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                                    ABSTRACT OF DISSERTATION 

Calpain 5 (CAPN5) is a non-classical member of the calpain family. It lacks the EF-hand 
motif characteristic of the classical calpains, calpain 1 and 2, but retains catalytic and 
Ca2+ binding non EF domains. Tra-3, an ortholog of CAPN5, is involved in necrotic cell 
death in C.elegans; although specific role of CAPN5 has not been investigated in the 

mammalian CNS. I compared relative mRNA levels of calpains in rat CNS, which 
revealed that CAPN5 is the second most highly expressed calpain. We examined 
relative levels of CAPN5 from late embryonic day 18 to postnatal day 90 and found lower 
mRNA but higher protein levels during CNS development. Using X –gal staining in 
Capn5 +/- mice, immunostaining of rat brain sections and SH-SY5Y cells, and 
subcellular fractionation of rat brain cortex, we found that CAPN5 is a non-cytoplasmic 
calpain localized in the nucleus and enriched in synaptic mitochondria.  Proteinase K 
treatment of mitochondria and mitoplasts from B35 rat neuroblastoma cells and rat 
synaptic mitochondria revealed CAPN5 was localized on the inner mitochondrial 
membrane and released from mitochondria on membrane permeabilization with 
alamethicin. We used immunolabelling, confocal imaging, nuclear subfractionation and 
transient transfections to evaluate the subnuclear localization of CAPN5. CAPN5 was 
detected in punctate domains and associated with promyelocytic leukemia (PML) 
protein, a tumor suppressor protein. We further demonstrated that CAPN5 carries a 
nonconventional bipartite nuclear localization signal. Together, these findings 
demonstrate that CAPN5 is a non-cytosolic calpain, abundant in the CNS and localized 
to the mitochondria inner membrane and nuclear PML bodies. 

Keywords: Sumoylation, Apoptosis, Cell death, Nuclear localization signal, Mitochondria 
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Chapter 1: Aims and background 

Preface 

Calpains are Ca2+ activated proteases. About 50 years ago, Dr. Guroff in a seminal work 

described Ca2+ activated proteinases (Guroff, G. 1964.), now called calpain. Since then, 

calpains have been considered to be mainly cytoplasmic, although a small fraction is 

also thought to be associated with the cell membrane. Sixteen isoforms of calpains have 

been discovered thus far, and of these, 1 and 2 are the most investigated. Many studies 

show that calpains 1 and 2 contribute to the neurodegeneration following traumatic 

insult.   In the CNS, apart from calpains 1 and 2, calpains 5, 7, and 10 are also present 

but they have domain architectures different than calpains 1 and 2. An ortholog of 

calpain 5 contributes to necrotic cell death in neurons of C.elegans. Hence, I became 

curious to investigate calpain 5 in the CNS. This dissertation presents the investigation 

of cellular biology of calpain 5.  
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1.1 Aims of the study  

Calpain 5 (CAPN5) is a non-classical member of the calpain family (Barnes and 

Hodgkin, 1996, Dear et al., 1997, Matena et al., 1998, Ono and Sorimachi, 2012). The 

calpain family has 15 catalytic isoforms and two regulatory isoforms. Calpain 1 and 2, 

the first reported calpains (Guroff, 1964, Goll et al., 2003, Sorimachi et al., 2010, 2011a), 

are Ca2+-activated proteases. They have a large catalytic subunit and a small regulatory 

subunit, each possessing Ca2+ binding EF-hand motifs (Rizo and Sudhof, 1998, Hosfield 

et al., 1999, Strobl et al., 2000, Sorimachi and Suzuki, 2001, Khorchid and Ikura, 2002, 

Moldoveanu et al., 2002). CAPN5 has only one subunit containing three domains (N, 

CysPc, and C2L) similar to calpain1 and 2, but it has a unique domain T (also called C2) 

at the C-terminus. It also lacks Ca2+ binding EF-hand domains (Barnes and Hodgkin, 

1996, Dear et al., 1997, Matena et al., 1998); yet, it may be Ca2+ activated (Waghray et 

al., 2004). Tra-3, an ortholog of CAPN5 plays a role in female sex determination in XX 

hermaphrodites and also contributes to neuronal necrotic cell death while knocking down 

Tra-3 protects against necrotic death (Hodgkin, 1986, Barnes and Hodgkin, 1996, 

Syntichaki et al., 2002). CAPN5 has been associated with pathologic conditions such as 

polycystic ovary syndrome (Gonzalez et al., 2006), endometriosis (Penna et al., 2008), 

diabetes (Saez et al., 2007), Huntington’s disease (Gafni et al., 2004) and autoimmune 

retinopathy (Mahajan et al., 2012). 

 Calpains 1,2,5,7 and 10 are also present in the CNS (Guroff, 1964, Zimmerman and 

Schlaepfer, 1984, Dear et al., 1997, Dear and Boehm, 1999, Ma et al., 2001, Waghray et 

al., 2004). We examined the relative expression of these calpains in the CNS, using a 

real-time comparative CT method (ΔΔCT) (Schmittgen and Livak, 2008). Calpain 2 had 

the highest levels of mRNA expression, exceeding CAPN 5 by 2.7 fold. CAPN 5 was the 

second most highly expressed calpain in the brain, followed in descending order by 
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calpains 7, 10, and 1 (Fig 1.8). Despite the higher mRNA expression and the importance 

of Tra-3 in neuronal necrotic death, CAPN5 has been minimally investigated in the CNS. 

Also, the role of CAPN5 in early development is controversial. CAPN 5 null mice are 

embryonically lethal in Capn5tm1Dgen/Capn5tm1Dgen line (MGI accession no.: 3604529); 

however, Capn5tm1Nde /Capn5tm1Nde null progenies are normal and healthy (Franz et al., 

2004).  The specific aims of my work are to characterize CAPN5 5 in the CNS: 

1.1.1 Specific aim 1: To examine the developmental regulation of calpain 5 in the 

CNS 

Rat brain and spinal cord will be collected from rats at age E18 (embryonic day 18), P0 

(post natal day 0), P5, P10, P15, P20, P30 and P90, N=4 per time point. Relative mRNA 

expression of CAPN5 using ΔΔCT method will be examined at each time point. Similarly, 

Western blot against CAPN5 will be performed at each time point. 

1.1.2 Specific aim 2: To examine the subcellular localization of calpain 5 

 Different subcellular fractions will be prepared from rat brain cortex.  Nuclear, synaptic 

and non-synaptic mitochondria and cytosolic fractions will be probed through Western 

blot to find subcellular localization of CAPN5. Nuclear fraction will also be purified to 

nucleic acid binding and integrated nuclear protein fractions, and probed through 

Western blot. Immunohistocytochemistry will be performed on SH-SY5Y cells and on rat 

brain sections to confirm the subcellular localization of CAPN5. 

1.1.3 Specific aim 3: To investigate a putative organellar targeting sequence on 

calpain 5 

Once CAPN5 is localized, the study will aim to determine a putative organellar targeting 

sequence (for example, nuclear localization signal). Experimentally, the predicted 

organellar targeting sequence will be ligated into the pN1-ZsGreen1 vector such that 
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ZsGreen1 is expressed at the C-terminal of the peptide sequence. SHSY-5Y cells will be 

transfected with the vector to localize expression of the ZSGreen1. 

 

1.2 Background 

1.2.1 Classical calpains 

1.2.1.1 Calpain 1 and calpain 2 

1.2.1.1a Structure and nomenclature 

Calpains 1 and 2 have large subunits with four domains (I, II, III and IV), and a small 

subunit with two domains (V and VI).  A new nomenclature for calpains was proposed at 

the 2013 FASEB-sponsored conference ‘The Biology of Calpains in Health and 

Diseases’. In this new nomenclature, the word ‘calpain’, such as calpain1 designates the 

active protein, while the abbreviation CAPN1 refers to the large subunit. The full 

composition of the calpain should be presented as CAPN1+CAPNS1 (large subunit + 

small subunit) or CAPN1/S1 for calpain 1 and CAPN2+CAPNS1 or CAPN2/S1 for 

calpain 2. Domain I is now named N-terminal domain (Fig 1.2). Domain II is divided into 

PC1 (protease core 1) and PC2 domains, and together PC1 and PC2 comprise the 

CysPc domain. Because domain III possesses β sandwich structure, it is referred to as 

the BS domain. At the level of the tertiary structure, domain III resembles the C2 like 

(C2L) domain similar to that described for protein kinase C and a phospholipase (Rizo 

and Sudhof, 1998, Corbalan-Garcia and Gomez-Fernandez, 2010). Therefore, it is also 

called C2L domain. This dissertation will mention domain III as C2L domain. Domains V 

and VI are designated as PEF (L) and PEF(S) (Penta-EF-hands) for the large and the 

small subunits, respectively. Domain V has been termed the GR (glycine rich) domain.  
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The N-terminal domain is presumed to contain a putative propeptide region (Strobl et al., 

2000). The anchor helix of N-terminal domain is cleaved during enzyme activation. The 

CysPc domain performs the catalytic activity. PC1 possesses ‘C’ residue, PC2 contains 

residues ‘H’ and ‘N’ residues (Strobl et al., 2000, Reverter et al., 2001). C2L domain 

targets the protein to the cell membrane during activation (Rizo and Sudhof, 1998, 

Corbalan-Garcia and Gomez-Fernandez, 2010). CysPc and C2L domains also have 

Ca2+ binding non EF hand sites (Strobl et al., 2000, Hata et al., 2001, Reverter et al., 

2001). 1-4 EF hands in each of PEF (L) and PEF(S) domain binds to Ca2+, which 

induces a conformational change and enzyme activation (Strobl et al., 2000). EF-5 

motifs of PEF (L) and PEF (S) are involved in the heterodimerization of the two subunits 

(Lin et al., 1997).  

 

1.2.1.1b Activation of calpain 1 and calpain 2 

Activation of calpain requires binding of Ca2+ at three sites: EF hands regions of domains 

PEF (L) and PEF (S), an acidic loop region of domain III, and catalytic sub-domains PC1 

and PC2. Activation occurs in two stages: conformational change and activation. In the 

conformational stage, inactive calpain exists as a heterodimer of large and small 

subunits. Binding of Ca2+ to each of EF 1-4 motifs of PEF (L) and PEF (S) releases the 

contact between N-terminal anchor helix and EF-2 motif of PEF (S). Ca2+ binding to the 

acidic loop of C2L domain releases the association between C2L and catalytic domain. 

These changes provide appropriate conformational change for the activation (Strobl et 

al., 2000, Reverter et al., 2001, Moldoveanu et al., 2002). Ca2+ bound C2L is presumed 

to be responsible for membrane translocation of the calpains during the process of 

activation (Rizo and Sudhof, 1998, Corbalan-Garcia and Gomez-Fernandez, 2010). In 

the activation stage, Ca2+ also binds one each to PC1 and PC2 domains and provides 
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rearrangement of the active cleft (Hata et al., 2001). This results in the repositioning of 

‘C’ and ‘H’ residues of the catalytic triad, consequently making a functional cleft. ‘C’ and 

‘H’ would otherwise be too far apart (>8.5 Å apart in calpain 1) to form an active enzyme. 

The functional distance is ~3.5 Å (Hosfield et al., 1999). The disturbance in the structure 

upon Ca2+ binding  leads to general autolysis of N terminal and C2L domains, leaving 

behind activated N terminal and CysPc domains together, and a heterodimer of PEF(L) 

and PEF(S) domains, Fig 1.3 (Chou et al., 2011).  Previously it was thought that 

activation results into an active large subunit and a homodimer of small subunits 

(Nakagawa et al., 2001, Suzuki et al., 2004). 

 

1.2.1.1c Endogenous inhibition of calpain activation 

Activities of CAPN1/S2 and CAPN2/S2 are inhibited by an endogenous inhibitor 

calpastatin (CAST). CAST has four calpain inhibitory domains (CIDs).  Each CID has 

conserved ‘A’, ‘B’ and ‘C’ sub-domains (Fig 1.4). The ‘L’ domain at the N terminus helps 

CAST to anchor to the membrane.  During calpain inhibition, subdomains ‘A’ bind to PEF 

domains of the large subunits while ‘C’ binds to small subunits. However, subdomain ‘B’ 

wraps around the remaining subunits such that it blocks the active cleft. It loops out and 

around the active cleft to avoid cleavage (Hanna et al., 2008, Mellgren, 2008, 

Moldoveanu et al., 2008). CAST possesses 34 exons: 1xa, 1xb, 1y, 1z, 1u, 2-29. Exons 

1xa-1y-1z-2-29 are retained by CAST N-terminal spliced variants type I, whereas type II 

retains 1xb-1y-1z-2-29, type III retains 1u-2-29, and type IV retains 14t-29.  1u is only 

expressed in type III, and 14t is an exon present between exon 14 and 15, which is 

uniquely present in type IV (Goll et al., 2003). 
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1.2.1.1d Physiological roles of calpain 1 and calpain 2 

CAPN1/S1 and CAPN2/S1 are ubiquitous calpains, however CAPN2/S1 is not present in 

erythrocytes.  These calpains have been implicated in many physiological roles such as 

cell motility, cell cycle regulation, regulation of gene expression, apoptosis and signal 

transduction pathway (Kishimoto et al., 1989, Hirai et al., 1991, Glading et al., 2002, Lu 

et al., 2002, Goll et al., 2003).   Transient activation of calpains is required to perform its 

basic physiological role. To perform these functions, calpain cleaves a wide array of 

proteins from structural proteins (tau, β-tubulin), receptors and channels ( GluR1, IP3R ), 

signaling enzyme ( PKC, CaMK), apoptosis proteins (caspase -3, 7, 8, 9, AIF) to 

transcription and translational factor (c-fos, c-jun, TDP-43, eLF4G) (Saatman et al., 

2010, Yamashita et al., 2012).  Although calpains have been considered mainly 

cytosolic, some are now also considered mitochondrial.  Additionally calpains may have 

a role in the nucleus. Purified CAPN2/S1 and CAPN1/S1 also proteolyse and release 

integrated nuclear H1 kinase, which otherwise is abolished in the presence of CAST 

(Mellgren, 1991).  Also, during cell division, CAPN2/S1 relocates to the nucleus, 

associates with the chromosomes, and promotes precocious disassembly of the mitotic 

spindle and progression of mitosis (Schollmeyer, 1988). Calpains also appear important 

for early development. Knocking out CAPNS1 (CAPN4 -/-), results in the ablation of the 

both CAPN1/S1 and CAPN2/S1 activities and is embryonically lethal in mice (Arthur et 

al., 2000). This suggests that calpains 1 or 2 or both are required for early development. 

Selective knock out of calpain 2 (CAPN2-/-) is also embryonically lethal (Dutt et al., 2006) 

and causes pre-implantation lethality between the morula and blastocyst stage. CAPN 1-

/- mice are viable, although they exhibit a reduction in platelet aggregation and clot 

retraction (Azam et al., 2001). Li et al 2009 showed that levels of CAPN2/S1 were 

present throughout the brain during development; however CAPN1/S1 mainly appeared 

postnatally (Li et al., 2009). 
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1.2.1.1e Pathological roles of calpain1 and calpain 2 

Sustained activation of calpain triggers the pathological cleavage of its substrates. 

Calpains are involved in many pathological conditions such as cancer, stroke, 

Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), and traumatic brain and spinal 

cord injuries (Saatman et al., 1996, Trinchese et al., 2008, Storr et al., 2011, Yamashita 

et al., 2012, Yu et al., 2013). The pathology pertaining to calpain activation is well 

characterized in traumatic brain injury (TBI). Following TBI, in the injured cortex, calpain 

activation occurs as early as 15 min (Kampfl et al., 1996) to 4 hrs (Saatman et al., 1996) 

and has been reported to last up to 48 hours (Deng et al., 2007). Late activation at 3 and 

7 days post injury has also been reported in the thalamus of the rat brain (Saatman et 

al., 1996). Activated calpains cleave αII spectrin, an intracellular cytoskeleton protein 

(Siman et al., 1984). Cleavage results in a 150 KDa and a calpain-specific 145 KDa 

breakdown fragment.  

Calpain also contributes to cell death, apoptosis, and necrosis. Cell death is a 

consequence of a series of events. During apoptosis, in response to death ligands, DNA 

damage or endoplasmic reticulum (ER) stress, pro-apoptotic proteins (BH3-only protein, 

tBID) antagonize anti-apoptotic BCL-2 protein, which activates BAK or BAX. 

Dimerization of BAK or BAX forms high order oligomers at the mitochondrial surface, 

which permeabilizes the mitochondrial outer membrane. Meanwhile, increased Ca2+ 

level in the matrix also triggers inner membrane permeabilization. Together, these 

events destabilize lipid membrane or form a transition pore consisting of VDAC, ANT 

and CYP-D. CYT-C and cleaved AIF are released into the cytosol. Cleaved AIF 

translocates to the nucleus to induce cell death, while CYT-C forms apoptosome to 

activate caspase 3 (CASP3) and CASP7 in the cytosol. CASP3 cleaves ICAD that 

translocates to the nucleus to induce DNA fragmentation (Yuan et al., 2003, Tait and 
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Green, 2010). Calpains contribute to many of these events (Fig 1.5). Cytosolic calpain1 

cleaves BID to tBID, which activates proapoptotic protein BAK or BAX. Mitochondrial 

CAPN1 located in the inner membranous space cleaves Na+/Ca2+ exchanger and leads 

to Ca2+ overload in the mitochondrial matrix promoting inner membrane permeabilization 

(Garcia et al., 2005, Kar et al., 2009). Calpain 1 is also suggested to cleave AIF, 

however this hypothesis has yet to gain consensus (Polster et al., 2005, Cao et al., 

2007, Joshi et al., 2009). Mitochondrial calpain 2 is proposed to cleave VDAC, which 

facilitates the release of truncated AIF (Ozaki et al., 2009).  In  necrosis, the high influx 

of Ca2+ primarily through NMDA receptors activates calpains that activate cathepsins. 

Subsequently, activated cathepsins degrade various substrates (Yuan et al., 2003, Tait 

and Green, 2010). In C.elegans, CLP-1 (calpain like protein-1) acts upstream of aspartyl 

proteases (cathepsin), and ASP3 and 4 to induce necrosis (Syntichaki et al., 2002).   

 

1.2.1.2 Calpain 3 

Calpain 3 is a muscle specific calpain. A splice variant of calpain 3, Lp82, is mainly 

present in rat/mouse lens and retina (Ma et al., 1999). Calpain 3 is similar to CAPN1/S1 

and CAPN2/S1 but has ‘NS’ at the N terminal, ‘IS1’ at the N terminal end of PC2 

domain, and ‘IS2’ between domains C2L and PEF(L) (Fig 1.1). Mutating calpain 3 

causes abnormal sarcomere formation and limb-girdle muscular dystrophy type 2A  

(Richard et al., 1995, Kramerova et al., 2004). Calpain 3 is most rapidly autodegraded 

via a Na+ dependent process in the absence of Ca2+ (Ono et al., 2010) The regions IS1 

and IS2 may be responsible for the faster autodegradation. (Sorimachi et al., 1989, Ono 

et al., 2010). The N-terminal region of IS2 binds specifically to N2A and M-line regions of 

muscle protein connectin/titin; hence muscle-associated calpain 3 is more stable 

(Sorimachi et al., 1995). Cytosolic calpain 3 interacts with PLEIAD [platform element for 
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inhibition of autolytic degradation; originally called SIMC1/C5orf25 (SUMO-interacting 

motif containing protein 1/chromosome 5 open reading frame 25)], which provides the 

regulatory scaffolding and suppresses the protease activity of calpain 3 in the cytosol 

(Ono et al., 2013).  Using a knock-in mutation to abolish catalytic function (C129S), 

calpain 3 can perform a non proteolytic role by regulating Ca2+ efflux in the sarcoplasmic 

reticulum (Ojima et al., 2011). 

 

1.2.1.3 Calpains 8, 9, 11, 12, 13 and 14 

Calpains 8, 9, 11, 12, 13 and 14 are structurally similar to CAPN1/S1 and CAPN2/S1 

(Fig 1.1). Calpains 8 and 9 are present specifically in the gastrointestinal tract.  

Mutations in calpain 8 and calpain 9 cause stress-induced ulcers. These two calpain 

isoforms exist as a heterodimer complex, also known as G-CAPN, and are denoted as 

CAPN8+CAPN9 or CAPN8/9. Calpain 8 performs the proteolytic function; however, 

calpain 9 provides stability to G-CAPN (Hata et al., 2010). Calpain 11 is present in 

testes; while calpain 12 is present in hair follicle cells. Calpains 13 and 14 are 

ubiquitous.   
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1.2.2 Non-classical calpains 

1.2.2.1 Calpain 5 

1.2.2.1a Characteristics features 

Calpain 5 has a different structure than classical calpain; hence, it is called non classical 

calpain. It has only one subunit that possesses N-terminal, CysPc and C2L domains 

similar to the large subunit of the classical calpains. Instead of PEF (L), it has domain T, 

now called C2 domain (Fig 1.1).   

Calpain 5 is an ortholog of the proteinTra-3 in C.elegans. Tra-3 is important for the 

processing of Tra-2A for female development in the XX hermaphrodite.  However, it is 

not required in males; Tra-3-/- males are viable and normal (Hodgkin, 1986, Barnes and 

Hodgkin, 1996). Tra-3 acts upstream of aspartyl proteases ASP-3 and ASP-4 to 

participate in necrotic cell death. Knocking down Tra-3 provides protection from necrotic 

neuronal cell death in C.elegans (Syntichaki et al., 2002).  The predicted protein 

sequence of the TRA-3 gene has sequence homology with rat CAPN1 and CAPN2 in 

the regions of domains N, PC1/PC2 and C2L. Tra-3 does not have a PEF domain. 

Instead, it has a non –EF hand domain T, with little homology at the C-terminus of 

PEF(L) domain of classical calpains. The catalytic triad (C, H, N) in domain II is also 

conserved. (Barnes and Hodgkin, 1996). A homologous protein found in vertebrates was 

named calpain5, also referred as hTra3 (Dear et al., 1997).  

Alignment of the predicted amino acid sequence of human and mouse CAPN 5 with the 

representative members of the vertebrate calpain family resulted in significant sequence 

homology over the entire coding region. Also, an unrooted phylogenetic tree generated 

from bootstrap analysis placed CAPN 5 with calpain 6 in a common group divergent 

from the group consisting of calpains 1, 2, 3 and 8 (Dear et al., 1997). Genomic 
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organization of mouse CAPN 5 and calpain 6 identified them as a new calpain subfamily 

with 11 introns at identical locations, 6 of which are in similar locations as those known 

vertebrate calpain members (Matena et al., 1998).  

 

1.2.2.1b Activation and inhibition of calpain 5 

Calpain 5 can be activated in a manner similar to calpain 1 and 2 (Fig 1.3). Although 

CAPN 5 lacks EF hand motifs, Ca2+ could bind to PC1, PC2 and C2 domains, providing 

an appropriate conformational change to make an active cleft. Activated calpains are 

presumed to be processed from the N-terminal. Using an antibody against the 1st 30 aa 

of domain N, CAPN 5 was processed when SH-SY5Y cells were treated with maitotoxin 

(a potent calcium channel opener) and with A23187 (calcium ionophore), indicating that 

CAPN 5 level was regulated at higher calcium levels (Fig 1.6) (Waghray et al., 2004).  

Calpain 5 is believed to be activated at higher Ca2+ concentration (personal 

communication with Dr Hiroyuki Sorimachi, Tokyo Metropolitan Institute of Medical 

Science, conclusion drawn based on his own lab work). 

Endogenous inhibitors of CAPN 5 are unknown. Calpain 5 inhibition by CAST is mainly 

speculative at this point.  CAST ‘A’ and ‘C’ subdomains bind to the PEF domains of large 

and small subunits of calpain 1 and 2, while CAST B subdomain performs inhibitory 

regulation of the catalytic cleft (Yang et al., 1994, Takano et al., 1995). Deletion of CAST 

binding domains does not affect the inhibition potency of CAST B subdomains. For 

example, a synthetic oligopeptide containing only inhibitory B domain loses the binding 

ability but retains moderate inhibitory activity (Ma et al., 1993, Ma et al., 1994). Since 

CAPN 5 lacks EF regions, CAST might not bind to it. However, CAST-mediated CAPN5 

inhibition might be possible in the presence of appropriate conformation providing 
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chaperone(s). Calpain 5 is inhibited by small molecule calpain inhibitors. Treating 

SHSY5Y cells with MDL-28170, a calpain 1 & 2 inhibitor, protected processing of CAPN 

5 in the presence of calcium channel opener maitotoxin (Waghray et al., 2004). 

 

1.2.2.1c Localization of calpain 5 

Calpain 5 is a ubiquitous protein (Fig 1.7) (Waghray et al., 2004).  Using 32P labeled 

DNA probes specific to human (Dear et al., 1997) and mouse (Dear and Boehm, 1999) 

RNA, CAPN5 was expressed in various tissues including brain. In mouse embryo, using 

in situ hybridization with an antisense probe, CAPN 5 was detected in thymus, and 

sympathetic and dorsal root ganglia (Dear and Boehm, 1999). Reverse transcription 

(RT) transcripts of CAPN 5 were detected in various human tissues including the CNS 

(Waghray et al., 2004). Relatively little is known about the subcellular localization of 

CAPN 5 except that when using RP3- CAPN 5  antibody (Triple Point Biologics), inactive 

and active forms were localized to both cytosol and nucleus (Gafni et al., 2004).  

 

1.2.2.1d Physiological role of calpain 5 

The physiological role of CAPN5 is unknown. Tra-3, an ortholog of CAPN 5 is involved in 

female development in nematode XX hermaphrodites. Tra-3 is also involved upstream of 

aspartyl proteases in necrotic cell death pathways in C. elegans. The role of CAPN 5 is 

mainly speculative based on Tra-3 information.  The viability of CAPN 5-null mice 

(CAPN5tm1Nde /CAPN5tm1Nde) indicates that it may be dispensable during early 

development.  CAPN5tm1Nde / CAPN5tm1Nde (129X1/SvJ * C57BL/6J, 

http://www.informatics.jax.org/allele/key/26357 ) mice created by inserting LacZ cassette in exon 

4 are viable and fertile, although some are severely runted at birth and die by 2 months 

http://www.informatics.jax.org/allele/key/26357
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of age (Franz et al., 2004). However, another CAPN 5- null mice (CAPN5tm1Dgen 

/CAPN5tm1Dgen , 129P2/OlaHsd * C57BL/6, http://www.informatics.jax.org/allele/key/40097 ) are 

embryonically lethal (MGI ID 3604529, ).  Position of LacZ insertion in this line is 

unknown. Mutation in the same gene resulting in two different phenotypes could be due 

to the difference in the genetic background (personal communication with Dr. Peter 

Greer, Queen’s university). These mice produce rather confusing information regarding 

the role CAPN 5 during early development.  

 

1.2. 2.1e Pathological role of calpain 5 

Calpain 5 has been associated with polycystic ovary syndrome (Gonzalez et al., 2006), 

obesity (Saez et al., 2008), risk factors for diabetes (Saez et al., 2007) and Huntington’s 

disease (HD) (Gafni et al., 2004). In the striatum of the huntingtin knock-in mouse, a 

higher level of CAPN 5 was present compared to wildtype, indicating that CAPN 5 may 

contribute to HD pathogenicity (Gafni et al., 2004). Missense mutations in the CAPN 5 

catalytic region cause autoimmune retinal neurodegeneration, an autosomal dominant 

neovascular inflammatory vitreoretinopathy (ADNIV). Further study is required to 

understand the role of CAPN 5 signaling pathway in the pathology of these diseases. 

 

1.2.2.2 Calpain 6 

Calpain 6 is also an ortholog of Tra-3. It is similar to CAPN 5 in that it possesses an N-

terminal, PC1/PC2, C2L and C2 domains but does not contain EF hand regions (Fig 

1.1). Unlike CAPN 5, it carries a natural mutation in the catalytic domain: the ‘C’ of PC1 

is mutated to ‘K’ (K81 in human and mouse), making it a non proteolytic calpain (Matena 

et al., 1998). It is predominantly present in the placenta, embryonic muscle and cartilage.  

http://www.informatics.jax.org/allele/key/40097
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Calpain 6 acts as a suppressor of muscle differentiation and development.  It is also 

expressed in regenerating muscle and can suppress regeneration (Tonami et al., 2013) 

 

1.2.2.3 Calpain 7 

Calpain 7 is an ortholog of PalB required by the fungus E.nidulans to adapt to alkaline 

conditions (Denison et al., 1995, Futai et al., 2001). Calpain 7 is a ubiquitous protein, 

and has a conserved microtubule interacting (MIT) domain at the N-terminus followed by 

CysPc and two C2L domains in tandem (Fig 1.1). Calpain 7 is proteolytically active and 

its MIT domains interact with a subset of endosomal sorting complex required for 

transport (ESCRT)-III-related proteins. Calpain 7 may act as a protease in the ESCRT 

pathway (Yorikawa et al., 2008, Osako et al., 2010, Maemoto et al., 2013). 

 

1.2.2.4 Calpain 10 

Calpain 10 is similar to calpain 7, except that it does not possesses N-terminal MIT 

domains (Fig 1.1).  A mutation in calpain 10 is linked to Type 2 or non-insulin-dependent 

diabetes mellitus (NIDDM) (Horikawa et al., 2000). Calpain 10 partially cleaves SNAP-25 

(synaptosomal-associated protein of 25 kDa) of the SNARE (SNAP Receptor) complex 

to trigger insulin release through exocytosis (Marshall et al., 2005, Evans and Turner, 

2007).  Calpain 10 is present in the cytosol and mitochondria, as well as in the nucleus 

(Ma et al., 2001, Arrington et al., 2006). Degradation of calpain 10 is associated with the 

development of nuclear selenite cataract (Ma et al., 2001).  In mitochondria, calpain 10 

has been associated with the respiratory dysfunction, mPTP activation, and proteolysis 

of complex I subunits of the electron transport chain, which were protected when 

inhibited with calpeptin (fig 1.5) (Arrington et al., 2006). 
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1.2.2.5 Calpain 15 

Calpain 15 is a ubiquitous protein. It has homology with Drosophila small optic lobes 

(sol), a protein important for the growth of columnar neurons of the optic lobes (Delaney 

et al., 1991). Calpain 15 has N-terminal Zn-finger motifs followed by CysPc domain with 

a SOL homology domain at the C-terminal (Fig 1.1). Little is known about the function of 

calpain 15. 

 

1.2.2.6 Calpain 16 

Calpain 16 is also called demi-calpain. It possesses only one part, PC1 of the CysPc 

core, and has a C-terminal IQ motif interactive with calmodulin (Fig 1.1) (Sorimachi et 

al., 2011b). 

 

1.2.2.7 Phytocalpain and other calpains 

DEK1, a phytocalpain has a transmembranous N -terminal ‘TM’ domain followed by a 

CysPc protease core with a C2L C-terminal domain. DEK 1 is required for the aleurone 

cell development in the Zea mays endosperm (Lid et al., 2002, Lid et al., 2005). 

Drosophila, nematode, fungus and yeast have calpain-like proteins, which have a 

conserved cysteine protease domain. In terms of similarity, these have common 

characteristic features with non-classical calpain compared to classical calpains. Non-

classical calpains seems to be evolutionarily conserved across the species (Sorimachi et 

al., 2011b). 
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Figure1.1 Classification of the calpain family 
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Figure 1.1: Classification of the calpain family. Reproduced from Sorimachi et al., 2011b 

with permission. Calpains are divided into classical and non-classical calpains. CAPNs 

1and 2 are the best characterized calpains, and are referred to classical calpains. Other 

isoforms, which have domain architectures similar to CAPNs 1 and 2, are also classified 

as classical. Non classical calpains have conserved cysteine protease core with 

additional domains different than classical calpains. N: N-terminal anchor helix domain, 

PC1: Protease Core 1, PC2: Protease Core 2, C2: C2 Protein Kinase C (PKC ) 

conserved region 2 (Calcium binding, CalB), C2L: C2 Like domain, GR: Glycine rich, 

PEF: Penta EF hands Large (L) subunit or Small subunit(S), NS/IS1/IS2: CAPN3-

characteristics sequences, MIT: Microtubule interacting and transport motif, Zn: Zn-

finger motif, IQ: A motif interacting with calmodulin, and SOH: SOL homology domain. 
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Figure 1.2 Newly proposed nomenclature of calpain domains 
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Figure 1.2: Newly proposed nomenclature of calpain domains. Domains of rat CAPN2 

are shown. Reproduced from (Campbell and Davies, 2012) with permission. The newly 

proposed domains are N, anchor helix (initially domain I), PC1/PC2 (domain II), C2L 

(domain III) PEF-(L) (domain IV), GR (domain V), and PEF-(S) (domain VI). Please see 

Fig 1.1 legend for the abbreviations. 
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Figure 1.3 A proposed mechanism of calpain activation 
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Figure 1.3: A proposed mechanism of calpain activation. Reproduced from Campbell 

and Davies, 2012 following the instructions at http://www.biochemj.org/bj/rights.htm . 

During the process of activation, Ca2+ binds to 1-4 EF motifs of domains PEF (L) and 

PEF(S), and non EF-regions in PC1 and PC2 and C2L domains. Upon Ca2+ binding, a 

general autolysis of N-terminal and C2L leaves behind a protease core and a 

heterodimer, PEF (L) + PEF (S).  
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Figure 1.4 Classical calpains are inhibited by calpastatin 
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Figure 1.4: Classical calpains are inhibited by calpastatin. The image is reproduced from 

Mellgren, 2008 with permission. CAST subdomains A and C bind to PEF (L) and PFF 

(S), while subdomain B performs the inhibitory activity by blocking the active cleft. L-

domain: anchor domain and CID: inhibitory domain  
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Figure 1.5 Mitochondrial calpains and their possible role 
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Figure 1.5:  Mitochondrial calpains and their possible role. Reproduced from Smith and 

Schnellmann, 2012 with permission. Arrow indicates catalytic activity of the given 

calpain. Bid, tBid and tAIF are shown in the cytosol. 
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Figure 1.6   Calpain 5 is calcium regulated 
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Figure 1.6: Calpain 5 is calcium regulated. Reproduced from Waghray et al., 2004 with 

permission. Using an antibody against N-terminal, CAPN5 was not detected in cells 

treated with Ca2+ channel opener (Maitotoxin, MTX) and Ca2+ ionophore (A23187) 

suggesting that the N-terminal of CAPN5 is processed in presence of Ca2+. 
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Figure 1.7 Calpain 5 RT transcript detected in various human tissues 
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Figure 1.7: Calpain 5 RT transcript detected in various human tissues. Reproduced from 

Waghray et al., 2004 with permission. 
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Figure 1.8 Calpain 5 is highly expressed in rat brain 
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Figure 1.8:.Calpain 5 is highly expressed in rat brain. Relative mRNA expression of 

calpains 1, 2, 5, 7, and 10 was calculated using the comparative CT ( ΔΔCT) method in 3-

month old male Sprague Dawley (SD) rat brain homogenate, N=4. ΔCT of the each 

calpain isoform was obtained as a difference in the CT value from an endogenous control 

GAPDH. ΔΔCT of the target gene was calculated by subtracting ΔCT of the target gene 

from the ΔCT value of reference gene, calpain 1. Relative mRNA expression of the target 

gene was then reported as 2-ΔΔC
T. The results show that after calpain 2, calpain 5 is the 

highest expressing calpain in the brain followed in descending order by calpains 7, 10 

and 1. The results are expressed as the group means ± S.D, N=4. 
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Chapter 2: Developmental regulation of Calpain 5 

Preface  

The work shown in this chapter was performed as a group by Ranjana Singh, Ms.Vimala 

Bondada and Mr. Dingyuan Lou. Ranjana Singh collected various rat tissues: brain, 

spinal cord and liver at different developmental time points. Dingyuan Lou’s work 

contributed to Fig 2.2. Vimala Bondada’s work contributed to Figs 2.3.E and F. Ranjana 

Singh contributed to Figs 2.3. A, B C and D. Ranjana Singh also performed the statistical 

analysis of all the results. Fig 2.1 was reproduced with permission. 

 

 

 

 

 

 

 

 

 

 

 



34 
 

2.1 Introduction 

The classical calpains, calpain 1 and 2, have a distinct large subunit and a common 

small subunit. Both the subunits have calcium binding EF hand motif. The small subunit 

is called calpain S1 and is also referred to as a regulatory subunit (Ono and Sorimachi, 

2012). Non-classical CAPN5 contains only one subunit, similar to the large subunit of 

classical calpains; however, it does not contain EF hand motifs and a regulatory small 

subunit despite being calcium activated (Dear et al., 1997, Matena et al., 1998, Waghray 

et al., 2004).  Calpains participate in many physiological functions such as cell motility, 

cell cycle, gene regulation, and cell death (Goll et al., 2003). They also appear to be 

involved in pre- and postnatal brain development (Li et al., 2009). The large subunit 

performs catalytic function whereas the small subunit regulates the process of activation. 

Therefore, both the subunits are required by typical calpains to perform a function. 

Knocking down CAPNS1 (CAPN4 -/-) results in ablation of the both CAPN1 and 2 

activities and is embryonically lethal in mice (Arthur et al., 2000). Selective knock out of 

calpain 2 (CAPN2-/-) is also embryonically lethal (Dutt et al., 2006). CAPN 1-/- mice are 

viable, although they exhibit a reduction in platelet aggregation and clot retraction (Azam 

et al., 2001). This suggests that calpain 2, not calpain 1 is required for early growth. 

Along the similar hypothesis, Li et al 2009 detected a constant level of calpain 2 

throughout rat brain development, whereas calpain 1 level were detected postnatally 

(Fig 2.1.).  

Calpains or calpain-like proteins have been shown to play roles in the development of 

invertebrates and plant embryos. For example, in Drosophila  melanogaster  (dynamic 

changes in embryo cytoskeleton, dorsal ventral pattering and optic lobe development),  

Plasmodium falciparum ( transition to ring stage and progression of cell cycle.), Danio 

rerio (tissue specific expression during development), and in endosperm and embyo 
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development of plants such as Arabidopsis thaliana and Zea mays (Emori and Saigo, 

1994, Lid et al., 2002, Friedrich et al., 2004, Lid et al., 2005, Lepage and Bruce, 2008, 

Russo et al., 2009) (Delaney et al., 1991, Friedrich et al., 2004).   

Tra-3, an ortholog of calpain5, participates in nematode sex determination during 

development, and when mutated it results in partial masculinization of XX nematodes.  

Calpain 5 and 6 are orthologs of Tra-3 and have similar domain structures. Unlike 

calpain 5, calpain 6 carries a natural mutation in the catalytic domain:  ‘C’ of PC1 is 

mutated to ‘K’ (K81 in human and mouse), making it a non proteolytic calpain (Matena et 

al., 1998). Calpain 6 is predominantly present during embryonic stage and suppresses 

muscle development and differentiation. It is also re-expressed in adult regenerating 

muscle and suppresses regeneration (Tonami et al., 2013). However, the role of calpain 

5 is not known in pre- and postnatal development. Calpain 5 mRNA is present in the 

neurons of sympathetic and dorsal root ganglia in post coital day 16.5 mouse embryos 

(Dear and Boehm, 1999), implying that CAPN5 may be required for embryonic 

development. Additional evidence for its involvement in embryonic development is that 

CAPN5 null mice (CAPN5-/-, Capn5tm1Dgen/Capn5tm1Dgen, MGI accession no.3604529) are 

embryonically lethal.  However, CAPN5-/- in other line, Capn5tm1Nde /Capn5tm1Nde, survive 

and are healthy barring some those are severely runted at birth (Franz et al., 2004). 

Hence, the role of CAPN5 in embryonic development as well as in the development of 

the CNS or other organs is not clear.  Therefore, we pursued this study to understand 

the developmental regulation of CAPN5. 
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Figure 2.1 Developmental regulation of calpain 1 and 2 in the rat brain 
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Figure  2.1. Western blots (A,C)  represent the quantitative values of the 

immunoreactivity bands and mRNA expression detected using real time RT-PCR.  

Calpain1 progressively increased from E18 to P90; while, calpain 2 remained the same. 

Reproduced from (Li et al., 2009) with permission. 
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2.2 Materials and Methods 

2.2.1 Experimental material 

 An Institutional Animal Care and Use Committee (IACUC) approved protocol was used 

to harvest brains from the rats and mice.  SD rats of 18 days in utero (E18), postnatal 

day 0 (P0), 5, 10, 15, 20, 30 and 90 were used in this study. A timed pregnant female rat 

was euthanized with CO2 to dissect out E18 from uterus. Postnatal rats up to 10 days of 

age were decapitated after desensitization in ice. Older rats were exsanguinated using 

CO2 inhalation, followed by decapitation. Brain, spinal cord, and liver samples were 

removed and homogenized in the appropriate buffer as described below for qPCR and 

Western blot. 

 

2.2.2 Antibodies and reagent 

 Antibodies against CAPN5 (ab28280, polyclonal), calpain1 (ab28257, polyclonal), and 

CAPN5 amino-terminal peptide (ab41310) were purchased from Abcam, Cambridge, 

MA. An antibody against calpain 2 (208729) was purchased from Calbiochem, Billerica, 

MA.  An antibody against GAPDH (G8795), TRI reagent (T9424), and β-

mercaptoethanol (M6250) were purchased from Sigma, St. Louis, MO. Protease inhibitor 

tablets (11873580001) were obtained from Roche, Indianapolis, IN.  Secondary 

antibodies IRDye 800CW Anti-rabbit IgG (611-131-132) and IRDye 800 CW Anti-mouse 

IgG (610-131-121) were purchased from Rockland, Gilbertsville, PA.  Additional 

reagents were purchased from Sigma (St. Louis, MO) or Thermo Fisher Scientific 

(Ashville, NC). 
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2.2.3 Quantitative PCR (qPCR)  

Brain, spinal cord, and liver samples were homogenized in TRI reagent to extract total 

RNA. cDNA was prepared using an Applied Biosystems high capacity reverse 

transcription kit (AB # 4368814). Equal amounts of cDNA (100 ng) were used to perform 

qPCR using TaqMan gene expression master mix (AB 4369016). Reactions were 

performed in triplicate, plus a negative control without cDNA. The qPCR was 

programmed as an initial denaturation at 50°C for 2 min, followed by 95 °C for 10 min, 

40 cycles @ 95 °C for 15 s, and 60 °C for 1 min, on a StepOne real-time PCR system 

(Applied Biosystems). The following rat gene transcripts were examined: CAPN1 (NCBI 

Reference Sequence NM_019152.2, TaqMan gene expression assay Rn00569689_m1); 

CAPN2 (NM_017116.2, Rn00567422_m1), CAPN5 (NM_134461.1, Rn00593213_m1) 

and GAPDH (NP_058704, Rn99999916-s1). Relative gene expression was determined 

using Comparative CT values. ΔCT of the target gene at a particular developmental time 

point was obtained as a difference in the CT value from endogenous control GAPDH at 

the same point. ΔΔCT value of the target gene was calculated by subtracting ΔCT value 

of the target gene from the ΔCT of a reference gene, calpain 1 at E18. The relative 

expression of target gene was then reported as 2-ΔΔC
T.  

 

2.2.4 Protein extraction and Western Blot 

 Brain, spinal cord, and liver samples were homogenized separately in twice the volume 

of 1xTBS supplemented with protease inhibitor mix (w/v). Homogenized mixture was 

ultracentrifuged at 124,000 X g for 20 min at 4oC, and supernatant was stored at -80°C 

to use for Western blotting. Protein content of samples were assayed using Thermo 

Scientific Pierce® BCA protein assay reagent A (23228) and reagent B (1859078).  
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Protein (50 µg) was mixed in sample buffer supplemented with 5% β-mercaptoethanol, 

and boiled for 5 min then run on a 10%  polyacrylamide gel (Biorad # 161-1155) or  4-

12% Bis-Tris HCl gels (NuPAGE NP0335).  Completely run gels were sandwiched in a 

Trans-Blot transfer pack (Biorad # 170-4158), and transferred to a nitrocellulose 

membrane using a Biorad semi dry Trans-Blot® Turbo TM transfer system. Following 

blocking in 5% skim milk in 0.05% Tween 20 in Tris-buffered saline, pH 7.6 (T-TBS) for 1 

hr, the membrane was incubated with primary antibody (1:5000, CAPN5; 1:1000, 

CAPN1; 1:5000, CAPN2; 1:10,000, and 1:5000,  GAPDH)  in 5% skim milk in1X T-TBS 

(0.05% tween-20 ) overnight at 4ºC. The membrane was washed in T-TBS three times 

(3x) for 20 min each, followed by incubation with an appropriate secondary antibody 

(Anti-rabbit IgG, 1:5000; or anti-mouse IgG, 1:5000) at room temperature for an hr in 

dark conditions. The membrane was washed again 3x for 20 min each, and scanned 

using an Odyssey Infrared Imager (LI-COR Biosciences). 

 

2.2.5 Statistical analysis 

Quantified values of the immunoreactivity bands and qRT-PCR RQ data were analyzed 

using one-way ANOVA, followed by Tukey’s multiple comparison tests. 
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2.3 Results 

2.3.1 Ab28280 is specific to Calpain 5 

On Western blots of rat brain homogenate, the antibody detected a prominent band at  

~75 kDa. Pre-incubation of the antibody with the immunogenic peptide abolished the 75 

kDa band on Western blots and the antibody did not detect purified rat calpain 2 

(Calbiochem # 208718) (Fig 2.2 B &C). The antibody also detected a similar prominent 

band at ~75 KDa from SH-SY5Y cells expressing full length human CAPN5 fused with a 

FLAG tag on the C-terminal (Fig 2.2 D). 

 

2.3.2 Calpain 5 is detected later in the post natal development in the CNS and liver 

CAPN5 mRNA and protein levels were examined in the rat brain, spinal cord, and liver 

tissues, obtained from embryonic day 18 (E18), post natal day 0 (P0), P5, P10, P15, 

P20, P30 and P90 SD rats .  CAPN5 mRNA levels were downregulated during CNS as 

well as liver development. However in the brain, the levels increased by 0.32 fold from 

E18 to P0, then decreased by a 0.67 fold until P90 (Fig 2.3 A). A similar mRNA 

developmental profile was obtained in spinal cord where the levels were increased 0.66 

fold from E18 to P0, followed by a progressive decline up 0.92 fold by P90 (Fig 2.3 B).  

In liver, mRNA levels progressively decreased as much as 0.9 fold from E18 to P0 (Fig 

2.3 C, table 2.1).   In contrast to mRNA, CAPN5 protein levels were not detected at E18 

and early post natal developmental points before P20. However, they were detected 

later in the post natal development of rat brain, spinal cord and liver (Fig 2.4, table 2.2). 
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2.3.3 Calpains 1 and 2 are differentially regulated in CNS and liver during 

development 

Increasing calpain 1 and a constant calpain 2 protein levels during brain development 

have been previously reported (Li et al., 2009). Our results agree with Li et al. in that we 

found calpain 1 mRNA and protein levels were increased in the spinal cord during 

development.  However in liver, CAPN1 mRNA declined while CAPN1 protein levels 

were unchanged. CAPN2 mRNA levels decreased from E18 to P90 in spinal cord, 

whereas, the protein levels increased. In liver, CAPN2 mRNA peaked at P10 and P15 

with unchanged protein levels during the development. 

In summary, calpains 5, 1 and 2 have dissimilar patterns of mRNA and protein 

expression because their mRNA and protein levels during development do not correlate.  

Calpain 5 protein was detected later in the development of the brain (P20), spinal cord 

(P10) and liver (P30).  

 

2.4 Discussion 

Calpain 5 mRNA and protein levels were evaluated in rat brain, spinal cord, and liver 

obtained from late embryonic to late postnatal developmental time points. The results 

revealed that mRNA level was downregulated from E18 to P90 but the protein level was 

upregulated during the postnatal brain, spinal cord, and liver development.  Calpain 1 

and 2 mRNA also did not correlate well with the protein levels. CAPN5 protein was 

detected mainly in the brain, spinal cord, and liver of adult rats as compared. The protein 

levels of CAPNs 1 and 2 varied in these tissues at different developmental time points. 

The discrepancy between mRNA and protein levels can be explained in couple of ways. 

CAPN5 was detected using an antibody against amino terminal of domain I. Autolysis of 
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N-terminus has been inconsistently used as a marker for the activation of typical 

calpains (Cong et al., 1989, Baki et al., 1996, Neumar et al., 1996), including CAPN5 in 

two instances (Franz et al., 2004, Waghray et al., 2004). If N-terminus autolysis is also 

true for CAPN5, the protein level reported in this study represents mainly unprocessed 

CAPN5 and this could explain some of the discrepancies between mRNA and protein 

levels. The hypothesis that the activated calpains are processed from N-terminus is not 

universally accepted (Cong et al., 1989, Molinari et al., 1994).  Such an inverse relation 

between mRNA and protein levels can also be described because calpains are long-

lived proteins. Typical calpains have metabolic half-lives of as long as 5 days (Zhang et 

al., 1996).  That means a relatively lower mRNA level may be enough to translate a 

large amount of the protein. Post translation modification at early developmental time 

point could also explain this discrepancy up to some extent. Modifications such as 

sumoylation may bar protein from being detected. RNA silencing could be another 

possibility.  For example, Rattus norvegicus   is predicted to have two microRNA (mir), 

mir-146a and mir-146b), which targets calpain 5 (http://www.microrna.org/microrna/ 

getGeneForm.do ). This may result into silencing mRNA expression that may cause into 

the discrepancy between mRNA and protein level.  A definitive explanation for unrelated 

calpain 5 mRNA and protein levels remain unknown.  

Increase in mRNA level from E18 to P0 in brain and spinal cord, followed by a 

continuous decline postnatally, is not easily explained. At P0 (birth), the CNS needs to 

adapt quickly to a new temperature and environment, which would be underpinned by 

cellular, molecular and biochemical changes. Calpains are involved in many signal 

transduction pathways and in regulation of cell cycle and gene expression (Goll et al., 

2003). Hence, an increase in CAPN5 mRNA at P0 would be needed to execute the 

above mentioned processes. But, at the same time CAPN5 protein was not detected at 

http://www.microrna.org/microrna/%20getGeneForm.do
http://www.microrna.org/microrna/%20getGeneForm.do
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P0 in our study (it was detected at P0 in spinal cord of only one rat).  Therefore, if this 

hypothesis were true, the level of CAPN5 mRNA would be expected to change in liver, 

since the onset of independent functioning of liver may require alterations in many 

pathways that involve CAPN5.  However in liver, CAPN5 mRNA did not increase at P0, it 

progressively declined from E18 to P90.  The reason for an increase in CAPN5 mRNA in 

the CNS from E18 to P0 followed by a decline postnatally is unknown.  

Our results show that CAPN5 protein appears earlier in spinal cord (P10) compared to 

brain (P15 - P20). In liver, it appears around P30. The CNS, especially brain, 

development is an ongoing process which lasts until adolescence (Stiles and Jernigan, 

2010).  As various functions are learned, brain and spinal cord continue to develop. 

Spinal cord develops more rapidly postnatally compared to brain. Hence, CAPN5, which 

may underpin some the cellular and physiological processes in spinal cord would be 

needed at an earlier stage compared to brain. Postnatal appearance of CAPN5 in brain 

coincides with the time when most of the characteristic features of an adult brain are 

achieved. Some of these features are larger perikarya, higher synaptic junction/mm3 and 

axon density. (Eayrs and Goodhead, 1959, Aghajanian and Bloom, 1967). Since CAPN5 

is predominantly present in nucleus and enriched in synaptic mitochondria (chapters 3 & 

4), it suggests a role of CAPN5 in adult brain development and synaptic functions. Liver 

develops in three parts: embryonic liver development, morphogenesis, and 

organogenesis and is the shape of an adult liver by P30 and P90 with differentially 

matured hepatocytes (Apte et al., 2006). The late onset of CAPN5 in liver (P30) implies it 

has a role in differentiation of hepatocytes. 

Calpain 5 is the 2nd most highly expressed calpain in the adult rat CNS. It appears 

postnatally during brain (P20) and spinal cord (P10) development.  The protein levels of 

calpain1 and CAST increase postnatally. Calpain 2 protein level remains unchanged 
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during development (Fig 2.1) (Li et al., 2009). Also, CAPN2-/- mice are embryonically 

lethal, whereas  CAPN1-/- mice are viable. This indicates that calpain 2 is required for 

embryonic development. However, calpain 1 is required for postnatal adult CNS 

development.  In adult rat brain, CAPN5 mRNA levels were 10-fold higher than calpain1 

mRNA levels (Fig 1.8), which suggests that CAPN5 could be one of the major calpains 

in the adult brain.   Calpains 5 and 6 are mammalian orthologs of Tra-3 and have similar 

domain structures. Unlike CAPN5, calpain 6 is non proteolytic as it lacks ‘C’ of the 

catalytic triad (Matena et al., 1998). It is present during embryonic development and 

suppresses muscle growth and differentiation (Tonami et al., 2013). Calpain 6 

contributes to embryonic developments, whereas CAPN5 seems important in adult CNS 

development. 

Proteases are required for programmed cell death or apoptosis during prenatal 

development.While caspases are involved in apoptosis and embryonic development, 

calpains are mainly involved in necrotic cell death following insult and injury (Kuan et al., 

2000, Geddes and Saatman, 2010).  Tra-3, an ortholog of CAPN5 in nematode is 

involved in necrotic cell death (Syntichaki et al., 2002). Caspase 3 levels decline 

postnatally; however, the levels of calpain1 and CAPN5 5 increase postnatally (Figs 1.8 

& 2.1) (Li et al., 2009). A shift from apoptosis during embryonic development to necrosis 

in the adult CNS can be explained by the declining levels of caspase and rising levels of 

calpain1 and 5 during post natal CNS development. Since, CAPN5 mRNA was 10-fold 

higher than calpain 1 mRNA in the adult rat CNS, CAPN5 can be considered a major 

calpain involved in necrosis in the adult CNS. 

In conclusion, CAPN5 appears during postnatal spinal cord (P10) and brain 

development (P20) along with calpain 1. Since CAPN5 mRNA levels are second to 
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calpain 2 and 10-fold higher than calpain 1 in the adult CNS, CAPN5 could be one of the 

major calpains in the adult CNS. 
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Table 2.1 Statistical analysis of mRNA expression, One - way ANOVA followed by 

tukey’s multiple comparison test 

 

Tukey's multiple comparison test  BRAIN LIVER 

CAPN5  CAPN1  CAPN2  CAPN5 

p values, One way ANOVA 

<0.0001 <0.0001 <0.0001 <0.0001 

   
  

  E18 vs P0 P < 0.001 *** ns ns 

  E18 vs P5 P < 0.05 **** ns ** 

  E18 vs P10 P < 0.05 **** * ns 

  E18 vs P15 P < 0.001 **** ns ** 

  E18 vs P20 P < 0.001 **** ns ** 

  E18 vs P30 P < 0.001 **** ns *** 

  E18 vs P90 P < 0.001 **** ns **** 

  P0 vs P5 P < 0.05 ns ns ns 

  P0 vs P10 P < 0.001 ** ns ns 

  P0 vs P15 P < 0.001 ** ns ns 

  P0 vs P20 P < 0.001 ** ns ns 

  P0 vs P30 P < 0.001 *** ns * 

  P0 vs P90 P < 0.001 ** ns * 

  P5 vs P10 P < 0.001 ns ns ns 

  P5 vs P15 P < 0.001 ns ns ns 

  P5 vs P20 P < 0.001 ns ns ns 

  P5 vs P30 P < 0.001 ns ns ns 

  P5 vs P90 P < 0.001 ns ns ns 

  P10 vs P15 P > 0.05 ns ns ns 

  P10 vs P20 P > 0.05 ns * ns 

  P10 vs P30 P < 0.01 ns *** ns 

  P10 vs P90 P < 0.01 ns *** ns 

  P15 vs P20 P > 0.05 ns * ns 

  P15 vs P30 P > 0.05 ns ** ns 

  P15 vs P90 P > 0.05 ns ** ns 

  P20 vs P30 P > 0.05 ns ns ns 

  P20 vs P90 P > 0.05 ns ns ns 

  P30 vs P90 P > 0.05 ns ns ns 
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Table 2.2 Statistical analysis of protein expression, One - way ANOVA followed by 

tukey’s multiple comparison test 

 

Tukey's multiple 
comparison test  

BRAIN LIVER 

CAPN5  CAPN1  CAPN2  CAPN5 

p values, One way ANOVA 

<0.0001 0.02 0.79 <0.0001 

   
  

  E18 vs P0 P > 0.05 P > 0.05 - P > 0.05 

  E18 vs P5 P > 0.05 P > 0.05 - P > 0.05 

  E18 vs P10 P > 0.05 P > 0.05 - P > 0.05 

  E18 vs P15 P > 0.05 P > 0.05 - P > 0.05 

  E18 vs P20 P > 0.05 P > 0.05 - P > 0.05 

  E18 vs P30 P < 0.01 P > 0.05 - P < 0.01 

  E18 vs P90 P < 0.001 P > 0.05 - P < 0.001 

  P0 vs P5 P > 0.05 P > 0.05 - P > 0.05 

  P0 vs P10 P > 0.05 P > 0.05 - P > 0.05 

  P0 vs P15 P > 0.05 P < 0.05 - P > 0.05 

  P0 vs P20 P > 0.05 P > 0.05 - P > 0.05 

  P0 vs P30 P < 0.01 P > 0.05 - P < 0.01 

  P0 vs P90 P < 0.001 P > 0.05 - P < 0.001 

  P5 vs P10 P > 0.05 P > 0.05 - P > 0.05 

  P5 vs P15 P > 0.05 P < 0.05 - P > 0.05 

  P5 vs P20 P > 0.05 P > 0.05 - P > 0.05 

  P5 vs P30 P < 0.01 P > 0.05 - P < 0.01 

  P5 vs P90 P < 0.001 P > 0.05 - P < 0.001 

  P10 vs P15 P > 0.05 P > 0.05 - P > 0.05 

  P10 vs P20 P > 0.05 P > 0.05 - P > 0.05 

  P10 vs P30 P < 0.01 P > 0.05 - P < 0.01 

  P10 vs P90 P < 0.001 P > 0.05 - P < 0.001 

  P15 vs P20 P > 0.05 P > 0.05 - P > 0.05 

  P15 vs P30 P > 0.05 P > 0.05 - P < 0.01 

  P15 vs P90 P < 0.01 P > 0.05 - P < 0.001 

  P20 vs P30 P > 0.05 P > 0.05 - P < 0.05 

  P20 vs P90 P < 0.05 P > 0.05 - P < 0.001 

  P30 vs P90 P > 0.05 P > 0.05 - P > 0.05 
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Figure 2.2 Ab28280 is specific to Calpain5 
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Figure 2.2 Ab28280 is specific to Calpain5. Antibody ab28280 is raised against N-

terminal end (aa 1-30) of CAPN5.  The first 30 aa of the calpains 1, 2, 5, 7 and 10   

present in the brain are fairly different. They have occasional matches (highlighted with 

the similar color), suggesting ab28280 may not cross react with another calpain isoform 

(A). CAPN5 does not detect purified rat calpain 2, CNF: Crude nuclear fraction, PC2: 

Purified calpain 2 (B). The antibody detected a prominent band at ~75 kDa. Pre-

incubation of the antibody with the immunogen peptide abolished the 75 kDa band on 

Western blots, B90: Brain homogenate from a 90 day old rat (C). SH-SY5Y cells were 

transfected with a vector encoding the full length of human CAPN5 (hCAPN5) fused with 

a FLAG tag at the C-terminal. Cell lysate was prepared 24 h post transfection, and 

probed through Western blot.  Ab28280 was linked with the secondary antibody IRDye 

800CW anti-rabbit IgG. FLAG was detected using a FLAG-M2 antibody (Agilent 

technologies 200472) and was linked with the secondary antibody, IRDye 680 CW anti-

mouse IgG (610-131-121). The blot was scanned with channel intensities 700 and 800 

separately, and together gave a yellow fusion color. The antibody also detected a similar 

prominent band of ~75 KDa from SH-SY5Y cells expressing full length human CAPN5 

fused with a FLAG tag on the C-terminal (D). 
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Figure 2.3 The mRNA level of calpain 5 is downregulated in rat CNS and liver during 

development 
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Figure  2.3 The mRNA level of Calpain 5 is downregulated in rat CNS and liver during 

development.  Comparative CT values (ΔΔCT) based mRNA expression were measured 

in SD rat brain, spinal cord and liver homogenates prepared from embryonic day 18 

(E18), postnatal day zero (P0), P5, P10, P15, P20, P30 and P90 rats. ΔCT at a particular 

developmental point was obtained as a difference in the CT value from endogenous 

control GAPDH at the same developmental point. ΔΔCT value at each developmental 

time point was calculated by subtracting ΔCT at that point from the ΔCT of the reference 

point, E18. Relative expression was then reported as 2-ΔΔC
T.  

Compared to E18, calpain 5 mRNA levels increased until P0, then decreased gradually  

postnatally in brain (N=4 per time point) and spinal cord (N= 2 per time point). In liver, 

calpain 5 decreased gradually from E18 to P90 (N=4 per time point. The mRNA levels of 

calpain1 were elevated in spinal cord, however they declined in the liver during 

development.  Calpain 2 mRNA levels declined in spinal cord but peaked around P10 

and P15 during liver development.  The data were analyzed using one-way ANOVA 

followed by Tukey’s multiple comparison tests (see table 2.1), and reported as the group 

mean (N=4) ± S.D (A and C). The data were plotted as the group mean (N=2) (B) with 

no statistical analysis.  
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Figure 2.4 CAPN5 is detected later in CNS development 
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Figure 2.4 CAPN5 protein is detected later in CNS development.  To compare the 

protein levels, Western blot analyses were performed on SD rat brain, spinal cord, and 

liver homogenates for developmental time points, starting from E18 to P90.   P90p is a 

pooled sample prepared by mixing equal amounts of protein from each of the four p90 

homogenates, to use as a control for each of the four sets of the Western blot. In 

contrast to mRNA expression, CAPN5 levels progressively increased during the 

postnatal development of the brain, spinal cord, and liver. On the other hand, CAPN1 

and CAPN2 remained almost constant during liver development.  The level of CAPN2 is 

unchanged also during brain development. CAPN1 levels rose during post natal 

development of brain and spinal cord. Level of CAPN2 also increased postnatally in 

spinal cord. The quantitative values of the immunoreactivity bands were measured in 

Odyssey LI-COR software. Data were statistically analyzed as one-way ANOVA followed 

by Tukey’s multiple comparison tests (see table 2.1). The results are expressed as the 

group means (N=4) ± SEM for B and F. The data are plotted as the group mean (N=2) 

for D, no statistical analysis was performed. 

 

 

 

 

 

 

 



55 
 

Chapter 3: Nuclear localization of Calpain 5 

Preface 

Work shown in this chapter is done by Ranjana Singh and Mr. Charles Mashburn. Mr. 

Charles Mashburn prepared the plasmids used in this study.  
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3.1 Introduction 

 The calpain family of Ca2+-dependent cysteine proteases (Clan CA, family C2, EC 

3.4.22.52-54) has 15 members in mammals, including the small regulatory subunit 

CAPNS1 (Ono and Sorimachi, 2012). These are subdivided into classical (CAPN1-

3,8,9,11-14) and non-classical calpains (CAPN5-7,10,15,16) based on primary 

sequence, and into ubiquitous (CAPN1, 2,5,7,10,13-15,S1) and tissue-specific calpains 

(CAPN3,6,8,9,11,12) based on localization (Goll et al., 2003, Ono and Sorimachi, 2012). 

CAPN2 is not present in erythrocytes, but is present in other cells. The ubiquitous 

isoforms are presumed to play important roles in all cells, as knockout or mutations are 

often lethal, while the tissue-specific isoforms are required for more specialized 

functions. Most investigations have focused on the classical calpains CAPN1 (also 

referred to as µ-calpain, µCL) and CAPN2 (also referred to as m-calpain or mCL), which 

contain a C2-like domain, a penta-EF hand domain, and the cysteine protease domain. 

They are heterodimers, composed of the large CAPN1 or CAPN2 subunit and the 

CAPNS1 (CAPN4) small subunit. Their roles include apoptosis, cell migration, 

cytoskeletal remodeling, cell differentiation, necrosis/oncosis, platelet aggregation, and 

wound healing (Wang, 2000, Azam et al., 2001, Liu et al., 2004, Franco and 

Huttenlocher, 2005, Mellgren et al., 2007, Santos et al., 2012, Amini et al., 2013). 

Atypical calpains, which lack the EF hand motif characteristic of classical calpains but 

retain catalytic and Ca2+binding domains, are less well understood.  

    Tra-3, the C.elegans ortholog of CAPN5, is essential for necrotic neuron death and is 

also involved in sex determination in nematodes (Barnes and Hodgkin, 1996, Syntichaki 

et al., 2002). CAPN6 is also an ortholog of Tra-3, but substitution of Cys with Lys at the 

active site results in a loss of proteolytic activity in eutherians (Matena et al., 1998). 

CAPN5, also referred to as hTra-3, lacks the penta-EF hand domain of classical calpains 

and has a C2 domain at the C-terminus (previously referred to as domain-T) (Sorimachi 
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et al., 2011a). CAPN5 is expressed in all rat and human tissues examined, including 

various regions of the CNS (Dear et al., 1997, Waghray et al., 2004). The subcellular 

localization of CAPN5 has not been examined previously. 

 

 Incubation of SH-SY5Y cell lysates with maitotoxin or the Ca2+-ionophore A23187 

results in CAPN5 proteolysis, presumably indicating activation (Waghray et al., 2004). 

Capn5-/- (Capn5tm1Nde) mice are viable and fertile, although some are severely runted at 

birth and die by 2 months of age (Franz et al., 2004). However, another Capn5 null 

mutant allele (Capn5tm1Dgen) is embryonically lethal (MGI ID 3604529). CAPN5 

polymorphisms have been associated with autoimmune retinal neurodegeneration 

(Mahajan et al., 2012), polycystic ovary syndrome (Gonzalez et al., 2006), endometriosis 

(Penna et al., 2008), diabetes (Saez et al., 2007) and Huntington’s disease (Gafni et al., 

2004). Based on importance of Tra-3 in neuron death in C. elegans and the relatively 

high expression of Capn5 mRNA in brain, we sought to further explore CAPN5 in the 

mammalian CNS.  

 

3.2 Materials and Methods 

3.2.1 Experimental animals. 

The University of Kentucky Institutional Animal Care and Use Committee approved all 

procedures involving experimental animals. Animals included male Sprague-Dawley 

(SD) rats and Capn5 heterozygous mice (C57BL/6J-Capn5tm1Dgen/J; Capn5+/LacZ). These 

were obtained as B6.29P2-Capn5tm1Dgen/J mice from The Jackson Laboratory (Bar 

Harbor, ME) and were backcrossed 10 generations. For Western blot and fractionation 

studies, rats were exsanguinated using CO2 inhalation, followed by decapitation. Brains 

were rapidly removed and homogenized in appropriate buffer for Western blot, 
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fractionation, or RNA isolation as described below. For immunohistochemical and X-gal 

staining studies, rats or mice were first perfused with PBS followed by 4% 

paraformaldehyde in PBS, pH 7.4. 

  

3.2.2 Antibodies and reagent 

 Antibodies against CAPN5 (ab28280), APC (CC-1 clone, ab16749), PML (ab96051), β-

tubulin (ab6046-100) and histone H3 (ab1791) were purchased from Abcam, 

Cambridge, MA. Anti NeuN (MAB377) and Anti-GFAP (MAB360) were obtained from 

EMD Millipore, Billerica, MA. An antibody against SMN (610647) was purchased from 

BD Biosciences, San Jose, CA. IRDye 800CW Anti-rabbit IgG (611-131-132) and IRDye 

800 CW Anti-mouse IgG (610-131-121) were purchased from Rockland, Gilbertsville, 

PA. Hoechst 33258 ( H-3569 ) and conjugated secondary antibodies Alexa Fluor-488 

anti-rabbit IgG ( A11005 ) and Alexa Fluor-594 anti-mouse IgG ( A11034 ) were 

purchased from Molecular Probes, Life technologies, Grand Island, NY. TRI reagent ( 

T9424 ), X-gal (5-bromo-4-chloro-3-indoyl-β-D-galactoside, B4252), Pepstatin A ( P4265 

) and β-mercaptoethanol ( M6250 ) were purchased from Sigma, St. Louis, MO. pN1-

ZsGreen1 vector ( 632448) was purchased from Clontech Laboratories, Inc. Mountain 

View, CA.  p3XFLAG-CMV-14 (E7908) was purchased from Sigma, St. Louis, MO.  

Human Capn5 cDNA (MHS1010-58128) was purchased from Thermo Scientific, Open 

Biosystems, Huntsville, AL. All oligonucleotides were ordered from Integrated DNA 

Technologies, Coralville, IA. Lipofectamine 2000 CD reagent (12566-014) was obtained 

from Invitrogen, Grand Island, NY. Pfu DNA polymerase (600135) was ordered from 

Agilent Technologies, Stratagene Division, La Jolla, CA. EcoRI-HF and BamHI-HF were 

purchased from New England Biolabs, Ipswich, MA. Rapid DNA Ligation kit (11 635 379 

001) was obtained from Roche, Indianapolis, IN. One Shot® Stbl3TM competent bacteria 
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(C737303) was purchased from Invitrogen, Grand Island, NY. Additional reagents were 

purchased from Sigma (St. Louis, MO) or Thermo Fisher Scientific (Ashville, NC). 

 

3.2.3 Quantitative PCR (qPCR) 

 Brain samples were homogenized in TRI reagent to extract total RNA. cDNA was 

prepared using an Applied Biosystems high capacity reverse transcription kit (AB # 

4368814). Equal amounts of cDNA (100 ng) were used to perform qPCR using Taqman 

gene expression master mix (AB 4369016). Reactions were performed in triplicate, plus 

a negative control without cDNA. The qPCR was programmed as an initial denaturation 

at 50°C for 2 min, followed by 95 °C for 10 min, 40 cycles @ 95 °C for 15 s, and 60 °C 

for 1 min, on a StepOne real-time PCR system (Applied Biosystems). The following rat 

gene transcripts were examined: CAPN1 (NCBI Reference Sequence NM_019152.2, 

TaqMan gene expression assay Rn00569689_m1); CAPN2 (NM_017116.2, 

Rn00567422_m1), CAPN5 (NM_134461.1, Rn00593213_m1); CAPN7 

(NM_001030037.1, Rn01453530_m1), CAPN10 (NM_031673.2, and GAPDH 

(NP_058704, Rn99999916-s1). Relative gene expression was determined using 

Comparative CT values. ΔCT of the target gene was obtained as a difference in the CT 

value from endogenous control GAPDH. ΔΔCT value of the target gene was calculated 

by subtracting ΔCT value of the target gene from the ΔCT of a reference gene, calpain 1. 

Relative expression of target gene was then reported as 2-ΔΔC
T.  

 

3.2.4 Cytosol and crude nuclear fractionation 

Brain cortices were homogenized in a dounce homogenizer in isolation buffer containing 

215 mM mannitol, 75 mM sucrose, 1mM EGTA, 20 mM HEPES and 1uM of pepstatin A. 

The homogenate was centrifuged at 1,300 X g for 3 min to obtain the crude nuclear 



60 
 

fraction as a pellet. The supernatant was spun again at 13,000 X g for 10 min to obtain 

cytosol as supernatant. 

     

3.2.5 Nuclear subfractionation 

 Rat brain cortex was lysed and incubated with buffers provided in Qproteome nuclear 

protein kit (Qiagen, catalogue # 37582). The manufacturer’s protocol was followed to 

obtain cytosol, nucleic acid binding proteins (NABP), and insoluble nuclear proteins 

(INP). Briefly, 50 mg of tissue was disrupted in dounce homogenizer in 1ml of lysis buffer 

NL supplemented with protease inhibitor solution and 0.1M DTT, followed by incubation 

on ice for 15 min. 50 µl of detergent solution NP was added to the solution and vortexed 

for 10 sec. Lysate was then centrifuged at 10,000 X g for 5 min to obtain cytosol as 

supernatant and pellet for nuclear subfractionation. The pellet was resuspended in 100 

µl of extraction buffer NX1 supplemented with protease inhibitor solution, and incubated 

for 30 min on rotamix at 4°C. The suspension was spun down for 10 min at 12,000 X g 

to separate NABP fraction as supernatant and INP in pellet. The pellet was resuspended 

in extraction buffer NX2 supplemented with protease inhibitor, 0.1 M DTT and 

benzonase® nuclease, followed by incubation for an hour on rotamix at 4°C. The 

suspension was centrifuged for 10 min at 12,000 x g to obtain INP in supernatant. 

 

3.2.6 Western blot 

 Protein content of samples were assayed using Thermo Scientific Pierce® BCA protein 

assay reagent A (23228) and reagent B (1859078). Protein (50 µg of each) was mixed in 

NuPAGE® LDS sample buffer (NP007) supplemented with 5% β-mercaptoethanol, and 

boiled for 5 min. Boiled samples were separated on 4-12% Bis-Tris HCl gels (NuPAGE 

NP0335) in MES SDS running buffer ( NuPAGE NP0002) and transferred to a 0.2 µm 
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nitrocellulose membrane. After blocking in 5% skim milk in 0.05% Tween 20 in Tris-

buffered saline, pH 7.6 (T-TBS), for 1 hr, the membrane was incubated with primary 

antibody (CAPN5, 1:5000; SMN, 1:5000 BD; Histone H3, 1:5000; and β-tubulin, 

1:10,000) in 5% skim milk in T-TBS overnight at 4ºC. The membrane was washed in T-

TBS three times (3x) for 20 min each, followed by incubation with an appropriate 

secondary antibody (Anti-rabbit IgG, 1:5000; or anti-mouse IgG, 1:5000) at room 

temperature for 1 hr in dark conditions. The membrane was washed again 3x for 20 min 

each, and scanned using an Odyssey Infrared Imager (LI-COR Biosciences). 

 

3.2.7 Identifying Capn5+/- mice and β-Galactosidase staining: 

Capn5tm1Dgen/J (Capn5+/-) mice were used for this staining. To identify the genotype, DNA 

was extracted from tail tissue. The tissue was digested in 75 ul alkaline lysis solution (25 

mM NaOH, 0.2 mM EDTA) at 95oC 30 min/4oC 10 min, followed by treatment with 2 ul of 

proteinase K (10mg/ml) at 55oC 30 min/95oC 10 min/4oC 5 min. The resulting DNA 

solution was neutralized by adding 75 ul of 50mM Tris. PCR was set on Bio-RAD MJ 

mini Personnel Thermo Cycler or MJ Resaerch-PTC-200 Peltier thermo cycler, using 

primers and protocol provided by the Jackson Laboratory. Wild types were identified as 

PCR amplification of a single band of 209 bp and heterozygotes as two distinct bands of 

209 and 452 bp. 

Capn5tm1Dgen/J (Capn5+/-) male mice, approximately 3-months old, were perfused with 

PBS followed by 4% paraformaldehyde in PBS, pH 7.4. The brains were removed and 

postfixed overnight, then cryoprotected in 30% sucrose in PBS. The brains were frozen 

in powdered dry ice and coronally sectioned at 40 µm and stored in cryoprotectant (30 % 

ethylene glycol, v/v and 30% glycerol, v/v in 1xTBS) at -20°C until use. Sections were 

rinsed 3x in PBS then incubated with 1 mg/ml X-gal in 10 mM potassium ferricyanide, 5 
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mM potassium ferrocyanide, 2mM MgCl2 at 37°C overnight or until the dark blue staining 

appeared. Following dehydration, clearing, and coverslipping, sections were viewed and 

photographed using brightfield microscopy.  

 

3.2.8 Immunohistochemistry 

Perfusion, fixation, and preparation of male rat brain sections were performed as 

discussed for β-galactosidase staining. Free floating brains sections were washed in 

TBS 3x followed by blocking in 5% natural goat serum (NGS) in T-TBS (0.1% Triton-X-

100) for 30 min at room temperature. Brain sections were incubated with primary 

antibodies (CAPN5, 1:100; NeuN, 1:200; GFAP, 1:1000; and APC, 1:100) in 5% NGS-T-

TBS overnight at 4°C. Primary antibody was omitted from negative controls. Sections 

were washed 3x in 1x TBS, followed by 1 hr incubation with appropriate 2°antibodies at 

1:1000 dilution (Alexa Fluor-488 anti-rabbit IgG or Alexa Fluor -594 anti-mouse IgG), 

then washed 3x in TBS. Nuclei were stained with Hoechst 33258 at 10µg/ml. Brain 

sections were mounted on glass slides with Vectashield (H-1000, Vector Labs) 

fluorescence mounting medium and examined under a Leica AOBS TCS SP5 inverted 

laser scanning confocal microscope. 

     

3.2.9 Cell Culture and Immunocytochemistry 

SHSY-5Y (ATCC # CRL-2266) cells were cultured in complete growth medium (ATCC-

formulated Eagle's Minimum Essential Medium (Cat# 30-2003 + 1% penstrap + 10% 

FBS) at 37ºC in an incubator maintained with 95% air and 5% CO2. The cells were 

plated on 35mm glass bottom culture dishes. The following day, adherent cells were 

fixed in 4% paraformaldehyde in PBS, pH 7.4 for 15 min at room temperature, followed 

by permeabilization for 10 min with PBS containing 0.25% Triton X-100 (PBS/T). After 
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washing 3x with PBS, cells were incubated with 5% NGS-PBS/T for 30 min, then 

incubated with primary antibody (PML, 1:100 or CAPN5, 1:100) in 5% NGS-PBS/T 

overnight at 4°C. The next day, sections were washed 3x in PBS and incubated for 1 hr 

in the dark with 1:1000, Alexa Fluor-488 anti-rabbit IgG or Alexa Fluor -594 anti-mouse 

IgG, followed by 3x wash of 5 min each. Nuclei were stained with Hoechst 33258 at 10 

µg/ml for 5 min. Cells were viewed under a Nikon Ti-E C2plus confocal microscope. 

 

3.2.10 Plasmid preparation, transient transfection and confocal microscopy 

Human Capn5 cDNA (accession number BC018123.1) and oligonucleotides were 

purchased as described under antibodies and reagents. PCR oligonucleotide primers for 

Capn5 were designed to allow cloning into pN1-ZsGreen1 or p3XFLAG-CMV-14 vector 

such that ZsGreen1or a FLAG tag was encoded at the C-terminal of the fusion product.  

PCR was carried out using Pfu DNA polymerase kit. The resulting DNA product was 

digested with EcoRI-HF and BamHI-HF. The product was then ligated into the vector 

using a Rapid DNA Ligation kit and transformed into One Shot® Stbl3TM competent 

bacteria. Plasmid DNA was isolated using Qiagen Maxi Prep Kit # 12263.  

    For transient transfections, SH-SY5Y cells were grown in 35 mm glass bottom culture 

dishes. At approximately 70% confluency, cells were transfected with 0.2µg of plasmid 

vector using Lipofectamine 2000 CD reagent. Transfected cells were imaged at 24 h 

post transfection. Prior to imaging, cells were stained for 1 hr with 10 µg/ml Hoechst 

33258. Images were acquired on an Olympus IX81FV1000 confocal microscope.  
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3.2.11 Statistical Analysis 

The quantified values of the relative intensity of the CAPN5 immunoreactivity band and 

qRT-PCR RQ data were analyzed using one-way ANOVA, followed by Tukey’s multiple 

comparison tests.  

 

 

3.3 Results 

3.3.1 Calpain 5 is highly expressed in rat brain  

CAPN5 is present in the CNS (Waghray et al., 2004), but its expression relative to other 

calpains is unknown. Using the real-time comparative CT method (ΔΔCT) (Schmittgen 

and Livak, 2008), we analyzed the average relative mRNA expression of several 

ubiquitous calpains (1, 2, 5, 7, 10) in adult rat brain (n=4) (Fig.1.8). CAPN2 had the 

highest levels of mRNA expression exceeding CAPN5 by 2.7 fold. CAPN5 was the 

second most highly expressed calpain in the brain, followed by CAPNs7, 10, and 1, in 

descending order.   

To examine the cellular localization of CAPN5 mRNA expression, we utilized 

Capn5tm1Dgen/J mice in which a LacZ-Neo555G cassette was inserted into the CAPN5 

gene. These mice were created by DeltaGen (Moore, 2005) and obtained from Jackson 

Laboratories on a B6.129P2 background, then backcrossed onto C57BL/6J for 10 

generations. Capn5-/- mice were embryonically lethal, while Capn5+/- mice were viable. 

Despite the lower gene dosage, CAPN5 protein levels were unchanged in brains of 

Capn5+/- mice compared to wild-type (results not shown).  Another Calpain 5 mutant line, 

CAPN5tm1Nde /CAPN5tm1Nde is shown to be viable (see section 1.2.2.1d for the 

explanation on the difference in the phenotype) and supposedly have zero level of 
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calpain 5 protein. But, the data on the calpain 5 protein expression is unavailable (Franz 

et al., 2004). Representatives at European mouse mutant archive (EMMA), Germany, 

where these mice are housed were also unable to provide information on calpain 5 

protein levels in these mice. These mice were being made available to us as frozen 

embryo, which would have taken a long time for us to breed the colonies. Since we 

already had maintained colonies of Capn5tm1Dgen/J mice, I decided to choose 

Capn5tm1Dgen/J mice to examine cellular localization of calpain5 based on lacZ 

expression. 

In Capn5+/- mouse brain, X-gal staining was prevalent in the pyramidal neurons in the 

hippocampal formation, as well as in dentate granule and hilar neurons (Fig.3.1 A). X-gal 

staining was also observed in molecular layers and white matter indicative of expression 

in non-neuronal cells including astrocytes and oligodendrocytes. These results are 

consistent with CAPN5 being ubiquitously expressed in all cells. 

     

3.3.2 Nuclear localization of Calpain 5 

 Using double-label immunocytochemistry, co-localization of CAPN5 immunoreactivity 

with anti-NeuN confirmed the neuronal localization of CAPN5, and also indicated that 

expression was predominantly nuclear (Fig. 3.1 B). Double-labeling of anti-CAPN5 with 

anti-glial fibrillary acidic protein (GFAP) and anti-adenomatous polyposis coli tumor 

suppressor protein (APC) demonstrated nuclear CAPN5 expression in astrocytes and 

oligodendrocytes (Figs. 3.1 C and D). However, localization was not exclusively nuclear 

as faint immunoreactivity was observed in the neuropil and a band of CAPN5 

immunoreactivity was present in stratum lacunosum-moleculare in the hippocampal 

formation (not shown). This is a terminal zone of the perforant path and is rich in 

mitochondria (Kageyama and Wong-Riley, 1982), suggesting a possible presynaptic, 
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postsynaptic, or mitochondrial localization of CAPN5 in addition to the nuclear 

localization. 

To further evaluate the subcellular localization of CAPN5, rat brain cortices were 

homogenized and separated into cytosolic and crude nuclear fractions. CAPN5 

immunoreactivity was abundant in the crude nuclear fraction, but was not detected in the 

cytosolic fraction (Fig. 3.2 A). Additional subfractionation demonstrated that CAPN5 was 

enriched in the nucleic acid binding protein (NABP) fraction (Figs. 3.2 B and C). Unlike 

typical calpains, which are characterized as being mainly cytosolic (Yoshimura et al., 

1984, Goll et al., 2003, Suzuki et al., 2004); these results illustrate that CAPN5 is 

predominantly a non-cytosolic calpain, present in the nucleus in the nucleic acid binding 

protein fraction.  

 

3.3.3 Calpain 5 resides in punctate nuclear domains associated with PML bodies  

The nuclear staining observed with CAPN5 appeared punctate in each of the cell types 

examined in rat brain (Fig. 3.2 D). Faint CAPN5 immunoreactivity was also detected in 

the nucleus outside of PML bodies.  Extranuclear immunoreactivity was also observed. 

Punctate nuclear localization was also observed in SH-SY5Y neuroblastoma cells. The 

punctate nuclear localization suggests that CAPN5 is associated with one or more 

nuclear bodies (Dundr, 2012). In SH-SY5Y cells transfected with a plasmid expressing 

full length human CAPN5 fused with ZsGreen1 (pN1-hCapn5-1-640-ZsGreen1), similar 

punctate nuclear localization was observed with the CAPN5-ZsGreen1 fusion protein. A 

large amount of CAPN5 was expressed in cytoplasmic aggregates in the perinuclear 

region. Dot-like nuclear expression of CAPN5 was also observed following transient 

transfection of SH-SY5Y cells with a vector encoding human CAPN5 with a C-terminal 

FLAG tag, when using an anti-FLAG antibody (Agilent Technologies 200472). To 



67 
 

examine the nuclear domain, calpain 5 was colabeled with PML bodies ( promyelocytic 

leukemia protein). In the CNS, PML expression is biphasic—initially being expressed in 

immature neural progenitor cells, downregulated during differentiation, then re-

expressed in mature neurons (Yu et al., 2003, Salomoni and Betts-Henderson, 2011). 

Calpain 5 was detected post natally around day 15th / 20th in rat brain. PML and Calpain 

5 may interact via sumoylation (See below). Therefore, it could be hypothesized that 

CAPN5 could localize in PML bodies to regulate changes in gene expression or nuclear 

events for differentiation.  Endogenous as well as the transiently expressed CAPN5 

nuclear dots were colocalized or closely associated with PML bodies, using an antibody 

against PML protein (Figs. 3.3 A and B). PML independent CAPN5 dots were also 

observed. 

Partner proteins associated with PML bodies are typically sumoylated or contain a 

SUMO interaction motif (Shen et al., 2006, Lallemand-Breitenbach and de The, 2010).  

Using the SUMOplotTM program, several high probability sumoylation motifs (where Ψ = 

a hydrophobic residue, K = the lysine conjugated to SUMO, x = any amino acid, and  E = 

an acidic residue) are present on human CAPN5 (Table 3.1). CAPN5 contains a single 

probable sumo-interacting motif (KPEDEVLICI, aas 396-405), predicted using GPS-SBM 

1.0 at medium threshold (http://sbm.biocuckoo.org/software.php).  

 

3.3.4 Calpain 5 Nuclear Localization Signal 

Transient transfection with pN1-hCapn51-640-ZsGreen1 resulted in nuclear CAPN5-

ZsGreen1 expression, while transfection with the pN1-ZsGreen1 vector alone resulted in 

largely cytosolic ZsGreen1 expression (Figs. 3.4 A, B and Table 3.2). This suggests the 

possibility of a nuclear localization signal (NLS) in CAPN5. Analysis of the primary 

sequence of CAPN5 with PSORTII (Reinhardt and Hubbard, 1998) revealed a putative 

http://en.wikipedia.org/wiki/Hydrophobic
http://en.wikipedia.org/wiki/Lysine


68 
 

bipartite NLS, KKPEDEVLICIQQRPKR (aa 395-411, two basics clusters of amino acids 

interspaced by 10-12 amino acids), in domain III of human CAPN5, along with possible 

monopartite NLS sequences (not shown). However, this sequence was not sufficient for 

the nuclear localization. The basic amino acids of the NLS interact with importin-α for the 

nuclear import (Gorlich et al., 1995, Lange et al., 2007) (Marfori et al., 2011).  In studies 

to identify the NLS (summarized in Table 3.2), basic residues (K/R) of sequence 395-

411 were mutated to ‘N (to abort interaction with importin and hence nuclear localization) 

in full length hCapn5 (pN1-mhCapn5N
1-640-ZsGreen1); which did not abolish the nuclear 

localization. The PSORTII predicted bipartite NLS by itself was not sufficient since 

EVKKPEDEVLICIQQRPKRST, aa 393-413 (extended by 2 aa at each end), fused with 

ZsGreen1 (pN1-hCapn5393-413-ZsGreen1) was unable to target the nucleus. The putative 

NLS was further extended at the C-terminus to include additional basic residues, 

KKPEDEVLICIQQRPKRSTRREG, aa 395-417, (pN1-hCapn5395-417-ZsGreen1) to 

examine if additional basic residues at C-terminus may be required to drive the nuclear 

localization. However the resultant expression was mainly cytosolic (Fig 3.4 C and Table 

3.2).   

Then, we added few peptides proximal to aa 395-417. Fig 3.2 shows that calpain 5 was 

detected in the nucleic acid binding fraction. A thorough survey and in silico analyses 

show that 20% of NLS motifs co-localizes with the DNA binding region of the proteins 

(Cokol et al., 2000). Also, for 67% – 90% of the DNA binding proteins, the DNA binding 

region overlaps or is proximal to the NLS (LaCasse and Lefebvre, 1995, Cokol et al., 

2000, Nair et al., 2003). Therefore, for the DNA binding protein the NLS could be longer. 

To start with, proximal upstream sequence YIFEV (aa 390-394) was added that resulted 

in the peptide sequence YIFEVKKPEDEVLICIQQRPKRSTRREG, (pN1-hCapn5390-417-

ZsGreen1). Transient transfection with this construct resulted in nuclear localization in 

distinct punctate or dot like domains (Fig. 3.4 D). This upstream sequence was not 
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sufficient, however, as PQYIFEVKKPEDEVLICIQQ, (pN1-hCapn5388-407-ZsGreen1) was 

expressed in both the nucleus and cytosol (Table 2, figure not shown). Mutagenesis of 

basic residues (K/R) to A (pN1-mhCapn5A
388-417-ZsGreen1) did not abolish the nuclear 

localization of the peptide sequence, but resulted in a more diffuse nuclear localization 

(Fig. 3.4 E). Together, the results suggest that YIFEVKKPEDEVLICIQQRPKRSTRREG 

is a NLS for CAPN5 and also contributes to the punctate localization.  

A BLAST protein search (Altschul et al., 2005) against the putative NLS 

YIFEVKKPEDEVLICIQQRPKRSTRREG revealed that the sequence was unique to 

CAPN5 and highly conserved in mammals, with 100% identity in human, rat, and two 

amino acid differences in mouse. With occasional mismatch, the putative NLS aligned 

with CAPN5 protein of mammals, reptiles, amphibians and fish (Table 3.3). This 

sequence was unique to CAPN5 because other calpains do not carry a homologous 

sequence. These results indicate that domain III of CAPN5 contains a novel NLS, 

consisting of a bipartite region and upstream sequence. 

 

3.4 Discussion  

Most previous investigations of calpains in the CNS have focused on typical calpains 1 

and 2, although several other calpains have been detected in the CNS including CAPNs 

3, 5,10, and 12 (Ma et al., 2001, Konig et al., 2003, Shin et al., 2004, Waghray et al., 

2004). In this study, we found that CAPN5 mRNA levels are second only to CAPN2 in 

relative abundance in the CNS. The much greater expression of CAPN2 vs. CAPN1 is 

consistent with previous findings (Li et al., 1996). Calpains are largely cytosolic 

proteases, although CAPNs 1, 2, and 10 have also been localized to mitochondria, with 

CAPNs 2 and 10 additionally being detected in the nucleus (Yoshimura et al., 1984, Ma 

et al., 2001, Goll et al., 2003, Suzuki et al., 2004, Garcia et al., 2005, Arrington et al., 
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2006, Raynaud et al., 2008, Ozaki et al., 2009). In contrast, CAPN5 localization is 

predominantly nuclear where it is associated with PML nuclear bodies. 

    PML nuclear bodies are a collection of proteins arranged in spheres of 0.1-1.0 µm in 

diameter, localized to the nuclear matrix in most tissues and cell lines (Stuurman et al., 

1992). They are organized by promyelocytic leukemia (PML) protein, which was 

discovered because of its involvement in acute promyelocytic leukemia (for review see 

de The et al., 2012). The PML protein forms the outer shell of the nuclear bodies, with 

partner proteins on the interior (Guiochon-Mantel et al., 1995).  There are several PML 

isoforms with specific intracellular locations, with PML IV being the most extensively 

studied (Beech et al., 2005, Condemine et al., 2006). PML partner proteins are either 

sumoylated or contain a SUMO interaction motif (SIM) (Shen et al., 2006).  PML nuclear 

bodies are not static structures, with partner proteins exchanging between the nuclear 

body and the nucleoplasm (Weidtkamp-Peters et al., 2008). Moreover, PML nuclear 

bodies release partners during mitosis as a result of desumoylation, and reform during 

the transition to G1 (Dellaire et al., 2006a, Dellaire et al., 2006b).  PML nuclear bodies 

are also sensitive to cellular stress, which can result in either greater aggregation and 

increased size of the nuclear bodies or dispersion into microspeckles, depending on the 

nature of the insult (for review see [Lallemand-Breitenbach and de The, 2010]).  

    The localization of CAPN5 to PML nuclear bodies suggests that CAPN5 should 

contain a nuclear localization signal and one or more SUMOylation or SIM sites, similar 

to other nuclear body proteins such as SP100 and Daxx (Sternsdorf et al., 1999, Yeung 

et al., 2008, Santiago et al., 2009). Analysis of the human CAPN5 primary sequence 

using PSORTII (Horton and Nakai, 1997) revealed a putative classic 17 amino acid 

bipartite NLS KK[PEDEVLICIQQ]RPKR (395-411). Bipartite NLS signals consist of two 

clusters of basic amino acids, separated by approximately 10-12 amino acids with the 

prototype being the NLS for nucleoplasmin The basic amino acids interact with importin-
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α  for nuclear import via the classic import pathway (Gorlich et al., 1995, Lange et al., 

2007) (Marfori et al., 2011). The putative NLS for CAPN5 contains two clusters of basic 

amino acids separated by 11 amino acids. However, this sequence was not sufficient for 

localization to the nucleus. The identified sequence sufficient for nuclear targeting 

(YIFEVKKPEDEVLICIQQRPKRSTRREG, 390-417) is consistent with critical residues 

found in other bipartite NLSs (Marfori et al., 2011). Surprisingly, mutagenesis of the 

basic residues did not prevent nuclear import of the 388-417 sequence.   

    The single putative CAPN5 SUMO-interacting motif (KPEDEVLICI, aa 396-405) in 

CAPN 5 is contained within the putative NLS. The prediction of SUMO-interacting motifs 

is not precise, but general features include an acidic domain adjacent to a string of three 

of V, I, and/or L amino acids. The putative CAPN5 SUMO- interacting motif contains 

each of these domains. Other PML proteins which contain sumo-interacting motifs 

include Daxx and SP100, in addition to PML itself (Lin et al., 2006, Kim et al., 2009). 

    The extranuclear aggregates of CAPN5-ZsGreen1 are similar to those observed 

following overexpression of another chimeric protein consisting of green fluorescent 

protein fused to an internal fragment of the Golgi complex protein (Fu et al., 2005). This 

raises the possibility that the observed association of CAPN5-ZsGreen1 is an artifact of 

overexpression. Arguing against this is that while extranuclear aggregates and 

aggresomes have been observed following expression of other chimeric green 

fluorescent fusion proteins (Johnston et al., 1998, Garcia-Mata et al., 1999), the 

presence of nuclear aggregates is largely restricted to expressed polyQ proteins (Fu et 

al., 2005). Nuclear aggregates of CAPN5-FLAG were also observed, demonstrating that 

the nuclear localization is not driven by ZsGreen1. Proteasomes are present in the 

nucleus where they can associate with PML bodies (Wojcik and DeMartino, 2003). 

Similar to cytosolic aggresomes, nucleolar aggresomes can also result from nuclear 

proteasome inhibition (Latonen, 2011). PML body proteins including PML and p53 may 



72 
 

translocate to the nucleoli under these conditions of proteotoxic stress, however many 

non-PML body proteins are also associated with nucleolar aggresomes, which are 

distinct from PML bodies (Latonen, 2011). The association of CAPN5 with nuclear 

bodies was observed with native CAPN5 in rat neurons in vivo and in cultured SH-SY5Y 

cells, further suggesting that the localization of CAPN5-ZsGreen1 to PML nuclear bodies 

is not an artifact.  

    Proteins associated with PML nuclear bodies are linked by their ability to be 

sumoylated (Bernardi and Pandolfi, 2007). Analysis of the CAPN5 sequence using 

sumoylation prediction algorithms SUMOsp (Xue et al., 2006) and SUMOplot 

(www.abgetn.com/sumoplot/) reveals several high probability sumoylation sites, 

including one at K395 within the NLS. Using proteomic analysis of the anti-HA affinity 

purified fraction from His6-HA-SUMO 1 K1 mouse brain, CAPN5 was identified as a 

candidate SUMO1-conjugated protein (Tirard et al., 2012). Thus, the putative NLS and 

sumoylation sites of CAPN5 are consistent with its localization to PML nuclear bodies.  

    PML nuclear bodies are implicated in the cellular response to stress, viral defense, 

transcriptional regulation, apoptosis, and cell senescence (Borden, 2002, Bernardi and 

Pandolfi, 2007, Lallemand-Breitenbach and de The, 2010, Dundr, 2012). PML bodies 

recruit a large number of partner proteins which are then sequestered, modified, or 

degraded (Lallemand-Breitenbach and de The, 2010). In the CNS, PML expression is 

biphasic—initially being expressed in immature neural progenitor cells, downregulated 

during differentiation, then re-expressed in mature neurons (Yu et al., 2003, Salomoni 

and Betts-Henderson, 2011). Differentiation of neuroblastoma cells with retinoic acid 

results in the upregulation of PML and increased prominence of PML nuclear bodies (Yu 

et al., 2003). In Pml-/- mice, there is decreased proliferation of neural progenitor cells, 

impaired differentiation, and reduced cortical thickness (Regad et al., 2009).  
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     The functions of CAPN5 are largely unexplored and its role in PML nuclear bodies is 

not yet known. Small molecule calpain inhibitors inhibit differentiation of various cells 

(Kumar et al., 1992, Ueda et al., 1998, Patel and Lane, 1999, Yajima and Kawashima, 

2002, Yajima et al., 2006). This was previously interpreted as involving calpains 1 and 2, 

but might also involve CAPN5 and is consistent with the role of PML bodies in 

differentiation. Both PML bodies and calpains are involved in regulating p53 following 

DNA damage (Sedarous et al., 2003, Alsheich-Bartok et al., 2008, Hetman et al., 2010) 

(Gostissa et al., 2003). A truncated isoform of βIV spectrin associates with PML nuclear 

bodies and may represent a scaffold to which other proteins bind (Tse et al., 2001). 

Spectrins are sensitive substrates of cytosolic calpains (Czogalla and Sikorski, 2005) 

and the presence of both CAPN5 and truncated βIV spectrin in PML nuclear bodies 

suggests that CAPN5 might regulate the association of various proteins with PML 

bodies.  

    Other proteases associated with PML include deSUMOylases. The best characterized 

are the sentrin-specific proteases (SENPs) (Drag and Salvesen, 2008). PML is a 

substrate of SENP1, also known as SUMO protease 2 (Best et al., 2002). The SENPs 

are cysteine proteases with a catalytic triad of His-Asp-Cys, as compared to His-Asn-

Cys in CAPNs. Whether CAPN5 might also function as a SUMO protease is unknown. 

Of additional interest is that PML associates with nuclear aggregates in several 

neurodegenerative disorders, particularly polyglutamine disorders including 

spinocerebellar ataxia, Huntington’s disease, dentatorubral-pallidoluysian atrophy, as 

well as amyotrophic lateral sclerosis (Skinner et al., 1997, Kaytor et al., 1999, Yamada et 

al., 2001a, Yamada et al., 2001b, Takahashi et al., 2002, Takahashi et al., 2003, 

Seilhean et al., 2004, Fu et al., 2005). Several of the aggregated proteins have been 

demonstrated to be calpain substrates (Kim et al., 2003, Gafni et al., 2004, Schilling et 
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al., 2006, Simoes et al., 2012, Hubener et al., 2013), with calpain inhibition attenuating 

the nuclear aggregation (Gafni et al., 2004, Haacke et al., 2007, Hubener et al., 2013).  

    In summary, the results of the present study demonstrate that CAPN5 is expressed at 

relatively high levels in the CNS, and is a non-cytosolic calpain localized to 

predominantly to the nucleus where it associates with PML nuclear bodies. CAPN5 

contains a unique NLS as well as several potential sumoylation sites. The functions of 

CAPN5 remain to be determined. However, based on the roles of calpains and PML 

nuclear bodies, CAPN5 may be involved with neuronal differentiation, response to stress 

including DNA damage, transcriptional regulation, and regulation of cell death pathways. 
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Table 3.1 Prediction of sumoylation motifs on human CAPN5 using SUMOplotTM 

program, Abgent, San Diego, CA 

Human CAPN5     

No. Position Group Score 

1 K543 NSYVI IKCE GDKVR 0.94 

2 K598 LGQVH LKAD PDNLQ 0.91 

3 K588 WNHRV LKDE FLGQV 0.91 

4 K273 GLLAF FKSE KLDMI 0.85 

5 K395 QYIFE VKKP EDEVL 0.82 

6 K418 STRRE GKGE NLAIG 0.67 

7 K52 GPAVR WKRP KGICE 0.54 

8 K276 AFFKS EKLD MIRLR 0.50 

9 K396 YIFEV KKPE DEVLI 0.48 

10 K312 SKSER EKMG VTVQD 0.33 

 

    SUMOplotTM analysis predicted high probability sumoylation motifs on human CAPN5. 

Sumoylation motifs are shown in bold with the predicted site of sumoylation, residues ‘K’ 

are underlined. The position of ‘K’ residue on the protein is also shown. The 

SUMOplot™ score system predicts probability based on comparison to known 

sumoylation sequences, with higher score indicating a greater probability of a 

sumoylation motif. 
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Table 3.2 Summary of CAPN5-ZsGreen1 constructs and their subcellular 

distribution at 24h post-transfection. 

Construct Amino acid sequence Cellular 

localization 

24 h post 

transfection 

pN1-hCapn5
1-640

-ZsGreen1 Full length of CAPN5, aa 1-640 Nuclear 

pN1-mhCapn5
N

1-640
-ZsGreen1 Full length of CAPN5 with K/R of 

PSORTII predicted bipartite NLS 

mutated to asparagine ‘N’ 

Nuclear 

pN1-hCapn5
393-413

-ZsGreen1 EVKKPEDEVLICIQQRPKRST, 

PSORTII predicted bipartite NLS 

extended by 2 amino acids on 

either sides 

Cytosolic 

pN1-hCapn5
395-417

-ZsGreen1 KKPEDEVLICIQQRPKRSTRREG, 

expanded bipartite NLS to include 

2 additional basic residues on  C-

terminal 

Cytosolic 

pN1-hCapn5
390-417

-ZsGreen1 YIFEVKKPEDEVLICIQQRPKRST

RREG,  addition of upstream 

sequence to the extended bipartite 

NLS 

Nuclear 

pN1-hCapn5
388-407

-ZsGreen1 PQYIFEVKKPEDEVLICIQQ,  

upstream sequence plus a portion 

of the bipartite NLS 

Cytosolic and 

nuclear 

pN1-mhCapn5
A

388-417-ZsGreen1
 

PQYIFEVAAPEDEVLICIQQAPAA

STAAEG, basic residues mutated 

to alanine ‘A’ 

Nuclear 
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Table 3.3 Putative NLS (YIFEVKKPEDEVLICIQQRPKRSTRREG) is unique to 

CAPN5 and is conserved across species.  

Alignment following protein BLAST Protein Species 

  

Sequence query (Putative NLS):  

YIFEVKKPEDEVLICIQQRPKRSTRREG 

  

  

  

CAPN5 

  

  

Homo sapiens 

YIFEVKKPEDEVLICIQQRPKRSTRREG CAPN5 Rattus norvegicus 

YVFEVKKPEDEVLISIQQRPKRSTRREG CAPN5 Mus musculus 

YIFEVKKPEDEILICIQQRPKRSTRVEG CAPN5 Cricetulus griseus 

YIFDVKKPEDEVLICIQQRPKQSTRRDG CAPN5 Mustela putorius 

furo 

YIFDVKKPEDEVLISIQQRPKQSTRRDG CAPN5 Bos taurus   

YVFDVKKKPEDEVLICIQQKPKRTSRREG CAPN5 Ornithorhynchus 

anatinus 

YVFNVKKAEDEVLVCIQQKPKRTSQKEG CAPN5 Crotalus adamanteus 

FVFDVKKPEDEVLVCLQQKTKRTTRQEG CAPN5 Xenopus tropicalis 

FVFDVKKPEDEVLVCLQQKTKRTTRKDG CAPN5 Xenopus laevis 

YVFDVTKAEDEVLICLQQQDKR CAPN5 Danio rerio 

YIFDVKKPEDEVLISIQQRPKQSTRRDG Cysteine 

protease 

Desmodus rotundus 

 

    A homology search for putative NLS using BLAST (92) revealed that this sequence 

was conserved among CAPN5 protein of various organisms belonging to mammal, 

reptile, amphibia and fish. None of the other calpains carries a similar sequence. The 

upstream sequence (PQYIFEV) followed by a classical bipartite NLS 

(KKPEDEVLICIQQRPKRSTRREG) is a putative NLS of CAPN5. 
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Figure  3.1 Calpain 5 is present in nuclei of neurons and glia 
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Figure  3.1. Calpain 5 is present in nuclei of neurons and glia. X-gal staining was 

performed on 40 µm coronal brain sections of  3 month old male Capn5+/LacZ mice 

(N=6). In the hippocampal formation, X-gal staining was prominent in all neurons 

including CA1 and CA3 pyramidal neurons, granule cells of the dentate gyrus (DG) and 

hilar neurons (H). X-gal staining was also present in molecular layers, suggesting 

expression in glial cells and consistent with the ubiquitous expression of Capn5 mRNA 

(A).  

Immunohistochemical localization of CAPN5 (B-D). Confocal images were obtained 

following double immunolabelling of 40 µm coronal  3 month old male SD rat brain 

sections. Co-localization of CAPN5 and NeuN (B), a neuronal nuclear protein (87) 

indicates that CAPN5 is predominantly localized to neuronal nuclei although faint 

extranuclear staining was also observed. CAPN5 immunoreactivity was evident in the 

nucleus of cells positive for glial fibrillary acidic protein (GFAP, an intermediate filament 

protein in astrocytes (88)) (C). In cells positive for the adenomatous polyposis coli (APC) 

protein, a marker of mature oligodendrocytes (89), CAPN5 immunoreactivity was also 

localized to the nucleus (D). 
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Figure 3.2 Calpain 5 is enriched in the nuclear nucleic acid binding fraction 
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Figure 3.2 Calpain 5 is enriched in the nuclear nucleic acid binding fraction. Using the 

Qiagen Nuclear Protein Kit, SD rat brain cortex was subfractionated into the cytosol (C), 

nucleic acid binding protein fraction(NABP) and insoluble nuclear protein fraction (INP), 

followed by probing for CAPN5 and marker proteins by Western blot. Following 

differential centrifugation, CAPN5 immunoreactivity was prominent in the crude nuclear 

fraction and was not detected in the cytosolic fraction (A). Marker proteins included 

Histone H3 (nuclear), and β-tubulin (TUBB) as a cytosolic marker. Following further 

nuclear subfractionation, CAPN5 was enriched in the NABP fraction but also detected in 

the INP fraction (B). Survival of motor neuron (SMN) protein resides both in the nucleus 

and cytosol (90,91), and was used as a marker for the NABP fraction. Histone H3 is a 

marker for INP fraction. Quantitation of the relative intensity of the CAPN5 

immunoreactive band in (B) is shown in (C). The results, reported as group means ± 

S.D, N=3, were analyzed as one-way ANOVA followed by Tukey’s multiple comparison 

test, ** p<0.001 (C). Confocal images of 40 µm male SD rat brain sections co-

immunostained with CAPN5, NeuN, GFAP and Hoechst (a nuclear marker) show 

punctate nuclear localization of CAPN5 in each of the cell types (D).  
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Figure 3.3 Calpain 5 is associated with PML bodies 
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Figure  3.3 Calpain 5 is associated with PML bodies. Co-immunolabeling of CAPN5 and 

PML in SH-SY5Y cells indicated that CAPN5 is localized with PML bodies. Independent 

CAPN5 domains were also observed. ‘Arrow’ indicates colocalization or close 

association of CAPN5 and PML (A).  SH-SY5Y cells were transiently transfected with full 

length human calpain 5 cDNA (hCapn5) fused with ZsGreen1 (pN1-hCapn51-640-

ZsGreen1) using Lipofectamine 2000 CD reagent. At 24h post transfections, CAPN5-

ZsGreen1 expression was detected in intranuclear punctate domains and as 

extranuclear aggregates. Immunocytochemistry against PML protein indicates that 

nuclear CAPN5 co-localizes with PML protein (B). PML protein undergoes sumoylation 

and is known to partner with sumoylated protein (23).  
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Figure 3.4 Calpain 5 nuclear localization signal YIFEVKKPEDEVLICIQQRPKRSTRREG 

(390-417) 
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Figure 3.4. Calpain 5 nuclear localization signal 

YIFEVKKPEDEVLICIQQRPKRSTRREG (390-417). SH-SY5Y cells were transiently 

transfected with pN1-hCapn51-640-ZsGreen1 (vector encoding full length of human 

CAPN5 fused with ZsGreen1 at C-terminal. The CAPN5-ZsGreen1 fusion protein was 

expressed in the nucleus in dot like domains 24h post transfection. (A). Following 

transfection with empty vector, pN1-ZsGreen1, the expressed ZsGreen1 protein was 

mainly cytosolic (B). Transient transfection with pN1-hCapn5395-417-ZsGreen1 

(KKPEDEVLICIQQRPKRSTRREG, peptide sequence enclosing putative bipartite NLS) 

resulted in cytosolic localization of the fusion protein (C). Expanding this sequence to 

include the upstream amino acids PQYIFEV (pN1-hCapn5388-417-ZsGreen1, 

YIFEVKKPEDEVLICIQQRPKRSTRREG ) resulted in nuclear localization of the fusion 

protein (D). Mutagenesis of the basic residues to alanine (pN1-mhCapn5A
388-417-

ZsGreen1, PQYIFEVAAPEDEVLICIQQAPAASTAAEG ) maintains nuclear localization 

but not the punctate appearance (E).  
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Chapter 4: Mitochondrial localization of Calpain 5 

Preface 

Work shown in this chapter is done by Ranjana Singh with one exception. Ms. Vimala 

Bondada performed proteinase K treatment of mitochondria and mitoplast from B35 rat 

neuroblastoma cells (Fig 4.3 D).  
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4.1 Introduction 

Calpain 5 is a non-classical member of the calpain family (Barnes and Hodgkin, 1996, 

Dear et al., 1997, Matena et al., 1998, Ono and Sorimachi, 2012). The calpain family has 

15 catalytic isoforms and two regulatory isoforms. CAPN1 and CAPN2 are the oldest 

known calpains (Guroff, 1964, Goll et al., 2003, Sorimachi et al., 2010, 2011a). Unlike 

classical calpains, CAPN5 has only one subunit containing three domains (N, CysPc and 

C2L) similar to classical calpains, and a unique domain T (now called C2) at the C-

terminus. It also lacks Ca2+ binding EF-hand domains (Barnes and Hodgkin, 1996, Dear 

et al., 1997, Matena et al., 1998), yet, it may be Ca2+ activated (Waghray et al., 2004). 

We immunolabelled CAPN5 in the mouse brain section and found CAPN5  localized to 

the hippocampal stratum lacunosum moleculare (SLM) including other regions such as 

CA1, CA3 and dentate gyrus. SLM is a terminal zone of the perforant path and is rich in 

mitochondria (Kageyama and Wong-Riley, 1982).  

Calpains 1, 2, and 10 are detected in the mitochondria (Garcia et al., 2005, Arrington et 

al., 2006, Ozaki et al., 2009) and are thought to participate in the events contributing to 

mitochondrial dysfunction and cell death, such as mitochondrial membrane 

destabilization, cleaving BID, Na+/Ca2+ exchanger, AIF and VDAC (Mandic et al., 2002, 

Garcia et al., 2005, Kar et al., 2009, Ozaki et al., 2009, although whether calpain 1 

cleaves AIF has been questioned (Polster et al., 2005, Cao et al., 2007, Joshi et al., 

2009).  In case of necrosis, high influx of Ca2+ primarily through NMDA receptor 

activates calpains (Yamashima et al., 1994, Yamashima et al., 1996). An activated 

calpain such as calpain 1, can disrupt lysosomal membranes, resulting in the release of 

cathepsin B (Yamashima et al., 1998). Activated cathepsins degrade various substrates 

(Yuan et al., 2003, Tait and Green, 2010). In C.elegans, CLP-1 (calpain like protein-1) 

and calpain5 ortholog Tra-3 act upstream of aspartyl proteases (cathepsin) ASP3 and 4 
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to induce necrosis (Syntichaki et al., 2002).  Additionally, calpain 10 has been 

associated with the respiratory dysfunction, mPTP activation and proteolysis of complex 

I subunits of electron transport chain (Arrington et al., 2006).  

Based on the significant involvement of calpains in mitochondrial dysfunction and cell 

death, together with the localization of CAPN5 in the hippocampal stratum lacunosum 

molecular that is rich in mitochondria, we investigated the possibility of localization and 

role of CAPN5 in the mitochondria. 

 

4.2 Materials and Methods 

Male Sprague-Dawley (SD) rats, C57B/6J mice, SH-SY5Y human neuroblastoma cells 

and B35 rat neuroblastoma were used in this study. 

 

4.2.1 Experimental animals 

The University of Kentucky Institutional Animal Care and Use Committee approved all 

procedures involving experimental animals. Animals included Male Sprague-Dawley 

(SD) rats. For western blot and fractionation studies, rats were exsanguinated using CO2 

inhalation, followed by decapitation. Brains were rapidly removed and homogenized in 

appropriate buffer for western blot or fractionation as described below. For 

immunohistochemical study, rats were first perfused with PBS followed by 4% 

paraformaldehyde in PBS, pH 7.4. 
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4.2.2 Antibodies and reagents 

Antibodies against CAPN5 (ab28280), β-tubulin (ab6046-100) and TOMM20 (ab56783) 

were purchased from Abcam, Cambridge, MA. . Anti NeuN (MAB377) and Anti-GFAP 

(MAB360) were obtained from EMD Millipore, Billerica, MA.  Another CAPN5 antibody 

(GTX 103264) was purchased Gene Tex Inc., Irvine, CA. Calpain 2 specific antibody 

(208729) was purchased from Calbiochem, Billerica, MA. An antibody against CYT-C 

(556433) was ordered from BD Pharmingen, San Jose, CA. Antibodies against VDAC 

(PA1-954A) and mHSP70 (MA3-028) were purchased from Thermo Scientific, Ashville, 

NC. An antibody against AIF (SC-13116) was bought from Santa Cruz, Dallas, Texas. 

IRDye 800CW Anti-rabbit IgG (611-131-132) and IRDye 800 CW Anti-mouse IgG (610-

131-121) were purchased from Rockland, Gilbertsville, PA. Hoechst 33258 ( H-3569 ), 

MitoTracker® Red 580 (M22425), and conjugated secondary antibodies Alexa Fluor-488 

anti-rabbit IgG ( A11005 ) and Alexa Fluor-594 anti-mouse IgG ( A11034 ) were 

purchased from Molecular Probes, Life technologies, Grand Island, NY. Pepstatin A 

(P4265) and β-mercaptoethanol (M6250) were purchased from Sigma, St. Louis, MO. 

Alamethicin (A4665), Proteinase K (P4850) and Ficoll (F5415) were purchased from 

Sigma (St. Louis, MO). Additional reagents were purchased from Sigma (St. Louis, MO) 

or Thermo Fisher Scientific (Ashville, NC). 

 

4.2.3 Western blot 

 Protein content of samples was assayed using Thermo Scientific Pierce® BCA protein 

assay reagent A (23228) and reagent B (1859078). Protein (50 µg of each) was mixed in 

NuPAGE® LDS sample buffer (NP007) supplemented with 5% β-mercaptoethanol, and 

boiled for 5 min. Boiled samples were separated on 4-12% Bis-Tris HCl gels (NuPAGE 

NP0335) in MES SDS running buffer ( NuPAGE NP0002) and transferred to a 0.2 µm 
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nitrocellulose membrane. After blocking in 5% skim milk in 0.05% Tween 20 in Tris-

buffered saline, pH 7.6 (T-TBS), for 1 hour, the membrane was incubated with primary 

antibody (1:5000 of CAPN5, CAPN2, CYT-C, VDAC, TOMM20 or mHSP70, and β-

tubulin, 1:10,000) in 5% skim milk in T-TBS overnight at 4ºC. The membrane was 

washed in T-TBS three times (3x) for 20 min each, followed by incubation with an 

appropriate secondary antibody (Anti-rabbit IgG, 1:5000; or anti-mouse IgG, 1:5000) at 

room temperature for 1 hr in dark conditions. The membrane was washed again 3x for 

20 min each, and scanned using an Odyssey Infrared Imager (LI-COR Biosciences). 

 

4.2.4 Immunocytochemistry 

SHSY-5Y (ATCC # CRL-2266) cells were cultured in complete growth medium (ATCC-

formulated Eagle's Minimum Essential Medium (Cat# 30-2003 + 1% Penicillin 

Streptomycin + 10% FBS) at 37ºC in an incubator maintained with 95% air and 5% CO2. 

The cells were plated on 35mm glass bottom culture dishes. The following day, adherent 

cells were fixed in 4% paraformaldehyde in PBS, pH 7.4 for 15 min at room temperature, 

followed by permeabilization for 10 min with PBS containing 0.25% Triton X-100 

(PBS/T). After washing 3x with PBS, cells were incubated with 5% NGS-PBS/T for 30 

min, then incubated with primary antibody (1:100, CAPN5 and 1:500, mHSP70) in 5% 

NGS-PBS/T overnight at 4°C. The next day, sections were washed 3x in PBS and 

incubated for 1 hr in the dark with 1:1000, Alexa Fluor-488 anti-rabbit IgG or Alexa Fluor 

-594 anti-mouse IgG, followed by 3x wash of 5 min each. Nuclei were stained with 

Hoechst 33258 at 10µg/ml for 5 min. Cells were viewed under a Nikon Ti-E C2plus 

confocal microscope. 
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4.2.5 Immunohistochemistry 

Rats were perfused with PBS followed by 4% paraformaldehyde in PBS, pH 7.4. The 

brains were removed and post fixed overnight, then cryoprotected in 30% sucrose in 

PBS. The brains were frozen in powdered dry ice and sectioned at 40 µm in the coronal 

plane. Brain sections were stored in cryoprotectant (30 % ethylene glycol, v/v and 30% 

glycerol, v/v in 1xTBS) at -20°C until use. Free floating brains sections were washed in 

TBS 3x followed by blocking in 5% natural goat serum (NGS) in T-TBS (0.1% Triton-X-

100) for 30 min at room temperature. Brain sections were incubated with primary 

antibodies (CAPN5, 1:100 and NeuN, 1:200) in 5% NGS-T-TBS overnight at 4°C. 

Primary antibody was omitted from negative controls. Sections were washed 3x in 1x 

TBS, followed by 1 hour incubation with appropriate secondary antibodies at 1:1000 

dilution (Alexa Fluor-488 anti-rabbit IgG or Alexa Fluor -594 anti-mouse IgG), then 

washed 3x in TBS. Nuclei were stained with Hoechst 33258 at 10µg/ml. Brain sections 

were mounted on glass slides with Vectashield (H-1000, Vector Labs) fluorescence 

mounting medium and examined under a Leica AOBS TCS SP5 inverted Laser 

Scanning Confocal Microscope. 

 

4.2.6 Mitochondria Isolation from rat brain cortex  

We used a method slightly modified from Naga et al., 2007. Rat brain cortical tissue was 

homogenized in dounce homogenizer in mitochondrial isolation buffer (MIB) containing 

215 mM mannitol, 75 mM sucrose, 1mM EGTA, 20 mM HEPES and 1uM of Pepstatin A. 

Homogenate was centrifuged at 1,300 X g for 3 min to obtain crude nuclear fraction as 

pellet. The supernatant was spun again at 13,000 X g for 10 min to obtain cytosol as 

supernatant and crude mitochondria as a pellet. Crude mitochondria were purified 

through Ficoll gradient and layered on the top of 10% and 7.5 % Ficoll discontinuous 
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gradient ( appropriate amount of MIB was added to 20% Ficoll solution, 1M sucrose, 

0.1M Tris- HCl and 0.5 M EGTA), then ultracentrifuged in a SW 55 Ti rotor at 124,000 X 

g at 4ºC for 30 min. The resulting pellet of non-synaptic mitochondria was dissolved in 

MIB and stored at -80º C until use. Synaptosomes were collected and placed in a 

nitrogen cell disruption bomb  (Parr Instrument Company, model 4369, Moline, IL)  at 

1200 psi for 10 min (Brown et al., 2004), to break the synaptosomal membrane and  

liberate synaptic mitochondria. The synaptic mitochondria were purified and pelleted 

through ultracentrifugation on Ficoll gradient as mentioned above and stored in -80ºC 

until use.  

 

4.2.7 B35 (ATCC # CRL-2754™) cell culture and mitochondria isolation 

Cells were cultured in complete growth medium (ATCC-formulated Dulbecco's Modified 

Eagle's Medium, Cat # 30-2002 + 1% Penicillin Streptomycin  + 10% fetal bovine serum) 

at 37oC in an incubator maintained with air, 95% and CO2, 5%. For subculture, adherent 

cells were rinsed with warm 0.05% trypsin followed by incubating the cells with 5 ml of 

0.05% trypsin at room temperature (or at 37oC) for 5 min or until cells detach. The 

detached cells were homogeneously mixed in 8 ml of fresh growth media, and equally 

dispensed to 4-6 subculturing flasks. 

To isolate total mitochondria from B35 rat neuroblastoma cells, cells were detached with 

0.05% trypsin and pelleted. The cell pellet was homogeneously mixed and incubated in 

MIB for 10 min and dounce homogenized. The homogenate was ultracentrifuged 

through 12, 26 and 40% of Percoll gradient at 27,000 X g for 10 min. After the spin, a 

mitochondrial fraction was obtained at the junction of 40 and 26% percoll gradient. Two 

consecutive washes of 5 min each were done in MIB at 14,000 X g and 11,500 X g.  
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4.2.8 Mitoplast isolation from rat brain cortex and B35 cells 

Mitochondria (100 µg) was pelleted and resuspended in 10mM HEPES, pH 7.4, at 

1mg/ml. The suspension was incubated on ice for 20 min on a slow rocker to rupture the 

outer membrane by hypotonic swelling. At the end of the incubation, an equal amount of 

2x MIB was added to re-establish the osmolarity, and vortexed. The mix was centrifuged 

at 1,900 X g for 15 min to pellet mitoplast. 

 

4.2.9 Proteinase K treatment of mitochondria and mitoplast 

Mitochondria (50 μg) or mitoplast (obtained from 100 μg of mitochondria) was incubated 

with various concentrations of Proteinase K in MIB, pH 8.00 for 30 min at 37ºC. The 

reaction was stopped by adding 2mM PMSF for 10 min at 37ºC. Mitochondria/mitoplast 

was pelleted at 13,000 X g for 10 min/ 1,900 X g for 15 min, boiled with sample buffer, 

and separated through SDS-PAGE on a 4-12 % Bis-Tris gel. 

 

4.2.10 Treatment of mitochondria with alamethicin 

We used a method slightly modified from Joshi et al., 2009. Intact synaptic mitochondria 

(50 μg) was resuspended at 1mg/ml in respiration buffer (125 mM KCl, 2mM MgCl2, 

20mM HEPES, 2.5 mM KH2P04, pH 7.2) containing 5 mM pyruvate, 2.5 mM malate and 

150 μM ADP, and incubated on ice for 15 min. At the end of the incubation, 15 μM 

alamethicin was added and reincubated at 37°C for 20 min. The suspension was 

centrifuged with 13,000 X g for 10 min to collect pellet and supernatant separately to 

probe through Western blot. 
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4.2.11 SH-SY5Y cell culture, plasmid preparation, transient transfection and   

microscopy 

 Human Capn5 cDNA (accession number BC018123.1 was purchased as described 

under antibodies and reagents. PCR oligonucleotide primers for Capn5 were designed 

to allow cloning into p3XFLAG-CMV-14 vector or pN1-ZsGreen1 such that a FLAG tag 

or ZsGreen1 was encoded at the C-terminal of the fusion product.  PCR was carried out 

using Pfu DNA polymerase kit. The resulting DNA product was digested with EcoRI-HF 

and BamHI-HF. The product was then ligated into the vector using a Rapid DNA Ligation 

kit and transformed into One Shot® Stbl3TM competent bacteria. Plasmid DNA was 

isolated using Qiagen Maxi Prep Kit # 12263.  

SH-SY5Y cells were transfected with a vector encoding human CAPN5 fused with 

ZsGreen1 at C-terminus (pN1-hCapn51-640-ZsGreen1). Transfection was performed 

using lipofectamine 2000CD reagent.  Transfected cells were labeled with Mito Tracker® 

red 580 at the concentration of 100 nM for 45 min. Cells were then imaged on Olympus 

DSU microscope. 

 

4.2.12 Statistical analysis 

The data were analyzed using one-way ANOVA, followed by Tukey’s multiple 

comparison tests. 
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4.3 Results 

4.3.1 Calpain 5 is localized to the nucleus and mitochondria. 

Using anti-CAPN5 (ab28280), double labeling of CAPN5 and NeuN ( a marker for 

neuronal nuclei) in mouse brain cortex, we showed that calpain5 was not exclusively 

nuclear.  Faint immunoreactivity was observed in the neuropil and a band of CAPN5 

immunoreactivity was present in stratum lacunosum-moleculare in the hippocampal 

formation (Fig 4.1A). This is a terminal zone of the perforant path and is rich in 

mitochondria (Kageyama and Wong-Riley, 1982), suggesting a possible presynaptic, 

postsynaptic, or mitochondrial localization of CAPN5 in addition to the nuclear 

localization. Colabeling CAPN5 with mHSP70 in SH-SY5Y cells confirmed the nuclear 

as well as mitochondrial localization of calpain5 (Fig 4.1B).  

 

4.3.2 Calpain 5 is enriched in synaptic mitochondria. 

Cytosol and non-synaptic and synaptic mitochondria were probed against CAPN5 

through western blot. CAPN5 was detected in the mitochondrial fraction, but not in the 

cytosolic fraction. Calpain 2 was used as a positive control for cytosol. CAPN5 was  

enriched in synaptic mitochondria compared to non- synaptic mitochondria (Figs 4.2A 

and 4.2B).  

 

4.3.3 Calpain 5 is present on the inner mitochondrial membrane.  

A broad spectrum protease, proteinase K (PK) is commonly used to check if a protein is 

localized on the surface of an organelle (Brdiczka and Krebs, 1973, Ebeling et al., 1974). 

Intact synaptic mitochondria were treated with 0, 50, 75 and 100 µg/ml PK. CAPN5 was 
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not digested at these concentrations, indicating that CAPN5 is not present on the outer 

surface of mitochondria. TOMM20, a translocase on the outer mitochondrial membrane 

(Pfanner and Wiedemann, 2002), was however digested at these treatments (Figs 4.3A 

and 4.3B).  

Mitoplasts isolated from synaptic mitochondria were also treated with PK. Mitoplasts 

contain a matrix and intact inner membrane but no outer membrane, therefore  AIF is 

exposed on mitoplasts since it is present on the inner membrane (Fig 4.3A). PK 

treatment of mitoplast resulted in digestion of AIF, as well as CAPN5. This suggests that 

CAPN5 is present on the inner mitochondrial membrane projecting into the inner 

membrane space (Fig 4.3C and 4.3D). 

 

4.3.4 Calpain 5 is released from mitochondria on treatment with alamethicin 

Alamethicin, a peptide antibiotic isolated from the fungus Trichoderma Viride  forms 

anartificial channel in the membrane (Gostimskaya et al., 2003, Joshi et al., 2009). On 

treatment of intact synaptic mitochondria with alamethicin, CAPN5 was largely detected 

in the supernatant. CYT-C was used as a positive control for the release following 

membrane permeabilization (Liu et al., 1996, Otera et al., 2005). Following alamethicin 

treatment, CYT-C was detected mainly in the supernatant. These results indicate that 

similar to CYT-C, CAPN5 is released from mitochondria on membrane permeabilization 

(Fig 4.4). 

 

4.3.5 1st 30 aa of Calpain 5 is insufficient to localize to the mitochondria 

iPSORT (http://ipsort.hgc.jp/) predicted a putative N-terminal (1-30 aa) mitochondrial 

targeting sequence in human CAPN5 (hCAPN5) (Fig 4.5 A). SH-SY5Y cells were 

http://ipsort.hgc.jp/
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transfected with a vector encoding 1-30 aa of hCAPN5 fused with ZsGreen1 at the C-

terminal (pN1-hCapn51-30-ZsGreen1). When colabelled with MitoTracker®580, ZsGreen1 

expression was not localized to the mitochondria, suggesting that 1-30 aa may not be 

sufficient to target to the mitochondria (Fig 4.5 B). Quite frequently ZsGreen1 expression 

was detected adjacent to the mitochondria, but not in the mitochondria. 

 

4.4 Discussion 

In chapter 3, we showed that CAPN5 was mainly present in nucleus, although 

extranuclear localization was also observed. In this study, by probing synaptic and non-

synaptic mitochondrial fractions, and cytosol through Western blot, we found CAPN5 is 

also present in mitochondria with an enriched presence in the synaptic mitochondria. 

CAPN5 was not detected in the cytosol. Calpains 1, 2 and 10 have been detected in 

cytosol and in mitochondria (Garcia et al., 2005, Arrington et al., 2006, Badugu et al., 

2008).  

The inability to detect CAPN5 in the cytosol is unusual as this it not the case for other 

calpains. There are some non-convincing indications in the literature about cytosolic 

localization of CAPN5. In 293T cells transfected with human CAPN5 construct, CAPN5 

was detected in the nucleus as well as in the cytosol.  However, in untransfected cells, 

CAPN5 was mainly detected in the nucleus, which suggests that transfection with Capn5 

construct may have led to non-specific localization of CAPN5 in the cytosol (Gafni et al., 

2004).  Another study also briefly mentions cytosolic localization of CAPN5 in the 

stromal cells and endometrial glandular epithelial cells, although  the immunostaining is 

not very evident without the images of higher magnifications (Penna et al., 2008). 

Undetectable levels of CAPN5 in cytosol together with its localization in nucleus and 
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mitochondria suggests that CAPN5 may have acquired specific roles in these cellular 

compartments. Recently, Mahanjan et al 2012 showed that a mutation in CAPN5 

(R243L) causes mislocalization of CAPN5 to the cytosol (Mahajan et al., 2012).  

Calpains are implicated in various mitochondrial functions. Mitochondrial CAPN10 has 

been associated with respiratory dysfunction, mPTP activation, and proteolysis of 

complex I subunits of electron transport chain, which were protected when calpain 

activity was inhibited with calpeptin (Arrington et al., 2006). At least four calpains, 1, 2, 5 

and 10, are detected in mitochondria. So, mitochondrial respiratory dysfunction and 

complex I degradation may actually be attributed to specific or cumulative activation of 

all mitochondrial calpains. CAPN5 could also contribute to the process of cell death 

initiation in mitochondria because after its release from mitochondria, it might contribute 

to the cytosolic component of the cell death pathways. Calpain cleaves BID (Mandic et 

al., 2002). Truncated BID (tBID) oligomerizes BAK or BAX, which leads to 

permeabilization of mitochondrial membranes, followed by release of cytochrome C 

(CYT-C) and truncated AIF (tAIF) in the cytosol. White CYT-C engages in the pathway of 

caspase 3 activation, tAIF translocates to the nucleus to induce caspase independent 

cell death (Otera et al., 2005). The mechanism of AIF cleavage is still not clearly 

delineated. CAPN1 is present in the IMS of mitochondria and is thought to be involved in 

AIF cleavage (Polster et al., 2005, Cao et al., 2007), but a follow up study did not  

support this (Joshi et al., 2009). Once AIF is truncated, mitochondrial CAPN2 assists the 

release of tAIF by cleaving VDAC (Ozaki et al., 2009). Ca2+ overload is continuously 

maintained during the cell death as calpain1 cleaves the mitochondrial inner membrane 

located Na2+/Ca2+ exchanger ( NCX) (Kar et al., 2009). CAPN5, being in spatial vicinity 

with AIF, could be involved in cleaving AIF. It could also participate in cleaving VDAC 

and Na2+/Ca2+ exchanger. 
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The mechanism of release of CAPN5 from the mitochondria is not clear. We showed 

that CAPN5 is present on the inner membrane but whether is anchored or loosely 

associated is also not clear. An anchored protein would need to be cleaved before 

release. However, if CAPN5 is loosely associated on the inner membrane, such as 

through electrostatic interaction, destabilization of mitochondrial membrane during cell 

death could result in the loss of association and release of CAPN5 from the 

mitochondria.  After release, CAPN5 could contribute to the cytosolic events of the cell 

death. In cytosol, CYT-C binds to APAF1 forming apoptosome that activates CASP9, 

which in turn activates CASP7 and CASP3.  CASP3 can also be directly activated by 

CAPN2 (Blomgren et al., 2001, Orrenius et al., 2003, Harwood et al., 2005). Once 

released, CAPN5 may participate with other protein complexes to cleave BID, CASP9, 

CASP3 and/or CASP7 to augment the cell death mechanics.  Released CAPN5 could 

also cleave cathepsin D or E (aspartyl protease) to mediate lysosomal cell death 

pathway. Tra-3, an ortholog of CAPN5 in C.elegans contributes to necrotic cell death 

through engaging lysosomal and cytoplasmic aspartyl proteases (Syntichaki et al., 

2002).  

After release, CAPN5 could also translocate to ER-mitochondria associated membrane 

(MAM), where it may act as SUMO protease. Ca2+ regulation at MAM requires 

interaction between mitochondria and ER (such as ATP is released from mitochondria in 

to the cytosol and released ATP activates Ca2+ -ATPase pump at ER membrane), and 

reorganization of various proteins at MAM (Hayashi et al., 2009). One of these 

complexes at MAM is the PML complex with IP3, protein kinase Akt and protein 

phosphatase (PP2a). PML seems important to bind PP2a to IP3R, which favors 

dephosphorylation of IP3R over phosphorylation by AKT, hence leading to Ca2+ influx in 

the mitochondria from ER (Wang et al., 1998a, Giorgi et al., 2010, Giorgi et al., 2011, 
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Pinton et al., 2011). SUMOylation could possibly be a way by which PML interacts with 

IP3R, AKT and PP2a and forms a complex.  GPSsp2.0 predicted SUMOylation motifs at 

high threshold for all the three proteins, IP3R (Uniprot # Q14573; 7, SUMOylation 

motifs), PP2a (Q15173; 2) and AKT1 (B7Z5R1; 4). Triggered by a legitimate signal, 

released CAPN5 may translocate to PML-IP3-AKT-PP2a complex at MAM to 

deSUMOYlate the assembly to regulate Ca2+ signaling.  

Enriched levels of CAPN5 in synaptic mitochondria suggest a role of CAPN5 at 

presynaptic terminal. At the presynaptic terminal, calpains have been associated with 

glutamate release. SNARE [(soluble N-ethylmaleimide-sensitive fusion protein 

attachment receptor protein complex of synaptosomal-associated protein of 25 kDa 

(SNAP) Receptor] complex mediates the interaction and fusion of the synaptic vesicle to 

the presynaptic membrane (Popoli et al., 2012). In cultured rat cerebellar granule cells, 

ionomycin-induced calpain activation suppresses synaptic vesicle exocytosis and 

glutamate release (Ando et al., 2005). In pancreatic β-cell secretary granule exocytosis, 

CAPN10 triggers insulin release. CAPN10 binds to SNARE complex and partially 

cleaves SNAP-25 leading to remodeling of SNARE complex; hence triggering exocytosis 

and insulin release (Marshall et al., 2005, Evans and Turner, 2007). CAPN5 could be 

involved in exocytosis and glutamate release at presynaptic terminal. As shown in the 

results, CAPN5 is localized to the hippocampal stratum lacunosum moleculare, a 

terminal zone of the perforant pathways, which additionally supports synaptic localization 

of CAPN5. 

The mechanism of CAPN5 localization to mitochondria is also unknown. N-termini of 

CAPN1 and CAPN10 possess mitochondrial targeting sequences (MTS) (Arrington et 

al., 2006, Badugu et al., 2008). Mitochondrial targeting proteins generally carry a 

cleavable N-terminus that is cleaved after import. Hydrophobic and positive residues of 
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the N-terminus make an amphipathic helix, which interacts with the transporter outer 

membrane (TOM) and transporter inner membrane (TIM) complexes for mitochondrial 

import. After import, the N-terminus is cleaved; however there are a few exceptions.  For 

example, the N- terminal of calpain 1 (1st 30 amino acids that carry MTS) is retained on 

completion of the import (Badugu et al., 2008). Amino acids 1-30 of CAPN5 

(MFSCVKPYEDQNYSALRRDCRRRKVLFEDP – the hydrophobic and positive residues 

are underlined) were not sufficient to target to mitochondria. SH-SY5Y cells were 

transiently transfected with a vector encoding amino acids 1-30 of CAPN5 fused with 

ZsGeen1 at C-terminal. The ZsGreen1 expression remained mainly cytosolic, 

suggesting that 1st 30 amino acids of CAPN5 may not be enough to target to 

mitochondria. A considerable variation in the N-terminus length or/and amino acids 

composition through TOM/TIM import system has been reported (Pfanner, 2000, 

Truscott et al., 2003).  Calpain 5 may require a longer sequence or have an internal 

MTS, which remains to be investigated. A variety of import sequences have been 

described (Chacinska et al., 2009). In many instances, ZsGreen1 expression was 

observed contiguous to the mitochondria, which suggests that the process of entry into 

the mitochondria may have been stalled. ZsGreen1, a large reporter protein (~38kDa), 

may hinder with the transport of the 1-30  aa peptide in to the mitochondria. Fusing this 

peptide with a Myc-tag, a small peptide (~1.2kDa) may be used to check if aa 1-30 is 

sufficient to enter the mitochondria. 

In summary, CAPN5 is a non cytosolic calpain present in the nucleus and in 

mitochondria, where it is especially enriched in synaptic mitochondria. Calpain 5 is 

localized on the inner mitochondrial membrane and released following membrane 

permeabilization. It could be speculated that CAPN5 is involved in various functions 
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where other calpains are also involved.  Specifically, it may be invloved in Ca2+ 

regulation at ER-mitochondrial associated membrane that remains to be investigated. 
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Figure 4.1 Mitochondria are one of the subcellular pools of CAPN5 
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Figure 4.1 Mitochondria are one of the subcellular pools of CAPN5. CAPN5 was not 

exclusively nuclear (colocalization with NeuN, in the regions of CA1, CA3, dentate 

gyrus/DG and hilar/H neurons) because a band of immunoreactivity was observed in the 

stratum lacunosum-moleculare (SLM) of the dentate gyrus. This pathway contains 

Schaffer collateral fibers from CA3 neurons as well as perforant path axons from 

entorhinal cortex. This is a terminal zone of the perforant path and is rich in mitochondria 

(Kageyama and Wong-Riley, 1982) (A). Through immunocolabelling and confocal 

microscopy, CAPN5 was detected in the nucleus as well mitochondria of human SH-

SY5Y neuroblastoma cells (N= 5, culture dishes) (B).   
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Figure 4.2 Calpain 5 is a non-cytosolic protein enriched in synaptic mitochondria 
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Figure 4.2 Calpain 5 is a non-cytosolic protein enriched in synaptic mitochondria. 

Cytosolic fraction (C), non-synaptic (NS) and synaptic (S) mitochondria were obtained 

through differential centrifugation of  3 month old rat brain cortex. The fractions were 

probed for CAPN5 by Western blot. Unlike CAPN2, CAPN5 was not detected in the 

cytosol but was enriched in the synaptic mitochondria compared to nonsynaptic 

mitochondria. mHSP70 and β-tubulin (TUBB) are mitochondrial and the cytosolic 

markers, respectively (A). The quantitative values of immunoreactivity band in (A) are 

plotted in (B). The data were statistically analyzed as one-way ANOVA followed by 

Tukey’s multiple comparison test,* p<0.01, ** p<0.001. Results are expressed as the 

group means ± S.D, N=6 (B). 
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Figure 4.3 Calpain 5 is present on the inner mitochondrial membrane 
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 Figure 4.3 Calpain 5 is present on the inner mitochondrial membrane. A schematic 

diagram describes various mitochondrial markers: TOMM20 is located on the 

cytoplasmic side of the outer mitochondrial membrane (OM).  Treating isolated intact 

mitochondria with a board spectrum protease like proteinase K (PK) completely digests 

TOMM20. It is used as a positive control for PK treatment. AIF is a membranous protein 

anchored on the inner membrane (IN), and projects into inter membrane space (IMS). 

CYT-C and mHSP70 are soluble proteins present in the IMS and matrix of the 

mitochondria, respectively. AIF, CYT-C and mHSP70 are protected from PK digestion of 

the intact mitochondria. However, permeabilizing mitochondrial membranes with Triton-

X-100 (Tx) results in the PK digestion of these proteins. Mitoplast can be fractionated 

from mitochondria as an intact IN covering matrix. PK treatment of the mitoplast is 

sensitive to the proteins like AIF, which is present on the outer surface of the inner 

membrane (A). ‘S’ represents intact synaptic mitochondria without any treatment. 

Treatment of intact rat synaptic mitochondria with varying concentrations of PK did not 

digest CAPN5 band, indicating that CAPN5 is present inside the mitochondria. TOMM20 

was however digested. CYT-C, an IMS protein, was not digested on PK treatment (B). 

Mitoplasts fractionated from both rat synaptic mitochondria and mitochondria of B35 rat 

neuroblastoma cells were incubated with 50 ug/ml of PK. CAPN5 was digested similar to 

AIF suggesting it is present on the inner membrane (C, D).  
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Figure  4.4  Calpain 5 releases from the mitochondria on membrane permeabilization 
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Figure  4.4  Calpain 5 releases from the mitochondria on membrane permeabilization. 

Alamethicin forms artificial channels in the membrane. Swollen synaptic mitochondria 

(incubation of intact synaptic mitochondria in respiration buffer for 15 min, see method 

section for the details) were treated with 15μM alamethicin. CYT-C was released from 

mitochondria, and detected in the supernatant. CAPN5 was also largely detected in the 

supernatant, suggesting it is released from the mitochondria. ‘S’ represents intact 

synaptic mitochondria without any treatment (A). The fraction of CAPN5 release was 

calculated as a ratio of calpain 5 detected in the supernatant to the total calpain 5 

present the pellet of untreated mitochondria. The result is reported as percentage 

release. Data were statistically analyzed as paired t test, ** p =0.0026, and reported as 

group means ± S.D, N=3. Arbitrary values of CAPN5 band were measured in Odyssey 

LI-COR software (B). 

 

 

 

 

 

 

 

 

 

 



111 
 

Figure 4.5  1-30 aa of human Calpain 5 is insufficient to target to mitochondria 
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Figure  4.5  1 – 30 aa of human Calpain 5 is insufficient to target to mitochondria. SH-

SY5Y cells were transfected with pN1-hCAPN51-30-ZsGreen1 encoding  1-30 aa of 

hCAPN5 fused with ZsGreen1 at the C-terminal (A). Cells were labeled with 

MitoTracker® Red 580 at the concentration of 100nM 15 mins prior to imaging. 

ZsGreen1 expression did not colocalize with mitochondria, suggesting that the 1-30 aa 

of CAPN5 may not be sufficient for targeting mitochondria. Zsgreen1 expression was 

detected adjacent to the mitochondria in many instances (B). 
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Chapter 5: Discussion, summary and conclusion 

Calpains are Ca2+ activated proteases.  Sixteen isoforms of calpains have been reported 

thus far. Calpains 1 and 2 are called the classical calpains. These are the most 

investigated calpains in the CNS. In the first report, calpain was describes as a soluble 

Ca2+ proteinase, obtained in the soluble fraction of the brain (Guroff, 1964). Since then, 

calpains have been considered as cytoplasmic calpains, although a small fraction is now  

thought to associate with the cell membrane. Calpain 5 is a non-classical calpain 

because it has only one subunit possessing N-terminal, CysPc and C2L domains similar 

to the large subunit of the classical calpains. However, instead of PEF(L), CAPN5 

CAPN5 has domain T, also called C2 domain (Fig 1.1).  An ortholog of CAPN5, Tra-3, 

contributes to the necrotic neuron death in C.elegans (Syntichaki et al., 2002).  

Calpain 5 is the second most highly expressed calpain in the CNS, after calpain 2. It 

appears postnatally during brain and spinal cord development. The protein levels of 

calpain1 and CAST also increase postnatally. Calpain 2 protein levels remain 

unchanged during development (Li et al., 2009). CAPN2-/- mice are embryonically lethal; 

however, CAPN1-/- mice are viable thus indicating that calpain 2 contributes prenatally 

and calpain1 postnatally to development. Calpain 5 mRNA levels were 10-fold higher 

than calpain1 mRNA levels in adult rat brain (Fig 1.8), suggesting that CAPN5 could be 

the major calpain in the adult brain.  Calpain 5 is a non-cytosolic calpain, predominantly 

present in the nucleus, and enriched in synaptic mitochondria compared to non-synaptic 

mitochondria. In mitochondria, CAPN5 was present on the inner membrane and was 

released following outer membrane permeabilization. In the nucleus, CAPN5 was mainly 

detected in the nucleic acid binding protein fractions. Calpain 5 carries a nuclear 

localization signal (NLS) (aa 390-417), which encloses a classical bipartite NLS with a 

unique immediate upstream sequence. Calpain 5 colocalizes with PML bodies.   
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Classical and non-classical calpain protein structures in vertebrates have some similarity 

with the calpain domain architectures of lower organisms.  Comparative genome and 

phylogenetic analyses of 34 unicellular eukaryotes have identified four ancient 

eukaryotic calpain domain architectures: CysPc, CysPc-C2L, MIT-CysPc-C2L and TML-

CysPc-C2L (TML- transmembrane motif) (Zhao et al., 2012). Calpains in higher 

organisms may have evolved by shuffling ancient domains, adding novel domains, 

and/or modifying existing domains. Calpain 5 or Calpain 5-like protein is evolutionarily 

conserved across species such as mammal, amphibian, reptiles, fish and nematodes. 

Calpain5 is an ortholog of Tra-3, a cysteine protease in nematode. In nematodes, Tra-3 

is important for the processing of Tra-2A for female development in hermaphrodites.  

(Hodgkin, 1986, Barnes and Hodgkin, 1996). Tra-3 has a sequence homology with the 

large subunits of rat calpain 1 and calpain 2 in the regions of domains N, PC1/PC2 and 

C2L. However, unlike calpains 1 and 2, Tra-3 lacks a PEF domain and instead has a 

non –EF hand domain T, with little homology at the C-terminus of PEF(L) domain of 

CAPNs 1 and 2. (Barnes and Hodgkin, 1996). A homologous protein found in 

vertebrates was named calpain 5 (Dear et al., 1997). Alignment of the predicted amino 

acid sequence of human and mouse CAPN5 with representative members of the 

vertebrate calpain family resulted in significant sequence homology over the entire 

coding region. Also, an unrooted phylogenetic tree generated from bootstrap analysis 

placed CAPN5 with calpain 6 in a common group divergent from the group consisting of 

calpains 1, 2, 3 and 8 (Dear et al., 1997). Genomic organization of mouse CAPN5 and 

calpain 6 identified them as a new calpain subfamily with 11 introns at identical 

locations, with 6 of them being in a similar location to those of the known vertebrate 

calpain members.  (Matena et al., 1998).  
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Although CAPN5 and 6 have similar domain architecture (N, CysPc, C2L and C2 

domains), CAPN6 carries a natural mutation in the catalytic domain, ‘C’ of PC1 is 

mutated to ‘K’ (K81 in human and mouse), making it a non proteolytic calpain (Matena et 

al., 1998). CAPN6 is predominantly present in the placenta, embryonic muscle, and 

cartilage.  Loss of CAPN6 promotes embryonic skeletal muscle differentiation. CAPN6 is 

also expressed during muscle regeneration and suppresses regeneration (Tonami et al., 

2013). On the other hand, CAPN5 is ubiquitous.  CAPN5 was not detected at embryonic 

and early post natal developmental time points however it was detected in adult brain 

around 15 to 20 days postnatally.  The function of CAPN5 is unknown, except that its 

ortholog Tra-3 is involved in sex determination and necrotic cell death (Syntichaki et al., 

2002).  

CAPN5 knockout mice present rather confusing information about the role of CAPN5 

during development. CAPN5-/- progenies (Capn5tm1Nde/ tm1Nde) survive and are normal and 

healthy (Franz et al., 2004). However, a small portion these null mice were severely 

runted, and did not survive to adulthood. An IRES-LacZ-Neo cassette was inserted in 

the exon 4 of the CAPN5 alleles of Capn5tm1Nde/ tm1Nde mice, which disrupted the catalytic 

domain.  The difference in the CAPN5 protein levels in Capn5tm1Nde/ tm1Nde and Capn5+/+ 

has not been examined though. Another line of CAPN5 null mice (Capn5tm1Dgen/tm1Dgen, 

MGI accession no.3604529) are available. These are embryonically lethal and die in 

utero before E3.5.  However, the position of insertion of IRES-LacZ-Neo-555G in 

Capn5tm1Dgen/tm1Dgen mice is unknown. 

The role of CAPN5 in the PML bodies remains to be investigated. A specific role of PML 

bodies is also unknown thus far. But, PML nuclear bodies are implicated in the cellular 

response to stress, viral defense, transcriptional regulation, apoptosis, and cell 

senescence (Borden, 2002, Bernardi and Pandolfi, 2007, Lallemand-Breitenbach and de 
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The, 2010, Dundr, 2012).  For execution of these functions, SUMOylation, a reversible 

modification, is one key event for PML to recognize and recruit other proteins in the PML 

bodies. PML, a well-known SUMOylated protein together with partner proteins, e.g.,  

DAXX and sp100 undergo SUMOylation (Duprez et al., 1999, Ishov et al., 1999, Zhong 

et al., 2000). CAPN5 contains the consensus SUMOylation motif (ᴪ-K-x-D/E, 

hydrophobic residue- K, SUMOylation site- any residue- acidic residue), suggesting a 

possible mechanism of CAPN5 and PML partnering and the recruitment of the CAPN5 in 

the PML bodies. Several high and low probability SUMOylation sites (K residues) on 

CAPN5 are K543, K598, K588, K273, K395, K418, K52, K276, K396 and  K312 (GPSsp 2.0: 

prediction of SUMOylation motif ). PML and partner proteins also interact through SUMO 

interaction motif (SIM). SIM consists of short stretch of hydrophobic residues, mainly ‘V’, 

‘L’ or ‘I’ with flanking N or C –terminal serine and/or acidic residues. ‘K’ residue of SUMO 

interacts electrostatically with flanking acidic residues of SIM (Song et al., 2004, Song et 

al., 2005, Hecker et al., 2006). In addition to consensus SUMO motifs, CAPN5 also 

possesses two SIMs, aa 401-404 and aa 402-405 (397PEDEVLICIQQ), flanked with 

acidic residues at N-terminal (GPS-SBM 1.0: prediction of SIM). 

The role of CAPN5 in the PML body is mainly speculative at this point. Although CAPN5 

could participate in many functions in which PML bodies participate in, the most 

appealing hypothesis seems to be the involvement of CAPN5 in the deSUMOylation or 

deconjugation of the SUMO modifications. SUMO protease enzymes such as yeast Ulp1 

and Ulp2, and human SENPs are cysteine proteases, as is CAPN5 (Li and 

Hochstrasser, 1999, Mossessova and Lima, 2000, Bylebyl et al., 2003, Hickey et al., 

2012).  SUMO proteases belong to CE clan of the cysteine protease, and CAPN5 

belongs to CA clan (http://merops.sanger.ac.uk). Proteases from CA and CE clan differ 

in the protein sequence, but have similar geometrical folds. In standard orientation, both 
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the proteases have upper helical fold and lower α/β folds. The relative positions of the 

‘C’ and ‘H’ of the catalytic cleft provides a conserved catalytic geometry among CA and 

CE clan (Drag and Salvesen, 2008). SUMO proteases are involved in variety of 

functions. SENP5 is required for cell division. Knocking down SENP5 in HeLa cells 

causes growth inhibition, aberrant nuclear morphology and binucleate cells (Di Bacco et 

al., 2006). In absence of Ulp1 cell division is inhibited (Li and Hochstrasser, 1999). 

These findings suggest that deSUMOylation is required for the proper functioning of the 

cells. CAPN5 may be involved in deSUMOylation of the PML and/or the other partner 

proteins in the PML bodies, leading to dissolution of the bodies or removal of a particular 

partner protein from the PML bodies after the function is executed.  

SUMO protease activity of CAPN5 may not be limited only to the nucleus.  DRP1 

(dynamin related protein-1), a substrate of SUMO protease is present in the 

mitochondria and involved in mitochondrial fission. During cell division, SENP5 

translocates from the nucleus to the mitochondrial membrane, where it reverses the 

SUMO modification of DRP1 and leads to formation of an assembly of DRP1 polymers 

that promote mitochondrial fission (Zunino et al., 2007, Zunino et al., 2009). CAPN5 

could also perform deSUMOylation roles in the mitochondria, one of which could be  

regulation of Ca2+ release at the ER-mitochondria interface. At mitochondrial associated 

membrane (MAM) of ER, PML complexes with IP3, protein kinase Akt and protein 

phosphatase (PP2a). PML may be important for binding of PP2a to IP3R, which favors 

dephosphorylation of IP3 over phosphorylation by AKT; hence leading to Ca2+ release in 

the mitochondria and induction of apoptosis.  PML induces apoptosis in response to 

various stimuli such FAS, DNA damage and TNFα. Knocking down PML results in 

deregulation of [Ca2+] both in the ER lumen and mitochondria, i.e. higher in ER lumen 

and lower in mitochondria. PML-/- mice and mouse embryonic fibroblasts are resistant to 
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cell death (Wang et al., 1998b, Giorgi et al., 2010, Pinton et al., 2011). SUMOylation 

could possibly be a way through which PML interacts with IP3R, AKT and PP2a to form 

a complex.  GPSsp2.0 predicted SUMOylation motifs at high precision threshold for all 

the three proteins, IP3R (Uniprot # Q14573; 7, SUMOylation motifs), PP2a (Q15173; 2) 

and AKT1 (B7Z5R1; 4). In response to a legitimate signal, CAPN5 may travel from 

inside mitochondria to the PML-IP3-AKT-PP2a complex at MAM to deSUMOYlate the 

assembly to regulate Ca2+ signaling.  

Calpain 5 could also shuttle between nucleus and mitochondria, where it could perform a 

SUMO specific and/or a general protease activity. In the nucleus, other than 

deSUMOylation, CAPN5 could be involved in rendering defense mechanisms, 

progression of mitosis and cleavage of transcription factors such as c-Fos, c-Jun, and 

p53, similar to other calpains. During cell division, calpain 2 is suggested to relocate to 

the nucleus, associate with the chromosomes, promote precocious disassembly of the 

mitotic spindle and progression of mitosis (Schollmeyer, 1988). Purified calpain 2 along 

with calpain 1 proteolyse nuclear proteins and release integrated H1 kinase, which 

otherwise was abolished in presence of calpastatin (Mellgren, 1991). Calpain 2 and 10 in 

the nucleus have been associated with selenite cataract formation (Hightower et al., 

1987, Ma et al., 2001). Also, an Arabidopsis cysteine protease, RD19, translocates to 

the nucleus and complexes with pathogenic PopP2 effector to activate RRS1-R- 

mediated resistance response against bacterial wilt (Bernoux et al., 2008).  In the 

mitochondria, other than SUMO specific proteolysis, CAPN5 could possibly be involved 

in cleaving VDAC, NCX, AIF or apoptotic-related proteins in mitochondria (as discussed 

in chapter 4), 

Levels of CAPN5 increase postnatally and its presence ~15 – 20 days post birth may 

reflect the CAPN5 localization in synaptic mitochondria and PML bodies. PML bodies 
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are involved in neuron differentiation. In the CNS, PML expression is biphasic—initially 

being expressed in immature neural progenitor cells, downregulated during 

differentiation, then re-expressed in mature neurons (Yu et al., 2003, Salomoni and 

Betts-Henderson, 2011). Rat brain undergoes massive differentiation and synaptic 

formation at P15-P20 (Eayrs and Goodhead, 1959, Aghajanian and Bloom, 1967). 

Recruitment of CAPN5 into PML bodies could regulate changes in gene expression or 

nuclear events for differentiation. CAPN5 localization in the synaptic mitochondria could 

augment the processes required at the synaptic terminal to form new synaptic 

connections. One of those could be the release of neurotransmitters. Calpain 10 

enhances insulin exocytosis by partially cleaving SNAP-25 of SNARE complex (Marshall 

et al., 2005, Evans and Turner, 2007). To perform the exocytosis of neurotransmitter, 

mitochondrial CAPN5 may be needed compared to calpains 1, 2 and 10, which are 

present in the cytosol, and possibly could play a role in exocytosis. Making new synaptic 

connections, more importantly ’correct’ synaptic connections, is a highly regulated 

process. Hence, exocytosis of neurotransmitters would add another level of regulation if 

the mitochondrial membrane has to be permeabilized in a highly regulated manner for  

release of CAPN5. 

A unique CAPN5 NLS and a similar subnuclear localization of full length CAPN5 as well 

as the bipartite NLS (395-417, KKPEDEVLICIQQRPKRSTRREG) need to be addressed. 

This sequence by itself does not contain any NLS activity but together with sequence 

YIFEV (390-394), YIFEVKKPEDEVLICIQQRP KRSTRREG (388-417) constitutes a 

novel putative NLS. Nonconventional NLSs have been reported, such as hydrophobic 

NLS  of adenovirus E1A transcription factor lacking charged residues (Standiford and 

Richter, 1992),  NLS of 38 amino acids rich in glycine and aromatic residues (termed 

M9) in human ribonucleoprotein A1 (Pollard et al., 1996) and leucine zippers in human 
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cytomegaloma virus UL84 (Lischka et al., 2003). While M9 import to the nucleus is 

mediated by transportin, UL84 utilizes interaction between leucine zipper (not the basic 

residues) and importin for nuclear import through importin α/β pathway. Furthermore, the 

basic clusters of UL84 do not carry NLS activity but are important for nuclear 

localization. Similarly, we found a nonconventional NLS in CAPN5 that possesses a 

classic bipartite NLS and a unique upstream sequence YIFEV. Neither the bipartite NLS 

nor YIFEV have any independent NLS activity. The mechanism of CAPN5 import to the 

nucleus remains to be investigated. 

A similar subnuclear punctate localization of CAPN5 full length protein and CAPN5 NLS 

peptide is very interesting. In other words, NLS does not only enter the nucleus, but  

carries the information for specific subnuclear localization. A thorough survey and in 

silico analyses show that 20% of NLS motifs co-localizes with the DNA binding region of 

the proteins (Cokol et al., 2000). Also, for 67% – 90% of the DNA binding proteins, the 

DNA binding region overlaps or is proximal to the NLS (LaCasse and Lefebvre, 1995, 

Cokol et al., 2000, Nair et al., 2003). NLS of c-Fos and c-Jun overlaps with the DNA 

binding domains with the same stretch of residues carrying es both the NLS and DNA 

binding motifs . Examples are human PARP and androgen receptors and  RNA binding 

domain of Human U1-70K, a U1 snRNA specific binding protein (LaCasse and Lefebvre, 

1995). CAPN5 NLS could possibly also carry nucleic acid binding (NAB) motif. We 

showed that CAPN5 was enriched in NAB fraction. PML body-localized CAPN5 could 

directly bind to nucleic acid to regulate splicing and transcription since PML bodies 

complex with nascent RNA and CREB binding proteins (LaMorte et al., 1998, Wang et 

al., 1998a). The linkage between NLS and NAB motif may be necessary for efficient 

functioning. Continued occupancy of a NAB protein will require both import and nucleic 

acid binding. Basic residues of NLS may also enhance binding to the nucleic acid. 
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In conclusion this study elucidates that calpain 5 is the major calpain in the CNS, after 

calpain 2. Unlike typical calpains, it is not present in the cytosol but is mainly present in 

the nucleus and enriched in the synaptic mitochondria. In mitochondria, CAPN5 is 

present on the inner membrane, and is released when the outer membrane is 

permeabilized. Calpain 5 carries a unique NLS 

(YIFEVKKPEDEVLICIQQRPKRSTRREG, 390-417), which comprises a classical 

bipartite NLS and an immediate unique upstream sequence. Calpain 5 is enriched in the 

nucleic acid binding protein and I speculate that CAPN5’s putative NLS also carries a 

nucleic acid bind domain. In the nucleus, CAPN5 is localized to the PML bodies and 

based on the role of the PML bodies, CAPN5 may be involved in transcriptional 

regulation, cell differentiation, cellular response to stress, viral defense, apoptosis, cell 

senescence, as well as protein sequestration, modification, and degradation.
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