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FORUM REVIEW ARTICLE

Amyloid b-Peptide (1–42)-Induced Oxidative Stress
in Alzheimer Disease: Importance in Disease
Pathogenesis and Progression

D. Allan Butterfield,1–3 Aaron M. Swomley,1–3,* and Rukhsana Sultana1–3,*

Abstract

Significance: Alzheimer disease (AD) is an age-related neurodegenerative disease. AD is characterized by
progressive cognitive impairment. One of the main histopathological hallmarks of AD brain is the presence of
senile plaques (SPs) and another is elevated oxidative stress. The main component of SPs is amyloid beta-peptide
(Ab) that is derived from the proteolytic cleavage of amyloid precursor protein. Recent Advances: Recent studies
are consistent with the notion that methionine present at 35 position of Ab is critical to Ab-induced oxidative
stress and neurotoxicity. Further, we also discuss the signatures of oxidatively modified brain proteins, iden-
tified using redox proteomics approaches, during the progression of AD. Critical Issues: The exact relation-
ships of the specifically oxidatively modified proteins in AD pathogenesis require additional investigation.
Future Directions: Further studies are needed to address whether the therapies directed toward brain oxidative
stress and oxidatively modified key brain proteins might help delay or prevent the progression of AD. Antioxid.
Redox Signal. 19, 823–835.

Introduction

Alzheimer disease (AD) is an age-related neurodegen-
erative disorder that affects a large and ever-growing

population of Americans 65 years of age or older, a number
that current estimates place at *5.1 million and that may
grow to nearly 20 million by the year 2050 due to an aging
Baby Boomer population (63). Pathologically, AD is char-
acterized by a loss of synapses, an increase in the number of
extracellular amyloid beta-peptide (Ab)–rich senile plaques
(SPs) formed from the amyloidogenic processing of amyloid
precursor protein (APP) (discussed later), and an increase in
intracellular neurofibrillary tangles (NFTs) composed of
aggregated hyperphosphorylated Tau, a microtubule stabi-
lizing protein (81). In the last decade or so, strong evidence
has been put forth linking AD to an increase in oxidative
stress due in part to both the increased production of reactive
oxygen and nitrogen species (ROS and RNS, respectively)
and a loss of function of many antioxidant defense enzymes
(3,13,20,21,84,94,95,110,153,162).

Alzheimer Diagnosis and Staging

AD is clinically characterized by a decline in episodic
memory that is often mistaken for normal cognitive defi-
ciencies due to aging. Because the pathology remains hidden
within the brain tissue, clinical diagnosis during the early
stages remains inherently error prone and subjective, though
advances have been made to aid a physician in making a
correct diagnosis (100,167). To date, physicians have access to
tools designed to help with diagnosis such as the Mini Mental
State Evaluation (MMSE), which is used to track a patient’s
cognitive prowess (a 30-point scale is used with > 25 being
normal and < 25 as probable AD), and also imaging alterna-
tives such as magnetic resonance imaging (MRI) and positron
emission tomography (PET) scans, which visualize both the
potential hippocampal, sulci, and gyri degeneration and de-
creased glucose utilization (42,48,71,150).

Progression of typical AD can be stratified into four main
stages: preclinical AD (PCAD), mild cognitive impairment
(MCI), early AD (EAD), and late-stage AD (LAD). PCAD is
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defined as the potential stage of AD in which the patient
presents as a fully functional individual in cognitive exams
such as MMSE, yet the growing pathology within the brain
tissue is present, but likely unknown precluding early death
from a non-neurodegenerative means (141,144,166). MCI has
been described as being the transition stage between normal
cognition and EAD, and is subdivided into both amnestic MCI
(aMCI) and non-amnestic MCI, the former of the two pre-
senting with memory deficits and maintains a 10%–15% con-
version rate per year to AD (123,124,150). Pathologically, each
stage differs in that both amyloid plaques and NFTs increase in
distribution and density from MCI to LAD, though non-de-
mented individuals have also been known to possess both
types of pathology while maintaining normal cognition (159).
Through use of imaging techniques such as MRI, all stages of
clinical AD described demonstrate varying degrees of degen-
eration, with MCI presenting relatively small degeneration
affecting the hippocampus, sulci, and gyri, whereas a larger
degree affects the same brain regions in LAD accompanied by
additional atrophy of the frontal lobe and ventricular widen-
ing in EAD and LAD (45,47,71). Additionally, research con-
ducted using PET scans concluded that regional glucose
utilization within the brain, including the temporal lobe, was
significantly reduced in AD patients, a trend that was shown
to remain for possible PCAD and MCI patients, indicating a
severe energy deficiency, as glucose is known to be the pre-
dominant source of energy for the brain (34,35,42,66,125).

APP Processing

The main component of SPs is a 4-kDa protein called Ab
(61,99). Ab is generated by the proteolytic cleavage of APP, a
type I transmembrane protein suggested to play an important
role in neurite outgrowth, neuronal protein trafficking, signal

transduction, calcium metabolism, and others. (176). There
are three major alternate splicing variants with APP770,
APP751, and APP695.

In the amyloidogenic pathway, APP is cleaved by b-secretase
(also referred to as b-site APP-cleaving enzyme) (163) at posi-
tion 671, resulting in the release of a large N-terminal derivative
called b-secretase-cleaved soluble APP (b-sAPP) (Fig. 1). The
b-sAPP differ from a-secretase-cleaved soluble APP (a-sAPP)
(produced from non-amyloidogenic processing, Fig. 2) by
lacking the Ab(1–16) regions at its C-terminus, but it has been
reported to function as a death receptor 6 ligand and also me-
diate axonal pruning and neuronal cell death (114). The toxicity
of C-terminal fragment (CTF) may possibly be mediated by the
end products of c- and/or caspase-cleavage including APP
intracellular domain (AICD), C31, and Jcasp. Caspases can
cleave APP at position Asp664 resulting in the formation of
31-amino-acid peptide of APP referred to as C31. C31 has been
shown to induce cytotoxicity. Further, cleavage by c-secretase
generates JCasp (52,119); however, JCasp has been reported to
play a minor role in cytotoxicity. In a transgenic mouse, mu-
tation at caspase cleavage site in APP prevented AD-associated
changes suggesting that caspase cleavage of APP might be
crucial for Ab-mediated neurotoxicity. In the next step, the
99-amino-acid CTF of APP (C99) is cleaved by the c-secretase
complex releasing free peptides ranging from 38 to 43 amino
acids referred to as Ab, P83 fragment, and AICD (Fig. 2).
Hence, the c- cleavage is critical for the amount and type of
Ab produced.

Ab40 represents the most abundant form of Ab in the brain,
while Ab42 shows a significant increase with certain forms of
AD (112). Ab42 has two extra hydrophobic amino acids
compared to Ab40, which promotes greater fibrillar formation
in Ab42 and is known to be more toxic (Fig. 3). The evidence of
Ab toxicity was provided by molecular pathology, human

FIG. 2. A general depiction of non-amyloidogenic pro-
cessing. APP is cleaved by a-secretase followed by c-
secretase within the bilayer to produce a fragment of P3,
sAPPa, and APP intracellular domain (AICD). To see this
illustration in color, the reader is referred to the web version
of this article at www.liebertpub.com/ars.

FIG. 1. A general depiction of amyloidogenic processing.
Amyloid precursor protein (APP) is cleaved by b-secretase
followed by c-secretase within the bilayer to produce a
fragment of amyloid-beta peptide (Ab), sAPPb, and AICD.
To see this illustration in color, the reader is referred to the
web version of this article at www.liebertpub.com/ars
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genetics, and discoveries from cell biology (13,16,38,169). The
increased hydrophobicity of Ab42 possibly allows this pep-
tide to integrate within the lipid bilayer initiating the process
of cell damage. Schmidt et al. using mass-per-length mea-
surements and electron cryomicroscopy with 3-dimensional
reconstruction on an Ab(1–42) amyloid fibril morphology
showed that the Ab(1–42) fibril morphology has only one
protofilament, in contrast to Ab(1–40) fibril forms two pro-
tofilaments. Further, Ab(1–42) showed pairs of b-sheets at the
cores of the two protofilaments making up a fibril (135).

Once Ab is produced, individual amyloid peptides (Ab42
in particular) aggregate to form small assemblies of dimers,
trimers, oligomers, protofibrils, and large insoluble fibrils.
Studies showed poor correlation between plaque load and
cognitive function (113). Recently, the role of Ab has been
amended to suggest that soluble Ab oligomers are the more
toxic species. Further research has indicated that the soluble
oligomers and not the plaques correlate well with cognitive
decline (44,53,54,117,165,168). Moreover, Ab levels and tem-
poral NFT density have been shown to be elevated to a higher
degree in LAD when compared with MCI and EAD, which
are likewise elevated compared with control (9,11,58,108,159).
The relationship between Ab-containing SPs and NFT for-
mation has been debated, but recently Jin et al. reported that
with the addition of soluble Ab dimers, tau became hyper-
phosphorylated before cytoarchitectural disruption was ob-
served, followed by subsequent neuritic degeneration.
Interestingly, this process was exacerbated with the over-
expression of human tau and prevented with the knockdown
of human tau (74). Soluble Ab has also been shown to mod-
ulate the pro-survival PI3K/AKT-GSK3b pathway, inhibiting
various neurotrophin effects including that of a-sAPP (73).
These lines of evidence provide insight into the progression of
AD and a potential causal relationship between two known
pathological hallmarks of this disease.

Genetic Evidences for Ab Toxicity

The importance of APP and consequently Ab in AD path-
ogenesis has emanated from genetic evidence of patients with
familial AD (FAD) and Down syndrome (DS). After the
cloning of the APP gene, a mutation causing FAD (autosomal
dominant) was found at codon 717, close to the C-terminus of
the Ab domain of APP (55). Today, there are at least seven
known APP mutations causing FAD (56,138). Interestingly, all
APP mutations are located in or near the Ab region of APP,
close to the secretase sites. To date, 32 mutations in APP have
been reported, and based on their locations they are grouped

into three main classes: the Swedish mutation, located adja-
cent to the b-cleavage site of APP; London mutations, Flemish
mutation, located near the c-site of APP; the Arctic, Dutch,
and the Iowa mutations, located within the Ab sequence itself.
All the APP mutations are found to alter the proteolytic pro-
cessing of APP, resulting in either increased production of
total Ab or a selective increase in the 42-amino-acid form of
Ab (56,138). In addition to mutations of APP, 177 mutations in
presenilin 1 (PS1) (392 families) and 14 mutations in PS2
(23 families) has been identified in FAD, which further sup-
port the role of altered APP metabolism in AD pathogenesis.
The evidence of involvement of Ab(1–42) in AD pathogenesis
is largely derived by observation of increased Ab load and
increased oxidative stress in FAD. Individuals with FAD
mutations consistently show increases in the ratio of Ab42/40,
suggesting that elevated levels of Ab42 is critical for AD
pathogenesis (72,134).

DS patients have three copies of chromosome 21, and the
APP gene is present on this chromosome; hence, if these pa-
tients live long enough they develop neuropathological fea-
tures indistinguishable from AD. Further, DS patients had
increased accumulation of intracellular Ab preceding extra-
cellular plaque formation, and the level of intraneuronal Ab
decreases as the extracellular Ab plaques accumulate (59,109).
Further, DS brain also has elevated oxidative stress
(32,78,120,121).

Ab and ROS/RNS in AD

In AD brain, increased levels of Ab were found in the af-
fected regions; however, Ab42 is also the predominating form
of Ab in SPs (106), while shorter Ab proteins predominate in
both vascular amyloid and in cerebral spinal fluid (CSF)
(106,164). Further, AD CSF showed reduced levels of Ab42
compared with Ab40 suggesting that the deposition of the
protein in SPs in brain leads to reduced levels of Ab in the CSF.
In AD plasma, the levels of Ab is controversial, one study
found an increase in plasma Ab42 (102). Most of the studies
did not find any change in plasma Ab42 between AD patients
and age-matched controls (70,106). Current data do not pro-
vide clear-cut evidence that Ab protein in plasma/CSF re-
flects the amount of Ab deposited in the brain or that plasma/
CSF Ab42 has a potential as a biomarker for AD. Further
studies are needed to develop biomarkers for AD diagnosis
and therapeutic efficacy.

Several lines of evidence indicate that Ab induces oxidative
stress. Oxidative stress that occurs within the bilayer, hy-
pothesized in the Ab-induced oxidative stress hypothesis in

FIG. 3. Amino acid se-
quence of beta-amyloid pep-
tides. Red color indicates the
two additional hydrophobic
amino acids that are present in
beta-amyloid (1–42), which is
critical for higher aggregation
rate of beta-amyloid (1–42),
and its associated neurotoxicity
(please see text for more details).
To see this illustration in color,
the reader is referred to the web
version of this article at www
.liebertpub.com/ars
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which Ab1–42 inserts as oligomers into the bilayer and serves
as a source of ROS, has been shown to initiate lipid perox-
idation (Figs. 4 and 5) (16,17,93,94,101). For a comprehensive
review on oxidative/nitrosative stress in the cell, the reader is
referred to the following articles (28,29,151).

Oxidative Stress at Different Stages of AD

Oxidative stress and its effects have been found as early as
MCI in the progression toward AD. Studies conducted in our
laboratory and others have found that oxidative stress
markers for protein oxidation/nitration, such as protein
carbonyls and 3-nitro-tyrosine, are elevated in brains from
subjects with aMCI (6–8,25,83). More recently, it has been
shown that the phosphorylation profile of proteins such as
heme-oxygenase-1 and biliverdin reductase A have been al-
tered in MCI and AD indicating the possibility of aberrant
signaling in at least this one critical antioxidant pathway.
Increased levels of 8-OHdG, 8-OHG, 5-hydroxycytosine,
2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 4,6-
diamino-5-formamidopyrimidine, all markers of nucleic
acid oxidation, were found in both mitochondrial DNA and
nuclear DNA indicating nucleic acid oxidation in MCI
(105,171). 8-OHdG (also found elevated in CSF of AD pa-
tients), 8-OHA, and 5-OHU were found in AD brain regions
demonstrating that though DNA is more protected from
oxidation than RNA, oxidation still occurs (2,50,104,150).

Significant RNA oxidation has been shown to exist in AD,
as has been found in the earlier stages of the disease. A high
percentage (30%–70%) of mRNA in the frontal cortex was
shown to be oxidized in AD brain (139). In EAD brain, 8-OHG
was found to be elevated in the cytoplasm of AD hippocam-
pus, frontal, and occipital neocortex, which correlated with
the b-amyloid load (89,115,116,140). Ribosomal RNA oxida-
tion was observed in the superior middle gyri and inferior
parietal lobule (IPL) of AD brain (43). 8-OHG levels decreased
with increased Ab and NFT levels, a finding that suggests that
at the early stages of AD, oxidative damage to RNA may be an
early event in AD progression (115).

FIG. 4. Schematic illustration
of HNE-modified protein. Upon
formation of a radical centered al-
lylic carbon on a fatty acid chain,
the lipid may interact with mo-
lecular O2 that freely diffuses
through the bilayer because of its
lack of dipole moment, to initiate
the lipid peroxidation process that
eventually, by way of a proposed
Hock cleavage, generates an a/b
unsaturated reactive aldehyde
[e.g., 4-hydroxy-nonenal (HNE),
malondialdehyde, and acrolein].
Membrane-bound proteins may
then, by way of nucleophilic side
chains such as Cys, Lys, and His,
covalently bind the aldehyde that
alters the structure and function of
the target protein. To see this il-
lustration in color, the reader is
referred to the web version of this
article at www.liebertpub.com/
ars

FIG. 5. Some consequences of elevated ROS and RNS.
Reactive oxygen species (ROS) leaked from mitochondria
(e.g., O2

- c) interact with nitric oxide (NO) produced by nitric
oxide synthase (NOS) to produce reactive nitrogen species
such as ONOO - , which covalently modify proteins. O2

- c
can also directly oxidize proteins, lipids, and carbohydrates.
O2

- c may also be dismutated to H2O2 by superoxide dis-
mutase (SOD) enzymes in an attempt to mitigate O2

- c in-
duced damage. However, hydrogen peroxide (H2O2) in the
presence of Fe2 + or Cu + undergoes Fenton chemistry to
produce the reactive ROS cOH and - OH, which also cause
protein, nucleic acid, and carbohydrate oxidation. To see this
illustration in color, the reader is referred to the web version
of this article at www.liebertpub.com/ars
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Increased protein-bound 4-hydroxy-nonenal (HNE) and
free HNE, TBARS, and MDA were found, and a higher iso-
prostane (F2isoP) level in plasma, urine, and CSF in MCI when
compared with healthy controls (83,96,173). There have
been high levels of free and protein-bound HNE found in AD
brain (16,23,86,88,97,103,122). In addition to lipid peroxida-
tion, protein carbonyls were found to be increased in regions
of the brain heavily associated with AD, including the hip-
pocampus and parietal cortex, while leaving the cerebellum
relatively untouched (64). Moreover, another index of protein
oxidation, protein nitration, was also found to be increased in
the CSF and AD brain in regions such as the IPL, neocortical
regions, and the hippocampus (7,31,65,143,155). Increased
protein nitration and protein-bound HNE were found in
brains of subjects with EAD (130,131). Inversely correlated to
the increase in oxidation observed was the activity of anti-
oxidant systems (both enzymatic and nonenzymatic) found
by Sultana et al. and Guidi et al. while no changes in total
protein levels were observed, which may be a result of, and
contribute to, the observed increase in free radicals during the
progression of AD (57,153).

Redox Proteomics Studies of MCI, EAD, and AD

Redox proteomics is a method of identification of oxida-
tively modified proteins pioneered by our laboratory that
employs redox-specific antibodies, two-dimensional poly-
acrylamide gel electrophoresis, and tandem-mass spectrom-
etry (MS/MS) with the identification of specific proteins
based on their tryptic peptide amino acid sequence after in-
terrogation of protein databases such as SwissProt (41,67,68).
Our laboratory has identified proteins in MCI, EAD, and AD
brain that are vital to cellular function as being oxidatively
modified and dysfunctional; however, for the sake of this
review only a select few will be discussed. For a discussion of
oxidatively modified proteins discovered by our laboratory
using redox proteomics, the reader is referred to articles cited
here (4,24,27,41,150).

Sultana et al. found that the important protein regulator
Pin1 is oxidized and activity decreased (148). Recently, there
has been much interest in the area of regulation via the
phosphorylation specific peptidyl-prolyl cis-trans isomerase
(PPIase), Pin1, and its role in neuronal cell cycle checkpoints
and cellular phosphorylation status in diseases such as AD
and cancer (5,14,46,82). Pin1 recognizes the specific motif of
phosphorylated serine or threonine on the amino-terminal
side of an adjacent proline (pSer/Thr-Pro) and catalyzes the
isomerization of the peptide bond (90,128). This regulation
has been shown to be important in the phosphorylation status
of both APP and Tau, and some kinases and phosphatases
that act on those target proteins, giving Pin1 both a direct and
indirect regulation of two key pathological hallmarks of AD
(14,85,87,92).

Another link between the stages of AD is the presence of
oxidatively modified proteins important to cellular energy
production (150). Three enzymes, a-enolase, adenosine-
triphosphate-synthase, and lactate dehydrogenase were im-
plicated as being oxidatively modified in brains of subjects
with aMCI and AD, while a-enolase in particular was found to
modified in EAD as well (25,30,31,122,129,149,152,155,156).
Additionally, enolase was identified by redox proteomics as
oxidatively modified in brains of subjects with FAD (19).

The activity of a-enolase as a glycolytic protein is well un-
derstood. Consequently, the oxidative modification and sub-
sequent loss of activity may significantly hinder energy
production (150). a-Enolase however, possesses nonglycolytic
activities in signaling pathways important to cell survival and
in Ab clearance (22). Evidence also suggests that a-enolase may
be a neurotrophic factor, play a role in hypoxic stress regula-
tion, and have transcription factor capabilities (1,62,147,158).

The examples of Pin1 and a-enolase were selected to
demonstrate the power of redox proteomics in identifying
specific links in cell signaling pathways that are damaged and
dysfunctional as opposed to global tissue oxidation, and free
radical induced oxidative stress of enzymatic proteins with
multifunctional roles that may have far-reaching effects. In
using redox proteomics, researchers may identify proteins
that are more susceptible to oxidative modification and from
this information garner insight regarding the progression and
possibly even potential treatment for diseases such as AD.

Role of Methionine in Ab-Induced Oxidative Stress

Studies from our laboratory and others showed Met-35 of
Ab peptides is critical for Ab-associated toxicity and oxidative
stress (15,160,174,175). Met can undergo two-electron oxida-
tion to form methionine sulfoxide (MetSOx) (127,137). Oxi-
dation of Met to the sulfoxide might play an important role
in the regulation of protein function or cellular defense

FIG. 6. A pictorial representation of Ab oligomerization
and insertion into the bilayer. When inserted into the bilayer,
Ab forms an a-helix that allows the peptide backbone car-
bonyl of Ile-31 to come within Van der Waals distance of the
sulfur atom on Met-35, as explained by the i + 4 rule of a-
helicies. This interaction allows for the formation of a sulfur-
anyl radical that leads to a catalytic lipid peroxidation process.
To see this illustration in color, the reader is referred to the
web version of this article at www.liebertpub.com/ars
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mechanism (145). Further, the presence of methionine sulf-
oxide reductase (MSR), which catalyzes the conversion of
MetSOx to Met (91,98,146), suggests that MSR might play an
antioxidant role. Interestingly, in AD brain the activity of MSR
is less, and a significant fraction of SP-resident Ab peptide has
Met in the form of MetSOx (112), suggesting that Met oxida-
tion might play an important role AD progression and path-
ogenesis (49). However, in vitro studies showed that Ab with

MetSOx is less toxic at a shorter incubation time (160), this
could possibly be related to altered production of toxic Ab
oligomers (75,107).

In addition, Ab-resident Met in the lipid bilayer can un-
dergo one-electron oxidation forming sulfuranyl free radical
[MetS + ]. Since, Ab is generated from cleavage of APP, a
transmembrane protein as discussed above, we proposed that
Ab once produced can insert as small oligomers into the lipid
bilayer adopting an a-helical conformation (9,175). According
to the a-helix conformation rule of i + 4 rule, that is, every
fourth amino acid interacts; hence, the Met-35 S-atom would
interact with carbonyl oxygen of Ile-31 (79,80,137) (Fig. 6).
Since oxygen of Ile31 is more electronegative than sulfur it
will pull the electron density toward it, making the S-atom in
Met-35 more vulnerable to one-electron oxidation to form
sulfuranyl free radical [MetS + ] on Met (79,136,160) (Fig. 7).
The substitution of Ile-31 by proline, an a-helix breaker,
abrogates the oxidative stress and neurotoxicity associated
with Ab(1–42) (80), suggesting that the secondary structure of
Ab(1–42) contributes to reactivity of the neurotoxic peptide.
However, until now the source of oxidant that triggers this
event largely remains unknown. It is proposed that either
molecular oxygen or Cu2 + might be key in the oxidation of
Met to the sulfuranyl radical. In the absence of oxygen, Abs
cannot lead to free radical production (161). Prior studies
showed that Ab(1–42) has Cu/Zn SOD-like properties (39),
and that amyloid plaques had high levels of copper (33).
In vitro studies showed that Ab(1–42) can promote the re-
duction of peptide-bound Cu2 + to Cu + and form hydrogen
peroxide (H2O2). Further Cu + , can react with the H2O2 to form
highly reactive, hydroxyl free radicals (69,76). Further, chela-
tion of copper by clioquinol (CQ, 5-chloro-7-iodoquinolin-
8-ol), hydroxyquinoline antibiotic that has nanomolar affinity

FIG. 7. A proposed mechanism for the Ab-induced free radical stress hypothesis. As shown, the electron density sur-
rounding the sulfur atom of Met-35 is pulled away by the more electronegative oxygen of the carbonyl located on the peptide
backbone at the position of Ile-31. As discussed, the carbonyl is within Van der Waals distance to the sulfur, which primes the lone
pair on the sulfur for one-electron oxidation, forming the sulfuranyl radical. Because this occurs within the bilayer, unsaturated
lipids are present, allowing for an allylic hydrogen atom abstraction by the sulfuranyl radical to eventually form a reduced Met-35
that recycles back upon deprotonation to the starting conditions for another cycle. The carbon centered radical may then go on to
undergo peroxidation to create reactive aldehydes or may directly interact with another protein or lipid in a radical propagation
step. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

FIG. 8. Potential therapeutic targets for AD. There are
various potential targets to prevent Alzheimer disease (AD)
progression and pathogenesis that include inhibiting the
beta-amyloid formation or increasing its clearance from the
brain or inhibiting the oxidative stress induced by beta-am-
yloid peptide. (-) indicates potential targets to combat AD.
To see this illustration in color, the reader is referred to the
web version of this article at www.liebertpub.com/ars
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for Cu2 + (118), reduced the formation of H2O2 by Ab
(12,142,172). In vivo studies showed that oral administration
of the clioquinol in Tg2576 mice reduced amyloid levels.
Further, Phase 2 clinical trial showed that CQ slowed the rate
of cognitive decline and reduced the plasma Ab42 levels in
moderately severe AD patients (132). The importance of
copper in Ab-induced toxicity is suggested by a study where
Met35 was substituted by Val that showed to increase the
toxicity (36), suggesting that this substitution might lead to a
change in the conformation of Ab from a-helix to a mixture of
a-helical and b-sheet conformations, thereby increasing the
binding of Cu + 2 and subsequently its associated toxicity.
Further, substitution of His 6,13,14 in Ab(1–42) by Tyr, which
binds Cu2 + with less affinity than His, showed that it did not
affect the oxidative stress and neurotoxicity further empha-
sizing the importance of Met-35 in the Ab-induced toxicity
and oxidative stress (10,160). Further research is needed to
understand the role of copper in Ab.

Once MetS + radical is generated it can abstract allylic H
atoms from the acyl chains of unsaturated fatty acids in the
lipid bilayer to initiate the process of lipid peroxidation (60),
and consequently affect the lipid bilayer. The products of
oxidation further diffuse through the membrane affecting
other cellular compartments, greatly amplifying the effect of
the original Ab-centered free radical, eventually leading to cell
loss and AD. Consistent with this model, we substituted Gly
at residue 37 of Ab(1–42) by aspartic acid. The effect of this
negatively charged amino acid was to remove the Met-35
residue from the bilayer, and no oxidative stress was observed
in neuronal cultures (93). Vitamin E, a chain-breaking anti-
oxidant blocks the chain reaction in the mechanism of lipid
peroxidation, preventing oxidative stress to neurons (80).
However, clinical trials conducted using vitamin E for the
most part did not show beneficial effects in AD, which could
be due to experimental design (77).

The earliest study using transgenic Caenorhabditis elegans
expressing human Ab(1–42) showed increased oxidation that
correlated with the phenotypic expression (e.g., paralysis) of
the worm (170,175), which was confirmed by others (44).
However, when the Met-35 was substituted by Cys no oxi-
dative stress was found, but the deposition of modified Ab(1–
42) was not altered (175). Consistent with the role of Met, an
in vitro study demonstrated that when the sulfur atom of
methionine in Ab(1–42) was substituted by a methylene
moiety [Ab(1–42)M35NLE] that has the same side chain
length and hydrophobicity as Met (175), Ab loses its associ-
ated free radical formation, oxidative stress, and toxicity
(37,40,111). In contrast, some studies suggested that the 33–35
region of Ab (25–35) is critical for the aggregation and neu-
rotoxic properties of Ab peptide, but substitution of Met by
norleucine did not reduce the toxicity associated with this
peptide (126). However, the chemistry of C-terminal Met is
entirely different than Met within the peptide chain.

A recent study from our laboratory used for the first time an
in vivo mammalian model to show that Ab-resident Met-35 is
critical to oxidative stress and neurotoxicity (18). In this study
the PDAPP mouse, with Swedish and Indiana familial mu-
tations of APP, has a third mutation introduced: substitution
of leucine in APP at M631, corresponding to Met-35 of Ab
(1–42) (18). These mice were referred to as PDAPPM631L
mice. In contrast, to the brain from PDAPP mice, which
demonstrate oxidative stress, brain from PDAPPM631L mice

showed no in vivo oxidative stress. In addition, punctate de-
posits of Ab(1–42) were found in the latter brain compared to
frank amyloid deposits in the brain of PDAPP mice, sug-
gesting that Ab(1–42)-resident Met not only affects in vivo
oxidative stress but also affects plaque formation. Interest-
ingly, Met substitution in Ab(1–42) did not rescue spatial
learning and memory deficits at 6 months of age as assessed
by the Morris water maze test. Given that APP is processed to
produce toxic sAPPb and other toxic fragments of APP, this
result may not be surprising. Other, more sensitive cognitive
tests are needed to better understand the effect of the loss of
Met on learning and memory. Proteomics analysis on brain
from PDAPPM631L mice showed reduced oxidation of key
proteins that are critical in regulating cellular pathways such
as energy metabolism, cellular defense, protein degradation,
and pH regulation compared to PDAPP mice (133,157). The
decreased oxidation in general and reduced oxidation of key
proteins like Pin1 (Pin1, discussed earlier) might play an im-
portant role in preventing AD pathogenesis (157).

Conclusion

The overproduction and accumulation of Ab are key to the
progression and pathogenesis of AD. Hence, the use of
treatments to reduce Ab formation or the downstream oxi-
dative stress associated with Ab could be helpful in prevent-
ing, treating, or delaying the progression of AD (51). There are
various approaches that could be potential candidates to re-
duce Ab levels: inhibiting Ab production (by inhibiting se-
cretase enzymes) or increasing the clearance of Ab or using
compounds that bind Ab to impair aggregation (Fig. 8). Dis-
solving the extant SP may not be a good idea to combat this
devastating disease, since oligomeric Ab, the likely main toxic
species of this peptide would be elevated by simple equilib-
rium considerations. Studies are in progress in our labo-
ratory and others to further delineate the mechanism of
Ab-associated toxicity and develop a regimen to treat, slow,
or hopefully one day prevent AD.
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Ab¼ amyloid-beta peptide
a-sAPP¼ a-secretase-cleaved soluble APP
b-sAPP¼ b-secretase-cleaved soluble APP

AD¼Alzheimer disease
AICD¼APP intracellular domain
aMCI¼ amnestic MCI

APP¼ amyloid precursor protein
CQ¼ 5-chloro-7-iodoquinolin-8-ol

CSF¼ cerebral spinal fluid
CTF¼C-terminal fragment

DS¼Down syndrome
EAD¼ early AD

F2isoP¼ isoprostane
FAD¼ familial AD

H2O2¼hydrogen peroxide
HNE¼ 4-hydroxy-nonenal

IPL¼ inferior parietal lobule
LAD¼ late-stage AD
MCI¼mild cognitive impairment

MetSOx¼methionine sulfoxide
MMSE¼Mini Mental State Evaluation

MRI¼magnetic resonance imaging
MSR¼methionine sulfoxide reductase

NFTs¼neurofibrillay tangles
NO� ¼nitric oxide

NOS¼nitric oxide synthase
O2

�-¼ superoxide radical anion
�OH¼hydroxyl radical

ONOO-¼peroxynitrite anion
PCAD¼preclinical AD

PET¼positron emission tomography
Pin1¼peptidyl-prolyl cis-trans isomerase 1

PS¼presenilin
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species
SOD¼ superoxide dismutase

SP¼ senile plaques
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