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Oxycodone (OXY) is one of the most commonly abused opiates during pregnancy.
Perinatal opiate exposure (POE) is associated with neurobehavioral and hormone changes.
Little is known about the effects of perinatal OXY on the cardiovascular (CV) responses to
stress.

Objectives: to determine the effects of POE on: (1) CV responses to acute stress and
ability to discriminate using a classical conditioning paradigm; (2) changes in CV response
to the paradigm and retention of the ability to discriminate from postnatal day (PD) 40 to
young adulthood.

Methods: Pregnant rats were given i.v. OXY or vehicle (CON) daily. OXY and CON males
were fitted with BP telemetry units. Offspring were classically conditioned by following a
pulsed tone (CS+) with tail shock. A steady tone (CS−) was not followed by shock. BP
and HR were recorded during resting periods and conditioning. Changes in BP, HR from
composite analysis were compared. The paradigm was repeated on PD 75.

Results: At PD 40, OXY rats had a lower baseline mean BP (OXY: 114.8 ± 1.0 vs. CON:
118.3 ± 1.0 mm Hg; mean ± SEM) but larger amplitude of the conditional BP increase
during the stress response (OXY: +3.9 ± 0.4 vs. CON: +1.7 ± 0.4 mm Hg). Both OXY and
CON rats were able to discriminate between CS+ and CS−. At PD 75, the effects of
OXY on the increased amplitude of the conditional BP had dissipated (CON: +3.4 ± 2.3
vs. OXY: +4.5 ± 1.4 mm Hg). BP responses to the stress and non-stress stimuli did not
differ in the OXY group, suggesting that OXY may have decreased the ability of the
offspring to discriminate (OXY: CS+: 147.1 ± 1.6, CS−: 145.9 ± 1.6 mm Hg vs. CON: CS+:
155.4 ± 2.7, CS−: 147.8 ± 2.7 mm Hg).

Conclusion: POE is associated with subtle alterations in stress CV responses in weanling
rats which dissipate when the conditioning is repeated at an early adult age. Although
POE effect on the ability to discriminate at weanling age could not be detected, POE may
impair retention of this ability in adulthood.

Keywords: oxycodone, opiate, blood pressure, sympathetic, conditioning, classical

INTRODUCTION
Opiate dependence during pregnancy continues to be a major
public health problem. Although the rate of illicit drug use among
pregnant women aged 15–44 years remained unchanged at 4.5%
based on data averaged for 2008 and 2009, the rate of current
illicit drug use among women aged 15–44 who were not preg-
nant continued to rise to 10.6% in 2008 to 2009 reported by
National Survey on Drug Use and Health (NSDUH) (SAMHSA
and NHSDA, 2008, 2009, 2010, 2011). Oxycodone (OXY), a
relatively new and powerful opiate analgesic, is widely abused
by pregnant women, and has become one of the most pop-
ular illicit drugs second only to marijuana. An epidemiologic

study specifically reporting the prevalence of OXY use during
pregnancy is still lacking, but NSDUH reported as high as 5.9
million or 2.3% of the United State population aged 12 or
older as lifetime OXY users (SAMHSA and NHSDA, 2008, 2009,
2010, 2011). OXY displays a significant affinity to the kappa
(κ)-opioid receptor (OR) (Ross and Smith, 1997) with a rela-
tively low affinity to Mu (μ)-ORs compared to morphine (Chen
et al., 1991). OXY crosses the blood-brain barrier rapidly; thus
brain concentrations are three times higher than those in blood
(Bostrom et al., 2006). Therefore, the effects of perinatal OXY
exposure on the developing fetus can be quite different from those
of morphine.
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A number of studies have reported the suppressive effects of
exposure to prenatal morphine on the stress axis and behav-
ior. For example, prenatal morphine exposure is associated with
adrenal atrophy and adrenal hypoactivity in neonatal rats (Lesage
et al., 1996), decreased elevation of adrenocorticotropin (ACTH)
and corticosterone (CORT), depression-like behavior during
forced swim test in adult male rats (Klausz et al., 2011), and
suppressed response of ACTH to a restraint stress test (RST) in
adult male and female rats (Slamberova et al., 2004). However,
there have been very few studies that directly examine the effects
of perinatal OXY exposure on the stress axis. We have previ-
ously reported that perinatal OXY increases the pituitary (ACTH)
response to a pharmacological challenge, corticotrophin releas-
ing hormone, only in late adolescent male, but not female rat
offspring (Sithisarn et al., 2008). Not only the HPA axis but
also the sympathetic-adrenal-medullary (SAM) axis intimately
regulates the stress response (Carrasco and Van De Kar, 2003;
De Kloet et al., 2005). Blood pressure (BP) is a major car-
diovascular (CV) output of the SAM axis that has never been
adequately studied in the context of perinatal drug exposure.
Therefore in the present study, we tested the hypothesis that peri-
natal OXY exposure enhances the BP response to classical aversive
conditioning and impairs the offspring’s ability to differentiate
between stress vs. non-stress stimulus. To this end, we investi-
gated the CV response to acute behavioral stress in the male
offspring of dams exposed to OXY during pregnancy using a clas-
sical conditioning paradigm that has been previously described
(Randall et al., 1994).

We chose the conditioning paradigm in part because the two
“components” of the arterial BP changes during the conditioning
paradigm are mediated by different underlying neuronal pro-
cesses (Randall et al., 1994). The first component, or C1, is a
transient but relatively large increase in arterial BP that ulti-
mately derives from an intrinsic orienting response; as such, it
is not “learned,” though it is modified by continued exposure
to the conditional stimulus (El-Wazir et al., 2005). The second
component, or C2 pressor event, is small, but more sustained
than the C1 component; C2 must be acquired as the rats learn
the association between the pulsed tone and the shock (El-Wazir
et al., 2005). We compared these components of the conditional
response, and associated changes in heart rate (HR), in postnatal
day (PD) 40 offspring of dams exposed to OXY or vehicle dur-
ing gestation. We used an implanted telemetry device to record
BP beat by beat. This approach was repeated on PD 75 to test
whether any effects of prenatal exposure on the stress response
dissipated as the pups matured. Therefore, in this portion of the
study we hypothesize that any effects of perinatal OXY expo-
sure observed at 40 days of age would be smaller or absent
when tested in adult animals (i.e., 75 days of age, when the ani-
mals are reproductively competent). We now report that there
is no between-group difference in the C1 BP response, but that
C2 pressor event was larger in the offspring exposed to OXY
in utero when tested at PD 40, though not when tested at PD
75. Finally, we also report for the first time that the nature of
the HR response to CS+ changes with age, and that drug expo-
sure during gestation affects the nature of this response when
tested at PD 40.

METHODS
ANIMALS AND PRENATAL TREATMENTS
Virgin female Sprague-Dawley (SD) rats (Harlan, Indianapolis,
IN) weighing 194–223 g were housed individually and maintained
in a 14 light–10 dark photoperiod (lights on at 0500) at 22–25◦C
with regulated humidity. Rat chow and water were provided
ad libitum. The study protocol was approved by the University
of Kentucky Institutional Animal Care and Use Committee.

Once released from quarantine, the females were fitted with
a right atrial cannula (Mactutus et al., 1994; Mactutus, 1999)
with a subcutaneous, dorsally implanted access port, and allowed
to recover for 1 week. During this time the cannulae were
flushed daily via the subcutaneous port with sterile heparinized
saline (0.4 cc, 100 IU/ml). Daily vaginal lavages were obtained
to determine estrous cyclicity. In order to avoid the physiolog-
ical consequences of transporting and cannulating females in
early pregnancy, we bred virgin females (>200 g) with proven
breeder males after cannulation surgery. Beginning 1 week after
cannulation, the females were group housed with males for
breeding. The day that sperm were detected via a vaginal smear
was designated gestation day (GD) 0, and the females were
individually housed thereafter. To minimize the physiological
effects on the offspring of being raised by drug exposed moth-
ers, additional females, destined to serve as foster mothers (see
below), were also bred at the same time; these females were
not cannulated or exposed to drug treatments throughout their
gestation.

The pregnant rats were randomly assigned to either control
(CON, normal saline vehicle) or OXY treatment groups. From
GD 8 to 21, experimental dams were slowly injected over 10 min
via the atrial cannula with OXY hydrochloride (2 mg/kg/day;
n = 5 dams) (Mallinckrodt, St. Louis, MO) in normal saline
solution (NSS). This dose was selected based on our pilot study
that the dams were able to tolerate this dose without distur-
bance of litter size or birth weights of rat pups and that it is
adequate to create opiate effects. We have previously reported
changes in stress hormones of the offspring after exposures to
intravenous 0.8 mg/kg/day of OXY during gestation (Sithisarn
et al., 2008). Davis et al. had used escalating oral dose to as high as
15 mg/kg/day in their model and reported impaired spatial learn-
ing and/or memory in the offspring after prenatal OXY exposure
(Davis et al., 2010). Control dams were given 1 ml/kg NSS once
daily (n = 6 dams).

Births occurred on GD 21–22. Once delivered, all pups were
counted and weighed. On PD 2, all litters were adjusted to con-
tain 10-11 pups with equal numbers of male and female pups
when possible. Since the pups’ brain development in the first PDs
corresponds to the third trimester of human fetal brain devel-
opment, and withdrawal symptoms may affect maternal nursing
behavior, the dams continued to receive OXY or NSS injection
on PDs 1, 3, and 5 at the same dosage delivered during gestation.
On PD5, all pups in each litter were fostered to untreated foster
dams (see above). The pups were weighed daily and weaned at
PD 25 when they were separated by sex. After weaning, the pups
were randomly assigned to the experimental groups. For statisti-
cal analysis, data from all pups within a given litter were averaged
to generate one data set per dam as described below.
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EXPERIMENT: CLASSICAL CONDITIONING
Subjects
Male rat pups were randomly selected on PD 27–30 from CON
(n = 12 pups from 6 dams) and from OXY-treated litters (n = 11
pups from 5 dams) for the classical conditioning study.

Implantation of the telemetry
Arterial BP telemetry probes (PhysioTel™, Model PA-C40, Data
Science International, MN) were implanted in each experimen-
tal pup at PD 27–30 days of age using standard rodent survival
surgery techniques. The animals were anesthetized (sodium pen-
tobarbital, 50 mg/kg) and the abdominal aorta exposed via a
laparotomy. The sensory element of the implantable telemetry
probe was placed into the aorta via puncture such that its tip
pointed toward the heart (i.e., “upstream”). The body of the probe
(i.e., that contains the necessary circuitry, transmitter and bat-
tery) was secured to the interior abdominal wall. The incision was
closed and the skin approximated by wound clips. The animals
were placed on a warm pad and were monitored until they recov-
ered from surgery. Upon arousing they were returned to their
home cage. The rats were allowed a minimum of 3 days to recover
before experiments commenced.

Behavioral conditioning
Details of the conditioning paradigm have been published
(Randall et al., 1993, 1994). Briefly, the animals were habituated
to handling and restraint in a comfortable conical cloth sock for
1–2 h daily for 2 days. The animal was free to emerge from the
restraint, but was immediately reintroduced to the sock until, by
the end of the second day, it tended to “snuggle” at the apex of
the cone with only occasional attempts to exit. Each rat was then
exposed to five sets of a tone that would eventually become the
“stress stimulus” and a tone that eventually would become the
“non-stress stimulus”. The stressful stimulus (CS+) consisted of
a 15-s pulsed tone; on the last tone of this first day of train-
ing, and on all subsequent presentations, CS+ was followed by
a 0.5-s tail shock, the unconditional stimulus (US). The inten-
sity of the shock was adjusted to the lowest level that caused the
rat to flinch and vocalize (squeak); the intensity usually ranged
between 0.2–0.3 mA and never exceed 0.3 mA. The 15 s, non-
stressful stimulus tone (CS−) was identical to the CS+ tone
except it sounded continuously (i.e., the tone was not pulsed),
and was never followed by a shock. Tones were presented in ran-
dom pairs (e.g., CS+, CS−; CS−, CS+ . . . ). A minimum of 5 min
elapsed between tone presentations. Training in the conditioning
paradigm continued for two additional days during which 5 CS+
and 5 CS− were presented daily.

DATA ACQUISITION AND ANALYSIS
Conditioning trials were conducted starting at PD40 and, in some
pups, again starting at PD75. In each case the rat was restrained
in the cloth shock and an initial single day’s set of 5 CS+ and 5
CS− trials was conducted to “refresh” the conditional response;
the BP and HR data from these trials were not used in data analy-
sis. Over the next 2 days additional sets of 5 CS+ and 5 CS− trials
were conducted during restraint and these data were retained for
subsequent analysis of the conditional CV response. Digital data

sampling began 15 s before the onset of the tone and continued
for 30 s (i.e., until 15 s after tone-off). Data from conditioning tri-
als from a given rat were ensemble averaged (see below) for that
pup; data from pups born of a common dam were, in turn, aver-
aged together to yield a single data set for each OXY and each
CON-treated dam. BP was digitally sampled at 500 Hz using an
analog-to-digital converter (Data Translation 2810) and a micro-
processor. HR was determined from the pulsatile BP signals. The
programs (Vii soft, Lexington, KY) were developed for a 32 bit
operating system (Windows NT) using Microsoft Visual C++
with foundation class in order to utilize large data files. The digital
files of the BP recorded during 10 CS+ were ensemble averaged
for each rat to yield a “high resolution” analysis of the conditional
response for that individual (Randall et al., 1993, 1994); likewise
for CS− trials.

The data analysis program quantified the conditional response
from the ensemble data files. For each individual rat the mBP
and HR averaged over the 15 s immediately preceding the tone
was taken as the baseline, and all aspects of the response pat-
tern were assessed as changes relative to this baseline. The initial
increase in mBP was assessed as the maximum change observed
within the first 2 s after the tone onset (i.e., C1-Max). The time
when C1-Max occurs (i.e., t C1pk) was determined with respect
to tone onset. C2-Avg was the average value of mBP during
the final 10 s of the tone; this interval is indicated in Figure 1.
The unconditional response (UR) is given as the maximum BP
response occurring within the 3.5 s following the end of the tone.
The HR corresponding in time to each of the BP values, above,
was also recorded. Note that the BP data between the third and
fifth seconds of the tone were discarded since they included the
fall in pressure that separates C1 from C2 (Randall et al., 1993,
1994).

The data were analyzed using a linear mixed model in
which the presence or absence of OXY exposure is the

FIGURE 1 | The high resolution analyses of the change (�, relative to

baseline) in mean arterial blood pressure (mBP; top panel) and in HR

(bottom panel) for pups from control dams (n = 6) to CS+ tone (blue)

and to CS− tone (black), on post natal day 40.
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independent variable and the physiologic parameters (HR, mBP)
are dependent variables. All findings are reported as mean ±
SEM. Statistical significance was defined as p < 0.05.

RESULTS
PARTURITION, LITTER SIZE, AND BODY WEIGHTS
There were no differences between the OXY and CON pups in
timing of parturition, litter size and body weight, either male
or female, from birth to PD 32 (p > 0.05). For the OXY and
CON male pups, mean birth weights (SEM) were 5.41(0.31) g and
4.92 (0.11) g respectively. Neither were there differences in body
weights of the pregnant rats between the two groups before or
after delivery.

BASELINE MEAN ARTERIAL BLOOD PRESSURE AND HEART
RATE, PD 40
Average baseline (i.e., pre-tone) mBP was lower in perinatal OXY
exposed offspring (OXY: 114.8 ± 1.0) compared to pups from
dams exposed to CON (118.3 ± 1.0 mmHg) (p = 0.02). Baseline
HRs were not different between the two treatment groups (CON
462 ± 10.8 bpm; OXY: 456 ± 11.3 bpm).

CONDITIONAL CARDIOVASCULAR RESPONSE, PD 40
Group averaged CS+ and CS− trials
Figure 1 shows the high resolution analyses of the change
(�, relative to baseline) in mBP (top panel) and in HR (bot-
tom panel) averaged across all pups from NSS treated dams
(n = 6) in response to the CS+ tone (blue) and the CS− tone
(black). Data are shown starting 15 s prior to tone onset and
extending for 15 s after the half second shock delivery (or, for
CS−, tone-off). The mBP increased to an initial peak (C1-
max) immediately following tone onset for both CS+ and CS−.
[Recall that the CS− tone was identical in frequency and ampli-
tude to the CS+ tone so several tenths of a second elapsed
before the animal could determine if a given tone was pulsed
(CS+) or steady (CS−); hence the initial response to CS−]. The
increase in mBP was sustained in response to CS+ as seen by
the clear C2 that extended throughout the latter seconds of the
trial. Conversely, mBP decreased to baseline during CS− after
the initial C1 increase. HR modestly decreased within seconds
in response to onset of both tones; it remained below baseline
throughout CS+ but returned toward baseline for CS−. The
UR to the tail shock for CS+ trials consisted of an increase in
mBP and in HR. There were no corresponding sustained changes
following the CS− tone.

Figure 2 shows the actual value (i.e., not normalized to base-
line) for mBP and HR for conditioning trials from pups born
from 6 CON and 5 OXY dams. The lower baseline mBP in pups
from OXY dams, which was described above, is easily discerned.
Likewise, the similarity in baseline HRs between the two groups is
clear. The individual components of the mBP and HR responses
to CS+ and CS− are presented below.

Mean arterial BP conditional response, PD 40
As can be discerned qualitatively in Figure 2, the initial, short-
latency C1 peak increases in mBP after CS+ onset were not
different between CON (+5.1 ± 0.4 mm Hg) and OXY pups

FIGURE 2 | The actual value (i.e., not normalized to baseline) for mBP

and HR for conditioning trials from pups born from 6 controls (Saline)

and 5 oxycodone (Oxy) dams on post natal day 40.

(+5.7 ± 0.4 mm Hg). Although the magnitude of the peak
change in C1 mBP (� C1pkBP) did not differ between CS+ and
CS− tones for either group, the average value of mBP through-
out the C1 event was significantly larger during CS+ as compared
to CS− tones for both groups with no significant group x tone
interaction. Finally, the time at which the peak C1BP (t C1pk)
was attained relative to tone onset (i.e., evaluated for both CS+
and CS−) was similar for CON (0.74 ± 0.13 s) and OXY pups
(0.84 ± 0.14 s).

The second component (C2) of the mBP response, that
is sustained throughout the last 10 s of the tone, and the
corresponding change in HR (see below) are of particular inter-
est with respect to an animal’s ability to acquire the condi-
tional response and to discriminate between the two conditions
(Randall et al., 1993, 1994; El-Wazir et al., 2005). CS+ pro-
duced a larger C2 pressor response (� C2BP) in rats from OXY-
treated dams (+3.9 ± 0.4 mm Hg) as compared to CON pups
(+1.7 ± 0.4 mm Hg) (Figure 3, top). This difference persisted
even when corrected statistically for differences in baseline values.
Both OXY and CON rats discriminated between CS+ and CS−,
as reflected in a significant difference in � C2BP between CS+
and CS− (CON CS−: −0.6 ± 0.4 mm Hg; OXY CS−: +0.4 ±
0.4 mm Hg). The group × tone interaction, however, was not
significant.

There were no between group differences in any aspect of the
animals’ mBP response to shock delivery itself (UR BP). Likewise,
there were no differences in the mBP during the 15 s following
shock delivery (i.e., recovery).

HR conditional response, PD 40
The cardio-deceleration that occurs during CS+ concomitantly
with the C2 pressor response, but which is not sustained dur-
ing CS−, as shown in Figure 1, is another hallmark of the
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FIGURE 3 | The corresponding changes from baseline in BP (top) and

HR (bottom) during the conditional response between the two tones

CS+ (dark bars) or CS− (gray bars) in control and oxycodone animals

on post natal day 40 (∗p < 0.05).

discrimination between CS+ and CS−. Figure 2 suggests that the
slowing during CS+ is less in the OXY as compared to the CON
rats. In fact, statistical analysis of actual HR values, of actual HR
controlled for baseline differences, and of changes in HR during
C2 (� C2HR) confirms that the OXY rats’ bradycardia during
C2 was smaller than in CON (Figure 3, bottom). In particu-
lar, the −24.8 ± 19 bpm slowing observed in the CON during
the last 10 s of CS+ significantly exceeded the −16.6 ± 2.0 bpm
observed in OXY; moreover, there was a significant group x trial
interaction [F(1, 21) = 9.37]. This difference in the change in HR
persists when the effect of the somewhat different baseline HR is
controlled for statistically.

BASELINE MEAN ARTERIAL BLOOD PRESSURE AND HEART RATE,
PD 75
We maintained a subset of pups from CON and OXY through an
age of 75 days post-delivery to determine if any between group
differences were accentuated or diminished with age. Mean base-
line BPs in adults were higher than those on PD 40, but the
overall baseline BPs in OXY, were not significantly different from
CON (OXY: 143.4 ± 1.7 vs. CON: 149.1 ± 2.8 mmHg; p = 0.1).
Baseline HRs were remarkably lower at PD 75 than at PD 40 for
both CON (396 ± 21 bpm) and for OXY (395 ± 13 bpm), but,
again, there were no between group differences.

CONDITIONAL CARDIOVASCULAR RESPONSE, PD 75
Mean arterial BP conditional response, PD 75
After adjustment for the baseline BP, C1pk BP, � C1pk BP, C1avg
BP, and � C1BP were not different between OXY and CON rats,
either during CS+ or CS−. Time to the peak C1 mBP increase was
not different between OXY and CON either during CS+ or CS−.

The significant difference in the amplitude of the � C2BP
response during CS+ observed at PD40 disappeared by PD 75
(CON: +3.4 ± 2.3 mm Hg; OXY: +4.5 ± 1.4 mm Hg).

Importantly, CON rats were able to differentiate between CS+
and CS−, as demonstrated by an increased C2BP during CS+
but not for CS− (CS+: 155.4 ± 2.7 vs. CS−: 147.8 ± 2.7 mmHg;
p = 0.02). Conversely, even though OXY rats could differenti-
ate between CS+ and CS− at younger age, they did not retain
this ability during adulthood (CS+: 147.1 ± 1.6 vs. CS−: 145.9 ±
1.6 mmHg, p = 0.49). These discrepancies persisted after con-
trolling for the baseline values or when comparing using �

C2pk BPs (CON CS+ vs. CS−: p = 0.029, OXY CS+ vs. CS−:
p = 0.14).

HR conditional response, PD 75
A major difference in the conditional HR response at PD 40 was
that the CON animals slowed rate more during C2 than did the
OXY animals. At PD 75 there were no between group differences
in � C2HR during CS+, and, in fact, the conditional bradycardia
at PD 40 was no longer elicited during C2 at PD 75 (CON: −2 ±
17 bpm; OXY +2 ± 10 bpm).

UR HRs were similar between CON and OXY rats, during both
CS+ and CS−. Finally, there were no between group differences
in recovery mBP or HR.

DISCUSSION
PD 40
This study has demonstrated quantitative differences in base-
line mBP and in select aspects of the CV response to an acute
behavioral stress in rat pups born of dams exposed during gesta-
tion to OXY as opposed to control pups born of dams exposed
to saline. The conditional response is advantageous for a study
such as this because a great deal is known about the underlying
mediation of the changes in mBP and in HR, and because the
response pattern is reproducible and stable over time. Moreover,
the response pattern can be elicited multiple times at the inves-
tigator’s discretion. Major findings are that at 40 days of age rat
offspring in the OXY group as compared to the CON had a mod-
estly, but significantly, lower baseline mBP (with no difference in
baseline HR), and a larger increase in mBP during the C2 com-
ponent of the conditional response with a concomitantly smaller
decrease in HR. There was no between group difference in the
C1 component of the BP conditional response. These findings
can be interpreted in terms of what is known about the media-
tion and control of the conditional CV response pattern in the
mature SD rat.

The short-latency conditional increase in mBP, which we
call C1, is preceded by a large-amplitude, but short-lived “sud-
den burst” (SB) in sympathetic nerve activity (SNA) in SD rats
(Randall et al., 1994); the amplitude of the SB correlates with
the amplitude of the C1 pressor response (Burgess et al., 1997).
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The C1 BP increase is produced by an increase in peripheral resis-
tance; in fact, there is little or no concomitant change in either
stroke volume or HR and, thereby, none in cardiac output (Li
et al., 1998). As noted previously, C1 originates as an orienting
or startle response (though it subsequently attains properties of
a conditional response); that is, no “learning” is initially required
for the animal to demonstrate this component of the response
(El-Wazir et al., 2005). It is noteworthy, therefore, that there were
no between group differences in the present study in any aspect of
C1, including its latency with respect to tone onset. That is, OXY
exposure in utero did not affect this “intrinsic” aspect of an acute
stress response.

The C2 pressor event, which occurs following the SB in SNA,
is accompanied in time by a moderate (ca. +24%), but sustained
increase in sympathetic activity (Randall et al., 1994). Relative
to baseline, cardiac output increases during C2 by 2 ± 1 ml/min
while peripheral resistance decreases on the average by 4 ± 2 dyn
s/cm5 in the SD strain (Li et al., 1998). The sustained C2 mBP
increase is dependent, therefore, upon the heart’s developing
and maintaining an increase in cardiac output over baseline. In
contrast to C1, C2 is acquired as the animal learns the associa-
tion between the CS+ tone and the US shock (El-Wazir et al.,
2005)—the rat must learn the tone/shock pairing to display a C2.
It is again particularly noteworthy, therefore, that the C2 mBP
increase was significantly larger in the OXY animals than their
controls. This implies that the drug exposure in utero impacted
“higher” cognitive function with effects that can be detected in
the offspring’s learned response pattern.

The nature of the C2 HR change during CS+, if any, is species-
dependent (compare Randall et al., 1994; Li et al., 1997, 1998;
Brown et al., 1999). To date we had studied only adult rats and HR
is essentially unchanged (Randall et al., 1994) or decreases by only
∼5 bpm (Li et al., 1998) relative to baseline in adult SD rats dur-
ing the last 10 s of CS+. The CS+ C2 bradycardia is eliminated by
atropine in Zucker lean and obese rats, but only modestly (though
significantly) attenuated by beta-adrenergic blockade (El-Wazir
et al., 2008). The HR slowing is therefore attributable primar-
ily to elevated parasympathetic nervous drive to the SA-node,
probably via the baroreflex secondary to any C2 mBP increase.
In the context of these previous studies two current observations
are remarkable. First, in the young SD rats of both groups, in
contrast to the SD adult, HR significantly decreased during C2

relative to baseline (Figure 1). Second, the C2 HR decrease was
significantly smaller in the OXY vs. CON group, despite the larger
C2 mBP increase in the OXY vs. CON. This latter observation
implies either that the parasympathetic control of HR is some-
what impaired in the OXY animals, or that the “gain” of their
baroreflex is smaller than the controls, or perhaps both conditions
obtain.

A clear difference in the nature of the CV response to CS− vs.
CS+ is indicative of the subject’s ability to discriminate between
the two behavioral situations. In the conditioning paradigm, dis-
crimination such as this demonstrates that the response pattern
is truly a learned behavior, and not simply an erratic response to
any given event (Randall et al., 1993). The ability of the SD rat to
demonstrate such discrimination is acquired over successive trials
during the “acquisition” phase of training—as the animal learns,

or acquires the conditional response (El-Wazir et al., 2005). Each
group clearly demonstrated the ability to discriminate CS+ from
CS−, both by the relatively smaller C2 mBP increase and smaller
HR decrease during CS−. In other words, prenatal exposure to
OXY did not demonstrably impair this aspect of the OXY animals’
ability to learn the behavioral paradigm at PD 40.

PD 75
As animals in both groups matured baseline mBP rose and base-
line HR fell; the significant difference observed at PD 40 in
baseline mBP disappeared. Moreover, the significant difference in
� C2BP at PD 40 also disappeared. These findings indicate that,
as the OXY rats matured, the effects of their prenatal exposure to
OXY upon their response to the acute stress dissipated. Finally,
the significant HR slowing during C2, which is not characteris-
tic of the (adult) SD, was no longer evoked during CS+ at PD 75,
indicating that the nature of the conditional HR response changes
with maturation.

The baseline mBPs in both groups at PD 75 (i.e., CON 149 mm
Hg, OXY 143 mm Hg) were higher than we expected. That stated,
the 75 day old animal is younger than animals in which we
have typically recorded pressure, so it may be that at this ear-
lier developmental stage the mBP is higher than we observe in
the mature rat. In fact, Litchfield reported a progressive increase
in mBP from birth to PD 35 (mBP = 109.6) in anesthetized
rat pups, but he did not follow their pressures further and the
trajectory in the rise of mBP appeared to be leveling by PD
35 (Litchfield, 1958). Kasparov and Paton (1997) also reported
an upward progression in anesthetized rat pups from PD 6 to
45 (mBP = 74.6 mm Hg), but with no additional statistically
significant increase at PD 45 (Kasparov and Paton, 1997). We
reported beat-by-beat mBP via telemetry averaged over 24 h in
rats ∼60–90 days of age while in their home cages to be ∼98 mm
Hg, and that mBP gradually declined thereafter as the animals
matured (Anigbogu et al., 2012). By comparison, we reported
(Hoyt et al., 2013) a mBP of 127.6 ± 13.5 (SD) mm Hg via
catheter in behaviorally conditioned adult rats during the 15 s
baseline (i.e., as in the present study), which is clearly higher than
our value from the 24 h telemetry. The present pups were not
subject to the sock restraint or periodic handling between mea-
surements at PD 40 and at PD 75, so the unexpectedly high mBP
perhaps is attributable to the relatively unaccustomed restraint
on PD 75.

PRENATAL OPIATES EFFECTS ON THE AUTONOMIC NERVOUS SYSTEM
To date there are no human or animal studies that directly explore
the effects of prenatal OXY on BP and autonomic system con-
trols; however, there is evidence both from human and animal
studies suggesting that the autonomic nervous system is affected
by the exposure to opiates in utero. Many human neonates
prenatally-exposed to opiates experience symptoms of the neona-
tal abstinence syndrome which are autonomic regulated functions
(e.g., increased sweating, nasal stuffiness, fever, mottling, and
temperature instability) (American Academy of Pediatrics, 1998;
Bandstra et al., 2010). To study autonomic control in children,
vagal tone adaptation, among other methods, has been used as
an indicator of autonomic regulation in the setting of prenatal
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cocaine exposure (Sheinkopf et al., 2007). The variability in HR
that occurs at the frequency of breathing, or respiratory sinus
arrhythmia (RSA), reflects the parasympathetic influence on HR
variability via the vagus nerve (Randall et al., 1991; Berntson
et al., 1993; Calkins and Keane, 2004; Yasuma and Hayano, 2004).
Suppression of RSA seen on electrocardiography has been con-
sidered an adaptive response indicative of removal of the vagal
brake to increase metabolic output in order to engage more effec-
tively with the environment (Porges, 1995, 2007). In general,
higher levels of baseline parasympathetic activity as measured
by RSA and/or the ability to suppress parasympathetic activity
are related to enhanced autonomic emotional regulation and its
developmental outcomes (Calkins and Keane, 2004; Stifter et al.,
2011). RSA suppression during an attention demanding task was
impaired in school-aged boys who were exposed to opiates (hero-
ine/methadone) in utero, suggesting possible long term effects of
opiates on the (dis)organization of the vagal system (Hickey et al.,
1995). However, this finding was inconsistent with a subsequent
study which showed that when an extrinsic incentive, and tasks
that were interesting, were offered, RSA suppression in opiate-
exposed school-age boys was comparable to the controls (Suess
et al., 1997).

Animal studies have shown that prenatal opiates induced
changes in sympathoadrenal activity, although the direct effects of
these changes on BP and HR have not been previously examined.
For example, under resting conditions, adult male rats prena-
tally exposed to morphine had decreased adrenal noradrenaline
(NA) and adrenaline contents, but increased circulating levels of
adrenaline (Dutriez-Casteloot et al., 1999). Under ether inhala-
tion stress, these rats had hypo-responsive SAM activity; adrenal
norepinephrine was decreased at 90 min after inhalation and the
compensatory biosynthesis of adrenal catecholamines did not
adapt appropriately to stress when compared to controls (Laborie
et al., 2005).

The possible underlying mechanisms of changes in autonomic
control after prenatal exposure to OXY remain to be investi-
gated. The enhanced C2 mBP increase in the OXY animals implies
either that they have a larger increase in SNA evoked by the
acute stress, or that the effector response (i.e., vascular smooth
muscle and/or myocardium) to a given increase in SNA was
enhanced in OXY animals. Changes in the regulatory functions of
κ-ORs on the myocardium may also contribute to the enhanced
mBP increase. OXY acts, besides on μ-OR, on κ-OR (Ross and
Smith, 1997). The κ-opioid system works closely with the sym-
pathetic nervous system in the regulatory functions of the heart
(Wong and Shan, 2001). Endogenous κ-opioid peptides (dynor-
phins) are found in the sympathetic nerve fibers and ganglion
cells (Steele et al., 1996). Chemical sympathectomy reduces the
amount of dynorphin in the heart, indicating that κ-opioid pep-
tides may co-exist with the catecholamines in the sympathetic
nerve terminal (Wegener and Kummer, 1994; Pepe et al., 2004).
The activation of κ-OR with a selective exogenous agonist U50,
488H inhibits the effects of β-adrenergic receptor (β-AR) ago-
nist to increase rat myocyte contractility (Yu et al., 1998). These
inhibitory effects are antagonized by a selective κ-OR antago-
nist, indicating that the effects are κ-OR mediated (Yu et al.,
1998). A disturbed cross-talk between κ-OR and β-AR (Pepe

et al., 2004) by significant reduction in or absence of the inhi-
bition of β-AR stimulation by κ-OR stimulation may lead to an
excessive increase in cardiac activity leading to disproportionately
increased BP (Wong and Shan, 2001). Chronic exposure to other
opioid agonists such as morphine causes receptor internalization,
and changes in receptor binding or post-translational modifi-
cation and receptor biosynthesis (Patel et al., 2002; Przewlocki,
2004; Nagi and Pineyro, 2011). Thus, one can speculate that long
term in-utero exposure to a κ-OR agonist such as OXY may down-
regulate the expression of κ-OR in cardiac myocytes and in turn,
reduce the inhibition of β-AR stimulation during stress and lead
to significantly increased C2 mBP in the OXY animals.

THE EFFECTS OF PRENATAL OPIATES ON LEARNING/MEMORY AND
COGNITION
To date there have been very few human studies that identify
the effects of prenatal opiate exposure on cognitive development
and learning, and most of those which have been published were
conducted in children born to heroine or methadone dependent
mothers who also used other illicit drugs. Thus the outcomes
were confounded by the effects of other drugs and psychoso-
cial factors. Hyperactivity, lack of concentration and aggression
were reported in these children (Olofsson et al., 1983). Cognitive
deficits in opiate-exposed children were noted at various ages
in a few studies (Van Baar and De Graaff, 1994; Pulsifer et al.,
2004; Steinhausen et al., 2007). Previous reports indicate that
exposure to other opiates prenatally is associated with impaired
learning/memory (Niu et al., 2009; Wang and Han, 2009; He et al.,
2010). More recently, Davis et al. (2010) used an animal model
to study the effect of prenatal oral OXY exposure on learning
and/or memory in adult male rats. OXY rats showed a decreased
use of spatial strategies and increase in non-spatial strategies in
the Morris water maze. Interestingly, OXY rats had a modest but
significant retention deficit in T-maze tasks when assessed 5 days
after acquisition training ended (Davis et al., 2010). This is con-
sistent with our findings that even though OXY rats were able to
learn to differentiate between CS+ and CS− at age PD 40, they
were not able to retain this ability when tested at PD 75, even if
the procedure was repeated prior to the test with set of 5 CS+
and 5 CS− trials to “refresh” the conditional response at this age.
These findings suggest that perinatal OXY exposure may be asso-
ciated with impairment of formation and/or storage of memory.
The mechanisms for this memory deficit remain to be eluci-
dated but there is evidence that prenatal exposure to other opiates
is associated with alterations in hippocampal cholinergic func-
tion (Vatury et al., 2004), glutamatergic neurotransmission (Tao
et al., 2001; Yang et al., 2003), hippocampal synaptic complex
(Lin et al., 2009) and increased hippocampal neuronal apopto-
sis (Wang and Han, 2009) which may lead to memory/cognitive
deficits.

CONCLUSIONS
In conclusion, perinatal OXY exposure is associated with an
increased BP response to the “learned” component of an acute
behavioral stress in the young adolescent male rats, suggesting
increased SNA input or increased response of the effectors. This
difference dissipated when the stress was repeated as the rats
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matured to adult age. Adult prenatally-OXY exposed rats also
had an impaired retention of the learning of this conditioning at
younger age, which may result from a memory deficit associated
with prenatal opiate exposure.
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