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ABSTRACT OF DISSERTATION 

 
 
 

THE EFFECT OF VARIOUS PATHOLOGIES ON BONE QUALITY 
 

Bone’s ability to resist fracture is often ignored until a low-energy fracture 
occurs. Patients with Chronic Kidney Disease (CKD) or osteoporosis are at an increased 
risk of low-energy fracture. Generally, fracture risk is evaluated by using a bone mineral 
density (BMD) test. BMD values; however, do not fully predict bone’s ability to resist 
fracture. This suggests that other parameters may be involved. Bone quality is the term 
used to describe these parameters, which are categorized into three groups: structural, 
material, and microdamage. The aim of this dissertation research was to examine 
whether bone quality was altered in patients who: 1) had abnormal bone turnover (high 
or low) due to CKD, 2) suffered a low-energy fracture despite normal BMD, or 3) had 
osteoporosis and were treated with bisphosphonates. These studies used iliac crest 
bone specimens from Caucasian females aged 21 to 87 years. Bone’s material 
parameters were measured by Fourier transform infrared spectroscopy. The key finding 
from the turnover study was that high and low turnover was associated with altered 
bone quality. Specifically, bone with high turnover had a lower mineral-to-matrix ratio 
compared to normal and low turnover (p<0.05), while low turnover had a lower 
cancellous bone volume and trabecular thickness compared to normal or high turnover 
(p<0.05). The key finding from the fracture study was that patients with normal BMD 
and low-energy fractures had altered bone quality (greater collagen crosslinking ratio) 
compared to patients who had low- BMD with low-energy fractures and healthy 
subjects (controls) (p<0.05). Lastly, the key findings from the bisphosphonate studies 
were that osteoporosis patients treated with these drugs had altered bone quality 
(specifically, greater (p<0.05) mineral-to-matrix ratio) compared to untreated turnover-
matched osteoporotic patients, and that were several positive linear correlations with 
the nanoindentation derived Young’s modulus and hardness of cortical and trabecular 
bone and the duration of bisphosphonate treatment (p<0.05). The findings presented 
provide further evidence that bone quantity is not the sole factor in determining bone’s 
ability to resist fractures and that bone quality is an essential factor. 
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CHAPTER 1 GLOBAL INTRODUCTION 

Bone’s ability to resist fracture is often ignored until a low-energy fracture has occurred. 
These fractures are classified as fractures occurring from a fall at standing height or 
less.(1) Patients with osteoporosis or chronic kidney disease (CKD) are at an increased 
risk of suffering a low-energy fracture compared to the general population.(2, 3) 
Osteoporosis and CKD are associated with aging, and as more Americans live over the 
age of 65, the number of patients with osteoporosis or CKD is expected to rise along 
with the number of fractures and cost associated with these fractures.(4, 5) 

1.1 Osteoporosis and Chronic Kidney Disease 

“The Silent Disease” is an epithet for osteoporosis as it is typically symptomless 
until a low-energy fracture occurs.(6) The National Institute of Health defines 
osteoporosis as a skeletal disorder that is characterized by compromised bone strength 
which leads to an increased risk of fracture,(7) while the World Health Organization 
defines osteoporosis as a bone mineral density (BMD) t-score less than -2.5 standard 
deviations below the mean value in young adults.(8, 9) Osteoporosis currently affects an 
estimated 10 million Americans while another 34 million have low bone mass also 
known as osteopenia.(10) Approximately 2 million fractures per year are due to 
osteoporosis.(5) The costs associated with osteoporosis and osteoporotic-related 
fractures in 2005 were approximately $17 billion.(5) 

CKD affects 26 million Americans.(11) A study by Coresh et al. found that 75% of 
patients older than the age of 75 had decreased kidney function.(11) Patients with CKD 
have an increased fracture risk compared to the general population(2, 12, 13) and often 
have similar incidence rates of fracture as non-CKD individuals who are 10 to 20 years 
older.(14, 15)  

1.2 Determining Fracture risk in Patients with Osteoporosis or CKD 

Patients with osteoporosis or CKD typically undergo a BMD (bone quantity) scan to 
determine their risk for suffering a fracture. BMD is the amount of mineral per cross 
section area of bone and is measured by using dual-energy x-ray absorptiometry (DXA). 
A BMD t-score below -2.5 is associated with an increased risk for suffering a low-energy 
fracture.(3, 16, 17) There is growing evidence, however, that a BMD t-score below -2.5 is 
not the sole factor for suffering a low-energy fracture as these fractures have also been 
reported in patients with a BMD t-score above -2.5.(17, 18) Additionally, a few studies 
have shown that bone’s ability to resist fracture is incompletely predicted by BMD.(19, 20) 
These findings suggest that other parameters besides bone quantity may affect bone’s 
ability to resist fracture. 

1.3 Bone Quality 

Bone quality is a term coined in the early nineties to describe parameters other 
than bone quantity that influence bone’s ability to resist fracture (Figure 1.1).(21-27) 
These parameters have been categorized into three groups: structural, material, and 
microdamage. 
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1.3.1 Bone’s Structural Parameters 

Bone on the micro- and macro-levels consists of cortical and cancellous bone 
(Figure 1.2 A-E). Cortical is the denser of the two types and occurs on the perimeter. 
Cancellous bone, also known as trabecular bone, exists in the center of bone. Bone 
structural parameters on the macro- and micro-levels come from the distribution and 
arrangement of cortical and cancellous bone. 

The macro-level parameters are the shape and size of the bone. The micro-level 
parameters are trabecular thickness, trabecular separation, cortical thickness, and 
cortical porosity. Changes in the macrostructural and microstructural parameters have 
been linked to changes in bone’s mechanical properties or greater fracture risk.(19, 28-45)  

On the macro-level, the outer and inner diameters of bone are important as the 
bending stress of bone increases by the diameter of the bone raised to the fourth power 
(equations 1 and 2).(44) 
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Two-dimensional and three-dimensional modeling of trabecular bone found that 
loss of trabecular bone (increased trabecular separation) and reduced trabecular 
thickness resulted in lower bone strength.(40, 41) These studies found that trabecular 
separation had a more profound effect on bone strength than thinner trabeculae. 
Another study found that Young’s modulus, yield stress, and ultimate stress of bone 
were associated with bone volume and trabecular separation, but trabecular thickness 
was not associated with bone’s mechanical properties.(42)  

1.3.2 Bone’s Material Parameters 

Bone on the nano-level is a composite material containing matrix (primarily 
consisting of type 1 collagen) and mineral (hydroxyapatite) (Figure 1.2 E).(47) The 
collagen provides bone with flexibility and the ability to absorb energy.(48) Collagen 
consists of three polypeptide chains that form a single triple helix structure. Collagen 
crosslinks are formed between these structures to provide stability. There are two types 
of crosslinks: enzymatic and non-enzymatic. The enzymatic crosslinks are formed due to 
the actions of lysyl oxidase (LOX).(49) The process of collagen crosslinking is initiated by 
the conversion of telopeptidyl lysine and hydroxylysine residue to aldehyde.(48) LOX is an 
extracellular copper enzyme that needs pyridoxal phosphate (vitamin B6) and lysine 
tyrosyl-lysine quinone as co-factors.(48) The enzymatic crosslinks are either mature (non-
reducible trivalent crosslinks) or immature (reducible divalent crosslinks). The non-
enzymatic collagen (advanced glycation end-products, AGE) crosslinks are due to 
attraction of glucose to collagen. The crosslinks are shown in Figure 1.4.(50) Additionally, 
the collagen and collagen crosslinks provide the scaffold for the deposit of the mineral 
(hydroxyapatite). 

The mineral component provides bone its ability to withstand compressive loading. 
The hydroxyapatite crystals [Ca10(PO4)6(OH)2] in the bone are smaller and not as 
crystalline as compared to naturally occurring hydroxyapatite. The crystals found in 
bone often contain numerous impurities such as carbonate (CO3

2-) substituted for PO4
- 

or OH- ions. These impurities can have a positive effect on bone by making bone more 
soluble and allowing it to act as a reservoir for mineral homeostasis. Not all impurities, 
however, are good for bone as fluoride was found to reduce bone strength.(51, 52) 

The material parameters are the amount of mineral with respect to matrix (mineral-
to-matrix ratio), mineral composition, mineral size, collagen crosslinking, and collagen 
quality. The amount of mineral with respect to matrix affects bone mechanical 
properties.(28, 53-60) Hyper-mineralized bone has a greater stiffness and force at failure, 
but lower ultimate displacement. Alternatively, hypo-mineralized bone has a lower 
stiffness and force at failure but a greater ultimate displacement (Figure 1.5).(60) In 
either case, however, there is a reduction in the work to failure of bone.(60)  The amount 
of mineral with respect to collagen is analogous to the Goldilocks effect. This effect is 
when something must fall within a certain range, as opposed to reaching extremes. 

Not only is the amount of mineral-to-matrix important, but changes in the 
hydroxyapatite (composition and size),(61-64) collagen crosslinking(65-73) and collagen 
quality (osteogenesis imperfecta)(74) have all been shown to alter bone’s mechanical 
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properties. Increases in crystal size are associated with the decrease in deformation and 
increases in the brittleness of bone.(63, 64) Collagen crosslinks are thought to play a 
predominant role in bone’s tensile strength and post-yield mechanical properties.(67) A 
study by Burstein et al. found that the removal of collagen did not affect the elastic pre-
yield properties of bone but did reduce post-yield deformation.(75) A reduction in the 
total amount of enzymatic collagen crosslinks and an increase in the total amount of 
non-enzymatic crosslinks were found in female patients with hip fractures compared to 
gender- and age-matched controls.(70) A study by Paschalis et al. found that the greater 
ratio of mature (pyridinium) to immature (reducible collagen) crosslinks was associated 
with a 14% decrease in lumbar bone stiffness.(65) Greater amounts of non-enzymatic 
crosslinks are associated with decreases in the post-yield strain and strain energy,(71) 
while another study using cadaver bone found that non-enzymatic crosslinks increased 
bone strength by 7% but resulted in a 48% decrease in bone toughness.(72) In a canine 
animal model, bisphosphonate treatment was associated with increased non-enzymatic 
crosslinks and a reduction in energy absorption of cortical bone.(73)  

1.3.3 Microdamage 

Bone is constantly undergoing repetitive loading. This loading results in microcrack 
formation (microdamage). The occurrence of the microdamage and its repairs is a 
normal process. If the rate of bone turnover is lower than the rate of microdamage 
formation an accumulation of microdamage will occur. Microdamage accumulation is 
associated with changes in bone’s toughness(76-79) and may explain the greater risk of 
atypical fractures seen in patients taking bisphosphonates.  

1.4 Dissertation Outline 

There is increasing interest in what happens to not only bone quantity but also 
the quality of the bone. The potential alterations in various parameters of bone quality 
may provide more information about bone’s ability to resist fracture beyond that of 
bone quantity as measured by DXA. This is important as most treatment plans for 
maintaining bone’s ability to resist fracture are focused on restoring or maintaining 
bone quantity, while the quality of the bone is often not considered; therefore, a better 
appreciation of bone quality may help in providing an improved treatment plan that not 
only looks at quantity but also the quality of the bone. The goal of this dissertation was 
to gain new information regarding how bone quality varied in human bone from 
patients with: a) kidney disease (Chapter 2), b) low energy fractures (Chapter 3), and c) 
osteoporosis treated with bisphosphonates (Chapters 4 and 5).  

1.4.1 Renal Osteodystrophy and Bone Turnover (Chapter 2) 

Bone is constantly undergoing bone remodeling to repair microdamage, to adapt to 
changes in mechanical loading seen on the bone, or to meet changes to mineral serum 
levels in an attempt to maintain mineral homeostasis. Bone remodeling is the process in 
which osteoclasts remove bone (resorption) and osteoblasts deposit new bone 
(formation). The rate at which bone remodeling occurs is known as bone turnover.  



 

5 

Renal osteodystrophy is the term used to describe the bone histological 
abnormalities that accompany CKD. Approximately 85% of patients with CKD stage-5 
dialysis have abnormal bone turnover that is either higher (secondary 
hyperparathyroidism) or lower (adynamic bone disease) than normal turnover.(80) It is 
believed that bone quality may be influenced by the rate of bone turnover,(23) but the 
exact role bone turnover has on bone quality is unclear. Thus, the goal of this study was 
to gain a better understanding of how abnormal bone turnover (high and low) alters 
bone quality in bone specimens from patients with CKD compared to bone from 
patients with normal turnover and normal kidney function. 

1.4.2 Fracture Despite Normal Bone Mineral Density (Chapter 3) 

It is easy to understand the occurrence of low-energy fractures in patients with 
osteoporotic t-scores, but it remains unclear why low-energy fractures occur in 
premenopausal women with nonosteoporotic t-scores.(9, 81, 82) Studies have shown that 
BMD does not fully predict bone’s ability to resist fractures,(19, 20) suggesting that bone 
quality may also influence bone’s ability to resist fractures. Thus, the goal of this study 
was to determine if there were any changes in the quality of bone from patients who 
suffer low-energy fractures despite a non-osteoporotic BMD t-score compared to bone 
from patients with low BMD t-scores and low-energy fractures. 

1.4.3 Bisphosphonates and Bone Quality (Chapter 4) 

In 2008, an estimated 4 million women in the United States were taking 
bisphosphonates for treatment of osteoporosis.(83) Prolonged treatment with 
bisphosphonates has been associated with atypical femoral fractures.(84-89) Although 
atypical femoral fractures are currently a rare phenomenon, the number of reported 
cases of these fractures may increase in the future as more people are treated with 
bisphosphonates for a longer period. It has been documented that bisphosphonates 
suppress bone turnover,(90-92) and this suppression of bone turnover is believed to be 
responsible for the atypical femoral fractures. Thus, the goal of the this study was to 
determine whether various material and microstructural parameters of bone quality 
were altered in osteoporotic Caucasian females treated with various durations of 
bisphosphonate treatment compared to bone turnover matched untreated osteoporotic 
Caucasian females. 

1.4.4 Bisphosphonate and Bone Intrinsic Mechanical Properties (Chapter 5) 

The goal of this study was to determine if there are any relationships between 
the intrinsic mechanical properties of bone, as measured by nanoindentation, and the 
duration of bisphosphonate treatment.  
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Figure 1.1: Bone’s Ability to Resist Fracture 
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Figure 1.2: Bone structures on the macro-, micro-, and nano-level. A) Femoral bone B) 
Iliac crest bone specimen C) Masson-Goldner stained cortical bone D) Masson-Goldner 
stained cancellous bone E) Collagen (black triple helix), crystal (gray boxes), and 
crosslinks (blue lines) arrangement. 
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Figure 1.3: Effect of trabecular architecture on buckling strength. (Reprinted with 
Permission Figures A1.1 and A1.2 in Appendix)(46) 
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Figure 1.4: Types of Collagen Crosslinks (Reprinted with Permission Figure A1.3 in 
Appendix)(50)
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Figure 1.5: Stiffness of bone increases with increasing mineralization, but bone tissue 
also becomes more brittle (decreased ultimate displacement). Increased brittleness 
reduces work to failure as bone becomes more highly mineralized. (Reprinted with 
Permission Figure A1.4 in Appendix)(60) 
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CHAPTER 2 DIFFERENCES IN BONE QUALITY IN LOW- & HIGH-TURNOVER RENAL 
OSTEODYSTROPHY 

 

Approval for this manuscript to be used in this dissertation was obtained via e-mail on 
5/24/2013 from Bonnie O’Brien the current Managing Editor of Journal of the American 
Society of Nephrology (JASN). 

 

The following text, data, and figures in this chapter are reproduced from the JASN 
publication cited below.* 

 

Malluche H.H., Porter D.S., Monier-Faugere M.C., Mawad H., Pienkowski D., Differences 
in Bone Quality in Low and High Turnover Renal Osteodystrophy: JASN, 2012. 23(3): p. 
525-32 

 

*Please, note that in the JASN publication the methods section appears after the 
discussion section, but in this dissertation, the method section was repositioned to the 
conventional location.  
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2.1 Abstract 

Abnormal bone turnover is common in CKD, but its effects on bone quality 
remain unclear. We qualitatively screened iliac crest bone specimens from patients on 
dialysis to identify those patients with low (n=18) or high (n=17) bone turnover. In 
addition, we obtained control bone specimens from 12 healthy volunteers with normal 
kidney function. In the patient and control specimens, Fourier transform infrared 
spectroscopy and nanoindentation quantified the material and mechanical properties of 
the specimens, and we used bone histomorphometry to assess parameters of bone 
microstructure and bone formation and resorption. Compared with high or normal 
turnover, bone with low turnover had microstructural abnormalities such as lower 
cancellous bone volume and reduced trabecular thickness. Compared with normal or 
low turnover, bone with high turnover had material and nanomechanical abnormalities 
such as reduced mineral to matrix ratio and lower stiffness. These data suggest that 
turnover-related alterations in bone quality may contribute to the diminished 
mechanical competence of bone in CKD, albeit through different mechanisms. Therapies 
tailored specifically to low- or high-turnover bone may treat renal osteodystrophy more 
effectively.  
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2.2 Introduction 

Bone turnover abnormalities are well known in patients with chronic kidney 
disease (CKD).(93) These abnormalities encompass a spectrum from severely suppressed 
to markedly elevated bone turnover. Abnormal bone turnover occurs in approximately 
85% of patients with CKD stage 5 on dialysis (CKD-5D),(80) and within this patient group, 
there is a greater risk of bone fracture than within the general population.(2, 12, 13) 
Although turnover abnormalities are well described,(93) little information is available on 
whether these abnormalities are associated with changes in bone quality. Bone quality 
is the contemporary term used to refer to the structural and material parameters that 
collectively enable bone to bear load and resist fracture or excessive deformation.(23, 25) 
The potential link between bone turnover and bone quality is an important question 
meriting study because of the relatively high incidence of fractures reported to occur 
with abnormal turnover.(14, 15, 94-98) Thus, the specific aim of this study was to advance 
the understanding of this potential link by quantifying how the microstructural 
parameters, material composition, and nanomechanical properties vary in bone with 
low- or high-turnover renal osteodystrophy (ROD) compared with bone with normal 
turnover from normal volunteers. 

2.3 Methods 

Subjects: Inclusion Criteria 

Anterior iliac crest, double tetracycline-labeled bone biopsies received 
sequentially in the Bone Diagnostic and Research Laboratory at the University of 
Kentucky were screened to identify potential candidates for study enrollment. Inclusion 
criteria were signed informed consent from female Caucasian patients aged 40–70 years 
with CKD-5D on chronic maintenance dialysis and low or high bone turnover 
(see Qualitative and Quantitative Assessment of Bone). Twelve additional bone samples 
were obtained from healthy, consenting Caucasian female volunteers of the same age 
range. These subjects had normal kidney function and agreed to undergo baseline bone 
biopsy after double tetracycline labeling for an unrelated prospective research study. 
They had normal bone turnover. Design of this study conforms to the Declaration of 
Helsinki. 

Subjects: Exclusion Criteria 

Men and non-Caucasians were excluded to focus on the patient group with the 
highest fracture risk.(99, 100) Patients were also excluded if they had parathyroidectomy, 
osteomalacia, chronic alcoholism or drug addiction, kidney transplant(s), stainable 
aluminum in bone, past or present systemic illnesses, organ diseases, diabetes, or used 
medications within the past 6 months before biopsy that are known to alter bone 
metabolism, such as calcitriol, vitamin D analogs, and calcimimetics. 

Biochemical Methods 

Blood chemistry measurements for calcium and phosphorus were performed by 
using standard automated techniques. Total intact PTH level was measured by a 
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radioimmunometric assay (Scantibodies Inc., Santee, CA): normal range was 15–65 
pg/ml, and intra- and interassay coefficients of variation were <5% and <7%, 
respectively. Calcidiol (25-OH vitamin D) was measured by liquid chromatography 
tandem mass spectrometry: normal range was 30–80 ng/ml, and intra- and interassay 
coefficients of variation were <13% and <14%, respectively. Blood samples for 
biochemical measurements were obtained immediately before biopsy. 

Mineralized Bone Histology 

The double tetracycline labeling schedule consisted of a 2-day oral 
administration of tetracycline hydrochloride (500 mg two times per day) followed by a 
tetracycline-free interval of 10 days and a subsequent oral administration of 
demeclocycline hydrochloride (300 mg two times per day) for 4 days. Bone biopsies 
were performed by using a one-step electrical drill technique (Straumann Medical, 
Waldenburg, Switzerland) as previously described.(101) Iliac crest bone samples were 
fixed with ethanol at room temperature, dehydrated, and embedded in 
methylmethacrylate.(93) Serial sections of 4 μm thickness were cut with a Microm 
microtome (model HM360; C. Zeiss, Thornwood, NY). Sections were stained with 
modified Masson–Goldner trichrome stain,(102) aurin tricarboxylic acid stain,(103) and 
solochrome azurine.(104) Unstained sections were prepared for fluorescent and polarized 
light microscopy. 

Qualitative and Quantitative Assessment of Bone 

Bone turnover was assessed qualitatively by examining bone slides under bright 
field, polarized, and fluorescent light microscopy. For inclusion in the low- or high-
turnover group, the actively mineralizing bone surface and cellularity (hypo- versus 
hyper-) of bone cells had to be clearly different from normal. After enrollment in the 
study, histomorphometric analyses were done at standardized sites in cancellous bone 
to obtain quantitative static and dynamic parameters of bone structure, formation, and 
resorption. This process was done by using the semiautomatic method (Osteoplan II; 
Kontron, Munich, Germany).(105, 106) All measured parameters comply with the 
nomenclature of the Histomorphometry Committee of the American Society of Bone 
and Mineral Research.(107) 

Spectroscopic Assessment of Bone Material 

Cancellous bone mineral and matrix properties were quantified by using Fourier 
transform infrared spectroscopy (FTIR).(108-113) Briefly, a 4-µm-thick section was cut from 
each embedded bone sample and placed between two barium fluoride discs. Infrared 
spectra were collected from these sandwiched bone specimens using a microscope 
attached to a Nexus 670 FTIR spectrometer (Thermo Electron, Waltham, MA) operating 
in transmission mode for 200 scans at a 4-cm−1 resolution. Three randomly selected 
locations within the center of three randomly selected trabeculae were 
spectroscopically examined. Nine infrared spectral scans were obtained from each bone 
biopsy. All scans were directed at the center of each trabeculum to avoid the 
mineralization heterogeneity known to exist between the center of the trabeculum and 
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the edge (i.e., between mature bone and recently formed bone).(114) The region 
subjected to FTIR analysis at each location was 40 × 40 µm. Background scans were 
performed to correct the resulting spectra from influences because of the environment, 
barium fluoride discs, and methylmethacrylate mount. 

Bone mineralization (i.e., relative mineral quantity) was calculated using the 
mineral to matrix ratio, a measure of the amount of bone mineral relative to the 
amount of collagen matrix. Greater values of the mineral to matrix ratio indicate a 
higher amount of bone mineralization. It has been shown that the mineral to matrix 
ratio correlates with ash weight and thus, is a reliable means of quantifying relative 
bone mineralization.(115) This ratio was calculated by dividing the area under the 
phosphate (mineral) peak (900–1200 cm−1) by the area under the Amide I (matrix) peak 
(1590–1720 cm−1) after both peaks were background and baseline shift corrected 
(Figure 2.1).(112) The purity of bone mineral was quantified using the carbonate to 
phosphate ratio, a measure of the amount of carbonate substituted (for PO4

− or 
OH− ions) within the mineral crystal structure. A low carbonate to phosphate ratio 
indicates a high degree of crystal purity. The carbonate to phosphate ratio was 
calculated by dividing the area under the carbonate peak (850–890 cm−1) by the area 
under the phosphate peak. Crystallinity, a measurement of crystal size along the largest 
dimension, was calculated from the ratio of the areas under the peaks located at 1020 
and 1030 cm−1.(108, 110, 116) The relative amount of collagen crosslinking, also known as 
collagen maturation, was obtained by taking the ratio of the amount of mature 
enzymatic crosslinks (pyridinium) normalized by the amount of immature enzymatic 
crosslinks (reducible collagen crosslinks). Collagen crosslinking was calculated from the 
ratio of the areas under the peaks located at 1660 and 1690 cm−1.(111) The coefficient of 
variation of the FTIR measurements was 4.3%. 

Nanoindentation - Bone Preparation 

The surface of each biopsy was polished and made uniplanar by sanding on a 
metallographic specimen preparation station holding abrasive silicon carbide papers of 
decreasing grit size (ending in 1200 grit). A final high polish was achieved by using a 
rotating microcloth wetted with deionized water in which diamond particles (0.3-µm grit 
size and then 0.05-µm grit size) were suspended. Finally, specimens were placed in an 
ultrasonic water bath for 10 minutes to remove surface debris. 

Nanoindentation Testing Protocol 

The hardness and Young’s modulus of cancellous bone were quantified using 
established nanoindentation techniques.(117-120) This process was done by using a 
Nanoindenter XP (MTS Nano Instruments, Oak Ridge, TN) at Oak Ridge National 
Laboratories. The indenter was stationed on an anti-vibration table located within an 
isolation cabinet to reduce the potential for environmentally generated mechanical 
interference. A three-sided tip (Berkovich diamond indenter) was used for specimen 
indentation. The nanoindenter was calibrated by indenting fused silica of known 
modulus. All indentation sites were chosen based on microscopic visualization to ensure 
that, like the FTIR measurements, all indentation was done within the mineralized 
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center of each trabeculum. Twelve indentations were performed on each biopsy: three 
indentations within the center of four randomly chosen trabeculae. 

Nanoindentation was performed by applying a peak load of 10 mN during each 
indentation at a constant strain rate of 0.05 second−1 (Figure 2.2). The maximum load 
was maintained for 10 seconds (hold time) to ensure that the subsequent unloading 
would be completely elastic.(117, 118) This load produced an indentation depth of 
approximately 700 nm. Based on the first 50% of the unloading curve, stiffness and 
hardness were quantified by using the Oliver and Pharr(121) method. The coefficient of 
variation of the nanoindentation measurements was 4.9%. 

Statistical Analyses 

Data were tested for normality by using the Kolmogorov–Smirnov test and 
equality of variances by using Levene’s test. Normally distributed data were compared 
by using a one-way ANOVA with the Scheffe post hoc correction. Non-normally 
distributed data were compared by using the Kruskal–Wallis test; if the resulting P value 
was <0.05, then a Mann–Whitney test was used to identify which groups were 
significantly different. Microstructural and histomorphometric parameters were 
analyzed by using nonparametric methods; biochemical, material, and mechanical 
properties were analyzed by using parametric methods. Relationships among the 
histomorphometric parameters of bone turnover and the material and nanomechanical 
properties were evaluated by the Spearman test. All computations were done by using 
SPSS version 17 (SPSS, Inc, Chicago, IL). 

2.4 Results 

Among 163 iliac crest bone biopsies sequentially screened from patients with 
CKD-5D on dialysis, 35 patients met the stringent selection criteria (Concise Methods) 
and were included in the study; 17 of these 35 age-matched patients had high bone 
turnover (age: mean ± SD = 58.1 ± 8.1 years), and 18 patients had low bone turnover 
(age: mean ± SD = 56.6 ± 8.0 years). There was no significant difference in dialysis 
vintage between patients with low bone turnover (mean ± SD = 48.1 ± 35.4 months) and 
patients with high bone turnover (mean ± SD = 74.2 ± 71.0 months). Five of eighteen 
low-turnover patients and one of seventeen high-turnover patients had a history of 
bone pain. One clinically symptomatic fracture was documented in a patient with low 
bone turnover. Bone turnover in the 12 volunteers with normal kidney function (age: 
mean ± SD = 53.8 ± 4.7 years) was not significantly different from published data in 
normal individuals.(93, 122) 

There were no significant differences in serum calcium, serum phosphorus, or 
calcidiol concentrations between patients with low or high bone turnover (Table 2.1). 
Serum phosphorus levels were significantly elevated in both low- and high-bone 
turnover groups compared with the normal bone turnover group (P<0.01). Serum 
parathyroid hormone (PTH) levels were approximately two times the upper normal 
range in patients with low bone turnover and approximately nine times the upper 
normal range in patients with high bone turnover (Table 2.1). There were no upward or 
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downward trends in serum PTH during the 6 months preceding the biopsy. Use of 
calcium-based phosphate binders was not different between patients who had bone 
with low or high turnover. 

As expected, there were significant differences in histomorphometric cellular 
parameters of bone formation and resorption among patients with high, normal, and 
low turnover (P<0.05) (Figure 2.3). 

Microstructural Parameters at Various Levels of Bone Turnover 

No differences in microstructural parameters were observed between bone with 
high turnover and bone with normal turnover. In contrast, bone with low turnover had 
altered microstructural properties compared with bone with normal or high turnover 
(Figure 2.4). Specifically, cancellous bone volume in bone with low turnover was 16.9% 
(P<0.05) and 34.7% (P<0.01) less than in bone with normal and high turnover, 
respectively (Figure 2.4A). Trabecular thickness in bone with low turnover was 20.3% 
(P<0.05) and 33.1% (P<0.01) less than in bone with normal and high turnover, 
respectively (Figure 2.4B). 

Material Composition at Various Levels of Bone Turnover 

Less mineral (relative to matrix) was observed in bone with high turnover 
compared with bone with normal or low turnover (Figure 2.5A). Specifically, the mineral 
to matrix ratio of bone with high turnover was 9.7% less compared with bone with 
normal turnover and 9.1% less compared with bone with low turnover (both P<0.01). 

The carbonate to phosphate ratio was 13.1% lower (P<0.01) in bone with low 
turnover compared with bone with normal turnover (Figure 2.5B). No significant 
differences were detected among the three turnover groups in crystallinity (inversely 
proportional to mineral crystal size) or collagen crosslinking (directly proportional to 
collagen maturation) (Table 2.2). 

Bone Turnover and Nanomechanical Properties 

Young’s modulus (shape-independent material stiffness) was 11.9% (p<0.05) and 
12.4% (p<0.01) less in bone with high turnover compared with bone with normal or low 
turnover, respectively (Figure 2.5C). Hardness (the ability to resist permanent shape 
change when a force is applied) of bone with high turnover was 13.1% less (p<0.05) 
compared with bone with low turnover (Figure 2.5D). No significant difference in 
hardness was observed between bone with high turnover and bone with normal 
turnover. 

Correlation between Bone Turnover and Material & Nanomechanical Properties 

Correlations were found between bone turnover parameters (when considered 
as continuum) and mineral to matrix ratio as well as Young’s modulus. Specifically, 
osteoclast surface per bone surface and bone formation rate per bone surface 
correlated with mineral to matrix ratio and Young’s modulus (ρ = −0.33 to −0.50, p<0.01) 
(Figure 6). 
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2.5 Discussion 

The key finding of this study is that bone quality varies, albeit by different 
mechanisms, with different levels of bone turnover. Departures from normal bone 
quality were manifested in bone with low turnover by changes in microstructural 
parameters; in contrast, departures from normal bone quality were manifested in bone 
with high turnover by changes in material composition and nanomechanical properties. 

Our data regarding high turnover are consistent with the findings of Ng et al.,(123) 
who reported that bone from patients with high-turnover renal osteodystrophy had 
lower mineralization and lower trabecular microhardness compared with bone from 
patients with low-turnover renal osteodystrophy.(123) The work by Ng et al.,(123) however, 
found no turnover-related differences in the microstructural parameters of bone. Bone 
samples for the retrospective study by Ng et al(123) were obtained between 1987 and 
1989, a time period when aluminum and magnesium phosphate binders were 
commonly used. None of the patients in the present study were on aluminum- or 
magnesium-containing phosphate binders. 

Isaksson et al.(124) measured the static histomorphometric parameters and 
material properties in bone from normal subjects and patients with high-turnover renal 
osteodystrophy. Relative mineralization, measured by the mineral to matrix ratio in the 
center of trabecular bone, was less in our study and in the study by Isaksson et al.(124) in 
renal osteodystrophy patients with high turnover compared with normal subjects. This 
difference did not reach significance in the study by Isaksson et al.(124) but was 
significant in the present study. Isaksson et al.(124) detected a significant turnover-
related difference in the mineral to matrix ratio when this parameter was measured at 
the periphery of the trabeculae. This mineralization difference observed at the 
periphery may be explained by the high osteoid volume at the surface of bone with high 
turnover. For this reason, we did not measure the mineral to matrix ratio at the edge of 
the trabeculae. 

Also, the study by Isaksson et al.(124) and the present study both showed that the 
carbonate to phosphate ratio was less in the center of trabecular bone with high 
turnover compared with the center of trabecular bone with normal turnover. This 
reduction (approximately 10%) reached statistical significance in the study by 
Isaksson et al.(124) but not in our study (the reduction was approximately 8%). In the 
present study, however, there was a significant difference in the carbonate to 
phosphate ratio between bone with low turnover and bone with normal turnover. 
Clinical relevance of the carbonate to phosphate ratio awaits additional study.(125) 

Turnover-related differences in bone material properties between the present 
study and the study by Isaksson et al.(124) may be attributable to differences in patient 
characteristics including age, gender, treatment, and underlying kidney disease. 

The observed reduction in mineral to matrix ratio and Young’s modulus in bone 
with high turnover may be explained by the shorter duration between remodeling 
cycles. Specifically, the diminished remodeling duration may prevent full mineralization 
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and thus, cause reduced bone stiffness.(53) This explanation is supported by the negative 
relationship between bone turnover parameters and the mineral to matrix ratio or 
Young’s modulus (Figure 6). It is consistent with the known increase in osteoid volume 
accompanying high turnover and should be not be interpreted as evidence of 
osteomalacia.(93) Studies of pediatric renal osteodystrophy find a greater prevalence of 
abnormal mineralization than in the adult skeleton.(126, 127) This discrepancy could be 
explained by the higher remodeling of bone in the growing skeleton in addition to 
increases in bone turnover because of secondary hyperparathyroidism. The present 
findings are also consistent with prior studies showing that a reduction in relative 
mineralization, a decreased mineral to matrix ratio, is associated with reduced stiffness 
in human(57) and animal bone.(58, 59) Reduced mineralization in bone with high turnover 
is clinically relevant, because other evidence shows that small decreases in mineral 
content are associated with disproportionately greater reductions in fracture 
toughness.(53) 

The absence of changes in the mineral to matrix ratio of bone with low turnover 
suggests that mineral supersaturation may not accompany reduced remodeling activity. 
The accompanying lack of change in nanomechanical properties is expected, but the 
macromechanical properties of bone may be reduced because of the observed 
microstructural abnormalities. 

The observed abnormal microstructural parameters (thinner trabeculae and less 
cancellous bone volume) in patients with low turnover are clinically relevant, because 
reducing support element size in any structure with unchanged material properties 
diminishes its mechanical competence. 

Bone quality abnormalities accompanying different turnover states were studied 
by using the current gold standard sampling technique, which is bone biopsy. Of course, 
for routine clinical diagnostic purposes, a noninvasive approach is preferable. A recent 
study by Bhagat et al.(128) used noninvasive magnetic resonance imaging and finite 
element modeling of the distal tibial metaphysis to predict bone strength.(128) This 
promising approach awaits additional study. 

This study was designed to detect differences in bone’s microstructural and 
material properties but was not powered to assess overall fracture risk. The 
documented prevalence of bone pain and fractures in this study is in keeping with 
published studies in patients with renal osteodystrophy.(12) To prevent data 
confounding, this study was limited to Caucasian women with CKD-5D (40–70 years of 
age) with predefined selection criteria. Additional studies are needed to address the 
potential effects of gender, race, age, diabetes, and medications (including vitamin D) 
on bone quality. 

Our data are clinically important, because they extend the studied spectrum of 
bone abnormalities in renal osteodystrophy to include bone with low turnover and 
measurement of bone’s nanomechanical properties. This extension is clinically relevant, 
because bone strength and musculoskeletal competence are influenced by its 
microstructural parameters, material composition, and mechanical properties.(23, 25) The 
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information contributed by the present study provides substantial evidence linking bone 
quality and bone turnover in renal osteodystrophy. 

In conclusion, abnormal bone turnover in renal osteodystrophy is associated 
with specific changes in bone quality as manifested on the microstructural, material, or 
mechanical levels. These abnormalities are dependent on the level of turnover. 
Specifically, bone with low turnover is associated with microstructural abnormalities, 
whereas bone with high turnover is associated with material and mechanical property 
abnormalities. Reduced bone quality of patients with either low- or high-turnover renal 
osteodystrophy may contribute to the known decreased mechanical competence in 
these patients(14, 15, 94-98) but for two different turnover-dependent reasons. These 
findings call for additional studies to evaluate modified treatment regimens for renal 
osteodystrophy by using tailored therapies for patients with low- or high-turnover bone. 
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2.7 Tables and Figures: 

Table 2.1: Serum biochemical data from patients with high, normal, or low bone 
turnover 

Bone 

Turnover 
Calcium 
(mg/dl) 

Phosphorus 
(mg/dl) 

Calcidiol 
(ng/ml) 

Total PTH 

(pg/ml) 

High (n=17) 9.58 ± 1.05 6.01 ± 2.22* 39.0 ± 20.9 596 ± 469*† 

Normal (n=12) 9.23 ± 0.33  3.53 ± 0.52 42.5 ± 9.78 30.8 ± 10.2 

Low (n=18) 9.64 ± 1.09 6.31 ± 1.80* 43.8 ± 21.5 126 ± 168 

Normal Range 9.00 - 10.5 3.40 - 4.50 30 – 80 15 – 65 

(mean ± one standard deviation) 
†p < 0.01 vs. low; *p < 0.01 vs. normal 
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Table 2.2: Crystallinity and collagen crosslinking from bone with high, normal, or low 
turnover 

Bone 

Turnover 
Crystallinity Collagen Crosslinking 

High (n=17) 0.93 ± 0.07 3.51 ± 0.75 

Normal (n=12) 0.89 ± 0.04 3.53 ± 0.27 

Low (n=18) 0.89 ± 0.04 3.62 ± 0.47 

(mean ± one standard deviation)  
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Figure 2.1: Typical FTIR spectra from bone with low, normal, and high turnover. The 
spectra were analyzed using the carbonate peak (carbonate substitution into 
hydroxyapatite) between 850 and 890 cm−1, phosphate peak (mineral) between 900 and 
1200 cm−1, and Amide I peak (matrix) between 1590 and 1720 cm−1.  



 

24 

 

 
Figure 2.2: Typical load and unload cycle for nanoindentation of bone. Nanoindentation 
was performed by applying a maximum load of 10 mN at which a 10-s hold time was 
placed to ensure elastic unloading. The specimen was then unloaded to 90% of 
maximum load and held for 25 s to correct for thermal drift.  
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Figures 2.3: Box plots of various static and dynamic histomorphometric parameters of 
bone versus bone turnover. (A–D) The bottom and top of the box represent the lower 
(25%) and upper (75%) quartiles, respectively, and the middle line denotes the median 
(50%). The upper and lower bounds of the error bars denote the range. Values with the 
same letters are not significantly different. 
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Figures 2.4: Box plots of various microstructural parameters of bone versus turnover. 
The bottom and top of the box represent the lower (25%) and upper (75%) quartiles, 
respectively, and the middle line denotes the median (50%). The upper and lower 
bounds of the error bars denote the range. Values with the same letters are not 
significantly different.  
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Figures 2.5 A-D: Various material and mechanical properties of bone versus bone 
turnover. Mean (± SD) values of the mineral to matrix ratio, carbonate to phosphate 
ratio, Young’s modulus, and hardness are shown versus bone turnover. Values with the 
same letter are not significantly different. 



 

Copyright © Daniel S. Porter 2014 

28 

 
Figures 2.6 A-D: Relationships between bone material or mechanical properties and 
bone resorption or formation parameters. (A) Mineral to matrix ratio versus osteoclast 
surface/bone surface (OcS/BS), (B) mineral to matrix ratio versus bone formation 
rate/bone surface (BFR/BS), (C) Young’s modulus versus OcS/BS, and (D) Young’s 
modulus versus BFR/BS. 

Legend: ○, Low turnover; ▲, normal turnover; □, high turnover.
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CHAPTER 3 LOW-ENERGY FRACTURES WITHOUT LOW T-SCORES CHARACTERISTIC OF 
OSTEOPOROSIS: A POSSIBLE BONE MATRIX DISORDER 
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The following text, data, and figures in this chapter are reproduced from the JBJS 
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Fractures Without Low T-Scores Characteristic of Osteoporosis: A Possible Bone Matrix 
Disorder: JBJS, 2013. 95(19): p. e1391-6. 

 

*Please note that the acknowledgements and source of funding were moved to after 
the discussion section. This was done for consistency with chapters 2 and 4. An 
appendix section was also added.  
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3.1 Abstract 

Background: 

Osteoporotic fractures commonly occur after low-energy trauma in postmenopausal 
women with reduced bone quantity documented by low bone mineral density (BMD). 
Low-energy fractures, however, have also been reported in premenopausal women with 
normal or near-normal BMD, suggesting the existence of a bone quality abnormality. 

Methods: 

Bone quality and quantity were evaluated in a cross-sectional study of three groups of 
premenopausal white females: (1) twenty-five subjects with low-energy fracture(s) and 
BMD in the normal range (t-scores > −2.0), (2) eighteen subjects with low-energy 
fracture(s) and BMD in the osteoporotic range (t-scores ≤ −2.5), and (3) fourteen healthy 
volunteers (controls). Bone quality was assessed by using Fourier transform infrared 
spectroscopy and histomorphometry in iliac crest bone samples obtained from all 
subjects; bone quantity was assessed by dual x-ray absorptiometry and 
histomorphometry. 

Results: 

The collagen crosslinking ratio in the non-low-BMD subjects with fractures was 13% 
greater than the ratio in the low-BMD subjects with fractures and 14% greater than the 
ratio in the controls (p < 0.001 for both). Cancellous bone volume was 29% greater (p < 
0.01) and trabecular separation was 31% less (p < 0.01) in the non-low-BMD subjects 
with fractures than in the low-BMD subjects with fractures; the values in the non-low-
BMD subjects did not differ from those in the controls. Bone turnover did not differ 
among the groups, and osteomalacia was not present in any subject. Thus, the non-low-
BMD subjects with fractures maintained bone quantity, but the collagen crosslinking 
ratio, a parameter of bone quality, was abnormal. In contrast, the low-BMD subjects 
with fractures did not have this collagen crosslinking abnormality but did have abnormal 
bone quantity. 

Conclusions: 

This study highlights a collagen crosslinking abnormality in patients with low-energy 
fractures and nonosteoporotic t-scores. Reports have indicated that altered collagen 
crosslinking is associated with subnormal fracture resistance. A finding of 
nonosteoporotic bone mass in a patient with low-energy fractures would justify 
assessment of bone material quality, which currently requires a bone biopsy. Further 
studies are needed to search for possible noninvasive tests to diagnose abnormal 
crosslinking. Since no specific therapies for abnormal collagen crosslinking are currently 
available, studies are also needed to explore novel therapeutic modalities to reverse the 
underlying collagen crosslinking abnormality. 

Level of Evidence: 

Prognostic Level III. See Instructions for Authors for a complete description of levels of 
evidence.  
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3.2 Introduction 

Before the advent of routine measurement of bone mineral density (BMD) by x-ray 
absorptiometry, osteoporosis was defined as a clinical syndrome in postmenopausal 
women with low-energy fracture(s) accompanied by low bone mass. Given the ease of 
use and widespread availability of dual x-ray absorptiometry (DXA), the World Health 
Organization subsequently defined osteoporosis as a reduction in BMD t-scores of ≥2.5 
standard deviations from the mean value in young adults.(9) This definition is routinely 
used worldwide in clinical practice for the diagnosis of osteoporosis. Fractures may also 
occur, however, with low-energy trauma in premenopausal women who are 
nonosteoporotic as classified by their BMD t-scores.(9, 81, 82) 

It is easy to understand the occurrence of low-energy fractures in patients with 
osteoporotic t-scores, but it remains unclear why low-energy fractures occur in 
premenopausal women with nonosteoporotic t-scores. Factors other than low bone 
quantity characteristic of osteoporosis must be considered, and chief among these is 
abnormal bone quality. Bone quality includes material properties and microarchitectural 
features, which are major contributors to the load-bearing capabilities of bone.(23, 25-27) 
Low-energy fractures associated with abnormal bone quality were reported in 
premenopausal women with idiopathic osteoporosis.(129-133) There is limited information 
evaluating bone quality in premenopausal women with fractures but without 
osteoporotic BMD or secondary osteoporosis while controlling for the potentially 
confounding effects of sex or race. The present study was designed to test the 
hypothesis that, in the absence of bone quantity abnormalities, abnormal bone quality 
in premenopausal women is associated with low-energy fracture. 

3.3 Methods 

Study Design 

This cross-sectional study was designed to quantify bone quality and quantity in three 
groups of premenopausal women: (1) those with low-energy fractures and 
nonosteoporotic BMD t-scores (the non-low-BMD fracture group), (2) those with low-
energy fractures and osteoporotic BMD t-scores (the low-BMD fracture group), and (3) 
healthy volunteers (the control group). Bone samples for the study were obtained from 
subjects undergoing iliac crest biopsy for work-up of low-energy fractures at our 
institution. Bone from the iliac crest serves as a useful model of the skeleton because 
histological and mechanical changes in this tissue are also associated with 
histological(134) and mechanical(135) changes in bone at other skeletal sites. The two 
primary study groups included premenopausal adult white women with one or more 
low-energy fractures; those in the non-low-BMD group had a nonosteoporotic BMD as 
indicated by a t-score of >−2.0 at both the hip and the lumbar spine, and those in the 
low-BMD group had an osteoporotic BMD as indicated by a t-score of ≤−2.5 at the hip or 
lumbar spine. Low-energy fractures were defined as those occurring without trauma 
during normal activities of daily living. Control bone samples were obtained from 
biopsies performed in healthy premenopausal white women volunteers with BMD t-
scores of >−2.0 and no fractures. 
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Subjects were excluded if they had a diagnosis of osteogenesis imperfecta or 
other genetic bone disease, histologically proven osteomalacia (osteoid thickness of >20 
µm and mineralization lag time of >100 days), hyperparathyroid bone disease or other 
disorders associated with secondary osteoporosis, chronic kidney disease, abnormal 
mineral metabolism, Marfan syndrome, endocrine abnormalities, celiac or other 
gastrointestinal disorders, bariatric procedures, diabetes, Paget disease of bone, 
amenorrhea, eating disorders, or malignancies. Subjects were also excluded if they had 
a history of drug or alcohol abuse or of prior use of bisphosphonates, teriparatide, 
selective estrogen receptor modulators, sex steroids, or any other medications known 
to alter bone metabolism. The protocol of this institutional review board-approved 
cross-sectional study adhered to the Declaration of Helsinki. 

Bone Mineral Density 

Bone mineral density was measured at the hip and at the lumbar spine (L2-L4) in 
all study subjects with use of DXA (Lunar iDXA; GE Healthcare, Madison, Wisconsin). The 
coefficient of variation of the BMD measurements was 1.2% at the spine and 0.9% at 
the hip. 

Serum Biochemistry 

A renal metabolic panel was obtained and serum alkaline phosphatase was 
measured by routine laboratory techniques. In addition, serum parathyroid hormone 
(PTH) levels were measured by radioimmunoassay (Total Intact PTH; Scantibodies, 
Santee, California), serum calcidiol was measured by liquid chromatography-tandem 
mass spectrometry (API 3200; AB SCIEX, Framingham, Massachusetts), serum bone-
specific alkaline phosphatase was measured by immunocapture enzyme activity assay 
(Quidel, San Diego, California), serum N-terminal telopeptide was measured by ELISA 
(enzyme-linked immunosorbent assay) (Osteomark NTX; Inverness Medical Innovations, 
Waltham, Massachusetts), and serum osteocalcin was measured by ELISA (Quidel). 

Mineralized Bone Histology and Bone Histomorphometry 

Bone samples, obtained after tetracycline double-labeling,(136) were processed 
without mineral removal and were embedded in methylmethacrylate. Serial sections 
(thicknesses, 4 and 7 μm) were cut and were stained with modified Masson-Goldner 
trichrome stain. Unstained sections were prepared for fluorescent and polarized light 
microscopy.(93) 

Histomorphometry was performed at standardized sites in cancellous bone to 
obtain quantitative static and dynamic parameters reflecting bone structure (cancellous 
bone volume/tissue volume), microarchitecture (trabecular separation, trabecular 
thickness), bone turnover (bone formation rate/bone surface area), and mineralization 
(osteoid thickness, mineralization lag time).(105, 106) Measurements were made at ×200 
magnification (Osteoplan II System; Kontron, Munich, Germany). All measured 
parameters were defined in accordance with the Histomorphometry Nomenclature 
Committee of the American Society for Bone and Mineral Research.(107) 
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Bone Material (Mineral and Matrix) Properties 

Bone material properties were measured with use of a Fourier transform 
infrared (FTIR) spectrometer (Nexus 670; Thermo Electron, Waltham, Massachusetts) on 
sections prepared from anterior iliac crest bone samples. A 4-μm-thick undecalcified 
section was cut from each bone sample and placed between two barium fluoride discs 
for FTIR analysis.(137) Infrared spectra were collected from these “sandwiched” bone 
sections with use of a microscope that was attached to the spectrometer and operated 
in transmission mode for 200 scans at 4 cm−1 resolution. Three trabeculae were chosen 
from each section. Trabeculae were evaluated beginning at a distance of five to seven 
optical fields (at ×200) below the cortex. Spectroscopic measurements were made in the 
center of each of these three trabeculae. Background scans were used to correct for the 
spectral contributions of the barium fluoride discs and the methylmethacrylate mount. 

Established parameters reflecting bone quality were determined.(138) Specifically, the 
mineral-to-matrix ratio was obtained by dividing the area under the phosphate (mineral) 
peak (900 to 1200 cm−1) by the area under the amide I (matrix) peak (1590 to 1720 
cm−1) after baseline correction of both peaks (see Appendix). The carbonate-to-
phosphate ratio (i.e., the amount of carbonate substituted in the hydroxyapatite crystal) 
was obtained by dividing the area under the carbonate peak (850 to 890 cm−1) by the 
area under the phosphate peak. Crystallinity, a measure of crystal size and perfection, 
was obtained by dividing the area under the 1020 cm−1 peak by the area under the 1030 
cm−1 peak.(116) The collagen crosslinking ratio, a measure of collagen maturity, was the 
ratio of the areas under the 1660 cm−1 (mature crosslinks) and 1690 cm−1 (immature 
crosslinks) peaks.(111) The coefficient of variation was 4.3% for the mineral-to-matrix 
ratio, 2.0% for the carbonate-to-phosphate ratio, 1.7% for the crystallinity, and 4.1% for 
the crosslinking ratio. 

Data Analyses 

Data were tested for normality with use of the Kolmogorov-Smirnov test and for 
equality of variances with use of the Levene’s test. Multiple-group comparisons were 
performed with use of analysis of variance (ANOVA) with Scheffe post-hoc correction. 
Two-group comparisons were made with use of the Student t test. Univariate analyses 
(Pearson tests) were used to determine whether BMD and age were correlated with the 
material and histomorphometric parameters of bone. A p-value of <0.05 was considered 
significant. 

3.4 Results 

Subject Characteristics and Biochemical Results 

Fifty-seven premenopausal adult female white subjects met the selection criteria 
and were included in the study; twenty-five were in the non-low-BMD fracture group, 
eighteen were in the low-BMD fracture group, and fourteen were healthy volunteers 
(controls). 
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Subjects in the non-low-BMD group first presented with a mean of 3.6 low-
energy fractures during adulthood compared with 1.4 low-energy fractures in the low-
BMD group (p < 0.05). A hallmark of these low-energy fractures was that subjects were 
unable to identify a specific mechanical event associated with the fracture. The number 
of patients who sustained fractures in particular bones differed between the two 
fracture groups (Table 3.1). Nondisplaced metatarsal fractures (Fig. 3.1) were the most 
common fractures in the non-low-BMD group (experienced by 56% of the subjects), 
whereas spinal fractures were the most common fractures in the low-BMD group 
(experienced by 28% of the subjects) (Table 3.1). No atypical femoral fractures occurred 
in any of the study subjects. 

The BMD values in the groups were consistent with those defined by the 
inclusion criteria. Subjects in the two fracture groups were younger than the controls, 
and no differences were detected among the three groups with respect to serum 
concentrations of calcium, phosphorus, creatinine, glucose, sodium, alkaline 
phosphatase, parathyroid hormone, calcidiol, bone-specific alkaline phosphatase, N-
terminal telopeptide, or osteocalcin (Table 3.2). 

Histomorphometric Parameters of Bone Structure, Microarchitecture, Turnover, and 
Mineralization 

Cancellous bone volume was 29% greater (p < 0.01) and trabecular separation 
was 31% less (p < 0.01) in the non-low-BMD subjects with fractures than in the low-BMD 
subjects with fractures; the values in the non-low-BMD subjects did not differ from 
those in the controls (Figs. 3.2 and 3.3). Trabecular thickness did not differ significantly 
among the three groups (see Appendix). 

Bone turnover and bone mineralization parameters did not different significantly among 
the three groups (see Appendix). None of the measured histomorphometric parameters 
were correlated with BMD or age. 

Bone Material (Mineral and Matrix) Properties 

The mean collagen crosslinking ratio in the non-low-BMD group was 13% greater 
(p < 0.001) that that in the low-BMD group and 14% greater (p < 0.001) than that in the 
controls (Fig. 3.4). The collagen crosslinking ratio did not differ significantly between the 
low-BMD group and the controls. No differences were observed among the three 
groups with respect to any other measured bone mineral parameter (see Appendix). 
None of the measured mineral or matrix properties were correlated with BMD, age, or 
any histomorphometric parameter. 

3.5 Discussion 

The novel result of this study is the greater collagen crosslinking ratio, a bone 
quality parameter, in non-low-BMD subjects with low-energy fractures. It is important 
to note that such fractures in the non-low-BMD subjects could not be attributed to 
abnormal bone structure or microarchitecture (including lower cancellous bone volume, 
thinner trabeculae, or greater trabecular separation). In contrast, such fractures in the 
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low-BMD group could be attributed to reduced bone quantity, and the subjects in this 
group did not have the material quality abnormality observed in the non-low-BMD 
group. These findings confirmed our hypothesis that low-energy fractures in 
premenopausal women with nonosteoporotic BMD are associated with an abnormality 
in bone quality evidenced by increased collagen crosslinking. 

Clinically, patients who sustain low-energy fractures are considered osteoporotic 
regardless of their BMD t-score; however, the present findings of a different fracture 
distribution and of greater collagen crosslinking in the non-low-BMD group compared 
with the low-BMD group suggests that these two groups manifest different disease 
entities. One disease entity (seen in the low-BMD group) is attributable to abnormal 
bone quantity; the other (seen in the non-low-BMD group) is attributable to abnormal 
bone quality as manifested by abnormal collagen crosslinking. Reduced bone quantity is 
known to diminish bone fracture resistance, as demonstrated by the finding that spinal 
fractures, a typical manifestation of classic osteoporosis, were the most prevalent 
fractures in the low-BMD group. The most prevalent fracture site in the non-low-BMD 
group was the metatarsals, an uncommon site in classic osteoporosis. 

Crosslinking is an important structural feature that affects mechanical 
performance. The types and extent of collagen crosslinking in bone have only recently 
been appreciated. Crosslinks alter the mechanical properties of bone.(65, 139) Collagen 
crosslinking abnormalities have been linked to altered bone biomechanics and 
diminished fracture resistance in both animal(65, 140) and clinical studies.(48, 67, 132, 133, 141) In 
Wistar rats, beta-aminopropionitrile administered to inhibit lysyl oxidase and thereby 
induce increased collagen crosslinking resulted in a 27% increase in the collagen 
crosslinking ratio and a 14% decrease in lumbar bone stiffness.(65) The present study, 
however, did not have the ability to establish a cause-and-effect relationship between 
changes in the collagen crosslinking ratio and reduced bone strength. Abnormally high 
collagen crosslinking has also been observed in diabetic Wistar Bonn/Kobori rats whose 
femora had diminished mechanical competence,(140) but the results of the present study 
cannot be explained by diabetes since diabetes was an exclusion criterion and morning 
blood glucose levels were normal. Misof et al. studied premenopausal women, 
regardless of BMD, who had fragility fractures and compared them with premenopausal 
women with low BMD and no fractures.(132) They found an increased collagen 
crosslinking ratio in subjects with fragility fractures and a significantly lower BMD when 
subjects with and without fractures were combined and compared with normal 
controls. The present study separated premenopausal women with fractures into two 
groups: those with osteoporotic BMD t-scores and those with nonosteoporotic t-scores. 
The findings showed that an increased collagen crosslinking ratio was associated with 
the occurrence of low-energy fractures in premenopausal women despite 
nonosteoporotic BMD that was not significantly different from that in normal controls. 
Thus, our design controlled for BMD and thereby isolated the effects of alteration in the 
collagen crosslinking ratio. 

The greater collagen crosslinking ratio in the non-low-BMD group cannot be 
explained by lower bone turnover because turnover did not differ significantly between 
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the two fracture groups, nor can it be attributed to age because no associations 
between age and collagen crosslinking were found. A recent study showed an 
association between chronic hyponatremia and fractures in subjects with 
nonosteoporotic BMD.(142) Hyponatremia, however, was not observed in non-low-BMD 
subjects in the present study and there were no differences in serum sodium among the 
three study groups. 

The present study was limited to white women; men and non-white women 
were excluded to focus on individuals at greatest risk for low-energy fracture. The 
external validity of these findings will be enhanced by additional data obtained from 
men and from women of other races. 

In conclusion, the key finding of this study confirmed the hypothesis that, in the 
absence of osteoporotic t-scores, an abnormality in a particular bone quality (the 
collagen crosslinking ratio) is associated with low-energy fractures in premenopausal 
women. A finding of nonosteoporotic bone mass with low-energy fractures would justify 
assessment of bone material quality, which currently requires a bone biopsy. Further 
studies are needed to search for possible noninvasive tests to diagnose abnormal 
collagen crosslinking. Since no specific therapies for abnormal collagen crosslinking are 
available at this time, studies are also needed to explore novel therapeutic modalities to 
reverse the underlying collagen crosslinking abnormality. 
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3.7 Appendix 

Tables comparing properties of bone among the groups (Tables A1.1 and A1.2) 
and a figure (Figure A1.6) showing a typical FTIR spectrum of bone are available with the 
online version of this article as a data supplement at jbjs.org. Nanoindentation data 
were collected in 9 of 18 specimens in the non-low BMD group and in 12 of the controls. 
No indentations were made in the low-BMD group. The procedure used for 
nanoindentation is the same procedure used in chapter 2. No significant differences in 
Young’s modulus or hardness were seen between the groups. These data are shown in 
Table A1.3. Please see the appendix at the end of this dissertation for these tables and 
the figure.   
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3.8 Tables and Figures 

Table 3.1: Number of Patients with Low-Energy Fractures According to Bone Site 

Bone Site Non-Low BMD 
Group (N = 25) 

Low-BMD 
Group (N = 18) 

Metatarsal 14 3 

Tibia 7 1 

Femoral neck 6 3 

Spine 3 5 

Pelvis 3 1 

Wrist 2 1 

Calcaneus 2 0 

Rib 1 3 

Forearm 1 1 

Talus 1 0 

Metacarpal 1 0 
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Table 3.2: Subject Characteristics and Biochemical Results 

 
Non-Low BMD 

(Group 1, N = 25) 

P Value, 

1 vs. 2 

Low-BMD 

(Group 2, N = 18) 

P Value, 

2 vs. 3 

Controls 

(Group 3, N = 14) 

P Value, 

1 vs. 3 
BMD, total hip (t-score) −0.42 ± 0.97 0.001 −2.28 ± 0.79 0.001 −0.67 ± 0.98 >0.1 

BMD, lumbar spine (t-score) −0.53 ± 0.97 0.001 −2.79 ± 0.85 0.001 −0.53 ± 0.92 >0.1 

Age (years) 37.2 ± 8.6 >0.1 40.7 ± 9.9 0.001 52.6 ± 3.5 0.001 

Serum analysis       
Calcium (mg/dL) 9.43 ± 0.26 >0.1 9.37 ± 0.37 >0.1 9.27 ± 0.39 >0.1 

Phosphorus (mg/dL) 3.45 ± 0.54 >0.1 3.54 ± 0.62 >0.1 3.64 ± 0.55 >0.1 

Creatinine (mg/dL) 0.77 ± 0.08 >0.1 0.72 ± 0.13 0.074 0.85 ± 0.16 >0.1 

Glucose (mg/dL) 88.7 ± 8.4 >0.1 93.7 ± 7.63 >0.1 92.8 ± 10.5 >0.1 

Sodium (mmol/L) 139 ± 1.71 >0.1 138 ± 1.95 >0.1 137 ± 4.47 >0.1 

Alkaline phosphatase (U/L) 65.3 ± 21.3 >0.1 70.8 ± 25.4 >0.1 91.1 ± 44.4 >0.1 

Parathyroid hormone (pg/mL) 31.1 ± 18.5 >0.1 29.7 ± 15.7 >0.1 28.4 ± 10.5 >0.1 
Calcidiol (ng/mL) 35.1 ± 11.8 >0.1 36.9 ± 13.7 >0.1 42.6 ± 10.7 >0.1 
Bone-specific alkaline 
phosphatase (µg/L) 

 

14.2 ± 6.61 >0.1 19.9 ± 8.12 0.068 12.1 ± 4.38 >0.1 

N-terminal telopeptide 

(nM bone collagen equivalent) 
12.6 ± 6.44 >0.1 14.8 ± 9.22 >0.1 10.8 ± 4.11 >0.1 

Osteocalcin (ng/mL) 17.6 ± 8.85 >0.1 20.6 ± 6.17 >0.1 14.7 ± 7.06 >0.1 

(mean ± one standard deviation)
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Figure 3.1: Oblique radiograph of a nondisplaced transverse fracture of the proximal 
fifth metatarsal (arrow) in a premenopausal subject with non-low BMD.  
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Figure 3.2: Box plots of cancellous bone volume/tissue volume in bone from subjects 
with non-low BMD (t-score > −2.0) and low-energy fractures, subjects with low-BMD (t-
score ≤ −2.5) and low-energy fractures, and healthy volunteers (controls). The bottom 
and top of the box represent the interquartile range (25% to 75%), the line within the 
box denotes the median (50%), and the upper and lower bounds of the error bars 
denote the range. Box plots labeled with the same letters do not differ significantly. 
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Figure 3.3: Box plots of trabecular separation in bone from subjects with non-low BMD 
(t-score > −2.0) and low-energy fractures, subjects with low-BMD (t-score ≤ −2.5) and 
low-energy fractures, and healthy volunteers (controls). The bottom and top of the box 
represent the interquartile range (25% to 75%), the line within the box denotes the 
median (50%), and the upper and lower bounds of the error bars denote the range. Box 
plots labeled with the same letters do not differ significantly.
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Figure 3.4: Box plots of the collagen crosslinking ratio in bone from subjects with non-
low BMD (t-score > −2.0) and low-energy fractures, subjects with low-BMD (t-score ≤ 
−2.5) and low-energy fractures, and healthy volunteers (controls). The bottom and top 
of the box represent the interquartile range (25% to 75%), the line within the box 
denotes the median (50%), and the upper and lower bounds of the error bars denote 
the range. Box plots labeled with the same letters do not differ significantly.
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CHAPTER 4 ALTERATIONS IN BONE MATERIAL QUALITY WITH BISPHOSPHONATE 
TREATMENT 

 

This chapter was developed based upon an abstract presented at the 2012 Annual 
Meeting of the Orthopaedic Research Society: Pienkowski D., Porter D.S., Monier-
Faugere M.C., Malluche H.H., Is Bone Quality Altered with Alendronate Treatment in 
Osteoporotic Patients? Orthopaedic Research Society Conference, San Francisco, CA, 
2012 
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4.1 Abstract 

Bisphosphonates are commonly prescribed in the treatment of osteoporosis; 
however, prolonged treatment with bisphosphonates may be associated with atypical 
femoral fractures. These fractures are believed to be due to alterations in bone quality 
accompanying bisphosphonate treatment. It is unclear whether these alterations in 
bone quality are due to the suppression of bone turnover associated with 
bisphosphonate treatment or to the bisphosphonate itself. The goal of this study was to 
evaluate various parameters of bone quality in iliac crest bone obtained from 
osteoporotic Caucasian females treated with bisphosphonates for less than five years 
(short-term, n=14) or greater than or equal to five years (long-term, n=15) compared to 
bone from turnover-matched untreated osteoporotic Caucasian females (No-BP 
“controls”, n=17). Bone material quality was assessed by using Fourier transform 
infrared spectroscopy, while bone structural quality and parameters of bone turnover 
were evaluated by using histomorphometry. The key findings of this study were that the 
mineral-to-matrix ratio of bone was 11% and 15% higher in the short-term and long-
term groups compared to the control group, respectively (p<0.05). This finding is 
important as small deviations in bone mineralization can result in reduced bone 
toughness. In conclusion, the greater mineral-to-matrix ratio, a parameter of bone 
material quality, is attributable to the effects of bisphosphonate drug treatment and not 
the suppression of bone turnover associated with treatment. Further studies are 
needed to determine when bisphosphonate treatment’s positive effect (greater 
cancellous bone volume) on bone is outweighed by its negative effect (higher 
mineralization) on bone.  
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4.2 Introduction 

Bisphosphonates are commonly used to treat osteoporosis and at least 4 million 
American women were prescribed these drugs in 2008.(83) Patients treated with 
bisphosphonates typically have reduced bone turnover, increase bone mineral density 
(BMD), and lower fracture risk. The benefit of lower fracture risk has been reported 
following three to five years of bisphosphonate treatment,(143, 144) while treatment 
longer than five years was shown to improve BMD, but no additional reduction in 
fracture risk was observed.(145, 146) 

Recently, concerns have arisen that prolonged bisphosphonate treatment may 
be associated with atypical femoral fractures.(84-89) Long-term treatment with 
bisphosphonates has been defined as three to five years.(84) A recent report found that 
94% of patients who suffered an atypical femoral fracture were treated with a 
bisphosphonate for five or more years.(85) These atypical femoral fractures are believed 
to be due to alterations in bone quality associated with long-term bisphosphonate 
treatment.(147-154) Bone quality consists of as various material and structural parameters 
that govern bone strength.(23, 25) It has been documented that bisphosphonates suppress 
bone turnover.(90-92) These alterations in bone quality are often attributed to the 
suppression of bone turnover associated with bisphosphonate treatment;(147, 149-152) 
however, it is unclear if these alterations are due to the suppression of bone turnover or 
to the bisphosphonates itself.(154) Thus, the goal of this study was to determine whether 
various material and structural parameters of bone quality were altered in osteoporotic 
Caucasian females treated with various durations of bisphosphonate compared to bone 
turnover-matched untreated osteoporotic Caucasian females. 

4.3 Methods 

Study Design and Inclusion/Exclusion Criteria 

This study measured parameters of bone quality in iliac crest bone specimens 
obtained from Caucasian females between the ages of 40 to 80 who underwent a bone 
biopsy for workup of osteoporosis. Included in this study were bone specimens from 
Caucasian females that were: diagnosed with low-turnover osteoporosis (low turnover 
was defined as bone with an activation frequency (Acf.) less than 0.49 yr.-1), and met 
any of the following criteria: a) bisphosphonate treatment less than five years (short-
term), b) bisphosphonate treatment greater than or equal to five years (long-term), or c) 
no bisphosphonate treatment (No-BP). 

Subjects were excluded from consideration if they had: osteogenesis imperfecta 
or other genetic bone disease, osteomalacia, hyperparathyroid bone disease, chronic 
kidney disease, endocrine abnormalities, Paget’s disease of bone, history of drug or 
alcohol abuse, taken any other bisphosphonate besides alendronate, or prior use of 
teriparatide. The protocol of this IRB approved cross-sectional study adhered to the 
Declaration of Helsinki. 
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Bone Mineral Density 

BMD was measured at the lumbar spine (L2-L4) and hip by using a Lunar iDXA 
(General Electric Inc., Madison, WI). The coefficients of variation of BMD measurements 
were 1.2% at the spine and 0.9% at the hip. 

Biochemistry Parameters 

Serum calcium and phosphorus were measured in all subjects by using routine 
laboratory techniques. In addition, the following laboratory tests were also performed: 
serum parathyroid hormone (PTH) levels by Total PTH™ radioimmunoassay 
(Scantibodies, Santee, CA), and serum calcidiol by API 3200 liquid chromatography-
tandem mass spectrometry (AB Sciex, Framingham, MA). 

Mineralized Bone Histology 

Anterior iliac crest bone specimens, obtained after tetracycline double labeling, 
were processed without mineral removal and embedded in methylmethacrylate. Serial 
sections of four micron thickness were stained with the modified Masson-Golden 
Trichrome stain, and seven micron thick unstained sections were prepared for 
fluorescent and polarized light microscopy.(93) 

Histomorphometric Parameters of Bone Structure, Formation, resorption, and Turnover 

Histomorphometry was done at standardized sites in cancellous bone to obtain 
quantitative static parameters of bone structure (cancellous bone volume/tissue 
volume, trabecular separation, and trabecular thickness), formation (osteoblast 
surface/bone surface), resorption (osteoclast surface/bone surface) and dynamic 
parameters of bone turnover (mineralizing surface/bone surface and Acf).(105, 106) 

All measurements were performed by using the Osteoplan II System (Kontron, 
Munich, Germany) at 200x magnification. All measured parameters comply with the 
nomenclature of the Histomorphometry Committee of the American Society of Bone 
and Mineral Research.(107) 

Parameters of Bone Material Quality 

Fourier Transform Infrared spectroscopy (FTIR) was used to measure established 
parameters of bone material quality.(137, 138) A 4 micron-thick section was cut from each 
embedded bone sample and placed between two barium fluoride discs. Infrared spectra 
were collected from these bone specimens by using a microscope attached to a Nexus 
670 FTIR spectrometer (Thermo Electron, Waltham, MA, USA) operating in transmission 
mode for 200 scans at a 4 cm-1 resolution. Three randomly selected locations within the 
center of three randomly selected trabeculae were spectroscopically examined. 
Trabeculae were evaluated 5 to 7 optical fields (at 200X) below the cortex. Background 
scans were performed to correct the resulting spectra from influences due to the 
barium fluoride discs and methylmethacrylate mount. 

The following parameters of bone material properties were measured: mineral-
to-matrix ratio, carbonate-to-phosphate ratio, crystallinity, and collagen crosslinks. The 
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mineral-to-matrix ratio was calculated by dividing the area under the phosphate 
(mineral) peak (900-1200 cm-1) by the area under the amide I (matrix) peak (1590-1720 
cm-1) after both peaks were baseline corrected. The carbonate-to-phosphate ratio, a 
measure of the amount of carbonate substituted within the mineral structure, was 
calculated from the quotient of the area under the carbonate peak (850-890 cm-1) by 
the area under the phosphate peak after both peaks were baseline corrected. 
Crystallinity, a measurement of crystal size and perfection, was calculated from the ratio 
of the areas under the peaks located at 1020 cm-1 and 1030 cm-1.(116) The collagen 
crosslinking, a measurement of collagen maturation, was calculated from the ratio of 
the areas under the peaks located at 1660 cm-1 (mature crosslinks) and 1690 cm-1 
(immature crosslinks).(111) Coefficients of variation of these parameters were 4.3% for 
mineral-to-matrix ratio, 2.0% for carbonate-to-phosphate ratio, 1.7% for crystallinity, 
and 4.1% for crosslinking ratio. 

Data Analyses 

Data were tested for normality by using the Kolmogorov-Smirnov test and for 
equality of variances by using Levene’s test. The data were compared by using ANOVA 
with Scheffe post-hoc correction. Pearson’s correlation was used to determine if BMD, 
age or duration of bisphosphonate treatment correlated with the material or structural 
parameters of bone. All computations were done by using SPSS version 20 (IBM SPSS 
Inc., Chicago, IL). 

4.4 Results 

Patient’s Characteristics and Biochemical Parameters 

Forty-six osteoporotic subjects met the inclusion criteria but not the exclusion 
criteria and were categorized into one of the following groups: short-term (n=14), long-
term (n=15), and No-BP (n=17) treatment. The mean (± SD) duration of bisphosphonate 
treatment for the short-term group was 3.4 ± 1.0 years; the mean (+/- SD) duration of 
bisphosphonate treatment for the long-term group was 8.6 ± 3.0 years. These two 
groups were different (p<0.05). No differences in BMD at the lumbar spine or hip were 
observed among any of the groups (Table 4.1). Mean patient age in the long-term group 
was greater than the mean patient age in the No-BP group (p<0.05). Biochemical 
parameters did not differ among the three groups. 

Histomorphometric Parameters of Bone Structure, Formation, Resorption, and Turnover 

Cancellous bone volume was greater in the short-term group compared to the 
No-BP group (p<0.05, Table 4.2). No other differences were detected in cancellous bone 
volume between the groups. Trabecular thickness and trabecular separation did not 
differ among the three groups. No differences in bone formation, resorption, or 
turnover parameters were observed among the three groups. Duration of treatment, 
BMD, and age did not correlate with any of these parameters.  
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Parameters of Bone Material Quality 

The short and long-term groups had an 11% and 15% higher mineral-to-matrix 
ratio compared to the No-BP group, respectively (p<0.05, Table 4.3). The mineral-to-
matrix ratio was not different between the short- and long-term groups. No other 
differences in bone material parameters were observed. Duration of treatment, BMD, 
and age did not correlate with any bone material quality parameters. 

4.5 Discussion 

The key finding of this study is that bisphosphonate treatment is associated with 
altered bone quality independent of bone turnover. Specifically, mineral-to-matrix ratio 
was higher in the bisphosphonate treated groups compared to the No-BP group. This 
finding also cannot be attributed to age or duration of treatment as no correlations 
were observed.   

Relative bone mineralization has an important role in determining bone strength 
given that small deviations from ideal bone mineralization have been associated with a 
reduction in bone toughness(53-55, 60) Thus, the observed greater mineral-to-matrix ratio 
may help explain the increased susceptibility of atypical femoral fractures in the patients 
treated with bisphosphonates. 

The higher mineral-to-matrix ratio has previously been reported after one year 
of bisphosphonate treatment in canines,(147, 151) and in patients taking alendronate for 
three years.(150) Another study reported higher bone mineralization, as measured by 
BMD, in patients treated with bisphosphonates between 3 to 10 years compared to 
untreated postmenopausal women.(152) These studies, however, conclude that the 
higher bone mineralization is due to the suppression of bone turnover, while the current 
study concludes that the altered bone mineralization is due to the bisphosphonates 
itself. The discrepancy between conclusions may be explained by differences in study 
goals and designs; the current study matched for bone turnover in the untreated 
osteoporotic group. 

No alterations in enzymatic collagen crosslinks due to bisphosphonates were 
observed in this study. This finding agrees with a prior study of bone from patients that 
were taking alendronate for three years.(150) This is further supported by a study, which 
found that osteoporotic women treated with bisphosphonates maintained, but did not 
increase, collagen crosslinks.(155) In contrast, a few studies have found higher collagen 
crosslinks in canines and humans treated with bisphosphonates.(151, 153) Like collagen 
crosslinks, there is conflicting evidence regarding the role of bisphosphonates on 
crystallinity. The current study found no difference in crystallinity, which also agrees 
with the prior study where patients were taking Alendronate for three years.(150) Greater 
crystallinity, however, has been reported in canines that were administered 
bisphosphonates.(147) One study found that crystallinity was lower in patients treated 
with alendronate for 8 years.(156) The exact role bisphosphonates have on collagen 
crosslinks and crystallinity are unclear, and this issue warrants further study as both of 
these material quality parameters influence bone strength.(61-64, 67) 
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This study is limited to patients who only took alendronate. Further studies are 
needed to determine if the higher mineral-to-matrix ratio observation in patients taking 
alendronate treatment will occur in patients taking bisphosphonates other than 
alendronate. 

In conclusion, the higher mineral-to-matrix ratio, a parameter of bone material 
quality, was due to the bisphosphonate itself and not due to the suppression of bone 
turnover associated with treatment. The key finding from this study adds more evidence 
to the idea that bisphosphonate treatment has both a positive (greater cancellous bone 
volume) and negative (higher mineralization) effect on bone and may lead to changes in 
the current practice paradigms regarding bisphosphonate treatment with osteoporosis.  

4.6 Acknowledgments 
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4.7 Appendix 

Nanoindentation data were collected in 9 of 17 specimens in the No-BP group, 8 
of 14 specimens in the short-term group, and 8 of the 15 specimens in the long-term 
group. The procedure used for nanoindentation is the same as that used in chapter 2. 
No significant differences in Young’s modulus or hardness were seen between these 
groups. These data are shown in Table A1.4. Please see the appendix at the end of this 
dissertation for this table. 
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4.8 Tables: 

Table 4.1: Patient’s Characteristics and Biochemical Parameters 

 
No-BP (n=17) Short-Term (n=14) Long-Term (n=15) 

Patient’s Characteristics          

BMD Total Hip (t-score) -1.72 ± 1.24 -1.98 ± 0.91 -1.58 ± 0.79 

BMD Lumbar Spine (t-score) -2.30 ± 1.31 -2.16 ± 1.19 -1.89 ± 1.34 

Age (years) 56.2 ± 9.4 62.4 ± 6.8 63.3 ± 3.8a 

          

Biochemical Parameters          

Serum Calcium (mg/dL) 9.56 ± 0.49 9.52 ± 0.37 9.55 ± 0.44 

Serum Phosphorus (mg/dL) 3.53 ± 0.59 3.96 ± 0.48 3.50 ± 0.56 

Serum Parathyroid Hormone (pg/mL) 32.8 ± 17.9 37.7 ± 9.44 34.9 ± 7.33 

Serum Calcidiol (ng/mL) 40.6 ± 12.5 37.9 ± 20.0 27.1 ± 13.0 

(mean ± one standard deviation) 
       

a = p<0.05 vs. No-BP 
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Table 4.2: Histomorphometric Parameters of Bone Structure, Formation, Resorption, & Turnover 

  
No-BP 

(n=17) 
Short-Term 

(n=14) 
Long-Term 

(n=15) 

Bone Structure          

Cancellous Bone Volume/ Tissue Volume (%) 15.3 ± 3.25 20.0 ± 2.99a 18.3 ± 7.75 

Trabecular Thickness (μm) 102 ± 28.5 111 ± 25.8 110 ± 38.0 

Trabecular Separation (μm) 551 ± 116 453 ± 113 564 ± 314 

          Bone Formation and Resorption 
         

Osteoblast Surface/ Bone Surface (%) 0.66 ± 0.73 0.51 ± 0.66 0.22 ± 0.21 

Osteoclast Surface/ Bone Surface (%) 0.41 ± 0.24 0.75 ± 0.52 0.76 ± 0.78 

          Bone Turnover 
         

Mineralizing Surface/ Bone Surface (%) 2.00 ± 1.29 1.82 ± 1.61 2.62 ± 1.50 

Activation  Frequency (yr-1) 0.13 ± 0.10 0.13 ± 0.14 0.18 ± 0.14 

(mean ± one standard deviation) 

a = p<0.05 vs. No-BP          
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Table 4.3: Parameters of Bone Material Quality 

  
No-BP 

(n=17) 
Short-Term 

(n=14) 
Long-Term 

(n=15) 

Mineral-to-Matrix Ratio 3.63 ± 0.40 4.03 ± 0.47a 4.16 ± 0.38a 

Carbonate-to-Phosphate 
Ratio (x100) 1.07 ± 0.14 1.09 ± 0.14 1.10 ± 0.13 

Crystallinity 0.90 ± 0.07 0.94 ± 0.05 0.94 ± 0.08 

Collagen Crosslinking 3.29 ± 0.36 3.46 ± 0.40 3.31 ± 0.31 

(mean ± one standard deviation) 
      

a = p<0.05 vs. No-BP 
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CHAPTER 5 ALTERATIONS IN THE INTRINSC MECHANICAL PROPERTIES OF BONE WITH 
BISPHOSPHONATE TREATMENT 

 

This chapter will be revised and submitted for publication. 
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5.1 Abstract 

Bisphosphonates are commonly prescribed for the treatment of osteoporosis; 
however, prolonged bisphosphonate treatment may be associated with atypical femoral 
fractures. These fractures may be due to alterations in bone quality. The goal of this 
study was to determine if the duration of bisphosphonate treatment was associated 
with changes in the intrinsic mechanical properties (Young’s modulus and hardness) of 
bone as measured by nanoindentation. Ninety-two iliac crest bone specimens from 
Caucasian females treated with bisphosphonates were included. Mean patient age was 
60.5 ± 8.8 years (±SD) and mean duration of bisphosphonate treatment was 6.0 ± 2.9 
years (±SD). Bisphosphonate treatment type and patient age were unrelated to Young’s 
modulus or hardness of cortical or trabecular bone. Significant positive linear 
relationships were observed between the intrinsic mechanical properties of bone and 
duration of treatment in trabecular and cortical bone (p<0.05). Based upon an animal 
study showing the relationship between modulus and fracture toughness, these results 
may provide insight regarding why patients with prolonged bisphosphonate treatment 
suffer atypical femoral fractures.  
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5.2 Introduction 

Bisphosphonates are commonly used in the treatment of osteoporosis. In 2008, 
approximately 4 million American women were prescribed bisphosphonates to treat 
osteoporosis.(83) Patients treated with bisphosphonates typically have reduced bone 
turnover, increased bone mineral density (BMD), and lower fracture risk. The benefit of 
lower fracture risk has been reported after three to five years of bisphosphonate 
treatment,(143, 144) while treatment longer than five years was shown to improve BMD, 
but no additional reduction in fracture risk was observed.(145, 146) 

Recently, concerns have arisen that long-term bisphosphonate treatment may 
be associated with an increased fracture risk as manifested by “atypical” femoral 
fractures.(84-89) An ASBMR task force report found that 94% of patients who suffered an 
atypical femoral fracture were treated with a bisphosphonates for five years or 
longer.(85) 

These atypical femoral fractures are believed to be due to alterations in bone 
quality associated with bisphosphonate treatment.(147-154) Bone quality is defined by 
various material, microdamage, and structural parameters that collectively result in 
bone’s ability to resist fracture.(23, 25) These alterations in material, microdamage, or 
structural parameters may result in changes to the extrinsic and intrinsic mechanical 
properties of bone. Nanoindentation has been used to measure the intrinsic mechanical 
properties of bone (Young’s modulus and hardness) that comprise a portion of the 
material parameters of bone quality.(119) The goal of this study was to determine if 
Young’s modulus and hardness of bone varied with the duration of bisphosphonate 
treatment. 

5.3 Methods 

Ninety-two iliac crest bone specimens from Caucasian females treated with 
bisphosphonates were included in this study. Specimens were excluded if they had 
osteogenesis imperfecta, osteomalacia, Paget’s disease of bone, history of drug or 
alcohol abuse, or prior use of teriparatide. The protocol of this IRB approved cross-
sectional study adhered to the Declaration of Helsinki.  

Nanoindentation 

The surface of each biopsy was polished and made uniplanar by sanding on a 
metallographic specimen preparation station holding abrasive silicon carbide papers of 
decreasing grit size (ending in 1200 grit). A final high polish was achieved by using a 
rotating microcloth wetted with deionized water in which diamond particles (0.3-µm grit 
size and then 0.05-µm grit size) were suspended. Finally, specimens were placed in an 
ultrasonic water bath for 10 minutes to remove surface debris. 

The Young’s modulus and hardness of cortical and trabecular bone were quantified 
using established nanoindentation techniques.44–47 This process was done by using a 
microscope-equipped Nanoindenter G200 (Agilent, Oak Ridge, TN). The indenter was 
stationed on an antivibration table located within an isolation cabinet to reduce the 

http://jasn.asnjournals.org/content/23/3/525.full#ref-44
http://jasn.asnjournals.org/content/23/3/525.full#ref-47
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potential for environmentally generated mechanical interference. A three-sided tip 
(Berkovich diamond indenter) was used for specimen indentation. The nanoindenter 
was calibrated by indenting fused silica of known modulus. Young’s modulus and 
hardness were measured at 6 standardized cortical and 6 standardized trabecular sites 
on each sample. Five indents were done at each site resulting in 60 measurements per 
sample.  

Nanoindentation was performed by applying a peak load of 8 mN during each 
indentation at a constant loading rate of 0.4 mN/second−1. The maximum load achieved 
during each indent was maintained for 10 s (hold time) to ensure that the subsequent 
unloading would be completely elastic.44,45 Based on the first 50% of the unloading 
curve, stiffness and hardness were quantified by using the Oliver and Pharr method.48 

Data Analyses 

The data were analyzed by using PROC general linear model in SAS (version 5.1) 
using linear mixed models that adjusted for the covariates of age and treatment group. 
The linear fit was tested for the lack of fit. Residuals were tested for non-normality by 
using the Kolmogorov-Smirnov test.  

5.4 Results 

 The mean age of the patients was 60.5 ± 8.8 years (±SD) and the mean duration 
of bisphosphonate treatment was 6.0 ± 2.9 years (±SD). The range of treatment duration 
was 1.1 to 14 years. Although various bisphosphonates used were used by these 
patients (Table 1), the type of bisphosphonate and patient age were unrelated to 
Young’s modulus or hardness of cortical or cancellous bone.  

Overall, Young’s modulus and hardness increased with increasing 
bisphosphonate treatment duration. Specifically, in trabecular bone, significant positive 
linear relationships were observed between Young’s modulus (p<0.01, r2 =0.09, figure 1) 
and hardness (p<0.01, r2=0.13, figure 2) with the duration of treatment. Similarly, 
significant positive linear relationships between Young’s modulus (p<0.05, r2=0.09, 
figure 3) and hardness (p<0.01, r2=0.18, figure 4) with duration of treatment were 
observed in cortical bone.  

5.5 Discussion 

The key findings from this study are the significant positive relationships 
between the duration of bisphosphonate treatment and the nano-scale intrinsic 
mechanical properties of cortical and trabecular bone. It has been documented that 
bisphosphonates suppress bone turnover.(90-92) The current finding is relevant because 
reduced bone turnover is associated with greater bone mineralization.(157-159) Higher 
bone mineralization was previously reported after one year of bisphosphonate 
treatment in canines,(147, 151) and in patients taking alendronate for three years.(150) 
Moreover, greater bone mineralization is associated with increases in Young’s 
modulus.(59, 158, 160) Mineralization was positively correlated to Young’s modulus of 

http://jasn.asnjournals.org/content/23/3/525.full#ref-44
http://jasn.asnjournals.org/content/23/3/525.full#ref-45
http://jasn.asnjournals.org/content/23/3/525.full#ref-48
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various animal bones; it was also observed in this model that small deviations in 
mineralization had a negative effect on bone toughness.(53)  

A few studies have looked at bisphosphonate treatment and bone’s intrinsic 
mechanical properties as measured by nanoindentation. A study done by Tjhia et al., 
found higher mean values for Young’s modulus and hardness of trabecular bone in 
twelve patients treated with bisphosphonates who suffered an atypical femoral fracture 
compared to eleven age-matched untreated osteoporosis patients.(154) The patients in 
this study were taking bisphosphonates for at least 3 years, but the exact duration was 
not given. Another study found that patients treated with alendronate had a lower 
Young’s modulus than untreated age-matched osteoporosis women.(153) These patients 
were treated for an average of 8 ± 2 years. This study had only five treated patients 
versus six untreated patients. These studies have conflicting results with regard to 
bisphosphonate treatment and its effect on intrinsic mechanical properties of bone. The 
conflicting results may be due to the potential difference in the duration of treatment 
between the studies. Additionally, these studies could not determine if the duration of 
treatment influenced the intrinsic properties of bone since it had a limited number of 
samples in each group. 

The cross-sectional design of the present study and consequent lack of baseline 
information limits the information obtainable from the data.  

In conclusion, increases in nanoscale-derived mechanical bone quality 
parameters (Young’s modulus and hardness) are associated with increasing duration of 
bisphosphonate treatment. Given the relationship between Young’s modulus and bone 
toughness shown in a previously published animal study, the current findings may 
provide more information regarding atypical femoral fractures that occur with 
prolonged bisphosphonate use. 
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5.7 Tables: 

Table 5.1: Number of patients versus bisphosphonate type 

Bisphosphonate  # of patients  

Actonel 10 

Boniva 2 

Fosamax 56 

Multiple  23 

Pamidronate 1 

 Total         92  
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5.8 Figures 

 

 
Figure 5.1: Linear relationship between duration of treatment and Young’s modulus of 
trabecular bone (p<0.05, r2= 0.09). 
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Figure 5.2: Linear relationship between duration of treatment and hardness of 
trabecular bone (p<0.05, r2= 0.13). 
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Figure 5.3: Linear relationship between duration of treatment and Young’s modulus of 
cortical bone (p<0.05, r2= 0.09). 
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Figure 5.4: Linear relationship between duration of treatment and hardness of cortical 
bone (p<0.05, r2= 0.18). 



 

63 

 

CHAPTER 6 CONCLUDING REMARKS 

6.1: Summarized Key Findings  

The objective of this dissertation research was to examine whether various bone 
quality parameters were altered in iliac crest bone specimens obtained from patients 
who: 1) had abnormal bone turnover due to CKD, 2) suffered a low-energy fracture 
despite normal BMD, or 3) had osteoporosis and were treated with bisphosphonates. 
The key finding from the bone turnover study (Chapter 2) was that high and low bone 
turnover due to CKD altered bone quality. These alterations, however, are turnover 
specific. High turnover had a lower mineral-to-matrix ratio and Young’s modulus 
compared to normal and low turnover, while low turnover had a lower cancellous bone 
volume and trabecular thickness compared to normal or high turnover. In the fracture 
study (Chapter 3) the key finding was that patients with non-low-BMD and low-energy 
fractures had a greater collagen crosslinking ratio compared to patients who had low-
BMD with low-energy fractures and controls. The main result from the bisphosphonate 
study (Chapter 4) was that bisphosphonate treatment resulted in a greater mineral-to-
matrix ratio compared to untreated turnover matched osteoporotic patients. Last, the 
main results in nanoindentation bisphosphonate study (Chapter 5) were the multiple 
significant positive linear relationships between bisphosphonate treatment and the 
intrinsic mechanical properties of bone. 
6.2 Importance of the Key Findings 

The alterations in bone quality documented in chapters 2 through 4 have been 
linked to a reduction in bone’s mechanical properties; specifically deviations from ideal 
bone mineralization have been associated with reduced load to failure as shown in 
Figure 1.5.(60) The observed alteration in the collagen crosslinks is important because the 
crosslinks are believed to play a key role in bone’s tensile strength and the post-yield 
mechanical properties.(67-69, 75) In rats, greater collagen crosslinking is associated with 
lower mechanical properties in bone.(65, 140) The lower cancellous bone volume 
correlates to lower yield stress and bone strength,(43, 45) while the loss of structural 
integrity (trabecular thickness and separation) is associated with a reduced bone 
strength.(40, 41, 43) In chapter 5, the duration of bisphosphonate treatment was associated 
with changes to the intrinsic mechanical properties of bone. These changes in bone’s 
mechanical properties may help explain the increased fracture risk seen in patients with 
abnormal bone turnover due to CKD, patients with normal BMD and fracture, and the 
atypical fracture risks seen in patients taking bisphosphonates for prolonged periods. 
6.3 Discussion 

Currently, bone quantity (as measured by DXA) is most commonly used to 
determine the effectiveness of various treatment plans for osteoporosis and to predict a 
patients’ lifetime risk of fracture; however, bone quantity does not fully explain bone’s 
ability to resist fracture. Thus, it is important to measure both the quantity and quality 
of bone, as it is possible that a BMD scan will miss potential changes in bone quality.(161) 
For example, figure 6.1 shows that despite no changes in bone quantity there were 
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increases in the outer diameter of bone (macro-architecture parameter of bone quality) 
resulting in greater bending strength (section modulus).(162)  
6.3.1 Bone Turnover 

Knowing the rate of bone turnover is important as the results from the turnover 
study showed that abnormalities in bone quality were turnover dependent. This finding 
suggests the need for different treatments based on the type of bone turnover. In the 
case of high turnover bisphosphonates (as long as the glomerular filtration rate is above 
35 ml/min/1.73m2), denosumab, calcimimetics (drugs which mimic the action of calcium 
on tissue), 1,25-dihydroxyvitamin D, or Vitamin D receptor analogs can be used to 
reduce turnover. In the case of low bone turnover, teriparatide can be used to elevate 
turnover. Like CKD, bone turnover in osteoporosis can be classified as either high or low 
bone turnover, and different treatments based on the type of bone turnover should be 
considered. Currently, most patients with osteoporosis are treated with 
bisphosphonates regardless of the rate of bone turnover. It is possible that giving a 
bisphosphonate to a patient with low turnover will not stop bone loss or restore bone 
quantity. This is because bisphosphonates reduce osteoclast activity; in low turnover 
bone, the osteoclast activity is already reduced. In addition, giving bisphosphonates to 
patients with low turnover bone may result in other bone quality issues such as a 
greater accumulation of microdamage. An alternative to bisphosphonates for patients 
with low turnover bone is teriparatide treatment as it increases osteoblast activity and 
can lead to new bone formation. Studies are needed to determine if these different 
treatment paradigms will alleviate the bone quality abnormalities associated with high 
and low turnover and to make sure that these treatment plans do not result in other 
complications that reduce bone’s ability to resist fracture. 
6.3.2 Collagen Crosslinking 

In the fracture study, a collagen crosslinking abnormality was not observed by a 
DXA scan. This crosslinking abnormality may help explain the lower mechanical 
competency of the bones in these patients. A possible explanation for the greater 
enzymatic collagen crosslinking in the non-low-BMD group is the inhibition of lysyl 
oxidase (LOX). Inhibition of LOX can be due to copper deficiency, Vitamin B6 deficiency, 
hyperhomocysteinemia (HHCY) and the chemical compound β-aminopropionitrile (β-
APN). This inhibition LOX can lead to osteolathyrism, which is a collagen crosslinking 
deficiency. These LOX inhibitors have all been associated with a reduction in enzymatic 
collagen crosslinks or a greater mature to immature crosslinks ratio. Specifically 
administration of β-APN in rats resulted in higher mature to immature collagen 
crosslinking ratio and lower bone strength without affecting the mineral component.(65) 
Another study found that rats given β-APN for 4 weeks had a 45% reduction of mature 
crosslinks and 26% and 30% reduction in bending strength and Young’s modulus 
respectively compared to control rats.(163) Copper deficiency in chickens resulted in 
lower amount of enzymatic collagen crosslinks(164) and lower torsional strength with a 
lack of plastic deformation.(66, 165) Vitamin B6 deficient rats had a 25% decrease in 
immature collagen crosslinking formation compared to rats feed a regular diet.(166) One 
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study found that elevated homocysteinemia in individuals resulted in lower 
concentrations of enzymatic collagen crosslinks and a greater amount of non-enzymatic 
crosslinks.(167) The main reasons for HHCY are deficiencies in Vitamin B6, Vitamin B12, or 
folic acid along with aging and kidney failure.(168) It must be noted while inhibition of 
lysyl oxidase is associated with lathyrism and collagen abnormalities, overexpression is 
linked to metastasis.(169) Future studies should investigate whether eliminating any of 
the previous discussed LOX inhibitors will restore the collagen crosslinking ratio to 
normal. Additionally, future studies should also examine non-enzymatic crosslinks, as 
increases in these crosslinks have been associated with alterations in bones mechanical 
properties. Greater amounts of non-enzymatic collagen crosslinking have been 
associated with aging, CKD and diabetes.(67, 170) 
6.3.3 Bisphosphonates and Bone Quality 

Finally, in the bisphosphonate studies the initial gains in bone quantity might be 
offset by changes in bone quality that may have greater negative effect on bone’s ability 
to resist fracture. Initially, with bisphosphonate treatment there is an increase in bone 
quantity (as measured by DXA), which has a positive benefit on bone’s ability to resist 
fracture; however, this benefit has been shown to stabilize after about five years. (145, 146) 
The results from chapters 4 and 5 showed that bisphosphonate treatment reduces bone 
quality (via an abnormal mineral-to-matrix ratio) and thus diminishes the intrinsic 
mechanical properties of bone. Thus, it is possible to theorize that with longer duration 
of bisphosphonate treatments that bone quality abnormalities will have a greater 
negative effect on bone quality than the initial positive gains in bone quantity. This 
theory is illustrated in figure 6.2. This greater negative effect on bone quality might help 
explain the atypical fractures associated with prolonged bisphosphonate treatment. 
6.3.4 Beyond A BMD Scan 

To make bone quality a part of the everyday clinical workup, other methods 
beyond BMD scan are needed. In this dissertation, iliac crest bone biopsies were 
analyzed by histomorphometric analysis, FTIR, and nanoindentation. These methods 
allow for measurements of bone turnover and bone quality’s microstructural, material, 
and mechanical parameters. Recently, a few other studies have used finite element 
analysis (FEA) to measure bone’s mechanical properties(171) and histomorphometric 
analysis to measure the microdamage in bone.(172) Applications of these methods in the 
everyday clinical work-up will allow for a more complete assessment of bone quality. 

Future studies, however, should continue to look for non-invasive methods to 
measure bone quality. One such method is high-resolution peripheral quantitative 
computer tomography (HR-pQCT), which has been used to measure macro and micro-
structural bone quality parameters in patients with CKD and osteoporosis.(173, 174) FEA 
has also been applied to the 3-D images obtained from the HR-pQCT to measure bone’s 
mechanical properties.(174) There is, however, a drawback to HR-pQCT as it tells us 
nothing about the rate of bone turnover. 
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6.3.5 The Goldilocks Effect 

As stated earlier, the Goldilocks effect is when something must fall within a 
certain range, as opposed to reaching extremes. The results from this study suggest that 
bone needs an ideal amount of bone mineral, collagen crosslinks, and microarchitecture 
parameters to ensure that bone has the optimal ability to resist fracture. This effect is 
seen with bone mineralization as described earlier in section 1.3.2 (bone’s material 
parameters) and is shown in figure 1.5.(60)  

Ideal microarchitecture and bone quantity parameters are thought to be 
important as too little bone, excess separation, and insufficient trabecular thickness 
have all been associated with lower mechanical properties. Thus, it may seem optimal 
to have bone with extremely thick trabecular bone, or very little trabecular separation, 
which will result in a greater trabecular bone volume. This, however, would not be ideal 
as too much bone may result in alterations in serum calcium and phosphorus, as more 
calcium and phosphorus will be stored in the bone. Additionally, too much bone as seen 
in Sclerosing bone dysplasias can result in severe functional limitation; extensive pain; 
malformed or immobilized muscles, tendons or ligaments; and limb, and hand or foot 
deformity.(175) 

6.4 Conclusions 

In conclusion, both bone turnover and bisphosphonates altered bone quality; 
and the fractures seen in patients with normal BMD may be explained by a bone quality 
abnormality. The findings in this dissertation research highlight how alterations in the 
material and microstructural parameters of bone quality may help explain the overall 
decrease in bone’s ability to resist fracture in these pathologies beyond bone quantity.   
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Figure 6.1: Scale drawing of three cylindrical cross-sections with different outer 
diameters, fixed region length (L), but equivalent areal bone mineral density (BMD). Also 
shown are the corresponding (relative) values of volumetric BMD (vBMD), bone mineral 
content (BMC), the cross-sectional moment of inertia (CSMI), and the section modulus. 
BMC is not equivalent to bCSA (cross-sectional area excluding spaces occupied by soft 
tissue), but in a cross-section they scale linearly.(162)  
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Figure 6.2: Postulated ability of bone to resist fracture as a function of the duration of 
bisphosphonate treatment and changes in bone quality.  

Legend: + = Bone Quantity; - = Bone Quality (Mineral-to-Matrix Ratio);  

▪ = Bone’s Ability to Resist Fracture. 
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APPENDIX 

 

Figure A1.1: Permission of Reprint page 1 for Figure 1.3 
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Figure A1.2: Permission of Reprint page 2 for Figure 1.3  
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Figure A1.3: Permission of Reprint for Figure 1.4 

 



 

72 

 

 
Figure A1.4: Permission of Reprint for Figure 1.5 
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Figure A1.5: Permission of Reprint for Chapter 3  
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Figure A1.6: Typical FTIR spectrum of bone. Spectra were analyzed with use of the 
carbonate peak (indicating carbonate substitution into hydroxyapatite) between 850 
and 890 cm−1, the phosphate peak (mineral) between 900 and 1200 cm−1, and the amide 
I peak (matrix) between 1590 and 1720 cm−1. 
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Figure A1.7: Permission of Reprint for Figure 6.1 
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Table A1.1: Parameters of Bone Structure, Microarchitecture, Turnover, and Mineralization 

 Non-Low-BMD 

(Group 1, N = 25) 

P Value, 

1 vs. 2 

Low-BMD 

(Group 2, N = 18) 

P Value, 

2 vs. 3 

Controls 

(Group 3, N = 14) 

P Value, 

1 vs. 3 

Cancellous bone 
volume/tissue 
volume (%) 

20.9 ± 4.41 0.001 14.9 ± 4.13 0.01 20.1 ± 4.12 >0.1 

Trabecular separation 
(μm) 

429 ± 86.3 0.001 620 ± 242 0.01 428 ± 69.1 >0.1 

Trabecular thickness 
(μm) 

114 ± 23.4 >0.1 100 ± 17.8 >0.1 107 ± 23.9 >0.1 

Bone formation 
rate/bone surface 
area (mm3/cm2/yr) 

1.34 ± 0.98 >0.1 1.41 ± 1.33 >0.1 1.97 ± 0.99 >0.1 

Osteoid thickness 
(μm) 

10.3 ± 4.23 >0.1 9.73 ± 3.87 >0.1 9.08 ± 3.49 >0.1 

Mineralization lag 
time (d) 

40.3 ± 39.3 >0.1 31.2 ± 16.1 >0.1 47.0 ± 29.8 >0.1 

(mean ± one standard deviation) 

  



 

 

77 

Table A1.2: Parameters of Bone Mineral Quality 

 

Non-Low-BMD 

(Group 1, N = 25)* 

P Value, 

1 vs. 2 

Low-BMD 

(Group 2, N = 18)* 

P Value, 

2 vs. 3 

Controls 

(Group 3, N = 14)* 

P Value, 

1 vs. 3 

Collagen crosslinking ratio 4.12 ± 0.46 <0.001 3.58 ± 0.33 >0.1 3.60 ± 0.30 <0.001 

Mineral-to-matrix ratio 4.16 ± 0.39 >0.1 3.93 ± 0.61 >0.1 3.83 ± 0.44 >0.1 

Carbonate-to-phosphate 
ratio × 100 

1.04 ± 0.08 >0.1 1.03 ± 0.13 >0.1 1.09 ± 0.08 >0.1 

Crystallinity 0.88 ± 0.04 >0.1 0.88 ± 0.08 >0.1 0.89 ± 0.03 >0.1 

(mean ± one standard deviation) 
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Table A1.3: Bone’s mechanical properties in the non-low BMD group versus controls. 

  Non-Low BMD (n=9) Controls (n=12) 

Young's modulus (GPa) 16.0 ± 1.94 15.2 ±1.30 

Hardness (GPa) 0.62 ± 0.08 0.56 ± 0.06 

(mean ± one standard deviation) 
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Table A1.4: Bone’s mechanical properties as function of bisphosphonate treatment 

  No BP (n=9) Short-Term (n=8) Long-Term (n=8) 

Young’s modulus (GPa) 13.3 ± 1.4 14.5 ± 1.4 14.1 ± 1.4 

Hardness (GPa) 0.57 ± 0.04 0.59 ± 0.06 0.58 ± 0.02 

(mean ± one standard deviation) 
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