latent space, while diseased hands proportionally far

from the origin.

Chapter 8, Conclusions and Future Directions: In this chapter we look back at the con-

tributions of this dissertation in the context of building blocks for a game-based DA.

I will outline directions for future research that will lead to better decision making

tools for patients with chronic conditions.

Copyright c© Radu P. Mihail, 2014.
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Chapter 2 Background

In this chapter, I will attempt to give my readers the appropriate background information

necessary to understand the entire dissertation. I begin with a an overview of rheumatoid

arthritis and anatomical terminology. This disease motivated and inspired a large part of

this work and is discussed in detail in Section 2.1. I then provide a brief overview of HCI

for the disabled in Section 2.2, preliminary information needed to understand the technical

contributions in mathematics for machine learning in Sections 2.4 and Section ??.

Our long term goal is to create a data-driven patient decision aid based on solid strate-

gies for risk communication, visualization and medical knowledge about the progressive

destructive effects on the musculoskeletal system. This disease affects more than the joints

in the hands, but our hands are very useful appendages to perform daily activities. When

this functionality is lost over time due to RA, it leads to disabilities and a societal cost that

can, to some degree, be prevented.

When I worked with colleagues from the Kentucky Clinic and University of Kentucky’s

Chandler Hospital to collect radiographs, I asked why the sample of late stage RA radio-

graphs was smaller. The answer was simple: there are better treatments and patients do

not get to that point as they did even a decade ago. This is encouraging, but depends on

patients taking an active role in their health care.

The practice of medicine evolved from a paternalistic model, where the physician is

seen as the expert, dominating the medical encounter and using his/her skills to recommend

tests/treatments, to a shared decision-making model where the key idea is that informed

patients are better patients [19]. Patients facing a serious illness and uncertainty regarding

the outcome are vulnerable to psychological and physiological stress. In these instances,

patients should be given a systematic way to structure the decision-making process, i.e., as

Charles et al. [19] put it:
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“. . . efforts to promote shared decision-making may well require interven-

tions that not only provide patients with information but also with a way of

thinking about treatment decision-making that helps them focus on key issues

and evaluate relevant options. ”

Due to a harsh health care economic reality in which patient-physician interaction times

are limited to under 10 minutes, patients are left unempowered, lacking key information

and a systematic way to evaluate their options and relevant uncertain outcomes. It is here

where computer-based patient decision tools have the potential to make a positive impact

on patients by empowering them with information and strategies.

This dissertation is the result of addressing problems RA patients encounter shortly

after the diagnosis. They face an unforgiving disease that left untreated can leave them

disabled, deformed, depressed and in pain. Often, patients visit a rheumatologist long after

the onset of the disease, time at which some deformity already occurred and pain can be

disabling. Pain and existing deformity can prevent them from using a keyboard and mouse

to perform simple tasks on a computer, e.g., read informational materials on the web. To

address this challenge, we developed a touchless hand gesture recognition system that is

highly customizable and easily setup in a doctor’s office, described in detail in Chapter 4.

When patients plan, they have questions about the disease and its effects on their well-

being. Deformities due to RA are a function of many variables and vary with respect to

treatment and time. In this context, I asked the following question: can I show patients

how their hands might look like in the future? A trivial solution would be to show photos

of other patient’s hands. In search of a better solution, I quickly realized that visualiza-

tion of possible progression paths could be a powerful tool for patients making treatment

decisions.

With the help of rheumatologist Dr. Kristine Lohr and radiologist Dr. Gustav Blomquist,

I collected a set of radiographs of patients hands in postero-anterior view, where each ra-

diograph was skillfully assigned one of four labels: healthy, early, moderate and late. We
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needed to extract relevant information from these radiographs, i.e., a compact representa-

tion of joint damage due to RA. To this end, we developed a novel point distribution model

(PDM) that captures two key features of RA deformities: joint space narrowing and sub-

luxation (dislocation). We describe this problem in Chapter 5, in the context of machine

vision and propose a novel formulation of the problem to automatically fit the PDM.

We take advantage of this compact representation to solve two problems:

• Learn a model of disease progression, described in detail in Chapter 6.

• Visualize damage visible in radiographs due to RA, in Chapter 7.

In the remainder of this chapter, I will give the reader a thorough description of the

background needed to understand this thesis.

2.1 Rheumatoid Arthritis

RA affects many tissues in the body, but it has particularly evident effects on the synovial

joints (see Figure 2.1). The synovium, also called the stratum synoviale, is a soft tissue

that surrounds the articular tissue in synovial joints. Symptoms of RA can vary in intensity

and frequency, but with high probability, destruction and deformity of joints occurs in

parallel with lethargy and depression. The progression of the disease is unpredictable as it

can potentially simmer for years with undetectable symptoms, then flare up aggressively

followed by a potential abrupt flare down. On average, the disease progresses punishingly

and leaves its victims with deformed extremities, depressed and disabled.

RA does not have a one source cause; instead, experts [67, 65] believe the inflammatory

responses of the body manifests as a result of a set of factors and a likely genetic suscep-

tibility component. Weakened immune systems, internal and external allergic response to

unknown allergens, pathogens (e.g., candidiasis), inappropriate nutrition, hormonal imbal-

ances, stress, exposure to pollution as well as other unknown factors.
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Figure 2.1: Image retrieved from the American College of Rheumatology. On the left one
can see the normal structure of a joint. Due to autoimmune reactions caused by RA, tissues
such as the cartilage and bone erode. Synovitis also causes swelling and pain.

At the time of this writing, RA does not have a cure. The American College of Rheuma-

tology (ACR) published recommendations for the use of disease-modifying antirheumatic

drugs and biologic agents in the treatment of RA [93]. These guidelines are intended to

guide therapy. In light of uncertainty and factors such as drug interactions, conflicting in-

formation from clinical trials and patient medical history make a strong case for a shared

medical decision making setting, where the patients are expected to take an active role

in their health care. Ideally, patients understand the disease and its effects on their bodies,

uncertain treatment positive outcomes and the associated negative side-effects.

Patients are typically referred to a rheumatologist by their primary care physician if RA

is suspected. Rheumatologists use a number of symptoms and blood tests to determine if

RA is present. Radiographs (X-Rays) are routinely ordered by rheumatologists as they can

help with the diagnosis, and also to have a record of disease progression.

Radiographs of the hands and feet have been used consistently for the past half century

to evaluate RA disease and the degree of progression [48]. The most important criterion

for evaluating disease-modifying antirheumatic drugs (DMARDs) in clinical trials has been

their capacity to slow down radiographic damage [81]. Magnetic resonance imaging and

ultrasound are viable alternatives to plain radiographs and have been shown to be more
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Figure 2.2: Example of the pose difference in the PA view for the same set of bones in
different patients due to varying RA damage. Left: early stage. Right: late stage.

sensitive in early detection of structural changes [80], however, cost and availability may

limit these techniques in practice.

Quantifying joint damage Several methods have been used to evaluate RA disease pro-

gression based on radiographs. The first widely used methods are the Steinbrocker and

the Kellgren methods [94], where a minimally descriptive global scoring scale from I to

IV is given based on the degree of damage to a joint, biased toward the most damaged

joint. These methods were not descriptive enough to capture subtle changes due to disease

progression. More detailed assessment methods are currently being used, such as those

based on the work of Sharp and Larsen [94]. While the two methods are highly correlated

[82], the Larsen method is easier to score and less time consuming compared to the Sharp

method [94]. The Larsen method [56] includes erosions and joint space narrowing. Each

joint is individually assessed with respect to reference radiographs and assigned a score

from 0 to 5. The range of the combined score is between 0 to 100 [56].

Radiographs provide ground truth for joint damage, however, subtle progression is dif-

ficult to detect with at least a 6 months to 1 year period needed to notice changes in an
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individual patient. Modern practice requires treatment prior to radiographic damage [94].

Pincus et al. [83] show that radiographs are strongly correlated with duration of disease

and joint deformity. RA patients are typically seen by a clinician due to pain, swelling

and functional status. When joint deformity has already occurred, DMARDs and biologic

agents are imperative in slowing down progression, but the onset of the beneficial effects

may be several months.

2.2 Human Computer Interaction for the Disabled

Disabled individuals can benefit tremendously from computer assistance. Put simply, tech-

nology can enhance their engagement with the world. Human-computer interaction (HCI)

is a rich area of research with ongoing efforts to build robust and user friendly interfaces.

These works target different groups of people with vision, hearing, cognitive and physical

impairments, as well as older people. Gallagher et al. [33] are undertaking a critical review

of existing technologies for older and disabled people. They reviewed 5143 papers from

2005 to 2012, of which 249 are concerned with older/disabled people. The topics covered

in this literature are diverse [33] and fall in categories such as mobility/way-finding, com-

munication and social interaction, access to and use of information, interacting with/using

technology, attitudes to/experience of technology, education, using the web, daily life tasks

(e.g., memory support) and methods for working with older/disabled people.

Of particular relevance to this dissertation are papers that address interaction with com-

puters. Standard input devices for general purpose computers are the keyboard and mouse.

Mastering these devices require fine motor skills and practice. A usability challenge for

patients with RA is dexterity, movement restriction due to deformities and pain. Our con-

tribution to HCI is an input method based on hand gestures, easily setup in a doctor’s office

and highly customizable for a wide range of functional limitations of the hand.

Gestural interaction has become a common means of controlling “intelligent” devices.

There are many ways to implement a gesture system, e.g.: whole body movement [12], eye
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winks [63], movement of a remote wand [107]. Most of the commonly used gestures may

be difficult for patients with dexterity limitations. Our work is similar to Guesgen et al. [41]

who proposed gestural control of home appliances by those with mobility limitations.

Our work capitalizes on patients’ gross motor capabilities through a gestural interface

that is comfortable, physically sustainable and easily learned. We designed the system to

be a multipurpose input tool: it allows for simple selection operations (e.g., from a menu),

while also capable of continuous (i.e., positional) control that can be used to navigate a 3D

world.

2.3 Conditional Random Fields

The mathematical tools of probability gives us a way to encode and reason with available

knowledge about the world. Often, this knowledge comes in the form of measurements,

from which we wish to make inferences in light of uncertainty. We call a measurement or

an observation a random variable. Random variables can take one of a finite set of values,

in which case we refer to them as a discrete random variables or they could take a value

from an infinite set, in which case they are continuous. We usually denote random variables

with capital letters (e.g.: X or Y ).

The probability P of a discrete random variable X being in a particular state x is a

number between zero and one:

0 ≤ P (X = x) ≤ 1, (2.1)

or short P (x).

The sum of probabilities for all possible outcomes (called the sample space) equals

one:

∑
i

P (X = xi) = 1. (2.2)
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We can also quantify the probability of two or more variables sharing a combined state,

using a joint distribution:

0 ≤ P (x1, x2, ..., xn) ≤ 1. (2.3)

The interaction between random variables can be expressed using conditional probabilities:

P (x|y) =
P (x, y)

P (y)
(2.4)

P (x|y) is read as the probability of x given y. Two variables are said to be independent if

P (x, y) = P (x)P (y).

Declarative representations within general purpose computing devices involve the con-

struction of models of systems that one wishes to reason about. These representations

can be manipulated by various algorithms to answer questions. An important property of

declarative representation is the separation between knowledge and reasoning.

Many real-world systems have different processes that are interrelated. We use random

variables to encode some knowledge, that, depending on various states of the world, can

be random. When we wish to reason about multiple variables simultaneously, we construct

joint distributions over the state space, i.e., all possible assignments of some set of random

variables. The notation we use for joint distribution is P (x1, x2, ..., xn), which for a set of

assignments of xi is a probability between zero and one.

When the joint distribution is known, we can answer complex questions. For example,

we can retain only a subset of the variables in the joint distribution through a process called

marginalization. This allows us to ignore (marginalize out) some variables and only reason

with the remainder set of random variables. We can also fix a set of random variables to

certain values and ask what the posterior distribution is, given known values for that set of

random variables values.

While working joint distributions offer a powerful tool to answer complex questions,

it can become prohibitive to encode the joint state space. One solution is offered by prob-

abilistic graphical models, that, put simply, exploit the structure of complex distributions
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by describing them compactly and in a way to make reasoning with them effective. Prob-

abilistic graphical models encode the independencies that hold in the joint distribution.

Intuitively, these properties encode knowledge of the form: X is independent of Y given Z.

One type of probabilistic graphical models is the conditional random field (CRF). It is

also known as discriminative random field, and, as the name suggests, is a discriminative

model. They key idea in CRF models is that in complex distributions we can save resources

by not modeling explicitly things that we can observe.

In Chapter 5 we formulate a generalized hand skeleton fitting problem for hand radio-

graphs as inference in a CRF. The structure of the CRF allows us to incorporate conditional

knowledge from pixel classifiers. Using this flexible framework, we can infer latent (un-

known) variables (the points of the shape model) using uncertain information from images.

For a comprehensive review of probabilistic graphical models, I refer the reader to [51].

2.4 Machine Learning Preliminaries

At the time of this writing, we have already entered the era of “big data”. Information

storage is cheap; the promise that machines can extract information out of petabytes of

data is driving companies and governments to invest more in storage and keep up with the

deluge of data. The automatic extraction of useful information, patterns or analysis of data

is what machine learning can provide.

For example, consider the standard output of a Microsoft Kinect sensor. It provides

streams of color and depth information, both at a rate of 30 images per second. For the

depth stream, each pixel is typically represented as a 16 bit number (2 bytes). At a res-

olution of 640 × 480, the device generates 614, 400 bytes every 30th of a second. Each

second roughly 18MB of data are produced. Real-time algorithms are expected to process

this amount of data and extract useful information from it. Machine learning algorithms

come in three main flavors:

Supervised (or predictive). Essentially, the goal is to learn a mapping from a set of in-
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puts x to a set of outputs y, given a set of N labeled input/output training pairs

D = {xi, yi}Ni=1. Each training input x is a D-dimensional vector of numbers, repre-

senting a set of descriptive characteristic of a data point (e.g., weight and height of

an individual). The elements of x are called features or attributes. Similarly, the

output values or response variables y can be categorical, say an element from a finite

set yi ∈ {1, ..., C} and/or real valued. When the output y is categorical, the problem

is known as a classification problem. When y is real valued, the problem is known

as regression.

Unsupervised (or descriptive). In this setting, only inputs are givenD = {xi}Ni=1, and the

goal is to discover interesting patterns. By this formulation, the problem is ill-posed

since there can be many definitions of interesting.

Reinforcement. The idea here is to use reward or punishment signals to optimize future

behavior. Take, for example, the process one undergoes when learning how to ride a

bicycle: moving forward is rewarded while falling is punished.

The gesture recognition system proposed in Chapter 4 employs supervised learning, where

the training inputs x are histogram based descriptors of a set of hand poses and the outputs

are categorical (pose the user’s hand is in at a given time).

Parametric vs. Non-Parametric Depending on whether these models have a fixed num-

ber of parameters or if the number of parameters grows with number of training samples,

they are parametric and non-parametric, respectively. The gesture recognition model

in Chapter 4 is a parametric model, while the model presented in Chapter 5 is a non-

parametric model.

Dimensionality Reduction Often, input vectors x contain redundant information when

the input dimensionality is high. It is then useful to consider reducing the dimensionality

of the input space by a mapping or embedding to a latent space where the latent variables
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have desirable properties. For example, it might be useful that variance of the data is

maximized in the latent space.

Latent variable models seek a relationship between a D-dimensional input x to a corre-

sponding d dimensional vector t. The most common linear model to express this relation-

ship is factor analysis [9]. The linear relationship can be expressed as:

x = Wt+ µ+ ε (2.5)

where W is a D × d matrix that relates the two variables, while µ allows a non-zero mean

model. A common assumption is for the latent variables to be Gaussian with zero mean

and unit covariance t ∼ N (0, I). If we specify the noise to be Gaussian ε ∼ N (0,Ψ), this

induces a Gaussian distribution on the observations x ∼ N (µ,W TW + Ψ). In factor anal-

ysis, the error covariance, Ψ, is constrained to be a diagonal matrix. The model parameters

can be found using maximum likelihood estimation. Since there is no closed form solution

for MLE, one must use an iterative approach [101].

We now explore different choices of the residual covariance matrix Ψ. One possibility

is to ignore noise, i.e.: Ψ = 0× I . This model then becomes:

x = Wt+ µ. (2.6)

Estimating W has a closed form solution and the method is referred to as principal compo-

nent analysis (PCA). PCA is a linear model that finds W, such that the data reconstruction

error is minimized. Consider a data matrix X = [x1, x2, ..., xN ] of N column vectors

xi ∈ RD. We seek an orthogonal matrix W to project points in X ontoRd where d << D.

This problem can be formulated as a minimization of the reconstruction residuals:

arg min
W

||X −WZT ||2F (2.7)

subject to the constraint that W is orthonormal. Z is an n×d matrix with zi in its rows and

||A||F is the Frobenius norm defined as:

||A||F =

√√√√ m∑
i=1

n∑
j=1

a2
ij =

√
Tr(ATA)
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It can be shown that the optimal W is Ŵ = Vd where Vd contains the d eigenvectors with

largest eigenvalues of the empirical covariance matrix Σ̂ = 1
N

∑N
i=1 xix

T
i and the optimal

latent representation of the data is zi = W Txi. This is the standard formulation for PCA.

Tipping et al. [101] formulate a probabilistic version of PCA, where the assumption on

the model noise is isotropic Gaussian ε ∼ N (0, σ2I):

x = Wt+ µ+ ε (2.8)

The t-conditional distribution over x is then given by:

p(x|t) ∼ N (Wt+ µ, σ2I) (2.9)

If we assume x ∼ N (0, I) then we can integrate latent variables and show that [101]

t ∼ N (µ,C) (2.10)

where C = WW T + σ2I , with additive noise σ, and µ = 1
N

∑N
i=1 xi is the sample mean.

Similar to PCA, there is an analytic solution for W and σ using the eigendecomposition of

the WW T = UL2UT :

σ2 =
1

D − d

D∑
j=d+1

L2
jj (2.11)

and

W = Ud(L
2
D − σ2)

1
2 (2.12)

We denote Ud as the truncated version of U retaining only the first d columns, and L2
d is a

truncated version of L2 retaining only the first d columns and rows. Intuitively, σ2 is the

variation discarded by the components ignored over the lost dimensions.

Kernelization When solving for W in the PCA and PPCA models, we used the inner

product xTx as a notion of similarity. If X contains points that are not linearly separable in

N dimensions, we may wish to map the points into a higher dimensional space, where they

can be linearly separated. Suppose we have a function φ that maps an input vector x ∈ RD
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to a higher dimensional space F , i.e.: φ : RD 7→ F . The inner product φ(x)Tφ(x′)

may be computationally expensive to get. By Mercer’s Theorem, it is enough to equip

the input space RD with a measure of similarity and show that, for a class of positive

semi-definite kernel functions k(x, x′) ∈ R, k(x, x′) = 〈φ(x), φ(x′)〉F is an inner product

in F . The key insight here is that we never have to explicitly represent φ. The kernel

trick involves computing the inner product matrix in F via a kernel function that satisfies

Mercer’s condition. Below are some examples of commonly used kernels:

• Linear

k(xi, xj) = xTi xj (2.13)

• Degree p polynomial

k(xi, xj) = (xTi xj + 1)p (2.14)

• Radial basis function

k(xi, xj) = e−
1
2

(
(xi−xj)

T (xi−xj)
λ2 (2.15)

Copyright c© Radu P. Mihail, 2014.
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Chapter 3 Decision Aids for RA Patients

Patient decision aids (DAs) are becoming a critical part of clinical care. They are crucial,

given the limits on the time practitioners can spend with patients. They serve as educa-

tional material and help guide patients’ questions. In this chapter, we survey existing DAs

for rheumatoid arthritis (RA) patients considering a treatment plan. Our findings indicate

that the few DAs available to RA patients are lacking in two key areas: effective com-

munication of probabilities and citations of evidence. We also address factors that impact

chronic disease patients decision-making skills, such as health literacy and numeracy, and

willingness to be an active participant in shared decision making. We suggest that devel-

opers of DAs follow recognized methods and guidelines such as those in the International

Patient Decision Aid Standards (IPDAS) [1] during the development process. We also em-

phasize the importance of customizability and interactivity of DAs in order to make the

decision process more visceral, while ensuring the avoidance of presentational bias and

taking into account the unique values and preferences of patients.

3.1 Introduction

Rheumatoid arthritis (RA) is a potentially debilitating, life-long autoimmune disease that

affects millions of adults around the world. Individuals suffering from RA face a daunting

array of treatment choices, each with its own benefits and side effects. The challenge in

making such choices is often difficulty in comprehending the consequences of a particular

choice of medications and other treatments. The choice patients make is potentially life-

altering and overwhelming. Enhancing patient knowledge of disease outcomes and treat-

ment options is beneficial, because it can greatly reduce patients feelings of uncertainty

and increase their confidence in the decision making process [86, 75].

Communication of treatment benefits and potential complications of disease and treat-
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ment is essential to medical care. Patients with RA have multiple options from which to

make complex decisions. Each drug offers potential benefits and risk profiles that patients

may value differently [40]. For example, biologic agents may induce remission, but may

incur significant out-of-pocket costs and risk of serious infection or malignancy. When pa-

tients participate in shared decision making, they want information about alternatives and

the ability to assess risk and ask, “What if?”

Aside from the emotional trauma when informed of the diagnosis, patients face the

non-trivial decision of accepting a treatment. Good, shared health care decision-making

requires a quality patient-clinician interaction, which is often hindered by time constraints.

To partially overcome this, patients receive verbal explanations, often combined with static

decision aids (DAs) (e.g., printed materials) [75, 28]. They also seek information from

other patients and search the Internet to find relevant information that may not be scien-

tifically sound. Patients are expected to understand their disease, treatment options, and

associated risks, and to be competent to partake in treatment decisions. However, patients

with low health literacy may not fully understand treatment options, risks and benefits

from written material. Conversely, some patients may be highly literate and understand

the material, but some existing DAs fail to provide citations [29] that health literate pa-

tients may further pursue. Another shortcoming of current practice is that the written and

verbal explanations may frame information such that the final decision is biased towards a

specific outcome [26, 29]. This chapter addresses the current practice in communicating

uncertainties about medications to RA patients using DAs. We also look at important fac-

tors that make DAs for RA successful and suggest improvements, such as dynamicity or

interactivity of a DA using a computer or gaming console.

3.2 Probabilities and Risk

Many studies have shown that the use of written materials and other static tools to present

treatment option information about RA and educate patients is ineffective for many reasons,
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the most significant of which is low health literacy and numeracy [88, 35, 73, 102, 10].

Health literacy is defined as “the degree to which individuals can obtain, process, and un-

derstand the basic health information and services they need to make appropriate health

decisions” [73]. Numeracy refers to the degree of one’s competency to use numerical in-

formation in one or a few short calculations in order to solve a problem [35]. Walker et

al. [114] explored the relationship between health literacy and knowledge gain from an

arthritis information booklet, accompanied by a “Mind Map” (dramatic words and images

to aid cognitive processing). One group received the booklet, while the other received the

booklet and the “Mind Map”. Both groups gained some knowledge, but there was no evi-

dence of the “Mind Map” helping, regardless of health literacy assessment. Such evidence

suggests that we need a different approach to communicate uncertainty and information

about treatment effectiveness from clinical trials.

It is generally difficult to process and understand probabilities [34]. Gigerenzer sug-

gests that human evolution led to the development of cognitive inference machinery in

order to adapt to risky situations; however, the format of the information that we use nat-

urally does not come in probabilities or percentages, but absolute frequencies [34]. As

an example, it is often easier for people to understand that during a clinical trial, 2 out of

1000 patients experienced severe side effects in contrast to 0.2%. Inferences are reasoning

processes on the basis of sometimes incomplete, circumstantial evidence and prior conclu-

sions. Patients and health care practitioners have to make inferences based on numerical

data from evidence-based clinical trials. These results reveal a need for clinicians to pay

closer attention to the educational materials they distribute to patients. Problems can arise

when the numerical information provided require the computation of inferences where ad-

ditional evidence is learned and probabilities of events are updated due to new knowledge.

The new information that updates existing probabilities should be incorporated through the

use of Bayes rule, something that many patients are unable to do. Bayes rule provides a

way to update probabilities based on existing evidence.
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In summary, RA patients are faced with decisions for which they often lack information

and understanding of the options. The use of DAs can, potentially, help patients make

more informed decisions, and thus increase adherence to those decisions. A good DA

should convey the possible outcomes, both positive and negative, of treatment, and their

likelihoods, in ways that patients can understand. It should enable patients to learn more,

perhaps through the use of “What if?” scenarios or other interactions.

3.3 RA Treatment Options

The clinician’s goals in treating RA are remission, improved function, and prevention of

deformity. The patient’s goals include pain relief and improved function. Achieving these

goals with minimal to no risk is desired but often impossible. An American College of

Rheumatology (ACR) committee of experts used a formal group process to review sci-

entific evidence to create recommendations for use of nonbiologic disease modifying an-

tirheumatic drugs (DMARDs) and biologic agents in RA [89]. They emphasize that these

recommendations are “intended to guide therapy” [89] in providing personalized patient

care. No randomized controlled trial (RCT) evidence exists to support preferential use of

one monotherapy over another. There are over 170 possible dual- and triple-DMARD com-

binations among five nonbiologic drugs [89]. In addition, three classes of biologic drugs

(five tumor necrosis factor inhibitors, abatacept, and rituximab) can be used, usually in

combination with a nonbiologic DMARD. A new class of biologic agent, tocilizumab, is

excluded because it received FDA approval after publication. More biologic agents are in

the pipeline. Thus, the decision to choose a treatment plan for RA is incredibly complex

and doesn’t fit a simple clinical guideline. In this chapter we focus on surveying existing

DAs for patients with RA.
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3.4 Difficulties in Choosing a Treatment

Patient participation is particularly relevant for many rheumatic diseases [23], compared to

other conditions in which a treatment decision is urgent. In situations in which there is no

time pressure associated with selecting a treatment, the patient can be given information

to digest at home and potentially become an active participant in shared decision making

where the trade-offs between treatments are closely knit [23]. Ideally, patients compre-

hend their role in the process as seen by physicians; however, this is not always the case.

Patients can be divided roughly into two groups based on their interaction style with the

physician [16]: those who are more passive and accept a paternalistic approach by a clini-

cian, and those who are more autonomous because they understand they are active partici-

pants. Haugli et al. [43] found that patients with RA wished to be seen holistically by their

physicians. Thus, Interaction style becomes a factor in the decision making process [43].

RA affects every aspect of patients lives due to consistent pain, inability to perform rou-

tine tasks and deformities that develop in later stages of the disease. The feeling of being

understood by physicians provides patients with a sense of security and emotional support

during times of hardship and vulnerability [16].

Hirono et al. [45] address the relationship between participation style and the feeling

of being understood by the physician. They conducted a qualitative study and found that

patients who perceived themselves as having actively participated in the visit felt they were

better understood by the physician. Conversely, those who were less active in the deci-

sion making process during the visit felt less understood. This suggests that if we make

the assumption that patients will participate after receiving any type of information, it may

not enhance their feeling of being understood. Patient involvement is directly correlated to

decision satisfaction. O’Connor et al. [77] studied the impact that DAs have on risk com-

munication prior to interaction with practitioners. They determined that, if a DA was used,

the quality of the time spent with the provider was better, and decision satisfaction was

increased. Thus, patient-clinician style has been shown to affect patient decision making.
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In addition, DAs can help patients, whether or not the patients are otherwise involved in

their own healthcare decision making.

3.5 Patient DAs

Todays patients are faced with difficult decisions to choose one treatment from several

available options with probabilistic outcomes. Their reasoning is biased by emotion [92],

difficulty processing numerical data and misconceptions after reading literature that they

consider pertinent to their condition [92].

DAs are tools to increase patients’ knowledge of options and facilitate their involvement

in the health decision-making process, while taking into consideration cognitive biases,

possible information overload, vocabulary and avoidant coping [84]. O’Connor et al. [76]

state that DAs are an invaluable addition to usual clinical care. However, DAs often present

incomplete and uncertain information, so care must be taken to create DAs that reduce

uncertainty without increasing patient anxiety [84].

Evaluating DAs is a complex process. Most trials focus on the short-term impact of the

decision and knowledge enhancements they provide [84]. McCaffery et al. [84] suggest a

new approach to evaluating DAs; they focus on the long-term effects in terms of patients’

quality of life. They argue that while a DA might make the decision process longer and

more complex, if long term quality of life is improved, then it can be considered successful

as opposed to one that makes the decision process quicker, simpler and more rewarding at

the time when the decision is made, but leads to a decrease in quality of life. Thus, DAs

should be designed with long term effects in mind, with the goal of minimizing decisional

conflict and maximizing quality of life in the short, medium and long term.

Schwab [92] claims that patients or their families are unlikely to have a fundamentally

different mental construct of the decision than the physician or practitioner has. The dis-

agreements appear when the decision is made about which option should be chosen [92].

Here, a DA can arguably act as a moderator, biased by the patient’s preferences, and max-
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imize expected utility for the patient. A fundamental concern for any DA is potentially

intractable demands on decision-makers, leading to general misunderstandings conducive

to uninformed decisions [92]. This may result in decreased longevity and reduced quality

of life for the patient.

In short, DAs can be extremely helpful, but a DAs effect on decision making is only as

good as the DA itself. Quality of DAs can be measured in terms of completeness of infor-

mation, clarity and correctness of presentations, the ability to personalize the DA with the

individual patients condition and preferences, the weighting of short and long term quality-

of-life issues, and the appropriate use of probabilities in computing expected outcomes.

3.6 Available DAs for RA Treatments

The diagnosis of RA is life altering. Patients consult clinicians, the Internet, friends, and

family for information. The rheumatologist’s role is to help patients consider disease du-

ration and severity, comorbid conditions and poor prognostic factors to guide therapy. The

ACR 2008 RA treatment recommendations are intended to promote beneficial outcomes

and permit individualized treatment decisions [89]. However, complicating factors exist.

1. Few providers are sufficiently trained in effective patient communication, especially

about probabilistic information. Most statistics or probability classes during providers’

training are not designed to foster insight for patients seeking more information. For

example, as Gigerenzer suggests, “for every confusing representation there is at least

one alternative, such as natural frequency statements, which always specify a ref-

erence class and therefore avoid confusion, fostering insight.” [35] Communication

strategies include printed information and counseling. DAs support decision-making

and supplement patient-clinician interaction. In the University of Kentucky (UK)

Rheumatology Clinic, patients routinely receive ACR Patient Fact Sheets [2] to sup-

plement unstructured discussions. However, health care economics limit face-to-face
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time, and fact sheets do not present probabilistic information or clarify patients’ val-

ues [32, 102].

2. Trust in physicians has a significantly greater effect on patients’ confidence in decision-

making than specific knowledge of drugs and diseases [11]. Trust develops during a

long-term relationship, but patients seen in consultation are often asked to make treat-

ment decisions at the first visit. Thus, they learn about RA and treatment alternatives

when trust is barely developed. Explanations for unwarranted variations in clinical

practice include under-use of effective care, and variations in preference-sensitive

care and/or supply-sensitive care [105]. Providing patients with information about

their disease and treatment choices leads to shared decision-making. This changes

the pattern of preference-sensitive care, which is usually dominated by medical opin-

ion [86, 102, 105].

DAs can increase understanding, but are more effective if structured, tailored and/or in-

teractive [114, 91]. Walker et al. [114] have shown that the ARC booklet increases knowl-

edge in functionally literate patients and the mind maps had no effect. This was contrary to

expectations, since the mind map was intended to aid cognition visually through diagrams

and images, thus suggesting different approaches need to be considered. Visual graphics

that display risk information can aid understanding and supplement counseling by provid-

ing information about options and outcomes and by clarifying personal values related to

benefits and harms [91]. For example, pictographs can be used to represent probabilities in

a format that allows one to count icons in a grid, where different colors or versions of the

icon represent a probability class and the total number of icons is known. Using pictographs

limits biases based on anecdotal information from other patients, effectively communicates

medication side effects, and reduces side effect aversion in decision-making [91, 115]. To

date, interactive, accessible DAs for RA remain undeveloped. In the following subsections,

we look at specific treatments and the DAs that are available for those treatments.
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3.6.1 Methotrexate

Currently, methotrexate (MTX) is the most widely used first-line treatment for RA, and is

also used as the backbone in combination with newer biologic agents [68]. Initially intro-

duced in oncology, MTX was found to be effective in RA despite a lack of understanding

of its mechanism of action. It is proposed that MTX reduces toxic metabolic compounds

in chronically inflamed tissues [72]. MTX acts as an immune system suppressant, which

may be beneficial for controlling autoimmune-mediated inflammatory diseases; however,

it may potentially increase the risk of infection. The medical literature contains conflict-

ing evidence regarding a higher risk of infection due to treatment of RA with low dose

MTX [68]. Practitioners must convey these uncertainties to patients who may have an ill-

conceived notion that treatments are 100% effective. Therefore, when conditioned on their

own values and preferences, patients may consider not receiving any treatment. Refusal of

treatment may be a suboptimal choice in light of existing medical evidence, but the patient

may perceive it as optimal due to natural risk aversion tendencies. It is thus imperative that

a good DA allows for such an outcome.

OConnor et al. [103] developed a patient DA for patients that contemplate taking MTX.

This DA starts by explaining the basics of how RA is a disease of the immune system and

attempts to clarify the uncertain nature of both the clinical outcomes of MTX and also

the uncertain quality of the studies from which they retrieve the information contained

therein. The authors of the DA mention the information in the DA comes from 7 reviews,

out of which 2 are Cochrane reviews plus 8 more studies; citations for the studies are not

provided. The DA authors frame study results in terms of improvement rate (e.g. ACR 20

response: the number of people out of 100 that showed 20% improvement with MTX and a

placebo). These numbers are also given in the form of pictographs. They also have several

paragraphs comparing MTX to other DMARDs, concluding that MTX is the best choice

as the first line of treatment in RA.

Alongside the informational material, the DA developers provide a worksheet with 6
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steps for patients to help structure their thoughts and feelings. This worksheets purpose

is to be shared with their clinician in order to help them communicate more effectively.

In step 1, the patients are asked to think about when the decision has to be made. The

purpose of this is to help the patients think about the urgency of treatment selection in light

of uncertainty given existing evidence about MTX and their own values and beliefs. Step 2

asks patients to consider the pros and cons of MTX by eliciting preferences regarding each

pro/con by circling a number of stars out of 5, 5 stars being considered most important. Step

3 is intended to elicit the patients self-perceived role in the decision making process (e.g.,

preference that clinician makes the decision for them or their own involvement while asking

opinions of others.) Step 4 is intended to elicit extra information or help that the patient

may need to make the treatment decision. Step 5 elicits more information in the form

of an open question regarding their perception of the next steps involved in the decision

making process. Step 6 asks the patients to share the information in the worksheet with

their clinician.

Rader et al. [85] created a static DA to help patients decide between taking MTX alone,

MTX in combination with other DMARDs and further discussing the problem with their

practitioner. Their DA has 4 steps:

1. Benefits and side effects of each option.

2. Preference elicitation to help patients think about what matters most to them.

3. A quiz to determine information gain.

4. Next steps (decision to take MTX alone, MTX with other DMARDS or further dis-

cussion with practitioner)

The patient is first given basic information about RA and MTX, and then shown the

current risks and benefits from the latest evidence-based trials comparing MTX alone or in

combination with other DMARDs. This is accomplished via four pictographs, which were
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shown to be effective in risk communication [115]. The quality of the evidence is classified

into four categories, as follows [85]:

• + Very low quality – further research is very likely to change the estimate.

• ++ Low quality – further research is likely to change the estimate.

• +++ Moderate quality – further research may change the estimate.

• ++++ High quality – further research is very unlikely to change the estimate.

The benefits of MTX treatment in combination with other drugs are marked with ++

(low quality requiring more research) and side effects with +++ (moderate, requiring more

research) based on the quality of the medical trials. The explanations above are given as a

footnote, which may be overlooked by some patients. The + signs may also be confused

with quantity. Evidence is stronger for benefits (marked with ++) than for side effects

(+++), which may be incorrectly interpreted as more side effects than benefits. They pro-

vide a reference for the source of the statistics, which may be beneficial for those who want

more information. This DA does not have an option for no treatment, which we regard as

problematic.

The developers of this DA evaluated it with respect to IPDAS (International Patient

Decision Aid Standards). IPDAS evaluates DAs in three major areas: content, development

process and effectiveness. Rader et al.s MTX DA scored 14 out of 15 in the content area,

6 out of 9 in the development process area and 0 out of 2 on the effectiveness criteria.

3.6.2 Biologic Agents

The Ottawa Hospital Research Institute (OHRI) has made available to the public DAs for

biologic agents used in RA treatment. All DAs for RA follow the same format as Rader et

al.s DA for MTX in combination with other DAs. These DAs contain a paragraph about

what RA is and a paragraph describing the medication (abatacept, etanercept, tocilizumab)
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and how it works. The benefits and side-effects are rated based on the quality of the ev-

idence from clinical trials with the same (+) notation as described above. Thus, these

DAs would have the same problems as that for MTX. In addition, they communicate re-

sults about benefits and side-effects using pictographs. Chilton et al. [20] explored RA

patient treatment preferences and decision-making when faced with three anti-TNF-alpha

inhibitors (etanercept, adalimumab and infliximab). The study was done on the basis that,

when treatment options with similar clinical outcomes had different effects on quality of

life, the patient should be offered the choice. Adalimumab and etanercept are administered

by subcutaneous injection, which may be performed safely by the patient or family mem-

bers, while infliximab is administered intravenously by a trained health care professional.

The methods of administration have a direct impact on the patient’s quality of life. In their

study, 190 participants were given a questionnaire to complete via mail and seven were

interviewed in person. The results provide insight into a wide range of patient decision

making processes regarding treatment selection, which are critical in the design of a DA.

For example, patients require reassurance and support from their health care practitioners

When this is combined with a better understanding of risks and trade-offs, patients are more

likely to participate in the decision process. Even a good DA cannot replace time with the

practitioner, but it can have a large impact on the patient’s understanding of the treatments.

Preferences vary among patients. Some learn how to perform the subcutaneous injection

rather than travel to the infusion center, while others are anxious about self-administration

and feel more comfortable when they are in contact regularly with health care profession-

als and other RA patients. The most preferred choice of treatment was adalimumab due to

ease of administration and its availability as a pre-filled injectable medicine.

3.7 Conclusions

Rheumatoid arthritis is a chronic disease with a relatively slow progression rate. This puts

RA patients at a slight advantage over sufferers of most other diseases due to the lack
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of urgency to select a treatment that is in tune with their values and preferences. Such a

patient-centered decision process takes time, and the decision can have long lasting impact

on the patient’s long-term quality of life. It is therefore important for providers to make

available a quality DA for patients, complementary to traditional patient-clinician interac-

tion. Few RA DAs are available at the time of this writing. Those that do exist are lacking

in key areas of effective probability communication and evidence citing. As noted above,

DAs are more effective if structured, tailored and/or interactive [114, 91]. In addition, our

review of existing DAs for RA lack personalization that would be useful in eliciting pref-

erences and values unique to every patient. We conclude that developers of DAs need to

follow recognized methods, cite valid sources and avoid presentational bias, while ensuring

the unique values and preferences of patients are taken into consideration.

Copyright c© Radu P. Mihail, 2014.
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Chapter 4 Kinect Based Hand Gesture Recognition

This chapter has appeared in the printed proceedings of the International Conference on

Image Processing, Computer Vision, and Pattern Recognition (IPCV) 2012 [71]. In this

chapter, we propose a robust static hand gesture recognition algorithm that makes use of

two Kinect sensors. This can be used to control an avatar in a decision aid for rheumatoid

arthritis patients who have a difficult time using a standard keyboard and mouse interface.

The sensors are placed on the left and right sides of a target sensing area, easily set up in

a doctor’s office or waiting room. The Kinects provide a rich point cloud, out of which

gestures from a known vocabulary are recognized in real time. We use 6 point cloud de-

scriptors simultaneously and employ the majority rule voting scheme to pick a “winner”

gesture in real time. We achieve rotation invariance by using part of the forearm as a good

indicator of hand orientation and aligning the hand with the world coordinate system origin.

We evaluate the performance of the recognition system under various motion and rotation

conditions.

1 2 3 4 5

6 7 8 9 10

Figure 4.1: Gesture vocabulary.

Rheumatoid arthritis (RA) is a potentially debilitating, life-long autoimmune disease

that affects millions of adults around the world. Individuals suffering from RA face a daunt-

ing array of treatment choices, each with its own benefits and side effects. The challenge in
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making such choices is often difficulty in comprehending the consequences of a particular

choice of medications and other treatments. To the best of our knowledge, decision tools

for RA based on computer game technology have not been explored. The problem for RA

patients is that the standard modes of interaction are often impossible because the disease

limits range of motion and can cause physical deformities: simply manipulating a mouse

or grabbing a Wii-mote may be impossible.

In this chapter, we propose a real-time gesture recognition system that uses a pair of

Kinect sensors to distinguish between static hand gestures. Our system is designed to

be easily customized for individual users and to be rapidly configured in a doctor’s office.

Given the physical deformities and limited range of motion, each user may require a special

set of gestures that are determined interactively by a therapist. Therefore, we minimize

training time by using a lazy-learning algorithm to classify individual gestures.

In the context of our larger research program, this gesture recognition system will en-

able RA sufferers to control a character in a virtual environment. The goal is for them to

use this system to visualize the outcome of a particular treatment plan by enabling them to

perform actions, such as making a cup of coffee, which might be impossible for them in

the physical world. For this task, our gesture recognition system might include gestures for

grabbing, standing, walking, and placing-on-a-table to control avatar motions. Figure 4.1

shows examples from the library of natural static hand gestures we use in our experiments.

The heart of our proposed system is a voting-based scheme that combines the results of 6

nearest-neighbor classifiers to determine the current gesture. The resulting system works

in real time on a modest computer with average resources. An important feature of our

method is that it does not require tracking or manual pose initialization; these techniques

were deemed too brittle for our proposed users, and, as our results show, were not nec-

essary. Instead, we classify individual gestures on a per-frame basis using a single point

cloud, fused from two Kinect sensors, as input. The most computationally demanding

part of our system is the component that manipulates the point cloud, namely a rigid-body
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transformation and a hand segmentation procedure. Once segmented, we convert the point

cloud into a voxel-based representation and extract 6 different features.

Our results demonstrate that the proposed system can accurately classify a realistic set

of gestures in real time. We demonstrate that the system can be rapidly retrained for new

users. Future work will more extensively evaluate the system and integrate this gesture

recognition system into a larger virtual environment to aid RA sufferers to make informed

medical decisions.

4.0.1 Related Work

Recovering the full kinematic parameters of the skeleton of the hand over time, commonly

known as the hand-pose estimation problem, is challenging for many reasons: high dimen-

sionality of the state space, self occlusions, insufficient computational resources, uncon-

trolled environments, rapid hand motion and noise in the sensing device [27]. Erol et al.

[27] provide a comprehensive review of research on this problem. Given our application,

we focus on a special case of hand-pose estimation known as gesture recognition, in which

discrete hand poses are detected. Solutions to this problem can be generally divided into

appearance-based methods, depth-camera methods, and tracking-based methods. In the

remainder of this section we give an overview of the gesture recognition literature.

Direct Appearance-Based Methods Athitsos et al. [7] propose a real-time gesture recog-

nition system that uses a large database of synthetically generated images of hands in

various configurations. The proposed approach relies on searching a database of tens of

thousands of potential gestures. They use an indexing scheme, known as BoostMap, to de-

crease query processing time and thus enable real-time recognition. For their system, the

input data consists of 2D images, out of which the hand silhouettes are extracted through

skin color segmentation. Their method relies heavily on a relatively clean segmentation.

Unlike typical appearance-based methods, where estimation is done from a limited num-
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ber of viewpoints such as Ying et al. [108], Athitsos et al. [7] allows arbitrary views. [42]

Hassan et al. propose a method using 2D images from a simple camera using the hand

contour information and complex moments which are rotationally invariant. The complex

moments and contour information are used as input to a feedforward neural network that

classifies a vocabulary consisting of 6 gestures. They obtain accuracy of 86.38%, which is

lower but comparable to our approach.

Direct Depth-Based Methods Gesture recognition has been revisited with the introduc-

tion of inexpensive depth cameras. Most similar to the current chapter, is work by Surya-

narayan et al. [97] in which they propose a gesture recognition system using a single ZCam

camera from 3DV Systems. One limitation of their approach is their method of obtain in-

variance to hand rotation. Their method introduces a limitation on the types of poses that

can be successfully distinguished. Our hand/forearm segmentation method, coupled with

a similar PCA-based normalization scheme, enables our system to accurately distinguish

between a more varied set of gestures. Zhou et al. [87] proposed a method to recognize

hand gestures using a Kinect sensor. Their approach uses color, as well as depth informa-

tion. The color is used to segment the hand from the rest of the environment, while the

depth is used in a template matching algorithm where the dissimilarity measure they use is

“Finger-Earth Mover’s Distance” (FEMD). They claim an average of 90.6% accuracy on a

dataset, but mention nothing about distortion or rotation invariance.

Tracking-Based Methods An alternative approach to gesture recognition involves first

solving the hand-pose estimation problem. Once this is solved it is straightforward to de-

termine the gesture based on geometric parameters of the hand. Hand-pose estimation

methods often rely on tracking, where an initialization step has to be performed, and the

pose at the current frame relies on knowledge about the previous frame [59, 109]. In such

applications, if the system loses track, it can only be recovered using manual initializa-

tion. Unlike these systems, our approach estimates pose from a known vocabulary at every
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frame, independent of previous frames.

4.1 A Real-Time Gesture Recognition System

We propose a system that uses point clouds obtained from two consumer depth cameras

to recognize gestures in real time. In this section, we first describe the intended use of the

system and then give details of the physical and conceptual configuration of our system.

4.1.1 Usage Scenario

We designed the system to be robust and easy to set up in a doctor’s office environment.

The two Kinect sensors can easily be placed on a desk, and the system runs on an inex-

pensive machine. Our choices of gestures are familiar gestures that will be useful for our

application. We designed this algorithm for natural interaction and control of an avatar

through gestures. A simulation involves directing the avatar through hand gestures to per-

form certain activities.

Imagine that the user wishes her avatar to go to the kitchen, get a cup of coffee, come

back, and put the coffee on a table. This may sound trivial to the reader, but for someone

with advanced RA, this may be impossible. Standing up and sitting down are painful,

sometimes impossible. Holding the coffee cup in one hand requires a steady grip; we have

heard patients describe walking across the room with a cup, and suddenly the cup and

coffee are on the floor.

We want to show the user an avatar that attempts this sequence of actions. At one point

in the process, the avatar will display the user’s degree of RA and associated deformation.

At another point, the avatar will display a possible effect of the medication (calculated

according to the probabilities of effects in the medical literature). The user, however, will

not suddenly get better in the doctor’s waiting room. So control of the avatar must be

doable, even with RA-inhibited or deformed hands.

The user will be able to gesture with a finger pointed up to stand, a horizontal palm
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to turn, etc. These gestures will all be user-tested for comfort and performability. We are

preparing an IRB application for a further study.

4.1.2 Data Acquisition

We create a point cloud using two Kinect sensors. In this work, we ignore color infor-

mation. There are two main reasons why we can ignore color: first, the hand is relatively

flat textured and second, we can not assume consistent lighting conditions. In fact, our

system works in complete darkness. While ignoring color, we acknowledge that it could

provide additional useful information for solving the hand pose estimation problem. In our

experiments, the yaw angle for which the device has a motor is set at the default value,

which results in an orientation parallel to the table top on which the sensors are placed. An

angle of 45◦ provides the most information when performing gestures that have inevitable

occlusion (e.g., gesture 5 from Figure 4.1), because within a certain distance from the

cameras, each of the two sensors “sees” half of the hand, hence capturing more structural

information.

We map raw depth values for each Kinect, which are 12 bit integers, to metric 3-space

using Nicholas Burrus’ formula [14]. Because the two video streams come from two sep-

arate sensors, we have to perform a calibration step, which rotates and translates the coor-

dinate system of one camera to match the other.

4.1.3 World Coordinate System

The rotation around the Y-axis previously determined in the calibration step (Θ) is part

of the transformation that maps one Kinect’s coordinate system to the other. We create a

world coordinate system, where the depth axis points exactly in between the two Kinect

sensors. This new depth axis coincides with the bisector line of the normal vectors with the

origins at the center of the camera sensors as depicted in Figure 4.2 by Zworld. Angle Θ is

known from the calibration step, so in practice we rotate the point clouds around the world
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Figure 4.2: World Coordinate System depth axis.

coordinate system Y-axis by Θ
2

and−Θ
2

(clockwise and counterclockwise respectively). We

create this coordinate system because a user will interact with the system by placing their

hand between the two sensors with the arm pointing along our world coordinate system

depth Z-axis. This step is useful in creating a descriptor (Section 4.2.3) where the real

depth coincides with the line from wrist to the tip of the fingers. Having an intuitive world

coordinate system is invaluable if we need to extract the spatial position and orientation

of the user’s hand when performing a certain gesture. In our proposed application, a user

may navigate the virtual 3D world by pointing with their index finger to determine what

direction the avatar will walk next. When recognized, this gesture will cause the avatar to

turn her head in the direction where the user’s finger is pointing. After a direction has been

established, another gesture can be used to make the avatar walk forward or back up. If, for

example, the user wishes to pick up an object in the virtual world, the relative position of

the hand in our world coordinate system can be translated into that of the virtual world so

the avatar can move her hand in a 3D position indicated by the user. The relative position

of the hand is the center of mass of the point cloud derived from the segmentation process.

4.2 Gesture Recognition

We formulate the gesture recognition problem in the context of this chapter as follows:

given a snapshot of a hand configuration (a point cloud), decide which gesture from a

40



repertoire of known gestures has been performed. Using a cluttered point cloud requires

a segmentation process, to isolate the hand from the rest of the scene. We use a simple

segmentation process described in the next section. The simplicity of the segmentation is

acceptable due to the way we engineered the system to allow for the hand to be the closest

object to the Kinect sensors.

4.2.1 Segmentation

Given the final point cloud Γ={p1, p2, ...pn} in the world coordinate system mentioned

above, we need to extract the points that belong to the user’s hand. We require that, during

use, the hand will be the closest object to the two Kinect sensors. We extract closest point

pclosest = (X, Y, Z). We then search Γ for a subset of points Γ′ = (hp1, hp2, ..., hpn),

where the following conditions hold.

1. pclosest.Z < hpn.Z < pclosest.Z + 0.30m

2. pclosest.X − 0.20m < hpn.X < pclosest.X + 0.20m

3. pclosest.Y − 0.20m < hpn.Y < pclosest.Y + 0.20m

The subset Γ′ is guaranteed to be contained in a box with volume 0.30m∗0.20m∗0.20m =

0.048m3. We chose 0.30m for the depth because it captures part of the forearm, which we

use to achieve rotation invariance, process described in section 4.2.2. The rotations with

which we wish to achieve invariance to are about the X-axis and Y-axis of the world coordi-

nate system. The values 0.20m for width and height of the bounding box, were determined

empirically to ensure it can contain hands of various sizes. Assuming the segmentation

process completes successfully, Γ′ contains points pertaining to the hand and part of the

forearm.
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4.2.2 Rotation Invariance

To achieve rotation invariance, we assume the forearm is a strong indicator of the hand

orientation. We find the principal component of this set and align Γ′ along the X and Y

components of the world coordinate system. It is true that gestures such as “Palm Front”

and “Attention” will affect the principal component vector, and thus final rotation, but the

bias is consistent across users, so it can be ignored. We call the angle that the principal

component is rotated along the Y-axis of the world coordinate system α and the rotation

angle along the X axis, β. This results in invariance to the two rotations. Unconstrained

rotation along the Z axis is important because the semantics of the gestures depends on it,

e.g., gestures 7 and 8. The user sits in a chair and uses one hand to interact with our system,

thus scale invariance is not a concern in our application.

4.2.3 Descriptors

To discriminate between gestures that users perform, we require a fast classification algo-

rithm to process every frame of the combined streams. Therefore, designing a system that

is computationally feasible on an average machine is important due to a requirement of

cost efficiency to implement and deploy systems in various settings. In Section 4.2.1 we

describe the segmentation process used to isolate hand and forearm points from the rest of

the background and align it with the world coordinate system to achieve rotation invari-

ance, and we named this set Γ′. The forearm points were used for alignment purposes, and

can now be discarded. We eliminate them by “trimming” Γ′ of the trailing 15cm volume.

In order to build a gesture vocabulary and implement a classification algorithm, we

need to compute a descriptor for Γ′. We use six point distribution histograms for Γ′. We

subdivide the volume into 63, 83 and 103 voxel spaces of equal size, distributed evenly.

For each such division, we produce two descriptors; one where each dimension of the

descriptor corresponds to the point count in each voxel space and the other’s dimensions

are binary values describing whether there is one or more pixels in each voxel space. We
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use Ψ to denote a count histogram and ψ to denote a binary histogram. The final descriptors

are Ψ63 , ψ63 ,Ψ83 , ψ83 and Ψ103 , ψ103 . Since the hand is extracted from the world coordinate

system, the position is important to our application. We determine the absolute position of

the hand by computing the center of mass for the point cloud Γ′ and name it Ω – a vector

in 3-space.

4.2.4 Recognition

We use a nearest neighbor classifier in combination with majority rule voting scheme to

recognize unknown gestures. For each unknown gesture, we compute the six descriptors

and map the points to the feature spaces of each descriptor. We compute distances between

all cluster centers. The recognition process for an unknown gesture involves computing the

squared distance in each feature space between it and known gestures in the vocabulary,

d2(Ψunknown,Ψknown) =
∑i

n=1(Ψunkown[i]−Ψknown[i])2

where i is the dimensionality (63, 83 or 103).

We retrieve the top two matches, and the threshold that determines whether the gesture

is known or not is twice the distance between the top two cluster centers. For each feature

space, the nearest neighbor is retrieved. The results may not be the same for each descriptor

due to noise, pose and the user making slight variations in the way the gesture is performed.

We view this as a voting problem with 6 voters where each vote is a recognized gesture. We

noticed that the majority of descriptors agree on the correct gesture, so we use the majority

rule voting scheme to pick the “winner” candidate gesture. In the case of a tie or if all are

different, we classify the gesture as unknown.

4.3 Evaluation

To evaluate the effectiveness of our approach, we designed the following experiment: first

we build a training set by asking users (co-authors) to perform the 10 gestures in an arbi-
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trary order and repeat the process 3 times. We collected a total of 30 data points per user in

each of the feature spaces. In the evaluation sessions, training data was limited to the user

testing the system. We did not mix training data among users because of the wide variation

in the way different people perform a single gesture. Furthermore, the system is intended

to work with hand deformities and restricted joint movements.

After training data was collected, users were asked to perform gestures as prompted by

the application for 6 seconds with 3 second breaks between gestures. During the break,

the application prompts the next gesture that is to be evaluated. We recorded the follow-

ing information for every frame: ground truth gesture, majority rule recognized gesture,

recognized gesture for each descriptor, time in milliseconds to process raw kinect data

(transformations, segmentation, rotation based on principal component) and finally angles

α and β found as described in Section 4.2.2. We collected angles to determine whether

there is a correlation between hand orientation and recognition performance.

4.3.1 Training Data

The training process consists of computing a set of descriptors Ψ and ψ for each gesture, for

a total of 6 data points. We asked users1 to participate in the training process by performing

the 10 gestures in a specific order. They repeat the 10 gestures 3 times with pauses in

between. The effect of an arbitrary ordering is more variation compared to repeating the

same gesture several times before moving on the next. To demonstrate this variation, we

reduced dimensionality using PCA for each descriptor to visualize the clusters they form,

see Figure 4.3. Notice how similar gestures form clusters that are closer.

As an example, gestures 5 and 6 (“Palm Front” and “Attention”) are similar, as seen in

the graphs. Gestures 2 and 5 (“Point Straight” and “Palm Front”) are significantly different,

placing them farther apart in the feature space.

To further illustrate the effectiveness of the descriptor, we compute distances between
1The users for this study were the authors. We are preparing an IRB application for a wider study.
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Figure 4.3: Each of the above points is a gesture in the set Ψ63 . We used PCA to reduce
dimensionality and show the well separated clusters in the feature space.

two random sets of gesture examples and graph the results in Figure 4.4. As we expected,

the main diagonal has low values, which means that our descriptor is discriminative in

ideal conditions. In practice, we have to take into consideration the limitations of the

Kinect sensors. As an example, the minimum depth sensing distance is 3 feet. If a user

gets closer than the minimum distance, the result is points being dropped from the cloud,

which negatively affects the recognition system. Furthermore, because the depth sensor is

based on a pinhole camera with inexpensive optics, there is more distortion near the edges

of the depth map. In our setup, unless users are restricted to a relatively small space, the

detected hand may be near the edge of one or both of the depth maps, which also negatively

affect the recognition performance. In the experiments below, we evaluate the performance

of our suggested approach by performing 3 experiments. In the first experiment the user

does not move the hand, in the second one the user moves her hand arbitrarily and in the

third experiment, the user moves her hand in a plus like pattern.
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Figure 4.4: Average distances between pairs of gestures using Ψ63 descriptors.

4.3.2 Experiments

Experiment with user not moving her hand In this experiment, the user performed a

set of 10 gestures without moving her hand. Figure 4.5 shows the comparison between the

descriptors. The thick red line represents the majority rule gesture accuracy. There were

no incorrect classifications in this experiment over a total of 1477 frames collected. We

recorded the average α and β for this experiment and graphed α in Figure 4.6. Higher

normalization angles resulted from the bias that some gestures cause; e.g., gestures 5 and

6.

We also recorded the average processing time for each frame. The processing times are

inclusive of raw data acquisition and transformation, segmentation and recognition. The

average processing time per frame was found to be around 35ms on a dual core Pentium D

processor running at 2.8 Ghz, without any processor specific optimizations. We wrote the

prototype in C#.

Experiment with user making a circle pattern while gesturing This experiment is sim-

ilar to the first, except the user was asked to move her hand arbitrarily. The total number
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Figure 4.5: The performance of the six descriptors is graphed. Most descriptors performed
well, while the majority vote achieved 100% recognition rate.

Figure 4.6: The average orientation angle α is graphed for both correct and incorrect clas-
sifications by majority rule.

47



Figure 4.7: We show the performance of the six descriptors when the user moves their hand
in a circular pattern. The recognition rate is lower due to orientation normalization.

of frames processed for all gestures was 1274, out of which 1187 were classified cor-

rectly (93.17%). Figure 4.7 shows the recognition accuracy of individual classifiers and

the majority rule vote. There is a weak correlation between higher normalization angles

and recognition accuracy as seen in Figure 4.8. We present the conditional probability

distribution of misclassification given angle α in Figure 4.9.

Experiment with a plus like motion In this experiment, the user was asked to perform

the set of gestures as in the first two experiments, but he was asked to move his hand in a

plus like pattern. We show a confusion matrix in Table 4.1. In Figure 4.10, the performance

of individual descriptors and the majority rule is graphed. A total of 1654 frames have been

processed, out of which 1602 have been correctly classified (96.86%).

Comparison to other methods We evaluated the effectiveness of our system under var-

ious rotation and motion conditions. Similar work has been done by Suryanarayan et al.

[97], however, there are differences that prevent a full comparison. First, they use a single

time of flight (TOF) camera to augment the 2D images in their gesture vocabulary with
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Figure 4.8: The detected average orientation angle α is graphed for correct and incorrect
classifications. Note that there is little correlation between normalization angles and recog-
nition accuracy. Graph for angle β is similar.

Figure 4.9: We show the conditional probability of misclassification given the angle α.
We note that rotation about the Y-axis of the world coordinate system produces the most
classification errors.
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Figure 4.10: Descriptor performance for the third experiment.

Table 4.1: Confusion table. Each row represents a gesture that was evaluated.

Gesture 1 2 3 4 5 6 7 8 9 10 Unknown
1 0.918 0 0 0 0 0 0.005 0.005 0 0.023 0.046
2 0 0.967 0 0 0 0 0 0 0 0 0.032
3 0 0.005 0.912 0.058 0.005 0 0 0 0 0 0.017
4 0 0 0 0.944 0 0 0 0.012 0 0.024 0.018
5 0 0 0 0 1.000 0 0 0 0 0 0
6 0 0.006 0 0 0 0.993 0 0 0 0 0
7 0 0 0.015 0 0 0 0.978 0 0 0 0.005
8 0 0 0.006 0 0 0 0 0.993 0 0 0
9 0 0 0 0 0 0.005 0 0 0.984 0 0.010
10 0 0 0 0 0 0 0 0 0 1.000 0

depth data. They evaluate their system using a vocabulary of 6 gestures, however, it is

unclear the motion and rotation constraints they imposed on their evaluation data. They

average slightly under 90% accuracy across all 6 gestures. Our system accuracy is 100%

when no motion/rotation is performed. We analyzed rotation effects and found them to de-

crease performance. Our system outperforms the one proposed by Suryanarayan et al. [97]

under mild rotation conditions. Motion will decrease performance when the user moves

his/her hand fast enough to pass the limitation of the devices’ frame capture rate of 30 per

second.
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4.4 Conclusion

In this chapter we presented a novel algorithm for the recognition of static hand poses us-

ing two Kinect sensors. We describe how to merge two depth streams from sensors placed

at an angle which captures 3D points belonging to a user’s hand. We used a trivial seg-

mentation method for the extraction of hand points and a used PCA to achieve rotation

invariance with respect to the X and Y axis of the world coordinate system. The algorithm

relies heavily on a clean segmentation. We use multiple descriptors computed from the

point cloud and apply majority rule voting scheme to improve the recognition process. The

algorithm is evaluated and we present detailed results that can be used for future work in

gesture recognition using Kinect sensors. We found that hand orientation has a slight neg-

ative impact on the recognition performance of our algorithm, hence a shortcoming. This

is mainly due to the segmentation process and distortion near the edges of the depth maps.

In future work, we will improve the segmentation process to allow for a less constrained

interaction environment.

Copyright c© Radu P. Mihail, 2014.
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Chapter 5 A CRF-based Approach to Fitting Generalized Hand Skeleton Models

This chapter has appeared in the written proceedings of the IEEE Winter Conference on

Applications of Computer Vision (WACV) 2014 [70]. We present a new point distribution

model capable of modeling joint subluxation (shifting) in rheumatoid arthritis (RA) pa-

tients and an approach to fitting this model to posteroanterior view hand radiographs. We

formulate this shape fitting problem as inference in a conditional random field. This model

combines potential functions that focus on specific anatomical structures and a learned

shape prior. We evaluate our approach on two datasets: one containing relatively healthy

hands and one containing hands of rheumatoid arthritis patients. We provide an empirical

analysis of the relative value of different potential functions. We also show how to use

the fitted hand skeleton to initialize a process for automatically estimating bone contours,

which is a challenging, but important, problem in RA disease progression assessment.

5.1 Introduction

Imaging of the hand is routinely done to diagnose and asses the severity of diseases that

alter the normal appearance of the musculoskeletal system. One such disease is rheumatoid

arthritis (RA), a chronic systemic inflammatory autoimmune disease that primarily affects

joints. The symptoms are pain, swelling and the loss of the joint function due to inflam-

matory processes. The underlying cause of RA is multifactorial [64, 25] including genetic

susceptibilities, nutrition, lack of exercise and environmental factors. Joint inflammation

caused by RA leads to over-vascularization, proliferation and synovial scar formation. The

synovial proliferation is most marked at the margins of the joints, where the ticht space

leads to bone erosions [13]. The inflammatory processes do not spare the ligaments, ten-

dons and muscles, which leads to weakness, laxity and deformity.

We propose a novel method to automatically fit a skeleton model to a hand radiograph.
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Our approach builds on a previous model by Fernändez et al. [66], who proposed a point

distribution model with landmarks located at joint centers. To support the types of defor-

mation common in RA, we relax this model by adding additional landmark points. Instead

of a single point per joint, we have one located on each of the cortical articular surfaces of

adjacent bones in the joint. This modification allows us to model subluxation (dislocation)

of bones and supports our long-term goal of automatically measuring inter-joint spacing.

We provide a probabilistic formulation of our approach as a Conditional Random Field

(CRF) and show to perform learning and inference with the model. We use a collection of

potential functions, each tuned to a particular anatomical feature, such as upper and lower

joint surfaces, or bone orientation. Each of these features makes unique contributions to our

fitting process. We evaluate these features, and our CRF model, on real data from hands

with and without deformation due to RA. Based on an analysis of the relative value of

different potential functions, we find that the term that estimates the orientation of the joint

makes significant contributions to rough alignment but other terms, such as the upper and

lower joint potentials, make significant contributions by enabling more precise positioning

of landmark points.

The main contributions of this work are: 1) introducing a new point-distribution model

suitable for deformed hands, 2) a CRF framework for fitting this model to hand radiographs,

3) the definition of a set of potential functions that focus on specific anatomical structures

in the hand, and 4) the evaluation of the accuracy of the method and the relative value of

various potential functions on two datasets of hand radiographs.

5.2 Related Work

In this section, we describe previous work on vision-based methods for processing and

analyzing hand radiographs.
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Hand Radiograph Model Fitting Registering a parametric model to a hand radiograph

is a key problem in this domain. Fernändez et al. [66] used a landmark-based wire model

(which we extend in this paper) to develop a registration algorithm that outperforms thin-

plate splines (TPS). They initialize the wire model through a cascade of image processing

routines based on bone axes. Van de Giessen et al. [104] developed a method to register CT

scans of wrists by enforcing distances between bone surfaces to remain the same after reg-

istration. Bellerini et al. [8] use snakes optimized as initially proposed by Kass et al. [50]

using genetic algorithms. They encode the parametric snake as polar coordinates centered

at the origin which can be placed arbitrarily on the image. Xu et al. [111] introduced gra-

dient vector flows as external forces, which eliminates the need to know a priori whether

the snake will shrink or grow. Our work extends this line of research by generalizing the

constrained shape model of Fernändez et al. [66]. This modification leads to the need for

improved image feature extraction.

Hand Radiograph Pixel Labeling Numerous approaches have been proposed for pixel-

level labeling of hand radiographs, we present several recent examples. Yuksel et al. [112]

use a combination of feature classification and morphological operations to segment bone

tissue from hand radiographs. Chai et al. [18] use the gray level co-occurrence matrix to

segment texture and segment bone tissue from soft tissue. These approaches are similar to

our feature extraction approach, but our features were developed to directly aid in model

fitting, whereas these were developed for other purposes.

Hand Radiograph Analysis Hand radiographs are used frequently in medical diagnosis

because the hands are where the pathology is most evident. We introduce several common

medical uses for hand radiographs, each of which could benefit from the improved skeletal

model fitting method we propose.

Langs et al. [55] presented a combination of active shape models and active contour

models to segment bones and detect erosions on RA patient hand radiographs. Their ap-
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proach relies on an initialization based on a local linear mapping net. We point out that

hand radiographs of late stage RA patients are much more challenging due to severe sub-

luxation, which result in overlapping bones, and joint space narrowing which lead to weak

edge information, thus decreasing performance of purely edge-based methods.

In pediatric radiology, skeletal age is an important indicator of a healthy development

process. Not only the bone locations and contours are of interest; bone density measure-

ments aid in the diagnosis of skeletal development. One of the first complete descriptions of

a system for hand radiograph analysis for skeletal age assessment is presented by Michael

et al. [69]. Hue et al. [46] proposed an algorithm to segment hand bones on hand ra-

diographs of children. Their approach relies on an oversegmentation using the watershed

algorithm and region of interest extraction and merging algorithms to segment soft tissue

and background from noise. Sotoca et al. [95] proposed a semi-automatic approach where

a user places the template at or near the center of a bone and the contour is approximated

using active shape models (ASM).

Radiologists rely on expertise to assign a bone maturity score relative to age and gender.

The most commonly used method to perform this evaluation is the atlas matching method

by Greulich and Pyle (GP method) [8]. This is a time consuming process and correct as-

sessment is highly dependent on the radiologist’s experience and expertise, thus automated

methods have been proposed. Giordano et al.[36] developed a method to predict bone age

using a combination of filtering and Gradient Vector Flow Snakes with accuracy of 90%.

Bayesian networks have been used by Mahmoodi et al. [62, 61]. Fuzzy systems have been

used for skeletal age assessment by Aja-Fernändez et al. [4].

State-of-the-art bone segmentation and joint space width measurement approaches rely

on landmark detection algorithms, usually based on a cascade of image processing tech-

niques. This first step of landmark detection leads to most failures in existing algorithms.

Our work fills that gap by accurately computing key anatomical points. roughly centered,

currently done manually. Recent work by Davis et al. [24] provides encouraging results on
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automating this process.

5.3 Problem Definition

Given a roughly centered hand radiograph, our goal is to estimate landmarks point locations

on the edge of cortical articular surfaces along the main axis of long bones. In this section,

we formally define our shape model and identify key challenges in solving this problem.

5.3.1 Shape Model

We represent a shape, s, by a set of n landmark point locations:

s = (x1, x2, x3, ..., xn, y1, y2, y3, ..., yn)T .

The choice of landmarks depends on the object of interest and the application, but for hand

radiographs they are usually chosen as joint centers and fingertips. A recent example is the

work of Fernändez et al. [66] where a shape model is used as an initialization step to an

image registration algorithm. We chose to generalize their representation by having two

landmarks per joint, one on each side of the joint on the cortical articular surface of the

bone, collinear with the bone’s main axis, (i.e., the tips of long bones). Figure 5.1 shows a

visualization of this model. This relaxation allows us to model the subluxation deformities

that are common in moderate to late stage rheumatoid arthritis patients.

5.3.2 Key Challenges

Automated methods for radiograph analysis rely on consistent alignment and appearance,

which rarely happens in practice. In this work, we focus on solving the alignment problem

by fitting an initial hand model to the radiograph. We describe several important challenges

in solving this fitting problem.

Despite attempts to control hand position using clinical protocols, hand radiographs of

healthy patients show significant variations in pose. In addition to RA deformities, such
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Figure 5.1: Our proposed shape model: each segment corresponds to a bone (B1... 19).
Individual points are indexed as proximal s{1...19}p and distal s{1...19}d.

as joint fusion, sclerosis and subluxation, other diseases including osteoarthritis may be

present, further increasing variability in pose. For example, RA damage and pain can

prevent patients from flattening their hands on the imaging surface. A solution to the hand

model fitting problem must be able to cope with significant changes in pose and joint

deformities.

The appearance of bones also varies significantly from patient to patient. This is es-

pecially true in RA patients because the disease affects the density and shape of individ-

ual bones. Many previous approaches to the hand model fitting problem focus on specific

anatomical features for alignment, but this leads to brittle solutions. Therefore, an approach

that combines image information from multiple anatomical features is needed. Our work

addresses both of these concerns in a consistent, and adaptable probabilistic formulation.

5.4 Approach

We propose a CRF-based model that combines a shape prior with appearance terms that

identify various anatomical structures. The shape prior is based on the distance from the

subspace spanned by a Point Distribution Model (PDM) and the appearance is defined as
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a collection of likelihood terms that depend on local feature detectors. We use a local

optimization strategy to jointly maximize feature responses at landmark locations by mini-

mizing an energy function. Minimizing energy in this context is equivalent to maximizing

the posterior distribution over the correct location of landmarks given an image.

Our proposed CRF has the following form:

P (s|I, θ) =
1

Z
exp{

∑
i

{
∑
j

Ψj(sip , sid , θ)}+ (5.1)

+
∑
k

φk(si, θ) + ζ(s, θ)}

where i is an index over model segments, j and k index our pairwise and unary appearance

terms, Z is the partition function, Ψ and φ are pairwise and unary appearance terms, ζ is a

shape model prior and θ is a weight vector we use to balance the various terms.

5.4.1 Potential Functions

The data terms in our model are based on a collection of discriminative features that we

combine into a set of potential functions.

Discriminative Features The success of the shape fitting process is heavily dependent

on a set of features that are highly discriminative. Recently, Cootes et al. [21] showed how

regression voting using random forests in the constrained local model (CLM) framework

outperforms existing methods on shape fitting. Our approach extends Constrained Local

Models (CLM) [22], by formulating the shape fitting problem in a general CRF framework.

We classify each pixel in an image independently using a randomized decision forest

(RDF) classifier and use dense SIFT features as input. We train 4 RDF classifiers, one for

joint centers (the midpoint between adjacent bones connected by joints), two for cortical

articular surface points, one for proximal and one for distal, and a bone tissue classifier.

For a new image, we compute DSIFT descriptors and run them through our RDF clas-

sifiers. The output is a likelihood that represents class membership of each pixel. We note
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that this process implies independence in pixel memberships (e.g., we could potentially

have a pixel be labeled as both bone and cortical surface). Let the classifier response for

joints be fj(si) where si is a landmark point with a corresponding image location. Simi-

larly, we define fpc(si) and fdc(si) for proximal and distal cortical articular surface pixels.

Finally, let fb(si) be the classifier response for bone tissue. Examples of RDF classifiers

outputs can be seen in Figure 5.3.

We then apply a thresholding operation on fj and fb to compute binary regions of high

probability bfj and bfb. Using the thresholded responses, we apply distance transforma-

tions, and combine them with values inside the regions to compute dfj(si) and dfb(si). The

distance transformation returns 1 on the region borders and 0 inside. The locations inside

the regions are filled with 1−fj and 1−fb respectively. This approach increases alignment

precision by providing extra information about the most probable location of anatomical

interest points. Examples can be seen in Figure 5.4.

In the next section we show how we convert these low-level image features into poten-

tial functions in our CRF model.

Pairwise potentials The first pairwise potential encodes the compatibility between a seg-

ment in our shape model and evidence of bone tissue:

Ψ1(sip , sid) = θ1
1

n

t∑
n=1

dfb(pxn , pyn) (5.2)

where the summation is over points p sampled along a segment. This function takes as

input the distance transformation dfb and is low when a segment is placed over a bone.

The bone evidence from the image can be further exploited by considering segment

orientation extracted from the thresholded bone tissue classifier connected components.

We define the following potential:

Ψ2(sip , sid) = θ2 (tan−1(sip − sid)− fo(si))2. (5.3)

In the above equation, fo is a function that returns an angle at an image location computed

via a weighted averaging of angles of the connected components with respect to the hori-
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Figure 5.2: Left: in red, segments span the major axis of connected components in a binary
image (bfb) used for initialization. Right: in green, the top 3 models from the training set
with the lowest ICP registration error.

zontal image axis. Intuitively, if a segment si is placed perpendicular to the major axis of a

connected component, the potential will be at its maximum. In Figure 5.4 we show fo for

an image.

We now define a pairwise potential that encodes a prior over adjacent cortical articular

surfaces in a joint:

Ψ3(sid , si+1p) = θ3(−log N (0,Σ)) (5.4)

where N is a Gaussian with full rank covariance Σ computed from the training set. This

term constrains joint spaces to be at reasonable distances in order to avoid local minima

during optimization.

Unary potentials We define three terms that encourage the landmark points to be near

appropriate anatomical features of the joint. The motivation for our first unary potential

is that all points on the model should be in areas of high probability indicated by our

joint feature, fj . To further penalize points from being far from a joint, and to improve

optimization performance, we use dfj , which is an augmented version of fj . This unary

potential is defined as follows:

φ3(si) = θ6 dfj(si). (5.5)
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Figure 5.3: Left: joint center pixel probabilities. Middle: color coded probabilities for
distal (red channel) and proximal (blue channel) cortical surface pixels. Right: bone pixel
probabilities.

Figure 5.4: Left and middle: Distance transformations dfj(si) and dfb(si) of thresholded
classifier responses. Right: Orientation term fo.
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Figure 5.5: Results on a representative subset of test images. Top row: healthy radiographs
from the Hand Atlas Database. Bottom row: rheumatoid arthritis set.

The second two unary potential functions encourage landmark points to align to the joint

contours. These potentials are defined as follows:

φ1(sip) = θ4 fpc(sip). (5.6)

and

φ2(sid) = θ5 fdc(sid). (5.7)

For this domain using classifiers, fdc and fpc, instead of a generic edge detector is critical

because it allows the model to distinguish between the true bone contours used for diag-

nosis and analysis and apparent edges caused by the radiographic projection of other bone

structures.

We find that in practice these terms complement each other. The first is very important

for rough initial alignments, while the second two are critical for the precise alignments.

See the evaluation section for details.
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5.4.2 Shape Model Prior

The shape prior term ζ(s, θ) is used to penalize unlikely shapes. Using Probabilistic Prin-

cipal Component Analysis (PPCA), we seek to relate shape s to a k-dimensional vector x

that is normally distributed with zero mean and covariance I(k):

sT = WxT + s̄+ ε (5.8)

where W is the matrix of principal components and s̄ is the average shape. ε is the model

noise component, assumed to be normally distributed ε ∼ N (0, σ2I).

Under this model, s is normally distributed:

P (s) = N (s̄,WW T + σ2I(k)) (5.9)

so our shape prior is a weighted negative log likelihood of P (s):

ζ(s, θ) = θ7(−log P (s)) (5.10)

W and σ2 are estimated using an Expectation-Maximization algorithm from a training set

of hand shapes extracted from hand radiographs.

5.4.3 Shape Inference

We now describe our strategy for estimating the optimal shape model for a given hand

radiograph. We first compute a set of initial models, then use local optimization for each

and select the best.

We use thresholded bone tissue classifier, bfb, for initialization by computing the con-

nected components statistics in the binary image. We model each component as an ellipse

and compute its centroid, major axis, orientation and length. The line segments spanning

the major axis of the connected components (see Figure 5.2) form the basis of our initializa-

tion scheme. We use a variation of the Iterative Closest Point algorithm to register samples

from our training set to the segments extracted from the binary bone tissue classifier. The
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ICP registration error is then used to select the 3 best shapes that are used as starting points

for our local optimization.

Our local shape objective function is the posterior probability of a shape, s, given image

data, or equivalently the log likelihood of our CRF model (5.1), which is defined as follows:

E(ŝ, θ, I) = arg min
s

∑
i

{
∑
j

Ψj(sip , sid)}+
∑
k

φk(si) + ζ(s, θ). (5.11)

To minimize (5.11) we use coordinate descent with step sizes chosen by an independent

local search in each dimension.

5.4.4 Estimating CRF Weights

We use a supervised learning approach to estimate the model parameters θ. The partition

function Z is NP-hard to compute [53]. We overcome the difficulty of computing Z in

learning the model parameters by using Pseudo-Likelihood learning, where a uniform prior

over model parameters is assumed by setting τ = ∞ in P (θ|τ) = N (θ, 0, τ 2I) where I is

the identity matrix. We find the optimal parameters θ by minimizing the difference between

our estimated shapes and ground truth shapes over a set of training images:

θ̂ML = arg min
θ

∑
i

∥∥∥∥arg min
s

E(s, θ, Ii)− sGTi
∥∥∥∥2

2

. (5.12)

The above minimization is non-convex since we allow s to vary during optimization. We

use the simplex method with random restarts to compute model parameters, θ. In the

following section we evaluate the model parameters and show results from inference.

5.5 Evaluation

Datasets We evaluate our method on two datasets with posterior-anterior view hand ra-

diographs: the Digital Hand Atlas Database1 and a set of 43 radiographs of RA patients

from the University of Kentucky Department of Radiology. The second dataset is of a
1http://www.ipilab.org/BAAweb/
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hands in a range of disease stages, from minimal to extreme deformation. For evaluation

purposes, we manually determined landmark locations for each image in both datasets.

Since radiograph contrast varies due to calibration parameters and noise, we truncate the

upper 20% of the intensity histogram.

Quantitative Evaluation We used a set of 20 images from both datasets to train our

discriminative classifiers and estimate our remaining model parameters. The remaining

images were used for testing and validation.

We evaluate the model by computing the sum of absolute differences between ground

truth shapes and results from inference. The model errors for both datasets can be seen in

Figure 5.7 and 5.6. For the Hand Atlas set, the average per point error was 2.72 pixels,

while for the RA dataset it was 2.85 pixels. A comparison to the state of the art is difficult

due to our model landmark selection and RA deformity severity. We divide the test set into

early (16 images), moderate (11 images) late stage radiographs (11 images), the average

per point errors (measured in distance from ground truth, in pixels) are as follows: 2.30,

2.24, and 4.56.

To help understand the failure modes of our approach, we further investigate two ra-

diographs with poor shape estimates. These correspond to images 23 and 27 in Figure 5.7.

We find that by inspecting the optimal fit for both images, shown in Figure 5.8, that they

are both from patients with late-stage RA and have severe deformities and subluxation. In

such cases, assistance from a radiologist will be required.

Term Contributions To provide more insight into the model, we estimate the amount

each potential function contributes to reducing errors in the RA dataset. We split the dataset

into two groups, a training set of size 20 and a testing set of size 12. We use the training

dataset to estimate the optimal potential function weights, θ̂, by minimizing (5.12), as

described above, for the full model. Then, for each of the seven potential function, we

solve for the optimal set of weights for the model without that potential function, leaving
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Table 5.1: Percent increase of error for each term when omitted from the model.

Term Ψ1 Ψ2 Ψ3 φ1 φ2 φ3 ζ
% Error
increase 39.14 1.42 1.87 2.19 0.09 10.56 0.27

one out. This results in a set of eight different models. For each model, we infer the shape

in each image in the testing dataset and sum the absolute pixel error with respect to the

ground-truth shape to obtain an error measure. Table 5.1 shows the ratio of the error of a

model without the potential function to the error for the full model. Intuitively, an important

term will result in a model with significantly higher error if it is removed. We find that there

are two dominant terms: Ψ1 and φ3 that correspond to bone and joint evidence from the

feature set. These terms are clearly the most important in gross alignment, however the

other terms each make a contribution to reducing errors in the full model.

Example Applications: Initialization for Estimating Bone Contours The weakness

of most state-of-the-art approaches for identifying bone contours is the initialization step.

As an example application, we propose to fit an active shape model (ASM) to the cortical

articular surfaces for each finger joint. This is challenging because ASM models must be

initialized very close to the optimal location or they will fall into non-optimal local minima.

We use our proposed approach to estimate a model skeleton and use the landmark points

and bone segments to align the initial ASM model for each joint. We optimize the ASM

shape parameters, using an off-the-shelf software library, and obtain the results seen in

Figure 5.9. This demonstrates that our estimated skeleton models are sufficiently accurate

to provide initial conditions for ASM models of joint contours. In combination, such an

approach could be used to automatically estimate the joint space width, an important metric

for RA progression.
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Figure 5.6: Hand Atlas Dataset model errors computed as sum of absolute differences
from ground truth.
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Figure 5.7: Rheumatoid Arthritis Dataset model errors computed as sum of absolute
differences from ground truth.

5.6 Conclusion

We introduced a new method for fitting wireframe-hand models to radiographs. A key in-

novation in our approach is in fitting a relaxed shape model, with four degrees of freedom at

each joint, that is capable of representing the dramatic subluxations present in patients with

rheumatoid arthritis (RA). Fitting this model effectively is more challenging than standard

models, which only have two degrees of freedom at each joint. We show that our method,

which combine low-level discriminative features in a conditional random field framework,

is capable of fitting this relaxed model on healthy hands as well as those deformed by RA.

We provide quantitative results that highlight which features are most important and show
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Figure 5.8: Failures that correspond to high errors from Figure 5.6 and 5.7.

an application of our method to fitting bone contours, which is critical in assessing RA

damage.

Copyright c© Radu P. Mihail, 2014.
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Figure 5.9: Joint contours (red) estimated by initializing an active shape model based on
our initial hand skeleton (green).
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Chapter 6 Disease Stage Metric Learning

The shape of the hand of an RA patient depends on individual and disease related vari-

ability. Examples of individual variability include differences due to age and genetics,

while disease related variability includes changes due to degenerative processes of autoim-

mune responses. In this work, we propose a novel metric learning approach for anatomical

shapes. We were inspired by the geometric intuition that distances between all healthy

samples should be zero, while distances between diseased samples from the same patient

should be proportional to the stage that was assigned by a medical expert. This idea is mo-

tivated by datasets of medical imagery in which samples are given a discrete stage label,

but the progression is a continuous measure.

In medical practice, hand radiographs are labeled as: healthy, early, moderate and late,

as described in Chapter 5. These labels give us partial information about the actual stage,

i.e., only the interval. The true stage is a continuous positive value. This problem formula-

tion falls under semi-supervised learning methods [113].

We propose an algorithm to learn a quadratic Gaussian metric for use on anatomical

shape representations in regression and classification tasks. Our method was inspired by

the observation that anatomical structure variation is the result of two processes: inter-

patient (intrinsic) variability and variability due to a disease process (extrinsic). Given this

observation, our intuition is that a good distance metric for this purpose is one under which

all samples from healthy individuals should be very close to zero, and the distance between

diseased samples should be proportional to the stage of the disease.

6.1 Background: Supervised Metric Learning

Learning a good distance metric over an input space is an important problem in the machine

learning literature. Distance learning from available data can improve algorithms that rely
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on pairwise similarities between data points (e.g., nearest neighbor and support vector ma-

chines). Moreover, one can gain valuable insights into the structure of the data by means of

visualization and dimensionality reduction. Perhaps the most widely used distance metric

is the squared Euclidian distance, which is defined for two sample points xi and xj as:

D2
ij = (xi − xj)T (xi − xj). (6.1)

We note this relationship because of a related problem in machine learning, namely feature

extraction, where one seeks a function f(x) where x is a raw data point and the result is a

feature vector or a point in some feature space. We denote any distance function in feature

space as dij[f(xi), f(xj)]. A common class of feature spaces is a linear projection of x:

f(x) = Wx. This gives rise to the class of Mahalanobis distances:

dij[f(xi), f(xj)]
2 = (f(xi)− f(xj))

T (f(xi)− f(xj)) (6.2)

= (Wxi −Wxj)
T (Wxi −Wxj) (6.3)

= (xi − xj)T (W TW )(xi − xj) (6.4)

= (xi − xj)TA(xi − xj) (6.5)

where A = W TW is a positive semidefinite matrix. Our goal is to learn A, such that dij is

a valid metric, i.e., it satisfies the following conditions:

1. dij[f(xi), f(xj)] > 0

2. dij[f(xi), f(xj)] = 0 iff f(xi) = f(xj)

3. dij = dji

4. dik ≤ dij + djk.

The first two conditions imply positive definiteness on A. Conditions 3 and 4 enforce

symmetry and the triangle inequality. Our goal in this chapter is to learn A, in a semi-

supervised setting.
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6.2 Related Work

Common approaches to solve for A take advantage of prior knowledge, usually in the

form of equivalence relations that specify which points should be close and which points

should be distant. A standard approach in machine learning is Linear Discriminant Anal-

ysis (LDA), first explored and proposed by Fisher et al. [30]. LDA can be thought of as a

supervised version of PCA, where the variance in the latent space and the inter-class spread

is maximized. This method explicitly models the differences between classes of data. Both

PCA and LDA assume the distribution of the data in the latent space is Gaussian.

Xing et al. [110] propose a distance metric learning method that takes advantage of user

provided pairwise similar points. Their method is formulated as a semi-definite program

(SDP). A closely related approach by Li et al. [58] proposes to learn a smooth mapping to

a latent space from pairwise “must-link” and “cannot-link” constraints, where “must-link”

pairs are mapped to the same point and “cannot-link” pairs are mapped to be orthogonal.

Globerson et al. [37] introduce maximally collapsing metric learning (MCML), a method

to learn a Mahalanobis distance metric based on similarity and dissimilarity constraints.

Their construction involves a convex optimization problem where samples from one class

are “collapsed” into a single point, while samples in other classes are pushed infinitely far

apart. The main difference between our method and MCML is that pairwise constraints are

used in their construction while we require classes to map close to hyperspheres (circles in

2D, centered at the origin) of radius proportional to a numeric stage label.

Goldberger et al. [38] propose a distance metric learning method specifically designed

to improve the KNN classifier. Their cost function is the leave-one-out performance of the

KNN classifier on training data. Although our method can be used in combination with a

KNN classifier with a similar goal, our method seeks an embedding with the property that

magnitude is directly related to variance due to a disease process.
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6.3 Our Semi-Supervised Approach

We translate categorical labels to numerical values and intervals as follows healthy = 0,

early ∈ [1, 2), moderate ∈ [2, 3), late ∈ [3,∞). We seek a distance metric that gives rise

to an embedding where the stage is interpreted as the distance from the origin. Samples

in the same discrete stage should be mapped onto the latent space with magnitudes in the

intervals as described above.

Let X = [x1, x2, ..., xN ] be a set of examples where x ∈ X and Y = [y1, y2, ..., yN ] ∈

L be the stage labels. We seek a distance measure for points in data space, X . More

specifically, we seek a Mahalanobis distance of the form:

d(xi, xj|A) = dAij =
√

(xi − xj)TA(xi, xj), (6.6)

where A is constrained to be a positive semidefinite matrix.

When A = W TW and W has m columns and n rows, it suffices to constrain the rank

of W to be n for A to be positive semidefinite. This formulation for A is useful to consider

because one can also think of the Mahalanobis distance as a mapping of x ∈ Rm to Rn

where m < n via a linear projection Wx (A = W TW ), thus reducing dimensionality.

Intuitively, our method solves for W such that the norm of the projection on the subspace

defined by it is related to disease stage.

6.4 Disease Stage Metric Learning

We now formalize our disease stage metric learning (DSML) problem as an optimization

problem of the following form:

arg min
W

1

N

N∑
i=1

(xTi (W TW )xi − y2
i )

2 s.t. W TW � 0. (6.7)

This formulation encourages samples to map onto rings centered around the origin. The

vector magnitudes in the subspace defined by W become functions of the stage label. We
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use an off-the-shelf optimizer to compute W . The cost function in Equation 6.7 is non-

convex, since the outer square term xTi (W TW )xi− y2
i can be negative for some choices of

W . The cost function is invariant to rotation, hence the solution space is infinite.

One limitation of the above cost function is that shapes with similar deformities can be

mapped arbitrarily far in latent space. Ideally, we should observe clusters of shapes with

similar deformations in the latent space. One approach is to add a regularization term to

our cost function to encourage samples that are close in the shape space to be close in the

embedded space:

arg min
W

1

N

N∑
i=1

(xTi (W TW )xi − y2
i )

2 + λ|XTX −XT (
W TW

Tr(W TW )
)X| s.t. W TW � 0.

(6.8)

In the equation above, the intuition behind the regularization term |XTX−XT ( WTW
Tr(WTW )

)X|

is that pairwise squared Euclidian distance differences between the raw shape space and la-

tent space should be minimized. λ is a parameter that controls the relative importance of

the regularization term.

6.5 Evaluation

For evaluation we show results on the stage classification problem with low rank construc-

tions of A (when W has 2 or 3 columns for visualization). We implemented the algorithm

in MATLAB and used the built-in unconstrained optimization routine fminunc, which uses

a combination of algorithms to estimate the gradient and search.

6.5.1 Linear Generative Data Model

We now formalize the notion of separating sources of variance in shape models. Consider

a linear generative model of shapes of the form:

s = µ+ αI + γβE + ε (6.9)

74



Figure 6.1: When the average shape µ is a circle, we sample exclusively from the intrinsic
(left) and extrinsic (right) modes of variation.

where µ is the average shape, the columns of I define an intrinsic variability subspace (e.g.,

genetic differences lead to anatomical shape variability), the columns of E define an ex-

trinsic variability subspace (e.g., deformations due to disease processes), ε is observational

noise. We assume Gaussian distributions for α ∼ N (0, IσI) and β ∼ N (0, IσE), and

ε ∼ N (0, I). Variable γ ∈ [0..∞) is a scalar and is used to control stage, σE is the “stage”

noise (e.g., physicians are not always 100% accurate on staging a disease).

By adjusting the variance of α and β we can effectively control the mix of variability

due to differences in patients and differences caused by a disease process. In our experi-

ments, we show that our method is effective even when the intrinsic term of the generative

model is non-linear (which is the case with real medical data). The strength of our method

is most evident when V ar(α) > V ar(β), as we will show in the evaluation.

We now construct a synthetic dataset sampled from our generative model. We define

the average shape to be a unit circle and construct intrinsic and extrinsic deformation com-

ponents. Let µ ∈ RD be a column vector µ =

xT
yT

 . where xT = cos(θ) and yT = sin(θ)

and θ is a set of values sampled at equal intervals from [0..2π]. We define 2 intrinsic and

3 extrinsic components I = [I1 I2] and E = [E1 E2 E3]. To illustrate this model, we sam-
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Figure 6.2: We show random samples from our generative model while controlling for
stage. The intrinsic and extrinsic component variances are equal at 0.5.

ple separately from the intrinsic and extrinsic components of this model in Figure 6.1. In

Figure 6.2 we show the effect of the disease stage parameter γ.

6.5.2 Embeddings using Synthetic Data

We first compare the results of the embeddings produced by our method (DSML) and

PCA for several choices of σI , σE with zero noise. In Figure 6.3 we show the resulting

embeddings when σI > σE and σE > σI . The strength of our method is most obvious

when the intrinsic variance is higher since it can still isolate the extrinsics.
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Figure 6.3: We compare the embeddings produced by the ratio of intrinsic to extrinsic
variances. When the intrinsic variance is higher than the extrinsic, DSML clearly extracts
the extrinsic components (3 for our synthetic data, in both positive and negative directions),
while PCA does not (top). When extrinsic variance is higher than the intrinsic, PCA and
DSML produce similar embeddings (bottom).
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6.5.3 Classification on Synthetic Data

We now consider the classification problem: given a shape model, output a discrete stage

label (e.g., healthy, early, moderate or late). We evaluate our approach for the classification

by first performing dimensionality reduction and use a multiclass SVM classifier using la-

tent variables as input. We compare our approach against: support vector machines (SVM)

with raw features, SVM with features from linear discriminant analysis (LDA) embedding,

SVM with features from PCA embedding and Naı̈ve Bayes. Every algorithm is evaluated

in a 3-fold cross validation setting. The total number of samples in our evaluation dataset

was N = 300, with an equal number of samples in all 4 classes: healthy, early, moderate

and late. For the multiclass SVM classifier, we used a radial basis function kernel and

chose the best kernel width σ using grid sampling. We are interested in the performance

of our algorithm under various intrinsic and extrinsic variances. In the first experiment,

we fix the intrinsic variance σI = 1 and compute the misclassification rate (MCR) for all

algorithms as a function of the extrinsic variance. The misclassification rate is computed

as follows:

MCR =
Number of Incorrect Classifications

Total Number of Classifications
(6.10)

We show the results in Figure 6.4. In the second experiment, we fix the extrinsic variance

(σE = 1) and compute MCR for the classification algorithms performance as a function of

the intrinsic variance. Results are shown in Figure 6.5.

6.6 Embedding of RA hand shapes

We now show the results of the embedding computed for our shapes extracted from radio-

graphs of RA patients. Our (small) dataset consists of 28 healthy hands, 49 early staged, 18

moderate staged and 21 late staged hands. With the regularization term weight λ = 0.02,

we show the embedding in Figure 6.6.
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Figure 6.4: With fixed intrinsic variance (σI = 1), we plot the MCR for DSML, SVM PCA,
LDA and Naı̈ve Bayes classifiers. Our method outperforms all algorithms at a consistent
0.1 MCR.
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Figure 6.5: With extrinsic variance (σI = 1), we plot the MCR for DSML, SVM PCA,
LDA and Naı̈ve Bayes classifiers. Our method outperforms all algorithms at a consistent
0.1 MCR. Notice the consistency of our method when σI > 1.
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Figure 6.6: PCA embedding for RA dataset (left). DSML embedding for the RA dataset
with regularization term λ = 0.02 (right).

When rank(W ) ≤ 3, we can visualize the basis vectors as a function of coefficients.

This visualization provides an insight into the shape changes with respect to basis coeffi-

cients. Figure 6.7 shows such a visualization.

6.7 Implementation Details

We used an off-the-shelf optimizer from MATLAB to minimize our cost functions.

6.8 Conclusions

In this chapter we presented a novel metric learning technique for anatomical shapes. We

show classification in the embedded space outperforms state-of-the-art algorithms. The in-

tuition behind this method is that healthy shapes should map on or close to the origin of the

latent space, while diseased shapes should map at a distance from the origin proportional

to the stage they were labeled with.

It is a more realistic case when there are multiple shape samples from the same patient

as the disease progresses. Our model can be modified to facilitate such data by including
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Figure 6.7: DSML embedding with grid sampling of basis coefficients when rank(W ) =
2. The center of the embedding corresponds to the average hand. In red we show the
displacements along the coefficients for the basis solved using DSML.

constraints on sequences of shapes in the embedded space. The benefit of this modification

is most evident for the disease progression prediction problem: given a set of two or more

shapes, what is the most likely progression path? Since the magnitude of shapes in the

embedded space can be interpreted as stage, one can sample along a line from the origin to

some point on the upper bound stage hypersphere.

We add a term that encourages all points from the same patient with stage labels to

be close to a the average vector for the sequence in the embedding. Since each shape in

the sequence has an associated stage vector, the magnitude in the embedding should still

relate to stage and not conflict with the term in our original minimization problem. To this
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Figure 6.8: We illustrate the model term that encourages sequences from the same patient
to lie on the same line. The penalty term is the sum of the shortest geodesics (arc lengths
in 2D) from their current location in the embedding to the average vector.

end, our penalty term is the sum of the lengths of the shortest geodesics (arc length in 2D)

from the current location to the average vector for the sequence. We illustrate this point in

Figure 6.8.

This modification involves the addition of a penalty term to the cost function, term that

encourages sequences of samples at varying stage to be collinear. The distance from a

current location in latent space to a specific progression line is the shortest geodesic.

Copyright c© Radu P. Mihail, 2014.
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Chapter 7 Visualizing Hands Affected by RA

This chapter has appeared in the printed proceedings of the International Conference on

Computer Games (CGAMES) 2012 [15]. In this chapter we present an approach to use high

level data from hand X-Rays in postero-anterior (PA) view for synthesizing the animation

and deformation of 3D hand models. We discuss our approach to model musculoskeletal

deformations caused by rheumatoid arthritis (RA) and show how this could be used to

animate progressions 1 of RA from early to late stage. We also discuss a potential use

case of our method as a means to visualize damage due to RA as a function of time and

treatment.

Early stage Moderate stage Late stage

Figure 7.1: A sample from our results. Here we show our rendered model next to the
wireframe information extracted from radiographs.

7.1 Introduction

Serious games serve purposes other than pure entertainment. They can be used in a wide

range of applications, from assisting people in recovering from trauma to persuading pa-

tients with early signs of debilitating diseases to take their treatment seriously. In all cases,

the success of a serious game is largely affected by how realistically it can depict the aspects
1RA patients often experience different types of deformities, occurring at unpredictable times after the

onset of the disease.
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of the simulation that it is trying to emphasize. As part of a serious game, the work in this

paper uses a data-driven approach from radiographs (X-rays) to demonstrate the amount

(and various types) of deformations RA patients could experience. Using sample X-Rays

at different stages of RA, we animate a rigged model of a hand to show the progression of

the disease.

In this chapter, we will explain how high level data from X-Rays can be used to bet-

ter model deformations of skeletal structures afflicted with RA in a computer generated

animation.

7.2 Background

RA is a chronic, autoimmune disease that leads to swelling of synovial fluid around the

joints[31]. This fluid builds up and can cause joint erosion, fusing of the joints, and could

potentially lead to other problems with other organs in the body. Our work focuses on the

skeletal changes in the hand during the progression of this disease. While other 3D models

of hands have been created for the study of hand dexterity [5], our work shows the skeletal

deformations that occur as the disease progresses.

The work described here is part of a larger project to design and build a decision aid

for patients at the onset of this disease. Treatments are available to suppress some of the

symptoms and help ease the pain, but it is up to the patients whether or not they will adhere

to these treatments. In a recent study [78], use of decision aids led to a better understanding

of the disease for the patients. Simulations are one of the most prominent applications for

hand modeling in computer graphics today [5], however, serious games used as a decision

aid for patients are scarce for topics other than mental health or fitness [74]. This genre of

gaming can allow users to experience situations that would be impossible in the real world

[98]. Our work is a contribution to the development of serious games, and could generalize

to other musculoskeletal disorders with no cure. This work allows patients to see what is

most likely to happen to their hand if no treatment is used or in the case of poor adherence
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to a prescribed treatment.

The data we used in our work is a series of X-Rays of different patients in three stages

of RA, categorized by an expert as early, moderate, and severe. The user can select a hand

from each category; our approach then interpolates between the 3 hand stages and animates

the progression, from early to severe. The user sees a 3D model on screen, showing the

resulting deformations that occur.

Our work could be used by developers of medically oriented serious games to depict

realistic bone deformations in their characters. Our approach uses a skinned hand mesh

that is deformed according to information extracted from X-rays and can easily be attached

to a character.

Human hands are complex anatomical structures able to perform fine motor tasks as

well as powerful grasping. We need them for day to day activities. Most people take

them for granted until disaster strikes (i.e., they lose them or they get diseased). For RA

patients, losing dexterity due to pain and deformities is reality. In this chapter we present

a method based on character animation to inform patients about the disease and give them

a glimpse of a possible future given a choice in their health care. In order to make an

impact in the patients’ perception of the disease and how treatment choices will impact

them, we propose to use a hand model to reflect deformities caused by RA. In order to

do that, we dive into computer graphics and look at existing work in anatomically correct

hand modeling and apply what we learn from radiographs to deform the hands correctly.

This is not a trivial task due to several considerations: anatomical complexity of the human

hand, specific constraints on motion due to the pain and deformations and computational

demands. The field of biomechanics looks at anatomical structures with the objective to

understand intricacies of motions in living things. The primary goal of this component

of the project is to create believable visualizations of deformed hands. In the future, we

plan to use this work as building blocks for the analysis of biomechanical limitations RA

patients suffer in any stage of the disease.
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Character Animation Granberg [39] provides an excellent survey of the history of char-

acter animation. In the early days of computer games, characters have been small grids

of colored pixels that were animated by making multiple pictures with the character in a

different pose. Nowadays, graphics cards are capable of performing astounding amounts

of computation, allowing for more complex animation schemes. 3D models are typically

stored as meshes consisting of connected vertices. There are two popular methods to ani-

mate 3D models: morphing animation and skeletal animation. In morphing animation, two

or more meshes are blended on a per-vertex basis [39]. Consequently, the meshes have to

have the same number of vertices and polygons need to be arranged similarly in order for

the technique to work. Historically, morphing animation has been used for full character

animation. Its main drawback is it requires considerable artist effort. Currently, morphing

animation is used for facial animation [39]. Another, more popular approach to animat-

ing 3D models is skeletal animation. Skeletal animation works by introducing invisible

“bones” (in practice, these are just transformation matrices in a hierarchy) in a mesh where

the position of the bones determines a pose. As bones move, the mesh around them de-

forms. The deformation of the mesh with respect to the bone positions is called skinning.

Skinning is an open research area, with the aim to improve the visual quality of the de-

formed mesh. The most popular skinning technique is linear blend skinning also known as

Skeleton Subspace Deformation (SSD) introduced by Magenat-Thlamann et al. [60]. The

main idea is that bones are transformed rigidly, while vertices in the mesh are deformed by

a linear combination of the neighboring bones transformations. In other words, one vertex

can be transformed by multiple bones determined by weights. This method relies on an

artist and modeling software that “paint” weights on vertices in order to create realistic

deformations. SSD is a simple yet effective skinning technique, but it has shortcomings

(e.g., “candy-wrapper” and “collapsed elbow” effects). These problems become visible

when complex articulated objects are deformed, causing them to appear unnatural. In this

research, our aim is to render and animate human hands, which are highly articulated and
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complex structures. Moreover, we want to render and animate hand models with deformi-

ties caused by RA. In order to realize our proposition, we require an anatomically corect

skeletal model that is deformed according to a progression scale and is animateable. Given

the complexity of the task and the known shortcomings of SSD, we need a novel skinning

technique that is both aesthetically pleasing and conforms to anatomical constraints. In the

following paragraph we provide a brief survey of existing work.

Graphics for Hand Modeling We now turn our attention to existing in-silica models

of human hands. For the larger scope of this project, we hypothesize that a realistically

animated avatar hand will be taken more seriously by patients, thus improving the impact

of our proposed intervention. In order to realize that, we survey existing work and propose

a solution based on previous research and suggest other research questions that can be

addressed.

Skeletal poses are determined by the amount of deviation from a rest pose caused by

skeletal muscles. There are two widely used mathematical models that describe functional

and mechanical properties of muscles: one originating from Hill [44] and another from

Huxley [47]. Hill-based models consist of elastic elements in parallel with a series elastic

element and a contractile element. Huxley-based models are used to understand properties

of microscopic contractile elements [99].

The contraction of muscles alters bone positions and also produces visible effects (e.g.,

bulging) to the skin. In this work we are interested in both forces and effects. A survey

by Lee et al. [57] summarizes developments in the area of muscle simulation in computer

graphics. They describe the anatomy of skeletal muscles as well as previous experiments

that consist of determining force exerted by different types of muscles. Our primary re-

search focus is to use artificial muscle models to drive skeletal deformation, in turn pro-

ducing realistic deformations. While the biomechanics aspect of RA deformed hands poses

interesting research questions, we will focus on visualizing RA effects rather than a metic-
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ulous analysis of force constraints posed on the RA affected human hand, which we plan

to investigate in the future.

Computational approaches to muscle simulation can be categorized in three classes

[57]: geometrically based, physically based and data driven. Geometrically based ap-

proches focus on modeling animation effects of muscle contraction. They have been shown

to be successful in modeling simple muscles, but are not straightforwardly extended to

more complex muscles [57]. Such examples are Free Form Deformations [17] and para-

metric and polygonal surfaces [106, 100].

Sueda et al. [96] tackle the realism of hand rendering problem by incorporating tendons

and muscles under the skin of traditionally animated characters. Their method relies on

two primitives: rigid bodies (bones) and strands based on cubic B-spline curves. The idea

is that the motion of the spline control points is spatially constrained in order to route

tendons that deform the skin above them and also drive the skeleton transformations. They

employ two types of constraints for tendon routing: sliding and surface constraints. The

sliding constraints are used when a strand has to pass through a specific point in space

(near a bone) while a surface constraint allows for lateral strand movement as well. Fixed

constraints are used for strand origins and insertions. The authors developed a controller to

determine activations of each tendon (equivalent of muscle forces and velocities) in order to

deform the model to a certain pose. Their main contribution is the computation of dynamic

simulations where complex routing constraints are required. In terms of efficiency, they

report the computation time required to get the activation levels of tendon strands for a few

seconds taking only a few minutes. While this is impractical for a real time implementation,

they do not mention a possible GPU implementation, which could be investigated.

Data driven approaches directly model the skin shape based on observations from range

scans [6], silhouettes from video streams [90] and other sources such as CT scans [54].

Kurihara et al. [54] propose a method for building hand models from CT (Computed

Tomography) scan data. Their method uses volumetric CT data that is first segmented
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into bone tissue and skin. They then estimate the joint rotation centers and joint angles of

several scans. An arbitrarily chosen base model is then deformed to a desired pose using

Weighted Pose Space Deformation (a combination of SSD and morphing) and then fitted

interactively to meshes of other scans using feature points. Data driven approaches are the

least appealing for our project due to lack of motion data. Physically based approaches

present the most potential for this project due to the underlying goal of modeling muscle

contraction forces and representing changing muscle geometry during contraction [57].

Physically based approaches rely on physics to tackle muscle dynamics and tissue prop-

erties. This problem requires addressing the problems of how to determine contractile mus-

cle forces and how to represent the changing muscle geometry during contraction. Several

computational models have been proposed: mass-spring systems, Finite Element Method

(FEM) and Finite Volume Method (FVM) [57]. In mass-spring systems, objects are mod-

eled by a collection of points linked by massless springs. The deformation effects are

computed using energy minimization techniques that compute equilibria based on chang-

ing spring properties during contraction. This model can also be extended to include other

types of spring forces (e.g., angular, bending and shearing) [57]. Albrecht et al. [5] propose

hand models based on an underlying anatomical model (bones) that is animated using mus-

cle contraction values. Their contribution is a hybrid muscle model comprising of pseudo-

muscles and geometric muscles. The pseudo muscles control bone rotation according to

anatomical constraints and mechanical laws, while the geometric muscle cause realistic

bulging of skin tissue. The geometric muscles have a geometrical shape that deforms and

bulges during contraction. They connect the geometric muscles to the skin and bones using

a mass spring system, inspired by [49]. Their method requires a significant effort in tuning

parameters which is undesirable and also lacks models of tendons which should drive the

skeleton movements using geometric muscles instead of the pseudo muscles.

In the Finite Element Method (FEM) approach, a body (e.g., muscle) is subdivided into

discrete elements (hexahedra or tetrahedra in 3D) where the displacements and positions of
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an element are computed using an interpolation function. In a dynamic problem, equilibria

is computed by solving partial differential equations (PDEs) using FEM. Tang et al. [99]

developed a 3D computational model based on FEM to describe the active and passive

non-linear mechanical behavior of skeletal muscles. They report their numerical algorithm

is capable of determining shortening and lengthening of muscles due to concentric and

eccentric contraction. Finite Volume Method (FVM) is similar to FEM in that PDEs are

modeled by algebraic equations [57].

7.3 Development

7.3.1 Data Acquisition

The data used in the decision aid was acquired from a set of anonymous X-Rays taken from

patients with various stages of RA. We model the deformations using a wireframe represen-

tation of the hand, similar to that of Martı́n-Fernández et al. [66] (see Figure 7.2), but with

an important modification: we allow the segments to be disconnected. This modification

allows subluxation (dislocation of joints, common in RA) to be modeled.

Figure 7.2: Left: Wireframe representation of Martı́n-Fernández et al. There are 5 wires,
with each segment positioned on landmarks in the X-rays. Right: our data consisting of
manually clicked points on radiographs after alignment (we show the average hand in red).

We manually annotated 18 radiographs (6 in each stage) by clicking on landmarks that

correspond to the wireframe model (shape). Due to inconsistent resolution and calibration

parameters of the X-ray machines, we performed an alignment step using Generalized
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Procrustes Analysis (GPA). This method computes an optimal rigid body transformation

for each shape that minimizes a global similarity metric. Our data after the alignment step

can be seen in Figure 7.2.

Once the shapes are aligned, we use their skeletal hierarchy to get relative rotations

and displacements of the bones and apply those transformations locally to our rigged mesh

model. The set of transformations given by a single hand data is used as a keyframe in the

animation of the hand. As the hand interpolates between keyframes, the viewer is able to

see the progression of RA on a synthetic hand.

7.3.2 Model

We used a hand model rigged with bones that match our wireframe representation. This

abstraction (while not entirely anatomically accurate, e.g., carpal bones are ignored) allows

plausible realistic animations. Since bones in the mesh model match the wireframe repre-

sentation, we can compute the transformations from the data (rotations and translations)

for rendering. Different textures (e.g., varying skin color, adding wrinkles, etc.) can be

used to customize the model, so that patients can better relate to the avatar in our proposed

application.

Figure 7.3: Model used in the simulation.

We generate the keyframes for animation by computing the rotations and translations

in the wireframe model and apply them to our rigged model using forward kinematics. We
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show the results in the next section. It is important to mention that plain radiographs are

projection images, thus volumetric information is lost. The hand is a complex biomechani-

cal structure with joints of varying degrees-of-freedom (DOF). In this work we rely on the

pose constraint of the hand during image formation, namely the PA view that enforces a

known kinematic configuration. Deformities due to RA violate these constraints and are

useful for visualization and further investigation in anatomically correct musculoskeletal

anomaly modeling.

7.4 Results

As shown in Fig. 1, we achieved convincing results using this technique.

Figure 7.1a shows a deformed hand from one of the early stages in our sample data. One

can see from this image that the knuckles are not visibly affected compared to the base

model shown in Figure 7.3. The main difference is the orientation of the metacarpal bones

as they have slight deviation from the base model (here considered healthy).

Figure 7.1b shows a hand with moderate RA. It has noticeably more displacement in

the knuckles as well as more severe deviation of the metacarpal bones. Figure 7.1c shows

a hand with severe RA. One can see that the shape of the model is significantly disfigured

compared to the base model. The knuckles show more displacement and ulnar deviation

is visibly more severe from the way they were in the base model. Figure 7.4 shows pho-

tographs of 3 different people who are suffering from RA. From left to right we see the

progression from early to severe.

7.5 Future Work

Our approach, while visually convincing and useful as a visualization component of a

decision aid (DA) to help patients become actively involved in their care, can be improved

through the use of volumetric (CT or MRI) data. In current RA care, it is less common for

CT or MRI scans to be ordered, as opposed to the more common (and inexpensive) plain
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Figure 7.4: Examples of severe RA hand deformations. Retrieved from [3].

radiographs. Due to the commonality and availability of plain radiographs, our decision

tool can be customized for the patient, by automatically extracting the wireframe landmarks

from a recent radiograph, and showing possible disease progressions from the status-quo,

contingent on treatment choice.

One of the first signs of RA visible on a radiograph is swelling of the joints. We

are currently working on a method to automatically detect the amount of swelling from

radiographs and apply them to our model.

Given a large set of hand radiographs from early to severe, it is possible to use machine

learning techniques to discriminate between specific types of deformations common to

RA. An example application of such results would be to accurately predict the course

of the disease for a specific patient given a sequence of radiographs and conditioning on

treatment. The larger project of constructing a DA for patients to decide on a treatment

is based on the evidence from the medical literature that chronic illness patients, such as

those with RA, often do not adhere to the prescribed treatment [52, 79]. This is in part due

to a long onset time of drugs and the (early) presence of side-effects. We conjecture that

patients who use this tool can avoid the pitfalls associated with poor adherence.

In the future we intend to add animations of the hand interacting with objects, and study

the limitations caused by RA from the biomechanics literature and make contributions to

the anatomically accurate modeling literature as well as computer graphics and DA design.
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7.6 Conclusion

Our work is a step toward anatomically and medically accurate models of human characters

for serious games. Using a data-driven approach, we were able to successfully model the

progression of rheumatoid arthritis in a model of a hand to demonstrate the damaging

effects of the disease. This approach shows how the animation and modeling of diseases

can be used to improve the graphical realism of a serious game. Using this approach,

serious games can be developed to incorporate information from medical imaging data

collected to increase realism of animations. While we used RA as a sample disease, this

approach can be generalized to other musculoskeletal diseases for which medical image

data is available and a means to annotate them exists.

Copyright c© Radu P. Mihail, 2014.
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Chapter 8 Conclusions and Future Directions

In this dissertation, we presented work on several computational problems that are essential

to enhance the status quo of patient-centered health care. In particular, we took the perspec-

tive of patients who are newly diagnosed with diseases that have uncertain progressions and

the treatments have uncertain benefits and side-effects.

Health care economics can severely limit the time a patient spends with a specialist.

For an average person to understand complex diseases and treatments, the medical practi-

tioners have to adapt their explanations to a wide gamut of patient literacy and numeracy.

Computational tools that facilitate this process and mold a more informed and empowered

patient are critical for improving health care. This dissertation uses rheumatoid arthritis as

the choice of disease because it has several characteristics shared by other chronic diseases,

which one can apply the work in this dissertation.

In Chapter 3 we take a comprehensive look at patient decision aids and focus in on

work done specifically for RA patients. Unfortunately, few DAs are available for RA at

the time of this writing and the existing DAs lack in key areas such as risk communication,

evidence citing and customization options. We argue that developers of DAs should aim

to make the products well structured, tailored and/or interactive. Much of the work in this

dissertation is geared to provide DA developers with the computational tools needed to

make their products interactive and customizable. While much of the focus is on RA, our

findings generalize to other chronic diseases.

In Chapter 4 we propose a method for patients with deformities of the hands (e.g.,

caused by RA) to interact with a computer via gestures. The basic idea is that our system

can easily be set up in a doctor’s office where an assistant can help the patients select (or

even create) a set of gestures that are possible for their deformity stage. Our system makes

use of two Microsoft Kinect sensors that provide depth images in real time out from which
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we can train the system to recognize a set of gestures that RA patients can perform and

use them for activities that can range from simple selection operations to more complex

interactions such as navigating a 3D world. Our method requires modest hardware and is

highly customizable.

In Chapter 5 we propose a method to automatically extract shape information from

hand radiographs in postero-anterior (PA) view. We created a point distribution model

(PDM) that is flexible and able to capture key deformities caused by RA: joint space nar-

rowing and subluxation (shifting of bones). This problem is challenging due to the wide

variation in appearance and pose in radiographs, compound with the destructive effects of

RA. Our method uses partial probabilistic information from randomized decision forests

trained with dense SIFT features. We formulate the shape fitting problem as inference in

a conditional random field framework. We design potential functions tuned for specific

anatomical structures and a learned shape prior. We evaluate our approach on a publicly

available dataset of radiographs of relatively healthy hands and one of RA patients at dif-

ferent stages. The output of this method can be used to build models of disease progression

(as we show in Chapter 6). We also show an alternative use as an initialization method for

algorithms to automatically estimate bone contours, which is a challenging problem and

important in assessing disease progression.

In Chapter 7 we exploit the structure of our PDM and use samples to deform a 3D

hand model. This method provides novel visualization of the effects of RA on hands. The

appearance of the hand model can be customized and animations of progression are data

driven. This approach is flexible and patients can receive visual answers to the possible

appearance of their hand in the future.

In Chapter 6 we propose an algorithm that learns a distance metric for use on anatomi-

cal shapes. The intuition is that anatomical shape variability can be divided in two groups:

intrinsic variability and extrinsic variability. Intrinsic variability stems from genetic dif-

ferences between subjects (e.g., bigger hands), while extrinsic variability is solely due to
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a disease process. A good distance metric should return low to zero between any shapes

considered healthy (despite drastic differences in appearance) and high between healthy

shapes and shapes that are staged as advanced by a medical professional. The distance

metric can be used to create a latent embedding where the goal is to “collapse” all healthy

shapes to the origin while diseased shapes are at a distance from the origin proportional to

the stage.

This dissertation brings contributions in several areas of computer science. We feel that

data driven, interactive and customizable patient decision aids are a key for better health

care. Empowered and informed patients are better patients. The computational tools we

presented in this dissertation are a good start for data-driven interactive decision aids. We

think that giving patients glimpses of possible futures is a powerful tool and motivator to

be active participants in their health care.

Big data is already here and research efforts are underway to make sense of it. With in-

expensive digital storage, large amounts of medical imagery are now available. We believe

that “big medical data” is approaching and computer vision can play an important role

to increase our understanding of the disease processes visible through medical imaging

modalities. With better insights into disease specific changes, we can build better pictures

of possible futures for patients who have to make difficult decisions.

It takes years of training for specialists to stage a disease from medical imagery. Auto-

mated methods can not only help reduce human errors, but they can paint a better picture

of the different modes of variation. Tools from probability theory can be used in tandem to

reason in light of uncertainty. One route that we are planning to pursue is an extension of

the work in Chapter 6 to include treatment information. Predicting the course of the dis-

ease for a patient given a certain drug can have a powerful effect on the decision making

process.

Visualizing possible RA disease progression paths using virtual models deformed using

SSD as described in Chapter 7 can be improved to include swelling. We plan on extending
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the work in Chapter 5 to detect swelling from plain radiographs and improve the anatomical

accuracy and realism of the 3D models.

Radiographs are projections of 3D objects, hence volumetric information is lost. Given

an anatomically accurate 3D hand model, we will try to solve for the (approximate) kine-

matic configuration of the hand for a given radiograph by simulating X-rays. GPUs are

becoming inexpensive and powerful general purpose computing devices; we can harness

their power for X-ray simulations and recover more information from a flat radiograph

than previously possibly. Deformities make this problem more challenging, but the results

would be useful in both visualization and medical image processing realm.

Copyright c© Radu P. Mihail, 2014.
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