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ABSTRACT OF THESIS 

 
 
 
 

A MULTI-PHYSICS COMPUTATIONAL APPROACH TO SIMULATING THZ 
PHOTOCONDUCTIVE ANTENNAS WITH COMPARISON TO MEASURED DATA 

AND FABRICIATION OF SAMPLES 
 
 

The frequency demands of radiating systems are moving into the terahertz band with 
potential applications that include sensing, imaging, and extremely broadband 
communication.  One commonly used method for generating and detecting terahertz 
waves is to excite a voltage-biased photoconductive antenna with an extremely short laser 
pulse.  The pulsed laser generates charge carriers in a photoconductive substrate which 
are swept onto the metallic antenna traces to produce an electric current that radiates or 
detects a terahertz band signal.  Therefore, analysis of a photoconductive antenna requires 
simultaneous solutions of both semiconductor physics equations (including drift-diffusion 
and continuity relations) and Maxwell’s equations.  A multi-physics analysis scheme 
based on the Discontinuous-Galerkin Finite-Element Time-Domain (DGFETD) is 
presented that couples the semiconductor drift-diffusion equations with the 
electromagnetic Maxwell’s equations.  A simple port model is discussed that efficiently 
couples the two equation sets.  Various photoconductive antennas were fabricated using 
TiAu metallization on a GaAs substrate and the fabrication process is detailed.  
Computed emission intensities are compared with measured data.  Optimized antenna 
designs based on the analysis are presented for a variety of antenna configurations.  
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1 INTRODUCTION 

1.1 Background 

 With the pace of technological development and advancement in the world today, 

the radiating frequencies utilized by systems continue to move into new and unused 

ranges.  One example of this is the current push of systems into the terahertz (1012 Hz) 

frequency band.  These systems can be used in a wide variety of applications.  Siegel [1] 

recounts in great detail the past and present work in terahertz technology along with its 

strengths and weaknesses.  Historically, the terahertz band of radiation has been used 

primarily in astronomy, chemistry, and space science research and discovery.  Now new 

technologies are currently being explored in sensing, imaging, and broadband 

communication [1].  Although terahertz systems suffer from limitations due to 

atmospheric absorption; the benefits of high speed communications (either in short range 

or space applications) and shallow penetration spectroscopy and imaging make this range 

of radiating systems enticing.   

 Siegel [1] also states that the primary limitations on wide scale use of terahertz 

systems are the difficulties in creating sources.  Traditional solid state electronics such as 

oscillators and amplifiers are limited by reactive parasitics or resistive losses.  However, 

another method for generating and detecting terahertz waves is to excite a voltage-biased 

photoconductive antenna placed on a photoconductive semiconductor wafer with an 

extremely short laser pulse [2].  The pulsed laser generates charge carriers in the substrate 

which are swept onto the metallic antenna traces to produce an electric current that 

radiates a terahertz band signal.  A similar approach is used for detection where the 
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voltage bias is not needed.  Instead the charge carriers generated by the laser pulse are 

moved by the incoming signal radiated from the transmitter.  This charge carrier 

movement similarly produces an electric current. 

 THz antenna structures can be designed for various application specific 

requirements.   Since fabrication and experimental testing of these antenna designs is 

costly and time consuming, accurate computer simulation software is desired and can 

save immense resources.  This is a very challenging problem since it requires a combined 

solution of Maxwell’s equations (which represent the electromagnetic field behavior) and 

the drift-diffusion equations and continuity relations (which represent the semiconductor 

device physics). 

Various methods are currently used in the computational analysis of 

electromagnetic fields using Maxwell’s equations.  For example, Method of Moment 

(MOM) techniques are used to solve electromagnetic boundary or volume integral 

equations in the frequency domain and are very useful in solving radiation and scattering 

problems [3].  Finite element methods (FEM) can be used to solve both frequency-

domain and time-domain problems.  The FEM is used to solve boundary valued 

electromagnetic problems using variable shaped elements allowing for highly accurate 

discretization of the solution domain [3].   

The photoconductive antenna is a broadband device that requires a time domain  

solution since it is a non-linear problem [4].  Common methods for time-domain analysis 

are the finite-difference time-domain (FDTD), finite-element time-domain (FETD), and 

discontinuous Galerkin time-domain (DGTD) methods [5].  The FDTD method was 

initially proposed by Kane S. Yee in 1966 [6].  This method uses leapfrogged or 
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staggered finite differences in time and space to solve Maxwell’s equations.  Although it 

is usually straightforward and works well for various types of media, the basic Yee-

algorithm is confined to a regularly spaced orthogonal grid and struggles to accommodate 

complex geometries and higher order accuracy [7].  The FETD is a FEM method in the 

time domain and, like the FDTD, requires full volume discretization.  It is also based on 

unstructured meshing which more accurately resolves fine geometric details [7].  The 

FETD method is typically implicit and requires the solution of a global linear system of 

equations [8] which is computationally intensive.  DGTD methods are also based on 

unstructured meshing but are locally implicit and globally explicit which makes them 

more efficient in time-dependent solutions [5].   

In this thesis, the Discontinuous Galerkin Finite Element Time-Domain (DGFETD) 

method [9, 10] is presented.  The DGFETD method is based on a finite element 

discretization of Maxwell’s curl equations using field expansions via Nedelec curl-

conforming basis functions instead of point based sampling [9-12].  These basis functions 

avoid the concern of spurious solutions and the need for penalty methods [13, 14].  Like 

other DGTD methods, the DGFETD also has the advantage of not requiring the solution 

of a global linear system of equations. 

 

1.2 Methodology 

In this thesis, a coupled solution of Maxwell’s equations (describing the 

macroscopic relationships between the electric and magnetic fields) and the 

semiconductor drift-diffusion equations is formulated.  Solutions for the charge carrier 
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densities and semiconductor current densities are determined using the drift-diffusion and 

continuity equations and then coupled to Maxwell’s equations through the current 

densities at the boundary of a port implementation of the laser photogeneration in the 

substrate.  The resulting time-dependent differential equations are solved using the 

DGFETD method.  Experimental data from the literature is used to validate this method 

through comparison of antenna emission intensities.  Multiple antenna designs are 

fabricated for further validation. 
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2 COMPUTATIONAL ANALYSIS 

2.1 Discontinuous-Galerkin Finite Element Time Domain (DGFETD) Method 

   The DGFETD method is based on a finite-element discretization of the coupled 

Maxwell’s curl equations [9, 10] 

 * ,E H H M
t
µ σ∂

∇× = − ⋅ − ⋅ −
∂

   

 (2.1) 

 ,H E E J
t
ε σ∂

∇× = ⋅ + ⋅ +
∂

   

 (2.2) 

where the permeability, permittivity, and conductivity tensors are represented by µ , ε , 

*σ , and σ  respectively and the impressed current densities are represented by J


and M


.  

The electric and magnetic fields are represented by E


 and H


.  Considering the fields 

radiated by these current densities in a domain Ω bound by ∂Ω , a finite-element 

discretization can be performed to subdivide this domain into non-overlapping and 

contiguous subdomains iV bound by iV∂ .  Within each subdomain, the electric and 

magnetic field intensities are expanded using a set of hierarchical pH - curl conforming 

basis functions, ( )if r , weighted by unknown time-dependent coefficients, ( )ie t  and 

( )ih t , such that [9, 11, 12] 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

, , ,
p pN N

i i i i
i i

E r t e t f r H r t h t f r
= =

≈ ≈∑ ∑
 

    . (2.3) 

A set of testing functions that span the same function space as the fields is introduced [9].  

These testing functions are eT


 in the electric field space and hT


 in the magnetic field 
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space.  The inner product of the coupled curl equations and these test functions is 

performed resulting in  

 * 0
i

h

V

T H H M E dv
t
µ σ∂ ⋅ ⋅ + ⋅ + +∇× = ∂ ∫

    

 (2.4) 

and 

 0.
i

e

V

T E E J H dv
t
ε σ∂ ⋅ ⋅ + ⋅ + −∇× = ∂ ∫

    

 (2.5) 

Assuming time independent test functions, a form of Green’s first identity 

 ˆ
i i iV V V

A Bdv B Adv A n B ds− −

∂

⋅∇× = ⋅∇× + ⋅ ×∫ ∫ ∫
    



 (2.6) 

is applied.  The curl term in (2.4) can then be expressed as  

 ( )ˆ ,
i i

i

h h h

VV V

T Edv E T dv T n E ds
∂

⋅∇× = ⋅∇× + ⋅ ×∫ ∫ ∫
     



 (2.7) 

where n̂ is the outward normal of iV∂  [9].  By designating the electric field on the 

boundary iV∂  as E


(just interior) and E+


(just exterior) and assuming an impressed 

magnetic surface current density on the boundary of sM


, the tangential electric fields 

must be such that  

 ( )ˆ .
i

sV
n E E M+

∂
× − =
  

 (2.8) 

Due to the distributive property of the cross product over addition, this can also be 

written as 

 ( )1 1ˆ ˆ ˆ .
2 2i i

sV V
n E n E n E M+

∂ ∂
× = × + × +
   

 (2.9) 

Using (2.9) and the relationship described in (2.7), one can show that 
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 1 1 1 1ˆ .
2 2 2 2

i i i i i

h h h h
s

V V V V V

T Edv T Edv E T dv T n E ds T M ds+

∂ ∂

⋅∇× = ⋅∇× + ⋅∇× + ⋅ × + ⋅∫ ∫ ∫ ∫ ∫
         

 

 (2.10) 

Applying this to (2.4) results in  

 
*

1 1ˆ .1 1 2 2
2 2

i i i

h h h
V h h

s
h hV V V

T H T H T M
t dv T n E ds T M ds

T E E T

µ σ
+

∂ ∂

∂ ⋅ ⋅ + ⋅ ⋅ + ⋅ ∂ = − ⋅ × − ⋅ 
+ ⋅∇× + ⋅∇× 
 

∫ ∫ ∫
     

   

     

 (2.11) 

Similarly for (2.5), it can be dually written that 

 1 1ˆ1 1 2 2
2 2

i i i

e e e
V e e

s
e eV V V

T E T E T J
t dv T n H ds T J ds

T H H T

ε σ
+

∂ ∂

∂ ⋅ ⋅ + ⋅ ⋅ + ⋅ ∂ = ⋅ × − ⋅ 
− ⋅∇× − ⋅∇× 
 

∫ ∫ ∫
     

   

     

 (2.12) 

where an impressed electric surface current density is represented by sJ


and H +


is 

similarly the magnetic field exterior to iV on iV∂  [9]. 

 It is recognized that the fields just exterior to the volumes on the boundary are 

actually the fields just interior to a neighboring volume on the same boundary.  

Therefore, each subdomain is coupled with neighboring subdomains through the 

boundary integral terms in these weak forms of Maxwell’s curl equations applied in each 

subdomain.  If no impressed current densities are placed on the boundaries, these 

boundary integral terms also weakly enforce tangential field continuity on these 

boundaries [9].  This first order boundary condition weakly enforcing this continuity of 

the tangential fields in the absence of a source on the boundary is the central flux 

formulation [15]. 

 An up-wind flux formulation is posed that uses the Robin-type transmission 

conditions (RTC) to scale the magnetic field boundary conditions and impressed current 

densities.  The magnetic field boundary conditions are scaled by the effective 
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characteristic wave impedance Z + on V +∂ and Y + defined as 1/Y Z+ +=  [14].  Similarly, 

Z −  is the effective characteristic wave impedance on V −∂ and 1/Y Z− −=  resulting in 

[16]: 

 ( ) ( )ˆ ˆ ˆ ˆ 0s sV V
Z n H H Z J n n E E n M+ − + + − +

∂ ∂
× − − − × × − − × =
     

 (2.13) 

 ( ) ( )ˆ ˆ ˆ ˆ 0s sV V
Y n E E Y M n n H H n J+ − + + − +

∂ ∂
× − + + × × − − × =
     

. (2.14) 

For a homogeneous medium, the continuity of the normal derivative of the tangential 

magnetic field and the tangential derivative of the normal magnetic field across the 

boundary is enforced through the ( )ˆ ˆn n E E− +× × −
 

 term.  This weak constraint of the 

continuities creates a higher order boundary condition.  In addition, the additional cross 

product on the RTC term aligns the tangential vectors and the characteristic wave 

impedance equates the units.  With upwind flux boundary conditions, equations (2.11) 

and (2.12) are written as  

 ( )

( )

* 1 1
2 2

1ˆ ˆ
2

1 ˆ

h h h h h
V

V

h

V

h
s s

V

T H T H T M T E E T dv
t

Y Y YT n E E n H H ds
Y Y Y

T Y M n J ds
Y

µ σ

+ − +
+ +

∂

+

∂

∂ ⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅∇× + ⋅∇× = ∂ 

  −
− ⋅ × + − × −     

− ⋅ − ×

∫

∫

∫

         

    

  





 (2.15) 

and 

 ( )

( )

1 1
2 2

1ˆ ˆ
2

1 ˆ

e e e e e
V

V

e

V

e
s s

V

T E T E T J T H H T dv
t

Z Z ZT n H H n E E ds
Z Z Z

T Z J n M ds
Z

ε σ

+ − +
+ +

∂

+

∂

∂ ⋅ ⋅ + ⋅ ⋅ + ⋅ − ⋅∇× − ⋅∇× = ∂ 

  −
⋅ × + + × −     

− ⋅ + ×

∫

∫

∫

         

    

  





 (2.16) 
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where Z Z Z− += + and Y Y Y− += + [15]. 

 Fitted polyhedral meshes are used to discretize the volume into subdomains.  

Again, the field intensities are expanded as in (2.3).  A Galerkin formulation is achieved 

by spanning the same set of basis functions as test functions over the same function 

space.  This results in the coupled difference equations 

 
*

, , , , ,

, ,

1

1 1
V s s

E

M E M J

Y Y
t Y Y

Y Y
Y Y Y Y

µ σ

− −

+ +

− +

+ +
+ +

∂ −
+ + + +

∂

= − − + − +

h h h h h e h e h h

h h e h h h

M h M h S e F e G h

T F e G h T X

 

   

 (2.17) 

and  

 
,, , , ,

, ,

1

1 1
V s s

H

J H J M

Z Z
t Z Z

Z Z
Z Z Z Z

ε σ

− −

+ +

− +

+ +
+ +

∂ −
+ − − +

∂

= − + + − −

e he e e e e h e e

e e h e e e

M e M e S h F h G e

T F h G e T X

 

   

 (2.18) 

derived from (2.17) and (2.18) where the superscripts denote the field test function and 

the field basis function types.  The time-dependent coefficients vectors are h and e with 

the + superscript denoting exterior tangential fields.  The matrices are computed as: 

 [ ] ,
,

i

j ij i
V

f f dvν ν= ⋅ ⋅∫M
 

 (2.19) 

 [ ] ( ),

1 ,
2

i

j i i jj i
V

f f f f dv= ⋅∇× + ⋅∇×∫S
   

 (2.20) 

 / ,

1 ˆ ,
2

i

E H j i kj k
V

f n f ds+ +

∂

  = ⋅ ×  ∫F
 



 (2.21) 

 1, or ,
2V S

i i

J j V J j sj j
V V

f J dv f J ds
∂

   = ⋅ = ⋅   ∫ ∫T T
 
 



 (2.22) 

 [ ] ( ),
ˆ ˆ ,

i

i i j ji j
V

n f n f ds+

∂

= × ⋅ ×∫G
 



 (2.23) 
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 ˆ ˆ,
s s

h e
J s M s

V V

T n J ds T n M ds
∂ ∂

= ⋅ × = ⋅ ×∫ ∫X X
   

 

 (2.24) 

where if


and jf


are the basis and testing functions for the electric and magnetic fields, 

respectively, and , ,  or ν µ ε σ= .  The coupled equations (2.17) and (2.18) can be 

combined into the difference equation  

 += + +x Ax Bx t  (2.25) 

where 

 ,
+

+
+

  
= =   
   

h h
x x

e e
, (2.26) 

 

1 1

*

1 , 1

, , , , , ,

, , , , ,

1

1

E

H

Y Y
Y Y

Z Z
Z Z

µ µσ

ε ε σ

− − − −

−− − −

− +

− +

  − − + − +   
    =   −   + − +       

e h

h h h h h h h h h e h e

e e e h e e e e e e

M M G M S F
A

M S F M M G

 

 

, (2.27)   

 

1 1

1 1

, , , ,

, , , ,

1

1

E

H

Y
Y Y
Z
Z Z

µ µ

ε ε

− + − +

− + − +

+

+

 
− 

 =
 
 
 

h h h h h h h e

e e e h e e e e

M G M F
B

M F M G

 

 

, (2.28) 

and 

 

1

1

,

,

1

1

V s s

V s s

M M J

J J M

Y
Y Y

Z
Z Z

µ

ε

−

−

+

+

  
− + −  

  =    − + +    

h h h h

e e e e

M T T X
t

M T T X

 

 

. (2.29) 

The first-order coupled differential equation for the fields in each sub-domain is 

represented by the local difference equation  (2.25).  A high-order Runge-Kutta (RK) 

scheme is used to simultaneously solve the difference operators in all sub-domains [9, 17, 
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18].  The calculations involving the inverted matrix M  are performed using LU-

factorization [9]. 

2.2 Semiconductor Physics Equations 

 In order to accurately solve photoconductive antenna problems with the DGFETD 

method, the effects of the interactions between the semiconductor and the laser pulse 

excitation must be considered.  To accomplish this, the physics involved in this 

interaction must be added to the simulation.  Consider a semiconductor with a gap 

between two metal traces deposited on its surface.  When the substrate in the gap is 

illuminated with photons, the energy from the photons generates charge carriers in the 

substrate.  If a voltage bias is applied to those traces, the generated electric field 

mobilizes these carriers creating current.  

 It is typical when evaluating the behavior of carriers over time in a substrate to 

begin with the continuity equations that account for the change in carrier concentrations 

over time.  The total change in carrier concentration must equal the changes due to drift, 

diffusion, regeneration/combination, and other processes such as photogeneration.  The 

combined effects of all carrier action must satisfy  

 
drift diffusion R G other

n n n n n
t t t t t−

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
 (2.30) 

and 

 
drift diffusion R G other

p p p p p
t t t t t−

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
 (2.31) 

where n  and p are the concentrations of electrons and holes, respectively  [19].  

Defining the change in carrier concentration due to other processes as G and the change 
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in carrier concentrations due to regeneration and combination as R in addition to noting 

that  

 
1

n
drift diffusion

n n J
t t q

∂ ∂
+ = ∇⋅

∂ ∂



 (2.32) 

and  

 
1

p
drift diffusion

p p J
t t q

∂ ∂
+ = − ∇⋅

∂ ∂



 (2.33) 

where q is electric charge of an electron, nJ


 is the current density due to electrons, and 

pJ


 is the current density due to holes;  the continuity equations can be more succinctly 

written as 

 1
n n n

n J R G
t q

∂
= ∇ ⋅ − +

∂



 (2.34) 

and 

 1
p p p

p J R G
t q

∂
= − ∇⋅ − +

∂



. (2.35) 

 Additionally, it is known that the current across the substrate is due to the drift 

and diffusion of the charge carriers.  Therefore, the following relationships must also be 

satisfied: 

 p p pJ q pE qD pµ= − ∇
 

 (2.36) 

and 

 n n nJ q nE qD nµ= + ∇
 

 (2.37) 
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where nµ  and pµ are the carrier mobility of the electrons and holes respectively, E is the 

electric field, and nD  and pD  are the carrier diffusion coefficients for the electrons and 

holes respectively [19].  It is also known that the total current density 

 n pJ J J= +
  

 (2.38) 

in steady state conditions.  [20] 

 

2.3 Coupling of Equations 

The semiconductor physics equations (2.34), (2.35), (2.36), and (2.37) must be coupled 

with Maxwell’s equations (2.1) and (2.2).  In the analysis of this system, there are several 

advantages to isolating the time-varying quantities.  First, since the DGFETD method 

uses time-integration, initial conditions in the form of steady-state sources cause an 

unfavorable step discontinuity in the simulation.  Isolating the time-varying quantities 

avoids this.  Similarly, isolating the time-varying quantities causes the intrinsic carrier 

density to act as an excitation in the system.  Second, by removing the static field from 

the main simulation, the near-field to far-field calculation does not have to account for 

this static field.  Third, the time-varying fields will converge to zero over time if the time-

varying excitation is limited.  Therefore, there are no non-zero terms late in the 

simulation with which a PML formulation for a semiconducting material would need to 

contend.  Fourth, it is believed that the incorporation of doped materials may be easier 

since the steady-state values are separated from the main simulation process. 

Therefore, consider Maxwell’s curl equations (2.1) and (2.2) as the quantities vary 

with time.  With no impressed magnetic or electric current density, the conductivity terms 
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neglected, and the electric current density only due to the effects of the semiconductor 

physics, these equations can be written as  

 dHE
dt

µ× = −




∇  (2.39) 

and 

 n p
dEH J J
dt

ε× = + +


  

∇  (2.40) 

where nJ


 and pJ


 are the volume current densities due to the electrons and holes, 

respectively.  Isolating the time-varying components of the full equation set, one can 

write 

 0
0

d H H
E E

dt
µ ∆

∆

 +  × + = − 

 

 

∇  (2.41) 

 
0 0

0
0 n n p p

d E E
H H J J J J

dt
ε

∆ ∆

∆
∆

 +      × + = + + + +     

 

     

∇  (2.42) 

 [ ] ( ) ( )
0

0
0 0, , ; ,n n

n n
q J J qG t qR t n n p p

t ∆

∆
∆ ∆

∂ +
 = ⋅ + + − + + ∂

r r
 

∇  (2.43) 

 [ ] ( ) ( )
0

0
0 0, , ; ,p p

p p
q J J qG t qR t n n p p

t ∆

∆
∆ ∆

∂ +
 = − ⋅ + + − + + ∂

r r
 

∇  (2.44) 

 [ ] [ ]
0 0 0 0n n n nJ J q n n E E qD n nµ

∆ ∆ ∆ ∆   + = + + + +  
   

∇  (2.45) 

and 

 [ ] [ ]
0 0 0 0p p p pJ J q p p E E qD p pµ

∆ ∆ ∆ ∆   + = + + − +  
   

∇  (2.46) 

where the steady state solutions are denoted by the subscript 0 and the time-varying 

quantities are denoted by the subscript ∆ .  All time derivatives are zero in steady state so 

 0 0E× =


∇ , (2.47) 
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0 00 n pH J J× = +

  

∇ , (2.48) 

 
0 0

0 n pJ J= ⋅ + ⋅
 

∇ ∇ , (2.49) 

 
0 0 0 0x x xJ q x E qD xµ= +
 

∇ , (2.50) 

and 

 ( )0 0x x xJ q x E E x E qD xµ
∆ ∆ ∆ ∆ = ∆ + + + 
   

∇ . (2.51) 

Note that even though 
0

0nJ∇⋅ ≠


and 
0

0pJ∇⋅ ≠


individually in general for steady-state, 

the divergence of the carrier currents is balanced by the steady-state recombination rate 

such that [21] 

 ( )
0 00 0, ; ,n pJ qR t n p J⋅ = = − ⋅r
 

∇ ∇ . (2.52) 

Therefore, the time-varying set of equations can be written as 

 dHE
dt

µ ∆
∆× = −





∇  (2.53) 

 n p
dEH J J
dt

ε
∆ ∆

∆
∆× = + +



  

∇  (2.54) 

 ( ) ( ) ( )0 0 0 0, , ; , , ; ,n
nq J qG t qR t n n p p qR t n p
t ∆

∆
∆ ∆

∂
= ⋅ + − + + +

∂
r r r



∇ , (2.55) 

 ( ) ( ) ( )0 0 0 0, , ; , , ; ,p
pq J qG t qR t n n p p qR t n p
t ∆

∆
∆ ∆

∂
= − ⋅ + − + + +

∂
r r r



∇ , (2.56) 

 0 0n n n nJ q n E E q n E qD nµ µ
∆ ∆ ∆ ∆ ∆ = + + + 

  

∇ , (2.57) 

and 

 0 0p p p pJ q p E E q p E qD pµ µ
∆ ∆ ∆ ∆ ∆ = + + − 

   

∇ . (2.58) 

 The implementation of this coupling is done using a port model which includes 

the interaction with the semiconductor substrate and laser via a port into the field solver.  
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The two systems of equations are solved independently and interact through the port as 

shown in Figure 2.1. 

 

Figure 2.1 - Port Model Implementation [22] 

 

 It is assumed that the port is one-dimensional in the sense that variations in 

relevant quantities are only present in the length dimension of the gap from one PEC to 

the other, not the width dimension.  According to Figure 2.1, the variations would occur 

in the gap length or vertical direction (y-direction) but quantities would be constant in the 

directions of the gap width (x direction) and thickness (z-direction).  Given this 

assumption, one can note 

 y
dJ J
dy

 
⋅ =  

 



∇  (2.59) 

and 

 ˆ ˆ,dn dpn y p y
dy dy

   
∇ = ∇ =   

   
. (2.60) 

Furthermore, if it is assumed that carrier concentrations and current densities are constant 

along the direction of the port itself then the derivatives in the y-direction are zero so 
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0J∇⋅ =


, 0n∇ = , and 0p∇ = .  These assumptions further simplify the port 

implementation. 

The steady state Shockley-Reed-Hall (SRH) recombination rate is calculated as  

 
( ) ( )

2

1 1

i

p n

np n
R

n n p pτ τ
−

=
+ + +

 (2.61) 

where pτ and nτ are the minority carrier lifetimes of the electrons and holes, respectively.  

For an undoped semiconductor with a deep level trap energy near the mid-gap, 

1 1 in p n≈ ≈  [19, 21].   

All the carrier generation is assumed to come from the light source LG G= .  The 

steady state generation rate due to light is   

 ( ) ( )
( ) ( ) ( )

22 2
0 00 0

2 2 2
0

/

0, x y t

t z z c tx x y y

z z
LG t G e e e

ε

σ σα σ

 − − −− −  − − −
− −

 
 

=  
 
 

r  (2.62) 

where 0
0

WG
hf
α

= , h  is Plank’s constant ( 346.626 10−× J-s), 0W  ( ( )2J / s-m ) is the peak 

optical power density, f  (1/s) is the laser frequency, and α  (1/m) is the absorption 

coefficient of the semiconductor [19, 21, 23, 24].  The pulse spot size standard deviation 

is represented by ,x yσ σ , the pulse time standard deviation is represented by tσ , and the 

positions of the carriers are expressed by ( , , )x y z .  For Gaussian profiles, it is assumed 

that x y rσ σ σ= =  [21]. 

 



 

18 

 

3 ANTENNA DESIGN, ANALYSIS, AND VALIDATION 

3.1 Base Parameters and Initial Validation 

Photoconductive THz antenna structures can be designed for various application 

specific requirements.  The bandwidth and emission intensity can be altered through 

variation of the dimensions and geometries of the antenna.  The effects of these structural 

parameters are determined by evaluating various antenna structures.  The results of the 

DGFETD computational analysis are presented and compared with expected results 

where possible.  Consider the simple double sided dipole antenna structure presented by 

Miyamaru, et al. [25] such as in Figure 3.1 for initial validation. 

 

Figure 3.1 - Double Sided Full Dipole 

 

In this example, the dipole gap length 5g mµ= , the dipole trace width 10w mµ= , 

and the dipole length l  and coplanar line separation c  varies from 200 mµ to 20 mµ .  

Corresponding antenna structures are meshed using Cubit by placing PEC strips onto a 

l,c g 

w 

L 



 

19 

 

substrate as shown in Figure 3.1 and then meshing the volume for analysis.  An example 

of a cross section of such a mesh is shown in Figure 3.2.   

 

Figure 3.2 - Example Mesh Cross Section 

 

These models are analyzed using the DGFETD method with the port 

implementation described above.  The background is set to homogeneous isotropic loss 

less free space with a 1.0 relative permittivity.  A bounding box of 50 mµ  is placed 

around the antenna.  The semiconductor material in the port placed in the dipole gap is 

has an electron mobility of 
2

0.8 m
V s⋅

 and a hole mobility of 
2

0.04 m
V s⋅

.  The intrinsic 

carrier density is set to 12
32.25 10 carriers

m
×  with carrier lifetimes of 120.5 10 ps−× .  The 

temperature is set to 300 Kelvin.  A static voltage of 1.0 V is applied.  The semiconductor 

is excited by a 800nm  laser with a uniform excitation.  The laser is pulsed with a 0.1ps
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Full-Width at Half-Maximum (FWHM) pulse centered at 2 ps  with a peak power density 

of 3
25 10 W

m
−× .  Far field calculations are conducted at an observation point in free space 

perpendicular to the dipole structure ( )0, 0θ ϕ= =  and aligned with the antenna gap.  

Arbitrary units (A.U.) are applied to the emission intensity results through scaling by the 

wavenumber 

 
0

2 rf
k

c
π ε

ω µ ε= ⋅ = . (3.1) 

This scaling is necessary because the DGFETD far field calculator normalizes the result 

by the wavenumber.  Therefore, this scaling effectively undoes the internal 

normalization.  The frequency is scaled by  

 
_ 1 12.5

22
GaAsfreeSpacer r

frequency f f
effective permittivity ε ε

= =
+ +

 (3.2) 

to compensate for the radiation through the substrate.  The computational analysis in 

Figure 3.4 agrees with the experimental results of Miyamaru, et al. [25] in Figure 3.3. 

 



 

21 

 

 

Figure 3.3 - Full Dipole Measured Emission Intensity [25] 

 

 

Figure 3.4 – Full Dipole Computed Emission Intensity 

 

It is observed that the resonance frequencies and bandwidth agree fairly well.  

However, the peak emission intensities relative to each other show a smaller decrease in 

peak intensity as the dipole length is reduced than expected.  This might be caused by 

several reasons.  The difference in relative peak intensities may be due to the effects of 
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the real world laser spot size.  These simulations assume an ideal uniform excitation as 

opposed to an actual laser beam spot size.  It is possible that a spot size much larger than 

the gap could cause current flow between coplanar lines or through only part of the 

dipole as opposed to through the entire dipole, especially at small dipole lengths.  The 

laser spot size of this experiment is unknown.   

The lower relative peak intensities may also be due to conduction losses and 

additional resistances introduced by the connections to testing equipment.  The 

computational analysis does not model many of the real world additional effects of 

measurement taking such as equipment accuracy and imperfect transitions at device 

interfaces.  In addition it is noted that the intensities drop off faster at higher frequencies 

in the experimental results than the simulations.  It is theorized that this too may be due to 

conduction losses and resistances not currently accounted for in the simulations. 

The computational analysis is conducted using a maximum mesh cell size 

10m mµ= and a basis order of 2.  The bases are based on the hierarchical curl-

conforming basis functions developed by J. P. Webb [12] for tetrahedron that have been 

developed for hexahedron [9].  The mesh cell size and basis order parameters are 

maximized for minimal error with the shortest simulation time.  A study was conducted 

varying the maximum mesh cell size and basis order for the full dipole length of 100 mµ  

case with results plotted in Figure 3.5. 
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Figure 3.5 - Mesh Cell Size vs. Basis Order 

 

It is more insightful to examine the relative error of the results as shown in Table 3.1.  

The simulation with basis order of 1 and maximum cell size of 2.5 mµ  is used as a 

reference value for the relative error calculations such that  

 
1

0

1_ 100%
N

n n

n n

reference test
relative error

N reference

−

=

−
= ⋅ ⋅∑  (3.3) 

where N is the number of data points and test is the data under analysis. 
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Table 3.1- Basis Order/Cell Size Relative Errors 

Basis Order Maximum Cell Size Relative Error 

1 2.5 mµ  Reference 

1 5 mµ  2.5% 

1 7.5 mµ  5.7% 

1 10 mµ  8.0% 

0 2.5 mµ  4.7% 

0 5 mµ  12.8% 

0 7.5 mµ  17.5% 

0 10 mµ  22.1% 

2 10 mµ  2.0% 

 

It is noted that using a maximum mesh cell size of 5 mµ and a basis order of 1 nearly 

reduces the error in half from the mesh cell size of 2.5 mµ , basis order = 0 case.  

Furthermore, the basis order = 2 and maximum mesh cell size of 10 mµ resulted in a 

slightly better relative error.  This basis order of 2 with a maximum mesh cell size of 

10 mµ  resulted in best combination of lowest error and simulation time. 

 The computational analysis is conducted with coplanar lines 200L mµ= long on 

each side of the dipole (for double sided designs).  It is determined that this is sufficient 

for stable analysis results while keeping the problem space as small as possible to 

minimize simulation time.  This value of 200 mµ is determined by simulating the same 
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double sided full dipole antenna with a coplanar line separation of 100 mµ with varying 

coplanar line lengths.  Figure 3.6 shows the results with a slight difference in lengths of 

100 mµ and 200 mµ but negligible difference between 200 mµ and 400 mµ . 

 

Figure 3.6 - Coplanar Line Length Comparison 

 

The length of the extension of the model volume beyond the antenna structure 

perpendicular to the dipole and beyond the long edges of the coplanar lines is called the 

bounding box.  It is set to an extension length of 50b mµ= .  This value was determined 

by comparing several lengths between 25 mµ  and 100 mµ as shown in Figure 3.7.   
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Figure 3.7 - Bounding Box Size Analysis 

 

Although the results of the 50 mµ simulation visibly vary from the 100 mµ  case, it is 

determined to be a suitable compromise of error and computational time.  This bounding 

box is terminated with an Absorbing Boundary Condition (ABC) boundary.  It is 

determined that this is sufficient by comparing the simulation results with a 4 cell and 8 

cell Perfectly Matched Layer (PML) in Figure 3.8. 
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Figure 3.8 - ABC vs. PML Analysis 

 

 Using these baseline parameters, additional antenna designs are analyzed and 

fabricated for further experimental testing and validation.   

3.2 Double Sided Dipole 

Consider in more detail the double sided dipole.  It is expected that modifying the 

geometry of the dipole including the dipole length and position of the coplanar lines 

along the dipole will alter the resonant frequency, peak intensity, and bandwidth.  In this 

work, the double sided dipole is defined as a dipole structure with coplanar lines 

extending away from the dipole in both directions as illustrated Figure 3.9.   
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Figure 3.9 - Double Sided Dipole Parameters 

 

Varying the separation between the coplanar lines while keeping the dipole length fixed 

results in interesting changes in the bandwidth and resonant frequency as illustrated in 

Figure 3.10. 
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Figure 3.10 – Double Sided Dipole Computational Analysis 

 

It is interesting that in each case except the 20 mµ case, coplanar lines positioned in the 

middle of the dipole seem to resonate another high intensity frequency.  This 

phenomenon is illustrated more clearly in Figure 3.11.   
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Figure 3.11 - Double Sided Dipole Middle Coplanar Line Resonance 

 

This resonance peaks at a coplanar line separation of 90 mµ .  At this separation, the 

coplanar lines start 45 mµ from the dipole center in each direction meaning they are 

centered at 50 mµ  or the center of the dipole length excluding the width of the coplanar 

line itself.  This resonance resembles the effects of a half wavelength dipole in that 

shortening the coplanar line separation in half results in a near doubling of the resonant 

frequency.  To further verify these results, a subset of double sided dipole antenna is to be 

fabricated and tested.  The parameters of the fabricated antennas are listed in Table 3.2. 
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Table 3.2 – Fabrication Double Sided Dipole Parameter List 

l (in mm) c (in mm) 
20 20 
100 100 
100 50 
100 5 
200 200 
200 100 
200 5 

 

3.3 Single Sided Dipole 

The single sided dipole is defined as a dipole antenna with coplanar lines 

extending away from the antenna in only one direction as illustrated in Figure 3.12.  

Again, it is not required that the coplanar lines be separated by the full length of the 

dipole.   

 

Figure 3.12 - Single Sided Dipole Parameters 
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A variety of single sided dipole antennas are simulated to illustrate the effects of varying 

the parameters on the emission intensity frequency response.  A sample of these 

simulation results are presented in Figure 3.13. 

 

 

Figure 3.13 - Single Sided Dipole Computational Analysis 

 

Like the double sided dipole, a second resonant frequency is discovered when the 

coplanar lines separation is half the distance of the dipole length.  Here the peak intensity 

of this resonant frequency is much larger than the full separation case.  To verify these 

results, a subset of single sided dipole antenna is to be fabricated and tested.  The 

parameters of the fabricated antennas are listed in Table 3.3. 
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Table 3.3 – Fabrication Single Sided Dipole Parameter List 

l (in mm) c (in mm) 
100 100 
100 50 
100 5 
200 200 
200 100 
200 5 

 

3.4 Bowtie 

The bowtie dipole is defined as a dipole structure where the two dipole strips are 

equivalent trapezoids with the smaller bases meeting at the dipole gap as illustrated in 

Figure 3.14.  In this work, only double sided bowties are considered.  This means the 

coplanar lines extend away from the bowtie dipole in both directions.  Again, it is not 

necessary that the coplanar lines be placed at the larger base edge of the bowties.  Instead 

the separation can be varied to manipulate performance. 
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Figure 3.14 - Bowtie Parameters 

 

First consider the effect of the bowtie flare angle or the angle of the trapezoid legs.  The 

most interesting results of the computational analysis are illustrated in Figure 3.15 with 

the double sided dipole analysis included for reference.   

  

Figure 3.15 - Bowtie Flare Angle Computational Analysis 

 

The results show that as the size of the larger base increases, the frequency response is 

flattened giving a larger bandwidth at which the intensity is relatively more common.  It 
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is also interesting that each dipole length has a particular frequency/peak intensity point 

in common with all the flare angles.   

Next, consider the separation of the coplanar lines.  The results continue to show a 

resonant point when the coplanar line separation is half the dipole length in agreement 

with the findings for the dipole cases above.  These results are presented in Figure 3.16. 
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Figure 3.16 - Bowtie Coplanar Line Separation Computational Analysis 

 

To verify these results, the antenna structures described in Table 3.4 are to be fabricated. 
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Table 3.4 - Fabricated Bowtie Parameter List 

l (in mm) c (in mm) w2 (in mm) 
100 100 27 
100 100 45 
100 50 45 
100 5 45 
100 100 65 
100 50 65 
100 5 65 
100 100 90 
100 50 90 
100 5 90 
200 200 44 
200 100 44 
200 5 44 
200 200 81 
200 100 81 
200 5 81 
200 200 123 
200 100 123 
200 5 123 
200 200 174 
200 100 174 
200 5 174 
20 20 13 
20 20 15 
20 20 19 
20 20 23 

 

Several of these antennas have been fabricated by working with Takehito Suzuki at the 

Suzuki Laboratory at Ibaraki University in Japan [26].   The antenna structures were 

tested using wafers with a low temperature grown GaAs (LT-GaAs) layer and a simple 

semi-insulating GaAs layer (SI-GaAs).  The LT-GaAs substrate has a much lower carrier 

lifetime than the SI-GaAs.  The computational analysis is conducted with a carrier 
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lifetime of 0.5 ps modelling the LT-GaAs.  Computational analysis modelling the SI-

GaAs will need to be conducted in the future.  The parameters of the antennas 

successfully fabricated are listed in Table 3.5.  The measurements taken are presented in 

Figure 3.17 and Figure 3.18 with the LT-GaAs computational analyses. 

Table 3.5 - Successfully Fabricated Bowtie Antenna List [26] 

l (in mm) c (in mm) w2 (in mm) 
100 100 45 
100 100 90 
100 50 45 
100 50 90 

 

 

Figure 3.17 - Fabricated Full Coplanar Line Separation Bowtie Antenna 
Measurements[26] 
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Figure 3.18 - Fabricated Half Coplanar Line Separation Bowtie Antenna 
Measurements[26] 

 

Unfortunately the noise level of the measurements is very significant.  To minimize the 

noise for better comparison, the raw time data is gated off or set to zero after the time 

period of interest.  The Fourier transform is then performed on the new gated off data.  

This removes the late time noise.  For example, consider the LT-GaAs full coplanar line 

separation bowtie dipole with 2 45w mµ=  (black line) in Figure 3.17.  Gating off the 

measurements after 10 ps, 15 ps, and 20 ps significantly reduces the noise as illustrated in 

Figure 3.19.   
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Figure 3.19 - Bowtie Measured Data Noise Reduction Example 

 

Gating off the first 15 ps, measured data is compared with computational analysis in 

Figure 3.20 and Figure 3.21.  The computed results are equally scaled for ease of 

comparison. 
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Figure 3.20 - Full Coplanar Separation Bowtie Measured vs. Computed 

 

 

Figure 3.21 - Half Coplanar Line Separation Bowtie Measured vs. Computed 
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It is noted that both the measured and computed results demonstrate a narrower or 

sharper peak in the case where the coplanar lines are separated by half the dipole length.  

This is consistent with the findings for the other structures studied thus far.  Otherwise, 

the results do not match very well especially in the full coplanar line separation case.  

With such a high level of noise in the measured data, it is possible the measurement is not 

very accurate even after the gating of late time values.  As seen in Figure 5.13 and Figure 

5.14, the printing technique used to fabricate these antennas is also not very high quality.  

Additional testing is needed to determine which result set is most accurate. 

 

3.5 Split-Ring Resonator 

 Next, structured metal trace geometries are analyzed.  Takano, et. al. [27] present 

metamaterial structures composed of planar metallic resonators called split-ring 

resonators. Metamaterials are artificially structured materials that can improve the 

flexibility of electromagnetic systems [27, 28].  Takano, et al. [27] adapt the metamaterial 

properties of circular split ring structures as presented by Pendry [29] and Smith [30] to 

form an additional trace ring outside the typical dipole structure coplanar lines.  A closed-

ring resonator and two split-ring resonators are presented [27] as in Figure 3.22, Figure 

3.23, and Figure 3.24.   
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Figure 3.22 - Dipole Circular Ring Resonator (D-CRR) 

 

Figure 3.23 - Dipole Split Ring Resonator 1 (D-SRR1) 
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Figure 3.24 - Dipole Split Ring Resonator 2 (D-SRR2) 

The split-ring resonator metal rings with gaps determine the total inductance and 

capacitance of the structure [27].  Therefore, manipulating the parameters of these 

structures effects the radiation spectra and the radiation efficiency at certain frequencies 

[27]. 

 Takano, et. al. [27] presents these three structures where the width of the traces is 

4 mµ , the dipole gap width is 5 mµ , the dipole length is 30 mµ  from the centers of the 

coplanar line traces, the square rings are 45 45m mµ µ×  from the center of the traces, and 

the split ring resonator gap length is 15 mµ  where applicable.  The structures are 

fabricated with a superfine ink-jet printer to place silver nanopaste on semi-insulating 

gallium arsenide (SI-GaAs).  The radiation from the antennas is characterized using a 

spectroscopy system with a Ti:sapphire laser with a 100 fs pulse width, 800 nm center 

wavelength, and 5.0 mW time average power.  A dipole antenna fabricated on low-

temperature grown GaAs (LT-GaAs) was used as the detector.   Takano, et. al. [27] 

provides amplitude spectra from experiments and simulations in Figure 3.25.  The solid 
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lines are the x-polarized components and the dotted lines are the y-polarized components.  

The spectra are normalized by the peak values of each sample.  

 

Figure 3.25 - Experimental (a) and Computed (b) Emission Intensities [27] 

 

Computational analysis is conducted using the same free space baseline parameters and 

wafer characteristics as before with results presented in Figure 3.26.   
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Figure 3.26 - Split Ring Resonator Computed Emission Intensities 

 

These results concur with the findings of Takano, et. al. [27].  It is also interesting that, in 

this case, a ring with no gap results in very similar results to a ring with a middle gap. 

It is intended in the future to fabricate similar structures; however, the trace width 

presented by Takano, et. al. [27] is so small that trace integrity is expected to be difficult 

with the currently available photolithography and liftoff procedures presented in Chapter 

4.  The trace width is therefore increased for the remainder of the models to 10 mµ  and 

the other parameters are increased and varied according to the values shown in Figure 

3.27.  These parameters are varied in order to discover the effects of parameters on the 

emission intensity frequency response. 
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Figure 3.27 - Single Sided Split-Ring Resonator Parameters 

 

Consider the size and location of the gap in the ring.  Analysis is conducted 

setting 50l x y mµ= = =  and varying the gap size h  and the location of the gap from the 

side as in Figure 3.23 to the middle as in Figure 3.24.  The effects on the frequency 

response are presented in Figure 3.28. 

 

Figure 3.28 - Split Ring Resonator Gap Size and Location Computational Analysis 

 



 

48 

 

It is observed that the smaller gaps tend to result in larger emission intensities, especially 

in the 5 mµ middle gap case.  

Next, consider the size of the dipole in the structure.  Figure 3.29 demonstrates 

the effects of varying the dipole length l  and location of the ring gap while setting 

50x y mµ= =  and 5h mµ= .     

 

Figure 3.29 - Split Ring Resonator Dipole Length Computational Analysis 

 

It is observed that for the side gap cases, the larger dipole length results in higher peak 

emission intensity.  However, the opposite is true for the middle gap cases.   

Consider next the size of the ring.  By setting the dipole length 50l mµ= and 

varying the ,x y parameters and location of the gap, the results in Figure 3.30 can be 

produced. 



 

49 

 

 

Figure 3.30 - Split Ring Resonator Ring Size and Gap Location Computational Analysis 

 

It is interesting that when the ring is three times the dipole length, the middle gap case 

begins to imitate the side gap case with multiple peaks.  Likewise, when the ring is 1/3 

the size of the dipole length, the side gap case begins to imitate the middle gap case with 

a single resonant frequency. 

Finally, consider the position of the ring.  The ring can be moved away from the 

dipole center as shown in Figure 3.31 where o is the horizontal distance from the center 

of the ring to the center of the dipole. 
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Figure 3.31 - Split Ring Resonator Ring Placement Parameter 

When dipole length 50l mµ= , the ring size 50x y mµ= = , and the ring gap 5h mµ= , 

the position o can be varied such that  the frequency response in Figure 3.32 can be 

generated. 

 

Figure 3.32 - Split Ring Resonator Ring Location Computational Analysis 

 

It is noted that in each case, sliding the ring along the coplanar line minimizes the peak 

emission intensity with no clear advantages. 
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3.6 Double Split-Ring Resonator 

 Further exploration of the effects of these ring structures is investigated by 

modelling and simulating double ring resonator structures with varying parameters.  The 

additional ring is added on the opposite side of the dipole as the single ring as in Figure 

3.33. 

 

 

Figure 3.33 - Double Split-Ring Resonator Parameters 

 

Analysis is conducted varying these parameters in order to determine the effects on the 

radiation spectra and radiation efficiency.  These effects are noticed in the following 

figures which include the reference single split ring resonator and various ring gap 

placement.  Figure 3.34 presents the effects of having all the gaps on the side of the rings.  

Figure 3.35 presents the effects of mixed gap locations on the two rings.  Figure 3.36 
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presents the effects of having all the gaps in the middle of the rings.  The gap lengths are 

set as 5h g f mµ= = =  and the dipole length is set as 50l mµ= . 

 

 

 

Figure 3.34 - Double Split Ring Resonator Side Gaps Computational Analysis 
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Figure 3.35 - Double Split Ring Resonator Left/Middle Gaps Computational Analysis 
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Figure 3.36 - Double Split Ring Resonator Middle Gaps Computational Analysis 
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It is observed that the additional ring increases the peak intensities.  This effect is most 

pronounced in the cases where one ring has a side gap and the other has a middle gap. 

 

3.7 Bowtie Split-Ring Resonator 

Finally, the bowtie dipole structure is combined with the split-ring resonator to create 

Bowtie Split-Ring Resonator structures such as in Figure 3.37 and Figure 3.38. 

 

Figure 3.37 - Single Split-Ring Resonator Bowtie Parameters 
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Figure 3.38 - Double Split-Ring Resonator Bowtie Parameters 

 

Computational analysis is again conducted with the same free space baseline parameters 

as before to determine the effects of varying some of the bowtie parameters and the 

position of the ring gaps with the results presented in Figure 3.39, Figure 3.40, Figure 

3.41, and Figure 3.42.  The baseline parameters are set to a dipole length 50l mµ= , ring 

sizes 50x y mµ= =  and 50i j mµ= =  where applicable, gap lengths 5g h f mµ= = = , 

and bowtie small base length 1 10w mµ= .  
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Figure 3.39 - Single Split-Ring Resonator Bowtie with Side Gap Analysis 

 

Figure 3.40 - Single Split-Ring Resonator Bowtie with Middle Gap Analysis 
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Figure 3.41 - Double Split-Ring Resonator Bowtie with Side Gaps Analysis 

 

 

Figure 3.42 - Double Split-Ring Resonator Bowtie with One Side and One Middle Gap 
Analysis 
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It is noted that the addition of the bowtie in the single ring cases significantly decreases 

the peak intensities without adding a noticeable benefit.  The double ring structure with 

both rings having side gaps also follows this behavior.  However, it is interesting that the 

double ring with one side gap and one middle gap shows great improvement in the peak 

intensity for the smaller flare angle. 

3.8 Summary of Results 

In summary, the computational analysis method presented in Chapter 2 has been 

validated using the full double sided dipole antenna.  In addition, using double sided 

dipole, both the mesh and simulation parameters were optimized.  The method was also 

validated for the bowtie, and split-ring resonator structure using published literature and 

results from testing.  The simulated results compared quite well with the measured data.  

Slight differences in the peak emission intensity for the smaller full double sided dipole 

are theorized to be due to effects such as conduction losses and additional resistances in 

the complete spectroscopy system that were not included in the simulation, as well as 

non-ideal laser spot size.  In the case of the bowtie antenna, the measured data is very 

noisy and variations from the computational analysis are most likely due to the quality of 

the fabricated structures and the contributions of the detecting antenna.  

After gaining confidence in the accuracy of the DGFETD simulation to estimate the 

emission intensity of photoconductive THz antennas, a study of a variety of antenna 

geometries was conducted.  It was found that reducing the separation of the coplanar 

lines of the dipole and bowtie antennas in half results in a strong resonant peak in 

emissions at nearly twice the frequency as compared to a full separation of the coplanar 
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lines.  It was also discovered that the bowtie structures result in a flattened response area 

at peak emission intensity, providing a broader bandwidth.  It is also shown that in the 

case of the split-ring resonators, the ring size and gap positions vary the resonant 

frequency in a manner that seems consistent with adjusting the dipole length 

appropriately.  Further study is required to determine the exact correlations.  It was also 

found that the addition of a second ring in the split-ring resonator structure results in 

greater peak emission intensities.   
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4 FABRICATION OF DEVICES 

4.1 Description of Devices 

The multi-physics port model and DGFETD method are validated with the 

experimental data presented by Miyamaru, et al. [25] and Takano, et al. [27] for the 

standard dipole and ring resonator structures, respectively.  Further validation is 

conducted with the experimental results of the bowtie antenna conducted with Suzuki.  

More complete validation is accomplished by fabricating the other antenna designs 

presented in Section 3.         

 A common currently used photoconductive substrate is Gallium Arsenide (GaAs) 

due to its lower cost and higher availability.  A layer of low temperature GaAs can be 

grown on top of the typical GaAs to increase the recombination rate of the carriers.  The 

carriers need to recombine quickly in the detecting antenna.  This low temperature grown 

layer provides a very short carrier lifetime[31] as well as semi-insulating properties[32].  

Therefore, the first fabrication attempt was done on a 500-600 µm SI-GaAs substrate 

with 1-2 µm layer of low temperature GaAs (LT-GaAs) grown on top at a temperature of 

200 – 250 oC.  It was annealed for about 10 minutes at 600 oC after growth.  The wafer 

had a 2 inch (50.8 mm) diameter and [100] crystal orientation.  A commercially available 

antenna was also purchased (see Figure 4.1).  Later fabrication attempts were made on 

polished undoped SI-GaAs 4 inch wafers that were 625 mµ  thick.  These wafers have a 

resistivity greater than 710 cmΩ . 
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Figure 4.1 - Menlo Systems Tera8-1 THz Antenna 

 

 Titanium gold (TiAu) traces were used for the antenna structures due to 

availability at the time of fabrication and thermal stability.  The interface to the antenna is 

vitally important to the functionality because of the picosecond high voltage switching 

(such as photoconductive switches).  Ohmic contacts with negligible contact resistance 

are preferred in this case to most accurately represent the computational model and make 

the best possible connections to external circuitry.  Heating of the switch may lead to 

failure [33] with significant contact resistance.  It has been determined that a AuGeNi 

alloy is far more effective than a straight Ti/Au metal layer [34]; however it was not 

available at the time.  Vieweg, et al.  [35] have found that annealed ohmic contacts 

fabricated using a Ni/AuGe/Ni/Au layer stack with 5/90/25/50 nm thickness and 

subsequent annealing at 420 oC for 90 seconds offer about twice the output signal 

intensity as TiAu metallization.  Vieweg [36] has also found that TiAu is more thermally 

stable and less reactive than AuGe since titanium has a much higher melting temperature 

than gold or germanium. 
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 The fabrication of these devices was done using the facilities of the Center for 

Nanoscale Science and Engineering (CeNSE) located at the University of Kentucky.  The 

fabrication process included photolithography, application of the trace metals, liftoff, and 

cleaving with the necessary cleaning techniques required at each step.  After fabrication 

of the antenna structures, the cleaved wafer sections were then embedded into printed 

circuit boards so that they can be tested in a spectroscopy system. 

 

4.2 Photolithography 

 The first step in the fabrication process is photolithography.  In photolithography, 

photoresist is applied to the wafer and then desired patterns are removed leaving bare 

surface for metal deposit.  There are two different photoresist processes, positive and 

negative.  With positive photoresist, the layer of applied photoresist is exposed to UV 

light in the areas where it is desired that the photoresist be removed leaving the areas for 

desired metal traces.  This occurs because the UV light changes the characteristics of the 

photoresist so that it is more soluble in the developer.  Therefore, after exposure when the 

wafer with photoresist is subjected to the developer solution, the photoresist exposed is 

removed.  The other method uses negative photoresist.  In this process, the areas of 

photoresist exposed to the UV light become more resistant to the developer such that 

application of the developer solution removes all areas that were not exposed. 

In this particular fabrication, positive photoresist is used therefore an image mask 

was created that is clear in the areas where metal traces are desired and opaque 

elsewhere.  The first mask created included 2 copies of 42 antenna structures positioned 
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on 6 different blocks separated by dicing “streets” or areas for separating the blocks.  

These 42 antenna structures include the full list of double sided dipole, single sided 

dipole, coplanar lines only, and bowtie structures presented in Section 3.  Each fabricated 

antenna has coplanar lines 2 mm long in each direction from the center of the dipole gap 

(where applicable) with a 100 mµ  by 100 mµ  pad at the outer end for connection to an 

external printed circuit board so that connections can be made during testing.  The mask 

is designed such that ½ of the wafer is utilized thus saving the other half for a later 

attempt.   
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Figure 4.2 - First Exposure Mask 

 

 

 In order to process the wafer and mask such that the photoresist protects the areas 

between traces and bare wafer is exposed where traces are desired, the GaAs wafer is first 

coated with positive photoresist.  In this case, S1813 photoresist from Shipley is used.  

According to the documentation provided by Shipley (see 
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http://nanofab.ece.cmu.edu/resources/s1800seriesDataSheet.pdf), spin coating S1813 at a 

speed of 2000 rpm provides a layer of photoresist about 19,000 Angstroms (or 1,900 nm) 

thick.  The optimum ratio of photoresist thickness to trace thickness for successful 

sputtering is approximately 10:1.   

 After the photoresist is applied, the wafer is placed on a hot plate of 95 oC for 1 

minute so that the photoresist can set properly.  After cooling, the coated wafer is then 

aligned and placed in contact with the mask while ultraviolet (UV) light is illuminated.  

The mask and wafer are illuminated for 9 seconds to adequately expose the transparent 

areas of the mask so that all the photoresist is removed during development but not to 

over expose such that the fine dimensions of the structures are sacrificed.   

After exposure, the wafer is placed in a Shipley microposit MF-319 developer 

solution for at least 1 minute so that the (UV) exposed photoresist is dissolved away.  

Then the wafer is rinsed in ultra-pure water (H20) and dried.  Once dry, it is placed under 

a microscope to verify that the antenna patterns are removed properly for metallization.  

If the process has gone as desired, the wafer is placed back on a hot plate of 95o C for a 

few minutes to prevent further undesired changes.  In instances where the process needs 

to be repeated, the photoresist layer is removed by applying acetone followed by 

isopropyl alcohol (IPA) and then a thorough rinsing and drying.  This process is repeated 

as much as necessary to determine the correct equipment settings and achieve the desired 

result. 
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4.3 Application of Metal and Liftoff 

 Proper wirebonding at the University of Louisville requires a pad thickness of 250 

– 300 nm.  It is common to use a 20% Ti to 80% Au ratio.[37]  Therefore, the traces are 

applied by applying 50 nm of Ti and then 200 nm of Au.  This metallization layer is 

applied to the entire wafer after photolithography.  When properly coated the photoresist 

is lifted off removing the metal from the areas outside the traces. 

 In preparation for the metal deposit, the wafer is first cleaned of organic 

particulates to ensure clean access to the GaAs.  This is accomplished using oxygen 

plasma ashing.  Plasma ashing uses partially ionized oxygen to remove organic matter 

from the wafer.  Two common contaminants removed in this matter are carbon oxides 

and water vapor.  It is particularly important to remove these contaminants in the case of 

applying titanium due to its high susceptibility to oxidation.  It is also important to note 

that oxygen plasma ashing will also remove photoresist so it is critical to limit the amount 

of ashing at this point so that contaminants are removed but the vast majority of the 

photoresist remains intact for metallization and liftoff.  Therefore, at this point the sample 

is ashed for only 30 seconds. 

 The process of oxygen plasma ashing is performed in a modified microwave oven 

designed for this purpose in CeNSE.  This machine is fitted with a vacuum pump, oxygen 

supply, and vacuum chamber.  First, the sample is placed in an air tight chamber 

consisting of a Pyrex dish over a sealing mat in the oven compartment.  The vacuum 

pump is used to vacate the air from the chamber.  Then oxygen is supplied to the chamber 

at a pressure of about 1 mbar.  When the microwave is activated, the oxygen is partially 

ionized creating a plasma around the sample that bonds with organic materials on the 
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surface.  When finished, the oxygen is turned off and the vacuum pump is again applied 

to remove the lifted contaminants before restoring normal air pressure and removing the 

sample.  This process is done immediately before metallization to ensure the wafer is as 

free of contaminating organics as possible. 

 As for depositing the metals, the first three attempts were all made using 

sputtering.  Sputtering is a process of coating a sample with a thin film from a particular 

target material.  The equipment used in this experiment was a small plasma sputterer in 

CeNSE.  The sample is placed on an anode surface in a vacuum chamber opposite a 

cathode target composed of the material to be deposited.  Process gases are used to create 

a plasma under vacuum which bombards the target material and ejects molecules onto the 

sample.  It is important that the projectile mass match the target mass for efficient 

momentum transfer and maximum energy transfer.  In this case, the inert gas argon is 

used.  The plasma is created by the collision of high energy electrons (accelerated from 

the cathode toward the anode) with the neutral atoms.  As the current grows, there is 

eventually enough ions and electrons for the plasma to be self-sustaining.  It is important 

to maintain the proper gas pressure during this process.  If the pressure is too low, 

insufficient collisions will occur due to the lack of atoms.  If the pressure is too high, the 

overabundance of atoms will cause too many collisions and the electrons will not gain 

sufficient energy to ionize the gas. 

 In each case, the 50 nm titanium layer was deposited first using a 50 W power 

setting and 15 standard cubic centimeter per minute (sccm) argon flow rate.  Then the 

200 nm gold layer was deposited using a 35 W setting to start the plasma interactions and 
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a 25 W setting during the sputtering.  Again with the gold, the argon flow rate was set at 

15 sccm.  The gold was applied by attempting 1000 angstroms or (100 nm) at a time. 

 After the metal deposits, the remaining photoresist is then removed (during 

liftoff).  As the photoresist is removed the metal on top of the photoresist is also removed.  

Just as mentioned in section 4.2, the photoresist is removed just as if one were cleaning 

all the photoresist off for another photolithography attempt.  This removal is done by 

applying acetone and IPA with a thorough rinse of ultra-pure water.  It was also 

mentioned in section 4.2 that the desired ratio of photoresist thickness to metal thickness 

is approximately 10:1.  This is desired so that the process of liftoff may occur more 

effectively.  It is also desired that the photoresist have a slight beveled angle at the 

substrate so that the acetone is more readily able to reach the bottom of the photoresist. 

 

 

Figure 4.3 - Optimal Liftoff Scenario 
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 This combination of metallization and liftoff was the most challenging hurdle in 

the fabrication process.  In the first attempt, the liftoff process removed the gold layer 

from the substrate in addition to photoresist.  However, it appeared the titanium layer 

remained.  It is theorized that the oxidation of the titanium during the switching of targets 

in the sputtering machine prevented the gold from properly adhering.  A second attempt 

was planned to address this issue.  In order to make a new attempt, the LT-GaAs must be 

cleaned to remove the remaining titanium.  Unfortunately, an improper cleaning solution 

was used.  The wafer was cleaned using RCA-2 which removes metallic residues.  It is 

commonly used under these conditions with silicon substrates; however, it is not suitable 

for GaAs.  RCA-2 is 6 parts H2O (DI Water) to 1 part HCl2 (Hydrochloric Acid) to 1 part 

H2O2 (Hydrogen Peroxide) and unfortunately etches GaAs.  Therefore the process 

damaged the wafer beyond use.  New substrates without the low temperature layer were 

purchased.  It was believed that these substrates would function for the THz system 

transmitter but not the receiver since short carrier lifetimes are only required on the 

detection antenna.  Therefore, the commercially available THz antenna illustrated in 

Figure 4.1 was also purchased to use as a receiver. 

 In the second sputtering attempt, the issue of titanium oxidation was addressed by 

altering the way the targets were changed during sputtering.  The small sputtering 

machine used only allows one target at a time.  Therefore, in order to switch from 

titanium to gold, the vacuum on the chamber must be released and the cover opened.  

This subjects the substrate to open air.  In order to overcome this challenge, the chamber 

was flooded with nitrogen (Ni) during the exchange of targets.  In addition, this exchange 

was done as quickly as possible by an experienced user.  All other variables remained the 
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same since the titanium appeared to adhere on the earlier attempt.  Additional steps were 

taken during lift off to allow maximum chance for success.  Instead of using a sonic 

cleaner to apply the acetone to the covered substrate, the substrate was allowed to sit in 

calm acetone on a hot plate set at 60oC for tens of hours with occasional swishing.  

Although some photoresist area had begun to lift off, the process was taking too long and 

a new approach was attempted.  The least intrusive way to remove the remaining 

photoresist and subsequent unwanted metal layers was to use extended time in the plasma 

ash.  The substrate was put in plasma ash for no more than 6 minutes at time repeatedly 

so that the substrate would not experience unwanted thermal stress.  This was continued 

until no further progress was observed.  After this attempt, approximately 20% of the 

antennas looked usable under the microscope.  The other 80% either did not adhere 

properly or had remaining undesired metal leading to possible interconnections.  It was 

also noted that this time the adherence problem was not between the titanium and the 

gold but between the titanium and the substrate.  Unfortunately, as the wafer went 

through subsequent processing in the form of dicing, cleaving, and embedding onto a 

printed circuit board, it was observed that the suspected good antenna structures either 

were damaged or failed to adhere. 

 For the third attempt, additional steps were taken to solve the problem of 

adherence.  This time, the same quick exchange of targets and minimizing of oxygen in 

the chamber during the switch were performed.  In addition, an additional cleaning of the 

wafer before the sputtering was performed.  The wafer was placed in an ammonium 

hydroxide bath consisting of 1 part NH4OH and 10 parts ultra-pure H2O (UPW) for 60 

seconds followed by a 60 second UPW rinse.  This method was chosen because it is 
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known to remove gallium oxides and photoresist scum.  A modified RCA1 cleaning of 

5:2:50 NH4OH:H2O2:distilled H2O for 60 seconds followed by a 60 second UPW rinse 

was considered but rejected because although it is more effective in removal of 

photoresist scum, it is known to slightly etch GaAs and leave oxides.  With these 

additional steps, the antenna yield improved to approximately 50%.  The samples were 

cleaved and embedded in PCBs.  However, even though the adherence was significantly 

improved, the traces were still not adhering adequately for wire bonding (see section 4.5).  

Some examples of the most successful antennas are shown in Figure 4.4, Figure 4.5, and 

Figure 4.6. 

 

Figure 4.4 - Picture of Fabricated Bowtie with Full Coplanar Line Separation 
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Figure 4.5 - Picture of Fabricated Bowtie with Half Coplanar Line Separation 

 

 

Figure 4.6 - Picture of Fabricated Dipole with Full Coplanar Separation 

 

 Subsequent attempts will be made with other metallization approaches.  The next 

attempts will utilize electron beam evaporation at the recommendation of Dr. Hastings, 

University of Kentucky.  This is a more commonly used approach for GaAs processing.  

In electron beam evaporation, the target anode is bombarded by an electron beam from a 

charged filament under vacuum.  This beam transforms the target atoms into a gaseous 
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phase.  These atoms then precipitate on the desired substrate.  This method adds the 

benefits of more directional application of the metal (line of sight) and increased wear 

resistance. 

 

4.4 Cleaving and Dicing 

After the metal traces are applied to the substrate, it must be cut into the desired 

pieces for real application.  This is achieved using either dicing or cleaving.  All of the 

wafers used in this experiment have a [100] orientation.  This means that molecular 

structure of the wafer is such that it should easily separate along lattice lines in the 

vertical and horizontal normal directions.  Therefore, the blocks to be separated are 

placed with “streets” for cutting in the horizontal and vertical directions (see Figure 4.2).  

The first attempt of separating the wafer along the “cleave lines” or “streets” was first 

attempted using dicing.  Dicing uses a fine diamond tipped saw to cut the wafer as 

desired.  However, the specific dicing machine used did not handle manipulation of the 

wafer between cuts well and much of the wafer was broken in undesired places.   The 

dicing process was ceased and the remaining “cuts” were accomplished using cleaving. 

With cleaving, the wafer is etched with a diamond scribe along the desired break 

line.  Gentle even pressure is applied such that the wafer breaks or “cleaves” along the 

desired line.  This method proved to be very successful with no undesired results.  

Therefore, it was used for all later separations of the wafer. 
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4.5 Embedding on Printed Circuit Boards  

Finally, in order to supply voltage biases to the antenna coplanar lines and make the 

desired current measurements on the receiver, these antenna structures must have 

connections to the necessary equipment.  The same antenna holder used with the 

commercial THz transmit antenna was to be used for the fabricated antennas.  Therefore, 

printed circuit boards using the same form factor were created.  The antenna holder is the 

T8-H2 Alignment Package from Thorlabs, Inc./Menlo.   

 

Figure 4.7 - Picture of T8-H2 Alignment Package 

 

It is designed for use with the antenna in Figure 4.1.  This antenna has the general 

form factor described in Figure 4.8 with the antenna gap designed to be placed in the 

center of the four mounting holes.   
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Figure 4.8 - Menlo THz Antenna Form Factor 

The fabricated antennas are placed on wafer pieces such that they are situated in 

two columns and varying amounts of rows as in Figure 4.9.   

 

Figure 4.9 - Sample Wafer Block 
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In this manner a high number of antennas can be fabricated and tested with a 

limited number of boards.   The printed circuit test boards are made so that they can fit 

the mounting posts of the holder but also be maneuvered to focus the laser pulse on the 

different antennas.  This is accomplished by changing the post holes to sliders and 

created two sets, one for each column of antennas (see Figure 4.10). 
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Figure 4.10 - Printed Circuit Board General Design 

 

 The wafer blocks are epoxied to the rear of the boards such that the laser pulse 

can be directed at the gap through the hole in the board.  This will allow the THz 

radiation to be emitter out the back of the wafer (see Figure 4.11). 
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Figure 4.11 - Full Board Picture 

 

 Since the current antenna traces did not adhere strong enough for wire bonding, 

six antennas (3 different designs on two different boards) are connected to the PCB by 

wire bonding one end of a wire to the PCB and connecting the other end to the antenna 

pads via conductive paste.  Although, not ideal, this connection is sufficient for 

preliminary testing (see Section 5).  Wires are then soldered to the pads on the PCB so 

that connections to the necessary equipment can be made.  Two completed boards are 

illustrated in Figure 4.12 and Figure 4.13. 
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Figure 4.12 - Finished Antenna Set A 

 

 

Figure 4.13 - Finished Antenna Set B 
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5 TESTING 

5.1 Testing Approach and Goals 

Terahertz waves can be generated by exciting a voltage-biased antenna placed on a 

photoconductive semiconductor wafer with an extremely short laser pulse [2].  The 

pulsed laser generates charge carriers in the substrate which are swept onto the metallic 

antenna traces to produce an electric current that radiates a terahertz band signal.  The 

laser pulse on the emitter is referred to as the pump pulse.  A similar approach is used for 

detection where the voltage bias is not needed.  Instead the charge carriers generated by 

the laser pulse are moved by the incoming signal radiated from the transmitter.  This 

charge carrier movement similarly produces an electric current.  The laser pulse on the 

detector is referred to as the probe pulse.   

This method is used to conduct experiments using the fabricated antennas in 

Chapter 4.  The goal of this experiment is to measure the current in the detector antenna 

in the presence of the incident THz wave.  By varying the time delay between the pump 

and probe pulses, the time dependent amplitude of the THz radiation is measured.  The 

frequency response of the THz radiation is then deduced using a Fourier transform [25]. 

 

5.2 Current vs. Voltage Curves 

First, the connectivity and functionality of the antennas is tested by investigating 

the current-voltage relationship of the substrate through the connections on the PCB.  The 

substrate is expected to function as a resistor in the absence of photogeneration.  This is 
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confirmed by measuring the dark current (or current in the absence of photogeneration) at 

varying bias voltages.  The bias voltage is applied across the antenna gap by connecting 

the leads from the PC board that connect to the coplanar lines of the antenna to a voltage 

source.  The current through the antenna is then measured at varying supply voltages 

from 1V to 35V.  The current-voltage relationships of the six successfully fabricated 

antennas are found in Figure 5.1. 

 

Figure 5.1 - Antenna Current vs. Voltage Curves 

 

5.3 Equipment Setup and Specifications 

THz radiation experiments are conducted using the approach described in Section 

5.1 using the facilities at the Ultrafast Spectroscopy Lab at the University of Louisville.  
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A Ti:Sapphire laser with < 150 fs laser pulse at 775 nm is used to supply the pump and 

probe pulses.  A manual delay stage is used to set an initial delay for the probe pulse to 

compensate for the transmission time of the emitted THz wave.  A motorized delay stage 

and lock in amplifier are used to record the time-dependent current intensities.  Figure 5.2 

is a diagram of the experiment setup.   

 

 

Figure 5.2 - THz Spectroscopy System Setup 

 

 The emitter and detector antennas are mounted in the T8-H2 alignment package 

holders with a focusing lens directing the laser beam on one side and a silica lens 

collimating the radiated wave for maximum efficiency.  Parabolic mirrors are used to 

direct the THz wave from the emitter to the detector.  Figure 5.3 and Figure 5.4 show a 

closer schematic and demonstration picture of the transmission portion of the setup.  
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Figure 5.3 - THz Transmission Diagram 

 

 

Figure 5.4 - Test Demonstration Setup 
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 To maximize the signal on the detector, the transmission portion of the testing 

setup is isolated from normal atmospheric conditions by purging the atmosphere in the 

area.  The purge box in Figure 5.5 is used with a flow valve to continually flood the 

testing area with nitrogen during the experiment. 

 

Figure 5.5 - Purge Box 

 

5.4 Results 

   Multiple attempts were made with various combinations of emitter and detector 

antenna using the commercial purchased antenna and the six fabricated antennas.  

Although it is believed that some interaction between the emitter and detector was 

detected on occasion, successful measurements were not achieved. Various voltage biases 

were attempted.  Many focusing attempts were made with and without the focusing 

lenses to place the beam spot on the dipole gap.  Measurements were attempted using the 

ammeter and the lock-in amplifier directly.   
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Unfortunately, all our antennas were either burned up or damaged during the 

testing with no valid results recorded.  The laser and lab equipment used was at least 

10,000 times too powerful.  The commercial antenna datasheet lists a maximum optical 

pulse energy of 0.1 nJ.  It recommends < 10mW of optical pulse power with around 100 

MHz repetition rate and a < 100 fs pulse.  Therefore, the optical pulse energy 

 6
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= = =
×

. (5.1) 

However, the laser system used had an optical pulse power around 10-40 mW, a 

pulse duration of < 150 fs, but a 1 kH repetition rate.  Therefore, the optical pulse energy 

can be approximated by 

 3

10 10
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µ= = = . (5.2) 

The much more powerful optical pulse energy scorched the antenna and substrate beyond 

use.  The fabricated antennas were also damaged in similar fashion.  It is assumed that the 

fabricated antenna have similar damage thresholds as the commercial antenna.  Further 

testing will require a laser system with a much higher repetition rate or lower optical 

pulse energy.  The burned antennas are shown in Figure 5.6, Figure 5.7, Figure 5.8, 

Figure 5.9, and Figure 5.10.  
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Figure 5.6 - Damaged Commercial Antenna 

 

 

Figure 5.7 - Damaged Fabricated Antenna 1 
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Figure 5.8 - Damaged Fabricated Antenna 2 

 

 

Figure 5.9 - Damaged Fabricated Antenna 3 
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Figure 5.10 - Damaged Fabricated Antenna 4 

 

In addition to the damage from the laser, the additional antenna suffered cracks between 

the dipole and the pads.  These cracks occurred while manipulating the antenna during 

testing.  Figure 5.10, Figure 5.11, Figure 5.12 show the cracks in the coplanar lines. 

 

Figure 5.11 - Damaged Fabricated Antenna 5 
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Figure 5.12 - Damaged Fabricated Antenna 6 

 

 Finally, Takehito Suzuki at the Ibaraki University was able to print traces on some 

LT-GaAs and SI-GaAs wafers and conduct some testing of several bowtie antennas (see  

Chapter 3.4 for more information).   The antennas are illustrated in Figure 5.13 and 

Figure 5.14. 
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Figure 5.13 - Suzuki Fabricated Full Coplanar Line Separation Bowtie Antennas[26] 

 

Figure 5.14 - Suzuki Fabricated Half Coplanar Line Separation Bowtie Antennas[26] 
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6 CONCLUSIONS 

In conclusion, in this thesis the coupling of Maxwell’s equations and the 

semiconductor physics equations governing the functionality of the THz photoconductive 

antenna were presented.  A solution of the coupled set of equations via a Discontinuous 

Galerkin Finite Element Time Domain (DGFETD) method was also presented.  A port 

implementation of the semiconductor interactions with the excitation laser was used for 

the proposed formulation.   

The DGFETD method was validated through the simulation of a number of 

photoconductive THz antenna devices, including double sided dipole, bowtie, and split-

ring resonator antenna structures.  The simulated results were validated through 

comparison with experimental data from publications and testing.  Interesting 

characteristics of the antenna design were illustrated including, but not limited to, the 

shifting of resonant frequency due to the placement of the coplanar lines, the flattening of 

the emission intensity response by the use of bowtie geometry, the amplification of peak 

intensities due to the addition of a second ring in the split-ring resonator structures, and 

the effects of gap placement in the split-ring resonators. 

Fabrication of devices was competed using photolithography, application of traces, 

liftoff, cleaving, and embedding into printed circuit boards.  During this process, faulty 

attempts were encountered.  More successful methods were identified and evaluated.  

More specifically, cleaning the wafer thoroughly with oxygen plasma ashing and an 

ammonium hydroxide bath with an ultra-pure water rinse and minimizing the exposure of 
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the wafer and traces to air between changing the trace materials during sputtering yielded 

the best results. 

The functionality of these devices was demonstrated with the measurement of dark 

current vs. voltage bias.  Spectroscopy testing was conducted and challenges were 

identified and evaluated.  Specifications for further testing were presented.  Successful 

printing and testing of devices was accomplished via a partnership with Taketo Suzuki, et 

al. 

In summary, the DGFETD method coupled with photoconductive antenna device 

physics was validated and used to evaluate various antenna structures.  A road map for 

successful fabrication and testing of photoconductive antennas on a LT-GaAs substrate 

was also presented. 
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