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ABSTRACT 

Adults with Down syndrome (DS) are at high risk for developing Alzheimer’s disease (AD) after 

40 years of age. To detect white matter (WM) changes in the brain linked to dementia, fractional 

anisotropy (FA) from diffusion tensor imaging (DTI) was used.  We hypothesized that adults 

with DS without dementia (DS n=10), DS with dementia (DSAD n=10) and age matched non-

DS subjects (CTL n=10) would show differential levels of FA and an association with scores 

from the Brief Praxis Test (BPT) and the Severe Impairment Battery (SIB). WM integrity 

differences in DS compared to CTL were found predominantly in the frontal lobes. Across all 

DS adults, poorer BPT performance correlated with reduced FA in the corpus callosum as well 

as several association tracts, primarily within frontoparietal regions. Our results demonstrate 

significantly lower WM integrity in DS compared to controls, particularly in frontal tracts. DS-

related WM integrity reductions in a number of tracts were associated with poorer cognition.  

These preliminary results suggest that late myelinating frontal pathways may be vulnerable to 

aging in DS. 

 

Keywords:  aging, Brief Praxis Test, BPT, Dementia Questionnaire for Persons with Mental 

Retardation, DMR, diffusion tensor imaging, fractional anisotropy, Severe Impairment Battery, 

SIB, trisomy 21  
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1. INTRODUCTION 

The most common cause of Down syndrome (DS) is triplication of chromosome 21, 

resulting in a phenotype that is accompanied by altered brain development and other neurologic 

features (Lott, 2012).  However, a key challenge for adults with DS as they age is the increasing 

risk for developing Alzheimer’s disease (AD).  Despite estimated ages of dementia onset in DS 

of 48 to 56 years (reviewed in (Head, et al., 2007,Schupf, 2002)), AD neuropathology appears in 

virtually all adults with trisomy 21 after 40 years of age (Wisniewski, et al., 1985). Thus, there 

may be up to a 10 year delay in the onset of clinical symptoms of dementia and the presence of 

AD neuropathology, as has been suggested for late onset sporadic AD in the general population.   

Diffusion tensor imaging (DTI) represents a non-invasive in vivo method for 

characterizing the microstructural properties of white matter (WM) by measuring the rate and 

direction of diffusion of water molecules in neural tissue (Basser, et al., 2000) that can occur 

equally (isotropic) or unequally (anisotropic) in all directions. Anisotropy in WM indicates 

disruption in WM integrity resulting from a loss of compactness of WM tracts, their myelination, 

and/or number of axons within the tract studied (Wimberger, et al., 1995). Fractional anisotropy 

(FA) measures these changes in ranges from 0 (diffusion that is equal in all directions 

representing poor white matter integrity) to 1 (diffusion that is predominately in one direction 

representing good white matter integrity) (Pfefferbaum and Sullivan, 2003).  

DTI has been used extensively to study both brain aging and disease states such as AD 

(Sexton, et al., 2011). Results from several studies have suggested that FA decreases are 

associated with age-related declines on memory and executive control tasks (Bucur, et al., 

2008,Gold, et al., 2010). Studies of normal aging have consistently reported decreases in FA, 

suggesting a loss in WM integrity inherent in the aging process, that is amplified in disease states 
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such as AD (Madden, et al., 2012).  Most DTI studies of aging and dementia have reported that 

age-related FA declines follow an anterior-posterior gradient with WM in frontal regions 

showing the earliest and largest declines are associated with executive decline evident on 

neuropsychological testing (Madden, et al., 2009). 

In DS, there is a growing literature suggesting that the earliest manifestations of dementia 

appear to involve changes in personality and behavior (Aylward, et al., 1997,Cooper and Prasher, 

1998,Holland, et al., 2000), which are likely frontal-dependent. Pragnosia or socially deficient 

communication may also be an early sign of frontal lobe dysfunction in DS and may represent a 

striking change from previous well developed social capacities in the disorder (Nelson, et al., 

1995). Thus, executive dysfunction may be an early sign of aging and progression to dementia in 

DS. There are several studies describing MR structural/volumetric differences and changes with 

age and dementia in DS (Beacher, et al., 2009,Krasuski, et al., 2002,Pinter, et al., 2001,Roth, et 

al., 1996,Teipel, et al., 2004). Interestingly, frontal cortex volumes do not appear to decrease 

with AD in DS  (Beacher, et al., 2009) although volumes do decline with increasing age in those 

without dementia (Teipel, et al., 2004). Further PET imaging using Aβ ligands such as PiB 

(Landt, et al., 2011) or FDDNP (Nelson, et al., 2011) show increased frontal binding after age 36 

years (Landt, et al., 2011).  

Thus, the goal of the study was to specifically test the hypothesis that frontal dysfunction 

(measured by white matter integrity) would distinguish DS from non-DS and DS without 

dementia from those with dementia. Therefore we measured WM integrity using FA with the 

prediction that frontal WM tracts would be particularly vulnerable to the presence of dementia in 

adults with DS and may also be compromised in DS relative to non-DS controls. We predicted 

that frontal white matter integrity would be associated with dementia in adults with DS.  
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Therefore we compared persons with DS and DS with clinically diagnosed dementia.  These data 

provide an initial assessment of white matter integrity and form the basis of our efforts to 

evaluate longitudinal change in FA as an indicator of dementia evolution in DS. 

2. METHODS 

2.1. Participants 

Participants in this study were community residing men and women with DS, over the 

age of 35 years, recruited through local DS support groups and residential facilities in Kentucky 

and southern Ohio, into a longitudinal study of adult DS focused on evaluating decline in 

executive functioning and neural integrity as predictors of the development of dementia. Age- 

and gender-matched non-DS control participants provided medical history to document the 

absence of significant neurological, cardiovascular and psychiatric disorders. At the time that 

these analyses were performed, we had 34 DS participants in the study. Four were excluded as 

they either could not be scanned due to a fear of the MRI scanner or there was too much motion 

in the MRI unit. Two participants were removed due to past traumatic brain injury or stroke. One 

participant was physically too large to be scanned. Two subjects had medical devices which 

prevented a MRI scan. Thus, of 34 participants, 25 were able to be scanned, reflecting 73.5% of 

our cohort. Of the remaining 25, we had 10 demented adults with DS and thus we selected 10 

age and sex matched nondemented DS participants to match to the 10 demented DS persons. 

Last, we recruited age and sex matched non-DS controls (n=10). As a result, the final study 

cohort included 10 non-DS controls (CTL), 10 adults with DS (DS without dementia), and 10 

DSAD (DS with Alzheimer’s disease) participants.   

DS volunteers with active and unstable medical conditions (e.g., cardiovascular 

complications) were not included in the current sample for analysis. Thyroid dysfunction is 
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common in individuals with DS, thus these participants were included if their thyroid 

dysfunction was medically controlled (DS n=3; DSAD n=1). Dementia diagnosis was 

determined through an expert consensus review of each participant with DS that involved two 

neurologists and two neuropsychologists using NINCDS-ADRDA criteria for dementia 

(McKhann, 1984)and included all data from medical history, medical and neurological 

examinations, laboratory tests, structural imaging, mental status measures, and informant report 

of any changes in functional status and activities of daily living (McKhann, 1984).  In addition to 

the objective mental status measures we obtained Dementia Questionnaire for Persons with 

Mental Retardation (DMR) ratings from informants for each participant with DS (Evenhuis, 

1996).  Further, premorbid levels of functioning were derived from individual case files of 

existing academic and psychological test records, medical records, as well as family member 

interviews.  Based on this information participants were categorized as low, medium and high 

functioning based upon their pre-dementia level of functioning (c.f (Lott, et al., 2011)).  Duration 

of dementia was established through medical records and family/caregiver interviews (Table 1).  

All participants completed informed consent or assent (guardian consent). The study and 

research procedures were approved by the University of Kentucky Institutional Review Board. 

2.2.Neurocognitive Measures 

All participants with DS completed medical, cognitive assessments, and DTI 

measurements obtained on the same day. The Brief Praxis Test (BPT; (Dalton and Fedor, 1997) 

and the Severe Impairment Battery (SIB; (Panisset, et al., 1994) were used as neuropsychological 

measures for the present study. Both measures have been demonstrated to show progressive 

decline with worsening dementia in DS (Lott, et al., 2012). Participant demographics and 

performances on the BPT and SIB for DS and DSAD groups are shown in Table 1.  Levels of 
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premorbid functioning did not differ between the participants with DS and DSAD (Fisher’s 

Exact Test p=0.45) as the sample reflected a 50/50% split of participants in the mild and 

moderate ranges overall and a 20/30% split for those persons diagnosed with dementia. The 

duration of dementia in DS adults with AD ranged from 0.9 to 6.0 years (median=3.95 years).  

Due to the minimal range and the sample size, we did not include this in the analysis of FA. 

2.3 Imaging: 

All images were acquired on a 3T TIM Siemens scanner at UK Magnetic Resonance 

Imaging and Spectroscopy Center. DTI used an axial double refocused spin echo EPI sequence 

(TR = 8000 ms, TE = 96 ms, FOV = 224 mm, 52 slices, 2 mm isotropic resolution). The DTI 

images were acquired with 64 non-collinear encoding directions (b = 1000 s/mm
2
) and six 

images without diffusion weighting (b = 0 s/mm
2
, b0).  

Diffusion tensor imaging (DTI) data were analyzed using FSL v4.1.5 (Functional MRI of 

the Brain software library, FMRIB). Raw images were pre-processed to correct for motion and 

residual eddy current distortion using a 12-parameter affine alignment to the corresponding b0 

image via FMRIB's Linear Image Registration Tool (FLIRT: http://www.fmrib.ox.ac.uk/fsl). 

Next, FMRIB's Diffusion Toolbox (FDT v2.0) was used to fit the diffusion tensor and calculate 

FA eigenvalues. 

Registration of FA images into MNI152 space and subsequent voxelwise analyses 

followed a series of procedures known as Tract-Based Spatial Statistics (TBSS v1.2 

(http://www.fmrib.ox.ac.uk/fsl/tbss/)) as described in detail in our previous work (Gold, et al., 

2010). Briefly, all subjects’ FA images were aligned to a common target using a nonlinear 

registration approach and then affine registered and resampled to 1mm
3
 MNI152 space. A mean 

FA image was used to create a common WM tract skeleton, which was then thresholded at an FA 
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value of 0.2 to minimize partial volume effects after warping across subjects. Each participant's 

aligned FA image was subsequently projected onto the FA skeleton to account for residual 

misalignments between participants after the initial nonlinear registration.   

This resulted in a common tract skeleton for each subject's FA image, which was filled 

with each participant's FA values from the centers of the nearest relevant tracts. The data are 

therefore in the form of a sparse 4D image with the fourth dimension being subject ID, which is 

treated as a random factor (Smith, et al., 2006). 

All voxelwise statistical analyses were performed via a permutation-based inference for 

nonparametric statistical thresholding using FSL’s “randomize” (Nichols and Holmes, 2002). 

The permutation nonparametric tests used 5000 iterations and threshold-free cluster enhancement 

(TFCE) to avoid the use of an arbitrary threshold in the initial cluster formation. Unless 

otherwise note, all randomize analyses were corrected for multiple comparisons. Results are 

presented in a standard format on axial slices for comparison with other studies and projected 

onto a 3D transparent brain for more coherent visualization. 

A one-way ANOVA was used to look for FA difference between the three groups (CTL, 

DS, DSAD) at p < 0.05. We used two approaches for each analysis, which was to include age as 

a covariate and to not consider age in the ANOVA.  Overall, there were no differences in the 

statistical outcomes from these two approaches and thus we present the analysis with age as a co-

variate. Significant voxels from the omnibus test were then used to perform post hoc between 

group comparisons of FA values within the tract skeleton using two-sample t-tests. In order to 

correct for group permutations, all post hoc between group t-tests were thresholded at p < 0.01. 

The first set of post hoc voxelwise analyses compared the 10 DS subjects and 10 age- and 

gender-matched controls (Analysis 1).  To detect differences in WM integrity as a function of 
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dementia in DS, the second set of post hoc voxelwise analyses compared the 10 DS and 10 age- 

and gender-matched DSAD individuals (Analysis 2).  

To determine the association between WM integrity and cognition, a third set of analyses 

used voxelwise correlations of FA and the BPT and SIB scores from all DS participants (20 

subjects total) to provide sufficient power (Analysis 3). No BPT or SIB scores were available for 

CTL participants. A mean FA value for each participant was generated from all significant 

regions of interest (ROIs) resulting from Analysis 3. 

To observe and detect associations between FA and the BPT and SIB for DS and DSAD 

separately (Analysis 4), a two-tailed Spearman correlation corrected for age and gender was 

performed using the average FA from significant ROIs from Analysis 3. An overlay of the 

significant ROIs from analyses 1 and 2, the JHU DTI-based white-matter atlas (Zhang, et al., 

2005), and the MNI structural atlas (Grabner, 2006) was used to localize significant voxels 

within the major fiber tracts and nearest brain lobe. 

 

3. RESULTS 

3.1.Reduced WM Integrity in Nondemented DS Adults Relative to Age- and Gender-

Matched Controls 

 There were no significant voxels in the post hoc analysis for increased FA (p < 0.01) in 

DS compared to CTL. Figures 1 and 2 show a post hoc analysis for decreased FA (p < 0.01) in 

DS compared to CTL (blue – Analysis 1). These regions include the anterior portions of the 

inferior fronto-occipital fasciculus (IFOF), superior longitudinal fasciculus (SLF), forceps minor 

(FMin), thalamic radiations (TR), frontal and temporal portions of the uncinate fasciculus (Un), 

inferior longitudinal fasciculus (ILF), and the cingulum (Cin). Table 2 lists the number of 
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significant voxels within major fiber bundles and the cortical regions most closely associated 

with these WM tracts. The largest numbers of significantly lower FA voxels are in the frontal 

lobe when comparing DS to CTL.  

3.2.WM integrity is decreased in Demented Adults with DS compared to DS adults without 

Dementia 

The DS and DSAD groups post hoc analyses yielded no significant differences when 

corrected for multiple comparisons at the p < 0.01 level. However, to explore the possibility of 

more subtle differences between these two groups, we repeated these analyses using an 

uncorrected threshold p < 0.001 and a cluster threshold of 8 mm
3
. There were no significant 

clusters for DS having lower FA than DSAD. However, there were significant clusters for DS 

having greater FA than DSAD. Results are presented in Figures 1 and 2 (green - Analysis 2). 

Reductions in FA in DSAD participants vs. DS participants were observed in: (1) symmetric 

regions (Z=-10) containing the Un, FMin, and anterior Cin; (2) left frontal regions (Z=7) 

containing the FMin, IFOF, SLF, Un, Cin, and ATR; (3) symmetric regions (Z=7) containing the 

Fornix(cres)/Stria Terminalis and the ATR; (4) symmetric regions (Z=19) of the splenium 

containing colossal fibers and the IFOF, FMaj, SLF, and Cin. 

3.3. Reduced FA is Associated with Poorer Cognition in DS  

No significant voxels for increased FA associated with BPT scores for DS participants 

with and without dementia. Areas where significant correlations of decreased FA associated with 

decreased BPT performance are shown (Figure 1 and 2 – red – Analysis 3). Lower BPT scores 

correlated with lower FA (p < 0.01) values in (1) the anterior aspects of the body and posterior 

aspects of the genu of the corpus callosum (Z=13, 19, 24); (2) the frontal lobe portions of the 

Cin, FMin, anterior thalamic radiations (ATR), and Un (Z = 6-10-19); (3) the splenium of the 
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corpus callosum (Z=13, 19, and 24) and; (4) the posterior aspects of the forceps major (FMaj), 

IFOF, SLF, and ILF (Z=13, 19, and 24).  Table 3 lists these and other significant voxels within 

major fiber bundles and their nearest brain lobes. No correlations with total SIB scores were 

found.  

To characterize the strength of the association between BPT and average FA in DS, a 

two-tailed Spearman correlation correcting for age and gender was used.  Higher BPT scores 

(indicating better cognitive function) correlated with higher FA scores (suggesting higher WM 

integrity; r=0.83, n=20, p < 0.001; Figure 3). 

 

4. DISCUSSION 

These DTI data are the first published investigation of aging and dementia in DS. We 

observed significantly lower FA in a subset of WM tracts between adults with DS compared to 

similar aged non-DS controls. Many of the FA decreases we detected involved frontal circuits. 

Further reductions in FA were seen in demented DS adults compared to DS adults without AD.  

Decreased FA in DS also was associated with BPT performance suggesting a functional link 

between frontal executive function, but not with global cognitive status (SIB).  

 The results of the current study suggest that 35-65 year old adults with DS have 

significantly lower WM integrity than similar aged non-DS controls, particularly in the frontal 

lobes. It is unclear if this is inherent to DS persons at all ages or if this is unique to middle aged 

and older DS adults.  Previous imaging studies have shown reduced frontal lobe volume in DS in 

children and adults without dementia (e.g. (Teipel, et al., 2004)) suggesting a strong 

developmental contribution to the present findings in non-demented DS adults.  Our results are 
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also consistent with prior reports of lower MRI-based frontal volume (Teipel, et al., 2004) and 

lower MRI-based WM volumes in DS adults compared to non-DS controls (White, et al., 2003). 

The number of trending regions from the preliminary comparison of DSAD compared to 

non-demented DS in the current study suggests that DTI may contribute to our understanding of 

the mechanisms underlying dementia development in DS, although developmental reductions in 

frontal cortex FA may precede dementia leaving this region more vulnerable to aging and AD in 

DS.  Reduced frontal lobe volumes are also consistent with the earliest manifestations of 

dementia in DS that include changes in personality and behavior, pragnosia, and socially 

deficient communication (e.g. (Ball, et al., 2008)). The DTI changes demonstrated in the current 

study might either reflect such cortical volume loss or be a precursor to such change. We can 

speculate that the DTI connectivity differences seen in this study may therefore be associated 

with the reported striking change from previous well developed social capacities in DS with the 

development of dementia (Nelson, et al., 1995). Data regarding this hypothesis should emerge 

from this project as longitudinal scans and behavioral changes are collected. 

The BPT involves 20 simple tasks to assess limb praxis (arm & leg movements), upper 

fine motor skills (opening a jar, picking up coins with each hand), and other highly practiced 

movements to simple verbal commands as well as imitation. Therefore, it is assumed to measure 

verbal comprehension and motor coordination and has been used in AD antioxidant clinical trials 

as a primary outcome measure (Lott, et al., 2011,Matsuoka, et al., 2009).  The impaired ability to 

carry out motor activities despite intact motor function is a hallmark symptom of most diagnostic 

criteria for dementia and as knowledge of overlearned actions is part of the BPT assessment; 

memory dysfunction likely also contributes to lower BPT scores to some extent. 
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Research on disorders of praxis has generally involved patients with stroke and several 

conceptual models of praxis have been proposed (for reviews see (Koski, et al., 2002,Petreska, et 

al., 2007)).  Key elements of these proposed brain models suggest that deficits in praxis would 

result from the disconnection of parietal from frontal areas as well as temporal regions involved 

in comprehension.  In reviews by Koski and colleagues as well as Petreska and colleagues, areas 

such as the left dorsolateral frontal, left parietal, intraparietal sulcus and the middle frontal gyrus 

(among other regions) have been implicated as important regions subserving praxis.  In contrast, 

the SIB scale incorporates some praxis tasks but this only reflects 12% of the scale.  Other SIB 

items focus on language production and comprehension (46%) as well as memory (14%) and 

orientation (8%).  While there were no statistically significant associations between FA and the 

SIB, it is possible that this reflects either the sample size, range of dementia severity, or the 

SIB’s inclusion of more cortical functions. 

The significant correlations between the BPT and FA in this study, particularly in frontal 

circuits, support the suggestion by Lott and colleagues that this test is sensitive to functional 

declines due to dementia in DS (Lott, et al., 2012). A meta-analysis by Sexton and 

colleagues(Sexton, et al., 2011) on DTI in mild cognitive impairment and AD shows widespread 

reductions in FA in the brain with the most notable and robust regions being the frontal and 

temporal lobes, posterior cingulum, corpus callosum, SLF and Un (Sexton, et al., 2011). All of 

these regions except the mid temporal regions were affected in the current study of DS when the 

BPT scores were correlated with FA, suggesting that dementia in DS has some similarities to 

dementia in the general population. The BPT correlates well with WM decline in middle aged 

and older adults with DS, and is particularly prominent in DS adults with dementia. Correlations 

between BPT and WM integrity include multiple brain regions, thus are wide spread and 
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consistent with regional WM declines in sporadic AD in the general population. Interestingly, 

there was overlap in the regions of the brain that showed reduced FA in DS as compared to age-

matched control and areas in the DS brain associated with BPT scores.  These included portions 

of frontal and parietal callosal tracts. In the frontal lobes specifically there was an overlap in 

forceps minor, which connects some homologous anterior frontal lobe structures. In the parietal 

area, the main overlap was in splenium of corpus callosum, which connects some homologous 

parietal structures. These connections are consistent with the BPT data because coordination of 

signals between homologous frontal regions and homologous parietal regions would be expected 

to aid planning movements and spatial relations. 

Losses in WM integrity could in part reflect the influence of AD-related pathology on 

WM itself. Accumulating evidence suggests a potential link between WM integrity and measures 

of AD pathology. For example, Aβ deposits have been shown to be cytotoxic to 

oligodendrocytes in vitro (Xu, et al., 2001) and increased levels of Aβ peptides have been 

associated with reduced levels of myelin biochemical markers at autopsy in patients with AD 

(Roher, et al., 2002).  The aggregation of abnormally hyperphosphorylated tau may also affect 

WM microstructure given that tau is predominantly found in axons and is believed to bind to and 

stabilize microtubules, which are essential for structural integrity axonal transport (Shahani and 

Brandt, 2002). Myelin degeneration has also been reported in DS autopsy cases detected by 

electron microscopy in individuals as young as 21 years of age (Mattiace, et al., 1991). The 

amount of frontal WM myelin basic protein (MBP) correlated with neuropsychological test 

scores, including measures of frontal function (Wang, et al., 2004).  In DS, abnormalities in 

MBP may be related to several genes that are overexpressed in DS such as DSCAM, which 

regulates myelination (Saito, et al., 2000).  The enhanced vulnerability of the frontal WM in DS 
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to a loss of integrity with age supports the hypothesis that late myelinating pathways may be 

particularly vulnerable to age and AD in DS, and that this may serve as a model for similar 

changes seen in late-onset sporadic AD in the general population (Stricker, et al., 2009).  

An additional possible contributor to reduced FA in DS and with dementia is vascular 

brain injury.  In the current study, it is striking that there are significant white matter differences 

with a somewhat periventricular distribution (Fig 2) in addition to the frontal connections and a 

similar pattern has been reported previously in non-DS cohorts.  A recent study related white 

matter lesions and DTI in an autopsy cohort with AD.  Ex vivo imaging of autopsy brain showed 

an overlap between FA and white matter lesions that reflect vascular deficits (Back, et al., 2011). 

White matter hyperintensities, typically prominent in periventricular regions leads to reduced FA 

(Chao, et al., 2013). Thus it is entirely possible that some of the WM integrity losses observed in 

the current study are related to vascular insufficiency or injury, further longitudinal studies may 

help to elucidate this as a critical factor contributing to white matter integrity losses. Indeed, 

longitudinal studies of FA in DS adults as they transition to dementia may provide important 

insights into vascular contributors to white matter integrity and cognition.  In turn, findings in 

DS, where dementia is more strongly age-associated, may provide novel insights into the role of 

vascular integrity early in disease progression in AD in the general population. 

  

5. SUMMARY 

The current study was based upon a relatively small sample size and our results to some 

extent are exploratory.  However, our results suggest that WM integrity decline in DS due to AD 

may be similar to the declines observed in the general population with sporadic AD but with an 

increased impact on the frontal lobe circuitry in the DS population.  These results suggest that 
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WM degeneration may be a mechanistic basis for some of the cognitive changes observed prior 

to the development of overt cortical atrophy in DSAD as cognitive function is likely to depend, 

in part, on the microstructural properties of WM pathways connecting distributed cortical 

regions. Further work elucidating the temporal relationship of reduced WM integrity, cortical 

atrophy, and the development of dementia in adult DS is needed, and may provide insights useful 

for the development of biomarkers not only for the development of DSAD, but for the global 

health threat of AD in the general population as well. 
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TABLE 1.  Demographics of Study Participants 

 

Participant 

Characteristics 

 

All DS 

 

DS 

 

DSAD 

 

CTL 

Age (mean, SD)
1
 51.38 (6.48) 50.61 (5.53) 52.16 (7.54) 51.07 (2.14) 

Gender (men/women) 6/14 3/7 3/7 3/7 

BPT (mean, SD)
2
 63.65 (16.78) 73.40 (4.06) 53.90 (19.15) -- 

SIB (mean, SD)
3
 74/70 (22.04) 85.40 (11.18) 64.00 (25.45) -- 

SIB Praxis (mean, SD)
4
 15.75 (5.06) 18.30 (2.21) 13.10 (5.88) -- 

DMR (mean, SD)
5
 19.30 (16.49) 6.70 (3.52) 31.90 (14.44) -- 

Dementia Duration 

(years; mean, SD) 

-- -- 5.31 (4.90) 

Median=4.15 

-- 

 

Note: Paired t-test comparisons between the DS and DSAD are not significant for age (p=0.61).  

Significant differences are seen between DS groups BPT (p<.01), SIB (p<.05), SIB Praxis 

(p<.05), and DMR (p<.001) scores; dementia duration is based on onset of symptoms derived 

from clinical interviews. 
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Table 2.  Differences in FA between DS adults and similarly aged non-DS (CTL) participants. 

FA – group analysis - DS versus CTL 

  Frontal Parietal Temporal Occipital 

Forceps - minor 2119 0 0 0 

IFOF - R 1557 106 546 0 

IFOF - R 1718 42 410 0 

Uncinate - L 1342 59 125 0 

Uncinate - R 1031 15 90 0 

Genu - CC 175 0 0 0 

Ant_Thal_Rad_L 1519 60 15 1 

Ant_Thal_Rad_R 1124 0 4 0 

SLF - L 657 1176 64 0 

SLF - R 245 11 0 0 

Cing_Cing Gyr - 

R 
199 266 0 74 

Cing_Cing Gyr - 

L 
0 0 0 0 

Body - CC 0 7 0 0 

Cing_Hipp - L 0 0 0 0 

Cing_Hipp - R 0 0 0 0 

CS – L 8 118 0 0 

CS – R 0 0 0 0 

Splenium - CC 0 160 0 0 

Forceps - major 0 7 0 0 

ILF - L 0 92 473 39 

ILF - R 0 0 259 0 

 

Summary of 1 mm
3 
voxels within major white matter fiber tracks (corresponding to blue ROIs 

from figure 2). The number of voxels within each lobe of the brain is listed. Note: IFOF – 

Inferior Frontal Occipital Fasciculus, CC – Corpus Callosum, Ant_Thal_Rad – Anterior 

Thalamic Radiations, SLF – Superior Longitudinal Fasciculus, Cing_Cing_Gyr – Cingulum of 

Cingulate Gyrus, Cing_Hipp – Cingulum of Hippocampus, CS – Corticospinal, ILF – Inferior 

Longitudinal Fasciculus.  
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Table 3.  Regions of interest that show a significant correlation between the BPT and FA in all 

DS participants, with and without dementia. 

FA correlation - Brief Praxis Test in DS 

  Frontal Parietal Temporal Occipital 

Forceps - minor 379 0 0 0 

IFOF - R 25 32 0 21 

IFOF - R 0 133 0 82 

Uncinate - L 27 0 0 0 

Uncinate - R 0 0 0 0 

Genu - CC 140 0 0 0 

Ant_Thal_Rad_L 83 4 0 1 

Ant_Thal_Rad_R 0 0 0 0 

SLF - L 0 0 0 0 

SLF - R 0 3 0 0 

Cing_Cing_Gyr - R 111 0 0 0 

Cing_Cing_Gyr - L 0 0 0 0 

Body - CC 269 29 0 0 

Cing_Hipp - L 0 0 0 0 

Cing_Hipp - R 0 6 0 0 

CS – L 0 0 0 0 

CS – R 0 0 0 0 

Splenium - CC 0 520 0 3 

Forceps - major 0 575 0 156 

ILF – L 0 18 0 16 

ILF – R 0 38 0 36 

 

Summary of 1 mm
3 
voxels within major white matter fiber tracks (corresponding to red ROIs 

from figure 2). The number of voxels within each lobe of the brain is listed. IFOF – Inferior 

Frontal Occipital Fasciculus, CC – Corpus Callosum, Ant_Thal_Rad – Anterior Thalamic 

Radiations, SLF – Superior Longitudinal Fasciculus, Cing_Cing_Gyr – Cingulum of Cingulate 

Gyrus, Cing_Hipp – Cingulum of Hippocampus, CS – Corticospinal, ILF – Inferior Longitudinal 

Fasciculus.  

  



Powell et al. 

 

21 
 

Figure Legends: 

Figure 1.  FA is lower in DS compared to controls without DS, and further reduced with 

dementia in DS (DSAD).  FA decreases in DS are associated with lower BPT scores.  Images 

show axial slices in MNI space and illustrate representative sampling of FA analyses.  Z is the 

voxel coordinate in MNI 1 mm template space.  Yellow illustrates the underlying FA skeleton 

common to all participants.  Blue shows areas that had reduced FA when comparing 

nondemented adults with DS to non-DS controls (p 0< 0.01 corrected).  Green shows areas 

where demented adults with DS have lower FA than nondemented adults with DS (p < 0.001, 

uncorrected).  Red shows areas where lower FA is associated with lower BPT scores. 

 

Figure 2.  A 3D transparent view illustrating regions where FA is associated with DS, dementia 

and BPT scores.  Blue shows areas that had reduced FA when comparing nondemented adults 

with DS to non-DS controls (p < 0.01 corrected).  Green shows areas where demented adults 

with DS have lower FA than nondemented adults with DS (p < 0.001, uncorrected).  Red shows 

areas where lower FA is associated with lower BPT scores in DS adults  

 

Figure 3.  A graph illustrating the association between average brain FA from all the significant 

voxels from Analysis 3 (red in figures 1 and 2) and individual BPT scores in DS and DS with 

AD.  FA is strongly correlated with BPT scores in demented individuals.   
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