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ABSTRACT OF DISSERTATION 
 
 
 
 

SOLUTION AND SOLID STATE INTERACTIONS 
BETWEEN IONIC π-SYSTEMS 

 
Although attractive interactions between π systems (π-π interaction) have been 

known for many years, understanding of its origin is still incomplete. Quantitative 

measuring of π-stacking is challenging due to the weak nature of the π-π interaction. This 

dissertation aims at elucidating a quantitative conformational analysis by NMR ring 

current anisotropy of an organic compound capable of intramolecular π-stacking in 

solution and studying charge effects on the stacking of π-systems. This dissertation offers 

four contributions to the area. (1) A general approach to four-state, conformational 

analysis based on the magnetic anisotropy of molecules undergoing fast dynamic 

exchange is described. (2) Study unveiled the importance of charges in the conformation 

of a dication in the solution. (3) Novel aromatic salt pairs of triangulene derivatives with 

the delocalized cation-anion interaction were synthesized and studied. (4) Study unveiled 

ionic π-systems preferred face-to-face stacking due to strong cation-π and anion-cation 

attractions. 

A general protocol for the application of magnetic anisotropy to quantitative 

multi-state conformational analysis of molecules undergoing fast conformational 

exchange was suggested in the current study. The reliability of this method of 

conformational analysis was checked by the mass balance. VT-NMR was also conducted 

to study the enthalpic parameters. This technique can be further used to study canonical 

interactions such as ion pairing, hydrogen boning, and molecular recognition. 



In the current study, dependence of the probe conformations on the dispersive 

interactions at the aromatic edges between solvent and probes was tested by 

conformational distributions of the fluorinated derivatives (2b and 2c) of the probe 

molecule (1a). Solution and solid studies of these molecules put the previous conclusion 

drawn by the Cammers group in question. Current studies show that the dispersive 

interaction at the aromatic edge could not be the predominant force on the 

conformational changes in the probe molecule 1a during the fluoroalkanol perturbation. 

This study indicated that charges might be important in the formation of the folding 

conformations in the solution and solid state of 1a, 2b, and 2c. A contribution of this 

thesis was to prepare and study a conformational model that lacked charges. The 

previous molecules were charged.  

The solid-state structures of pyridinium-derived aromatic rings from the CSD 

(Cambridge Structural Database) were studied to investigate the π-π interaction between 

cationic π-systems in solid state. Novel aromatic salt pairs of triangulene derivatives with 

the delocalized cation-anion interaction were synthesized to study the π-π interaction 

between two aromatic rings that carried opposite charges. This study showed that the 

interaction between ionic π-systems can be enhanced by cation-π and anion-cation 

attractions. The stackings of these π-systems introduce more overlap, closer packing and 

stronger atomic contact than that of the solid states of comparable neutral species. 

Cation-π and anion-cation attractions are synergistic in aromatic salts.  

 

 KEYWORDS: Conformation analysis, Pyridinium-derived aromatic rings, 

Aromatic salt pairs, Cation-π interaction, Anion-cation attraction. 
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Chapter One 
Exploring conformational dynamics of π system by NMR 

 

Six compounds (1a, 1d, 2b, 2c, 2e, and 2f) were used in the current study. They 

are shown in Figure 1.1. Two of them, 1a and 1d, were synthesized previously by former 

members of the Cammers group(1,2). All others, 2b, 2c, 2e, and 2f, were synthesized 

during this research. Compounds 1a, 2b, 2c, and the reference compound

N,N’-[1,3-phenylenebis(methylene)]bis(2-phenylpyridinium) dibromide (1d) were used to 

probe the multi-state organic conformation in the solution. Conformational distributions 

of the probe molecules in different solvents and temperatures were quantitatively 

calculated using calculated chemical shift difference and experimental data from proton 

NMR studies. In this study, a general protocol for the application of magnetic anisotropy 

to quantitative multi-state conformational analysis of molecules undergoing fast 

conformational exchange was proposed. The mass balance was checked to inspect the 

reliability of this method of conformational analysis. Positive solutions for the equations 

under different conditions confirmed the reliability. VT-NMR was conducted to study the 

enthalpic parameters.  
 

NN
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R
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Hb Hc

Hb

2Br
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Hb Hc

HbR'
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1a: R=phenyl, 2b: R=2, 4, 6-trifluorophenyl;       2e: R’= phenyl, 2f: R’=methyl 
2c: R=pentafluorophenyl; 1d: R=methyl 

Figure 1.1 Charged compounds (1a, 2b, 2c, and 1d) and neutral compounds (2e-f). 
 

Also, 2,2’-biphenyl-α,α’-m-xylylene (2e) was synthesized to study the charge 

effect on the packing of the π system. Solid-state structures of 1a, 2b, 2c, and 2e were 

studied. The dications, 1a, 2b, and 2c, were packed intramolecularly face-to-face while 

the neutral compound 2e had no intramolecular π-stacking. Apparently, charges are 

important in the formation of the conformations in this family of molecules.   
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In the sections that follow a brief primer is offered about the interatomic forces 

involved in π-stacking (sections 1.1-1.2). Since this thesis is concerned with NMR 

conformational analysis, a very brief overview of some pertinent literature is offered 

(section 1.3). This work focuses on the synthesis and study of 2b, 2c, 2e, and 2f. 

Conformational analysis of molecules 1a and 1d were reported prior to the current work 

by the Cammers group. In section 1.3.5 below the previous conformational analysis of 

the Cammers group is described. The last portion of the document describes the current 

solution phase conformational analysis of hydrocarbon and fluorocarbon 1a, 2b, 2c, and 

1d collectively (section 1.4). This contribution is novel because it is the only quantitative, 

four-state NMR analysis in the chemical literature in which the analysis is based solely 

on chemical shift due to aromatic anisotropy of conformers that exchange rapidly on the 

NMR timescale. Corroborative solid-state studies conclude this section.  

After struggling to interpret the observations on an atomic level, it was realized 

that a neutral model was necessary. Molecules 2e and 2f were synthesized and studied 

(section 1.5). This study led to the conclusion in the preceding paragraph. The possible 

involvement of charge-enhanced π-stacking and/or solvent-dependent ion pairing is 

discussed.  
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1.1  π-π interaction and π-stacking 

1.1.1 π-π interaction, weak force on the level of van der Waals attraction 

The fact that there are attractive interactions between π systems (π-π interaction) 

has been known for many years. π-π interaction is one of the non-covalent intermolecular 

forces that are important for the stability of the proteins, DNA helical structure,(3,4) 

host-guest binding systems,(5-8) supramolecular self-assembly,(9,10) aggregation of 

porphyrin,(11-14) and the packing patterns in the crystal structures of aromatic molecules,(15) 

etc. Many papers have been published about π-stacking; however, there is still incomplete 

understanding of its origin. Quantitative measuring of π-stacking is challenging due to the 

weak nature of the π-π interaction. 

Benzene dimer has been used as the prototypical model for π-π interactions.(15-20) 

Two proposed lowest energy conformers of benzene dimer are: face-to-face, 

edge-to-center packing (FFEC); and T-shape, edge-to-center (EF); as shown in 

Figure1.2.(20) Among these, the FFEC-dimer is a stacked arrangement. The other stacked 

arrangement, which has been mentioned in many papers, is face-to-face, center-to-center 

(FFCC). FFCC has slightly higher energy then FFEC.  
 

3.3-3.8 A

   Face-to-Face,                            Face-to-Face, 
center-to-center (FFCC)          edge-tocenter (FFEC)

π stacking

T-shape, edge-to-face 
     (EF)  

Figure 1.2. Some conformers of benzene dimer. FFEC and EF are the most stable 
dimers. 

 
Many quantum methods have been used to calculate the π-π interaction energy 

of benzene dimers. Different levels of theory showed different minima energy results. 

Most of them are between 2-3 kcal/mol,(16-21) which is on the level of van der Waals 

attraction. The calculation by Tsuzuki showed that the FFEC is the energy global 
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minimum with -2.48 kcal/mol with the center of the two benzene rings offset by 1.8 Å 

and vertically separated by 3.5 Å.(20) The energy of EF is higher by 0.02 kcal/mol, within 

calculational and experimental error. The FFCC has the highest energy (-1.48 kcal/mol) 

of the three due to the e-/e- repulsion (Figure 1.3). Simple neutral π-stacking is commonly 

referred to the non-covalent interaction between the approximately parallel stacks of 

neutral aromatic planes with ~ 3.3–3.8 Å interplanar distances,(15) basically the FFCC 

and FFEC π-π interactions discussed above. 
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Figure 1.3. Calculated energy of FFCC, FFEC, and EF π-π interactions.  
 

       Amino groups with aromatic rings are found in the DNA and protein structures. 

Most of these aromatic rings are involved in the π-π interactions in native conformations 

of these biopolymers, through either FFEC or EF patterns. None of them have FFCC 

geometry.(22-24) Although π-π interactions are weak, they are very important for protein 

structural stability.(3) The contributions of π-π interactions to the stability of proteins or 

other organic compounds in solution have been investigated. The pair of Phe-Phe side 

chain contributed -0.55(25) kcal/mol in aqueous solution in the β-hairpin developed by 

Gellman,(26) while the average energy of the EF aromatic interaction in the zipper 

complex is -0.3 kcal/mol, which changed with the substitution groups on the rings (from 

0.29 to -1.1 kcal/mol).(27) More recently, circular dichroism studies showed the stability 

energy of the Phe-Phe π-π interaction in monomeric α helices can get up to -0.8 

kcal/mol.(28)   
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1.1.2 Simple π-stacking 

π-stacking commonly refers to the non-covalent π-π interaction between 

aromatic groups separated by ~ 3.3–3.8 Å interplanar distances,(15) basically the EF, 

FFCC and FFEC π-π interactions discussed above. The possible molecular orbital 

interaction between stacked aromatic rings invoked great interest in the investigation of 

π-stacking.(29) Many papers have been published to investigate the π-stacking.(30-38) Many 

models have also been proposed to explain the stacking. 

 The packing of benzene and hexafluorobenzene is noteworthy because none of 

the π-stacking in proteins take the FFCC packing style.(22,23) In the mixed 1:1 

benzene/hexafluorobenzene crystal, the benzene and hexafluorobenzene are packed 

alternately along the C6 axis of the benzene ring, using a nearly face-to-face, 

center-to-center (FFCC) packing pattern.(39) The physical properties of the 

benzene/hexafluorobenzene mixture are quite different from the pure benzene or 

hexafluorobenzene. The melting point of C6F6/C6H6 is 24 ºC, which is much greater than 

that of C6F6 (4 ºC) or C6H6 (5 ºC).(40) This means the interactions between C6F6/C6H6 are 

much stronger than those between the pure C6F6 or C6H6. The C6F6 can be mixed and 

co-crystallized well with an equal amount of C6H6 despite the fact that liquid 

perfluoroalkanes form separate phases with analogous hydrocarbons. The FFCC packing 

pattern is probably due to the large quadrupole moments with opposite signs between 

hexafluorobenzene and benzene,(39,41) which will be discussed later. 

1.1.3 Canonical intramolecular interactions 

Non-covalent interactions between molecules, which involve several forces, 

such as: Van de Waals interaction, hydrogen bonding, solvophobic effect, electrostatic 

interactions, π-π interactions, are very important to the stability of the association inside 

the protein structures and drug design.(16) Some of the interactions are discussed as 

follows: 
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1.1.3.1 Van der Waals interaction  

Van der Waals interaction is an intermolecular attraction that involves the 

dispersion forces, dipole-induced dipole, and dipole-dipole attractions. The two 

important distance dependences are 1/r3 and 1/r6. The dispersion force is a weak 

intermolecular force that arises from the attraction between transient dipole moments of 

molecules. Sometimes it is also called London dispersion forces. The dipole-dipole force 

is the attraction between molecules that have dipole moments. The van der Waals 

interaction is typically a weak interaction having a value of only a few kcal/mol. For 

example, the magnitude of the dispersion energy for two methane molecules separated by 

0.3 nm is approximately 1.4 kcal/mol.(42)  

1.1.3.2 Hydrogen bonding  

Typically this happens when the positively charged hydrogen atom connected to 

an atom of high electro-negativity, such as: oxygen and nitrogen atoms, comes close to 

another high electronegative atom. It’s a strong interaction and sometimes can get 5-10% 

of the energy level of the covalent bond (e.g. the hydrogen bonding energy for water 

molecules is about 5.6 kcal/mol(43)).  

1.1.3.3 Solvophobic effect 

The solvophobic effect happens when there is a large difference of polarity exists 

between solvent and solute. The solutes tend to aggregate instead of dissolving in the 

solvent. The hydrophobic effect is the solvophobic effect of the apolar solute in the 

aqueous media. The thermodynamic factors of the hydrophobic effect are complex. 

According to the traditional theory, for the small solute at low temperature (room 

temperature or below), the hydrophobic effect is entropically driven; the small solutes 

don’t break the hydrogen bonding of the surface waters. Water tends to form cages 

around the apolar solute. The surface of the cage is more ordered than the bulk solution. 

When the solutes aggregate, the surface water is released into the bulk solution and the 

system is more chaotic (has larger entropy value).(29,52)   
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1.1.3.4 Pauli repulsion  

When two molecules get very close with each other, the electron clouds of each 

molecule start to overlap. There will be repulsion between the electron clouds. This is 

called Pauli repulsion which will be dominant when the molecules are closer than the van 

der Waals distance.(16)  

1.1.3.5 Charge transfer  

A charge transfer or electron donor–acceptor effect is a kind of coulombic 

attractions that happens between two molecules which can form an excited 

charge-separated state when mixed together. Normally, this is a very small 

interaction.(44-47) 

 Except the hydrogen-bonding, all these non-covalent interactions are more or 

less involved in the π-π interactions. Compared with the hydrogen-bonding, the π-π 

interaction, which is the overall interaction of several non-covalent effects, is a kind of 

very weak force on the level of van der Waals attraction, most of which are between 2-3 

kcal/mol.(16-20) Yet, it is important for the stability of bio-structures, such as proteins. 

London dispersion interactions are considered to be the major contribution of 

the stabilization energy of π-π interactions between aromatic rings while other 

components, such as quadrupole moment, electrostatic, Pauli exchange/repulsion 

interactions, determine the geometry of the π-π interaction. In aqueous solution, the π-π 

interaction is further affected by additional hydrophobic effects.(29) The surface overlaps 

of the aromatic systems are very important to the magnitude of London dispersions of π-π 

interactions. 
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1.2  Models used to explain the π-π interactions 

Many papers have been published discussing the molecular forces involved in 

π-π interactions. Several hypotheses have been proposed, such as: solvophobic model, 

electron donor-acceptor or charge transfer model, quadrupole interaction model, atomic 

charge model, and electrostatic model. 

1.2.1 Solvophobic model  

Solvophobic model explained the π-stacking phenomenon in solution by 

favorable desolvation of aromatic groups. Different from the traditional theory, in which 

the hydrophobic effect is entropically driven, the benzene dimer and pyrene-cyclophane 

π-π interactions showed large enthalpy changes.(48,49) Monte Carlo calculation showed 

that water structure near the surface of benzene dimer is only slightly perturbed by the 

presence of the benzene molecule.(50) Beveridge et al. showed that there are around 23 

water molecules in the first solvation shell of benzene in water, two of them located 

above and below the center of the benzene ring, with the hydrogen atom extended into 

the π cloud.(51) Severance et al. calculated the minimum of free energy for the benzene 

dimer in different solvents. They found that the binding of the dimers was enhanced by 

solvent polarity. The free energy for benzene was -0.4, -1.0, and -1.5 kcal/mol in benzene, 

chloroform, and water solutions respectively.(52) Diederich et al. studied the inclusion 

complex of macrobicyclic cyclophane and pyrene in water and 17 other organic solvents. 

They found the stabilities of the complexes decreased with decreasing polarity of the 

solvents. The most stable form is in water. Because the complex used nearly the same 

geometry in these solvents, they suggest that these differences in binding strength results 

from solvation effects, which were driven by enthalpic change. For the large, nonpolar, 

planar solutes, the interactions between the solvents and solute surface are different from 

those between the bulk solvents. Polar solvents preferred to interact with the bulk more 

than with the apolar solute surface. When forming complexes, solvent molecules that 

interacted with the solute surface were released to the bulk solvents and enthalpy was 
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gained. For example, in water solution, water-water interactions inside the bulk solvent 

get more hydrogen bonds. Part of the hydrogen bonds of the water around the solute is 

broken by the planar aromatic solutes. When these water molecules are released from the 

solute surfaces to the bulk during the complexation step, enthalpy is minimized.(49-52) In 

polar solvents, the solvation was characterized by large enthalpy changes (for example, 

-20.0 kcal/mol in TFE solution).(49) This is different from the traditional hydrophobic 

effects.  

1.2.2 Electron donor-acceptor or charge transfer model 

The electron donor-acceptor or charge transfer models have been used for the 

molecular design of organic conductors.(53) Charge transfer happens when one molecule 

with low ionization potentials (IP) is packed close to the other molecule with high 

electron affinity (EA). In organic conductors, charge transfer can happen between 

electron donors and acceptors in conductive crystals lead to charge transfer complexes, in 

which donor and acceptor molecules can bring partial positive and negative charge. 

Studies of the guest-host complex between naphthalene with different types of electron 

withdrawing and/or electron donating groups and cyclophane host showed that these 

aromatic complexes were not solvophobically controlled, but basically electron 

donor-acceptor (EDA) interactions due to the similar behaviors of the complexes in 

methanol, water-methanol and DMSO solutions.(54) Similar models also have been used 

to explain the π-π stacking phenomena in cyclophane-arene inclusion complex(55) and the 

complex between a pyrene-based tweezer molecule and macrocyclic ether-imide-sulfone 

molecule.(56) Calculation showed that interaction energy in an electron donor-acceptor 

(EDA) complex may include electrostatic interaction, charge-transfer interaction, 

polarization interaction, and dispersion energy.(55) Sanders showed that the EDA or 

charge transfer models are not good ones for the regular π-π interaction, although these 

models can very well explain some specific cases of π-π stacking.  
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1.2.3 Quadrupole interaction model 

The nearly face-to-face, center-to-center (FFCC) packing of mixed 1:1 

benzene/hexafluorobenzene crystals was explained by the quadrupole interaction 

model.(39,41) The quadrupole moment was used to measure the distribution of charge 

within a molecule, relative to a particular molecular axis. In benzene, due to the six C 

(δ-)--H (δ+) bond dipoles and high degree of symmetry present in this molecule, this 

molecule can be treated as a charge-separate molecule with negative charges above and 

below the center of the benzene plane and the balancing positive charges surrounding the 

edge of ring. This would give the negative quadrupole moment along C6 axis of the 

benzene ring. As for hexafluorobenzene, it has six polar bonds C (δ-)--F (δ+) with the 

opposite direction to those of benzene. So, the quadrupole moment of hexafluorobenzene 

is opposite to that of benzene,(39) as shown in Figure 1.4. The negative and positive 

quadrupole moment of benzene and hexafluorobenzene have been checked by experiment, 

as -29 and 31.7 x 10-40Cm2.(58) The quadrupole moment of the trifluorobenzene (close to 

zero) confirmed the bond additivity character of this molecular property.(41,58) Quantum 

calculation showed that the electrostatic interactions provide less then ~15% to the total 

van der Waals π-π interactions. This is due to atomic interaction and related directly to the 

overlap areas.(59-61) The dispersive van der Waals attractions are the main energy sources 

for the typical π-π interaction, while the electrostatic interactions related to quadrupole 

interactions determine the orientation of the stacking.(29) 
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Figure 1.4. Quadrupole models of C6F6 and C6H6.
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1.2.4 Atomic charge model 
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Figure 1.5. Atomic charge model. 

 

Hamilton and co-workers found that diester macrocycle Y forms a strong 

complex with 1-butylthymine X, ∆Gº = -3.75 kcal/mol. The complex used FFCC π-π 

stacking patterns in which naphthalene of Y is positioned directly above pyrimidine of X 

with a distance of 3.54 Å, but the packing pattern of compound Z with X is different. Z is 

the same as Y, except that the carboxyl groups of Y were replaced by butoxyl groups. 

The association energy is weaker, ∆Gº = -2.92 kcal/mol, and naphthalene of Z is almost 

perpendicular to the pyrimidine of X (EF packing pattern). Hamilton used the atomic 

charge model to explain the packing difference. In this model, the π-π interaction comes 

from the uneven charge distribution of the π systems shown in Figure 1.5. Electrostatic 

complementarity between two rings is very important. If the partial charges on one ring 

can be aligned with the opposite charges of the other rings, strong face-to-face π-π 

stacking will be formed. Otherwise, edge-to-face interaction will be preferred. As shown 

in Figure 1.5, in XY complex, NC2-TO2, NC4-TNl, NC5-TC5, NC7-TO4, NC9-TN3 are 

pairs of oppositely charged atoms on different rings, which can be packed exactly 

face-to-face with each other in the FFEC pattern. Changing the carboxyl groups of Y to 
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butoxyl groups will change the charge distribution pattern of the naphthalene ring which 

in turn will change the packing pattern of the complex XZ.(62)    

1.2.5 Electrostatic model 

Sanders and Hunter investigated the π-π interaction between porphyrin 

molecules in solution and solid state by experiment and calculation. They showed that the 

π system can be viewed as a sandwich structure with positively charged σ-framework in 

the middle and two negatively charged π-electron clouds on the top and bottom of the 

ring. Each carbon atom in the π-system was treated as +1δ charge at the nucleus center 

and two -δ/2 charges at a d distance, which was determined by the experimental 

quadrupole moment of benzene as shown in Figure 1.6.   
 

    

+ charge

- charge

- charge

-δ/2

-δ/2

+δ
d

 
Figure 1.6 Electrostatic model of benzene ring. 
 

The attraction of the σ backbone to the π electron determines the orientation of 

the stacking and the van der Waals attraction of the aromatic rings decided the magnitude 

of the interaction energy. 

 Using this model, they indicated that the σ-π electrostatic effect is the major 

contribution to the π-π stacking pattern, while the van der Waals interactions and 

solvophobic effects are minor ones. It is σ-π not π-π electrostatic effect that determines 

the π-π stacking pattern (14) as shown in Figure 1.7.   
 

EFFFEC  
Figure 1.7 Electrostatic models for π-π interaction. 
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The basic molecular forces that are involved in the typical π-π stacking are: van 

der Waals, electrostatic, and/or quadrupole. These three forces contribute to the total 

energy of the π-π interaction, with each having different contribution in different 

models.(14,63)  

1.3  Exploring conformational dynamics of π system by NMR 

Conformational isomerism is important in the biomolecule studies. It is also 

useful in the drug development. Many spectroscopic techniques have been used in the 

conformational study of organic and biological molecules. Compared with others, NMR 

methods are more powerful. In NMR, coupling constants, integration, and NOE can be 

very useful. Analyzing these data can give incisive answers about the molecular 

conformation when, (1) the exchange of conformers (two or three) is slower than the 

NMR time scale, (2) there is only one stable conformer.(64) However, for those multi-state 

exchanges that are faster (e.g. on the NMR time scale), it will be difficult to determine 

quantitatively the conformational distributions.  

In the current study, a hydrocarbon and two fluorocarbon derivatives of model 

molecules (1a, 2b, and 2c) together with a reference molecule (1d) have been synthesized 

to probe the rapid, multi-state organic conformation of π systems in solution. Compound 

1a and 1d were first synthesized by former group members(2). Chemical shift differences 

between model and reference molecules due to the influence of diamagnetic anisotropy of 

aromatic groups were calculated. Experimental data of proton NMR studies were also 

collected. A general protocol using these data to quantitative analyze multi-state 

conformational of molecules undergoing fast conformational exchange was proposed 

1.3.1 Chemical shift and shielding 

A nucleus carries charge. When it spins, it can possess a magnetic moment along 

the spinning axis, Figure 1.8. The orientation of this microscopic magnetic moment will 

be separated into different energy levels when the nucleus is placed in a uniform 

magnetic field. The total number of the orientation is determined by 2I +1, where I is the 



 14

spin number, the intrinsic property of a nucleus. Nuclear magnetic resonance or NMR 

happens when the nuclei of some atoms are put in a static magnetic field and exposed to 

a second electromagnetic radiation in the radio frequency. 
 

magnetic dipole

 
Figure 1.8. Magnetic dipole generated by nuclei spins on the nuclear axis. 

 

For hydrogen atom, the value of I is 1/2. There are two different spin directions 

of the protons, +1/2 and -1/2. The energy of protons with different spin directions will be 

different as shown in Figure 1.9. The Nβ and Nα are the numbers of the protons in each 

level. Nβ > Nα according to Boltzmann distribution. The energy difference of these two 

spin directions is based on the Equation 1.1.  
 

∆E =
hγ
2π

B0
 

 
Equation 1.1. Energy difference of protons in magnetic field. h is Planck constant, γ is 
magnetogyric ratio, an intrinsic nuclear constant. B0 is strength of the magnetic field.  
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Figure 1.9. Energy difference of proton in a magnetic field B0. 

 

Under a certain magnetic field strength B0, when the introduced radiofrequency 

satisfied Equation 1.1, the proton will absorb the energy, which results in a spectrum, 

nuclear magnetic resonance spectrometry.  
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According to Equation 1.1, an isolated proton can only absorb certain energy of 

radiofrequency under certain B0 and give out only one peak, chemical shift, in NMR. 

Fortunately, there exists the shielding and deshielding in the real world. These effects 

apply a small magnetic field to the protons, same as (deshielding) or against (shielding) 

the stationary magnetic field. The direction and magnitude depend on the different 

chemical environments of the protons. The real magnetic field strength applied to the 

protons should be modified by a shielding constant in Equation 1.1, as shown in 

Equation 1.2, where σ is the shielding constant.  

 

∆E =
hγ
2π

B0 (1 - σ)
 

Equation 1.2. Different energy differences of different protons in magnetic field. 
 

The shielding or deshielding effect creates differences in the absorption energy 

and makes different chemical shifts for different protons. In a molecule, a proton is 

always shielded by an electron cloud. The density of the electron cloud varies with 

different chemical environments, which confers various chemical shifts to the different 

protons.   

1.3.2 Ring current effects in benzene        

For benzene ring protons, there is another kind of shielding or deshielding called 

the “ring current” effect, which exerts a large deshielding effect on the benzene ring 

protons. Figure 1.10 shows the effect.  
 

B0B0

Induced magnetic field

Ring current

 
Figure 1.10. “Ring current” effect. 
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When the ring is perpendicular to the applied field B0, circulation of valence 

electrons will be induced by the applied field. This induced circulation of valence 

electrons generates a magnetic field that opposes the applied field above and below the 

ring. 

The ring current effect of benzene is directly connected with the different position 

of the proton to the ring. There is a connection between the chemical shift differences 

(between model and reference molecules) and the proton position to the ring. The change 

of proton chemical shift reflects the change of proton position.  

1.3.3 NMR shielding can be accurately calculated 
1H NMR shielding differences between model and reference molecules, due to 

diamagnetic anisotropy of aromatic groups, can be accurately calculated. Density 

functional theory at the level of B3LYP/6-311+G (2d, p) was considered to be the best 

one.(81) 

This is a relatively new fact. This was not the case when Karabatsos made the 

following statement in 1970:  
“Since the chemical shift of Ha in the various conformations is neither known 

nor even understood very well as yet, [the changes in the chemical shift of Ha] cannot 
presently be used for quantitative conformational analysis . . .” (65)  

Karabatsos went on to say that for the reason above, coupling is more 

important than chemical shift in conformational analysis.(65)  

Analyzing coupling constants can sometimes give quantitative results of the 

multi-state, conformational distributions for appropriate structures as shown in Figure 

1.11.(66-68) For example, Cimino applied the coupling-based conformational analysis to 

characterize multiple conformer equilibria of sapinofuranone A.(66) Ab initio quantum 

mechanics and vicinal H-H NMR couplings were used by Kent to investigate 

conformational equilibria of butanedinitrile due to solvent effects.(67) Belostotskii used ab 

initio and molecular mechanics calculations to calculate the J coupling of the alkyl- and 

Ph-substituted 3-piperideines to qualitatively estimate the conformation of these 
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compounds.(68) However, chemical shift differences due to the coupling and the aromatic 

diamagnetic anisotropy(69) are often used for the qualitative studies of the conformational 

changes.(70-80) 

 

O
O

OH

NC CN NH
Ref. 63 Ref. 64 Ref. 66
Sapinofuranone A  

Figure 1.11. Models for J-coupling calculations. 
 

1.3.4 Conformation changes NMR spectrum 

 Proton chemical shifts are closely related to the different chemical 

environments of the protons. Any change that results in the changing of the proton’s 

environment will change the NMR chemical shift. Solvent,(82) temperature, or specific 

molecular associations(83) can change conformation. The changing of the conformation 

will cause the different shielding or deshielding effects to the protons, and change the 

NMR spectrum. If we accept the facts above, NMR calculation and real spectra could be 

used to quantitatively determine conformational states of molecules in solution.  

1.3.5 Models of π system for quantification of conformations in solution state 

Many minimal models have been built to investigate the conformation 

isomerism of π systems in solution state by the NMR method and tried to explain the 

origins of the isomerism, which will be useful in the study of biological molecules and 

drugs development.(84-89,1,2) All these models can be separated into different groups 

according to the total isomerism that is described.  
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1.3.5.1 Two-state models 
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Figure 1.12 Two-state systems. 
 

Wilcox used a serial of the derivatives of N,N disubstituted benzodiazepine, 

model a in Figure 1.12, to investigate the origins of the preference for edge-to face 

folding of a in the solid state. They found that compound a had two folding states in 

CDCl3, which can be quantified by NMR. There was about 0.5 and 0.3 kcal/mol energy 

difference between the two states of the isopropyl esters and phenyl esters for all 

substituents. The insignificant difference in substituent effect questions the theory that 

the orientation of solid state is dominated by electrostatic forces. They concluded that 

London dispersion forces between aryl groups are the driving force.(85,86) 

Compounds of b models were studied by the Gellman group through NMR and 

XRD. The dinaphthyl compounds, which showed edge-to face in solid state, were 

compared with the mononaphthyl carboxylates for the upfield shifts in the aromatic 

region in aqueous, CDCl3, and C6D6 solutions. Due to the similarity of the di- and 

mononaphthyl carboxylates in the NMR upfield area, they concluded that the upfield 

shifts are due to random conformational motion instead of the hydrophobic collapse.(87)  

Another minimal model, compound c, was also studied by the Gellman group. 

The tertiary amide provides slow rotation for NMR observation. Effects of different 

substitution groups were compared through NMR studies on the Gibbs free energy 

needed for the transformation from E state to Z state. In E state, the phenyl group is at the 
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same side as the naphthyl group to form naphthyl-aryl clustering, while in Z state, these 

two groups are on different sides. The result showed that the preference of the clustering 

in phenyl over cyclohexyl substitution was due to the intrinsic affinity of aromatic 

groups.(88) 

All these models are two-state systems. Most of them are hindered systems of 

large energy difference between two conformations; this decelerated the exchange rate to 

the NMR scale and separated the system into two states. Only folded versus non-folded 

states are defined by these systems. Gradual changes of the models in solvent are needed 

for clear description of the interactions behind the affinity of the π system and the causes 

of the isomerism. These models can provide more information of the π-π interactions in 

the π systems which will be helpful in interpretation of the π-π interactions. 

1.3.5.2 Three-state model of previous work of the Cammers group 

Before I started this project, Cammers et. al. had demonstrated workability of 

the concept that calculated NMR spectra can be used to describe the conformational 

distribution of a molecule.(1,2,89,90) In this previous work, the Cammers group synthesized 

compounds 1a and 1d. Compound 1d was used to correct for the effect of solvent on the 

chemical shift of 1a. After correction, the resultant difference in chemical shift between 

1a and 1d could be assumed to be due to the effect of conformational difference only. 

The three-state model developed by the Cammers group(1,2) provides much 

conformational information that can be described by NMR chemical shifts. The 

methylene tethers between the central phenyl ring and the phenylpyridine moieties allow 

the two phenyl rings on the end to move easily above and below the central m-xylylene 

ring. This easy motion results in the dynamic exchange of the different conformations, 

which are very sensitive to perturbations by the surrounding solvent, in NMR time scale.  

In compound 1a the chemical shifts of the protons Ha, Hb, and Hc are different. 

This difference is due to the 1,3-disubstitution of the xylyl ring and the ring current effect 

of the phenyl rings. Proton Ha is the most sensitive to conformational changes among the 
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three. The unique chemical shifts of these protons can provide much information about 

molecular conformations, which will make quantification of conformational changes by 

means of 1H NMR possible. 

Unfortunately, the 1H NMR spectrum cannot provide enough information for 

the simultaneous analysis of all three rings in the structure. In its previous work, the 

Cammers group made the simplifying realization that the conformation of 1a is 

composed of two half-structures through Cs symmetry and that, because of this, the entire 

three-ring system could be treated as the sum of two half-structures of two-ring systems. 

This simplifies the analysis considerably.  

In the previous studies of the Cammers group, a three-state model was applied 

to describe the conformational behavior of 1a through the conformational search of the 

Monte Carlo program. In the three-state model, two phenyl rings on the ends of the 

molecule occupy three different spaces of the central phenyl ring: front (cluster, C), top 

(face-to-face, F) or back (splayed, S)(1). C and F are stacked conformers that include 

interaction between three phenyl rings. Some examples are shown in Figure 1.13, in 

which conformations of three-ring systems are shown as combinations of two two-ring 

systems. 
 

NN
Ha

Hb Hc

Hb

2Br

       
1a          CC                FF            FS 

Figure 1.13. Model 1a and some three-ring system conformations from conformational 
search in previous study of the Cammers group. 
 

The Cammers group previously calculated the shielding differences between the 

three symmetry-unrelated protons of 1a (Ha, Hb, and Hc on the central phenyl ring) and 

those of 1d due to the diamagnetic anisotropy of the terminal phenyl rings by means of 
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density functional theory (see Figure 1.13). These differences in calculated values for 

chemical shifts in 1a versus 1d in C, F, and S states were used in three equations to 

calculate the distribution of these states for molecule 1a. The equations include the 

experimental chemical-shift differences of Ha and Hb between the molecules of 1a and 1d. 

In the studies described above, ab initio calculations of chemical shifts, 

modeling, and NMR experiments were used together to provide a way to calculate the 

relative conformational populations from NMR data. This combination of techniques was 

used to calculate the distribution of the three states of the molecule 1a in 

solution. Molecule 1a was perturbed in aqueous solution with low concentrations of 

fluoroalkanol and alkanol cosolvents to study the solvent effects on π-stacking. Variable 

temperature (VT) NMR was also conducted to calculate the entropic and enthalpic 

contributions to conformational stability. Solvent accessible surface areas (SASA) of 

different conformers were calculated to explore the different exposure to bulk solvent of 

the hydrogen atoms on the carbohydrate model in different conformers. The results were 

used to understand hydrophobic effects on π-stacking.  
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Figure 1.14 Examples of perturbation of 1a in aqueous solution with fluoroalkanol and 
alkanol cosolvents in previous study of the Cammers group. 
 

The results of the Cammers group study in Figure 1.14 showed that the 

conformer (C), which has the least hydrogen atom SASA, was most stable when 
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fluoroalkanol was used as cosolvent; the conformer (F), which has the most hydrogen 

atom SASA, turned out to be most stable while alkanol was cosolvent. The 

thermodynamic results showed that the free energy change of F state (∆GF) from alkanol 

to fluoroalkanol was most dramatic. This free energy change was determined by the 

enthalpy change (∆HF) of the F-conformer.   

The following conclusions were drawn from the Cammers group’s studies(1,2):  

1) The dication folding of aromatic compound 1a is due to π-stacking 

interactions of the phenyl rings and the xylyl ring, which will be largely 

perturbed by the fluoroalkanol cosolvents. The C conformer is more 

favorable in the fluoroalkanol perturbation than the F conformer, while 

the F is more favorable in alkanol cosolvents. This is because the C 

conformer has smaller SASA and hides more hydrogen atoms from the 

less enthalpy favorable C-H bond C-F bond interaction. 

2) The large enthalpy change (∆HF) of 1a from alkanol to fluoroalkanol 

can be explained as follows. In the case of the fluoroalkanol solvent, the 

C-H bonds of the solute interact only weakly with the C-F bonds of the 

solvent.  This is due to the nonpolarized state of the C-F bonds. In the 

case of the alkanol solvent, the C-H bonds of the solute interact 

favorably with the C-H bonds of the solvent, because the C-H bonds are 

relatively polarized.  

1.4  Quantitative four-state conformational analysis  

Compounds 1a and 1d were used in previous research, described above, in 

which ab initio calculations, molecular modeling and NMR experiments were used  

together to quantify multi-conformer, fast exchange in solution.(1,2) My project was to 

inspect the reliability of this method and challenge the previous conclusions. For my 

study, compounds 2b and 2c were synthesized. Differences in the values of chemical 

shifts of 1a, 2b, and 2c versus 1d were calculated. Experimental data of proton NMR 
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 1a                  C            F             S 
Figure 1.15. C, F, and S conformers of 1a, 2b, and 2c, the Ha, Hb, and Hc are shown in 
1a. Only two rings are show, the pyridine rings, H and/or F atoms are omitted for clarity. 
In each conformer, the ring with Ha, Hb, and Hc is xylyl ring while the other ring is 
terminal phenyl ring. 
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studies were also collected. These data were combined to quantify the conformational 

distributions in different solvent for compounds 1a through 2c. VT-NMR was also 

conducted to acquire thermodynamic parameters to study the solvent effect on the 

conformational change. The corresponding neutral 2,2’-biphenyl-α,α’-m-xylylene (2e) 

was also synthesized to probe the charge effect on the packing of the π system. 

1.4.1 Conformational search  

The conformational search of minimal conformational models (1a, 2b, and 2c) 

for multiple state analysis were conducted with Monte Carlo conformational searching in 

MacroModel 8.1 program using the AMBER* force field and the CHCl3 as GB/SA 

solvent.(91,92) Microstates with minimal structural and energetic differences were grouped 

into macrostates. In former studies, the conformers that were produced were grouped into 

three macrostates, C (cluster), F (face-to-face) and S (splayed), which are shown in 

Figure1.15. Conformers C and F are stacked conformations because the phenyl rings 

interact with the xylyl ring. The S conformers are unstacked because the dissociation of 

all aromatic carbon rings. In current study, C and F states were defined similarly as the 

previous ones. However, two S states were found to be not at the same energy level due 

to fluorine substitution. So, four states instead of three states were defined in the current 

study. They are C (cluster), F (face-to-face), See (splayed, edge-to-edge), and Sef 

(splayed, edge-to-face).  
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  C state is the simplest case in molecules 1a, 2b, and 2c. There is only one single 

conformer of C state for each model, as shown in Figure 1.16. When both phenyl rings 

are in the C state, the three aromatic rings of 1a, 2b, and 2c will contact. In this model, 

both of the phenyl rings will be in front of Ha (Figure 1.16). Thus, three all-carbon rings 

are clustered together. In C state, the chemical shift value of the proton Ha is more 

upfield than that of the Hb, since Ha is almost on top of the phenyl rings.  

In F states, the phenyl rings are on the top and below the xylyl ring. Both 

phenyl rings can interact with the xylyl ring, but they do not contact with each other. Due 

to the mobility of the phenyl rings, three conformational microstates were used to define 

the F state. In two of these, the phenyl rings in 1a, 2b, and 2c were on top of Ha and Hb 

(Figure 1.16), respectively. For the third microstate, the phenyl rings were in front of Hb. 

However, in the conformer F, the three aromatic rings will not contact together. These 

three microstates have similar energies according to the molecular modeling. They will 

have similar behaviors. The chemical shift values of F state in 1a, 2b, and 2c should be 

the average of that of these three states.  
 

         

 
  C and F microstates, stacked conformations 

 
S microstates, unstacked conformations 

 
Figure 1.16. Two-ring microstates of the C, F, and S states. 
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The difference of the current study with the previous one is that two S states 

were found to be not at the same energy level. When the phenyl rings of 1a, 2b, and 2c 

are on the different sides of the xylyl ring, facing Ha or Hb, the energies of these two S 

microstates should be different (1S and 2S). In each of these two states, there exist two 

conformational microstates due to the different orientations of the phenyl rings to the 

xylyl rings (1See-2Sef in Figure 1.17). In the See states, the phenyl rings and the xylyl 

rings are packed edge-to-edge. While in the Sef states, the phenyls pack face-to-edge 

with the xylyls. Because the energy difference in the EE and EF packing patterns, See 

and Sef states should not be at the same energy level.(93) Thus, four chemical shifts value 

of these microstates need to be averaged to calculate the chemical shifts of S state. 

Another thing need to be careful about is that the microstates of S of 1a, 2b, and 2c are 

not identical because the size of the fluorine atom is different to that of the hydrogen 

atom. Because the fluorine atom is much larger, in microstates 1See and 2See, when the 

hydrogen atoms on the phenyl ring are substituted by fluorine atoms, Ha and Hb will be in 

the van der Waals radius of one fluorine atom in molecules 2b and 2c due to the 

difference in the C-F and C-H bond length. The dihedral angle of the biphenyl need to be 

changed to removed these steric interactions. 

 

 
 

Figure 1.17. Four microstates of the S state. 
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1.4.2 Calculation of chemical shift differences of 1a, 2b, and 2c versus 1d in four 

states 
 

Table 1.1. Chemical shifts differences of 1a, 2b, and 2c versus 1d. Values are in ppm. 
Values marked with an asterisk (*) were substituted by 0 due to overestimation in 
gas-phase calculation. In the first column, a1a is the proton Ha of the molecule 1a (shown 
in italic). 

 
 C    F See Sef 

a1a  1.7 0.52 -1.61 0.14 

b1a  0.19 1.26 -0.67 0.22 

c1a  0.07 0.4 0.27 0.25 (0)* 

a2b  1.49 0.39 -0.55 0.16 

b2b 0.11 1.03 -0.17 0.2 

c2b  0.05 0.25 0.1 0.17 (0)* 

a2c  1.52 0.36 -0.97 0.2 

b2c  0.07 0.97 -0.39 0.21 

c2c  0.03 0.3 0.09 0.20 (0)* 
 

The chemical shift difference of Ha, Hb, and Hc between the molecules (1a, 2b, 

and 2c) and the reference molecule (1d) are caused by the different diamagnetic 

anisotropy effect of phenyl rings in 1a, 2b, 2c, and 1d. To each proton, these differences 

are the total effects of the conformer contributions (C, F, S states), which are the average 

effect of all the microstates. The magnetic contributions of conformers (C, F, S states) to 

the difference in the chemical shifts of molecules (1a, 2b, and 2c) versus reference 

molecule (1d) are shown in Table 1.1. In Table 1.1, the first column represents the 

different protons from different models. The first character represents the protons Ha, Hb, 

and Hc, while the numbers and the second characters represent the model molecules (1a, 

2b, and 2c), such as a1a represents the protons Ha from molecule 1a. The first row 

represents different states.    
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The constants that appear in Table 1.1 were the contributions of conformers in 

each state to the difference in the chemical shifts of 1a, 2b, and 2c versus 1d. These 

values were the averages of all their microstate contributions. Calculations of each 

microstate was conducted with Gaussian98TM in rb3lyp/6-311++g(2d,2p) level, the 

‘keyword’ is NMR.(81) Because accurate calculations need a lot of time, molecules 1a, 2b, 

2c, and 1d were simplified as shown in Figure 1.18 to minimize the calculations.  
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Figure 1.18. Simplification steps used in chemical shift calculations. 

 
2, 3, and 4 in Figure 1.18 show a calculation example of one of the microstate 

chemical-shift-difference constant for Ha (C state is shown as an example in the figure) 

in molecule 1a. To calculate each microstate included in the C, F, and S states, the 

molecular structures of 1a, 2b, 2c, and 1d are simplified in four steps, (1) All rings were 

deleted except one phenyl and one xylyl ring; (2) The pyridinium ring was substituted 

with a fluorine atom (2 in Figure 1.18); (3) Substituted carbon atoms in the xylyl ring 

were deleted; (4) The other xylyl carbon atoms were replaced with hydrogen atoms (3 in 

Figure 1.18). During the simplification process, the relative positions of all atoms were 

not changed. The shielding of Ha in 1d was simplified as in 4. The calculated shielding of 

Ha in 4 minus that of Ha in 3 was used as one of the microstate chemical shift differences 

in Ca1a, Fa1a, or Sa1a, according to the spatial arrangement of the model corresponding 
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to the C, F, or S state. Structure 5 in Figure 1.18 (X = H and F) was used to calculate the 

chemical-shift differences for the microstates of models 2b and 2c. Simplification of the 

structures used in chemical shift calculations greatly shorten the calculation time. 

However, the results of the calculations were similar.(2) 

 Microstate values needed to be averaged to represent the corresponding 

magnetic contributions of each conformational state in Table 1.1. The chemical shift of 

the averaged structure will not be necessarily the same as the averaged chemical shifts. 

Due to the non-linear relationship between proton positions to the ring and the proton 

chemical shifts, structures cannot be averaged to simplify the calculations of the 

chemical shifts. The chemical shifts of each microstate need to be calculated. After all 

the microstate values have been acquired, these values can be averaged to get the 

chemical shift constant for each macrostate. Coefficients for F and S were the averages 

of the coefficients of all their microstates. Since there is only one microstate for C, the 

value is used directly.  

In Table 1.1, the coefficients for δHc of the Sef states in 1a, 2b, and 2c were set 

to zero. This is because the chemical shift calculations were conducted in the gas-phase 

condition. However, in the solution-state, the solvent effect is not negligible when the 

observed proton is more than 6 Å from the shielding cone of the aromatic ring. Solvent 

molecules will occupied the space between them and shield the observed protons from 

magnetic anisotropy of the aromatic ring. Under the gas-phase condition, there is no 

solvent effect. The gas-phase calculations overestimated the solution-phase shielding of 

magnetic anisotropy. If the distance between the proton and the aromatic ring is greater 

than 6 Å, it will be too far away for the aromatic ring to produce an observable ring 

current effect, the shielding effects from aromatic ring are negligible.(93,94)  

Since there are two Hb protons in the probe molecules, 1a, 2b, and 2c, the 

calculations of the chemical-shift coefficients for Hb were different from those of Ha and 

Hc. The values of Ha and Hc in Table 1.1 represent the magnetic anisotropy effect of only 
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one phenyl ring because the two phenyl groups have the same effect on these protons. 

However, for the protons Hb and Hb’ (3 in Figure 1.18), the shielding effects produced by 

the phenyl rings were different. The values of Hb in Table 1.1, coefficients Cbm, Fbm and 

Sbm for m = 1a, 2b, and 2c, represent sums of the magnetic effects on Hb and Hb’. 

1.4.3 Calculation of conformational distributions of 1a, 2b, and 2c 

The coefficients acquired from the quantum calculation (Table 1.1) were used 

in Equations (1) to (4) to calculate the conformational distributions of 1a, 2b, and 2c in 

solution states. 
 

XCm + XFm + XSm = 1                                            (1) 

δ1dHa - δmHa = 2CamXCm + 2FamXFm +2SeeamXSeem + 2SefamXSefm          (2) 

δ1d Hb - δmHb = CbmXCm + FbmXFm + SeebmXSeem + SefbmXSefm             (3) 

δ1d Hc - δmHc = 2CcmXCm + 2FcmXFm + 2SeecmXSeem + 2SefcmXSefm          (4) 
 
Equation (1) is mass balance which requires that the sum of all mol fractions 

should be 100%. Equation (2) expresses that the chemical-shift differences of Ha between 

molecules 1a, 2b, and 2c versus 1d are the sum of contributions of the four states. 

Equation (3) and (4) describe that of the Hb and Hc. In Equation (2), XFm is the mol 

fraction of F state in molecule m (m = 1a, 2b, or 2c) (for two-ring system, one phenyl and 

one xylyl ring). The coefficient Fam in Equation (2) is the contribution of conformer F 

(see Table 1.1) to the difference in the chemical shifts of Ha in molecule m (m = 1a, 2b, or 

2c) versus 1d. Other terms in Equations (2)-(4) have similar meanings.  

Equations (2) and (4) are different from Equation (3). The coefficients of the (2) 

and (4) are multiplied by two whereas (3) is not. This is because coefficients Cbm, Fbm 

and Sbm for m = 1a, 2b, and 2c were sums of different magnetic effects on Hb from two 

phenyl rings, while the values of Ha and Hc in Table 1.1 represent the magnetic 

anisotropy effect from only one phenyl ring.  
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1.4.4 Results and discussions 

1.4.4.1 Reliability of coefficients for the equations 

The reliability of coefficients for the equation was checked.  

First, the system of Equations (1)-(4) has four equations for four unknowns. 

Mathematically, this system allowed negative answers (mol fractions). However, 

chemically, negative mol fractions make no sense. Moreover, conformational analysis 

using the same system for a series compounds, 1a, 2b, and 2c, is more sophisticated than 

the analysis of single compound alone (1a).(1,2) In the current study, all the answers of the 

mol fractions for compounds, 1a, 2b, and 2c, under very different conditions (solvent and 

temperature) were positive. This confirmed that the conformational analysis system we 

used and the coefficients for the equation (Table 1.1) were reliable. This reasonable 

analysis was based on the inclusion of all possible conformational microstates and a good 

reference. Negative mol fractions were obtained when some of the microstates were 

deliberately omitted.  

Second, the mass balance in Equation (1) stipulates that the sum of all mol 

fractions should be 100%. The reliability of the coefficients was also checked without 

enforced mass balance. Without mass balance, a system of three equations for three 

unknown was tried. The three equations were similar to Equations (2)-(4). The same 

coefficients for the C and F states were used. The only difference was that the original 

S-state expressions (SeemXSeem + SefmXSefm) were substituted by the averaged one 

(SavmXSavm). The value of the coefficient Savm is the average value of Seem and Sefm. 

The mol fractions produced from this system were summed. Calculation results showed 

that the sum of the mol fractions for 1a, 2b, and 2c in the DMSO titrations were within 

1.0 + 0.2. This result tells us that (1) the quantum-calculation method we chose to 

calculate the chemical-shift differences between 1a, 2b, and 2c versus 1d were adequate; 

(2) the microstates that were used in the calculation of conformational distributions 

might be sufficient.  
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1.4.4.2 Solution state study---DMSO perturbation of aqueous solution 

The fluorine atoms on the phenyl rings should not produce hindered 

interactions between phenyl and xylyl rings in C and F states of 1a, 2b, and 2c. Due to 

the isosteric relationship between fluorine and hydrogen atoms, the substitution of 

hydrogen by fluorine atoms in molecule 1a should not cause significant structural 

difference.(95-97)  

1.4.4.2.1 Edgewise dispersive interactions 

Conformational analyses were conducted under room temperature using 

deuterated DMSO (CD3SOCD3) as an NMR co-solvent to perturb the aqueous solution. 

DMSO has been used in many chemical and biological studies.(98,99) A series of NMR 

experiments were done by adding DMSO to the aqueous (D2O) solution of molecules 1a, 

2b, and 2c. The experimental values of chemical shift differences for Ha, Hb, and Hc 

between 1a, 2b, and 2c versus 1d were used in Equations (1)-(4) to calculate the mol 

fractions of the conformers. The results are drawn in Figure 1.19. In Figure 1.19, 

four-state solutions for compounds 1a, 2b, and 2c are shown from left to right.  

The uncertainties of the y axes in Figure 1.19 were originated from the 

uncertainties of calculation of the chemical shift difference between 1a, 2b, and 2c versus 

1d plus the uncertainties of chemical shift of the Ha-c from NMR experiments. These 

uncertainties are complicated. However, all these are systematic errors; they will have the 

same effects on all models. They will decrease or increase the curves of 1a, 2b, and 2c at 

the same time, which will not affect the observation of the trends of conformational 

changes for F and C states during DMSO perturbation from 1a to 2c.   

From the conformational distributions in Figure 1.19, 1a, 2b, and 2c have

exactly the same trend for F and C states with the DMSO perturbation in aqueous 

solution, in which C states decrease while F states increase. The mol fractions of the four 

states for 1a, 2b, and 2c were different, but they all changed in the same direction during 

DMSO titration.  
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The previously described study by the Cammers group generated the 

hypothesis that the C conformer is more favorable in the fluoroalkanol perturbation than 

the F conformer. It is because the C conformer has smaller SASA 

(solvent-accessible-surface-area) and hides more hydrogen atoms from the less favorable 

dispersive interactions between solvent and the edge of the aromatic rings of 1a (C-H 

C-F bond interactions).(1,2) 
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Figure 1.19. Mol fractions of four-state conformers (C, F, See, and Sef) as a function of the 
mol% DMSO-d6 in D2O. Graphs for compounds 1a, 2b, and 2c are shown from left to 
right. 
 

In my work, a series of fluorinated derivatives (2b and 2c) of the 

conformational solvent probe (1a) were used to test the dependence of the probe 

conformations on the dispersive interactions at the aromatic edges between solvent and 

probes. The only differences between the models 1a to 2c are the levels of the 

substitution of the hydrogen atoms on the phenyl rings with the fluorine atoms. 1a is 

non-substituted, 2b is 1,3,5-fluorinated, while in 2c phenyl rings are all fluorine 

substituted. The nature of the aromatic edge of 2b is midway between those of 1a and 2c. 

However, Figure 1.19 shows that fluorine substitutions on aromatic edge of the probes 
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did not change the trends of the conformational change. The dispersive interactions at the 

aromatic edges could not be the predominant force on the conformational change in 1a 

during the fluoroalkanol perturbation. The same C-H C-F bond interaction exists in the 

fluoroalkanol cosolvent 1a solution and DMSO cosolvent 2c solution. If the less enthalpy 

favorable C-H, C-F bond interaction is the reason for the increase of cluster S and 

decrease of F state of 1a in fluoroalkanol cosolvent, the same trend should be found in 

the DMSO perturbation of 2c. The trend for 1a DMSO cosolvent solution should be 

different from that of the 2c in DMSO cosolvent solution. Some intermediate change 

should also be shown by 2b.  

However, Figure 1.19 shows exactly the same trend for 1a, 2b, and 2c in DMSO 

cosolvent solution. The mol fraction of F states increase while the C states decrease with 

the increasing of the mol percent of DMSO for 1a, 2b, and 2c. This ruled out the C-H, 

C-F bond interaction as a dominant effect for the increasing of cluster C and decreasing 

of F state of 1a in fluoroalkanol cosolvent and put the previous results in question. 

Trends in the conformational change in 1a, 2b, and 2c during the fluoroalkanol

perturbation should be different if the edge-wise dispersive interactions between solvent 

and these probe molecules were dominant. 

1.4.4.2.2 Quadrupole moment interactions 

 The sum of S state mol fractions increased from 1a to 2c. The increasing of the 

S state means the decreasing of the F and C states with the increasing number of fluorine 

atoms on the phenyl rings, which also means the fluorinated phenyls in 2b and 2c 

associated less with the xylyl ring than with the phenyl in 1a. Hexafluorobenzene and 

benzene have almost the same strength of the quadrupole moment with different signs.(39) 

According to the quadrupole interaction model, the interaction between 

hexafluorobenzene and benzene will be much stronger than the benzene-benzene 

ones.(40,41) If this interaction dominated in the solution state dication 1a, 2b, and 2c, the 

splay S state should decrease from 1a to 2c, as 1a>2b>2c. However, in Figure 1.19, we 
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have a totally different result, as 2c>2b>1a. This result of the calculation in Figure 1.19 

questions the importance of quadrupole moment interactions in the dication folding in 

solution state. The importance of the dispersion forces versus quadrupole interactions has 

been discussed before with derivatives of N-benzyl-2-phenylpyridinium bromide, which 

are similar to our models.(100) Their results corroborated Wilcox’s(85,86), in which it was 

proposed that the dispersion forces are more important than the quadrupole interactions 

for the solution-phase π-stacking. 

 The effect of charge density of dication could be an important factor for the 

hydrophobic effect. The solvent-dependent dynamic conformational behavior could have 

resulted from ion pairing in solution. Strongly polar or charged compounds can 

strengthen the water/water interactions near the solute, and increase the density of the 

liquid state.(101) There are two distinct kinds of ion pairs in the solution: 1) contact ion 

pair M+X-, in which cation and anion contact with each other (no solvent molecule 

between them) and 2) solvent separated ion pair M+│solvent│X-, in which cation and ion 

are separated by solvent molecules. Ions tend to associate into pairs in the low dielectric 

solvents, while the equilibriums favor the solvent separated ion pair as the dielectric 

increases. (102)  

1.4.4.2.3 Electrostatic interactions between aromatic rings  
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Figure 1.20. Electrostatic effects between aromatic rings. 
 

The solvent-dependent conformational distribution of the probe molecules 1a, 

2b, and 2c may be due to the electrostatic interactions between the phenyl and xylyl rings. 

Waters and Rashkin reported recently the solution-state electrostatic effects between the 
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aromatic rings of similar molecules.(103) They determined the rotational barriers of 

substituted benzyl pyridinium bromides (Figure 1.20) in aqueous solution by simulating 

the line-broadened spectra of H1 and H2 in D2O. They found that in offset stacking of the 

model compound, the electron withdrawing substitution groups increased the rotational 

barrier, which depended heavily on the substitution position and the number of the 

substitution groups. The meta-substituent effect was much greater than the para-. Also 

the rotational barrier was much higher for a compound with two meta-substituents than 

that of a singly substituted molecule. This result is explained by the electrostatic 

interaction between two phenyl rings. Close proximity of meta-substituents in A ring to 

Hd of the B ring make it possible for the attractive electrostatic interaction happening 

between the edge hydrogen (δ+) and electron withdrawing groups (δ-), which cannot 

happen for the para position. 

In Figure 1.19, the total mol fractions of the S states (See + Sef) increased from 

1a, 2b, to 2c. This means the phenyl and xylyl rings stacked less with the increasing 

number of the fluorine atoms on the phenyl rings. Figure 19 also shows that 1a prefers 

Sef conformations (xylyl and phenyl stacked edge-to-face); while 2b and 2c preferred See 

(xylyl and phenyl stacked edge-to-edge). This may be due to the electrostatic interactions 

between the aromatic rings. With fluorine substitution, due to large electronegativity of 

fluorine atoms, the fluorine atoms will carry partial negative charges (δ-) on the phenyl 

rings. Because the hydrogen atoms on the xylyl ring carried partial positive charge (δ+), 

the attractive electrostatic interaction will occur between the phenyl and xylyl ring. This 

explained the increase of the S state from 1a to 2c.  
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1.4.4.2.4 Thermodynamic study 

The enthalpies of the conformational distribution in pure D2O and DMSO were 

calculated from the Van’t Hoff equation (Equation 1.3 is an example of the calculation of 

the enthalpies of C state in 1a). The example equations for calculation of conformational 

distribution of C state in 1a is shown in Equation 1.4. 
 

ln[KC1a] = - H
RT

+ S
R

(1.3)
 

Equation 1.3. Van’t Hoff equation for enthalpy study of C state in 1a.  
 
 

   
KC1a =

XC1a
1-XC1a

(1.4)
 

Equation 1.4. Equation for the calculation of conformational distribution of C state in 1a. 
 
The enthalpies of the conformational distribution are shown in Table 1.2. Values 

marked with an asterisk (*) is because the small value of XSef2b of molecule 2b gives 

unreasonable value of ∆HSef in 2b. The results of the experiments showed a linear 

relationship between lnK and -1/T.  
 

Table 1.2. Enthalpies of conformers from van’t Hoff analysis in pure D2O and DMSO 
(kcal/mol)  
 

Molecule (solvent)  ∆HC  ∆HF  ∆HSee  ∆HSef 

1a (D2O)  -0.68 0.6 -0.17 0.11 

1a (DMSO)  -0.17 -0.62 0.25 0.6 

2b (D2O) -0.82 0.56 -0.37 * 

2b (DMSO)  0.17 -0.75 0.26 0.66 

2c (D2O)  -1.2 0.92 -0.4 0.83 

2c (DMSO)  0.34 -0.98 0.26 0.51 
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From Table 1.2, the values of the molecules show different signs from D2O to 

DMSO solution. The value change in different solvents fit the stability difference of 

conformers between D2O and DMSO in Figure 1.19. The C states are much more stable 

in water than in DMSO solutions, while F states appeared to possess higher stability in 

DMSO solutions. 

However, electrostatic interactions between the aromatic rings cannot 

satisfactorily explain the switching directions of these enthalpies signs under different 

solvents. The electrostatic interactions of aromatic rings in C and F states are similar in 

1a, 2b, and 2c, but signs of enthalpy change when transferring from aqueous to organic 

solution, Figure 1. 21. 
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Figure 1.21. Complementary electrostatic interactions of C and F states. 
 

Different solvents have different dielectric constants. The external dielectric of 

model molecules 1a, 2b, and 2c changed with the different solvent environments. 

However, since the solvents could not reach inside the space between the aromatic rings 

in 1a, 2b, and 2c, their internal dielectrics are more or less undisturbed. The net external, 

internal dielectric difference will change with different solvents. The different net solvent 

dielectric will have different effects on the molecular surface, which will affect the 

molecular conformations. 

The enthalpy sign change in F and S states is probably due to the dielectric 

effect of solvent on the molecular surface. This is demonstrated by the molecular 

modeling calculation, in which the GB/SA solvent model was mainly developed to 

calculate the change of microscopic dielectric caused by the solvent exclusion.(104) In the 
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current study, AMBER and the MM2 force fields were chosen in the calculation; water 

and CHCl3 were used as GB/SA solvents. The calculations were designed to mimic the 

solvent effects of the conformational changes. The calculation results agreed roughly 

with the conformational analysis described above. The F states possess higher stability in 

organic solutions while the C states are favored in water. The fact that molecular 

modeling calculations in different GB/SA solvent models corroborated with the NMR 

conformational analysis showed that dielectric effect of solvent may be important to the 

solution-state conformations of the probe molecules (1a, 2b, and 2c). 

1.4.4.3 Solid-state study 

The crystal structures of 1a, 2b, and 2c are shown in Figure 1.22. In the crystal 

structure of 1a, there are two water molecules in a unit cell.(2) The probe molecule 2b 

cocrystallized with two molecules of DMF. For the molecule 2c, there is no solvent 

molecule in the crystal lattice.  
 

 
1a 

  
                 2b                              2c 
Figure 1.22. Crystal structures of 1a, 2b, and 2c. 
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Molecules 1a, 2b, and 2c had the same F-like conformation in the solid states. 

Same conformations were also used in the crystals of similar models, such as 

N-benzyl-2-phenylpyridinium bromide derivatives.(100) These similar F-like solid-state 

conformations shows the prevalent intramolecular π-stacking in these related 

structures.(100,105) The centroid distances between xylyl and phenyl rings in 1a, 2b, and 2c 

are 3.94, 3.95, and 4.23 Å , respectively. The increased centroid distances show the 

increment of coulombic repulsion between aromatic rings, 2c > 2b >1a, in the solid state. 

This is counter intuitive to the quadrupole moment interactions.  

Benzene has approximately the same magnitude of quadrupole moments as 

hexafluorobenzene. However, they are in different signs.(39) According to the quadrupole 

interaction model, the packing pattern of 1:1 hexafluorobenzene : benzene is face-to-face, 

center-to-center and the interaction between them is much stronger than that between 

benzenes.(39-42) However, the pentafluoro-substituted compound 2c used the same F 

packing style as non-fluorinated compound 1a; furthermore, 2c had larger centroid 

distance than that of 1a. Apparently, the packing of this series is not dominated by the 

quadrupole interaction.  

Reexamining the series compounds and the similar models of 

N-benzyl-2-phenylpyridinium bromide derivatives, we see that all of these compounds 

have positive charges in the aromatic system. Many papers have published on the 

electrostatic interactions, such as cation-π and aromatic interactions, of aromatic 

structures in the solution and solid-state.(106-111) To study the charge effect in the stacking 

of model molecules, neutral hydrocarbon compound 2e (Figure 1.23) was synthesized. 

1.5  Study of neutral hydrocarbon compound 2e  

 2,2’-biphenyl-α,α’-m-xylylene (2e) was synthesized. Compared with 1a, which 

has two positive charges, 2e is neutral and substitutes two quaternary nitrogen atoms with 

carbons. All others are the same. Compound 2e also includes five aromatic rings and is 

isoelectronic to 1a. Yet, 2e is different from 1a in solid states (Figure 1.23). 
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In solid state, 1a is packed with intramolecular face-to-face π-stacking, while 2e is 

packed in a splay pattern. This result tells us that charges are important in the formation 

of the solid-state stacking conformation of 1a. When we remove the charge component in 

the conformational probe, the molecule loses its π-stacking conformation. 
 

N

N
Ha

Hb

HcHb

2Br

                        

Ha

Hb Hc

Hb

 

  
1a                                 2e 

Figure 1.23. Molecular structures and crystal structures of 1a and 2e. 
 

The difference between the charged (1a) and neutral (2e) ones in solid state is 

probably due to the charge-π interaction. To further investigate the ion effect on the 

solid-state conformation of aromatic systems, the crystal structures of pyridinium 

derivatives (Chapter 2) and triangulene salt-pairs (Chapter 3) were studied. 

1.6  Conclusion 

A general protocol for the application of magnetic anisotropy to quantitative 

multi-state conformational analysis was suggested by the current study. The reliability of 

this method was checked by the mass balance. Positive solutions for the equations under 

different conditions confirmed the reliability. With carefully conformational analysis 

included 1a, 2b, and 2c, the trends of conformational distribution of 1a in different 

solvents in the previous analysis were corroborated.(1,2) This technique can be further 

used to study canonical interactions such as ion pairing, hydrogen bonding, and 

molecular recognition.  
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In the current study, dependence of the probe conformations on the dispersive 

interactions at the aromatic edges between solvent and probes was tested by fluorinating 

the probe molecule 1a. Solution and solid studies of the probe molecules, 1a, 2b, and 2c 

put the previous conclusion drawn by the Cammers group in question. Previous 

conformational analysis of 1a in different solvents by the Cammers group generated the 

hypothesis that edge-wise dispersive interactions between solvent and aromatic rings are 

important in the folding of the model molecules. Current studies show that fluorination 

does not change the trends of conformational distributions of 1a, 2b, and 2c during the 

DMSO titrations. The dispersive interaction at the aromatic edge could not be the 

predominant force for the conformational changes of 1a during the fluoroalkanol 

perturbation.  

Results drawn from solution- and solid-state studies of 1a, 2b, and 2c also 

questioned the importance of quadrupole moment interactions in the dication folding. In 

solid state, 1a, 2b, and 2c had the same F-like conformation. The centroid distances 

between xylyl and phenyl rings of these molecules increase from 1a to 2c (1a < 2b < 2c). 

This shows the increment of coulombic repulsion between aromatic rings, 2c > 2b >1a, 

in the solid state. In solution state, studies showed that the stacking states decreased (1a > 

2b > 2c) with the increasing of the number of fluorine atoms on the phenyl rings. This 

also means the interactions of the phenyls to the xylyls in 2b and 2c are weaker than that 

of 1a. If the quadrupole moments dominate the probes folding, trend in solid and solution 

states will be totally different.   

Solid-state study of 1a, 2b, and 2c indicated that charges might be important in 

the folding of these dications in the crystals. Neutral hydrocarbon 

2,2’-biphenyl-α,α’-m-xylylene (2e) was synthesized. It is isoelectronic and structurally 

similar to 1a. In solid state, the charged molecules, 1a, 2b, 2c, are packed with 

intramolecular face-to-face π-stacking while the neutral molecule, 2e, is packed in a splay 
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pattern. Solid-state studies of 2e and 1a showed that charges are important in the 

formation of the folding conformations in solid state, which may be due to the charge-π 

interaction.  
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Chapter Two 

The face-to-face, cation-to-cation packing motif in the solid state of simple 

pyridinium-derived aromatic rings 

 

A study of solid-state structures of pyridinium-derived aromatic rings from the 

CSD (Cambridge Structural Database) was performed to investigate the solid-state π-π 

interaction between cationic π-systems. The survey of pyridinium-derived aromatic rings 

showed a tendency of the cations to stack face-to-face (FF) as dimers. These FF packing 

patterns of the pyridinium-derived aromatic rings are different from their corresponding 

aromatic hydrocarbons, which are packed in herringbone patterns. The FF packing 

(π-stacking) of the pyridinium-derived aromatic rings may be due to the cation-π 

interactions. Cations that can π-stack could likely lead to very strong cation-π 

interactions. Maxima molecular orbital overlaps of the aromatic cations can happen in 

the FF packing (π-stacking). Since the molecules possess both empty orbitals and π 

bonds, they can be electronic donors and acceptors at the same time. Strong interactions 

may result from the overlap of these charged aromatic species. 

 

 

 

 

 

 

 

 
. 
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2.1 Introduction 

2.1.1 Interaction between charges 

There are three kinds of charge interactions: cation-cation, cation-anion, and 

anion-anion, as shown in Figure 2.1. 
 

repulsion repulsionattraction  

Figure 2.1. Interaction between charges. Black circle represents anion. 
 

From what we learned in physics, the norm for the charge interactions is: there is 

repulsion between same sign charges; charges with different signs will attract each other. 

So, it is easy to imagine that two substances carrying same charges will repel each other. 

They will tend to stay farther away from each other than the similar, neutral compounds. 

However, this is not the case in the cationic π-systems, in which the cationic species will 

be packed closer than that of the isoelectronic neutral ones, which was inferred by 

measuring atomic distances between two rings in solid state.   

2.1.2 C-H/π interactions 
  

H

 
Figure 2.2. C-H/π interaction. 
 

The C-H/π interaction refers to the attractions between hydrocarbons and 

π-systems, including arenes, alkenes, or alkynes within van der Waals distance as shown 

in Figure 2.2. Though it is a weak interaction, it is important in the stabilizing of the 
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bio-molecule structures.(1,2) It’s also considered as weak hydrogen-bonds between C-H 

(soft acids) and π-systems (soft bases)(3) originated largely from dispersion interactions 

and also controlled to some extent by directional electrostatic interactions, which makes 

it orientation dependent,(3) similar to π-π interactions. Ab initio calculations of Tsuzuki 

showed the interaction energies (De) between benzene-hydrocarbon complexes of ethane, 

ethylene, and acetylene are -1.82, -2.06, and -2.83 kcal/mol respectively, which increased 

with the acidity of the C-H residue participating in the binding.(4) 

2.1.3 Packing modes in fused-ring aromatic hydrocarbons 

Crystal engineering, with the goal of designing organic crystals with specific 

physical and chemical properties, is important in the research of material science and 

drug design. Predicting and further controlling the crystal structure is one of the major 

targets. Understanding the intermolecular interactions including non-covalent and 

hydrogen bonding is crucial to this job.(5-7) 

X-ray crystallography can provide accurate molecular structures of the crystals 

from which the information of the non-covalent intermolecular interactions in the solid 

state can be acquired.(7) CSD (Cambridge Structural Database) and PDB (Protein Data 

Bank) are two data bases which are growing fast and providing enormous 

crystallographic information.(7-12) They have been increasingly important in finding 

information on intermolecular interactions,(8) such as hydrogen bonding,(13-20) C-C and 

CH-π interaction,(6-9) and rational drug design.(6,9) 

Gavezzotti described four structure types for crystals of planar or near planar 

polynuclear aromatic hydrocarbons.(6,8) They are represented by the packing patterns of 

naphthalene (herringbone (HB)), pyrene (herringbone structure with dimers (HBD)), 

coronene (γ), and tribenezopyrene (β), as shown in Figure 2.3. In the figure, packing 

patterns were generated with the Mercury program (version 1.4, released 2004 by CCDC) 

from corresponding Crystallographic Information Files (CIF) in CSD. The parameters 

defining these types are the shortest axis (SA) and interplanar angles (IA) (Table 2.1).  
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NAPHTA06 naphthalene, herringbone (HB)                         PYRENE07 pyrene (HBD) 

 
CORONE coronene (γ)                            TBZPYR tribenezopyrene (β)                             

Figure 2.3. Four structure types in the crystals of planar or near planar polynuclear 
aromatic hydrocarbons.  

 

Table 2.1. Parameters defining four types of packing patterns in the crystals of planar or 
near planar polynuclear aromatic hydrocarbons 

 
 herringbone  

(HB) 
herringbone with 

dimers (HBD) 
γ β 

interplanar angles (IA) > 20° > 20° > 20° < 20°
shortest axis, Å (SA) 5.6-8 Å > 8 Å 4.6-5.4 Å < 4 Å

 
Herringbone (HB): In the crystal, nonparallel adjacent molecules with interplanar 

angles greater than 20 degrees are the closest molecules (with the shortest centroid 

distance), while there is no overlap between the parallel molecules. The π-π interaction is 

weak in the HB structures. Some polynuclear aromatic hydrocarbons with herringbone 

crystals were shown in Figure 2.4. 
 

Benzene      Naphthalene               Anthracene              Phenanthrene                 Benzanthracene  
Figure 2.4. Polynuclear aromatic hydrocarbons with herringbone packing. 
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Herringbone structure with dimers (HBD): In HBD, the molecular pairs with 

parallel overlaps are packed with herringbone patterns. 

γ: In this type, herringbone-type packings are formed between columns containing 

face-to-face, overlapped, approximately parallel molecules separated by 3.4-3.8 Å 

interplanar distance. 

β: In β structures, all planar or near planar molecules are packed face-to-face, 

approximately parallel with each other and separated by 3.4-3.8 Å interplanar distance. 

The π-π interaction dominates in these structures. The dihedral angles between aromatic 

planes are smaller than 20 degrees. 

As shown above in Figure 2.3, the difference between the HB and the other three 

packing patterns is whether there is π-π overlap inside the crystals. For the herringbone 

structure type, there is no π-π overlap. The change of the packing pattern form 

herringbone to β structure was explained by the importance of the π-π interaction versus 

C-H/π interaction. π-π interactions turned out to be more important from 

non-herringbone to herringbone structures.(6,8,23)  

With few exceptions, non-zero interplanar angles always exist in the crystal 

structures of aromatic hydrocarbons, as an intrinsic property.(6,8,23) The interactions 

between the aromatic systems are complicated; they may include the π-π interaction 

(face-to-face FF and/or edge-to-face EF) and/or C-H/π interaction. What we are 

interested in here is the structure of π-π interaction (non-herringbone) versus that of non 

π-π interaction (herringbone). The trend of the change of the packing pattern from 

herringbone to non-herringbone (HBD, γ, β) structures shows increased importance of 

the π-π interaction with the closest molecules. The face-to-face contacts (overlaps) within 

van der Waals distance of aromatic rings increase from HB to other patterns. These 

overlaps will provide more atomic interactions between aromatic rings, which in turn 

increase the π-π interactions. π-π interaction, which was inferred by measuring atomic 

distances in solid state, turned out to be more important from herringbone to 



 54

non-herringbone structures. Nevertheless, we still use the four packing patterns (HB, 

HBD, γ, β,) when we describe the packing of pyridinium for clearer descriptions.    

2.1.4 Cation-π interaction  

Cation-π interaction has been shown to be a major non-covalent force in many 

chemical and biochemical systems.(24-34) The binding force is strong for the prototype 

cation-π interaction. In K+-benzene complex, the cation-π interaction (19 kcal / mol) is 

greater than the K+-water interaction energy (18 kcal / mol).(35) The most stable 

configuration for the simple cation-benzene interaction is to place the cation in the center 

of the benzene ring along the 6-fold axis of the ring,(29) as shown in Figure 2.5.        
 

dd

 
Figure 2.5. Cation-π interaction. 
 

Based on the calculation, it is the electrostatic, not the quadrupole interaction that 

plays a prominent role (>60%) in the cation-π interaction, although some other 

interactions, as polarizability, dispersion forces, or charge-transfer, may also exist.(27) It is 

because the distance between the centers of the cation and benzene (<3 Å) is much 

shorter than the 5 Å distance for a valid stable point charge-quadrupole interaction.(29) 

The orientation of the distribution of the electrostatic surface on the benzene rings, which 

can be treated as +δ charge at the nucleus center and two -δ/2 charges at a d distance, as 

shown in Figure 2.6, determines that the best position (orientation) of the cations is on the 

top of the 6-fold center of the benzene rings.(36)  
 

+ charge

- charge

- charge

-δ/2

-δ/2

+δ
d

 
Figure 2.6. Orientation of the distribution of electrostatic surface on benzene ring. 
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2.1.5 Delocalized cation-π interaction  

Delocalized cation-π interaction refers to the interaction between two 

cationic-aromatic-systems in which the charges are delocalized. The inorganic (or 

point-charge) cation-π interaction is strong.(45) How about the delocalized cation-π 

interaction? Will it show the same behaviors as the point-charge-cation-π interaction? 

What impact will the delocalized charge make to the π-π interactions, hence to the crystal 

structure patterns in these compounds? Furthermore, how about the delocalized 

cation-delocalized anion interaction?       

2.2 Face-to-face packing motif in simple pyridinium crystals 

It was hypothesized that the cationic aromatic system will have a tendency to 

stack face-to-face and the π-stacking interaction between them will be stronger than that 

of the neutral π-stacking. This is because the strong cation-π interaction could be formed 

between the delocalized charge of one ring and the π-system of the other ring. The work 

of this chapter supports this hypothesis. A study of the CSD (Cambridge Structural 

Database) was performed to investigate the solid-state interaction between cationic 

π-systems. The packing patterns of the crystal structures of pyridinium-derived aromatic 

rings were studied. The charged π-stacking of pyridinium-derived cations were compared 

with the neutral π-stacking of corresponding hydrocarbons. 

2.2.1 Pyridinium and nitrogen substituted fused-ring aromatic hydrocarbons  

Pyridinium is a simple, stable cation which carries one delocalized charge. It is 

very common in chemistry and biochemistry. Pyridinium is an aromatic cation that is 

isoelectronic to benzene. In recent years, many crystal structures of pyridinium and some 

other nitrogen substituted fused-ring aromatic hydrocarbons (most of them have two and 

three rings) with different anions have been collected in the crystal structure database, 

CSD (Cambridge Structural Database). These crystals are good sources for the 

investigation of delocalized cation-π interaction in solid state.  
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2.2.2 Methodology 

The crystallographic information of benzene, naphthalene etc. of the twelve 

herringbone structures were used directly from the literature.(6,8) Searching of the 

corresponding pyridinium substructures was conducted on ConQuest (version 1.7, 

Copyright© 2004 the Cambridge Crystallographic Data Center (CCDC)): the twelve 

aromatic hydrocarbons were used as templates. All the carbon atoms were changed to 

NM (any non-metal), with extra filters: the R factor < 0.1, not disordered, no errors, not 

polymeric, no powder structures, and only in organics. 

2.2.2.1 CSD code, packing patterns and the calculation of overlap percentages 
 

HH

H

H

FFEC 
face-to-face, 
edge-to-center

FFEE-CC
face-to-face,
edge-to-edge,
carbon-to-carbon

FFEE-HH
face-to-face,
edge-to-edge
hydrogen-to-hydrogen

overlap: 33% (1/3)                             0%                                     0%  
Figure 2.7. Examples of the packing patterns.  

 
In this chapter, each pyridinium derivative is represented by an alphabetic code 

(code that is used in Cambridge Structural Database (CSD code)) with six capital letters 

(e.g. PYRDHN represents pyridinium nitrate). Packing patterns and some figures (figure 

2.3, 2.8-13, 2.15-16) of pyridinium derivatives were generated with the Mercury program 

(version 1.4, released at 2004 by CCDC) from corresponding Crystallographic 

Information Files (CIF) in CSD. There are several kinds of face-to-face packing with 

different overlap percentages. Some examples of the packing patterns, their names and 

overlaps are shown in Figure 2.7. The nitrogen atoms were omitted for clarity. The 

overlap percentages were calculated based on the ratio of overlapped areas to the total 

areas of the backbone of the face-to-face packing aromatic rings when looking 

perpendicularly to the aromatic rings. 
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2.2.2.2 Counterions 

There are many interactions between aromatic compounds, such as hydrogen 

bonding, π-π interaction, quadrupole-quadrupole interaction, steric issues, etc. All of 

these will contribute to the structures of the aromatic crystals. To minimize the 

unnecessary effects, such as the π-π interaction between the cations and the counterions 

and steric effect of bulky counterion, choosing of the counterions is important. The bulky 

counterions, which will make the case more complicated by introducing the steric issues 

(such as non-planar polyaromatic compounds or simple inorganic compounds which are 

greater than the size of the cations, as 4.6 Å for pyridinium) were filtered out of the data 

set.  

From the discussion in chapter one, the hydrogen bonding is strong compared to 

other non-covalent interactions. Some of the hydrogen bonds will form 2D or 3D 

structures in crystals. Crystals that include these structures formed by counterions or by 

counterion and neutral compounds will be discussed separately. Crystals with only the 

inorganic counterions will also be discussed separately.  

2.2.2.3 Definition of pseudo 

In literature, the definitions of the four packing patterns are based on the shortest 

axis, interplanar angles between columns, and overlaps between the aromatic rings. In 

the pyridinium crystals, sometimes not all these criteria can be satisfied. The pseudo 

means either the shortest axis value or the overlap area for the pattern may not be 

satisfied. 

2.3 Pyridinium, one-ring cation 

A total of 78 crystals were found for the pyridinium cation. All of the bulky 

(non-planar or inorganic species greater than the size of the pyridine) counterions were 

deleted, leaving only 36. The CSD codes, corresponding counterions, packing patterns 

and the overlap of all crystals are shown in Table 2.2. 
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Table 2.2. CSD codes, corresponding counterions, packing patterns and the overlaps of 
pyridinium crystals 
 

CSD code anion packing 
type 

ring overlap, 
% 

interface 
distance Å

AJEBIA 

,

OH
O2N COOH

NO2

OH
O2N COO-

NO2

pseudo β 
cation- 
cation 

FFEE, 0% 3.46 

BAXZOQ COO-

-OOC COOH

COOH
COOH

HOOC
2H2O

2 cations

 

 
NA 

FFEC, 
dimer, 33% 

3.47 

COPDEQ 
P
OH

OH

-O S
 

pseudo γ FFEC, 33% 3.31 

DUVLUB HOOC

HOOC

-OOC

HOOC,
2

 
pseudo β

 
FFEC, 33% 3.39 

DEFCUM HOOC

HOOC

-OOC
-OOC,2 Cations   ,

pseudo β
 

FFEE-CH, 
0% 

3.45 

DEHSOY10 F-, HF pseudo β FFEC, 33% 3.48 
DEHSUE10 F-, 2HF pseudo β FFEE-CC, 

0% 
3.44 

DEHTAL10 F-, 3HF pseudo β FFEE-CH, 
0% 

3.45 

FOXMEK10 Cl-, HCl pseudo β FFEE-CH, 
0% 

3.44 

GEQBIN F-, 5HF pseudo β FFEC, 
dimer, 33% 

3.66 

GOMPEB O
-O Cl

OH
O

Cl
,

H2O
 

NA 
 

FFEC, 
dimer, 33% 

Cat-cat 

3.48 

HOHMOG01 
HOHMOG05 

 
IO4

- 
pseudo γ

 
FFEE-HH, 

0% 
2.80 
2.85 

IDAHOK 
COO-O2N

COOHO2N  

 
NA 

 
NA 

 
NA 

JAVFOB Cl-, 3HCl NA NA NA    
JAVFUH Cl-, 5HCl NA NA NA 

KOWZUR 
N

OHHOOC
N

OH-OOC,
NA NA NA 
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Table 2.2 (continued) 

KOXREU HOOC

HOOC

-OOC

HOOC,  
NA NA NA 

LEZJIH COO-

HO OH

 

pseudo γ FFEE-HH, 
dimer, 0% 

FFEC with 
anion 

3.37 

LIDYOM 
S
OH

O-
O O

 
pseudo β FFEE-CH, 

0% 
3.37 

PYRDHN NO3
- pseudo γ FFEC, 33% 3.51 

PYRPIC01 
 

O-

O2N NO2

NO2  

pseudo γ 
cation- 
cation 

FFEC, 33% 3.51 

PYRPIC02 O-

O2N NO2

NO2  

pseudo β 
Cat-cat 

 

FFEC, 
dimer, 33% 

3.51 

PYRPIC03 O-

O2N NO2

NO2  

pseudo β
 

FFEE-HH, 
dimer 0% 

FFEC with 
anion 

3.58 

PYRHCL02 Cl- pseudo γ FFEC, 33% 3.40 
PYRHCL11  Cl- pseudo β FFEE-CH, 

0% 
3.23 

QAFFOS 
,

C
O

H OHC
O

H O-
3

 
pseudo γ FFEC, 33% 3.44 

QOQVOH CH3SO3
- herringb

one 
0% NA 

RUVYIQ CF3COO- herringb
one 

0% NA 

TURPYB03
,

C
S

H2N NH2

2
Br-  

pseudo γ
 

FFEC, 33% 3.50 

UDETOM01 
,

C
S

H2N NH2

2
I-  

pseudo γ FFEC, 33% 3.67 

VEGKIB  
H3PO4, H2PO4

- 
pseudo β FFEC, 

dimer, 33% 
3.40 

WADPEX HOOC

HOOC

-OOC

HOOC, , 2H2O  
pseudo β FFEE-CC, 

0% 
3.42 

XESPEQ 
XESPEQ01 

COO-

O2N

NO2  

pseudo β
cation- 
cation 

FFEC, 
dimer, 33% 

3.63 
3.70 

 



 60

Table 2.2 (continued) 

XICBAM 

N
2

,
HN NH

H
N SS

S

2 HN N-

H
N SS

S

2
,

 

NA FFEE-HH, 
dimer 0% 

3.15 
 

 

As we can see from Table 2.2, most of the pyridinium crystals had face-to-face 

packing patterns (FF) and the interplanar distances are within the π-stacking distance 

(3.3–3.8 Å).(37,38) The packing patterns of these pyridinium crystals will be discussed 

based on the different categories of the counterions.  

2.3.1 Counterions forming structures of endless hydrogen-bond connections  

Hydrogen bonding is very common inside the crystals and has been extensively 

studied.(5-7) If the counterions have the hydrogen bond donor and acceptor at the same 

time, structures of endless connections of the counterions through hydrogen bonding may 

be formed inside the crystals by the counterions.(42) They can be grouped as one (1D) to 

three dimensional (3D) structures. Because hydrogen bonds are stronger than other 

non-covalent interactions, crystals with anions capable of forming hydrogen-bond 

structures should be studied separately. There are twelve crystals with the 1D-3D 

counterion structures formed due to hydrogen bonding. 

2.3.1.1 3D structures formed by counterions 

Three dimensional (3D) structures of endless connections of the counterions 

through hydrogen bonding may be formed inside the crystals by the counterions.(42) Due 

to the strong interactions of the hydrogen bonds, the packing patterns of the pyridinium 

may be dominated by the structures in these crystals. 3D cage shape structures can be 

formed by some counterions, which included one or two cations inside. The top and the 

bottom of these cation(s) were occupied by the counterions, which were part of the cage.  
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a) Single cation in the cage 
 

 
Figure 2.8. Packing pattern in KOXREU.  
 

In the crystal structures of KOWZUR, IDAHOK and KOXREU in Table 2.2, only 

one pyridine cation was included inside the 3D structure of counterions. The cations were 

separated from each other, so there was no cationic face-to-face packing. The sample 

crystal structure is shown in Figure 2.8. 

b) Two cations in the cage 
 

 
Figure 2.9. Packing pattern in BAXZOQ.  
 
    In the crystal structures of BAXZOQ，GOMPEB, XICBAM ,VEGKIB and 

WADPEX, there are two pyridiniums in each anion cage. These two cations were packed 

as FFEC dimer in the cage. The cationic dimers are far away from each other due to the 

cage separation. However, inside the cage, the cations can choose to pack either the 

face-to-face or T-shape to each other. The fact that all cations were packed face-to-face 

inside these crystals shows the preference of the FF packing of the pyridinium. 
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2.3.1.2 2D structures formed by counterions 

Some counterions can form 2D planar structures inside crystals, such as the 

anion in the crystal structure of COPDEQ. Parallel 2D planes were formed by H2PO3S- 

through hydrogen bonds. When viewed perpendicularly to the 2D planes, the H2PO3S- 

molecules overlap with each other forming columnar structures as shown in Figure 2.10. 

In the figure, the H2PO3S- molecules are shown in red. The cations were packed FFEC 

inside the column. Similar 2D structures were found in the crystal structures of 

DUVLUB and QAFFOS (all FFEC packing, pseudo β or γ). 
 

 
Figure 2.10. Packing pattern in COPDEQ.  
 

2.3.1.3 1D structures formed by counterions 

In the crystal structures of LIDYOM and DEFCUM, chain-like 1D structures 

can be formed by the anions through the hydrogen bondings. Figure 2.11 shows the 

crystal structure of LIDYOM, in which the anions are shown in red. The face-to-face 

packing or the parallel placement is the only packing pattern for the cations (FFEC or 

FFEE-CH, pseudo β) inside these crystals. 
 

 

 
Figure 2.11. Packing pattern in LIDYOM.  
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Although the hydrogen-bonding interaction is strong and sometimes the 

counterions can form many kinds of the packing structures by themselves inside the 

crystals, pyridiniums showed the preference of face-to-face packing motif.  

2.3.2 Aromatic counterions 
 
Table 2.3. Pyridinium crystals with aromatic counterions. Pattern 1 is viewed from 
pyridinium only and pattern 2 includes all the aromatic rings inside the crystals, 
including the pyridinium and the counterion. 
 

 CSD code LEZJIH PYRPIC01 PYRPIC02 PYRPIC03 
 

counterions 
COO-

HO OH

 

O-

O2N NO2

NO2  

O-

O2N NO2

NO2  

O-

O2N NO2

NO2  
pattern1 pseudo γ pseudo γ pseudo γ pseudo β 
overlap FFEE-HH, 

dimer 
FFEC FFEC, 

dimer 
FFEE-HH, 

dimer 

pattern2 pseudo γ pseudo γ pseudo γ pseudo β 
overlap 
cation-cation
cation-anion 

 
FFEE-HH  
FFEE-CC 

 
FFEC 

NA 

 
FFEC 

NA 

 
FFEE-HH  
FFEC, dimer 

 

CSD code XESPEQ 
XESPEQ01 

BAXZOQ IDAHOK AJEBIA 

 
 

counterions 

 
 

COO-

O2N

NO2  

 
COO-

-OOC COOH

COOH
COOH

HOOC

2H2O2 cations,

 

 

COO-O2N

COOHO2N  OH
O2N COOH

NO2

OH
O2N COO-

NO2

 
pattern1 pseudo β NA NA pseudo β 
overlap FFEC, dimer FFEC, dimer NA FFEE-CC 
pattern2 pseudo γ pseudo γ pseudo γ pseudo β 

overlap 
cation-cation
cation-anion

 
FFEC, dimer

NA 

 
FFEC, dimer
FFEC, dimer

 
NA 
NA 

 
FFEE-CC 

NA 
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There are nine pyridinium crystals that have aromatic counterions. They are 

shown in Table 2.3. From the table, it can be found that face-to-face (FF) packing motif 

is preferred by the pyridinium in these crystals (except BAXZOQ and IDAHOK).  

In the crystal structures of PYRPIC01 and PYRPIC02, the cations were packed 

in the same style, FFEC. In the crystal structure of PYRPIC 03, all the aromatic rings 

stacked face-to-face, which belong to the pseudo β pattern. The pyridiniums were packed 

as FFEE dimers in this crystal. The FFEC anionic dimers and FFEE cationic dimers 

were packed alternately; the cationic dimers were packed FFEC to the anionic dimers as 

shown in Figure 2.12. The crystal structures are exactly the same for XESPEQ and 

XESPEQ01, in which FFEC dimers were formed by the pyridiniums. In the crystal 

structure of LEZJIH, pyridiniums formed FFEE-HH dimers. In AJEBIA, FFEE-CC 

cationic dimers were formed. 

 

 
Figure 2.12. Packing pattern in PYRPIC03.  

 

In the crystal structure of BAXZOQ, due to the 3D cage formed by anions and 

H2O (see the 3D structure discussion above in Section 2.3.1.1), the FF cationic dimers 

can be found inside the cage. For the whole crystal, all aromatic rings (cations and anions) 

were packed FFEC and used pseudo γ pattern. The FFEC cationic dimers were 

separated by the FFEC cation anion packing, as shown in Figure 2.13 
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Figure 2.13. Packing pattern in BAXZOQ.  
 

In the crystal structure of IDAHOK, 3D cages (see the 3D structure discussion 

above in Section 2.3.1.1) were formed by anions around single cations. Although cations 

were parallel packed, they were too far away from each other to have the π-π interaction. 
 

N
H

N
H

OH

OH

COO- NO2

NO2

O-

O2N

PYRPIC03LEZJIH  

Figure 2.14. Crystals with FF cation-anion packing of one-ring cations. 
 

Because π-π interaction can be formed between the pyridinium and the aromatic 

counterions, the packing patterns in pyridinium crystals with aromatic counterions may 

be complicated. The pyridinium can be packed face-to-face either to cations and/or to the 

aromatic counterions. For nine crystals of pyridinium with aromatic counterions, most of 

them preferred the FF cation-cation dimer. Only two crystals (Figure 2.14) showed the 

preference of the cation-anion packings over the cationic dimers. In both crystal 

structures, only the FFEE-HH cationic dimers could be found. However, in the crystal 

structure of LEZJIH, the cations were packed alternately with the anions in the 

FFEE-CC pattern. In PYRPIC03, FFEC dimers were formed between the cations and 

the anions. This is probably due to the resonance. All the anions had hydroxyl groups. 

Part of negative charges on oxygen atoms could be transferred to aromatic rings by 

resonance. The strong aromatic-cation aromatic-anion interactions, which will be 

discussed in next chapter, will form between the aromatic cations and anions.  
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Nevertheless, if we consider the packing of cations and anions at the same time, 

the packing patterns of all these charged aromatic ions introduce better atomic contacts 

than that of the corresponding hydrocarbon of the cations. All cations packed in either 

pseudo γ or pseudo β packing styles with aromatic rings. This means that π-π interaction 

is preferred over CH-π interaction. 

2.3.3 Simple counterions 

As discussed above, in some crystals, counterions and/or the neutral compounds 

can form 1D, 2D, or 3D structures through hydrogen bondings. Also, hydrogen bonds 

can be formed between pyridiniums and counterions. The N--H--X hydrogen bonds were 

found in many crystal structures.(40-42) Because hydrogen bondings are strong interactions, 

one can argue that the formation of the pyridinium packing patterns may be more or less 

controlled by the counterion structures (1-3D). However, in the crystals with the simple 

counterions, the packing patterns of the pyridinium rings will confirm the idea that the 

packing patterns of the cations are dominated by the interactions between the cations. 

This will rule out the possibility that the FF packing pattern is controlled by hydrogen 

bonding. All the crystals studied below have only simple counterions, with no special 

1D-3D structures and no aromatic counterions.  

2.3.3.1 Small size simple counterions  

There are eleven crystals formed by pyridinium and small, simple counterions as 

shown in Table 2.4. Hydrogen bonds may be formed between pyridiniums and the 

counterions and/or some neutral compounds, such as water. However, in these crystals, 

there is no 1-3D endless counterion structure. The size and the shape of these counterions, 

the neutral compounds, and the simple structures formed by them through hydrogen 

bonds will be important to the packing patterns of pyridiniums. From Table 2.4, 

face-to-face (FF) packing patterns can be found in nine crystals. The crystal structures in 

which face-to-face-dimer packing pattern cannot be found are that of JAVFUH and 

JAVFOB. This may be due to the large sizes of the simple structures formed by the 
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counterions. In the crystal structure of JAVFUH, the counterion, Cl-, forms a square 

pyramid with ~5 Å on each size, while in JAVFOB, the tetrahedron shape structures with 

the sizes ~6 Å were formed by a Cl- and four HCl molecules, as shown in Figure 2.15.  
 

  
Figure 2.15. Hydrogen-bond structures in JAVFUH and JAVFOB.  
 
Table 2.4. Pyridinium crystals with small size simple counterions 

 

 
With the simple counterions (except those formed large size simple structures 

with other neutral molecules), all pyridiniums were packed face-to-face with each other, 

in pseudo β or γ patterns, which have much better atomic contact between rings than that 

in benzene crystals. The centroid distances between two closest parallel rings in these 

pyridinium crystals are within 3.77-4.83Å, much smaller than that of benzene rings (5.37 

CSD code DEHSOY10 DEHSUE10 DEHTAL10 FOXMEK1
0 

counterions F-, HF F-, 2HF F-, 3HF Cl-, HCl 
pattern pseudo  β pseudo  β pseudo  β pseudo  β 
overlap FFEC FFEE-CC FFEE-CH FFEE-CH 

 
CSD code GEQBIN JAVFOB JAVFUH PYRHCL02

counterions F-, 5HF Cl-, 3HCl Cl-, 5HCl Cl- 
pattern pseudo  β NA NA pseudo  γ 
overlap FFEC, dimer NA NA FFEC 

 
CSD code PYRHCL11 TURPYB03 UDETOM01 BENZEN 

counterions Cl- 
,

C
S

H2N NH2
2Br- ,

C
S

H2N NH2
2I -  

 

pattern pseudo  β pseudo  γ pseudo  γ herringbone
overlap FFEE-CH FFEC, 33% FFEC, 33% NA 
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Å). Since little impact was made on the pyridiniums by the structures or sizes of the 

counterions, the packing patterns of these cations somewhat show the packing preference 

of these charged aromatic rings, which is isoelectronic to benzene. The enhanced π--π 

versus CH--π interaction was introduced by the delocalized charge of the pyridinium.  

The crystal structures of TURPYB03 and UDETOM01 are two special examples 

with the simple cations. The counterions, Br- and I-, are small and simple. However, there 

are two medium size neutral compounds, thiourea or clathrates, in the unit cell. There is 

no strong hydrogen bond in the crystals because the Br and I atoms have less capability 

of forming hydrogen bonds. Without the disturbance of the hydrogen bonds, in both 

cases, the pyridinium were packed with FFEC, pseudo γ packing. 

2.3.3.2 Large size counterions  

There are four crystals with only pyridiniums and large size counterions as 

shown in Table 2.5. With the increase of counterion size, the packing pattern of the cation 

became less regular. In the crystal structure of PYRDHN, γ structure with FFEC packing 

was found due to the relatively smaller (~ 2.1 Å), flat NO3
- counterion. Compared with 

NO3
-, IO4

- is a bulky tetrahedron structure with ~2.9 Å on each size, so the interaction 

between the pyridinium in the crystal structure of HOHMOG is weaker than that of 

PYRDHN. With larger counterions, the face-to-face packing pattern (π-π interaction) is 

less favorable, as in the crystal structures of QOQVOH and RUVYIQ.  
 
Table 2.5. Pyridinium crystals with larger size simple counterions 
 

CSD code HOHMOG01 
HOHMOG05 

PYRDHN QOQVOH RUVYIQ 

counterions IO4
- NO3

- CH3SO3
- CF3COO- 

pattern pseudo γ pseudo γ herringbone herringbone
overlap FFEE-HH FFEC NA NA 

 
The packing of the pyridinium is quite sensitive to the size of the counterions. 

With the increasing of the size of the counterions, chances are also increased that both 
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sides of the cation rings are occupied by the counterions, leaving no chance to the FF 

packing of the cations, such as in the cases of the IO4
-, CH3SO3

- and CF3CO2
-. When they 

are examined together with the small counterions capable of forming large structures due 

to the hydrogen bond (as in the crystal structures of JAVFUH and JAVFOB), the trend is 

clear: the bigger and bulkier the counterion, the worse the packing overlap.   

2.3.3.3 Large size counterions with neutral molecules (protonated counterions)  
 

Table 2.6. Pyridinium crystals with anions and neutral molecules (protonated anions) 
 

CSD code anion packing 
type 

ring  
overlap 

structure 
type 

AJEBIA 
,

OH
O2N COOH

NO2

OH
O2N COO-

NO2  
pseudo β FFEE NA 

DUVLUB HOOC

HOOC

-OOC

HOOC,
2

 
pseudo β 

 
FFEC 2D 

DEFCUM HOOC

HOOC

-OOC
-OOC,  

pseudo β 
 

FFEE-CH,  1D 

IDAHOK 
COO-O2N COOHO2N,

NA NA 3D 

KOWZUR 
N

OHHOOC
N

OH-OOC,  
NA NA 3D 

KOXREU HOOC

HOOC

-OOC

HOOC,  
NA NA 3D 

QAFFOS 
,

C
O

H OHC
O

H O-
3

 
pseudo γ FFEC 2D 

VEGKIB H3PO4, H2PO4
- pseudo β FFEC, 

dimer 
3D 

WADPEX HOOC

HOOC

-OOC

HOOC, , 2H2O  
pseudo β FFEE-CC 3D 

XICBAM 
N

2
,

HN NH

H
N SS

S

2 HN N-

H
N SS

S

2
,

 
NA NA 3D 

 
Some crystal structures have the pyridiniums crystallized with large size anions 

and neutral molecules (protonated anions). There are a total of ten: AJEBIA, DEFCUM, 

DUVLUB, IDAHOK, KOWZUR, KOXREU, QAFFOS, VEGKIB, WADPEX, and 

XICBAM, as shown in the Table 2.6. Since the numbers of the anions and neutral 
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protonated anions in unit cells are at least twice as much as the cations, there are chances 

that the cations could be separated and surrounded by anions and neutral molecules. Also, 

because the anion and neutral protonated anion can provide the hydrogen bond donor and 

acceptor, structures from 3D to 1D may be formed. All these crystals have been 

discussed in Section 2.3.1. The only one without the anion hydrogen bond structure was 

the crystal structure of AJEBIA, in which the anions were packed FFEC with its neutral 

protonated anion, and the cations were also packed FFEC with each other. This is 

probably because the anions form intramolecular hydrogen bonds inside the molecules. 

From the discussion above, we find that except for those surrounded by the 3D 

counterion structures, the single pyridinium cations prefer face-to-face packing patterns, 

which have better atomic contact between aromatic rings than that of the isoelectronic 

benzene rings, which were packed in herringbone patterns. The size of the counterions is 

critical to the single ring pyridinium. It was a little complicated in the cases of 

pyridinium with aromatic counterions due to the π-π interaction between cations and 

anions. However, if we consider the packing of cations and anions simultaneously, the 

packing patterns are much better compared with the neutral aromatic hydrocarbons. 

2.4 Cations of naphthalene type aromatic systems (two-ring cations) 

There are twelve crystals with naphthalene-type cations can be found in CSD. 

Nine of them have one nitrogen atom in each molecule. Four of these have the nitrogen 

atom in position 1; for the rest, it is in position 2. Three cations have two nitrogen atoms 

in a molecule. In QUOXPC, nitrogen atoms are on the 1, 4 positions, while in RUXQOQ 

and RUXQIK, they are on 2, 3 positions. The CSD codes, corresponding counterions, 

and packing styles of two-ring cations are shown in Table 2.7.  

In Table 2.7, all of the two-ring pyridinium crystals used face-to-face packing 

patterns with the interplanar distances right around the π-stacking distance. Except for 

the cation of QUOXPC, which is packed FFEE-CC in the crystal, all two-ring cations 

adopted FFEC packing patterns. Most of them are β packing patterns.  
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Note:  Start from here, all ‘two-ring pyridinium-derived aromatic’ will be simplified as 
‘two-ring’, and so on, such as three-ring and four-ring, etc. 
 

 

Table 2.7. CSD codes, corresponding counterions, packing patterns and the overlaps of 
two-ring pyridinium crystals. d is interplanar distance. 
 

CSD code cation anion cation 
packing 

type 

 ring overlap, 
% 

d, Å 

1D hydrogen bond dominated 
RABYID  

N
H  

HOOC

COO-

 
pseudo γ FFEC, 50%,  3.48 

 
VAGDUD N

H

2

 

 
SiF6

2-,  H2O 
pseudo β FFEC, dimer, 

50% 
3.28 

 
RUXQOQ N

N

H 
 

HOOC COO-  
pseudo β FFEC, dimer 

16% 
3.60 

 
RUXQIK N

N

H
2

 
N
N

HOOC

COOHHOOC

COO-

,

2 pseudo β FFEC, 50% 3.39 

aromatic counterions 
 

BAYBEJ  
N

H
2  2

COO-

HOOC COOH

COOH
COOH

-OOC

and CH3OH  

pseudo β 
cation- 
cation 

FFEC, 50% 3.29 

 
JUSRUK 

N
H

 
O-

O2N NO2

NO2  

pseudo γ 
cation 
-anion 

FFEC, dimer 3.53 

 
HEYQUX N

H

2

 

HOOC COO-

COOH-OOC  
pseudo β 
cation- 
cation 

FFEC, 33% 3.51 

simple counterions 
 

HEFZAT  N
H

3

 

Cl-, 
2I3

- 
DHB FFEC, dimer  

50% 
3.33 

 
FOJWAC 

N
H

 
 

NO3
- 

pseudo β FFEC, 16% 3.46 
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Table 2.7 (continued) 
 

IQUINC01 
N

H

 
 

Cl- 
pseudo β FFEC, dimer 

16% 
3.40 

 
QUOXPC N

N

H  

 
ClO4

- 
pseudo β FFEE-CC 

dimer, 0% 
3.36 

 
IQUICM 

N
H

 
 

Cl-, H2O 
pseudo β FFEC, dimer 

50% 
3.38 

 

2.4.1 Hydrogen-bond structures of the counterions 

There are five crystals with hydrogen bond structures formed by the counterions. 

These are shown in Table 2.8. Except the 3D structure formed by the aromatic counterion 

and methanol (BAYBEJ), all other crystals have 1D counterion structures. The π-π 

interactions between cations are strong. All the cations were packed FFEC, in β or γ 

pattern. In the crystal structure of BAYBEJ, the aromatic counterion formed a 3D 

columnar structure with methanol, and the cations were packed FFEC inside the column, 

Figure 2.16. In all other crystals with 1D counterion, the preference of the FFEC packing 

patterns show the enhanced π-π interaction between the two-ring cations compared with 

that of neutral naphthalene. 
 

Table 2.8. Two-ring pyridinium crystals with hydrogen-bond structure of counterions 
 

CSD code RABYID RUXQOQ RUXQIK VAGDUD BAYBEJ 
pattern pseudo γ pseudo β pseudo β pseudo β pseudo β 
overlap FFEC FFEC FFEC FFEC FFEC 

 

 

 
Figure 2.16. Packing pattern in BAYBEJ.  
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2.4.2 Aromatic counterions 

There are three crystals that have aromatic counterions. They are shown in Table 

2.9. The crystal structure of BAYBEJ, in which the cations packed FFEC in β style, has 

been discussed in the hydrogen bond structure section (Section 2.4.1). In the crystal 

structure of JUSRUK, the cations are packed FFEC with the aromatic counterion packed 

in a γ pattern. For HEYQUX, the cations packed FFEC in β pattern while the 

counterions packed in separated columns in the crystal. Similar to one-ring cations, the 

packing patterns of these two-ring pyridinium are much better than those of the neutral 

hydrocarbons if we consider the packing of cations and anions at the same time. 
 
Table 2.9. Two-ring pyridinium crystals with aromatic counterions. Pattern 1 includes 
pyridinium only while pattern 2 includes all aromatic rings (pyridinium and counterion) 
inside the crystals. 
 

CSD code BAYBEJ JUSRUK HEYQUX 

pattern 1 pseudo β NA pseudo β 

overlap FFEC NA FFEC 

pattern 2 NA pseudo γ 
FFEC, dimer 

pseudo γ 

 

2.4.3 Simple counterions 

The sizes of the simple counterions are somewhat less important to the two-ring 

systems, so all the simple counterions are listed and discussed together. The largest 

counterion is in the HEFZAT crystal, in which the size of the counterion is 5.8 Å.  

From Table 2.10, except for HEFZAT and QUOXPC, all cations were packed 

face-to-face, edge-to-center in pseudo β pattern in crystals structures. The strong 

interactions between the charged aromatic faces were shown by this overlap and packing 

pattern preference. In the crystal structure of HEFZAT, the size of the counterion is 5.8 Å. 

This is almost the size of the diameter of naphthalene (6.4 Å). The large size of the 
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counterion probably contributes to the DHB packing pattern in this crystal. In QUOXPC 

crystal, there are two nitrogen atoms on the same ring of the cation. Less π-π overlap of 

the cations in the crystal structure of QUOXPC may be due to the extra repulsion 

between the long pair electron of the nitrogen atom and the π electrons of the other ring.     
 
Table 2.10. Two-ring pyridinium crystals with simple counterions 

 
CSD code HEFZAT FOJWAC IQUICM IQUINC01 QUOXPC 
pattern DHB pseudo β pseudo β pseudo β pseudo β 
overlap FFEC, dimer FFEC FFEC FFEC, dimer FFEE-CC

 
In the two-ring pyridinium crystals, most cations packed FFEC with β packing 

patterns. Compared with the single-ring cations, more overlap and better atomic contact 

between cationic rings show stronger interactions between these two-ring pyridiniums. 

2.5 Cations of anthracene and phenanthrene type aromatic systems (three-ring 

cations)  

        For the fused three-ring cations, there are two kinds of the ring arrangement, 

anthracene and phenanthrene type, as shown in Figure 2.17. Twenty four crystals can be 

found from CCD. Two of them belong to anthracene type crystals, PABBEZ and 

EDAVOU. Others are phenanthrene types. All phenanthrene types have two nitrogen 

atoms, three of which are dications (BEQXIE, DPPYAZ and PENPCM).  
 

N

N
H

NN
N

N

H

N
H

N N
H

anthracene type                                                  phenanthrene type  
Figure 2.17. Three-ring cations. 
 

All the CSD codes, corresponding counterions, and packing styles of three-ring 

cations are shown in Table 2.11. 
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Table 2.11. CSD codes, corresponding counterions, packing patterns, and overlaps of 
three-ring pyridinium crystals. Cat-cat is Cation-cation, d is interplanar distance. 

 
CSD code cation anion cation packing 

type,  
cation ring 
overlap, %  

d 
Å 

aromatic counterions 
 

UNEBUK 
N

N
H  

HOOC COOH

COOH-OOC

  and  2 H 2O

pseudo β, 
3D counterion 

structure 

FFEC, dimer, 
22% 

3.34

 
EDAVOU N

H  COOH-OOC

pseudo β FFEC, dimer 
55% 

3.48

 
OMIJAV 

N N
H

2

 

COO-

HOOC COOH

COOH
COOH

-OOC

pseudo β FFEC, dimer, 
33% 

3.55

 
PABBEZ N

H  

Cl
Cl Cl

Cl
O-

Cl  
DHB 

 
FFEC, dimer, 

55% 
3.47

simple counterions   
 

BEQXEA 
N N

H

2

 
ICl2

-, 
I2Cl- 

pseudo γ FFEC, dimer, 
33% 

3.58

 
BECPAA 

N N
H

 

N N

,  ClO4
-

cation-neutral 
pseudo γ  

FFEC, dimer, 
33%  

3.51

 
BIBROT 

N N
H

 

N N

,    NO3
-

H2O cation-neutral 
pseudo γ 

1D counterion 

FFEC, dimer, 
55%  

3.46

 
CUZDIK 

N N
H

 
Cl- pseudo β FFEC, dimer, 

55% 
3.38

 
CUZFIM 

N N
H

3

 
2Cl-, HClCl- 

CHCl3 
pseudo γ FFEC, dimer, 

33% 
3.48

MIYBOL 
N

N

H  
Br- pseudo β FFEE-CC, 

0% 
3.31

 
NIDXUT 

N N
H

 

N N

,  Cl-
2

 
DHB 

cation-cation 
DHB 

cation-neutral 

FFEC, dimer 
33% 

cation-neutral 
FF-33% 

3.50
 

3.55

 
NODZEL 

N N
H

 
P
O

HO C P
O

OH
OH

CH3

OHO-

and  2H2O

pseudo β 
2D counterion 

structure 

FFEC, dimer 
33% 

3.42

NOXXIH N N
H

 
PF6

- pseudo β FFEC, 11% 3.26
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Table 2.11 (continued) 

OPENDN N N
H

 
NO3

- 
HNO3 

pseudo γ FFEC, dimer, 
45% 

3.40

PIDLET N N
H

 

O
-O Cl

Cl
O

NC
 

cation-cation 
pseudo γ 

FFEC, 22% 3.36

PHOLCL 
PHOLCL0

1 

N N
H

 
Cl-, 
H2O 

pseudo γ 
1D counterion 

structure 

FFEC, dimer, 
33% 

3.39

 
TEPBIZ 

N N
H

 

N N

N
Et

Et
C

S

S
Te

I
I

 

cation-neutral 
pseudo γ 

FFEC, dimer, 
55%  

3.64

 
TEPBOF 

N N
H

 N N

N
Et

Et
C

S

S
TeH

Br
Br

 

cation-neutral 
pseudo γ 

FFEC, dimer, 
55%  

3.65

TIWFIO N N
H

 
Br3

- pseudo β FFEC, dimer, 
45% 

3.49

XOHGOQ N N
H

 
S
O

O
NH3C

S O
O

CH3  
pseudo β FFEC, dimer, 

45% 
3.33

di-cations 
BEQXIE N N

HH

 
Cl-, 
I2Cl- 

pseudo β FFEC, dimer, 
11% 

3.36

DPPYAZ 
NN  

2Br- 

H2O 
pseudo β FFEC, dimer, 

11% 
3.46

PENPCM N N
HH

 
2ClO4

- 
H2O 

pseudo γ FFEC, dimer, 
11% 

3.52

 
2.5.1 Aromatic counterions 

Four crystals come with the aromatic counterions (Table 2.12). Two of them are 

anthracene-type cations. In the EDAVOU crystal, the anion formed a linear 1D structure; 

the cations were connected through the hydrogen bond with the anion and packed FFEC 

in pseudo β pattern. In the crystal structure of PABBEZ, the cations formed 

FFEC-dimers, which packed with the aromatic counterions in herringbone-style. The 

aromatic counterions form a planar 2D structure through the hydrogen bond in the crystal 

of OMIJAV. The cations are packed face-to-face perpendicular to the plane in pseudo β 
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pattern. In the last crystal, UNEBUK, there are two water molecules inside each unit cell 

and the counterions and waters form a 3D structure, which includes the two cations 

packed face-to-face with each other. If we consider the packing of cations and anions 

simultaneously, we see that face-to-face packing motif is preferred by these three-ring 

aromatics in the crystals with short interplanar distance and large overlap. 
 

Table 2.12. Three-ring pyridinium crystals with aromatic counterions. Pattern 1 includes 
pyridinium only while pattern 2 includes all aromatic rings (pyridinium and counterion) 
inside the crystals. 
 

CSD code PABBEZ EDAVOU OMIJAV UNEBUK 
pattern 1 DHB pseudo β pseudo β pseudo β 

 
overlap 

cation-cation 
FFEC, dimer 

cation-cation
FFEC, dimer

cation-cation 
FFEC, dimer 

cation-cation dimer, 
FFEC. In 3D 

counterion structure 
pattern 2 DHB pseudo γ NA pseudo β 

 

2.5.2 Simple counterions 

     All crystals with simple counterions are phenanthrene-type. Because some of the 

counterions co-crystallized with neutral aromatic rings, we will discuss this in two parts. 

2.5.2.1 Simple nonaromatic counterions  

There are twelve crystals that contain simple nonaromatic counterions as shown 

in Table 2.13. In all these three-ring cation crystals, cations are closely associated. They 

were packed as face-to-face dimers. There are three special crystal structures (NODZEL, 

PHOLCL, and PHOLCL01) in which the counterions formed 2D or 1D structures inside 

the crystals. In all these crystal structures, cations packed as dimers in FFEC style. 

Compared with the two-ring or one-ring pyridinium, the three-ring cations packed with 

more ring overlap. They stack despite large anions present in the lattice. For example, in 

the crystal structure of XOHGOQ, the size of the bulky anion is 6.1 Å, yet the cations 

were packed FFEC with 45% overlap in pseudo β style. 
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Table 2.13. Three-ring pyridinium crystals with simple nonaromatic counterions  
 

CSD code cation counterions pattern cation-cation 
overlap 

 
BEQXEA 

N N
H

2

 
ICl2

-, I2Cl- pseudo γ FFEC, dimer, 
33% 

 
CUZDIK 

N N
H

 
Cl- pseudo β FFEC, dimer, 

55% 
 

CUZFIM 
N N

H

3

 
2Cl-, HClCl-

CHCl3 
pseudo γ FFEC, dimer, 

33% 
 

MIYBOL N

N

H  
Br- pseudo β FFEE-CC, 

0% 
 

NODZEL 
N N

H

 
P
O

HO C P
O

OH
OH

CH3

OHO-

and  2H2O

pseudo β, 2D 
counterion structure 

FFEC, dimer 
33% 

 
NOXXIH 

N N
H

 
PF6

- pseudo β FFEC, 11% 

 
OPENDN 

N N
H

 
NO3

- 
HNO3 

pseudo γ FFEC, dimer, 
45% 

 
PIDLET 

N N
H

 

O
-O Cl

Cl
O

NC  
Cation-cation  

pseudo γ 
FFEC, 22% 

PHOLCL 
PHOLCL01

N N
H

 
Cl-, 
H2O 

pseudo γ, 1D 
counterion structure 

FFEC, dimer, 
33% 

 
TIWFIO 

N N
H

 
Br3

- pseudo β FFEC, dimer, 
45% 

 
XOHGOQ 

N N
H

 
S
O

O
NH3C

S O
O

CH3  
pseudo β FFEC, dimer, 

45% 
 

2.5.2.2 Simple nonaromatic counterions with neutral aromatic compounds 

It was a little complicated in the cases of crystals containing simple nonaromatic 

counterions and neutral aromatic compounds. Due to the π-π interactions between cations 

and neutral aromatic compounds, the cations have the chance to stack with the neutral 

rings. In all these crystals, cations-neutral aromatic rings packing patterns are preferred. 

As shown in Table 2.14, the cations packed face-to-face, edge-to-center with the neutral 

compounds with large overlap in pseudo γ or DHB style. It is probable due to the lone 

pairs of the nitrogen atoms on the neutral aromatic rings, which largely increase the 

exchange-repulsion between two aromatic rings. The cation-neutral packing patterns 
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alleviate these interactions. However, if we consider the packing of cations and anions 

simultaneously, the aromatic rings are packed with non-herringbone patterns. Large ring 

overlap and atomic contact between aromatic rings show stronger π-π interactions 

compared with the corresponding aromatic hydrocarbons, which are packed with 

herringbone patterns and dominated by CH-π interactions.  
 
Table 2.14. Three-ring pyridinium crystals with simple nonaromatic counterions and 
neutral aromatic compounds 
 

CSD code cation counterions pattern overlap 
 

BECPAA 
N N

H

 

N N

,  ClO4
-

cation-neutral 
pseudo γ  

FFEC, dimer, 33% 

 
BIBROT 

N N
H

 

N N

,    NO3
-

H2O

 
cation-neutral 

pseudo γ 
FFEC, dimer, 55% 

 
NIDXUT 

N N
H

 

N N

,  Cl-
2

 
cation-cation DHB
cation-neutral DHB

FFEC, dimer, 33% 
FF-33% 

 
TEPBIZ 

N N
H

 

N N

N
Et

Et
C

S

S
Te

I
I

 

cation-neutral 
pseudo γ 

FFEC, dimer, 55% 

 
TEPBOF 

N N
H

 N N

N
Et

Et
C

S

S
TeH

Br
Br

 

cation-neutral 
pseudo γ 

FFEC, dimer, 55% 

  

From all seventeen crystals of pyridinium with simple counterions, all cations 

packed with non-herringbone patterns either with cations or the neutral aromatic rings, 

which means that the π-π interaction is preferred over the CH-π interaction. The 

enhanced π-π interaction is probably due to the cation-π interaction.  

2.5.3 Dications  

There are three crystals formed by the dications. Two of them are 

1,10-phenanthrolinium. The other one is 12,14-phenanthrolinium (crystal DPPYAZ). All 

of them crystallized with simple counterions. Compared with the single-charged cations, 

the di-cations have less overlap, which was probably due to the increased charge 

repulsion from the two di-cation rings. 
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Table 2.15. Three rings dicationic pyridinium crystals  
 

CSD code cation counterions pattern overlap 
 BEQXIE N N

HH

 
Cl-, 
I2Cl- 

pseudo β FFEC, dimer, 11%

DPPYAZ 
NN  

2Br- 

H2O 
pseudo β FFEC, dimer, 11%

PENPCM N N
HH

 
2ClO4

- 
H2O 

pseudo γ FFEC, dimer, 11%

 

2.6 Cations of benzanthracene type aromatic systems (four-ring cations).  

Only one crystal, LUCGEV, has the fused four-ring cation. In this crystal, the 

counterion is a simple molecule and the cations were packed FFEC with 50% overlap in 

pseudo γ style. No crystal with more than four fused rings could be found. 
 
Table 2.16. Four-ring pyridinium crystals 
 

CSD code cation anion cation packing type, 
 ring overlap, % 

d 
Å 

 
LUCGEV

N  

Br- 
CH3OH 

pseudo γ 
FFEC, dimer, 50% 

3.40 

 

From the studies above of simple pyridinium-derived aromatic rings salts, we 

find that these aromatic cations prefer the face-to-face packing pattern; these 

non-herringbone patterns have more overlap and better atomic contact between cationic 

rings than their corresponding neutral polynuclear aromatic hydrocarbons, which are 

packed in herringbone patterns with no overlap between aromatic rings. These packing 

patterns of the pyridinium salts show stronger interactions between the aromatic 

pyridiniums rings. Except those that were separated by 3D counterion structures, the 

simple aromatic cations are packed face-to-face with aromatic rings (other cations or 

neutral aromatic compounds).  

The size of the counterions is critical to the single-ring pyridinium, but it has 

somewhat less impact with the increase of the rings in cations. Though only a few 
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examples of the cations with more than three rings can be found, the trend of the packing 

of these cations is still clear: the more rings the cations have, the more overlap between 

the cations. This trend is similar to that of neutral aromatic hydrocarbons.(7)  

It was a little complicated in the cases of pyridinium with aromatic counterions 

due to the π-π interaction between cations and anions. For all crystals that have the 

aromatic counterions, only in three of them cation-anion π-π interactions were preferred 

over the cation-cation π-π interactions, as shown in Figure 2.18. 
 

N
H

N
H

N
H

OH

OH

COO- NO2

NO2

O-

O2N

NO2

NO2

O-

O2N

PYRPIC03LEZJIH JUSRUK  
Figure 2.18. One- and two-ring pyridinium derivatives with FF cation-anion packing 
style in their crystal structures. 

 
In these cases, the cations were formed face-to-face to the aromatic anions. All 

these anions had the hydroxyl groups. It is may be due to the resonance that partial 

negative charges were transferred to the aromatic ring. The strong aromatic-cation 

aromatic-anion interactions are formed between the aromatic cations and anions.  

Other cases where the cation-cation face-to-face packing was not preferred only 

occurred in the three-ring phenanthrene-type crystals that contain two nitrogen atoms in 

an aromatic cation, as shown in Table 2.14. In these crystals, cations were co-crystallized 

with simple counterions and neutral aromatic rings. In the five crystals, cations packed 

face-to-face, edge-to-center with the neutral compounds with large overlap in pseudo γ or 

DHB style. The reason is unclear, perhaps because the lone pairs on the extra nitrogen 

atoms on the rings. However, if we consider the packing of cations and neutral rings at 

the same time, the packing patterns have better atomic contact compared with the 

corresponding aromatic hydrocarbon. All cations packed in either pseudo γ or pseudo β 

packing style with aromatic rings, which means that the π-π interaction is preferred. 
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2.7 Delocalized cation enhanced cationic π-π interactions 

2.7.1 Delocalized cation-π interaction 

In pyridinium rings, due to the delocalization of the pyridine aromatic ring, the 

positive charge will be distributed on the ring, basically at the hydrogen atoms.(44) 

From the calculation of the benzene dimers, the stable dimers are FF and 

T-shape,(43) the distances of the centroids are shown below in Figure 2.19. Since the 

distance from the centroid of the benzene to the proton is ~2.5 Å, in the T-shape dimer, 

the distance from the nearest proton of the perpendicular ring to the centroid of the 

oriental one is also around 2.5 Å.   
 

                                
Face-to-Face,      
Offset  (FFOP)

         T-shape, 
Edge-to-Center (TEC)

3.5 A
5.0 A

H
2.5 A

1.8 A

3.9 A

 
Figure 2.19. FF and T-shape packing of benzene dimers. 
 

 Due to the electrostatic nature of the cation-π interactions, the coulombic 

potential functions can be used to describe the interactions, as shown in Equation 2.1. In 

the equation, Q = ± ne (n is the number and e is the magnitude of the charges. e = 1.602 

×10−19 C), r is the distance between the charges and ε (= 8.854×10−12 J−1 C2 m−1) is the 

dielectric constant. 
 

U =
4 π ε r

Q1Q2

 
Equation 2.1. Coulombic potential functions 
 

Compared with the face-to-face packing, in T-shape packing, the distance is 

much shorter (2.5 Å versus 3.5 Å) from the proton of the perpendicular ring to the 

centroid of the oriental one (the other aromatic rings). A larger repulsive electrostatic 
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interaction may be formed between the positive portion of the ring (due to charge 

separation) and the positive charge on the hydrogen atom in the T-shape.  

However, in the typical cation-π interaction, Na+---benzene, the distance of the 

sodium cation to the centroid of the benzene is only 2.4 Å.(45) This is shorter than the 2.5 

Å and the total charge (+1) should be bigger than that on the proton of the ring. So, the 

repulsive electrostatic interaction between the positive charge on the proton and the 

positive portion of the other ring (due to charge separation) could not be responsible for 

the preferring of the FF over the T-shape packing. 

For the typical cation-π interaction, the best position for the cation is on the top 

of the ring center, with the electrostatic interaction playing a prominent role. The 

electrostatic model for the benzene(36) can be used to explain the delocalized cation-π 

interaction. Due to the orientation of the charge of the rings, the FF and T-shape packing 

are two optimum geometries for best σ-π attractive interactions. Those will be the same 

choices for the electrostatic interaction between two charged rings. However, no T-shape 

has ever been found in the pyridinium cation crystals.  

From the calculation, the stable benzene dimers are FF and T-shape,(43) the 

distances of the T-shape centroids is 5 Å and the face-face distance for the FF is 3.5 Å. 

Suppose the pyridine ring can be viewed as an electrostatic model like a benzene ring. 

This means the π-system can be viewed as a sandwich structure with a positively charged 

σ-framework in the middle and two half negatively charged π-electron clouds on both 

sides,(32) as shown in Figure 2.20.      
 

-δ/2

-δ/2

+δ-δ/2 -δ/2

+δ
-δ/2

-δ/2

+δ

-δ/2

+δ
d

-δ/2

-δ/2

-δ/2

-δ/2

    
+1+δ

-δ/2

-δ/2

-δ/2 -δ/2

FF and T-shape of benzene FF and T-shape of pyridinium-pyridinium

3.75 A

5 
A

 3
. 5

 A

    
+1+δ

    
+1+δ

    +1 +δ

-δ/2

 
Figure 2.20. Electrostatic model of pyridinium rings. 
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2.7.2 Assumptions for the calculation 

1) The pyridinium rings will use the same FFEC or EF (T-shape) packing 

patterns as benzene rings. 

2) The pyridinium rings can be viewed as an electrostatic model like benzene 

rings. 

3) The charge on the pyridinium can be treated as a single-point charge and will 

not affect other interactions.    

The repulsion interactions between the two pyridinium rings include the 

exchange repulsion of the rings (+δ, +δ), the coulombic repulsion of positive charges (+1, 

+1) and repulsions between charges and rings (+δ, +1). In the FF and EF patterns, the 

former repulsion is comparable to the charge repulsion in the FF and EF benzene model, 

in which the FF model is 1.19 kcal/mol higher than that of the EF model. This difference 

is covered by the higher dispersion attraction of FF model ( Table 2.17).(43)  
 

Table 2.17. Electrostatic and dispersion energies of benzene(43). Ees is electrostatic 
interaction energies, Erep is repulsion interaction energies, and Ecorr is correlation 
interaction energies.  

 
energy, kcal/mol FFCC EF FFEC 
Etotal -1.48 -2.46 -2.48 
Ees 1.24 -0.55 0.90 
Erep 3.02 1.57  2.76 
Ecorr -5.74 -3.48 -6.14 

 
Suppose the positive charges can be treated as point charge and set at the center 

of the rings. In Figure 2.20, the centroids of the FFEC and EF are 3.94 Å and 5 Å. 

According to Equation 2.1, the interaction of the coulombic repulsion between positive 

charges in FFEC can be 1.3 times that of the EF model. It will be the same for the 

repulsions between charges and rings (+δ, +1). 

Since there is no EF pattern in the pyridinium crystals, the extra coulombic 

repulsion between positive charges in FFEC must be covered by some kind of attraction. 
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As shown in Figure 2.20, two coulombic interactions between a positive charge and a 

-δ/2charge can be found in the face-to-face FF pyridinium packing, while only one of this 

kind of interaction can be found in the T-shape edge-to-face(EF) pyridinium packing. 

Compared with the EF packing pattern, the FF pattern has twice the chance to obtain 

coulombic interaction. 

Moreover, the FF pattern is more flexible than the T-shape; the charged rings can 

slide easily to get the best interaction. A larger net attraction can be gained to cover the 

charge repulsion. This could be the reason for the preference of FF over T-shape style. 

The net gaining between the cation-π electrostatic attraction and the charge-charge 

electrostatic repulsion in the FF packing is greater than that of the T-shape one. 

This model can also explain the trend of the packing of cations: the more rings 

the cations have, the more overlap between the rings. This is because the larger the 

aromatic rings, the larger cation-π interaction (q2 will be larger in Equation 2.1).  

From the study, we can see that the FF packing of the pyridinium rings is due to 

the cation-π interactions, which are dominant in the orientation and stabilization of the 

packing. Besides cation-π interactions, other interactions also need to be considered for 

the aromatic-aromatic ring interactions of the pyridinium cations. 

2.7.3 Dipole-dipole interaction 

 Dipole-dipole interactions may also contribute to the packing patterns of 

pyridinium rings. Due to the different electronegativities of N and C atoms, the dipole 

moment exists on the pyridinium rings, which is 1.97 D and points to the nitrogen atom 

according to the calculation.(39) This value is comparable to that of the CH3Cl. However, 

the dipole-dipole forces may not be dominating, because: 

1) There are many different kinds of orientation of the cation rings inside   

the crystals. However, there is no overlap or face-to-face packing among nitrogen atoms 

in the packing patterns in order to avoid the direct dipole moment confrontation. 

Nevertheless, the dipole–dipole forces could not be the major forces determining the 
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packing patterns. If so, the orientation of all crystals would be similar. However, there are 

many kinds of orientations in the pyridinium crystals. Some of them are shown in Figure 

2.21, in which the aromatic rings are simplified. Only the backbones are shown. 

2) Compared with the ion-dipole and cation-π interactions, which also exist in 

the crystals, the dipole–dipole forces, which are normally only a few kcal/mol, is much 

smaller, e.g., only 0.79 kcal/mol for the HCl molecules. 

3) The dipole-dipole interactions in the pyridinium ring more or less determine 

the orientation of the rings inside the packing structure of the crystals, but not the packing 

patterns. 
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Fig 2.21. Orientation of the cationic rings. 
 

2.7.4 Ion-dipole interaction 

The ion-dipole interaction is also involved in the packings of the aromatic 

cations. Like the dipole–dipole forces, the ion-dipole interaction has the orientation 

preference and short distance requirement. 

1) Anion-dipole interaction. The anion here is the anion part from the 

charge-separation model. As shown in Figure 2.20, the FF packing style will provide two 

anion-dipole interactions, while T-shape can only obtain one. However, in either the FF 

or the T-shape, the ion dipole interaction is much smaller than the cation-π interaction 

between two rings, which is charge-charge interaction in nature. The dipole moment is 

only partial charge separation.    
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2) Cation-dipole interaction. None of the two packing styles show good interaction 

of the cation-dipole interaction of one ring to the other. The best of this kind of 

interaction requires the close arrangement of the rings in the same plane inside the 

crystals, which does not happen in the pyridinium crystals.  

Also, from Figure 2.21, the orientations of the dipole moments are different for 

the cation rings. Some of them are far away from the direction of best anion-dipole 

interaction; a few of them are in the reverse direction. These orientations show relatively 

unimportant contributions of the ion-dipole interactions to the crystal packing patterns. 

2.7.5 Molecular orbital study 

Maxima molecular orbital overlaps of the aromatic cations could happen in the 

FF packing (π-stacking). Since the molecules possess both empty orbitals and π bonds, 

they can be electronic donors and acceptors at the same time. They are capable of 

forming strong donor-acceptor interactions of the cation-π type. Strong interactions may 

result from the overlap of these charged aromatic species. Possible interactions between 

these cationic-π-systems are through back-bonding interactions, as shown in Figure 2.22. 

One pyridinium (A) donates electrons from its highest occupied molecular orbital 

(HOMO) to the lowest unoccupied molecular orbital (LUMO) of the other one (B) to 

form a bonding molecular orbital (MO). However, the HOMO of B will also overlap 

with the LUMO of A. They too will form a net bonding MO. B will donate electrons to 

A. New molecular orbitals formed through back-bonding will result in strong interactions 

between the cations, which overcome the charge/charge interactions. 
 

HOMOHOMO

LUMO LUMO new 
MOs

A B A B  
Fig 2.22. Back-bonding interactions between two cationic-π-systems.  
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2.8 Conclusion  

1) The stacking interactions between aromatic rings of pyridinium cations are 

greatly enhanced over their corresponding neutral polynuclear aromatic hydrocarbons. 

The π-stackings shown by the better atomic contact and overlap of the pyridinium cations 

were probably introduced by the delocalized charges of cations. Except for those 

pyridinium with bulky counterions, the centroid distances between two closest parallel 

rings in the pyridinium crystals are within 3.77-4.83Å, which are much smaller than that 

of benzene rings (5.37 Å). Cation-π interaction could be formed between the delocalized 

charge of one ring and the π-system of the other ring.  

 2) The face-to-face packing patterns could get the maximum delocalized 

cation-π interaction for both rings and minimize the system energy. The model of regular 

point cation-π interaction can be used to explain the delocalized cation-π interaction. 

Stacking pattern of aromatic systems could introduce strong cation-π interactions. The 

cation-π interaction is dominant in the orientation and stabilization of the packing of 

pyridinium rings.  

3) The dipole-dipole, ion-dipole interactions in the pyridinium ring affect the 

orientation of the rings inside the packing structure of the crystals, but are not strong 

enough to determine the packing pattern.  

4) The trend of the packing of these cations is: the more rings the cations have, 

the more overlap between the cations. This is probably because larger systems could 

alleviate the charge repulsions better and also have larger cation-π interactions. 

5) The maxima overlap of molecular orbitals of the aromatic cations could 

happen in the FF packing. This may contribute to the enhanced cationic π-π interactions. 

The cationic π-π interactions were greatly enhanced by the delocalized cation-π 

interactions. What will happen if two aromatic rings carried different sign of charges? 

How will the delocalized cation-anion interactions affect the π-π interactions? These 

questions are examined in the next chapter.  
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Chapter Three 
π-π interaction in the solid state of triangulene salt pairs 

 
Aromatic salt pairs of triangulene derivative with the delocalized cation-anion 

interaction were synthesized. The π-π interactions of these salts were studied. Stacking 

interactions are very strong between these charged aromatic salts, evident by the large 

ring overlaps, short interplanar distances and high melting points. The strong interaction 

between the salt π system pair is dominated by the coulombic attraction, which is 

synergistic with the cation-π interaction. The stacking pattern and strong interactions 

between the charged aromatic ions can also be explained by the interactions between 

these two charged species. 

This contribution is novel because these are the only fused, flat, aromatic salt 

pairs in the chemical literature. It is the first time to discuss the effect of delocalized 

cation-anion interactions on π-π interactions. 

 

R= -CH3, -CH2CH3, -CH2CH2CH3
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3.1 Introduction 
3.1.1 Fused, flat, benzenoid hydrocarbons with D3h symmetry 

The total-resonant-sextet (TRS) benzenoids are benzenoid hydrocarbons, which 

have 6n carbons (6n π electrons) and are totally built by Clar π-sextets: single benzene 

rings that are separated from each other by carbon-carbon single bonds. These systems 

are very stable.(1-3) 

 The total-resonant-sextet (TRS) series and benzenoid polyradical series 

(triangulene type) are the only two kinds of fused, flat, benzenoid hydrocarbons with D3h 

symmetry, (Figure 3.1). The TRS are the most stable systems, while the polyradical 

series are the most unstable.(4) 

 

 
Total-resonant-sextet series TRS          Benzenoid polyradical series (triangulene type) 

Figure 3.1. The total-resonant-sextet (TRS) series and benzenoid polyradical series 
(triangulene type) benzenoid hydrocarbons. 
 

Many derivatives of these two series have attracted scientific interest due to their 

highly conjugated π system and their propensity to form organized one-dimensional 

columns. Triphenylene derivatives and some hetero-triangulenes have been used as the 

central discotic cores in discotic liquid crystals.(6,7) Discotic liquid crystals have 

remarkable charge transport properties and have started to be used as optoelectronic 

devices.(8)     
 

C C Z
X

Z

Z
3.2

HH

3.3   
Figure 3.2. Triangulene 3.2 and triangulene skeleton. 
 



 94

According to Hückel molecular orbital calculations, triangulene 3.2 (Figure 3.2) 

has two unpaired electrons that are distributed on two degenerate nondisjoint nonbonding 

MOs. It will show a triplet ground state.(9) Although attempted synthesis of this 

non-Kekulé molecule started in the early 1950’s by Clar and his co-worker, its successful 

isolation and characterization have not yet been reported.(10)  

 Triangulene skeleton 3.3 is shown in Figure 3.2. Many triangulene derivatives 

have been synthesized by replacing some of the sp2 carbon atoms (X and Z) in 3.3 with 

heteroatoms.(11-18) These derivatives can be separated into three types based on the 

charges they carry: anion, cation, and neutral, as shown in Figure 3.3.  
 

R= -CH3, -CH2CH3, -CH2CH2CH3,
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 3.1             3.4,   3.5,    3.6              3.7            3.8 
anion                  cation                 neutral         neutral     

trioxytriangulene anion   triazatriangulenium cation 
Figure 3.3. Derivatives of triangulene. 
 

The trioxytriangulene anion 3.1 is the only triangulene-type anion that has been 

reported. The first successfully detected triplet triangulene diradical (3.9) was reported 

by Bushby and co-workers. Compound 3.1 is the precursor.(11) One-electron reduction of 

trioxytriangulene 3.1 anion under vacuum with Na-K alloy in DMF solution gave the 

stable triangulene diradical 3.9, which showed the triplet ESR spectrum (Figure 3.4). 
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Trioxytriangulene 3.1  
Figure 3.4. Electron reduction of trioxytriangulene 3.1.  
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The interest in synthesis of the neutral triangulenes (3.7, 3.8) mainly comes from 

their high molecular symmetry (C3v and D3h), which is important for achieving high 

molecular packing ordering in the solid state.(12-15)  

Structure 3.4 is a very stable molecule, which was shown by its extraordinary 

pKR+ value. The pKR+ values are calculated according to Equation 3.1. When the cation is 

titrated in basic solutions, the stability of the cation is expressed by the affinity of the 

carbenium ion toward hydroxide ions. 
 

PKR+ = pH + log [ R+ ]
[ ROH ]  …… (1) 

Equation 3.1. pKR+ equation. 
 

The [R+]/[ROH] is the [carbinol]/[carbenium] ratio in the solution. From 

Equation 3.1, the pKR+ is the pH value of the solution when the concentrations of the 

carbinol and carbenium are equal in the solution. 

The pkR+ value of the trimethyltriazatriangulenium ion 3.4 was 23.7 + 0.2, which 

places the trimethyltriazatriangulenium ion 3.4 among one of the most stable carbenium 

ions.(16,17) The most stable carbenium ions known to date are 

tris[6-(dimethylamino)-1-azulenyl]methyl hexafluorophosphate (A) and bis[6- 

(dimethylamino)-1-azulenyl] [6-(dimethylamino)phenyl]methyl hexafluorophosphate (B) 

(see Figure 3.5), which have pKR
+ values of 24.3 + 0.3 and 21.5 + 0.2.(18) The 

stabilization of the A and B were attributed to the delocalization of the charge by the 

effects of resonance and the three amino groups, as shown in Figure 3.5. These should 

have similar effects on the stabilization of 3.4, 3.5, and 3.6. 
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Figure 3.5. Delocalization of the charge by resonance of 3.4, 3.5, 3.6, A, and B. 

 

3.1.2 Triangulene type cations and anions 

The total-resonant-sextet (TRS) series and benzenoid polyradical series 

(triangulene type) are the only two kinds of fused, flat, benzenoid hydrocarbons with D3h 

symmetry. They have highly conjugated π systems and the ability of forming organized 

one-dimensional columns.(19) The aromatic ions of such D3h symmetric and planar fused 

benzenoid hydrocarbon rings are difficult to prepare. No such kinds of hydrocarbon ions 

have been reported. All the ions reported to date are triangulene types.(10,16,17) 

Triazatriangulenium ions are the pyridinium type of triangulene cations. The 

trioxytriangulene anion is the only triangulene type anion that has been synthesized. The 

crystals of triazatriangulenium trioxytriangulene (3.14, 3.15, and 3.16) salt pairs were 

investigated as the delocalized cation-anion interaction models in my study (Figure 3.6). 
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R= -CH3, -CH2CH3, -CH2CH2CH3,

C
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                      3.1            3.4,   3.5,     3.6                    
Figure 3.6: Triangulene type cations and anions. 
 
3.1.3 Cation-π interaction and cationic π-π interaction  

Cation-π interaction and cationic π-π interaction have been discussed in Chapter 2 

(see section 2.1.4 and 2.7). In the latter section of Chapter 2, there was evidence for 

strong interaction between aromatic cations. This was framed in terms of 

charge-enhanced π-stacking. Many of the cations stacked in a pair-wise manner. It was 

hypothesized that analogous species molecules of opposite charge would be more 

strongly cohesive than the cation pairs. The work below supports this hypothesis.  

3.2  Solid-state study of triangulene salt pairs 

3.2.1 Solid-state study of salts of triangulene cation and nonaromatic counterion 

The triangulene cations studied are trimethyl-, triethyl-, and 

tripropyltriazatriangulenium. The trimethyl- and tripropyltriazatriangulenium are known 

compounds and were prepared according to reference 17. The triethyltriazatriangulenium 

was also prepared. The triazatrianguleniums and counterions are shown in Figure 3.7. 

The crystals are trimethyltriazatriangulenium hexafluorophosphate (3.4C), 

trimethyltriazatriangulenium tetrafluoroborate (3.5D), and tripropyltriazatriangulenium 

tetrafluoroborate (3.6D). The packing patterns of the cations are shown in Figure 3.8. The 

centroid distances and overlaps of these crystals are listed in Table 3.1. 
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Figure 3.7: Triazatrianguleniums, counterions and their corresponding code. 
 
 

 

 
Figure 3.8: Tripropyl- (top) and triethyl- (bottom) triangulene cations viewed from a axis 
(left) and their packing patterns. 
 

From Figure 3.8, we find that the cations of the tripropyl- and 

trimethyltriangulene are packed face-to-face, center-to-center in a staggered dimer form, 

which pushes propyl groups on the rings away from the dimers. The crystal structure of 

trimethyltriangulene cannot be elucidated because of the disorder in the molecule.(16,17) 

The packing patterns and centroid distances of aromatic rings between dimers 
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(inter-dimer) are different from that inside dimers (intra-dimer). In Table 3.1, in the 

column labeled ring overlap, the first row for each salt outlines intra-dimer packing style 

and overlap, while the second row includes the information of inter-dimer. As shown in 

Figure 3.8, the cations are staggered, with approximate 66% overlap, which is the best 

overlap in all the cationic crystals we studied (overlap percentages are calculated based 

on the ratio of overlap areas to total aromatic rings). The distance between two FFCC 

dimers is very short, 3.29 Å. The short distance and large overlap show the strong π-π 

interaction between cations.  
 
Table 3.1: Triazatriangulenium crystals 
 

Cation Anion Cation-cation 
packing type, 

Ring overlap, 
%  

d, Å 

NA NA 
N

NN

CH3

CH3H3C

 

 
PF6

- 
 

NA 

NA NA 

FFCC, dimer 
66% 

3.29 
N

NN

CH2CH3

CH2CH3H3CH2C

 

 
BF4

-, 
 

Pseudo β 

FFEC 
28% 

4.32 

FFCC, dimer, 
66% 

3.29 
N

NN

CH2CH2CH3

CH2CH2CH3H3CH2CH2C

 

 
BF4

- 
 

Pseudo β 

FFEE-CC 
0% 

5.37. 

 
Substituents on the nitrogen atoms change the distances between dimers 

(inter-dimer distances). The inter-dimer distance of trimethyltriazatriangulenium in 3.5D 

is much smaller than the inter-dimer distance of the tripropyltriazatriangulenium in 3.6D. 

This is due to steric hindrance from the alkanes on the nitrogen atoms. This steric 

hindrance is also evident in the longer distance between two octyltriangulenium dimers, 
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which is 11.5 Å.(16,17) The steric hindrances prevent close packing between cationic 

dimers. The smaller the alkyl group, the less steric hindrance there will be. So, the more 

overlap can occur and the packing between dimers will be closer. This steric hindrance 

will be minimized in trimethyltriazatriangulenium (3.4C). There will be no difference 

between two faces of the cation. From the trend of the packing patterns of these cations 

with different substituents, we can predict that the packing pattern of 

trimethyltriazatriangulenium in 3.4C will be columns built by staggered FFCC dimers. 

These dimers could be packed from direct face-to-face, center-to-center (left bottom in 

Figure 3.9) to swirl face-to-face, center-to-center (right bottom in Figure 3.9). Inside each 

column, all cations will be packed center-to-center with each other with approximately 

66% overlap (Figure 3.9). 
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Figure 3.9: Prediction of packing pattern of trimethyltriazatriangulenium in 3.4C. 

 
The close packing of the triazatriangulenium dimers in 3.5D and 3.6D is due to 

the interaction between delocalized cation and π systems. As shown in chapter two, for 

the pyridinium-derived dimers, the cation-π interactions between triazatriangulenium 

charge and the triazatriangulenium π system enhances the cationic π-π interactions. These 

interactions overcome the CH-π interactions and dominate the FF packing pattern of the 

π systems. 



 101

Strong cationic π-π interactions were shown by the short centroid distance 

between the two triazatrianguleniums. The distance is 3.29 Å for the triazatriangulenium 

dimers in 3.5D and 3.6D, which is shorter than any other cationic dimers of pyridinium 

(e.g. the interplanar distance of the benzanthracene type four-ring pyridinium is 3.40 Å.). 

The shorter the distance, the more stable the atomic interactions between the aromatic 

rings, and the better the π-π interactions.  

The results of these studies of the triazatriangulenium packing also agree with 

the conclusion made in the last chapter about the importance of the size (increase of the 

rings) of cations in the cationic π-π interactions: more rings in the cations cause more 

overlap between them, which in turn leads to stronger atomic contact.  

3.2.2 Solid-state study of salts of triangulene anion and nonaromatic counterion 

More evidence for the importance of the delocalized cation in the cationic π-π 

interaction comes from the packing of the triangulene anions, which has a similar 

structure to that of the triazatriangulenium cation, as shown in Figure 3.3. In the crystals 

of the trioxytriangulene anion salt, tetrabutylammonium trioxytriangulene (3.1E), the 

anions are packed in a herringbone style, with tetrabutylammonium as counterions 

between them. The cations are on the 6-fold axis, on top of the anion and 4.57 Å away 

from it，as shown in Figure 3.10. This shows the regular point-charge, cation-π 

interaction. There is no overlap between the aromatic rings.  
 

 

N(CH2CH2CH2CH3)4

O O

O

1 E   
Figure 3.10: Salt tetrabutylammonium trioxytriangulene 3.1E (left) and its crystal 
structure (rignt). 
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Between two trioxytriangulene anions, the major interactions are the 

anion-anion repulsion, anion-π interaction, and π-π attraction. The anion-anion 

interaction and anion-π interaction both are repulsive. The herringbone style packing is 

probably due to the anion-anion repulsion and anion-π interaction between the anionic 

rings.  

Strong cationic π-π interactions were shown by the high melting point of these 

triazatriangulenium salts. The DSC spectra of the triazatriangulenium salts and the 

ammonium trioxytriangulene are shown in Figure 3.11. 
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Figure 3.11. DSC spectra of tetrabutylammonium trioxytriangulene (3.1E), 
trimethyltriazatriangulenium hexafluorophosphate (3.4C), trimethyltriazatriangulenium 
tetrafluoroborate (3.5D), and tripropyltriazatriangulenium tetrafluoroborate (3.6D). 
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For the DSC spectrum, the X axis is temperature (℃); the Y axis is heat flow Q 

(W/g) with exothermic upward. In Figure 3.11, all triazatriangulenium salts decomposed 

before melting. Their melting points are much higher than those of ammonium 

trioxytriangulene salt (225 ℃). The trioxytriangulene salt has a similar structure and 

molecular weight as those of triazatriangulenium salts. The higher melting points show 

better interactions between cationic aromatic rings than those between trioxytriangulene 

rings.  

3.2.3 Solid-state study of triangulene salt pairs 

3.2.3.1 Novel delocalized, flat, aromatic ionic salt pairs 

       There is no reported example of the delocalized, flat, aromatic ionic salt pair in 

the literature. The cation, anion molecules used in our study of the salt pairs are shown in 

Figure 3.12. 
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Figure 3.12: Triangulene anion, cations, and their corresponding codes for triangulene 
salt pairs study. 
 

3.2.3.2 Solid-state study 

The triangulene salt pairs (3.14, 3.15, and 3.16) can only be dissolved in hot 

DMSO. All the triangulene salt pairs showed a deep brown color. Except for the 

needle-like tripropyltriangulene salt pair 3.16, all salt pairs are powder-like solids 

because they have poor solubility in the hot DMSO solution. Only the crystal structure of 

the tripropyltriangulene salt pair 3.16 could be elucidated by single-crystal X-ray 

diffraction. Table 3.2 shows crystal data of salt pair 3.16, salt 3.1E and 3.6D. Figure 3.13 

shows crystal structures of 3.16, 3.1E and 3.6D. 
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Table 3.2. Parameters of crystal structures of tripropyltriazatriangulenium 
trioxytriangulene (3.16), tripropyltriazatriangulenium tetrafluoroborate (3.6D) and
tetrabutylammonium trioxytriangulene (3.1E) 

 
Cation Anion Packing 

type, 
ring overlap, % d, Å 

FFEC, 66% 
cation-cation 

dimer 

3.29 
N

NN

CH2CH2CH3

CH2CH2CH3H3CH2CH2C

O

OO

 

 
pseudo β

FFEC, 28% 
inter-dimer 

3.30 

FFCC,66% 
cation-anion 

dimer 

3.29 
N

NN

CH2CH2CH3

CH2CH2CH3H3CH2CH2C

 
BF4

- 
 

pseudo β

FFEE-CC,0% 
inter-dimer 

5.37 

NA NA  

N(CH2CH2CH2CH3)4  

O

OO

 

Herring-
bone 

NA NA 

 

 

 
 

  
Figure 3.13: Crystal structures of tripropyltriazatriangulenium trioxytriangulene (3.16), 
tripropyltriazatriangulenium tetrafluoroborate (3.6D), and tetrabutylammonium 
trioxytriangulene (3.1E).   
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In Table 3.2, in the column labeled ring overlap, the first entry for each salt is 

the packing within the dimer (intra-dimer) and % overlap, and the second entry is similar 

information between dimers (inter-dimer). As shown in Figure 3.13, the 

tripropyltriazatriangulenium (cation 3.6) and trioxytriangulene (anion 3.1) formed dimers 

with the FFEC packing pattern. The interplanar distance within the dimer was as short as 

3.29 Å and 66% overlap, the same as those of the cationic dimer in the nonaromatic 

counterion salt. But the inter-dimer interaction for salt pair 3.16 is much better than that 

of the cationic dimers in crystals 3.5D and 3.6D. The former has 28% overlap and 3.30 Å 

interplanar distances, while the latter has no overlap with the distance 4.32 and 5.37 Å, 

which are much greater than the VDW distance (3.4 Å). The increased overlap enhances 

the atomic contact between 3.1 and 3.6. Also inside the salt pair 3.16, the intra-dimer and 

inter-dimer have almost the same interplanar distances, which means the cation and 

anion try to pack evenly while contending with the steric issue of the substitution groups. 

We can predict that, without the steric issue, such as salt pair 3.14, the cation-anion will 

pack evenly with either FFCC or FFEC style with 66% overlap, similar to the prediction 

of the cationic π-system dimer trimethyltriazatriangulenium (3.4C) in Figure 3.9 in 

section 3.2.1. The difference is the cationic and anionic π-systems will stack alternately. 

The improved packing pattern of the ionic salt pair is caused by the enhanced π-π 

interaction, due to the delocalized cation-anion interactions. 

The DSC spectra of the salt pairs provide some thermal information about the 

salt-pair packing. The DSC curves of the salts tetrabutylammonium trioxytriangulene 

(3.1E), trimethyltriazatriangulenium trioxytriangulene (3.14), triethyltriazatriangulenium 

trioxytriangulene (3.15), and tripropyltriazatriangulenium trioxytriangulene (3.16) are 

shown in Figure 3.14.  
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Figure 3.14: DSC spectra of tetrabutylammonium trioxytriangulene (3.1E), 
trimethyltriazatriangulenium trioxytriangulene (3.14), triethyltriazatriangulenium 
trioxytriangulene (3.15) and tripropyltriazatriangulenium trioxytriangulene (3.16). 

 
In Figure 3.14, the X axis is temperature (℃); the Y axis is heat flow Q (W/g) 

with exothermic upward. Salt pairs 3.14, 3.15 and 3.16, trialkyltriazatriangulenium 

trioxytriangulene, all decomposed before (or while) melting, which were shown by the 

large exothermic peak and the unrepeatable result in the second scan. The small 

exothermic peak at ~270 ℃ for 3.14 was perhaps due to the phase transition. It is 

impossible to measure the accurate melting points. Nevertheless, some trends are clear: 

 1) All aromatic salt pairs have higher melting points than that of the salt of 

3.1E. This is due to the delocalized cation-anion interaction in the π system of salt pairs. 

Compound 3.1E is a salt that is formed between aromatic anion of the salt pairs 

(trioxytriangulene in 3.14-6) and nonaromatic counterion, tetrabutylammonium. There is 

no delocalized cation-anion interaction in the solid state of salt 3.1E.  
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2) Stability of triazatriangulenium trioxytriangulene salt pairs decrease with the 

increase of the size of substitution groups on the nitrogen atoms: for decomposing 

temperatures in Figure 3.17, 3.14>3.15>3.16. While salt-pairs, 3.15 and 3.16, 

decomposed at lower temperatures (415 ℃ and 380 ℃) than their cation slats, 3.5D (440 

℃) and 3.6D (430 ℃), the trimethyltriazatriangulenium trioxytriangulene salt pair 3.14 

(445 ℃), melted at a much higher temperature than the cation salt 3.4C (390 ℃). 

3.3 Delocalized cation-anion pair enhanced π-π interactions 

        There are many kinds of the molecular interactions between the cationic and 

anionic π-systems (3.4-6 and 3.1). They are delocalized cation-anion pair coulombic 

attraction, delocalized cation-π interaction, anion-π repulsion, π-π attraction, etc. All of 

these interactions contribute to the ionic π-π interaction. However, the interactions 

involving ions are of higher magnitude. The salt pair 3.16 was chosen as an example to 

discuss the ionic π-π interaction. 

3.3.1 Delocalized cation-anion pair coulombic attraction  

Coulombic attraction is the attractive interaction between two opposite charges. 

The equation for coulombic potential energy is shown below (Equation 3.2), where Q = ± 

ne (n is the number and e is the magnitude of the charges. e = 1.602 ×10−19 C), r is 

distance between the charges and ε (= 8.854×10−12 J−1 C2 m−1) is the dielectric constant. 
 

U =
4 π ε r

Q1Q2

 
 Equation 3.2. Coulombic potential between two charges  

 
According to Equation 3.2, the magnitude of the attraction potential energy is 

inversely proportional to the distance between two opposite charges: the closer, the 

stronger. Since the cation and anion π-systems of the salt pair 3.16 are highly conjugated, 

the positive and negative charges can be easily delocalized on the surface of 3.6 and 3.1. 

Suppose the cation-anion attraction can be viewed as two charges interacting with each 
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other from the center of the π-systems, due to the close centroid to centroid distance, 

which is 3.56 Å between cation 3.6 to the anion 3.1. The coulombic attraction between 

them will be strong. In the EF pattern, the centroid distance of the triangulene salt pair 

will be at least 7.4 Å (shortest center-edge distance 4.15 Å + 1.7 Å of carbon van der 

Waals distance + 1.55 Å of nitrogen van der Waals distance). The coulombic attraction in 

the face-to-face pattern is much stronger than that of the edge-to-face pattern. The 

face-to-face, center-to-center packing will maximize this interaction, which will probably 

show in the trimethyltriazatriangulenium trioxytriangulene salt pair 3.14 (see section 

3.2.3.2).    

3.3.2 Delocalized cation-π interaction 

Large aromatic cations, such as 3.5D and 3.6D in Section 3.2.1, are capable of 

forming strong donor-acceptor interactions of the cation-π type. Similar to these salts, the 

delocalized cation-π interaction exists between the delocalized charged on cation 3.6 and 

the π system of anion 3.1 in the salt pair 3.16. Instead of pair cation-π interactions in 

3.6D, there is only one in 3.16. This cation-π interaction will enhance the π-π attraction 

in the salt pair 3.16. Stacking pattern of the aromatic system could introduce strong 

cation-π interaction. As with the coulombic attraction discussed above, the face-to-face, 

center-to-center packing will maximize this interaction, which will probably show in the 

trimethyltriazatriangulenium trioxytriangulene salt pair 3.14. 

3.3.3 Other interactions: anion-π repulsion, dipole-dipole, and ion-dipole   

interactions   

       According to the electrostatic model of the benzene rings, the distribution of the 

electrostatic surface on the benzene rings can be treated as +δcharge at the nucleus center 

and two -δ/2 charges at a d distance, as shown in Figure 1.6, pp.12.(23) The π systems of 

the cation 3.6 and the anion 3.1 can also be treated as the electrostatic model, with a 

positive charge at the backbone and negative charges above and below it. As with the 

delocalized cation-π interaction between the delocalized positive charge on cation 3.6 
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and the π system of anion 3.1 in the salt pair 3.16, there will also be the delocalized 

anion-π interaction between the delocalized negative charge on anion 3.1 and the π 

system of cation 3.6. These two interactions should be at the same magnitude.  

       Neither the dipole-dipole nor ion-dipole interactions will be a significant issue 

here because in the D3h symmetric molecules, the dipole moments cancel each other. All 

the cations and the anion have zero net dipole moments.     

3.3.4 Cationic π-system dimer versus cation-anion π-system dimer 

The cations and anions we studied are all highly conjugated π-systems, so all 

those positive and negative charges are delocalized. The word “delocalized” will be 

omitted later on for simplification.  

The cationic dimers were studied in Chapter 2. The cation-anion π-system 

dimers are the dimers that are formed between cationic π-system and anionic π-system, 

as the salt pair 3.16.  
 

Table 3.3: Major interactions between two π-systems in a cationic π-system dimer versus 

that between two π-systems in a cation-anion π-system dimer  
 

cationic π-system dimer cation-anion π-system dimer 

C

N

N N C3H7C3H7

C3H7

C

N

N N
C3H7C3H7

C3H7

C

O

O O
C

N

N N C3H7C3H7

C3H7

 

two positive charges 
and two π-systems 

one positive charge, one negative charge 
and two π-systems 

π-π attraction           x1 π-π attraction                x1 

cation-π attraction       x2 cation-π attraction            x1 

 charge coulombic attraction     x1 

charge repulsion         x1 anion-π repulsion             x1 
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In a cationic π-system dimer, there are two positive charges and two π-systems. 

The major interactions between these two π-systems could include: π-π attraction, 

cation-π attractions, and positive-positive charge repulsion. While in a cation-anion 

π-system dimer, there will be one positive charge, one negative charge and two π-systems. 

The major interactions between these two π-systems could include: π-π attraction, 

positive-negative charge coulombic attraction, cation-π attraction, and non bonding 

repulsion as shown in Table 3.3. 

Suppose the cation-π and π-π attractions are similar in these two dimers. 

Compare cation-anion π-system dimers with the cationic π-system dimers, after the 

similar interactions are subtracted, the interactions that are left in these two dimers will 

be: one cation-π attraction and one positive-positive charge repulsion for cationic 

π-system dimers; one positive-negative charge coulombic attraction and one anion-π 

repulsion for cation-anion π-system dimers. The charge repulsion and charge attraction, 

cation-π and anion-π interactions are similar interactions. Their energies will be similar. 

The charge-charge interaction is stronger than the cation-π interaction. For example, the 

calculated and experimental results of the sodium cation-benzene interaction are 29.5 and 

19.2 kcal/mol when sodium is 2.4 Å from the center of the ring. The calculation results 

of the potential between two charges at 2.4 Å distance can be 136.7 kcal/mol according 

to Equation 3.2. The magnitude difference between them should not be easily changed by 

the resonance effect. This comparison shows that the interactions of ionic π-system pair 

will be stronger than the cationic π-system pair. The newly introduced cation-anion 

interaction enhanced the affinity between the rings. This affinity will dominate the 

packing pattern. In addition, unlike the orientation dominated quadrupole-quadrupole 

interaction, the dimensionless ion interactions will add to the van der Waals interaction 

and increase the attractive π-π interaction between rings. The strong interaction between 

the ionic π system pair (3.1 and 3.6) is dominated by the positive charge-negative charge 

coulombic attraction, which enhances the π-π attraction between aromatic systems.  
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3.4 Molecular orbital study 

The molecular orbitals of triazatriangulenium cation and trioxytriangulene anion 

were studied. The HOMO of trioxytriangulene anion, LUMO of triazatriangulenium 

cation, the optimum molecular alignment (FFCC), and the alignment in the salt pair 

(3.16) are shown in Figure 3.15.  
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co-crystal (3.16)      alignment (FFCC)           and HOMO of anion in FFCC 

 

Figure 3.15. Calculated molecular orbitals of the lowest unoccupied molecular orbital 
(LUMO) (a) of triazatriangulenium cation (b) and the highest occupied molecular orbital 
(HOMO) (d) of trioxytriangulene anion (c). The simplified packing patterns of salt pair 
3.16 and the hypothesized optimum molecular alignment (FFCC) of salt pair 3.14 are 
also shown, (e) and (f). In (e) and (f), the dotted lines represent anions. The orientations 
of the LUMO of cation and the HOMO of anion in FFCC are shown in (g). 
 

 Figure 3.15 shows (a) the calculated molecular orbitals for the lowest 

unoccupied molecular orbital (LUMO) of triazatriangulenium cation (b) and (d) the 

highest occupied molecular orbital (HOMO) of trioxytriangulene anion (c). The figure 
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also shows (e) the simplified packing pattern determined from the crystal structure of salt 

pair 3.16 and (f) the hypothesized optimum molecular alignment (FFCC), which could 

be the possible packing structure of salt pair 3.14. In (e) and (f), the dotted lines represent 

anions. The orientations of the LUMO of cation and the HOMO of anion in FFCC are 

shown in (g). The HOMO and LUMO molecular orbitals above show high compatibility 

with each other. When they are packed in the FFCC pattern, the lobes of one sign will 

perfectly overlap with the lobes of the other sign, in which HOMO and LUMO orbitals 

will interact with each other, in Figure 3.15, below right. The crystals of trimethyl-, 

triethyl-, and tripropyltriangulene salt pairs were prepared. However, only the crystal 

structure of tripropyltriangulene salt pair 3.16 could be elucidated by single-crystal X-ray 

diffraction. The optimum molecular alignment (FFCC) was not observed in salt pair 3.16 

due to the steric hindrance of propyl groups on nitrogen atoms. 

In the salt pair, restricted Hartree-Fock at the 6-311 level calculated a 2.1 and a 

1.3 eV decrease in the energy gap between the HOMO and the LUMO when the cation 

and anion were compared to the salt pair separated by approximately 3.3 Å. The 

calculation was run to evaluate the compatibility of the molecular orbitals and not to 

estimate the energies of the molecular orbitals. The short interplanar distance (3.29 and 

3.30 Å) within van der Waals radii of two carbons (3.40 Å) in the solid state of the salt 

pair 3.16 confirmed the compatibility.  

Orbital overlap will lower the system energy. Strong interactions will result from 

the overlap of these two charged species with compatible molecular orbital coefficients, 

as with the HOMO of the anion and the LUMO of the cation shown in Figure 3.15. The 

strong interactions between anionic HOMO and the cationic LUMO should be important 

for the stability of the dimer. The alternate stacking of anion and cation could provide the 

large overlap of the HOMO and LUMO orbitals. While the orbitals were partially 

overlapped in salt pair 3.16, FFEC stacking maximizes the overlap. This could be 

achieved in the salt pair 3.14, which, unlike the salt pair 3.16, has no substitution groups 
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on nitrogen atoms to break the symmetry of the stacking. The large difference in the 

melting/decomposition point between the salt pairs 3.14 and 3.16 also hinted that the 

former associated π-faces better than the latter (see discussion in the sections above). 

3.5 Conclusion 

1)  Stacking interactions are strong between the charged aromatic salt pairs, 

which were shown by the large ring overlap, short interplanar distance and 

high melting points.  

2)  The FF packings (π-stackings) of the aromatic salt pairs are due to the 

charge-charge attraction and cation-π interactions. The stacking pattern of 

the aromatic system could introduce strong charge-charge attraction and 

cation-π interaction. These interactions dominate in the orientation and 

stabilization of packing patterns of these salt pairs. The face-to-face, 

center-to-center packing (FFCC) will maximize this interaction, which will 

probably show in the trimethyltriazatriangulenium trioxytriangulene salt 

pair 3.14. This is corroborated by the DSC result of salt pairs and cation 

salts.    

3)  The stacking pattern and strong interactions between the charged aromatic 

ions (3.14-16) can also be explained by the interactions between the 

compatible HOMO and LUMO orbitals of these two charged species.  
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Chapter Four 
Conclusions 

 

The work of this dissertation was separated into two parts. The first part was 

designed to probe solution-state conformation of derivatives of compound 

N,N’-[1,3-phenylenebis(methylene)]bis(2-phenylpyridinium) dibromide (1a, 2b, and 2c) 

in solution. In the second part, crystal structures of pyridinium derivatives and 

triangulene salt pairs were studied to investigate the ion effect on the solid-state 

conformation of aromatic systems. 

 A general protocol for the application of magnetic anisotropy to quantitative 

multi-state conformational analysis was proposed by the current study. The reliability of 

this method of conformational analysis was checked by the mass balance. Also, 

all-positive solutions for the equations under different conditions confirmed the reliability. 

This novel quantitative conformational analysis technique can be used to study canonical 

interactions such as ion pairing, hydrogen bonding, and molecular recognition.  

In the current study, dependence of the probe conformations on the dispersive 

interactions at the aromatic edges between solvent and probes was tested by the 

fluorinated derivatives (2b and 2c) of probe molecule (1a). Solution and solid studies of 

these probe molecules put the previous conclusion drawn by the Cammers group in 

question. Current studies show that the dispersive interaction at the aromatic edge could 

not be the predominant force on the conformational change in 1a during the fluoroalkanol 

perturbation. Combined with thermodynamic studies and molecular modeling 

calculations, the current study indicated that charges might be important in the folding of 

these dications. 

The result of solution and solid-state studies also put the importance of 

quadrupole moment interactions in the dication folding into question. In solid state, 1a, 

2b, and 2c used the same F-like conformation. The centroid distances between xylyl and 
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phenyl rings increased from 1a, 2b, to 2c. In solution state, studies showed that the 

stacking states decreased (1a > 2b > 2c) with the increasing of the number of fluorine 

atoms on the phenyl rings. Both the solution and solid states indicate the interactions of 

the phenyls to the xylyls in 2b and 2c are weaker than that of 1a. If the quadrupole 

moment dominates the probes folding, the trend in solid and solution states will be totally 

different due to the stronger hexafluorobenzene and benzene interaction than that of the 

benzene-benzene.  

Neutral hydrocarbon 2,2’-biphenyl-α,α’-m-xylylene (2e) was also synthesized. It 

is isoelectronic and structurally similar to 1a. Solid-state studies of two isoelectronic, 

structurally similar compounds, 2e and 1a, showed that charges are important in the 

formation of the stacking conformation in solid state, which may be due to charge-π 

interaction. 

In the second part, a study of the CSD (Cambridge Structural Database) was 

performed to investigate the solid-state interactions between cationic π systems. The 

survey of pyridinium-derived cations showed a tendency of the cations to stack 

face-to-face (FF) as dimers. These FF packing patterns of the pyridinium-derived cations 

are totally different from their corresponding aromatic hydrocarbons. The aromatic 

hydrocarbons are packed in a herringbone style. Compared with the herringbone style, 

the FF packings of the pyridinium rings increase the overlaps of the aromatic rings. The 

increased overlaps enhance π-π interactions between aromatic systems.  

The model of regular point-charge cation-π interaction was used to explain the 

delocalized cation-π interaction. The better interactions of these cationic rings are 

probably due to the cation-π interactions, which overcome the CH-π interactions and 

dominate the FF packing pattern of the rings.  

The cation-π interactions are dominant in the orientation and stabilization of 

packing of pyridinium-derived cations. Though only few examples of the cations with 

more than 3 rings can be found, the trend of the packing of these cations is still clear: the 
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more rings the cations have, the more overlap between the cations. This is probably due 

to the better alleviation of the charge repulsions and larger cation-π interactions. 

To further study the charge effects on the π-π interactions, novel aromatic salt 

pairs of triangulene derivative with the cation-anion interaction were synthesized. π-π 

interactions of these salts were studied. Stacking interactions are very strong between 

these charged aromatic salts, which were shown by the large ring overlap, short 

interplanar distance and high melting points. The FF packings (π-stackings) of the 

aromatic salt pairs are due to the charge-charge attraction and cation-π interactions. 

Stacking patterns of aromatic systems could introduce strong charge-charge attractions 

and cation-π interactions. The strong interaction between the salt π system pair is 

dominated by the coulombic attraction which is synergistic with the cation-π interaction.
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Chapter 5 

Experimental Section 

 

Data for X-ray crystal analysis were collected at 90 K using a Nonius-Kappa 

CCD diffractometer. Crystals were mounted in paratone oil. Raw diffraction data was 

processed by HKL-SMN program package.(1) SHELXS-97 program was used to solve the 

structures. Atomic scattering factors were acquired from the International Tables for 

Crystallography.(2) Crystal structure parameters are shown in the appendix. 1H NMR 

experiments were conducted at Varian INOVA 400 MHz NMR spectrometers. Reagents 

were purchased commercially without further purification. All solvents used were dried 

and distilled. 

5.1 Experiments of Chapter one 

N,N’-[1,3-phenylenebis(methylene)]bis(2-trifluorophenylpyridinium) dibromide 

(2b)(3,4) 

Compound N,N’-[1,3-phenylenebis(methylene)]bis(2-trifluorophenyl-pyridinium)

dibromide (2b) was synthesized in two steps, as shown in Figure 5.1. The synthetic

conditions and characterizations of compound 5.1 and 2b can be found in References 3-4.
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Figure 5.1 Synthesis of 2b in two steps. 
 

N,N’-[1,3-phenylenebis(methylene)]bis(2-pentafluorophenylpyridinium) dibromide 

(2c)(3,4) 

Compound N,N’-[1,3-phenylenebis(methylene)]bis(2-pentafluorophenylpyridinium) 

dibromide (2c)was synthesized similarly as 2b in two steps, as shown in Figure 5.2. The

synthetic conditions and characterizations of compound 5.1 and 2b can be found in References 3-4. 
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Figure 5.2. Synthesis of 2c in two steps. 
 
2,2’-bis-2-biphenyl-α,α’-m-xylene (2e)(5) 

 

B(OH)2

Br Br
Pd(PPh3)4, Ag2O, DME,

t-BuOK, t-BuOH

 

Figure 5.3. Synthesis of 2, 2’-bis-2-biphenyl-α,α’-m-xylene (2e). 
 

All synthetic operations were performed under a nitrogen atmosphere. 

α,α’-dibromo-m-xylene (394.5 mg, 1.5 mmol), Pd(PPh3)4 (115.5 mg, 0.1 mmol), and 

1,2-dimethoxyethane (20 mL) was added to an oven-dried 50 mL flask. The bright 

yellow solution was stirred at room temperature for 20 min. 2-biphenylboronic acid 

(682.4 mg, 3.45 mmol), t-BuOK (672 mg, 6.0 mmol), t-BuOH (3.0 mL) and Ag2O (1390 

mg, 6.0 mmol) were added successively. A dark solution with dark precipitate was 

formed. The mixture refluxed under nitrogen at 85 ℃for 17 h. The mixture was cooled, 

concentrated in vacuum, and partitioned between EtOAc: H2O (1:1, 120 mL). The layers 

were separated and the aqueous layer was washed with two additional 60 mL portions of 

EtOAc. The combined organic layers were dried over MgSO4 and concentrated in 

vacuum. Silica gel column chromatography (Hexane:CHCl3 = 4:1) gave 2e as a colorless 

solid that crystallized from 10:1 Hexane:EtOAc (31%); mp 132–134 ℃; 1H NMR (400 

MHz, CDCl3): δ 7.30 (m, 12H), 7.19 (m, 6H), 7.07 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 

7.6Hz, 2H), 6.59 (s, 1H), 3.87 (s, 4H); 13C NMR (100 MHz, CDCl3): δ 142.4, 141.8, 

141.5, 138.5, 130.5, 130.3, 129.8, 129.5, 128.3, 128.2, 127.6, 127.0, 126.5, 126.3, 39.2; 

MS (IE) m/z 410 [M],. X-Ray diffraction confirmed connectivity. 
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2,2’-bis-2-methylphenyl-α,α’-m-xylylene (2f)(5) 

H3C

CH3

B(OH)2

Br Br
Pd(PPh3)4, Ag2O, DME

t-BuOK, t-BuOH

CH3

 

Figure 5.4. Synthesis of 2,2’-bis-2-methylphenyl-α,α’-m-xylene (2f).  
 

All synthetic operations were performed under a nitrogen atmosphere. 

α,α’-dibromo-m-xylene (394.5 mg, 1.5 mmol), Pd(PPh3)4 (115.5 mg, 0.1 mmol), and 

1,2-dimethoxyethane (20 mL) was added to an oven-dried 50 mL flask. The bright 

yellow solution was stirred at room temperature for 20 min. o-tolylboronic acid (469.2 

mg, 3.45 mmol), t-BuOK (672 mg, 6.0 mmol), t-BuOH (3.0 mL) and Ag2O (1390 mg, 

6.0 mmol) were added successively. A dark solution with dark precipitate was formed. 

The mixture refluxed under nitrogen at 85 ℃for 17 h. The mixture was cooled, 

concentrated in vacuum, and partitioned between EtOAc: H2O (1:1, 120 mL). The layers 

were separated and the aqueous layer was washed with two additional 60 mL portions of 

EtOAc. The combined organic layers were dried over MgSO4 and concentrated in 

vacuum. Silica gel column chromatography (Hexane:CHCl3 = 3:1) gave 

2,2’-bis-2-methylphenyl-α,α’-m-xylylene as white solid; mp 36-38 ℃; 1H NMR (400 

MHz, DMSO): δ 7.14 (t, J = 7.6 Hz, 1H),7.07 (m, 8H), 6.93 (s, 1H), 6.90 (d, J = 7.6Hz, 

2H), 3.87 (s, 4H), 2.13 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 140.9, 139.7, 136.7, 

130.7, 130.2, 129.7, 129.0, 126.9, 126.8, 126.5, 39.2, 19.9; MS (IE) m/z 286 [M].  

5.2 Experiments of Chapter three 

The trioxytriangulene anion 3.1E, trimethyltriazatriangulenium ion 3.4C and 

tripropyltriazatriangulenium ion 3.6D in chapter 3 are known compounds and were 

synthesized according to the literatures.(6,9) The reductive steps using sodium amalgam 

reagent to prepare compound 5.6 and 5.7 were substituted by copper activated zinc dust. 

The syntheses of trioxytriangulene anion (3.1E) and triethyltriazatriangulenium 

tetrafluoroborate (3.5D) were shown below. Trimethyltriazatriangulenium ion 3.4C and 

tripropyltriazatriangulenium ion 3.6D were synthesized similarly. 
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Tetrabutylammonium 4,8-Dioxo-4H-8H-dibenzo[cd,mn]pyren-12-olate (3.1E) 

The synthesis of tetrabutylammonium 4, 8-Dioxo-4H-8H-dibenzo [cd, mn] 

pyren-12-olate (3.1E) was shown in Figure 5.5. 
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Figure 5.5. Synthesis of tetrabutylammonium 
4,8-Dioxo-4H-8H-dibenzo[cd,mn]pyren-12-olate (3.1E). 
 
3,3-Di-o-tolyl-1,3-dihydro-2-benzofuran-1-one (5.5) 

In a vigorously stirred 500 mL round bottom flask was added 7.28 g of Mg in 

150 mL diethyl ether. 2-bromotoluene (50 g, 0.29 mol) was added in dropwisely for 20 

min. The mixture was refluxed for 3 hrs under N2 and pumped slowly through a PTFE 

tube into a 1000 mL round bottom flask containing phthalic anhydride (17.3 g, 0.12mol) 

in 250 mL benzene solution under N2. The mixed solution was refluxed for 24 hrs (50-60 

℃) then was pumped into a 250 mL 2N HCl solution. The organic phase was separated, 

washed with 50 mL water for 3 times, and dried with MgSO4. The mixture was filtered 

and evaporated. The viscous gum was dissolved into 200 mL ethanol and refluxed with 

15 mL N2H4
.H2O for 24 hrs. The solution was evaporated to about 20 mL and filtered. 

The residue was washed with (3 x 15 mL) ethanol, and dried to yield 11.9 g compound 3 

(39.4%). MS (IE) m/z 315 [M], 1HNMR (CDCl3, 400 MHz) δ 2.15 (s, 6H), 7.03 (dd, J = 

7.8,1.2, 2H), 7.10 (tdd, J = 7.8, 1.6, 0.8, 2H), 7.18 (d, J = 7.8, 2H), 7.24 (td, J = 7.5, 1.2, 

2H), 7.40 (dt, J = 7.8, 0.8, 1H), 7.57 (td, J = 7.5, 1.0, 1H), 7.69 (td, J = 7.5, 1.2, 1H), 

7.97 (dt, J = 7.5, 1.0, 1H). X-Ray diffraction confirmed connectivity. 
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2-(Di-o-tolylmethyl)benzoic acid (5.6) 

 In a vigorously stirred 100 mL round bottom flask was added 5.5 (4 g, 12.7 

mmol) in 30 mL 20% KOH ethanol solution. The mixture was refluxed for 48 hrs during 

which 15g Zn(Cu) was added in 5 portions. The mixture was diluted with 50 mL water; 

hot solution was filtered and washed with hot water. The filtrate was boiled for 30 min to 

move ethanol before the solution was acidified with concentrated hydrochloric acid. 5.6 

was obtained as a white crystalline precipitate (3.19 g, 79%). 1HNMR (CDCl3, 400 MHz): 

δ 2.18 (s, 6H), 6.64 (d, J = 7.8, 2H), 6.85 (s, 1H), 6.95 (dd, J = 7.8, 1.2, 1H), 7.06 (td, J 

= 7.6, 2.2, 2H), 7.14 (m, 4H), 7.34 (td, J = 7.6, 1.2, 1H), 7.43 (td, J = 7.8, 1.6, 1H), 8.09 

(dd, J = 7.8, 1.6, 1H). 

2,2’,2’’-(methanetriyl)tribenzoic acid (5.7) 

2 g (6.3 mmol) of 5.6 was added in a vigorously stirred 100 mL round bottom 

flask which contained 200 mL 0.25 M Na2CO3 aqueous solution. The mixture was 

refluxed under N2 until 5.7 was totally dissolved. 6.21 g (39.3 mmol) KMnO4 was added 

in 4 portions over 4 hrs. The mixture was refluxed under N2 for 24 hrs. Then it was 

reduced to around 20 mL and 55 mL of ethanol was added. The mixture was filtered and 

the residue was washed with 30 mL ethanol for 3 times. The solid was dried under 

vacuum. In a clean flask, this dried solid was added with 50 mL 20% KOH ethanol 

solution and 7.59 g Zn(Cu). Followed the procedure of last step, 1.07 g of a yellow solid 

5.7 was obtained (42%). 1HNMR (DMSO, 400 MHz) δ 6.80 (d, J = 7.6, 3H), 7.27 (td, J 

= 7.6, 1.0, 3H), 7.39 (td, J = 7.6, 1.4, 3H), 7.81 (dd, J = 7.6, 1.4, 3H), 8.01 (S, 1H), 

12.45 (s, 3H). X-Ray diffraction confirmed connectivity. 

Potassium 4,8-Dioxo-4H-8H-dibenzo[cd,mn]pyren-12-olate (5.8) 

0.87 g (3.0 mmol) 5.7 and 18 mL concentrated H2SO4 were added to a 100 mL 

round bottom flask sequentially. The mixture was kept at 120 ℃for 2 hrs. The mixture 

was cooled to room temperature and was mixed with 55 mL cold water. The mixture was 

centrifuged and the solid washed with water on the centrifuge. The residue was transfer 
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to a 25 mL round bottom flask and reflux with 20 mL 0.16 M K2CO3 ethanol solution for 

24 hrs. 30 mL H2O was added to the cooled solution. The mixture filtered, the residue 

was washed with water (3 x 10 mL) and dried to afford 0.79g product 96.0% (deep blue 

solid).  1HNMR (DMSO, 400 MHz) δ 7.51 (t, J = 7.6, 3H), 8.75 (d, J = 7.6, 6H). 

Tetrabutylammonium 4,8-Dioxo-4H-8H-dibenzo[cd,mn]pyren-12-olate (3.1E) 

0.54 g (1.50 mmol) 5.8 and 5.5 mL concentrated HCl were added to a 100 mL 

H2O in a 250 mL round bottom flask sequentially. The mixture was refluxed at 80 ℃for 

2 hours. The mixture was filtered and the residue was washed with 3 x 50 mL H2O. The 

solid was added to 50 mL 1M aqueous tetrabutylammonium hydroxide solution and 

vigorously stirred for 1 hour. The blue mixture was filtered and the residue was 

recrystallized in CH2Cl2. 0.75 g deep blue crystal of 3.1E was acquired 88%, which is 

pure in 1HNMR. 1HNMR (DMSO, 400 MHz) δ 8.76 (d, J = 7.6, 6H), 7.52 (t, J = 7.6, 

3H), 3.12 (m, 8H), 1.56 (m, 8H), 1.27 (m, 8H), 0.91 (t, J = 7.6, 12H). X-Ray diffraction 

confirmed connectivity. 

4,8,12-Triethyl-4,8,12-triazatriangulenium tetrafluoroborate (3.5D) 

Synthesis of 4,8,12-Triethyl-4,8,12-triazatriangulenium tetrafluoroborate (3.5D) 

was representative. The synthesis of 3.5D was shown in Figure 5.6. 
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Figure 5.6. Synthesis of 4,8,12-Triethyl-4,8,12-triazatriangulenium tetrafluoroborate 
(3.5D). 
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2,6,2’,6',2”,6”-Hexamethoxytriphenylcarbinol (5.9) 

 Under argon protection, 30 mL 2.5 M hexane solution of butyllithium (72.7 

mmol), 10 mL (76.4 mmol) resorcinol dimethyl ether and 0.3 mL 

N,N,N’,N’-tetramethylethylenediamine (TMEDA) were added to a 250 mL round bottom 

flask at 0 ℃. The temperature was allowed to rise to room temperature for 30 min. The 

mixture was diluted with 60 mL benzene. 4.96 g (23 mmol) diphenyl carbonate in 60 mL 

benzene was triturated into the solution. The mixture was refluxed at 70-80 ℃for 28 hrs. 

The reaction mixture was washed with 90 x 3 mL water and the organic phase was 

concentrated. Recrystallized with benzene obtained 7.6 g light yellow crystals of 7, 71% 

yield. MS (IE) m/z 423 [M-OH]+,  1HNMR (CDCl3, 400 MHz) δ 3.45 (s, 6H), 6.49 (d, J 

= 8.2, 6H), 6.85 (s, 1H), 7.05 (t, J = 8.2, 3H). X-Ray diffraction confirmed connectivity. 

Tris(2,6-dimethoxyphenyl)carbenium tetrafluoroborate (5.10) 

Tris(2,6- imethoxyphenyl)carbinol 5.9 (1.6 g, 3.64 mmol) was dissolved in 30 

mL absolute  ethanol in a 100 mL flask. 1.5 mL 48% aqueous HBF4 solution (11 mmol) 

was added, followed by 30 mL diethyl ether and petroleum ether. The mixture was 

filtered and dark-blue precipitate was washed with diethyl ether (3 x 10 mL) and dried. 

1.8 g greenish-black solid was collected (99%). 1HNMR (DMSO, 400 MHz) δ 3.60 (s, 

18H), 6.54 (d, J = 8.4, 6H), 7.61 (t, J = 8.4, 3H). 

4,8,12-Triethyl-4,8,12-triazatriangulenium tetrafluoroborate (3.5D) 

 0.78 g (1.6 mmol) 5.10 was dissolved in 20 mL NMP 

(1-methyi-2-pyrrolidinone) in a 100 mL round bottom flask. 4.1 g benzoic acid (33.6 

mmol) followed by 4.0 g ethylamine (67.2 mmol) were added. The mixture was reflux 

with dry ice condenser under argon at 135-150 ℃for 22 hrs. Two times ethylamine (1.5 

and 2.3 g) was further added. After the mixture was cooled down, it was poured into 100 

mL cold water. The mixture was filtered and washed 3 x 10 mL with water, dried. The red 

powder was further washed with diethyl ether. Recrystallization from CH3CN yielded 

0.16 g dark red crystal, 23.4%. MS (IE) m/z 366 [M-BF4
-] +; 1H NMR (400 MHz, DMSO): 
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δ 8.00 (t, J = 8.4 Hz, 3H), 7.28 (d, J = 8.4 Hz, 6H), 4.31 (q, J = 6.8 Hz, 6H), 1.33 (t, J = 

6.8 Hz, 9H); 13C NMR (100 MHz, DMSO): δ 139.5, 137.8, 109.7, 104.9, 42.3, 10.2; 

X-Ray diffraction confirmed connectivity. 

4,8,12-Tri-n-propyl-4,8,12-triazatriangulenium tetrafluoroborate (3.6D) 

0.7 g (1.4 mmol) 5.10 was dissolved in 25 mL NMP (1-methyi-2-pyrrolidinone) 

in a 100 mL round bottom flask. 3.6 g benzoic acid (29.2 mmol) followed by 2.3 g 

n-propylamine (38.8 mmol) were added. The mixture was reflux under argon at 125 

℃for 20 hrs. 4 x 1.0 mL n-propylamine (24.3 mmol) was further added. After the 

mixture was cooled down, it was poured into 50 mL cold water. The mixture was filtered 

and washed 3 x 10 mL with water, dried. The red powder was further washed with 3 x 10 

mL diethyl ether. Recrystallization from CH3CN yielded 0.24 g dark red crystal, 24.8%. 

MS (IE) m/z 408 [M-BF4
-] +. mp 337 ℃; 1H NMR (400 MHz, DMSO): δ 8.00 (t, J = 8.8 

Hz, 3H), 7.30 (d, J = 8.8 Hz, 6H), 4.22 (m, 6H), 1.76 (m, 6H), 1.10 (t, J = 7.2 Hz, 9H); 
13C NMR (100 MHz, DMSO): δ 141.2, 138.7, 111.2, 106.2, 106.1, 50.1, 19.1, 11.1; 

X-Ray diffraction confirmed connectivity. 

4,8,12-Trimethyl-4,8,12-triazatriangulenium tetrafluoroborate (3.4C)(10) 

2.00 g (3.9 mmol) 5.10 was dissolved in 40 mL NMP (1-methyi-2-pyrrolidinone) 

in a 100 mL round bottom flask. 13.02 g benzoic acid (10.7 mmol) followed by 4.6 g 

methylamine (148.4 mmol) were added. The mixture was reflux with dry ice condenser 

under argon at 105 ℃for 10 hrs. 4 x 5.0 mL methylamine was further added. After the 

mixture was cooled down, it was poured into 200 mL 0.1M KPF6 aqueous solution, 

which was acidified with 3.7g 60% HPF6 aqueous solution. The mixture was stirred 

overnight filtered. The precipitation was recrystallized from CH3CN yielded 0.12 g dark 

red crystal, 9.5%. MS (IE) m/z 324 [M- PF6
-] +; 1H NMR (400 MHz, DMSO): δ 7.95 (t, J 

= 8.4 Hz, 3H), 7.04 (d, J = 8.4 Hz, 6H), 3.52 (s, 9H); 13C NMR (100 MHz, DMSO): δ 

139.1, 137.3, 137.1, 107.8, 105.0, 34.7. 
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4,8,12-Tri-n-propyl-4,8,12-triazatriangulenium 

4,8-Dioxo-4H-8H-dibenzo[cd,mn]pyren-12-olate (3.16) 
 

O

OO

N

NN

C3H7

C3H7C3H7

3.1E 3.6D

BF4
Bu4N +

1) CH3CN

2) hot DMSO

O

OO

N

NN

C3H7

C3H7C3H7

3.16  
Figure 5.7. 4,8,12-Tri-n-propyl-4,8,12-triazatriangulenium 
4,8-Dioxo-4H-8H-dibenzo[cd,mn]pyren-12-olate (3.16). 
 

16 mg (0.032 mmol) tri-n-propyltriazatriangulenium (3.6D) and 18 mg (0.032 

mmol) trioxytriangulene anion (3.1E) were dissolved separately in two 2 mL CH3CN 

solution. These two solutions were mixed and dark brown precipitation was formed. The 

mixture was filtered and washed with 3 x 0.5 mL CH3CN. The solid was dried and 

recrystallized in hot DMSO solution. 20 mg needle-like crystal was acquired, 85.7%. 

Crystal was melt ~337 ℃ and decomposed ~380 ℃. X-Ray diffraction confirmed 

connectivity. 
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Appendices 
A-1: Crystal data for 2b and 2c. 

 
Compound 2b 2c 

formula C30H20F6N2 C30H16F10N2 
formula weight 522.48 594.45 
crystal system triclinic monoclinic 
space group P-1 P 21/c 

a(Å) 9.8280(3) 14.009(3) 
b(Å) 13.0840(4) 12.981(3) 
c(Å) 14.2130(5) 15.554(3) 
α(°) 78.7500(19) 90.00 
β(°) 88.0420(19) 93.29(3) 
γ(°) 82.200(2) 90.00 

volume(Å3) 1775.89(10) 2824.0(10) 
Z 2 4 

temperature(K) 90.0(2) 90.0(2 
reflections used 34244 20524 

θ measurement range (°) 1-27.48 1-25.35 
crystal description irregular plate broken plate 

color pale yellow yellow 
crystal size(mm3) 0.45x0.20x0.05 0.45x0.22x0.04 

crystal density (Mg/m3) 1.549 1.774 
F(000) 836 1480 

absorption coefficient (mm-1) 2.352 2.962 
data/ parameters / restraints 8137/456/0 3687/378/397 

R1 0.0598 0.0524 
Rall 0.097 0.0894 

goodness-of-fit 1.101 1.025 
school XRD file codes k02080 k02078 
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A-2: Crystal coordinates of 2b. 
 

atom/axis X Y Z 
N 0.3662 -0.1167 0.307 
N -0.0217 0.3864 0.3158 
C 0.4877 -0.077 0.3122 
C 0.5944 -0.1397 0.3636 
H 0.6795 -0.1138 0.3667 
C 0.5785 -0.2407 0.4108 
H 0.6511 -0.2826 0.4486 
C 0.4569 -0.2801 0.403 
H 0.4456 -0.3499 0.4333 
C 0.3523 -0.2159 0.3502 
H 0.2683 -0.2422 0.3443 
C 0.2437 -0.0477 0.261 
H 0.1689 -0.0904 0.2571 
H 0.2674 -0.014 0.195 
C 0.1957 0.036 0.3195 
C 0.1755 0.1419 0.2763 
H 0.1914 0.1624 0.2094 
C 0.1319 0.2175 0.3309 
C 0.1123 0.1872 0.4289 
H 0.0868 0.239 0.4669 
C 0.1297 0.0821 0.4716 
H 0.1134 0.0616 0.5385 
C 0.171 0.0067 0.4167 
H 0.1825 -0.0656 0.446 
C 0.1107 0.3322 0.283 
H 0.188 0.367 0.2987 
H 0.1092 0.3381 0.2125 
C -0.1449 0.3543 0.3005 
C -0.2628 0.4005 0.3381 
H -0.3485 0.3785 0.3278 
C -0.2586 0.4782 0.3903 
H -0.3403 0.5086 0.4173 
C -0.1336 0.5115 0.4028 
H -0.1286 0.5664 0.437 
C -0.0176 0.4642 0.3651 
H 0.0683 0.4867 0.3738 
C -0.1437 0.2719 0.2416 
F -0.1897 0.1452 0.3759 
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C -0.162 0.1681 0.2814 
C -0.1496 0.0886 0.2293 
H -0.1602 0.0183 0.2583 
F -0.1065 0.0405 0.0802 
C -0.1212 0.1165 0.1337 
C -0.1055 0.2173 0.0876 
H -0.0869 0.234 0.0207 
F -0.1047 0.393 0.1024 
C -0.1185 0.2924 0.1443 
C 0.4974 0.0326 0.2637 
F 0.5114 -0.0124 0.1123 
C 0.51 0.0629 0.165 
C 0.5189 0.164 0.118 
H 0.5292 0.1817 0.0503 
F 0.5204 0.3395 0.1323 
C 0.5119 0.2379 0.1755 
C 0.4975 0.2166 0.2732 
H 0.4909 0.2704 0.31 
F 0.4805 0.0881 0.4112 
C 0.4931 0.1132 0.3151 
N 0.7474 0.7172 0.0797 
O 0.8032 0.6813 -0.0676 
C 0.7649 0.6567 0.0146 
H 0.7453 0.5865 0.0344 
C 0.6938 0.6835 0.1757 
H 0.6764 0.6103 0.1839 
H 0.6078 0.7283 0.1848 
H 0.7609 0.6893 0.2232 
C 0.7754 0.8254 0.0556 
H 0.8206 0.8376 -0.0074 
H 0.8355 0.8389 0.1041 
H 0.6889 0.8728 0.0537 
N 0.2573 0.6481 0.122 
O 0.362 0.7964 0.1099 
C 0.2626 0.7483 0.1286 
H 0.1814 0.7857 0.1499 
C 0.1362 0.5978 0.1515 
H 0.0642 0.649 0.1714 
H 0.159 0.5392 0.2054 
H 0.1034 0.5712 0.0977 
C 0.3784 0.5829 0.0961 
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H 0.4506 0.6269 0.0735 
H 0.3557 0.5477 0.0449 
H 0.411 0.53 0.1523 
Br 0.3676 0.4586 0.381 
Br 0.0321 0.2166 0.6794 
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A-3: Crystal coordinates of 2c. 

 
atom/axis X Y Z 

N 0.7452 -0.0099 0.4392 
C 0.6811 0.0692 0.4303 
C 0.6143 0.0696 0.3627 
H 0.5709 0.1255 0.3552 
C 0.6101 -0.0124 0.305 
H 0.5614 -0.0148 0.26 
C 0.6762 -0.0893 0.3134 
H 0.6755 -0.1443 0.273 
C 0.7441 -0.0862 0.3811 
H 0.7909 -0.1391 0.3866 
C 0.8108 -0.0171 0.5178 
H 0.8462 0.0485 0.5261 
H 0.858 -0.0727 0.5104 
C 0.7556 -0.039 0.5963 
C 0.7773 0.0129 0.6729 
H 0.8265 0.0633 0.6754 
C 0.7283 -0.0076 0.7456 
C 0.6558 -0.08 0.7421 
H 0.6214 -0.0937 0.7917 
C 0.6334 -0.1325 0.6662 
H 0.5843 -0.1831 0.6639 
C 0.6824 -0.1111 0.594 
H 0.6658 -0.1463 0.5417 
C 0.7523 0.0488 0.8282 
H 0.6998 0.097 0.8399 
H 0.8113 0.0897 0.8226 
N 0.7667 -0.0252 0.902 
C 0.8436 -0.0893 0.9092 
C 0.8549 -0.1553 0.9768 
H 0.9092 -0.1991 0.9817 
C 0.788 -0.1589 1.0382 
H 0.7965 -0.2039 1.0862 
C 0.7086 -0.0967 1.029 
H 0.6605 -0.1003 1.0696 
C 0.6992 -0.0299 0.9618 
H 0.6449 0.014 0.9564 
C 0.9151 -0.0837 0.8421 
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F 0.991 0.0576 0.9118 
C 0.9881 -0.0122 0.8477 
F 1.1306 0.057 0.7984 
C 1.0597 -0.0112 0.7909 
F 1.1261 -0.0831 0.6704 
C 1.0569 -0.0825 0.7258 
F 0.981 -0.2217 0.6521 
C 0.9835 -0.1538 0.7167 
F 0.8418 -0.2218 0.7652 
C 0.9145 -0.1537 0.7752 
C 0.6864 0.1546 0.4942 
F 0.5425 0.0998 0.5511 
C 0.6159 0.1663 0.5514 
C 0.6183 0.2465 0.6103 
F 0.5471 0.258 0.6634 
F 0.6962 0.3928 0.6692 
C 0.6933 0.3145 0.6124 
F 0.8341 0.3762 0.5554 
C 0.7637 0.3062 0.5558 
F 0.8246 0.2239 0.4385 
C 0.7591 0.2282 0.4968 
Br 1.0042 -0.3502 0.8921 
Br 0.4776 -0.3513 0.6171 
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A-4: Crystal data for 5.1 and 5.2. 
 

Compound 5.1 5.2 
formula C11H6F3N C11H4F5N 

formula weight 209.17 245.15 
crystal system monoclinic monoclinic 
space group P 21/c P 21 

a(Å) 8.1930(4)  5.6710(3) 
b(Å) 10.8610(5) 7.6920(5) 
c(Å) 10.5980(5) 10.7540(6) 
α(°) 90.00 90.00 
β(°) 109.719(3) 104.790(3) 
γ(°) 90.00 90.00 

volume(Å3) 887.75(7) 453.56(5) 
Z 4 2 

temperature(K) 90.0(2) 90.0(2) 
reflections used 6193 5356 

θ measurement range (°) 1-27.48 1-27.48 
crystal description irregular slab plates 

color colorless colorless 
crystal size(mm3) 0.25x0.23x0.08 0.30x0.17x0.03 

crystal density (Mg/m3) 1.565 1.795 
F(000) 424 244 

absorption coefficient (mm-1) 0.137 0.179 
data/ parameters / restraints 2044/137/0 2055/155/1 

R1 0.0474 0.0439 
Rall 0.0766 0.0637 

goodness-of-fit 1.017 1.049 
school XRD file codes k02070 k02056 
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A-5: Crystal coordinates of 5.1. 
 

atom/axis X Y Z 
N 0.3069 0.1286 0.9622 
C 0.3242 0.2358 0.9041 
C 0.4566 0.3192 0.9644 
H 0.4658 0.3938 0.9205 
C 0.5749 0.2914 1.0899 
H 0.6656 0.3472 1.1339 
C 0.5584 0.1814 1.1494 
H 0.638 0.1595 1.2348 
C 0.4237 0.1037 1.0823 
H 0.4134 0.0281 1.124 
C 0.191 0.2605 0.7712 
C 0.1024 0.3724 0.7397 
C -0.0259 0.3991 0.621 
H -0.0836 0.4764 0.605 
C -0.0657 0.3072 0.5264 
C 0.013 0.1935 0.5464 
H -0.0185 0.1315 0.4793 
C 0.1398 0.1744 0.6686 
F 0.1448 0.4623 0.8355 
F -0.1904 0.3298 0.4059 
F 0.2214 0.0636 0.6878 
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A-6: Crystal coordinates of 5.2. 
 

atom/axis X Y Z 
N 1.1463 0.1575 0.9142 
C 0.9818 0.2244 0.9726 
C 0.7592 0.2907 0.9067 
H 0.6492 0.3365 0.9518 
C 0.6985 0.2895 0.7732 
H 0.5466 0.3348 0.7252 
C 0.8628 0.2213 0.7115 
H 0.8264 0.2189 0.6203 
C 1.0822 0.1564 0.7852 
H 1.1935 0.1085 0.7419 
C 1.0552 0.2237 1.1158 
C 1.2717 0.2987 1.1854 
C 1.34 0.2979 1.3192 
C 1.193 0.2193 1.3855 
C 0.9775 0.1436 1.3195 
C 0.9106 0.1468 1.1878 
F 1.4181 0.3812 1.125 
F 1.5481 0.3761 1.3831 
F 1.2589 0.2169 1.5151 
F 0.8349 0.0632 1.3857 
F 0.7022 0.067 1.1276 
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A-7: Crystal data for 2e and 3.16. 
 

Compound 2e 3.16 
formula C32H26 C50H39N3O3 

formula weight 410.53 729.84 
crystal system orthorhombic triclinic 
space group Pbca P-1 

a(Å) 7.4995(11 8.1193(2) 
b(Å) 19.420(3) 10.5975(3) 
c(Å) 30.314(4) 20.8300(6) 
α(°) 90.00 85.5030(10) 
β(°) 90.00 81.8080(10) 
γ(°) 90.00 74.2940(10) 

volume(Å3) 4415.0(11) 1706.29(8) 
Z 8 2 

temperature(K) 90.0(2) 90.0(2) 
reflections used 1477 6218 

θ measurement range (°) 4.6-66.25 1.00-25.35 
crystal description plate very thin plate 

color colorless dark blue 
crystal size(mm3) 0.25x0.20x0.03 0.20x0.12x0.02 

crystal density (Mg/m3) 1.235 1.421 
F(000) 1744 768 

absorption coefficient (mm-1) 0.524 0.089 
data/ parameters / restraints 3962/290/0 6027/508/168 

R1 0.0494 0.0589 
Rall 0.0836 0.1662 

goodness-of-fit 1.013 0.958 
school XRD file codes x04071 k03052 
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A-8: Crystal coordinates of 2e. 
 

atom/axis X Y Z 
C 0.3014 0.1943 0.6671 
C 0.2202 0.1458 0.6945 
H 0.2607 0.0994 0.6943 
C 0.0811 0.1645 0.7221 
H 0.0268 0.1309 0.7405 
C 0.0203 0.232 0.7231 
H -0.0743 0.2449 0.7422 
C 0.0994 0.2802 0.6958 
H 0.0578 0.3264 0.6959 
C 0.2388 0.2617 0.6681 
H 0.2922 0.2954 0.6497 
C 0.4541 0.1747 0.6379 
C 0.6238 0.2007 0.6472 
H 0.6394 0.2303 0.6718 
C 0.7697 0.1843 0.6212 
H 0.8836 0.2031 0.6277 
C 0.7482 0.14 0.5856 
H 0.8476 0.1279 0.5678 
C 0.5818 0.1138 0.5764 
H 0.5683 0.0834 0.5521 
C 0.4324 0.1306 0.6017 
C 0.252 0.1049 0.5864 
H 0.258 0.0546 0.5814 
H 0.1627 0.1136 0.6098 
C 0.1937 0.1401 0.5444 
C 0.1548 0.2104 0.5444 
H 0.1659 0.2361 0.571 
C 0.1003 0.2429 0.5061 
H 0.0709 0.2905 0.5067 
C 0.0884 0.2064 0.4672 
H 0.0532 0.2293 0.4409 
C 0.1275 0.1365 0.4659 
C 0.1793 0.1042 0.505 
H 0.2054 0.0564 0.5046 
C 0.1102 0.0971 0.4234 
H 0.1666 0.0514 0.4272 
H 0.1774 0.1219 0.4002 
C -0.08 0.0866 0.4075 
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C -0.2262 0.0982 0.4348 
H -0.2071 0.1133 0.4642 
C -0.3993 0.0881 0.4199 
H -0.4971 0.0967 0.4391 
C -0.4297 0.0656 0.3775 
H -0.5479 0.0584 0.3672 
C -0.2856 0.0536 0.35 
H -0.3064 0.0379 0.3208 
C -0.1109 0.0638 0.3641 
C 0.0408 0.0494 0.3336 
C 0.118 -0.0155 0.3326 
H 0.0749 -0.0503 0.3518 
C 0.2568 -0.0304 0.3039 
H 0.3078 -0.0752 0.3037 
C 0.3214 0.0194 0.2757 
H 0.4163 0.0092 0.256 
C 0.2465 0.0847 0.2765 
H 0.2902 0.1194 0.2572 
C 0.1079 0.0996 0.3052 
H 0.058 0.1445 0.3055 
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A-9: Crystal coordinates of 3.16. 
 

atom/axis X Y Z 
N 0.0119 0.0878 0.1706 
C 0.132 -0.0193 0.1432 
C 0.2277 -0.0097 0.0823 
H 0.2111 0.0717 0.0583 
C 0.3458 -0.1196 0.0578 
H 0.4105 -0.1119 0.0167 
C 0.3749 -0.241 0.0903 
H 0.458 -0.3145 0.0715 
C 0.2815 -0.2544 0.1507 
N 0.3047 -0.3741 0.1857 
C 0.2111 -0.3891 0.2462 
C 0.2368 -0.508 0.2811 
H 0.317 -0.5844 0.2638 
C 0.1431 -0.5135 0.342 
H 0.1649 -0.5944 0.3665 
C 0.0198 -0.4075 0.3686 
H -0.0398 -0.4151 0.4108 
C -0.0158 -0.2888 0.3325 
N -0.15 -0.1822 0.3537 
C -0.1793 -0.0616 0.3203 
C -0.3117 0.0458 0.3424 
H -0.3837 0.0385 0.3819 
C -0.3369 0.1627 0.3064 
H -0.4304 0.2341 0.3212 
C -0.2331 0.1811 0.2499 
H -0.253 0.264 0.2271 
C -0.0988 0.076 0.2268 
C -0.073 -0.0469 0.2615 
C 0.1573 -0.1432 0.177 
C 0.0847 -0.2772 0.2722 
C 0.057 -0.1556 0.2373 
C 0.0014 0.2196 0.14 
H 0.1177 0.2233 0.1193 
H -0.0362 0.2852 0.174 
C -0.1228 0.2556 0.0892 
H -0.2417 0.2613 0.1103 
H -0.0923 0.1863 0.057 
C -0.1152 0.3865 0.0548 



 142

H -0.1393 0.454 0.0869 
H -0.2014 0.4113 0.0244 
H 0 0.3786 0.0309 
C 0.4048 -0.4925 0.1515 
H 0.445 -0.5646 0.1835 
H 0.5074 -0.4746 0.1246 
C 0.2934 -0.5336 0.1085 
H 0.2342 -0.4556 0.0832 
H 0.2039 -0.5673 0.1363 
C 0.397 -0.6387 0.0617 
H 0.4887 -0.6072 0.0351 
H 0.3206 -0.6577 0.0335 
H 0.4482 -0.7187 0.0865 
C -0.272 -0.2008 0.4108 
H -0.2753 -0.2938 0.414 
H -0.3886 -0.1468 0.4035 
C -0.2328 -0.1663 0.4749 
H -0.2434 -0.071 0.4748 
H -0.1132 -0.214 0.4816 
C -0.3584 -0.2038 0.5292 
H -0.4767 -0.1606 0.5209 
H -0.3387 -0.1759 0.5706 
H -0.3409 -0.2992 0.5313 
O -0.6228 0.1882 0.1932 
O -0.1599 -0.4946 0.209 
O -0.8035 -0.2207 0.4713 
C -0.5994 0.0773 0.2212 
C -0.4636 -0.0359 0.195 
C -0.3601 -0.0213 0.1373 
H -0.3794 0.0622 0.1152 
C -0.2295 -0.1246 0.1109 
H -0.1591 -0.112 0.0717 
C -0.204 -0.2465 0.1429 
H -0.1163 -0.318 0.1247 
C -0.303 -0.2676 0.2011 
C -0.2682 -0.398 0.2339 
C -0.3668 -0.4095 0.2981 
C -0.3233 -0.5257 0.3356 
H -0.2303 -0.596 0.3192 
C -0.4124 -0.5409 0.3959 
H -0.3813 -0.6209 0.4207 
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C -0.5481 -0.4381 0.4202 
H -0.6109 -0.4496 0.4614 
C -0.594 -0.3191 0.3857 
C -0.7288 -0.2093 0.4154 
C -0.7667 -0.0846 0.3768 
C -0.898 0.0211 0.4009 
H -0.9642 0.0105 0.4414 
C -0.9348 0.1416 0.3672 
H -1.0255 0.2126 0.3843 
C -0.8373 0.157 0.3083 
H -0.8623 0.2393 0.285 
C -0.704 0.0547 0.2825 
C -0.6682 -0.0705 0.3155 
C -0.4357 -0.1604 0.2287 
C -0.5016 -0.3016 0.3232 
C -0.5361 -0.1781 0.2888 
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A-10: Crystal data for 3.1 and 3.6. 
 

Compound 3.1 3.6 
formula C38H46NO3 C28H31BF4N3 

formula weight 564.78 496.37 
crystal system monoclinic trigonal 
space group P21/n R-3 

a(Å) 9.5700(19) 12.8297(18) 
b(Å) 18.573(4) 12.8297(18) 
c(Å) 17.668(4) 26.367(5) 
α(°) 90.00 90.00 
β(°) 97.17(3) 90.00 
γ(°) 90.00 120.00 

volume(Å3) 3115.78 3758.5(11) 
Z 4 6 

temperature(K) 90.0(2) 90.0(2) 
reflections used 14252 11034 

θ measurement range (°) 1.00-27.48 1.00-27.48 
crystal description block irregular slab 

color dark blue red 
crystal size(mm3) 0.3x0.3x0.2 0.25x0.22x0.10 

crystal density (Mg/m3) NA 1.368 
F(000) NA 1626 

absorption coefficient (mm-1) 0.1468 0.101 
data/ parameters / restraints 7149/392/0 1906/164/95 

R1 0.1043 0.0513 
Rall 0.1330 0.0674 

goodness-of-fit NA 1.041 
school XRD file codes k03049 k03063 
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A-11: Crystal coordinates of 3.1. 
 

atom/axis X Y Z 
C -0.0791 0.0611 0.9023 
H -0.0599 0.0117 0.9131 
C -0.1535 0.1008 0.9488 
H -0.1838 0.0789 0.9925 
C -0.1855 0.1728 0.9331 
C -0.2686 0.2135 0.9835 
C -0.3111 0.2861 0.9594 
C -0.4036 0.3245 0.9993 
H -0.4377 0.3028 1.0421 
C -0.4463 0.3925 0.9784 
H -0.5124 0.4165 1.0054 
C -0.3939 0.4273 0.9179 
H -0.422 0.4752 0.905 
C -0.2987 0.391 0.8757 
C -0.2457 0.4277 0.8114 
C -0.1588 0.3849 0.7655 
C -0.1105 0.4161 0.7017 
H -0.1364 0.4642 0.688 
C -0.0245 0.3776 0.6581 
H 0.0098 0.3995 0.6154 
C 0.0104 0.3071 0.6773 
H 0.0689 0.281 0.6473 
C -0.0383 0.2734 0.7396 
C -0.0034 0.1984 0.7561 
C -0.0589 0.1652 0.822 
C -0.0314 0.0932 0.8389 
H 0.0205 0.0655 0.8069 
C -0.1387 0.2069 0.8682 
C -0.2589 0.3193 0.8952 
C -0.1237 0.3129 0.7858 
C -0.1723 0.2795 0.8505 
O -0.303 0.1874 1.0426 
O -0.2723 0.4926 0.7954 
O 0.0701 0.1626 0.7156 
C -0.6244 0.1176 0.6473 
H -0.7119 0.1089 0.6704 
H -0.6514 0.1419 0.5978 
C -0.5602 0.0461 0.6324 
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H -0.5342 0.0205 0.6812 
H -0.4735 0.0536 0.6082 
C -0.6646 0.0003 0.5799 
H -0.7538 -0.0031 0.6027 
H -0.6855 0.0254 0.5303 
C -0.6153 -0.0735 0.5656 
H -0.5234 -0.0711 0.5467 
H -0.6833 -0.0972 0.5275 
H -0.6066 -0.1011 0.6133 
C -0.4825 0.1344 0.7754 
H -0.4296 0.1705 0.8088 
H -0.4165 0.0949 0.7672 
C -0.6 0.104 0.8166 
H -0.6763 0.1401 0.8163 
H -0.6397 0.0605 0.7896 
C -0.544 0.0847 0.8989 
H -0.5151 0.1293 0.9274 
H -0.4597 0.0538 0.8992 
C -0.6538 0.0455 0.9388 
H -0.7407 0.074 0.9344 
H -0.6181 0.0389 0.9928 
H -0.6735 -0.0016 0.9148 
C -0.6221 0.2356 0.7093 
H -0.7147 0.2193 0.7224 
H -0.6389 0.2613 0.6599 
C -0.5589 0.2891 0.7708 
H -0.5565 0.2667 0.8218 
H -0.461 0.3008 0.7626 
C -0.6466 0.3583 0.7677 
H -0.7474 0.3453 0.7647 
H -0.621 0.3856 0.8155 
C -0.6265 0.4049 0.7026 
H -0.526 0.4153 0.703 
H -0.6781 0.4501 0.7064 
H -0.6621 0.3804 0.6549 
C -0.3999 0.1894 0.6644 
H -0.341 0.1457 0.6627 
H -0.3455 0.2245 0.6985 
C -0.4247 0.2214 0.5845 
H -0.4853 0.2646 0.5846 
H -0.4735 0.1859 0.5487 
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C -0.284 0.242 0.5584 
H -0.2385 0.2794 0.5929 
H -0.2216 0.1993 0.5621 
C -0.3 0.27 0.4769 
H -0.3252 0.2301 0.4415 
H -0.2108 0.2913 0.4662 
H -0.3742 0.3066 0.4705 
N -0.5315 0.1693 0.6993 
O -0.3713 0.591 0.8788 
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A-12: Crystal coordinates of 3.6. 
 

atom/axis X Y Z 
N 0.9468 0.7602 0.0622 
C 0.8526 0.7839 0.0626 
C 0.7325 0.6923 0.0628 
H 0.7126 0.6103 0.0623 
C 0.6428 0.7218 0.0638 
H 0.5614 0.6584 0.0639 
C 0.6654 0.8391 0.0645 
H 0.6008 0.8553 0.0658 
C 0.7843 0.9335 0.0632 
C 0.8791 0.906 0.0626 
C 1 1 0.0624 
C 0.918 0.6334 0.0668 
H 0.9837 0.6245 0.0517 
H 0.843 0.5806 0.0479 
C 0.902 0.595 0.1224 
H 0.9749 0.6516 0.1416 
H 0.8329 0.5991 0.1368 
C 0.8806 0.4678 0.1285 
H 0.8112 0.4122 0.108 
H 0.8648 0.4442 0.1643 
H 0.9521 0.4653 0.1172 
N 1.2398 1.1867 0.0622 
C 1.2161 1.0687 0.0626 
C 1.3077 1.0402 0.0628 
H 1.3897 1.1023 0.0623 
C 1.2782 0.9209 0.0638 
H 1.3416 0.903 0.0639 
C 1.1608 0.8263 0.0645 
H 1.1447 0.7455 0.0658 
C 1.0665 0.8508 0.0632 
C 1.094 0.9732 0.0626 
C 1.3666 1.2845 0.0668 
H 1.3755 1.3592 0.0517 
H 1.4194 1.2624 0.0479 
C 1.405 1.307 0.1224 
H 1.3484 1.3233 0.1416 
H 1.4009 1.2338 0.1368 
C 1.5322 1.4128 0.1285 
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H 1.5878 1.399 0.108 
H 1.5558 1.4206 0.1643 
H 1.5347 1.4868 0.1172 
N 0.8133 1.0532 0.0622 
C 0.9313 1.1474 0.0626 
C 0.9598 1.2675 0.0628 
H 0.8977 1.2874 0.0623 
C 1.0791 1.3572 0.0638 
H 1.097 1.4386 0.0639 
C 1.1737 1.3346 0.0645 
H 1.2545 1.3992 0.0658 
C 1.1492 1.2157 0.0632 
C 1.0268 1.1208 0.0626 
C 0.7155 1.082 0.0668 
H 0.6408 1.0163 0.0517 
H 0.7376 1.157 0.0479 
C 0.693 1.098 0.1224 
H 0.6767 1.0251 0.1416 
H 0.7662 1.1671 0.1368 
C. 0.5872 1.1194 0.1285 
H 0.601 1.1888 0.108 
H 0.5794 1.1352 0.1643 
H 0.5132 1.0479 0.1172 
B 0.6667 0.3333 -0.0095 
F 0.6378 0.4194 0.003 
F 0.6667 0.3333 -0.0616 
F 0.5806 0.2184 0.003 
F 0.7816 0.3622 0.003 
N 0.4398 0.831 0.1546 
C 0.387 0.737 0.158 
C 0.259 0.636 0.1673 
N 0.169 0.6088 0.1546 
C 0.263 0.65 0.158 
C 0.364 0.623 0.1673 
N 0.3912 0.5602 0.1546 
C 0.35 0.613 0.158 
C 0.377 0.741 0.1673 
N 0.2269 0.5023 0.1787 
C 0.2797 0.5963 0.1753 
C 0.4077 0.6973 0.166 
N 0.4977 0.7245 0.1787 



 150

C 0.4037 0.6833 0.1753 
C 0.3027 0.7103 0.166 
N 0.2755 0.7731 0.1787 
C 0.3167 0.7203 0.1753 
C 0.2897 0.5923 0.166 
F 0.7497 0.3562 0.0283 
F 0.7401 0.3563 -0.0511 
F 0.629 0.4163 -0.0114 
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A-13: Crystal data for 3.5 and 5.5. 
 

Compound 3.5 5.5 
formula C25H24BF4N3 C22H18O2 

formula weight 453.28 314.36 
crystal system triclinic monoclinic 
space group P-1 P21/c 

a(Å) 8.7073(2) 8.5427(2) 
b(Å) 11.2000(3) 7.1453(2) 
c(Å) 12.2971(4) 27.5180(10) 
α(°) 113.1619(12) 90.00 
β(°) 101.3856(12) 93.019(2) 
γ(°) 101.7058(11) 90.00 

volume(Å3) 1027.18(5) 1677.37(9) 
Z 2 4 

temperature(K) 90.0(2) 90.0(2) 
reflections used 4648 5792 

θ measurement range (°) 1.00-27.48 1.00-25.35 
crystal description irregular block irregular bent plate 

color red colorless 
crystal size(mm3) 0.30x0.30x0.20 0.48x0.30x0.08 

crystal density (Mg/m3) 1.466 1.245 
F(000) 472 664 

absorption coefficient (mm-1) 0.112 0.079 
data/ parameters / restraints 2683/322/146 3079/219/0 

R1 0.0627 0.0435 
Rall 0.1037 0.0848 

goodness-of-fit 1.059 1.023 
school XRD file codes k03243 k02225 
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A-14: Crystal coordinates of 3.5. 
 

atom/axis X Y Z 
N -0.0753 -0.3057 -0.2168 
N 0.1734 -0.0537 0.2306 
N 0.3338 0.1397 -0.035 
C -0.1455 -0.4092 -0.0844 
H -0.2168 -0.4908 -0.1545 
C -0.1259 -0.3965 0.0335 
H -0.1855 -0.471 0.0429 
C -0.0247 -0.2817 0.1386 
H -0.0168 -0.277 0.2184 
C 0.3922 0.1631 0.3212 
H 0.4052 0.1709 0.4024 
C 0.4886 0.2627 0.3034 
H 0.5691 0.3383 0.374 
C 0.4744 0.2587 0.1874 
H 0.5435 0.33 0.1792 
C 0.2184 0.0106 -0.26 
H 0.2838 0.0807 -0.2718 
C 0.1106 -0.105 -0.3599 
H 0.1029 -0.1124 -0.4406 
C 0.0119 -0.212 -0.3506 
H -0.0611 -0.2903 -0.423 
C 0.0219 -0.2025 -0.233 
C -0.0591 -0.3007 -0.1001 
C 0.0664 -0.1718 0.1273 
C 0.2753 0.0506 0.2189 
C 0.3576 0.1484 0.0836 
C 0.2312 0.0242 -0.1403 
C 0.1325 -0.085 -0.1266 
C 0.0495 -0.1814 0.0067 
C 0.2584 0.0417 0.0983 
C 0.1456 -0.0737 -0.0071 
C -0.1877 -0.4292 -0.3268 
H -0.2295 -0.4047 -0.3935 
H -0.2832 -0.4682 -0.3055 
C -0.1016 -0.5358 -0.3738 
H -0.0076 -0.4977 -0.3957 
H -0.1792 -0.6166 -0.4475 
H -0.0625 -0.5619 -0.3087 
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C 0.1908 -0.0488 0.354 
H 0.0824 -0.0943 0.3565 
H 0.2284 0.0476 0.4182 
C 0.3132 -0.1189 0.3823 
H 0.2755 -0.2145 0.3191 
H 0.3223 -0.115 0.4644 
H 0.4211 -0.0726 0.3817 
C 0.4238 0.257 -0.0497 
H 0.444 0.3428 0.0257 
H 0.3548 0.2618 -0.1213 
C 0.5864 0.2446 -0.0704 
H 0.6622 0.2562 0.0061 
H 0.634 0.3154 -0.0928 
H 0.5685 0.1542 -0.1378 
B 0.6734 0.6478 0.3297 
F 0.5382 0.6884 0.3404 
F 0.8069 0.7599 0.3748 
F 0.6908 0.5782 0.3993 
F 0.6488 0.5644 0.2081 
B 0.651 0.648 0.331 
F 0.521 0.605 0.228 
F 0.584 0.614 0.41 
F 0.669 0.783 0.376 
F 0.762 0.589 0.301 
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A-15: Crystal coordinates of 5.5. 
 

atom/axis X Y Z 
C 0.3407 -0.3175 0.1208 
O 0.261 -0.1342 0.1242 
O 0.0959 0.0467 0.0793 
C 0.1728 -0.0955 0.0827 
C 0.1321 -0.2625 0.0002 
H 0.0628 -0.171 -0.0138 
C 0.1755 -0.4167 -0.0259 
H 0.1344 -0.4333 -0.0583 
C 0.2786 -0.5486 -0.0053 
H 0.3072 -0.6536 -0.0241 
C 0.3405 -0.53 0.0421 
H 0.4124 -0.6194 0.0558 
C 0.2944 -0.377 0.0691 
C 0.1938 -0.246 0.0477 
C 0.5193 -0.2945 0.1273 
C 0.6031 -0.1388 0.1118 
C 0.767 -0.1409 0.1193 
H 0.8254 -0.0349 0.11 
C 0.8453 -0.2917 0.1398 
H 0.9562 -0.2885 0.1444 
C 0.764 -0.4471 0.1536 
H 0.8182 -0.5525 0.1672 
C 0.6022 -0.4479 0.1474 
H 0.5458 -0.5551 0.1571 
C 0.2724 -0.4379 0.1606 
C 0.2844 -0.3793 0.2097 
C 0.2167 -0.492 0.2441 
H 0.2228 -0.4538 0.2772 
C 0.1403 -0.6585 0.2317 
H 0.0954 -0.7325 0.256 
C 0.1305 -0.7148 0.184 
H 0.0791 -0.8287 0.1751 
C 0.1958 -0.6049 0.1486 
H 0.1881 -0.6445 0.1156 
C 0.5301 0.03 0.0875 
H 0.467 -0.0088 0.0585 
H 0.6127 0.1158 0.0781 
H 0.4629 0.0934 0.1102 
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C 0.3663 -0.2021 0.2268 
H 0.309 -0.0934 0.2133 
H 0.4734 -0.2013 0.2156 
H 0.3696 -0.1966 0.2624 
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A-16: Crystal data for 5.7 and 5.9. 
 

Compound 5.7 5.9 
formula C22H16O6 C25H28O7 

formula weight 376.36 440.49 
crystal system monoclinic monoclinic 
space group P21/n P21/n 

a(Å) 9.5260(2) 11.8690(2) 
b(Å) 15.7690(4) 15.7840(2) 
c(Å) 14.4100(4) 16.4100(2) 
α(°) 90.00 90.00 
β(°) 102.0160(12) 90.3530(7) 
γ(°) 90.00 90.00 

volume(Å3) 2117.18(9) 3074.20(7) 
Z 4 4 

temperature(K) 90.0(2) 90.0(2) 
reflections used 5026 7313 

θ measurement range (°) 1.00-27.48 1.00-27.48 
crystal description irregular slab wedge 

color colorless colorless 
crystal size(mm3) 0.25x0.25x0.10 0.30x0.20x0.10 

crystal density (Mg/m3) 1.325 1.468 
F(000) 888 1400 

absorption coefficient (mm-1) 0.098 0.602 
data/ parameters / restraints 4861/285/0 7053/368/0 

R1 0.0442 0.0348 
Rall 0.0825 0.0548 

goodness-of-fit 1.013 1.037 
school XRD file codes k03057 k03024 
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A-17: Crystal coordinates of 5.7. 
 

atom/axis X Y Z 
O 0.1139 0.1258 0.4509 
O -0.1125 0.1018 0.4649 
H -0.1089 0.0657 0.4227 
O 0.1573 0.0286 0.6543 
O 0.1434 0.0066 0.8046 
H 0.0679 -0.0188 0.7785 
O 0.4637 0.0703 0.5692 
O 0.5088 0.0931 0.4256 
H 0.5245 0.0407 0.4286 
C 0.2847 0.1885 0.6279 
H 0.2651 0.1343 0.5916 
C 0.1388 0.2266 0.6318 
C 0.0139 0.2049 0.5652 
C -0.1163 0.2432 0.5701 
H -0.2003 0.2281 0.5251 
C -0.1258 0.3023 0.639 
H -0.2147 0.329 0.6402 
C -0.0044 0.3222 0.7061 
H -0.0101 0.3621 0.7545 
C 0.1257 0.2841 0.7031 
H 0.2078 0.2975 0.7506 
C 0.0135 0.1412 0.4889 
C 0.3706 0.1649 0.7265 
C 0.3272 0.0972 0.7779 
C 0.4071 0.0771 0.8679 
H 0.3761 0.0323 0.9028 
C 0.5302 0.1213 0.9069 
H 0.5845 0.1063 0.9677 
C 0.5739 0.1872 0.8571 
H 0.659 0.2177 0.8833 
C 0.4939 0.2092 0.7685 
H 0.524 0.2558 0.7357 
C 0.2023 0.0421 0.739 
C 0.3661 0.2455 0.571 
C 0.4485 0.2113 0.5094 
C 0.5124 0.2645 0.4528 
H 0.5645 0.2405 0.4097 
C 0.5012 0.3517 0.4583 
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H 0.5466 0.3875 0.4204 
C 0.4232 0.3861 0.5199 
H 0.4153 0.4459 0.5249 
C 0.3562 0.3333 0.5744 
H 0.3016 0.3581 0.6155 
C 0.473 0.1188 0.5047 
O -0.0946 -0.0693 0.7351 
H -0.1026 -0.0806 0.6773 
C -0.2085 -0.0119 0.7469 
H -0.2022 -0.0017 0.8154 
H -0.3023 -0.0389 0.7211 
C -0.2013 0.0714 0.698 
H -0.1104 0.0996 0.7253 
H -0.2815 0.1073 0.7068 
H -0.2073 0.0617 0.6302 
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A-18: Crystal coordinates of 5.9. 
 

atom/axis X Y Z 
O 0.2758 -0.0591 0.253 
H 0.276 -0.1045 0.2263 
O -0.0298 -0.0284 0.3055 
O 0.3333 0.0962 0.3114 
O 0.0078 0.0762 0.158 
O 0.1739 -0.1905 0.2008 
O 0.3 -0.0731 0.0959 
O 0.1775 0.1843 0.2124 
C 0.187 -0.0045 0.2227 
C 0.1493 0.0388 0.3028 
C 0.0457 0.026 0.3411 
C 0.0198 0.0644 0.4153 
H -0.0524 0.0564 0.4389 
C 0.099 0.1138 0.4541 
H 0.081 0.1405 0.5042 
C 0.2047 0.125 0.4208 
H 0.2599 0.158 0.4484 
C 0.229 0.0874 0.3463 
C 0.397 0.1688 0.3346 
H 0.3477 0.2185 0.3358 
H 0.4575 0.178 0.2952 
H 0.4298 0.1597 0.3889 
C -0.1468 -0.0159 0.3206 
H -0.1657 -0.0392 0.3742 
H -0.1913 -0.0449 0.2785 
H -0.1639 0.0448 0.3196 
C 0.0936 -0.0546 0.1763 
C 0.006 -0.0078 0.1396 
C -0.0769 -0.0451 0.0916 
H -0.1346 -0.0116 0.0674 
C -0.0741 -0.1313 0.0795 
H -0.1301 -0.1572 0.0463 
C 0.0086 -0.1804 0.1148 
H 0.0092 -0.24 0.1062 
C 0.0916 -0.1423 0.1633 
C 0.1762 -0.2795 0.186 
H 0.1057 -0.3049 0.2049 
H 0.2399 -0.3048 0.2154 
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H 0.1844 -0.2898 0.1274 
C -0.072 0.1307 0.1202 
H -0.0663 0.1256 0.0609 
H -0.0568 0.1894 0.1364 
H -0.1481 0.1148 0.1374 
C 0.2415 0.0542 0.1569 
C 0.2985 0.0136 0.0928 
C 0.3508 0.058 0.0301 
H 0.388 0.0287 -0.0125 
C 0.3474 0.1452 0.031 
H 0.3843 0.1761 -0.0107 
C 0.2914 0.1882 0.0916 
H 0.2898 0.2484 0.0914 
C 0.2369 0.1433 0.1533 
C 0.168 0.2742 0.2073 
H 0.2432 0.2996 0.2097 
H 0.1229 0.295 0.253 
H 0.1312 0.2896 0.1558 
C 0.3352 -0.1194 0.0259 
H 0.2901 -0.102 -0.0214 
H 0.3249 -0.1801 0.0356 
H 0.4149 -0.1078 0.0155 
C 0.307 0.6377 -0.0824 
H 0.3051 0.5905 -0.1231 
Cl 0.1681 0.6707 -0.0633 
Cl 0.3863 0.7218 -0.1224 
Cl 0.368 0.5999 0.0085 
C 0.5257 -0.0182 0.2363 
H 0.4427 -0.008 0.2327 
Cl 0.5644 -0.0269 0.3398 
Cl 0.5575 -0.113 0.1849 
Cl 0.5962 0.0673 0.1898 
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