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Double-stranded RNA fungal virus Helminthosporium victoriae virus 190S (genus 
Victorivirus, family Totiviridae) contains two large open reading frames (ORFs) that 
overlap in the tetranucleotide AUGA. Translation of the downstream ORF, which encodes 
the RNA-dependent RNA polymerase (RdRp), was previously proposed to depend on 
ribosomal reinitiation following termination of the upstream ORF, which encodes the 
capsid protein. In this study, I provided evidence to confirm that coupled termination-
reinitiation (stop-restart) is indeed used. A dual-fluorescence method was established to 
define the RNA sequence determinants for RdRp translation. Stop-restart depends on a 
32-nt stretch of RNA sequence immediately upstream of the AUGA motif, including a 
predicted pseudoknot structure. The presence of similar sequence motifs and predicted 
RNA structures in other victoriviruses suggest that they all share a related stop–restart 
strategy for RdRp translation. The close proximity of the secondary structure to the AUGA 
motif appears to be especially important for promoting translation of the downstream ORF. 
Normal strong preferences for AUG start codons and canonical sequence context for 
translation initiation of the downstream ORF appear somewhat relaxed. With dual-
fluorescence system, reinitiation efficiency of the downstream ORF was determined to be 
~ 3.9%. Pseudoknot swapping between the one in HvV190S and those predicted from 
other victoriviruses showed that reinitiation from the downstream ORF of HvV190S is quite 
tolerant to varying primary sequences of the various pseudoknots. Mutational analysis by 
introducing different combinations of nucleotide mutations into pseudoknot stems 
reproducibly confirmed the determinant role of pseudoknot on reinitiation using two 
different experimental systems. Together, these results provide the first example of 
coupled termination-reinitiation regulated by a simple pseudoknot structure. These data 
expanded the understanding of coupled termination-reinitiation mechanism employed by 
RNA viruses and refined a new model for genus victorivirus, the largest genus in the family 
Totiviridae. The dual fluorescence system used in this study represented the first 
application of an efficient in vivo assay for recording low-frequency events in filamentous 
fungi.  
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1 CHAPTER ONE: INTRODUCTION 

1.1 The discovery of dsRNA mycovirus HvV190S and its genomic 

characterization  

 

Filamentous fungus, Helminthosporim victoriae (Teleomorph: Cochliobolus victoriae), 

was first described in 1946 as the causal agent of Victoria blight of oats, named after the 

parent cultivar, Victoria (1). The disease rose to epidemic magnitude and resulted in 

serious yield losses in most oat-growing regions of the United States from 1945 to 1948 

(2). A disease of H. victoriae was observed by Lindberg in 1959 based on cultural 

abnormalities of some isolates (3). Diseased isolates were characterized by reduced 

rates of growth, excessive aerial mycelium, excessive sectoring, reduced spore 

production as shown in Fig. 1.1 and reduced virulence (4). Lindberg referred to these 

abnormalities as a disease of the fungus and showed that this disease was transmitted 

to normal isolates by hyphal anastomosis. He suggested a viral role in the disease of H. 

victoriae, however, at that time, viruses were not known to infect fungi (5). The year 

1962 marks the first discovery of a fungal virus in cultivated mushroom (6), which 

suggests that infection by fungal viruses may be common. In 1978, Ghabrial and his 

group identified for the first time two distinct viruses infecting H. victoriae and designated 

them as HvV190S and HvV145S according to their sedimentation values (7). HvV190S 

consists of a nonsegmented RNA and is the prototype of the genus Victorivirus, family of 

Totiviridae whereas HvV145S genome comprises four RNA fragments leading to the 

creation of the Family Chrysoviridae (8, 9). Although diseased isolates of H. victoriae are 

doubly infected with those two viruses, mixed infection, however, is not required for 

development of the disease phenotype. Transfection assays with purified virions 

suggested that HvV190S is the major cause of the disease of H. victoriae and that 

HvV145S, like other chrysoviruses, does not appear to affect colony morphology (8). 

HvV190S infected H. victoriae exhibits symptoms typical of a disease phenotype, which 

is unusual for dsRNA fungal viruses, in that most of them do not cause symptoms in 

their respective hosts (10). Thus, HvV190S may provide a useful model system for 

studying fungal viruses that have debilitating or hypovirulent effects in their hosts, which 

may contribute to biological control of economically important plant pathogens (11).  

Molecular studies suggested that HvV190S possesses an undivided double-stranded 

RNA genome (dsRNA) packaged in isometric particles (12, 13). The ~5200-bp dsRNA 
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genome of HvV190S is nonsegmented and comprises two large overlapping ORFs, both 

of which are contained within the same genome-length mRNA (Fig. 1.2A). The upstream 

ORF (ORF1) encodes the capsid protein (CP), whereas the downstream ORF (ORF2), 

which is in the −1 frame relative to ORF1, encodes the RNA-dependent RNA polymerase 

(RdRp) (14). Several lines of evidence indicate that ORF1 translation initiates at the AUG 

codon at positions 290–292 (14, 15), even though this codon (underlined below) resides 

in an unfavorable context (16) for translation initiation (UCCAUGU). Other findings have 

verified that translation of HvV190S ORF1 terminates at the UGA codon at positions 

2606–2608 (14, 15). 

 

Although a single ORF encodes CP, the particles of HvV190S contain three related forms 

of CP: p88, p83, and p78 (Fig. 1.2B). Both in vivo and in vitro studies have indicated that 

p88 and p83 are phosphorylated, whereas p78 is not (17). Results of in vitro translation 

studies with either the denatured HvV190S dsRNA or the full-length in vitro transcript have 

furthermore indicated that p88 is the primary translation product (17, 18). Expression 

studies in bacterial and eukaryotic systems have confirmed this finding and have also 

shown that p88 undergoes cleavages near its C-terminus to generate p83 and p78 (14, 

15). Based on these findings, it has been proposed that the sites for phosphorylation 

reside within the C-terminal proximal region that is shared by p88 and p83, but is removed 

from p78 by limited proteolysis. The 5´ end of the genomic plus strand is uncapped, the 

mRNA contains a long (289-nt) 5´ untranslated region (UTR), and the 5´-proximal region 

is predicted to be highly structured, suggesting that ORF1 translation is likely to involve a 

cap-independent internal-initiation mechanism (14, 15). 

 

HvV190S was initially classified within the genus Totivirus under the family Totiviridae 

(19). Like members of genus Totivirus, the 5179-bp HvV190S dsRNA genome comprises 

two large overlapping ORFs, both of which are contained within the same genome-length 

mRNA (Fig. 1.2A). Unlike members in genus Totivirus and numerous viruses from other 

genera in the family Totiviridae, which express the RdRp as a CP/RdRp fusion protein 

consequent to ribosomal frameshifting (20-24), HvV190S RdRp is expressed as a 

separate, nonfused protein (Fig. 1.2B) (25). Thus, in 2009, HvV190S and 10 other, related 

viruses from filamentous fungi have been recognized and grouped together as members 

of the new genus Victorivirus with HvV190S as the prototype strain (19). The RdRp-

encoding ORF2 of HvV190S has its first in-frame AUG codon overlapping the CP stop 
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codon in the tetranucleotide AUGA at positions 2605–2608 (14, 25). This suggests that 

the expression of RdRp occurs by a mechanism different from that utilized by most 

totiviruses to express their RdRps (19).  

1.2 Classic cap-dependent scanning translation mechanism and alternative 

IRES strategy in eukaryotic cells 

 

Translation is a process that decodes mRNA into proteins in the factory of ribosomes 

with assisting factors, which involves three phases: initiation, elongation and termination. 

Protein biosynthesis is principally regulated at the initiation phase, other than during 

elongation and termination (26, 27). Viruses depend solely on their hosts to provide the 

ribosomal components necessary to synthesize their proteins, and thus any translation 

mechanism utilized by virus must be compatible with the host system (28). Most 

eukaryotic transcripts contain a single open reading frame and initiate translation by the 

scanning mechanism (29). The scanning model mainly postulates a mechanism by 

which eukaryotic ribosomes select initiation codon in an mRNA as simplified in Fig. 1.3A. 

It states that 40S ribosome subunit with eukaryotic initiation factors, GTP and Met-tRNAi 

initially binds to a cap structure on the 5’ end of mRNA and then migrates and scans 

downstream along the 5’-untranslated region (5’UTR), and finally stops at the proper 

AUG codon for initiation of translation. Such initiation of translation preferentially uses 

the 5’-proximal AUG triplets as start sites and an insertion of any upstream ORF inhibits 

initiation at the downstream coding sequences. Seminal studies have been documented 

primarily in mammalian cells and continuously evidenced in budding yeast (29-31). 

Features that contribute to proper selection of initiation codon depends mainly on the 

context around first AUG. A consensus sequence surrounding the first AUG was 

indicated by Kozak for vertebrate mRNAs and the strong sequence bias is limited to only 

the first 5 nt upstream of the AUG, 5’–GCC(A/G)CCAUGG-3’ (32-34). There is an 

overpresence of A or G at position -3, C at positions -1, -2, -4 and -5 and a dominance of 

G at position +4. In contrast, the 5’ UTR is highly biased for A with also a particularly 

strong preference for A at position -3 compared to what occurs in mammals (34, 35). 

Studies on filamentous fungi showed that they require a consensus sequence like 5’-

CAXXAUGYC-3’, in which X prefer A or C whereas Y can be any nucleotides (36).  

Internal ribosomal entry site (IRES)-mediated translation is an alternative mechanism for 

translation initiation other than the classical ribosomal scanning strategy. Eukaryotic 
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cells have been confirmed to employed IRES (37). It is predicted that up to 10% of 

cellular mRNAs initiate translation by this mechanism. IRES regions are known to be 

located in the 5’ UTR of the mRNA and are capable of recruiting eukaryotic ribosomal 

translation initiation complex to a site that is a considerable distance from the cap 

structure (Fig 1.3B). A common feature of viral IRES is the long and highly structured 

5’UTR, which bind ribosomal initiation complex and catalyze the formation of a functional 

ribosome. IRES is mainly employed by mammalian viruses such as hepatitis C virus, 

picornavirus and cricket paralysis virus. In contrast, sites for cellular IRES do not have 

much in common in terms of their sequence or secondary structure (26). 

1.3 Noncanonical translation mechanisms 

 

The cap-dependent ribosomal scanning mechanism presents a problem to many RNA 

viruses with either polycistronic or cap-deficient monocistronic genomes. Thus, a 

number of novel translation strategies have been developed to facilitate access of 

ribosomes to their unique open reading frames. The most common and earliest 

discovered strategies are polyprotein synthesis and translation from subgenomic 

cistrons. In addition, other strategies include: leaky scanning past the start codon of the 

first ORF (38), ribosomal shunting to a downstream start codon (39), programmed 

ribosomal frameshifting (40), read-through of stop codon (28), and more recently 

elucidated, coupled termination-reinitiation (also referred to as translational coupling or 

stop-restart) (41).  

1.4 Polyprotein translation, stop codon read-through and ribosomal 

frameshifting 

 

Among these mechanisms, polyprotein translation, stop codon read-through and 

ribosomal frameshifting involve a fusion protein synthesis for the downstream cistronic 

genes with regard to upstream genes. In polyprotein synthesis strategy (Fig 1.3C), the 

viral genome contains a long ORF, which translates a large polyprotein. The precursor 

protein is immediately cleaved into multiple mature proteins by virally-encode 

proteinases, which are usually small and functional for virus activity (42). Polyprotein 

translation was firstly reported on potyviruses. This group contains at least 180 
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designated members, which are very similar, in terms of their genomic structure and 

gene expression (42, 43).  

 

Stop codon read-through (Fig 1.3D) describes “leaky” or unfavorable termination codon 

in the first cistron of a genomic viral RNA, which permits some of the ribosomes to read 

through into a downstream cistron as a result, giving rise to a second longer functional 

polypeptide (44). Many viruses employ in-frame read-through of stop codons to express 

low level of 3’extended proteins with regard to 5’ translated products. These include 

tobamoviruses, tobraviruses, tombusviruses, carmoviruses and luteoviruses.  

 

Ribosomal frameshifting (Fig 1.3E) is usually involved in the translation of gag and pol 

gene expression. In most cases, viruses, in which gag and pol proteins are arranged in 

two different reading frames, are translated into a single protein via ribosomal 

frameshifting (21). Ribosomal frameshifting was recognized as a translation misreading 

in the early 1970s in bacteria Escherichia coli at an occasional frequency of 10-3 ~-4. The 

emerging viral cases started from late 1980S in retrovirus. Later it was found in 

eukaryotic positive RNA, dsRNA, plant RNA viruses and some bacteriophages (45). The 

achievement of reading of two different ORFs is determined mostly by two features 

within the RNA sequence: 1) a heptanucleotide slippery stretch 5’-XXXYYYN-3’ located 

at the frameshift site, where the ribosome switches the reading frame; 2) a stem-loop 

structure, usually a pseudoknot, which is located a few nucleotides downstream the 

heptanulceotide sequence (21, 40, 46). Primary work has been documented on the bias 

for sequence bias in the fungal yeast virus ScV-L-A and retroviruses such as Rous 

sarcoma virus (RSV) (47, 48). In the consensus sequence of XXXYYYN, the first triplet 

represents the same nucleotide from A, U, G, or C in the heptanucleotide region; the 

second triplet represents also the same nucleotide that was found naturally to be A or U 

for the slippery site (48); Z represents a single nucleotide in the last position that was 

shown to be mostly A, U or C, but can be replaced with G artificially (47). 

1.5 Subgenomic translation, leaky scanning, ribosomal shunting and stop-

restart 

 

The expression of some internal genes such as coat proteins of RNA viruses is 

frequently mediated via subgenomic RNAs (Fig 1.3F), mostly mRNAs, in which the 
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subgenomic (+) RNA can be synthesized via internal transcription based on (-) RNA of 

genome length as template (49). The representative RNA viruses are tobacco mosaic 

virus (TMV) (50), cucumber mosaic virus (CMV) (51), brome mosaic virus (BMV) (52) 

and barley yellow dwarf virus (BYDV) (53).  

 

Leaky scanning (Fig 1.3G) is a translation strategy employed by viruses to express two 

different proteins from a single RNA via ribosome skipping of the first AUG, which is 

present in sub-optimal context and continuing translation of next AUG (38). As 

mentioned for scanning mechanism, in most cases, position -3 has a strong preference 

for A or G in the following consensus sequence, 5’-(A/G)XXAUGY, in which X and Y 

have a different bias for nucleotides among different organism (16). However, 

suboptimal initiation sites in a weak context and a non-AUG codon, such as CUG, ACG 

or GUG, in a good surrounding context can cause fractional initiation with a low level of 

ribosomal scanning (28). This observation is due to the presence of weak basepairing 

between AUG codon and Met-tRNA (54). When the initiation sites are in different 

reading frames, two proteins of different sequences are made.  

 

Ribosome shunting (Fig 1.3H) describes a pathway of translation initiation in which 

ribosomes bind to the mRNA in a cap-dependent manner, then jump over a large region 

of the mRNA containing RNA secondary structure, upstream AUGs and short ORFs to 

"land" at or immediately upstream of the major coding ORF AUG (55, 56). This pathway 

was first described for plant Cauliflower mosaic virus (CaMV) (57). Research suggested 

that 5’ cap and the presence of special elements in the leader were required for 

shunting. The elements include a giant stem-loop structure, in which the base of the 

stem-loop and a small ORF (sORF) a few nucleotides upstream of the stem-loop are 

crucial, while the central part is dispensable. The scanning translation of sORF will 

pause at the donor site when encountering the stem-loop and bypass the secondary 

structure part to land at the corresponding acceptor site and translate the next 

downstream AUG (56).  

 

For coupled termination-reinitiation mechanism (Fig 1.3I), ribosomes translate the 

upstream ORF of an mRNA, then following termination, a proportion of the 40S subunits 

remain bound to the mRNA and go on to reinitiate at the start codon of the downstream 

ORF (58). So far, only a few RNA viruses have been confirmed to use coupled 
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termination-reinitiation to express their downstream ORFs. The negative strand influenza 

B virus BM2 protein was the first example described to use such mechanism in 1990 

(59). After more than a decade, this mechanism has been found for the expression of 

the M2-2 protein of respiratory syncytial virus (RSV) and pneumovirus of mice (PVM) 

(60) and the downstream protein VP10 and VP2 of the rabbit calicivirus RHDV and the 

feline calicivirus FCV (61, 62). Interestingly in 2009, the hypovirus CHV1 has also been 

discovered to utilize translational coupling (63). Research on these viruses suggested 

they shared some common characteristics. These features are: 1) An initiation codon is 

necessary for the translation of corresponding downstream genes, 2) The termination 

codon of the upstream ORF is critical for the initiation of the downstream ORF, 3) These 

two ORFs must overlap or are tightly spaced and 4) Sequences in the upstream ORF 

affect reinitiation of the downstream ORF.  

1.6 Objectives 

 

(i) Examine the RdRp translation mechanism from the downstream ORF of HvV190S;   

(ii) Identify required RNA sequence elements for corresponding mechanism utilized by 

RdRp in HvV190S. 
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Figure 1.1 Colony morphology of healthy (left) and diseased (right) isolates of H. 

victoriae growing on PDAY medium.  
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Figure 1.2 Schematic representation of genomic organization of HvV190S and 

analysis of expressed viral proteins.   

(A)The 5179 nucleotide-long genomic plus strand of HvV190S contains two large ORFs, 

with the 5’-proximal ORF encoding the CP and the 3’-proximal ORF encoding the RdRp 

(not drawn to scale). The start codon of ORF2 overlaps the stop codon of ORF1 in the 

tetranucleotide AUGA at position nt 2605- nt 2608. Start codon for ORF1 and stop codon 

for ORF2 and their locations on the genome are indicated. The genome also contains 5’- 

and 3’-untranslated regions (UTRs). (B) Immunoblot analysis of viral proteins of 

HvV190S obtained from purified viral particles. Three types of CP are detected with the 

CP-specific antiserum whereas a single separate protein is detected with the RdRp-

specific antiserum.   
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Figure 1.3 Translational mechanisms for RNA viruses.  

(A) Kozak’s ribosomal scanning translation for the majority of mRNAs in eukaryotic cells. 

40S subunit (indicated as small oval) recognizes the 5’ cap structure and migrates 

linearly along 5’UTR of a standard mRNA (in black line), then 40S recognizes and 

pauses at first AUG followed with 60S large subunit (indicated as large oval) joining of 

40S subunit and finally the translation of the first ORF (in gray rectangle) is initiated. The 

proper translation initiation depends on two features, one is the 7-methylguanylate cap 

linked to the 5’ end of an mRNA and one is stringent context around first AUG. Unless 

specifically mentioned, representative drawings for mRNA, 40S and 60S ribosomal 
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subunits, first ORF in dark gray rectangle are the same for all figures. (B) Internal 

ribosomal entry site (IRES)-mediated translation initiation. Such mechanism in RNA 

viruses involves a long and highly structured IRES element (in red lines) that is located 

at the 5’ UTR of viral sequences. IRES binds ribosomal initiation complex and catalyzes 

the formation of a functional 40S ribosomal subunits and then directs them to the proper 

initiation codon followed 60S subunits joining and initiation of translation. (C) A large 

number of viruses utilize polyprotein strategy to translate their genomes. This polyprotein 

strategy will synthesize a single large polyprotein from the entire genomic RNA followed 

by proteolytic processing at different sites (indicated with symbol “X”) that cleaves the 

large polyperotein into several small but functional proteins. (D) In some viral RNAs, a 

suppressible termination codon is embedded at the 3’ end of upstream ORF. In 

conjunction with the downstream recoding signal CARYYA (R=purine; Y=pyrimidine), a 

small proportion of ribosomes skip termination codon, permitting the synthesis of an 

elongated product (in light gray rectangle) of the upstream protein. (E) Frameshifting 

occurs in ±1, ±2 frame of the downstream ORF relative to the upstream ORF and 

typically in -1 frame. It is promoted by a pair of recoding signals: a slippery 

heptanucleotide (XXX YYY Z, where X is any nucleotide; Y is A or U; Z is A, U or C) and 

a pseudoknot (in red lines) that is thought to induce ribosome pausing. The encoded 

products include a product from the entire upstream ORF and an elongated product from 

a switched downstream frame. (F) Subgenomic translation involves the presence of a 

subgenome RNA which is transcribed from the genomic RNA.  Thus, in this strategy the 

subgenomic RNA will be translated independently from the genomic RNA into a 

separate protein. (G) In many viral RNAs, more than one initiation site can be used. This 

can occur when the 5’ proximal initiation codon is weakly recognized by ribosomes in a 

weak context or at a non-AUG codon. The translational products may be two proteins of 

totally unrelated sequences or one protein with its N-terminal sequence identical to that 

of the upstream one. (H) Ribosomal shunting involves a highly structured sequence 

(giant stem-loops in red lines) located upstream of the proper initiation site. The base 

parts of the stem-loop are essential for scanning translation, which consist of a donor 

sites and an acceptor site. Ribosomes pause at the donor site when encountering the 

stem-loop and bypass the middle part of it and land at the downstream acceptor site and 

translate the nearby AUG. (I) In stop-restart, ribosomes translate the upstream ORF of 

an mRNA, then following termination, a proportion of the 40S subunits remain bound to 

the mRNA and go on to reinitiate at the start codon of the downstream ORF. In 



 

13 
 

caliciviruses such as RHDV, a binding between 18S rRNA in 40S subunits and viral 

sequences is thought to promote the maintaining of 40S subunits onto mRNA for the 

continuous translation of the downstream ORF.  
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2 CHAPTER TWO: MATERIALS AND METHODS 

2.1 Fungal and bacterial strains 

 

Helminthosporium victoriae strain B-2ss (ATCC 42020) is a virus-free fungal isolate and 

used for the preparation of protoplasts and fungal transformation experiments with 

recombinant plasmids. Another strain A-9 (ATCC 42018), a diseased H. victoriae isolate 

that contains victorivirus HvV190S and chrysovirus HvV145S, was used as a source of 

HvV190S virions and HvV190S proteins CP and RdRp. All fungal cultures were grown 

on potato dextrose agar supplemented with 0.5% (wt/vol) yeast extract (PDAY) at 20C, 

and stored at 4C on the same medium. E. coli strain DH5α was used to propagate all 

the recombinant plasmids constructed in this study.   

2.2 Construction of transformation vector and recombinant plasmids used in 

experiments with virus-like particles  

 

A transformation/expression vector for H. victoriae was previously constructed by the 

Ghabrial lab (9, 64). The vector, designated p190S, comprises a full-length cDNA clone 

of the HvV190S genome inserted under the control of a gpd1 promoter from Cochlioblus 

heterostrophus (65) and a trpC terminator from Aspergillus nidulans (66). The vector also 

contains a hygromycin (HygB) selectable marker gene (67).  

 

To introduce site-directed, insertion, or deletion mutations into the region flanking the 

AUGA stop–restart motif in the HvV190S cDNA, an adaptation of the overlap-extension 

protocol using PCR was used (68, 69). Two unique restriction-enzyme sites, for 

cleavage by FseI and StuI at nt positions 2171 (434 nt upstream of the AUGA) and 2990 

(385 nt downstream of the AUGA) in the HvV190S cDNA, respectively, were selected to 

border the region for mutagenesis (Fig. 2.1). A three-step PCR amplification procedure 

was used to generate mutated fragments (AB, CD, and AD) with two common primers 

(primers a and d; FseI-a-F and StuI-d-R, respectively; Table 2.1) and a series of 

mutagenic primers (primer types b and c; Table 2.1). As these mutagenic primers have 

terminal complementarity, two overlapping fragments can be fused together in a 

subsequent extension reaction that includes the outside primers a and d (see illustration 



 

15 
 

in Fig. 2.1). Finally, PCR product AD was digested with FseI and StuI and inserted into 

similarly digested HvV190S in vector p190S. Nucleotide sequences related to PCR 

amplification were verified with the Big Dye terminator cycle sequencing kit and an ABI 

DNA sequencer for constructs mentioned in this chapter and elsewhere in the 

dissertation.  

2.3 Construction of transformation vector and recombinant plasmids for dual-

reporter assay 

 

Fungal trpC terminator was from cosmid vector pMLF2 provided by Dr. Mark L. Farman. 

Plasmid pBG containing fungal promoter gpd1 is provided by Dr. Olen C. Yoder. Plasmid 

pRL-CMV containing Renilla luciferase (Rluc) was purchased from Invitrogen, and pFR-

LUC containing Firefly luciferase (Fluc) (Acc.No. AF058756) was donated by Dr. Ajay 

Singh. eGFP and RFP genes were from vectors pSAN6-eGFP/RFP-N1 that were gifts 

from Dr. Michael Goodin in the department. pGEM-T easy vector was purchased from 

Invitrogen. Vector pET-21a(+) was purchased from Invitrogen. Vector p190S described 

in previous section was used as the start vector to generate constructs for dual-reporter 

assay. Primers used for the construction of all plasmids used in dual-reporter assay 

were listed in Table 2.2.  

 

The gpd1 promoter in p190S (nt 1 to nt 662) was originally from plasmid pBG, which 

contains gpd1 sequence nt 1 to nt 677. Compared to the wild type gpd1 promoter from 

C. heterostrophus (Acc.No. X63516), thirty more nucleotides 

(ACTCTCTCAAAGCATCACTCTCAGTTCAAC) were added to the gpd1 sequence of 

pGB during the construction of plasmid Rluc-his. For this purpose, four primers (a, b, c 

and d) and a PCR-based overlap-extension protocol as described in the previous section 

was used. Forward primer, NsiI-a-F, and reverse primer, XhoI-d-R, indicated by a and d, 

were used as the outside primers. Reverse primer Rluc-b-R and forward primer Rluc-c-

F, indicated by b and c, were used as the inside primers for PCR amplification. NsiI-a-F 

contains the unique NsiI enzyme locating at nt position 198 on the gpd1 promoter 

sequence, and XhoI-d-R contains partial 3’ sequence of Rluc followed by a 6X His tag 

sequence immediately upstream the stop codon TAA and the unique XhoI enzyme. 

Rluc-c-F contains an inserted unique enzyme site FseI for the convenience of 

subsequent cloning of other reporter gene constructs. Plasmid pBG and pRL-CMV were 
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used as templates to achieve PCR fragment AB and fragment CD, respectively. Finally, 

fragment AD was digested with unique enzymes NsiI and XhoI and cloned into vector 

p190S. The resultant construct, Rluc-His, contains the wild type gpd1 promoter 

sequence, indicated by gpd1’, followed by the open reading frame (ORF) of Rluc gene. 

The construction of three other reporter genes into vector Rluc-His involved a PCR 

amplification of specific ORF (Fluc, eGFP, RFP) plus a 6XHis sequence with specific 

primers and two unique enzymes FseI and XhoI were introduced to ends of each 

fragment (see Table. 2.2). Finally, PCR fragments containing specific reporter gene were 

digested with FseI/ XhoI and cloned separately into similarly digested Rluc-his vector, 

and the resultant constructs were named Fluc-His, eGFP-His and RFP-His respectively.   

Then eGFP was fused into HvV190S coat protein open reading frame (CP ORF: nt 290-

nt 2608 in the full-length cDNA of HvV190S) sequence, and RFP was fused to RNA-

dependent-RNA polymerase ORF (RdRp ORF: nt 2605-nt 5112). For this purpose, two 

constructs were made, GFP-CP and RdRp-RFP-His. The primer pair FseI-GFP-FP and 

XhoI-GFP-RP2 was used to amplify GFP fragment without its stop codon (with unique 

enzymes FseI and XhoI at ends), and primer pair XhoICPApaIFP and XhoICPApaIRP 

was used to amplify CP fragment (with unique enzymes XhoI and ApaI at ends). Finally 

FseI/XhoI digested GFP and XhoI/ApaI digested CP were ligated into FseI/ApaI digested 

plasmid eGFP-His. ApaI-digested TtrpC terminator was firstly digested off eGFP-His and 

then ligated back into GFP-CP. Primer pair FseIRdRpClaIFP and FseIRdRpClaIRP was 

used to amplify RdRp fragment removing its stop codon (unique enzymes FseI and ClaI 

at ends). Primer pair ClaIRFPXhoIFP and XhoI-RFP-RP was used to amplify fragment 

RFP (unique enzymes ClaI and XhoI at ends). Finally FseI/ClaI digested RdRp fragment 

and ClaI/XhoI digested RFP was cloned into FseI/XhoI-digested RFP-His, and the new 

construct was designated as RdRp-RFP-His. These two constructs were used to create 

the dual-reporter plasmid GFP-CP:RFP and the dual-reporter-CP plasmid GFP-CPt- 

RFP. Primer pair FseI-GFP-FP and XhoICP2608ClaIRP was used to amplify the full-

length fused ORF (GFP-CP) with FseI and ClaI at ends. Primers FseI-GFP-FP and 

FseIGFPCPtr1711ClaIRP amplified the truncated fused GFP-CPt ORF, in which CP 

ORF was truncated from nt position 1711 to nt 2608 (including the stop codon). The two 

large fragments were digested with FseI/ClaI and ligated separately into similarly 

digested RdRp-RFP-His. 
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Dual-reporter plasmid GFP-CP:RFP was used as the new cloning vector for constructs  

related to dual-fluorescence assay, which include CP5’ deletion constructs (except 

construct CP5’_dall), CP3’ deletion constructs, PK7-PK12, PK_Loop1, PK_Loop2, 

PK_Flank1 and PK_Flank2. PCR amplification was performed to obtain a specific 

fragment from nt 290 to nt 2608 of CP sequence with designed base mutations or 

deletions for each construct. Different combination of primers that contain specific 

mutations and one of the pair of forward primer, XhoICPClaIFP and reverse primer, 

XhoICPClaIRP were used to amplify the specific fragment (see primer list in Table. 2.2). 

Part of CP3’ deletion constructs (CP3’_d3-d6) used the primer pair, XhoICPClaIFP and 

XhoICPClaIRP for amplification. Restriction sites of two unique enzymes XhoI and ClaI 

were added at ends of PCR products during amplification. Each particular fragment was 

digested with XhoI/ClaI, and cloned into FseI/ClaI-cut GFP-CP:RFP, together with 

previously amplified FseI/XhoI-digested-GFP fragment. The construction of CP5’_dall 

was different from above because the majority of CP sequence was deleted. The primer 

pair FseI-GFP-FP and CP5’_d6-RP was used to amplify a fragment that contains GFP 

sequence and the two remaining nucleotides of CP after deletion. This fragment was 

digested with FseI/ClaI and cloned into FseI/ClaI –cut GFP-CP:RFP. 

 

For the construction of plasmids PK_BfTV1, PK_GaRV-L1, PK_SsRV1, PK_MoV1, 

PK_TcV1, PK_CeRV1, mutations with a relatively long exogenous oligonucleotide were 

introduced into the terminal region of CP ORF, thus a PCR-based overlap-extension 

protocol, as described previously, was used. Two primers: XhoICPClaIFP (previously 

mentioned) and StuI-d-R, were designated as a and d, were the common primers. These 

two outside primers together with each inside primer pairs (designated as b and c, see 

Table 2.2) amplified each new fragment spanning nt 290-nt 2990 on the HvV190S 

genome with XhoI at the 5’ end. With these fragments as templates, primer pair 

XhoICPClaIFP and the c primer for each construct amplified a fragment from nt 290-nt 

2608 of CP ORF with swapped pseudoknot sequences. Another unique enzyme ClaI 

was introduced into each fragment by c primer. Subsequent cloning of the PCR products 

into vector GFP-CP:RFP was as described in the last paragraph. 
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2.4 Construction of plasmids for in vitro translation and bacterial expression 

 

For the construction of plasmids used in vitro transcription and translation experiments, 

the pGEM-T easy vector containing T7 promoter was modified. Six oligonucleotides 

GCCACC were introduced after ApaI restriction site for high efficient recognition of first 

AUG. Plasmid T7-CP5’_d5 was the first to be made. Primer pairs ApaIGFPXhoIFP and 

ClaIRFPXbaIRP (Table. 2.2) were used to amplify the whole large fragment including 

GFP, truncated CP ORF and RFP using plasmid CP5’_d5 as amplification template. 

This large fragment was digested with ApaI/XbaI and cloned into similarly digested 

pGEM-T vector. All other plasmids including T7-eGFP-CP:RFP, T7-eGFP-CPt-RFP, T7-

CP5’_d1-CP5’_d4 and T7-CP no-stop were generated by digesting corresponding 

plasmids used in dual- fluorescence assay with XhoI/ClaI and ligating the resultant 

fragments into XhoI/ClaI-digested T7-CP5’_d5.  

 

For the construction of plasmids expressed in bacterial strain BL21 DE3 for Rluc and 

Fluc, pET-21a(+) was used as the cloning vector. Primer pair BamHIRlucFP and 

XhoIRlucRP amplified a fragment including the entire ORF of Rluc from plasmid pRL-

CMV whereas primer pair BamHIFlucFP and XhoIFlucRP amplified the entire ORF of 

Fluc from plasmid pFR-luc. The stop codon for each ORF was removed during 

amplification. Restriction sites for two unique enzymes, BamHI and XhoI, were 

introduced into amplified fragments, which were subjected to digestion with these two 

enzymes and cloned into vector pET-21a(+). Resultant constructs were designated as 

pET21a-Rluc and pET21a-Fluc respectively. The 6XHis tag was fused to the 3’ end of 

these two luciferase genes.  

2.5 Bacterial transformation and plasmid extraction 

 

The heat shock method was used for E. coli transformation (Molecular cloning 2nd, Cold 

Spring Harbor Laboratory Press). E. coli DH5α competent cells were kindly provided by 

Wendy M. Havens, lab manager of the Ghabrial lab. Approximately  20 l of cells were 

mixed with 5~ 10 l (50~100 ng) of plasmid DNA and after 30 min incubation on ice, the 

cells were subjected to heat shock at 42C for 40 sec followed by a 2 min incubation on 

ice. Approximately 400 l of LB broth was mixed with the transformed cells followed by 1 
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hr incubation at 220 rpm at 37C. One hundred to two hundred microliter aliquots were 

plated onto LB agar medium containing appropriate antibiotic.  

2.6 Bacterial expression of Fluc and Rluc  

 

Plasmids were introduced into bacterial strain BL21 DE3 as described under bacterial 

transformation. Thirty l transformed bacterial cells with desired constructs were added 

to 3 ml LB broth medium followed with shaking at 220 rpm overnight at 37C. Thirty 

microliter of overnight culture was transferred again to 3 ml LB broth and incubated for 

2.5-3 hr at same conditions followed by determination of OD600. After the optimal 

concentration (0.5-0.8) was reached, Isopropyl β-D-1-thiogalactopyranoside (IPTG) was 

added into culture to a final concentration of 1 mM and culture was further incubated for 

another 3-4 hr. The extraction of both soluble and insoluble proteins from BL21 DE3 

cells was according to the manual protocol of Bugbuster® Extract Reagent (Novagen). 

Finally, 100 l and 50 l supernatant were achieved from soluble and insoluble 

extraction respectively and saved for further Western blotting analysis.  

2.7 Preparation of fungal protoplasts and fungal transformation  

 

Protoplasts were prepared from mycelia of H. victoriae virus-free strain B-2ss as 

described previously (70). Briefly, Mycelia were cultured on PDAY for several days 

followed with continuous culturing in potato dextrose broth supplemented with yeast 

extract (PDBY) at 20C with a shaking at 125 rpm. Following the homogenization of 

mycelia after 72 hr growth, two milliliters mycelia were transferred to new PDBY media. 

After 24 hr growth, mycelia were centrifuged at 3000 rpm and incubated in filter- 

sterilized enzyme osmoticum (0.7 M NaCl, 100 g/ml chitinase, 10 mg/ml driselase, 10 

mg/ml lysing enzyme). After 3 hr incubation at 30C with a shaking at 75 rpm, digested 

mycelia-enzyme mixture passed through and washed with 0.7 M NaCl once and STC 

buffer (1.2 M sorbitol, 10 mM Tris pH 7.5, 10 mM CaCl2) three times and finally dissolved 

in STC. The concentration of protoplasts were determined with hemocytometer and 

adjusted to 10~8 with STC buffer. Protoplasts were distributed into small aliquots and 

stored at -80C for later transformation.  
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Polyethylene glycol (PEG)-mediated DNA uptake method (71) was used to transform 

fungal protoplasts with different constructs. Briefly, 150 l fungal protoplasts were mixed 

with 10-20 l plasmid DNA and incubated for 30 min at room temperature followed with a 

gradually addition of 200 l, 200 l and 800 l 60% PEG 4000 solution containing 50 

mM CaCl2 and 10 mM Tris-HCl pH7.5. After incubation for another 25 min at room 

temperature, protoplast-DNA mixture were washed with STC buffer once and finally 

dissolved in 500 l STC. These protoplast-DNA mixture in STC were continuously mixed 

with 15 ml regeneration media (RM) (0.1% casein hydrolysate, 0.1% yeast extract, 1 M 

sucrose, 2.5% agar) and poured onto sterile plate followed with overnight growth at 

30C. All the plasmid constructs contained a hygromycin B phosphotransferase gene 

(hyg) as a selection marker. Finally, from overlayed RM plate with 1% agar-H2O media 

containing hygromycin at 50 µg/ml, transformants were selected for further studies as 

representatives of each construct.    

2.8 Extraction of fungal total protein 

 

For extracting total protein, mycelia of H. victoriae transformants containing different 

construct were cultured on PDAY media covered with a layer of sterile cellophane. 

Mycelia from 10-day old cultures were collected and ground in phosphate buffered saline 

(PBS) buffer, PH 7.4, supplemented with 1 mM protease inhibitor phenylmethylsulfonyl 

fluoride (PMSF). The homogenate was centrifuged for 10 min at 10,000 rpm at room 

temperature. The supernatant was collected for further testing with the fluorescence 

assay or Western blotting.  

2.9 Preparation of viral particles 

 

For the preparation of virus-like particles from H. victoriae virus-free isolate that was 

transformed with p190S or p190S-derived constructs made in this study, mycelia from 

those cultures were grown on PDAY media for 14 days in a stationary condition. 

Purification of VLPs was performed as described previously (72). Briefly, mycelia from 

14 day-growth were collected and homogenized 1 min for three times in a Waring 

blender in 0.1 M sodium phosphate buffer (pH7.4) containing 0.2 M KCl and 0.5% β-

mercaptomethanol at a rate of 3 ml/g of wet mycelium followed with twice 1 min 
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homogenization in an equal volume of chloroform. The homogenate was centrifuged for 

20 min at 12,000 rpm at 4C and supernatant were carefully collected and followed with 

first high speed centrifugation for 2.5 hr at 27,000 rpm at 4C. The pellets were 

suspended in 0.1 M sodium phosphate buffer (pH 7.0) with shaking overnight at 4C and 

followed with second high speed centrifugation for 1 hr at 40,000 rpm. The resultant 

pellets were suspended in phosphate buffer and layered onto 10-40% gradient sucrose 

and centrifuged 2.5 hr at 24,000 rpm. Gradient fractions containing VLPs were collected 

from the sucrose density gradients and pelleted by overnight centrifugation at 40,000 

rpm. The resultant pellets were suspended in 50 mM Tris-HCl buffer (pH 8.0) and stored 

at -20C for Western blotting.      

2.10 Western blotting 

 

Western blotting analysis was performed as described previously (73).  Briefly, samples 

of fungal total protein extracts were concentrated 10 times in a Savant Speed Vac 

Concentrator. These samples together with VLP preparations were loaded onto 10 % 

polyacrylamide gels (10 µl loading for detecting RFP or RdRp, 1 µl loading for detection 

of GFP or CP) and fractionated by SDS-PAGE. After blotting to a polyvinylidene fluoride 

membrane, the blots were probed overnight with antisera to CP or RdRp (analysis of 

VLPs), or with antisera to GFP, RFP or His-tag (analysis of total proteins). Subsequent 

to washing, membranes were incubated with appropriate second antiserum conjugated 

with alkaline phosphatase. Then following several washes, membranes were subjected 

to color development using BCIP/NBT reagents (5-Bromo-4-chloro-3-indolyl 

phosphate/Nitro blue tetrazolium).  

2.11 RNA isolation and Northern blotting 

 

Total RNA was extracted from virus-infected or vector-transformed fungal mycelia using 

the TRIzol reagent (Invitrogen) according to the manufacturer’s protocol. Full-length plus-

stranded RNA transcript of HvV190S (~ 5.2 kb) was synthesized in vitro using T7 RNA 

polymerase and plasmid pT7-HvV190S containing full-length HvV190S cDNA as template 

(74). RNA samples (15 µg) were then fractionated in a denaturing agarose gel. Blotting to 

Hybond-N+ membranes and hybridization were carried out as described previously (70). 



 

22 
 

PCR fragments corresponding to the CP ORF or the RdRp ORF of HvV190S cDNA were 

amplified and randomly radiolabeled using [α-32P] dCTP for probing the blots. 

2.12 RNA structure predictions 

 

Prediction of H-type RNA pseudoknots was performed using the program HPKNOTTER 

(75) and Dotknot (Version 1.2) (76). These two programs are implemented at 

http://genome.cs.nthu.edu.tw/HPKNOTTER/ and http://dotknot.csse.uwa.edu.au/, 

respectively. The program Hpknotter was run using the website’s default settings for 

“Class: General” and using pknotsRG (version 1.2) (77) as the prediction kernel. The 

program Dotknot was run at the default settings on the web site. The long stem–loop 

structure in SsRV2 was predicted using the program Mfold with the default settings (78) 

as implemented at http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form. Mfold was 

also used for the prediction of secondary structure for immediately downstream sequence 

of AUGA region of HvV190S. The free energy values for each structure were calculated 

by the respective program. 

2.13 In vitro transcription and translation 

 

Unless otherwise stated, the in vitro coupled transcription/translation was carried out in 

TnT® T7 Quick Coupled Transcription/Translation Systems (Promega) according to 

manual instructions. Typical reactions were 25 µl and composed of 50 % wheat germ 

extracts, 1 µl reaction buffer, 0.5 µl T7 RNA polymerase, 0.5 µl amino acid mixture minus 

methionine, 0.5 ul RNasin ribonuclease inhibitor (40 U/µl) and 1-2 µl  [35S]-methionine (10 

mCi/ml) plus 1 µg of plasmid DNAs or luciferase control DNA. Reactions were incubated 

for 2 h at 30 C.  Samples were prepared for gel electrophoresis by adding 4 µl 4 × sample 

buffer into 10 µl of reaction products, boiled for 3 minutes and resolved by SDS-PAGE on 

a 10% polyacryamide gel. The detection of products on the gels was determined by direct 

measurement of [35S]-methionine incorporation using a typhoon imager. All in vitro 

reactions were repeated twice independently. 

 

http://genome.cs.nthu.edu.tw/HPKNOTTER/
http://dotknot.csse.uwa.edu.au/
http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form
http://stanxterm.aecom.yu.edu/wiki/data/Product_manuals_attach/tntquick.pdf
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2.14 Dual fluorescence assay 

 

One hundred and fifty microliter samples of fungal total protein extracts were loaded into 

96-well opaque plate (greiner bio-one) and fluorescence was measured using a 

SpectraMax M2 microplate reader according to manufacturer’s manual (Molecular 

devices). EGFP fluorescence was detected using 485-nm excitation/ 520-nm emission 

spectra, while RFP (DsRed) was detected using 543-nm excitation/ 590-nm emission 

spectra. Total protein from each transformant was independently extracted. 

Fluorescence measurement for each extract was repeated at least three times using 

representative samples to obtain a mean value.  
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Figure 2.1 Schematic representation of the overlap-extension protocol used for 

mutagenesis.  

To introduce site-directed, insertion, or deletion mutations into the region flanking the 

AUGA stop–restart motif in the HvV190S cDNA, two unique restriction enzymes sites, 

FseI and StuI at nt positions 2171 and 2990, respectively, were selected to border the 

region for site-directed mutagenesis. A three-step PCR amplification procedure was 

used to generate mutated fragments AB, CD, and AD. Two common primers (primers a 

and d; FseI-a-F and StuI-d-R, respectively; Table 2.1) and a series of mutagenic primers 

containing nucleotide mismatches represented by green rectangles (primer types b and 

c; Table 2.1) were designed to introduce a variety of mutations into the region flanking 

the AUGA overlap. For each mutant construct, fragment AB was synthesized using the 

common forward primer FseI-a-F and the pertinent mutagenic type-b primer for reverse 

priming; fragment CD was synthesized using the pertinent mutagenic type-c primer for 

forward priming and the common reverse primer StuI-d-R; and finally, fragment AD was 

synthesized using the amplified fragments AB and CD as templates and the common 

primer pair FseI-a-F and StuI-d-R. All AD fragments were doubly digested with FseI and 

StuI and cloned into similarly digested vector p190S. 
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Table 2.1 List of primers used in experiments involving purified virus-like particles.  

Primers Sequence (5'-3') Template 

FseI-a-F GTCTTTGGCCGGCCAGATGTCGGT (FseI in bold italic)  

StuI-d-R TTCGCGAAAGGCCTTGTCGTTG (StuI in bold italic)  

pStartM1-b-R TGAGGATCACTCACTGTCCC p190S 

pStartM1-c-F GACAGTGAGTGATCCTCAGG p190S 

pStartM2-b-R CGTAACCAGCAAGCACATGG p190S 

pStartM2-c-F CCATGTGCTTGCTGGTTACG p190S 

pStartM3-b-R TGAGGATCACTCACTGTCCC pStartM2 

pStartM3-c-F GACAGTGAGTGATCCTCAGG pStartM2 

pStartM4-b-R CTGAGGATCACCTATTGT p190S 

pStartM4-c-F ACAATAGGTGATCCTCAG p190S 

pStartM5-b-R Same as pStartM2-b-R pStartM4 

pStartM5-c-F Same as pStartM2-c-F pStartM4 

pStartM6-b-R AAGTATATGGGAATTGGC pStartM1 

pStartM6-c-F ATATACTTGCTGGTTAC pStartM1 

pStop+20-b-R GATCACCCATTGTCCCTCGGC p190S 

pStop+20-c-F CGGGCCGAGGGACAATGGGTGATC p190S 

pStop+8-b-R CCGTAGGCTATGGAACGT pStop+20 

pStop+8-c-F ACGTTCCATAGCCTACGG pStop+20 

pStop+2-b-R GTTCCTGAGTCACACCCATTGTCC pStop+20 

pStop+2-c-F CGAGGGACAATGGGTGTGACTC pStop+20 

pStop-2-b-R CACCCATTGTCACTCGGC pStop+20 

pStop-2-c-F GCCGAGTGACAATGGGTG pStop+20 

pStop-8-b-R ATCAGCCTAGGCAGCGG pStop+20 

pStop-8-c-F TGCCTAGGCTGATCGG pStop+20 

pStop-12-b-R GCAGCGGCTCAGGGTGCGTG pStop+20 

pStop-12-c-F ACGCACCCTGAGCCGCTGCCC pStop+20 

PK0-b-R 
CCTCGGTCTGATCTGTCTGTGTTGCTTTGGGGGGTGCGTGGATG 
GCAGTG 

p190S 

PK0-c-F ACGCACCCCCCAAAGCAACACAGACAGATCAGACCGAGGGAC p190S 

Restore1-b-R GCCTGGGCAGCGGCGGGCTATTGTCCCTCGGTCTGATC PK0 

Restore1-c-F GCTGCCCAGGCTGATCGGGCCGAGGGACAATGAGTG PK0 

Restore2-b-R CGGGCCACTGTCCCTCGGTCTGATC Restore1 
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Table 2.1 Continued 

Primers Sequence (5'-3') Template 

Restore2-c-F GGACAGTGGCCCGCCGCTGCCC Restore1 

Spacer6-1-b-R GCCCGATCAGCCTGGGCAGCG p190S 

Spacer6-1-c-F ATCGGGCCGGACAATGAGTGATCCTC p190S 

Spacer6-2-b-R TCATTGCTCGGCCCGATCAG  p190S 

Spacer6-2-c-F CCGAGCAATGAGTGATCCTC  p190S 

Spacer3-b-R ACTCATTGGGCCCGATCAGCCTGG p190S 

Spacer3-c-F CAATGAGTGATCCTCAGGAACG p190S 

Spacer18-b-R TTGTCCCTCGGCCCGATCAGCCTGG  p190S 

Spacer18-c-F GAGGGACAAGAGGGACAATGAGTGATC p190S 

Spacer27-b-R TCCCTCGGCCCGATCAGCCTGG                           Spacer18 

Spacer27-c-F GGGCCGAGGGACAAGAGGGACAAGAGGGACAATGA          Spacer18 

RdRp5’_d1-b-R TTTGGAATCACTCATTGTCCCTCGGCCCG p190S 

RdRp5’_d1-c-F ATGAGTGAT TCCAAAGCCTACGGA      p190S 

RdRp5’_d2-b-R ACGCTACTTCCCCGAGAAGT CCGTAGGC p190S 

RdRp5’_d2-c-F GGGGAAGTAGCGTCAGCCAATTCCC p190S 

p190S-CP3’d1-b-R TCATTGATCAGCCTGGGCAGC p190S 

p190S-CP3’d1-c-F TGAT CAATGAGTGATCCTCAGG      p190S 

p190S-CP3’d2-c-F CGCT CGGGCCGAGGGACAATGAG   p190S 

p190S-CP3’d2-c-F CGCT CGGGCCGAGGGACAATGAG   p190S 

p190S-CP3’d3-b-R TGGGCTGCGTGGATGGCAGTGG   p190S 

p190S-CP3’d3-c-F ACGCAGCCCAGGCTGATCGG           p190S 

p190S-CP3’d4-b-R GGGGAGTGGGGACGGGGGCAGC   p190S 

p190S-CP3’d4-c -F CCCACTCCCCCCGCCGCTGCCC         p190S 

p190S-CP3’d5-b-R GATGGCGGCAGCAGGGTTGG   p190S 

p190S-CP3’d5-c-F TGCCGCCATCCACGCACC                p190S 

p190S-CP3’d6-b-R ACGGGCACGTTGCCGCCGCCACCG p190S 

p190S-CP3’d6-c-F AACGTGCCCGTCCCCACTGCCATCC p190S 

PK1-b-R AGCCCGGGGGGGTGCGTGGATGGC p190S 

PK1-c-F CCCCGGGCTGCCCAGGCTGATC    p190S 

PK2-b-R ATCACGGTGGGCAGCGGCG p190S 

PK2-c-F CCACCGTGATCGGGCCGAGG    p190S 
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Table 2.1 Continued 

Primers Sequence (5'-3') Template 

PK3-b-R ACGGTGGGCAGCCCGGGGGGGTGCGTG p190S 

PK3-c-F CGGGCTGCCCACCGTGATCGGGCCG p190S 

PK4-b-R TCAGCCTCCCGAGCGGCGG p190S 

PK4-c-F CCGCTCGGGAGGCTGATCG p190S 

PK5-b-R TCCCTCGCGGGGATCAGCC p190S 

PK5-c-F TGATCCCCGCGAGGGACAATG p190S 

PK6-b-R same as PK5-b-R PK4 

PK6-c-F same as PK5-c-F PK4 

PK2-1-b-R ATCTCGGTGGGCAGCGGCGG     p190S 

PK2-1-c-F CCACCGAGATCGGGCCGAGG      p190S 

PK3-1-b-R GGGTGCGTGGTAGGCAGTG p190S 

PK3-1-c-F ATCCACGCACCCCCCTAAGCTGCCCATTATGATCGGGCCGAGGGAC p190S 

PK3-2-b-R ATCATAATGGGCAGATTATGGGGGTGCGTGGATGGC p190S 

PK3-2-c-F CCATTATGATCGGGCCGAGGGACAATG p190S 

PK6-1-b-R ATCAGCCTTTTAAGCGGCGG p190S 

PK6-1-c-F AAAGGCTGATCTTTACGAGGGACAATG p190S 

PK6-2-b-R ATCAGCCTTTTAAGCGGCGGGG p190S 

PK6-2-c-F AAAGGCTGATCTTTAAGAGGGACAATGAGTG p190S 

18S-20M-b-R CCCTAGTGCCTGGGCAGCGG p190S 

18S-20M-c-F AGGCACTAGGGGCCGAGGGACAATG p190S 

18S-40M-b-R GGTCGCACCTTGGCAGTGGGGAC p190S 

18S-40M-c-F AAGGTGCGACCCCCCGCCGCTGC p190S 

18S-65M-b-R AGCCCCCGTCGTCCGTTGGAAGATCCATCGTCG p190S 

18S-65M-c-F ACGACGGGGGCTCCCCACTGCCATCCAC p190S 

18S-90M-b-R TCGAGCCTTCCAGGTGGGCCGGCAGG p190S 

18S-90M-c-F TGGAAGGCTCGATGGATCTTCCAAC p190S 

I. Primers designated “a” or “d” are common outside primers; Primers designated 

“b” or “c” are mutagenizing primers that were designed to introduce mutations.  

II. Mutations introduced are bolded; Unique enzymes inserted are in italic. 
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Table 2.2 List of primers used in experiments for dual-fluorescence assay. 

Primers Sequence (5'-3') Template 

Rluc-His 
NsiI-a-F CATATGCATGAGGCTGTAAG  
XhoI-d-R CTCGAGTTAGTGGTGGTGGTGGTGGTGTTGTTCATTTTT

GAGAACTCGCTCAACG 
 

Rluc-b-R CCAGTGATGCTTTGAGAGAGTTAATAGACTTGAATTGA
GGAATGG 

pGB 

Rluc-c-F AAGCATCACTGGCCGGCCAACATGACTTCGAAAGTTTA
TGATCC 

pRL-CMV 

Fluc-His 
FseI-Fluc-FP GGCCGGCCAACATGGAAGACGCCAAAAAC pFR-Luc 
XhoI-Fluc-RP CTCGAGTTAGTGGTGGTGGTGGTGGTGCAATTTGGACT

TTCCGCCCTTCTTGGCC  
pFR-Luc 

eGFP-His 
FseI-GFP-FP GGCCGGCCAACATGGTGAGCAAGGGCG pSAN6-eGFP-N1 
XhoI-GFP-RP CTCGAGTTAGTGGTGGTGGTGGTGGTGCTTGTACAGCT

CGTCCATGCCGAGAGTG 
pSAN6-eGFP-N1 

RFP-his 
FseI-RFP-FP GGCCGGCCAACATGGCCTCCTCCGAG pSAN6-RFP-N1 
XhoI-RFP-RP CTCGAGTTAGTGGTGGTGGTGGTGGTGGGCGCCGGTG

GAGTGGCGGCCCTCG 
pSAN6-RFP-N1 

eGFP-CP 
XhoI-GFP-RP2 CTCGAGCTTGTACAGCTCGTCCATG pSAN6-eGFP-N1 
XhoICPApaIFP CTCGAGATGTCTCACACCACGATC p190S 
XhoICPApaIRP GGGCCCTCAT TGTCCCTCG p190S 

RdRp-RFP-His 
FseIRdRpClaIFP GGCCGGCCAACATGAGTGATCCTCAG p190S 
FseIRdRpClaIRP ATCGATAGAACGGATATGATATG p190S 
ClaIRFPXhoIFP ATCGATATGGCCTCCT CCGAGGAC pSAN6-RFP-N1 

eGFP-CPt-RFP 
FseIeGFPCP171
1ClaIRP 

ATCGATCTTCATACGTATGTGATAC eGFP-CP 

eGFP-CP:RFP 
XhoICP2608ClaI
RP 

ATCGATACTCATTGTCCCTCGGCCCGATC eGFP-CP 

CP 5’ and 3’ deletions  
XhoICPApaIFP CTCGAGATGTCTCACACCACGATC  
Non-stop-RP ATCGATACCCATTGTCCCTCGGCCCGATC eGFP-CP:RFP 
CP5’_d1-FP CTCGAGACTCATGCCGACACTATGC eGFP-CP:RFP 
CP5’_d2-FP CTCGAGAACAGGTCCGCCGCGCCTGG eGFP-CP:RFP 
CP5’_d3-FP CTCGAGAACGGTCCCCCTGCCGGC eGFP-CP:RFP 
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Table 2.2 Continued 

Primers Sequence (5'-3') Template 

CP5’_d4-FP CTCGAGGCTGCCCCCGTCCCCAC eGFP-CP:RFP 
CP5’_d5-FP CTCGAGCCCCCCGCCGCTG eGFP-CP:RFP 
XhoICP2608Cl
aIRP 

ATCGATACTCATTGTCCCTCGGCCCGATC  

FseI-GFP-FP GGCCGGCCAACATGGTGAGCAAGGGCG pSAN6-eGFP-N1 
CP5’d6-RP ATCGATACTCATTGCTTGTACAGCTCGTCCATG pSAN6-eGFP-N1 
CP3’d1-RP ATCGATACTCATTGATCAGCCTGGGCAGCGG eGFP-CP:RFP 
CP3’d2-RP ATCGATACTCATTGTCCCTCGGCC eGFP-CP:RFP 
CP3’d3-RP XhoICPApaIFP/XhoICP2608ClaIRP p190S-CP3’d3 

CP3’d4-RP XhoICPApaIFP/XhoICP2608ClaIRP p190S-CP3’d4 
CP3’d5-RP XhoICPApaIFP/XhoICP2608ClaIRP p190S-CP3’d5 

CP3’d6-RP XhoICPApaIFP/XhoICP2608ClaIRP p190S-CP3’d6 

Pseudoknot swapping 
XhoICPApaIFP CTCGAGATGTCTCACACCACGATC  
StuI-d-R TTCGCGAAAGGCCTTGTCGTTG (StuI in bold italic)  
PK_BfTV1-b-R CGTTACCTGGGGCAGCAGGGGGGGGTGCGTGGATGGCA

GTG 
eGFP-CP:RFP 

PK_ BfTV1-c-F CCCAGGTAACGGGCCGGACACGATATGAGTATCGATGAT
CCTCAGGAAC 

eGFP-CP:RFP 

PK_GaRV-L1-
b-R 

GCTTCAGCAGCAGTAGCTTCGGGGGGTGCGTGGATGGCA
GTG 

eGFP-CP:RFP 

PK_GaRV-L1-
c-F 

GCTGCTGAAGCAGTGCCCGCTCAATGAGTATCGATGATCC
TCAGGAACG 

eGFP-CP:RFP 

PK_SsRV1-b-R CCGTCAGGCTGGGCGGGGCCGGGGGGTGCGTGGATGGC
AGTG 

eGFP-CP:RFP 

PK_SsRV1-c-F AGCCTGACGGGCCCGCCAATGAATAAGAGTATCGATGAT
CCTCAGGAAC 

eGFP-CP:RFP 

PK_MoV1-b-R CAGGCTAGGCGCCGCGCCGGGGGGTGCGTGGATGGCAG
TG 

eGFP-CP:RFP 

PK_MoV1-c-F CGCCTAGCCTGCACGAATAGATATGAGTATCGATGATCCT
CAGGAACG 

eGFP-CP:RFP 

PK_TcV1-b-R CCACCATAGCCTGGGGGTCGGCGGGGGGTGCGTGGATG
GCAGTG 

eGFP-CP:RFP 

PK_TcV1-c-F GCTATGGTGGGCGACCAGATCTAAATGAGTATCGATGAT
CCTCAGGAAC 

eGFP-CP:RFP 

PK_CeRV1-b-R GGCCCTCATTAGTGGGGGCAGCCACGGGGGGTGCGTGG
ATGGCAGTGGG 

eGFP-CP:RFP 

PK_CeRV1-c-F CCACTAATGAGGGCCGAAACGATGTCTAGAATCGATGAT
CCTCAGGAAC 

eGFP-CP:RFP 
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Table 2.2 Continued 

Primers Sequence (5'-3') Template 

Mutations in pseudoknot and flanking regions 
PK7-R ATCGATACTCATTGTCCCTCGGCCCGATCAGCCTGGGCAGCG

CCGG 
eGFP-CP:RFP 

PK8-R ATCGATACTCATTGTCCCTCGGCCCGATCAGGCTGG eGFP-CP:RFP 
PK9-R ATCGATACTCATTGTCCCTCGGCCCGATCAGGCTGGGCAGCG

CCGG 
eGFP-CP:RFP 

PK10-R ATCGATACTCATTGTCCCTCGGCCCGATCAGCCTGCGCAGCG
G 

eGFP-CP:RFP 

PK11-R ATCGATACTCATTGTCCCTCGGCGCGATCAG eGFP-CP:RFP 

PK12-R ATCGATACTCATTGTCCCTCGGCGCGATCAGCCTGCGCAGCG
G 

eGFP-CP:RFP 

PK_Loop1-R ATCGATACTCATTGTCCCTCGGCCCGATCAGCCAGGGCTCGG
GCGGG 

eGFP-CP:RFP 

PK_Loop2-R ATCGATACTCATTGTCCCTCGGCCCCTAGTGCCTGGGCAGC eGFP-CP:RFP 
PK_Flank1-
R 

ATCGATACTCATTGTCCCTCGGCCCGATCAGCCTGGGCAGCG
GCCCCCCCTGCGTG 

eGFP-CP:RFP 

PK_Flank2-
R 

ATCGATACTCATACAGGGAGCGCCCGATCAGCC eGFP-CP:RFP 

In vitro translation  
ApaIGFPXh
oIFP 

GGGCCCGCCACCATGGTGAGCAAGGGCG pSAN6-eGFP-N1 

ClaIRFPXbaI
RP 

TCTAGATTAGGCGCCGGTGGAGTG pSAN6-RFP-N1 

XhoICPClaId
1RP 

ATCGATACTCATTGATCAGCCTGGGCAGCGG p190S 
XhoICPClaId
2RP 

ATCGATACTCATTGTCCCTCGGCC p190S-CP3’d2 

Bacterial expression of Rluc and Fluc 
BamHIRlucF
P 

GGATCCATGACTTCGAAAGTTTATG pRL-CMV 

XhoIRlucRP CTCGAGTTGTTCATTTTTGAGAAC pRL-CMV 

BamHIFlucF
P 

GGATCCATGGAAGACGCCAAAAAC pFR-Luc 
XhoIFlucRP CTCGAGCAATTTGGACTTTCC pFR-Luc 

(i) Primers designated “a” or “d” are common outside primers; Primers designated “b” 

or “c” are mutagenizing primers that were designed to introduce mutations. 

(ii) Mutations introduced are bolded; Unique enzymes inserted are in italic.  
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3 CHAPTER THREE: HvV190S utilizes a coupled termination-reinitiation 

strategy to translate the downstream RNA dependent RNA polymerase (RdRp) 

gene from its bicistronic genome  

 

Part of this work was published as a regular paper in the Journal of Virology, 2011  

3.1 Introduction 

 

Unlike viruses in the genus Totivirus, which express their RdRp only as CP-RdRp fusion 

proteins, HvV190S, the prototype strain of genus Victorivirus, express its RdRp as a 

separate, nonfused protein. Thus ribosomal frameshifting and in-frame read-through of 

stop codon can be ruled out as the mechanism utilized by HvV190S for expressing its 

RdRp because both of these strategies generate fusion proteins (14)  Then expression 

of the downstream RdRp ORF from the HvV190S bicistronic genome may occur by one 

or a combination of the following strategies: leaky scanning, ribosomal shunting, IRES 

and coupled termination-reinitiation, polyprotein synthesis/processing and subgenomic 

RNA translation. Leaky scanning seems unlikely because of the very long distance 

(2316 nt) separating the two start codons and the presence of several AUGs in a more 

favorable context (AXXAUGG). The longest distance between two start codons from 

other examples of translations by leaky scanning is usually less than 150 nt (57). It is 

also unlikely that RdRp ORF is expressed via ribosomal shunting or IRES mediated 

internal initiation. These two mechanisms involve a highly structured untranslated region 

upstream the start codon (37, 56). On the contrary, instead of the short inter-region 

between the two ORFs, the 5’ UTR of the upstream CP ORF was found to be highly 

structured which implies IRES or ribosomal shunting for translation for the upstream 

ORF (14). In the mechanism of polyprotein translation, initiation codons and termination 

codons are deficient for internal ORFs. However, independent initiation and termination 

codons are predicted from HvV190S genome for CP ORF and RdRp ORF repectively 

although not tested (14, 15). RdRp may use subgenomic strategy to expression a 

separate protein from a subgenomic RNA although no subgenomic promoter sequence 

upstream the RdRp ORF has been identified. When RdRp ORF is expressed in 

Escherichia coli from a monocistronic construct employing its predicted initiation codon, 

the translation product is indistinguisheable in both size and serological reactivity from 

the HvV190S particle-associated RdRp (14). Since polyprotein processing or translation 
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via subgenomic mRNA are unlikely, HvV190S most likely utilizes a coupled termination-

reinitiation strategy to translate its downstream RdRp ORF based on the fact that the 

termination codon of the CP ORF overlaps the start codon of the downstream RdRp 

ORF in a tetranucleotide AUGA, which meets the most common feature for this 

mechanism.  

 

In this chapter, an in vivo transformation/expression system was established in H. 

victoriae to investigate the translation mechanism for the downstream RdRp gene from 

bicistronic HvV190S genome. Crucial experiments were performed to rule out some 

translational possibilities and provide evidence that a coupled termination-reinitiation 

was truly utilized by HvV190S to express its downstream RdRp ORF.   
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3.2 Results 

3.2.1 Efficient expression of HvV190S RdRp from transformation vector in the 

native host 

 

The RdRp ORF of HvV190S has been previously cloned into monocistronic or bicistronic 

vectors and transformed into yeast cells Schizosaccharomyces pombe and bacterial cells 

E. coli to investigate its expression (25). Although RdRp expression from dicistronic 

vectors was unsuccessful in bacteria cells, it was expressed at low levels in yeast cells, 

suggesting that some eukaryotic host factors may be involved for its translation. Therefore, 

to investigate the translation mechanism used by the RdRp ORF, full-length HvV190S 

cDNA was first cloned into a fungal transformation/expression vector under the control of 

a fungal gpd1 promoter and a fungal trpC terminator (Fig. 3.1A). This recombinant 

plasmid, designated p190S, was then transformed into a virus-free host isolate of H. 

victoriae. Following transformation, the viral genome was integrated into the host DNA. In 

addition, transcription of the bicistronic mRNA followed by translation into CP and RdRp 

were respectively demonstrated by Northern and Western blotting analysis (see below). 

Viral dsRNA replication was not launched in these transformants, however, and only 

empty virus-like particles (VLPs) accumulated in the transformed hyphae, albeit to 

substantially higher levels than in natural infections (64). As in natural infections, the 

primary translation product of ORF1, p88, was phosphorylated and proteolytically 

processed to generate phosphorylated p83 and nonphosphorylated p78. 

 

Western blotting of empty virus-like particles (VLPs) from different H. victoriae 

transformants detected both CP and RdRp, in similar sizes and amounts as those proteins 

present in viral particles purified from naturally infected H. victoriae (Fig. 3.1B). The 

successful expression of both CP and RdRp from plasmid p190S in H. victoriae suggested 

that this bicistronic cDNA construct, as well as the corresponding transformation and 

expression system, could be used to explore the mechanism of RdRp translation from the 

downstream ORF. Notably, no CP/RdRp fusion products larger than the nonfused RdRp 

(92 kDa) were detected by Western blotting using either CP- or RdRp-specific antiserum. 

 

To verify that RdRp was expressed from genome-length HvV190S mRNA in H. victoriae, 

Northern blotting was performed. Total RNA was prepared from virus-infected H. victoriae, 
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p190S transformants, and empty-vector transformants, and then hybridized to CP- or 

RdRp-specific gene probes. A strong hybridization signal to genome-length mRNA (~5.2 

kb) was detected for the infected strain as expected, as well as for all of the p190S 

transformants (Fig. 3.1C). In contrast, no band consistent with a subgenomic mRNA that 

might serve as an alternative or preferred template for RdRp translation was detected. 

3.2.2 Initiation codons for HvV190S RdRp translation from bicistronic mRNA  

 

Previous studies have shown that when the RdRp ORF is expressed in E. coli from a 

monocistronic construct employing its predicted start codon (HvV190S nt positions 2605–

2607), the translation product is indistinguishable in both size and serological reactivity 

from the particle-associated RdRp of HvV190S (14). In addition to the start codon at 2605–

2607 (AUG1), however, ORF2 contains two other in-frame AUG codons that are fairly 

close to its 5´ end: AUG2 at nt positions 2686–2688 and AUG3 at nt positions 2803–2805. 

Moreover, no out-of-frame AUG codons are found over this interval. To verify that 

HvV190S RdRp translation initiates from AUG1 in its native host, mutations of these three 

AUG codons were introduced into plasmid p190S by site-directed mutagenesis. After 

transformation of the mutated plasmids into virus-free H. victoriae, the level of RdRp 

expression and incorporation into VLPs was examined using RdRp-specific antiserum. 

The intensity of CP bands expressed from the upstream ORF, examined using CP-specific 

antiserum, served as an internal standard. 

 

Mutation of AUG1 to GUG in construct pStartM1 resulted in an RdRp smaller in size than 

that expressed from the wild type construct (Fig. 3.2A). Mutation of AUG2 to GUG in 

construct pStartM2, on the other hand, did not influence RdRp size (Fig. 3.2A). The yield 

of RdRp from wild type, pStartM1, and pStartM2 constructs were all similar. Mutation of 

both AUG1 and AUG2 to GUG in construct pStartM3, however, severely reduced RdRp 

expression (Fig. 3.2A). These results suggest that GUG cannot serve as an effective 

reinitiation codon at either the AUG1 or the AUG2 position of the downstream ORF and 

also that AUG2, but not AUG3, can serve as an effective reinitiation codon when AUG1 is 

mutated, probably due to a requirement for proximity of the stop and restart signals as 

characterized further below. These results indicated that RdRp translation initiates from 

AUG1, which is located in the AUGA stop–restart motif (nt positions 2605–2607).  
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3.2.3 Effect of noncanonical start codons and context on HvV190S RdRp 

translation from dicistronic mRNA  

 

In light of recent evidence for effective use of noncanonical start codons in another system 

utilizing coupled termination–reinitiation for downstream ORF translation (58), it was 

interesting to study this phenomenon in the HvV190S system. When mutating AUG1 to 

AUA in construct pStartM4, it was found that the expressed RdRp was indistinguishable 

in both size and yield from wild type protein (Fig. 3.2B). This suggested that translation 

from the downstream ORF could effectively initiate from the noncanonical start codon 

AUA. To verify that with pStartM4 RdRp translation was indeed effectively initiating from 

AUA at the AUG1 position, rather than from AUG2, construct pStartM5 was generated, in 

which AUG2 was mutated to the ineffective start codon GUG (see Fig. 3.2A for preceding 

evidence that GUG is ineffective). The RdRp expressed from pStartM5 was again 

indistinguishable in both size and yield from wild type (Fig. 3.2B). As a final test of AUA 

use as an effective start codon in this system, an additional construct pStartM6 was 

generated, in which AUG1 was mutated to the ineffective start codon GUG and AUG2 was 

mutated to AUA. In this case, a smaller RdRp was expressed, though in similar yield to 

wild type (Fig. 3.2B), consistent with AUA use as an effective start codon at the AUG2 

position. 

 

In the report by Powell et al. (58), the authors also determined that the sequence context 

immediately surrounding the reinitiation codon has little effect on the efficiency of 

downstream ORF translation. To address this issue in HvV190S, the relatively good 

context in the wild type construct, GGGACAAUGA (purine at position –3, pyrimidine at 

position –2; initiator AUG underlined) was changed into poorer contexts in constructs 

Kozak-3, GGGCCAAUGA (pyrimidine at –3; mutation in bold), and Kozak-2, 

GGGAAAAUGA (purine at –2; mutation in bold). Yields of RdRp expression were similar 

to wild type with both these mutants (Fig. 3.2C), suggesting that the sequence context 

immediately surrounding the reinitiation codon has little effect on the efficiency of 

downstream ORF translation in HvV190S. 
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3.2.4 Termination of CP translation is essential for reinitiation of RdRp 

translation  

 

In all of the mutant constructs in Fig. 2, the stop codon of ORF1 remains in place, albeit 

changed from UGA to UAG in constructs pStartM4 and pStartM5 (see Fig. 3.2B). To 

assess the influence of uncoupling termination of CP translation from reinitiation for RdRp 

translation, the authentic UGA stop codon of ORF1 (at nt positions 2606–2608 in the 

AUGA stop–restart motif) was mutated to UGG. As a result, ORF1 is expected to terminate 

at the next in-frame stop codon, which is UAG at nt positions 2666–2668, 20 codons 

downstream of the native ORF1 stop (Fig. 3.3, construct pStop+20). As expected, the 

resulting full-length CP product (~97 kDa) was larger than the primary translation product 

of wild type ORF1, p88, though it was still processed to p83 and p78, consistent with the 

fact that the proteolysis to generate these smaller forms occurs near the CP C-terminus 

(15). Notably, no RdRp was detected with construct pStop+20 (Fig. 3.3), suggesting that 

uncoupling the stop–restart signals in the AUGA motif severely reduces expression of the 

downstream ORF. 

 

To study further the effects of the position of the CP stop codon relative to the RdRp 

reinitiation codon, a series of mutants were generated, in which a stop codon in frame with 

ORF1 was introduced at various positions upstream or downstream of the ORF2 start 

codon, with the authentic UGA stop codon of ORF1 mutated to UGG in all cases (Fig. 

3.3). In constructs pStop+8 and pStop+2, the inserted stop codon was respectively 

positioned 8 or 2 codons downstream of the ORF2 start codon, whereas in constructs 

pStop-2, pStop-8, and pStop-12, the inserted stop codon was respectively inserted 2, 8, 

or 12 codons upstream of the ORF2 start codon. The results showed that proximity of the 

CP stop codon to its wild type position is required for reinitiation for RdRp translation, since 

little or no RdRp was detected with constructs pStop+8, pStop-8, and pStop-12. One 

caveat is that in the case of mutant pStop-8, relocation of the stop codon by 8 codons 

upstream of the RdRp start codon disrupts a predicted pseudoknot structure in this region, 

which was shown to be important for reinitiation (see following sections). Notwithstanding 

this caveat, these results imply that the relative location of the CP stop codon is important 

for the efficiency of reinitiation for RdRp translation, consistent with a coupled termination–

reinitiation mechanism. 
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3.2.5 A pseudoknot structure is predicted upstream of the AUGA motif and 

appears important for reinitiation for RdRp translation  

 

RNA structure predictions using the program HPKNOTTER (75) suggested that an H-type 

pseudoknot may closely precede the AUGA stop–restart motif in HvV190S (Fig. 3.4). As 

for other pseudoknots, this one is predicted to be formed when nucleotides in a hairpin 

loop base-pair with nucleotides in a single-stranded region outside the hairpin to form a 

second stem adjacent to the hairpin stem. To address whether this predicted pseudoknot 

plays a role in reinitiation for RdRp translation, multiple mutations were introduced in an 

effort to disrupt the structure (construct PK0; Fig. 3.5A). Indeed, no pseudoknot was 

predicted by the program HPKNOTTER for the mutated sequence in PK0. Upon analysis 

with three different transformants of construct PK0, little or no RdRp was detected (Fig. 

3.5A), suggesting the importance of the predicted pseudoknot sequence for ORF2 

reinitiation. 

 

Next it was of interest to determine whether RdRp expression could be restored if a wild 

type version of the predicted pseudoknot sequence were reintroduced into construct PK0 

downstream of the mutated one. Two constructs were made (Restore1 and Restore2), 

both having a new, wild type pseudoknot-to-AUGA cassette inserted downstream of the 

mutated sequence and the native AUGA position. In Restore1, the native AUGA motif was 

mutated to AUAG, which nonetheless retains the CP stop codon at its authentic position; 

as a result, the inserted wild type version of the predicted pseudoknot sequence is located 

downstream of the CP stop codon (Fig. 3.5B). Only limited restoration of RdRp expression 

was seen with this mutant, which also showed CP expression of the expected, native size. 

In Restore2, on the other hand, the native AUGA motif was mutated to GUGG; as a result, 

the CP stop codon is shifted to the inserted, downstream AUGA motif and the inserted 

wild type version of the predicted pseudoknot sequence is now upstream of this stop 

codon, mimicking the native organization (Fig. 3.5B). Much stronger restoration of RdRp 

expression was seen with this mutant, which also showed CP expression of the expected, 

larger size. From these results, it can be concluded that the predicted pseudoknot 

sequence is an important determinant for promoting translation of downstream ORF2 and 

that it must be located upstream of the CP stop codon for optimal activity.  
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3.2.6 Effect of the spacer length between pseudoknot and AUGA motif on 

reinitiation for RdRp translation 

 

The length of spacer sequence between the predicted pseudoknot and the AUGA motif in 

HvV190S is 9 nt. To address whether spacers smaller or larger than 9 nt would impact 

RdRp expression, a set of deletion and insertion mutants were constructed and analyzed 

(Fig. 3.6). Deletion of 3 nt (leaving a 6-nt spacer) had little effect on RdRp expression from 

constructs Spacer6-1 and Spacer6-2, whereas deletion of 6 nt (leaving only a 3-nt spacer) 

essentially abolished RdRp expression from construct Spacer3. Reciprocally, insertion of 

one duplicate spacer region (giving an 18-nt spacer) had little effect on RdRp expression 

from construct Spacer18, whereas insertion of two duplicate spacer regions (giving a 27-

nt spacer) essentially abolished RdRp expression from construct Spacer27. Based on 

these results, it can be concluded that the length of spacer sequence between the 

predicted pseudoknot and the AUGA motif is important, with spacers smaller than 6 nt or 

larger than 18 nt not supporting RdRp expression. Whether the sensitivity to spacer length 

is determined by the distance between predicted pseudoknot and CP stop codon and/or 

between predicted pseudoknot and RdRp start codon is not addressed by this experiment, 

but based on preceding findings (e.g., effective initiation of RdRp from AUG2 in Fig. 3.2), 

it seems that when the spacer length is larger than that in wild type HvV190S, the spacing 

between predicted pseudoknot and CP stop codon is the more relevant determinant. 

3.2.7 Other victoriviruses contain similar sequence motifs for coupled 

termination–reinitiation for RdRp translation  

 

Ten other viruses were assigned to the genus Victorivirus in 2009 with HvV190S as the 

prototype strain of the genus (19). The number of victoriviruses is still growing. BbRV1 

from entomopathogenic fungus Beauveria bassiana (79), TcV1 from Tolypocladium 

cylindrosporum (80), and AfSV1, RnVV1 and UvRV1 from pathogenic fungus Aspergillus 

foetidus (81),Ustilaginoidea virens (82) and Rosellinia necatrix (83) are discovered as 

possible victoriviruses based on similarly predicted secondary structure in their RNA 

sequences. Fourteen of 16 members have an H-type pseudoknot predicted by 

HPKNOTTER (75) at nearly the same position as in HvV190S (Fig. 3.7). The defined 

Class 1 in H-type pseudoknot represents that the nt length of stem 1 is less than that of 

stem 2. Two exceptions are Sphaeropsis sapiens virus 2 (SsRV2) and Ustilaginoidea 
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virens RNA virus 1 (UvRV1), which contain a predicted long stem–loop structure instead 

of a predicted pseudoknot at nearly the same position. In all 14 victoriviruses with a 

predicted pseudoknot, including HvV190S, the hairpin stem (stem 1; cyan in Fig. 3.4) is 

more conserved in number of base pairs involved in stem formation (3 or 4) than is stem 

2 (orange in Fig. 3.4), which comprises from 3 to 6 bp. Both stems, however, show a 

preponderance of G:C base pairs. Compared to stems, hairpin loops (both loop1 and 

loop 2) are less conserved in nucleotide numbers, loop 1 possesses 1 or 4 nucleotides 

and loop 2 with 2 or 6 nucleotides. Loop 2 consists of more AU than loop 1 in their 

sequences. The spacer length between the predicted pseudoknot and stop/restart sites 

vary from a minimum of 6 nt in Sphaeropsis sapiens virus 1 (SsRV1) to a maximum of 

11 nt in Beauveria bassiana virus 1(BbRV1) and UvRV1. The spacer length between the 

predicted pseudoknots and the CP stop codons in all victoriviruses are very similar, 

ranging from a minimum of 8 nt in Magnaportha oryzae virus 1 (MoV1) to a maximum of 

12 nt in Chalara elegans RNA virus 1 (CeRV1). The spacer lengths between the 

predicted pseudoknots and the RdRp start codons in all of the victoriviruses are also 

similar, ranging from a minimum of 6 nt in SsRV1 to a maximum of 13 nt in MoV1, 

TcV1(Tolypocladium cylindrosporum virus 1), BbRV1 and UvRV1. The start/stop region 

can be distributed into three types. Seven of the 16 victoriviruses contain the AUGA 

stop–restart motif, the remaining 8—CeRV1, MoV1, SsRV1, and SsRV2—show a small 

difference: the stop and start codons are close together, but do not overlap (2 nt spacers 

in each). Moreover, in 3 of these viruses—CeRV1, SsRV1, and SsRV2—the start codon 

comes first, whereas the remaining 5— BbRV1, MoV1, RnVV1 (Rosellinia necatrix 

victorivirus 1), TcV1 and UvRV1—the stop codon comes first. Victoriviruses show a 

varying scale for minimum free energy to form a stable pseudoknot, with the lowest 

value of -16 kcal/mol in MoV2 and highest value of -5.8 kcal/mol in MoV1. These 

observations suggest that each victorivirus, similar to the prototype HvV190S, expresses 

its RdRp from the downstream ORF via a coupled termination–reinitiation mechanism, 

even though some variation in the relevant signals, overlapping vs. nonoverlapping stop 

and restart codons is tolerated. 

3.2.8 Effect of deletions of downstream sequences of AUGA motif on RdRp 

reinitiation 

 

Although no example suggested an involvement for the downstream RNA sequence on 
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reinitiaton in RNA viruses, it did occur for reinitiation mechanism on study of SART1. A 

retrotransposon SART1 showed for a first time that a downstream RNA secondary 

structure contributes to ORF2 translation while other features are similar to those of the 

reinitiation mechanism for RNA viruses (84). Recently, research on RnVV1 proposed a 

secondary structure in the downstream ORF that might be involved in reinitiation (83). 

Coincidentally, HvV190S was predicted to form a stable secondary structure (two stem-

loops, RdRP stem 1 and stem 2) in the downstream sequences nearby the overlapped 

AUGA motif (Fig. 3.8 Left panel). To test if the secondary structure contributes to 

reinitiation of RdRp gene, 12 nt-deletions were made to those two stems separately. After 

analyzing the purified VLPs, mutants containing deletions expressed RdRp protein as 

efficiently as wild type (Fig. 3.8 Right panel), which suggested that the downstream RNA 

sequences are not involved in reinitiation of the downstream gene, same as other RNA 

viruses did on reinitiation. However, the whole-length of the downstream RNA sequences 

was not yet tested.  

3.2.9 Effect of deletions of upstream sequences of AUGA motif on RdRp 

reinitiation 

 

In Fig.3.5, a sequence element was identified to be required for reinitiation of translation 

of RdRp from the downstream ORF of the bicistronic genome of HvV190S. This 

comprised a 32-nucleotide-stretch of RNA sequence immediately upstream of the AUGA 

motif.  In a continuation of this study, the aim was to define the required sequence 

elements within the entire upstream CP ORF. Signals for termination-reinitiation among 

caliciviruses have been located within   ̴ 80 nucleotide at the 3’ end of the upstream ORF 

(62, 85). A series of deletions to the 3’ end of HvV190S CP sequence spanning   ̴170 

nucleotides were made (Fig. 3.9 upper panel). After constructs containing deletions were 

introduced into virus-free H. victoriae isolate, virus-like particles were purified and 

subjected to immunoblot analysis using antisera specific for HvV190s capsid protein and 

RdRp polymerase. No RdRp expression was detected with the RdRp-specific antiserum 

from any of those constructs (Fig. 3.9 bottom panel). However, conclusion cannot be 

made that all upstream   ̴170 nucleotides are required for RdRp reinitiation bacause the 

inability to detect RdRp might be due to unsuccessful packaging the synthesized RdRp 

into VLPs. Thus, defining the RNA sequence boundary required for RdRp reinitiation via 

analyzing purified VLPs would not be useful for this purpose. Instead, a dual-reporter 
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system was established that is not only able to define the sequence boundary, but also 

to generate quantitative data on expression on RdRp expression level.   
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Figure 3.1 Construction of the fungal transformation/expression vector p190S and 

expression of CP and RdRp from plasmid p190S transformed into H. victoriae.  

(A) Schematic representation of the structure of the fungal transformation/expression 

vector p190S containing full-length cDNA of HvV190S. Pgpd1, gpd1 promoter (nt 1-nt 

662) from Chochliobuls heterostrophus; TtrpC, trpC terminator from Aspergillus nidulans; 

hyg, hygromycin B resistance gene. (B) Western blot analysis of viral proteins expressed 

from plasmid p190S in a virus-free H. victoriae isolate using CP- or RdRp-specific 

antiserum. Virus particles were purified from the wild type strain and p190S transformants, 

and subjected to sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis 

(PAGE) and Western blotting. Because of the preponderance of CP relative to RdRp in 

the particle samples, ten times more sample was loaded into each gel lane for detecting 
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RdRp. The designations of different proteins are given, and sizes of protein standards are 

indicated at right. HvV190S, viral proteins prepared from wild type strain A-9; p190S-T1, -

T2, and -T3, viral proteins prepared from three different p190S transformants. CP-only, 

which solely contains the CP ORF sequence of HvV190S genome and used as a negative 

control for expression of RdRp, was adapted from previously obtained transformants 

described by Dunn et al. (73). (C) Northern blot analysis of total RNA isolated from the 

wild type strain and p190S transformants. Hybridization was carried out using CP- or 

RdRp-specific DNA probes corresponding to ORF1 and ORF2, respectively. Empty vector 

lacking the HvV190S cDNA sequence served as a negative control (EmptyV). Full-length 

HvV190S transcripts synthesized in vitro by purified virions served as a positive control 

(HvV190ST).  



 

44 
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Figure 3.2 Identification of the reinitiation codon of the downstream RdRp ORF and 

effects of using noncanonical start codons and suboptimal AUG context.  

(A, B) Top panels, CP and RdRp coding sequences are shown as red and blue lines, 

respectively. The first three AUGs in frame within ORF2 are indicated, and their genomic 

nt positions are shown above each. Specific mutations that were introduced in these 

potential start codons are shown in green. Bottom panels, Western blot analysis of viral 

translational products in VLPs purified from transformants of p190S and mutated 

HvV190S constructs. Viral translational products are indicated at left and right, and were 

detected with CP- or RdRp-specific antiserum as indicated at bottom. Ten times more 

sample was loaded into each SDS-PAGE gel lane for detecting RdRp. (C) Top, sequences 

surrounding the RdRp start codon (underlined) are shown. Specific mutations that were 

introduced to alter the Kozak context of this start codon are shown in green and labeled 

with their relative positions. Bottom, Western blot analysis comparable to those in A and 

B.  
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Figure 3.3 Influence of uncoupling the termination-reinitiation signals in the 

tetranucleotide AUGA overlap on expression of the downstream RdRp ORF.  

Top, schematic representation of the different constructs in which the position of the CP 

stop codon was varied relative to that of wild type construct p190S. Numbers in 

parentheses refer to the genomic positions of the last nt in each stop codon. Construct 

designations refer to the number of codons separating the newly engineered in-frame 

stop codon from the position of the authentic stop codon in wild type construct p190S, 

with “+” and “–” signs indicating downstream or upstream positions, respectively. 

Mutations introduced into the wild type sequence are shown in green. Bottom, Western 

blot analysis comparable to those in Fig. 3.2. Viral translational products are indicated at 

the left and were detected with CP- or RdRp-specific antiserum as indicated at the right. 
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Figure 3.4 H-type pseudoknot predicted for sequences upstream of stop–restart 

region of HvV190S.  

A predicted RNA pseudoknot structure is encoded near the 3´ end of ORF1 preceding 

the stop-restart site. Nucleotide positions are indicated and the stop-restart site is 

italicized and underlined. Dashed lines indicate base-pairs predicted to form stem1 in 

cyan and stem 2 in orange. Two loops are formed as the result of stem formation. Loop 

1 includes nucleotides GCU plus unpaired A whereas loop 2 consists of UGAUC.  
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Figure 3.5 Effect of disrupting or restoring the predicted pseudoknot sequence on 

RdRp expression. 

 (A) Top, primary sequences of the predicted pseudoknot in the wild type construct p190S 

(PK-WT) and the mutated version (PK-M) in construct PK0 are shown. Stem 1 (cyan) and 

stem 2 (orange) are color-coded to match Fig. 3.4. Specific mutations are shown in green. 

The spacer sequence CGAGGGACA between predicted pseudoknot and AUGA motif is 

indicated by dots. Bottom, Western blot analysis comparable to those in Fig. 3.2. Viral 

translational products are indicated at left and right, and were detected with antisera to 

CP or RdRp. (B) Top, schematic representation of the different constructs in which a wild 

type pseudoknot-to-AUGA cassette (green) is inserted downstream of PK-M and the 

authentic AUGA position. Mutations made in the original AUGA motif are also shown in 

green. Bottom, Western blot analysis comparable to that in A. Viral translational products 

are indicated at left and right, and were detected with CP- or RdRp-specific antiserum as 

indicated at bottom. 
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Figure 3.6 Length requirements for the spacer region between predicted 

pseudoknot and AUGA motif. 

Top, schematic representations of deletion or insertion mutations in the spacer region (9 

nt) of wild type construct p190S. Stem 1 (cyan) and stem 2 (orange) are color-coded to 

match Figs. 3.4. Specific mutations are shown in green. Spacer regions in constructs 

Spacer3 and Spacer6 contain 3 and 6 nt, respectively; spacer regions in constructs 

Spacer18 and Spacer27 are respectively duplicated (18 nt) and triplicated (27 nt) relative 

to wild type. Bottom, Western blot analysis comparable to those in Fig. 3.2. Viral 

translational products are indicated at left and right, and were detected with CP- or RdRp-

specific antiserum as indicated at bottom. 
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Figure 3.7 Sequences of HvV190S-like fungal viruses (victoriviruses) predicted to 

form a pseudoknot (or a long stem-loop) structure upstream of the stop-restart 

motif.  

Program HPknotter (two versions 1.04 and 1.2) was employed for pesudoknot 

prediction. Thirty and fifty nucleotides upstream of stop-restart region for each virus were 

used for prediction. Stem 1 (cyan) and stem 2 (orange) are color-coded to match Figs. 

3.4–3.6. Stop-restart sites (s/s) are bolded and underlined. Type of pseudoknot and 

minimum free energy (MFE) for this structure are listed for each virus together with the 

length of each stem and each loop sequences. Numbers of nucleotides between each 

predicted structure and stop-restart site are also indicated.    

Virus names and abbreviations: BbRV1, Beauveria bassiana RNA virus 1; BfTV1, 

Botryotinia fuckeliana totivirus 1; CeRV1, Chalara elegans RNA virus 1; CmRV, 

Coniothyrium minitans RNA virus; EfV1, Epichloe festucae virus 1; GaRV-L1, 

Gremmeniella abietina RNA virus L1; HmTV1-17, Helicobasidium mompa totivirus 1-17; 

HvV190S, Helminthosporium victoriae virus 190S; MoV1 and MoV2, Magnaporthe 

oryzae viruses 1 and 2; RnVV1, Rosellinia necatrix victorivirus 1; SsRV1 and SsRV2, 

Sphaeropsis sapnea RNA viruses 1 and 2; TcV1, Tolypocladium cylindrosporum virus 1; 

UvRV1, Ustilaginoidea virens RNA virus 1; AfSV1, Aspergillus foetidus slow virus 1. 

MFE, minimum free energy value for structure prediction at 37˚C. SsRV2 and AfSV1 

were predicted to possess a long stem-loop in this region with program Mfold and their 

MFE were indicated in red.  
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Figure 3.8 Effect of disruption of predicted secondary structure at the 5’ end of 

RdRp ORF on RdRp expression.  

Left, a stable secondary structure was predicted with Mfold downstream of AUGA motif 

(indicated with stars) in the 5’ end of RdRp ORF consisting of two stem-loops. Stem 1 

includes nucleotides 2613-2651, and stem 2 includes nucleotides 2654 to 2676. Right, 

12 nucleotide deletions are introduced into stem 1 and stem 2 separately and mutant 

constructs were transformed into virus-free H. victoriae. Subsequent to transformation, 

VLPs were purified and subjected to Western blotting with CP- and RdRp-specific 

antiserum.    
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Figure 3.9 Effect of nucleotide deletions at the 3’end of CP ORF on RdRp 

expression. 

Top, Schematic representation of the basic structure of plasmid p190S as described in 

Fig. 3.1A. The stop/restart site is bolded and underlined. Below, different nucleotide 

deletions (dashed) were introduced into the 3’ end of CP ORF and positions for the 

deleted part of each construct was indicated with numbers at both ends relative to the 

first A in tetranucleotides AUGA. The full-length CP ORF is drawn at top of mutant 

diagrams and its start codon is located at -2315 upstream of the start/stop site. Bottom, 

Western blot analysis of viral proteins expressed from different constructs using CP- or 

RdRp-specific antisera. VLPs were purified from transformants with original plasmid 

p190S and p190S-derived mutant constructs. The positions of different proteins from 

VLPs are shown on the left.   
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4 CHAPTER FOUR: An H-type pseudoknot structure is essential for coupled 

termination-reinitiation translation of the downstream ORF of HvV190S 

4.1 Introduction 

 

In Chapter 3 HvV190S was confirmed to utilize a termination-dependent reinitiation to 

express its RdRp gene from the downstream ORF2. A sequence element of 32nt-

strentch containing a predicted pseudoknot structure immediately upstream of ORF2 has 

been verified to be important for the reinitiation of RdRp. However, further determination 

of other sequence elements spanning the entire CP sequence was not yet completed. 

Also the detailed explanation on the role of pseudoknot in reinitiation has not performed.  

 

The mechanism of translational coupling has been best studied with certain caliciviruses, 

feline calicivirus and rabbit haemorrhagic disease virus. In these viruses, 84–87 nt of RNA 

sequence immediately upstream of the overlapping stop–restart codons, termed the 

“termination upstream ribosome binding site” (TURBS) are required for efficient reinitiation 

(62, 86). Two distinct regions within the TURBS have been shown to play significant roles. 

Motif 2 is not conserved among different caliciviruses, and its function remains unknown. 

Motif 1, on the other hand, is conserved and is complementary to a small single-stranded 

region at the tip of helix 26 of 18S rRNA, which is juxtaposed to mRNA in the translating 

ribosome (87). This complementary region is thought to tether the mRNA to the 40S 

subunit, allowing time for the ribosome to acquire the initiation factors necessary for 

translation of the downstream ORF (88). There is also evidence that TURBS is involved 

in recruiting eukaryotic initiation factor 3 (eIF3) and eIF3/40S complexes (89). The multi-

subunit eIF3 complex plays multiple roles in translation initiation including dissociating the 

60S and 40S ribosomal subunits after termination (90), and it is therefore possible that the 

TURBS is involved in both ribosome dissociation/recycling and 40S tethering (58). A 

mechanism for stop–restart similar to that of calciviruses has been proposed for influenza 

B viruses (85). Stop–restart in pneumoviruses, however, appears to occur by a 

mechanism distinct from that of caliciviruses. Present evidence suggests that the 

presence of a large secondary structure in a region upstream of stop and restart codons 

is required for reinitiation of translation in pneumoviruses (60, 91), but the nature of this 

structure and how it works to promote reinitiation remain unknown.  
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The rates of translational reinitiation for downstream ORFs in RNA viruses are mostly 

below 10% relative to upstream ORF translation (63, 92). Accuracy of these results 

depends on the quality of the measuring systems. In the past, monitoring such rates 

have mainly relied on detection of enzymatic activities of different combinations of two 

(upstream and downstream) enzymes including β-galactosidase, chloramphenicol 

acetyltransferase (CAT), and luciferase (60, 63, 93), which have often involved two 

independent, unrelated, and thus less accurate measuring methods (91, 93). More 

recently, researchers have used autoradiography to quantitate translation levels for the 

target ORFs by measuring radioactivity incorporated into the translation products (58, 

61, 62, 92). Discovery of the dual-luciferase system has permitted researchers to detect 

both luciferase activities at the same time in a single sample and have also increased 

accuracy because of high sensitivity of the activity measurements (94-97). These and 

other attributes make the dual-luciferase system nearly ideal for further applications in a 

broad range of fields except for the relatively high cost of reagents. In recent years, 

fluorescent proteins have offered excellent alternatives to luciferases based on their high 

sensitivities and absence of expensive disposable reagents in their assays. Fluorescent 

proteins have gained broad use as a visualization tool for gene expression and gene 

localization in vivo (98-101). In addition, they can be used as quantitative reporters for 

gene expression in that measured fluorescence intensity units can accurately reflect 

fluorophore mRNA and protein levels in vivo (102, 103). Dual-fluorescence reporter 

assay systems have been successfully established in mammalian cell lines (104) as well 

as in yeast (105). The application of dual-fluorescence assays for quantitation in other 

organisms including filamentous fungi has seldom been reported, although reliable 

expression of fluorescent proteins has been reported in many cases, though mostly for 

visualization rather than quantitation (106, 107). 

 

In this Chapter, a dual-fluorescence measurement system was established to analyze 

the translational stop-restart mechanism of HvV190S. The boundaries of the required 

upstream sequence element were defined, and the role of a predicted pseudoknot 

structure within this region was evaluated in detail. Whether host 18S rRNA is involved 

in translational termination–reinitiation in this system was also investigated. Together, 

the new results and conclusions expand the understanding of the mechanism of stop-

restart employed by RNA viruses.  
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4.2 Results 

4.2.1 Expression of reporter genes in the fungus, H. victoriae 

 

To establish a dual-reporter gene system, four reporter genes were tested for expression 

in H. victoriae, host of HvV190S. Namely, these are the genes coding for Renilla 

luciferase (Rluc) and firefly luciferase (Fluc), which are commonly paired in dual-

luciferase assays (94, 95), plus enhanced green fluorescent protein (eGFP) and the 

DsRed variant of red fluorescent protein (RFP) (101). A modified version of the fungal 

transformation/expression vector p190S (108) was used (Fig. 4.1A; also see Methods). 

A 6xHis tag sequence was added to the 3’ end of each reporter gene for the detection of 

its expression using a His-tag specific antiserum. Following transformation of protoplasts 

prepared from a virus-free H. victroriae strain, transfromants with each reporter construct 

were randomly selected and total protein was extracted and subjected to Western blot 

analysis. Surprisingly, the widely used luciferases for studying recording signals in other 

organisms were not expressed in H. victoriae (Fig.4.1B and 4.1C) although successfully 

expressed in E. coli and in vitro translation experiments. On the other hand, the pair of 

fluorescent proteins, eGFP and RFP were expressed at high levels in H. victoriae and 

fluorescence was observed with the naked eye in the medium on which the fungal 

cultures were grown or in total protein extracts (Fig. 4.1D for eGFP transformants, Fig. 

4.1E for RFP transformants). Both green and red fluorescence were strongly detected 

under epifluorescence microscopy and no background signals were detected in non-

transformed cultures. Western blot analysis of randomly selected transformants using a 

His-tag antiserum showed that the different transformants expressed varying levels of 

GFP or RFP (Figs. 4.1D and 4.1E). 

4.2.2 Dual-fluorescence reporter system for quantitation of downstream ORF 

expression 

 

In order to construct a bicistronic vector with two genes coding for fluorescent proteins, I 

tested apriori whether eGFP and RFP can be expressed stably in H. victoriae when 

fused to HvV190S proteins. Two constructs were made with eGFP coding sequence 

fused to the the N-terminus of the CP ORF and with RFP fused to the C terminus of the 
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RdRp ORF, and the resultant constructs were used to transform protoplasts of a virus-

free H. victoriae isolate. Western blot analysis of selected transformants with these two 

constructs suggested that eGFP fusion construct successfully expressed eGFP-CP 

fusion with an expected size of ~114 kDa (see Fig. 4.2B.) whereas RFP fusion construct 

somehow did not express any protein (data not shown). Thus in further attempts to 

construct a fluorescent bicistronic vector, eGFP-CP:RFP-His, eGFP-CP fusion ORF was 

set as the upstream ORF whereas RFP alone was arranged as the downstream ORF. 

Thus, this dual-fluorescence vector possesses the following two main features: 1, It 

contains the full-length sequence of CP ORF from HvV190S genome; 2, The stop codon 

of its upstream ORF overlapping the start codon of the downstream ORF in the 

tetranucleotides AUGA, which mimics the wild type genomic organization of HvV190S 

except that the RdRp ORF was replaced by RFP ORF followed with a 6×His tag 

sequence (Fig.4.2A.).  

 

The construct was then introduced into a virus-free H. victoriae isolate and total protein 

was extracted. Translational products from the upstream and downstream ORFs were 

analyzed using Western blotting with specific antiserums. Results showed a few proteins 

bands from upstream ORF were detected with an antiserum to GFP with the largest 

band sizing ~114 KDa (Fig. 4.2B.). It was reported previously that there are three types 

of related CP proteins expressed from p190S vector (Fig. 3.1B in Chapter 3), with the 

primary translational product p88 is co- or posttranslationally proteolyticly processed into 

two related shorter proteins, p83 and p78. In this study, three major types of proteins 

were similarly detected indicating translational products of the upstream fusion protein 

encountered similar posttranslational processing. When the protein loading amount for 

Western blot analysis of the downstream translational product was increased 10 times 

relative to that used for the detection of the upstream product, a strong band was shown 

with a similar size to the RFP protein (~27 KDa) using a specific antiserum to the 

downstream His-tag sequence. This suggested that translation of RFP was successfully 

reinitiated from the downstream ORF of the recombinant bicistronic vector although it 

contained no RdRp sequence.  

 

To assess the effectiveness of this system as a quantitative tool to identify the changes 

in RdRp reinitiation, random transformants from this construct were selected and 

respective green and red fluorescence was measured. Results showed that red 
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fluorescence displayed a parallel change with the green fluorescence although 

expressed at much lower levels (Fig. 4.2C.). The measured activity of red fluorescence 

was able to scatter at a linearization regression line relative to the measured activity of 

green fluorescence, suggesting that the activity measured for each fluorescent protein 

represented well the concentration of RFP and GFP proteins. Thus, for further study, I 

used this system with GFP as the internal control to quantitate the level of RFP 

expression.        

 

To present evidence that RFP expression is due to reinitiation of translation from this 

dual reporter vector which differs from the original genome of HvV190S, it was therefore 

necessary to verify that RFP expression from this vector indeed results from reinitiation 

of translation following termination of translation of the upstream ORF. To achieve this, a 

construct CP no-stop was made, in which the stop codon (UGA) of the CP ORF was 

mutated to UGG in the AUGA motif (Fig. 4.3A.). It has been shown before that such 

construct will no longer promote downstream RdRp translation as verified by absence of 

RdRp from purified virus-like particles (Fig. 3.3 in Chapter 3), Therefore, it was expected 

that RFP reinitiation would also be abolished from this construct. As expected, anti-His 

tag antiserum did not detect RFP expression from this construct (Fig. 4.3B.). Thus, in 

this dual-fluorescence system, initiation of translation of the downstream ORF depends 

indeed on termination of translation of the upstream ORF same as was previously 

shown for HvV190S genome.  

4.2.3 Reinitiation efficiency is lower than 5%  

 

The efficiency of reinitiation was found to below for a number of viruses employing a 

coupled termination-reinitiation strategy (less than 20%) and some are even lower than 

5%, which was determined by upstream RNA sequence elements. To determine the 

efficiency in this case, a new construct with two reporters was made based on the dual-

fluorescence system. Approximately 900 nucleotides were deleted from the 3’ end of the 

CP ORF to create a truncated fusion GFP-CP ORF (eGFP-CPt), then fused again to the 

RFP ORF (Fig. 4.4A). The construct, designated as eGFP-CPt-RFP, thus was expected 

to express a large single fusion protein with each end of CP protein containing a reporter 

gene. Compared to construct eGFP-CP:RFP, it will permit us to estimate the reinitiation 

efficiency when using GFP as an internal control for normalization of differential 
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expression caused by insertion numbers of vectors integrated into fungal chromosome 

or due to different mycelium amounts used for protein extraction.  

 

The construct was transformed into a virus-free H. victoriae and total protein was 

extracted from different transformants. Western blotting was performed using a GFP, CP 

or RFP-specific antiserum.  Results indicated two small proteins, instead of a large 

fusion protein, were independently detected with GFP or RFP-specific antiserum (Fig. 

4.4B.) while no proteins were detected with the CP- specific antiserum (data not shown). 

Surprisingly, the small proteins detected by GFP or RFP- specific antiserum respectively 

appeared to be the same size as GFP or RFP protein expressed using a monocistronic 

construct (Fig. 4.4B.), which implied these two small proteins might be from the 

proteolytic process of the primary large fusion product. To test this idea, an in vitro 

translation vector was constructed copying exactly the whole sequence from plasmid 

eGFP-CPt-RFP used for the in vivo experiment and was translated in wheat germ 

extracts under the control of a T7 polymerase promoter. In vitro translation experiment 

was also performed for wild type vector eGFP-CP:RFP, serving as a control of 

translational products. Translational products were labeled with 35S-methionine and 

separated by SDS-PAGE on a 10% gel. The autoradiograph showed there were no 

small proteins expressed with a size similar to GFP or RFP for eGFP-CPt-RFP, instead, 

two large proteins were expressed with the larger protein close to ~77 KDa as expected 

from the large fusion frame (Fig.4.4D). Although there was a slightly smaller protein also 

expressed from this construct, it was probably translated from the next initiation AUG in 

the GFP ORF, which is 78 codons downstream. For wild type construct T7- eGFP-

CP:RFP, there were also several large proteins with expected sizes expressed from the 

first or next initiation codons of the upstream fused frame. In this construct, RFP was 

successfully expressed from the downstream ORF via reinitiation translation in vitro. 

That the small proteins were generated via limited proteolysis rather than sequence 

errors or other translation mechanism was further supported by measuring the 

fluorescence. Both green and red fluorescence were measured using the same droplets 

of total protein extracts. Red fluorescence gave a much higher readouts relative to the 

green one (Fig. 4.4C.) compared to those from vector eGFP-CP:RFP that showed a 

much smaller relative value (Fig. 4.2C.), which suggested both GFP and RFP were 

expressed at a high efficiency in vector eGFP-CPt-RFP, probably from the same ORF. 
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The linearization regression test confirmed the postulate since RFP showed an 

obviously perfect linearization correlation to GFP (Fig. 4.4C right panel).  

Six transformants each from the constructs, eGFP-CP:RFP and eGFP-CPt-RFP were 

used to extract total protein and each experiment was repeated three times for 

fluorescence measurement. The mean ratio of the RFP to GFP from four extractions of 

six transformants of eGFP-CP:RFP was divided by the mean ratio of the RFP to GFP 

from four extractions of six transformants of eGFP-CPt-RFP. And the value was 3.9% 

(Fig. 4.5), suggesting only 3.9% of RFP was reinitiated from downstream ORF. 

4.2.4 Deletion from 5’ end of CP ORF showed that only a 38-nucleotide stretch is 

required for RFP reinitiation 

 

Based on the dual-fluorescence system, it was able to define the required RNA 

sequence in the upstream ORF for reinitiation of RFP translation. By generating a series 

of nucleotide deletions from the 5’ of CP ORF, 1002, 2001, 2196, 2247, 2277 and 2313 

nts out of the total 2315 nucleotides upstream of the AUGA motif were removed, 

resulting 1313bp, 314bp, 68bp, 38bp and 2bp remaining in the upstream CP ORF for 

constructs d1, d2, d3, d4, d5 and dall, respectively (Fig. 4.6A.). All constructs were 

introduced into virus-free protoplasts of H. victoriae. Transformants from each construct 

were analyzed with Western blotting (Fig. 4.6B.). Different levels of RFP expression 

were detected for constructs CP5’_d1 to CP5’_d5, at either high or low levels. Only 

construct CP5’_dall totally abolished the RFP expression. By comparing the sequences 

deleted, results suggested that the remainder 38 nucleotides in CP5’_d5 were important 

for RFP reinitiation, these were removed in CP5’_dall to abolish RFP expression. That 

was supported by fluorescence results. Five or six transformants from each construct 

were used to measure their GFP or RFP fluorescence and the mean ratio of RFP to 

GFP for each construct was compared to the one from construct eGFP-CP:RFP 

containing full-length of CP ORF. When converted to percentage, the CP5’_d2 to 

CP5’_d5 gave comparable values that were not significantly different from the full-length 

construct (Fig. 4.6C.). CP5’_d1 gave a significantly higher expression of RFP. However, 

CP5’_dall showed an extremely low rate (<5%) resembling the value from CP no-stop in 

which RFP reinitiation was abolished when the stop codon of the upstream ORF was 

removed. All the results in this study suggest that the terminal 38 nucleotides upstream 

of the AUGA motif were essential and sufficient for reinitiation of translation from the 
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downstream RFP ORF. Reinitation of RFP was totally abolished by deleting these 38 

nucleotides. 

 

Initially it was expected to detect a varying size of proteins will be expressed from the 

upstream GFP- truncated CP ORF for deletion constructs respectively at 75KDa, 

36KDa, 30KDa, 28KDa, 27KDa, 26KDa. However, GFP-specific antiserum did not detect 

varying sizes of upstream products. Instead, it detected the same size protein expressed 

from upstream for all constructs except the one with full-length CP inserted, in which 

expected fusion proteins were showing on the desired upper position except the similar 

small protein at lower position. The size of this small protein again was similar to GFP 

protein as the previous construct eGFP-CPt-RFP in Fig. 4.4B, suggesting the fused 

translational products from the upstream ORF may undergo the same proteolytic 

process when translated in vivo. The postulate was confirmed by in vitro transcription 

and translation experiments (Fig. 4.6D) in the same way as in Fig. 4.4D. The whole 

construct sequences starting from the first AUG of GFP-CP ORF to the stop codon of 

RFP ORF, for all mutant constructs were copied by high-fidelity polymerase PCR 

amplification and cloned into a T7 in vitro expression vector and translated in wheat 

germ extracts supplied with [35S]-methionine. The wild type vector eGFP-CP:RFP and 

CP no-stop were made here as controls for translation from both upstream and 

downstream. The expected size for the upstream products for these two constructs are 

114 KDa and 116 KDa respectively. The downstream RFP ORF is expected to be 

translated for eGFP-CP:RFP but not for CP no-stop.  Autoradiography of the 

radiolabeled translational products showed that predicted differently sized upstream 

proteins were translated successfully together with a consistent RFP protein from 

downstream ORF except constructs T7-CP5’_d5 and T7-CP5’_dall. In T7-CP5’_d5 and 

T7-CP5’_dall, there were only one band detected although it was expected two separate 

bands. Since GFP was fused with a highly truncated CP ORF for these two constructs, 

one with 39 nucleotides and one with just one nucleotide left resulting in 1 kDa 

differential at the molecular weight for translated proteins, the fused upstream products 

were hardly separated in repeated experiments on 10% polyacrylamide gel. 
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4.2.5 Results of deletions from the 3’ end of CP ORF are consistent with those 

from deletions from the 5’ end 

 

Following the experiment in Fig. 4.6, it was of interest to test in detail the effect of 

deletions within the 3’ terminal 38-nucleotides on RFP reinitiation (Fig. 4.7A.). Constructs 

CP3’_d1 to CP3’_d3, involves sets of successive 12 nt-deletions within the target 38-

nucleotides. It also included three more constructs that included deletions upstream the 

38-nt region, extending the sequences tested from -2 to -170 nt upstream of the AUGA 

motif. Subsequent to transforming fungal protoplasts with the above described 

constructs, five or six transformants were selected for further analysis by Western 

blotting and fluorescence measurement. The first three constructs containing successive 

deletions from nucleotide -2 to -38 abolished RFP reinitiation, whereas the last three 

deletion constructs showed efficient RFP expression when compared to the wild type 

construct (Fig. 4.7B.). These results were confirmed by fluorescence measurement. 

Compared to the wild type construct, constructs CP3’_d1 to CP3’_d3 showed 

significantly much lower of RFP expression while CP3’_d4 to CP3’_ d6 showed 

comparable expression levels (Fig. 4.7C.). Once again, this suggests that the terminal 

38 nucleotides of CP ORF are crucial for downstream reinitiation. 

4.2.6 Swapping the pseudoknot of HvV190S with those predicted for HvV190S-

like victoriviruses showed reinitiation from the downstream ORF of 

HvV190S was quite tolerant to various pseudoknots  

 

In previous work, it predicted an H-type pseudoknot structure closely preceding the 

stop/restart AUGA motif in HvV190S in Fig. 3.5 in Chapter 3 (108). In this pseudoknot, 

nucleotides in a hairpin loop form base pairs with nucleotides in a single-stranded region 

downstream the hairpin to form a second stem adjacent to the hairpin stem. This 

secondary structure seems to occur among other 11 members in the same genus of 

Victorivirus as HvV190S (8). And the member of victoriviruses is still growing based on 

this predicted secondary structure such as recently discovered RnVV1 from pathogenic 

fungus Rosellinia necatrix (83). All predicted pseudoknots resemble in their short stems 

and the limited distance between pseudoknots and stop/restart sites, which suggest a 

similar role on translation of downstream genes and thus a similar reinitiation 

mechanism for downstream translation.   



 

62 
 

Pseudoknot in HvV190S is located within the terminal 38 nucleotides identified as crucial 

sequence elements for RFP translation, from -10 nt to -32 nt (Fig. 4.8A). To test if it is 

the pseudoknot structure, in another words, the stem-loops, plays a role on RFP 

reinitiation other than its primary sequences, it was swapped with those predicted for 

different members in the genus of Victorivirus since different pseudoknots involve 

different primary sequences. Six pseudoknots were selected based on different features 

in stop-restart sites and they were from BfTV1, GaRV-L1, SsRV1, MoV1, TcV1 and 

CeRV1 (Fig. 4.8B). Among them, BfTV1 and GaRV-L1 were mostly similar to HvV190S, 

possessing the tetranucleotides AUGA, whereas the others were different, SsRV1 and 

CeRV1 possessed start codon coming before stop codon, and the left two MoV1 and 

TcV1 on the contrary. The replaced region includes the whole sequences spanning from 

each pseudoknot to each stop/restart site. Replaced pseudoknots were successfully re-

predicted for all viruses with program Hpknotter after introduced into HvV190S. The 

reinitiation efficiency for various pseudoknots was achieved with fluorescence assay, in 

which it suggested that pseudoknots from BfTV1 and CeRV1 gave even higher level of 

RFP expression than HvV190S pseudoknot whereas other three from GaRV-L1, MoV1 

and TcV1 gave a lower level (almost 50%). Although the reinitiation of RFP translation is 

quite tolerated to various pseudoknots, SsRV1 (11%) somehow failed to translate RFP 

efficiently (Fig. 4.8C).   

 

In Fig.3.7 of chapter 3, SsRV2 was also classified into the genus of victorivirus based on 

the prediction of secondary structure, which was a long stem-loop structure, but formed 

at the similar position as a pseudoknot. So it was of interest to test if the long stem-loop 

may function similar to the pseudoknot in reinitiation of translation. A fragment containing 

SsRV2 long stem-loop primary sequence was inserted in frame into plasmid p190S at 

similar position to HvV190S pseudoknot (Fig. 4.9 top panel).  After analyzing VLPs from 

transformants containing this swapped structure, Western blotting showed that the long 

stem-loop structure did not launch reintiation of RdRp translation (Fig. 4.9 bottom right) 

although it was still formed in HvV190S after swapping (Fig. 4.9 bottom left). 

4.2.7 Confirmation of the role of pseudoknot structure on reinitiation of 

translation using two strategies  

 

Although the sequence boundary was defined to be the upstream ORF 3’ terminal 38 
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nucleotides that were predicted to include a similar secondary structure among 

victoriviruses, it might also involve other structures. To test if it is indeed the predicted 

pseudoknot structure in HvV190S that plays a critical role in RdRp reinitiation, two sets 

of experiments were carried out to test additional structural features, one set of 

experiments involved purified VLPs and the other was based on the fluorescence assay. 

Construction of all vectors used for purification of VLPs was based on previous vector 

p190S. Mutation was made at one strand of one stem at a time and also restored the 

structure by mutating two strands at another time. Constructs PK1 and PK2 involved 

mutating each strand of stem 1, and PK4 and PK5 involved mutating each strand of 

stem 2, thus the nts in stem 1 and stem 2 were unpaired in theses constructs (Fig. 4.10A 

top.). Stems in PK3 and PK6 were base-paired again by mutating both strands of each 

stem. The mutations were made to be complementary to the original sequences. All 

constructs were introduced into virus-free H. victoriae and transformants were subjected 

to VLP purification and Western blot analysis, as performed in Chapter 3. CP or RdRp-

specific antisera were used for detection of the upstream and downstream translation 

products. It was expected that PK1, PK2, PK4 and PK5 do not express RdRp whereas 

PK3 and PK6 do if the pseudoknot structure is actually necessary for RdRp reinitiation. 

Results showed that only PK2 and PK3 gave an efficient expression of RdRp whereas 

others (PK1, PK4, PK5, PK6) expressed little or no RdRp, which contradicted 

expectation at first glance (Fig. 4.10A, bottom panel).  

 

To determine whether pseudoknot structures in mutant constructs were actually 

disrupted or restored as expected, Hpknotter was employed to re-predict secondary 

structure. No pseudoknot structures were predicted for PK1, PK5 and PK6. On the 

contrary, a pseudoknot structure was predicted for construct PK2-4. Compared to results 

of Western blot analysis, only PK4 showed inconsistency between pseudoknot 

prediction and Western blot analysis. Compared to wild type pseudoknot in HvV190S, 

reformed pseudoknot predicted for PK2 and PK4 showed different nt composition for 

stem 1 (PK2) or stem 2 (PK4). To test whether a predicted alternative pseudoknot was 

indeed formed with construct PK2, a single nucleotide mutation was introduced into the 

second strand of the alternative stem 1 (U in GUG changed into A), thus disrupting base 

pairing in stem 1. Results of Western blot analysis using construct PK2-1 once again 

were consistent with structure prediction since no RdRp expression was detected using 

an RdRp specific antibody (Fig. 4.10B).   
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To reproduce the correlation between structure prediction and detected RdRp, 

translation subsequent to nucleotide mutation and also to justify the accuracy of the 

method employed for analyzing the RdRp expression from purified VLPs, a different set 

of mutations were made to both stem 1 and stem 2 in the same way but performed in the 

dual-fluorescence system. Mutations were made as shown in Fig. 4.10C and results for 

each construct from prediction are listed in the right column. Mutations in PK7-PK9 were 

related to stem 1 whereas PK10-PK12 on stem 2. PK7, PK8, PK10 and PK11 were 

mutated in one strand of each stem whereas PK9 and PK12 involved re-pairing the two 

strands of each stem. Results from fluorescence measurement suggested that PK9 and 

PK12 expressed RFP as efficiently as the wild type construct. PK 7-8 and PK 10-11 with 

a much higher MFE than wild type for formation of a pseudoknot structure did not 

express RFP efficiently. 

4.2.8 Role of pseudoknot loops and flanking regions in RFP expression 

 

In Fig. 4.6 and Fig. 4.7, the terminal thirty-eight nucleotides containing a predicted 

pseudoknot structure were determined to be crucial for RFP expression from the 

bicistronic genome. In Fig. 4.10, the detailed mutations introduced into stems of the 

pseudoknot suggested the determinant role of the predicted pseudoknot on RFP 

reinitiation. As I mentioned earlier the formation of pseudoknot comprises two stems, 

stem 1 and stem 2, and also two loops, loop 1 and loop 2. To investigate whether RNA 

sequences in both loops and sequences flanking both stem-loops play any role in RFP 

expression, four constructs were made to address this question. In construct PK_Loop1 

and PK_Loop2, nucleotides were made complementary to the original nucleotides in 

loop 1 and loop 2 respectively. In PK_Flank1, six Cs flanking stem 1 were mutated to 

complementary Gs whereas nine nucleotides flanking stem 2 were mutated to their 

complementary ones. After mutations introduced into related sequences, pseudoknot 

was predicted and prediction results were listed on the right column with corresponding 

programs (Fig. 4.11 top panel). All constructs were introduced into dual-fluorescence 

system. Result showed that mutations made to sequences in loop 2, flanking sequence 

1 and flanking sequence 2 did not affect the downstream RFP expression whereas 

mutation in loop 1 did (Fig. 4.11 bottom panel). Structure prediction suggest that when 

mutations were introduced into loop 1 sequence, they altered the formation of 

pseudoknot structure and thus abolished reinitiation of RFP translation.  
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4.2.9 Binding of viral sequences to complementary sequences in 18S rRNA  

 

The binding between viral sequence and 18S rRNA sequence was tested and confirmed 

to play a role for downstream reinitiation in a few examples, including caliciviruses and 

influenza B virus (88, 92). The binding was found to occur within 80 nucleotides 

preceding the downstream ORF of those viruses.  Although it was already identified that 

a pseudoknot play a definitive positive role in RFP reinitiation instead of binding to 18S 

rRNA, the possibility that the latter might also be involved in the reinitiation was not 

excluded (108). Approximately 100 nucleotides upstream of the AUGA motif of HvV190S 

were examined for potential base pairing with 18S rRNA from the fungus C. 

heterostrophus (Fig. 4.12A top panel). Since the sequence of the host fungus, H. 

victoriae is unavailable; the closely related C. heterostrophus was selected for the test. 

The 18S rRNA from C. heterostrophus was found to base pair with HvV190S sequences 

at four sites, binding to sequences around -20 nt, -40 nt, -65 nt and -90 nt upstream of 

the stop/restart site. Constructs were generated with mutations introduced that are 

complementary to original viral sequences at the corresponding sites and were 

transformed into fungal protoplasts for purification of VLPs. Western blot analysis of viral 

proteins from VLPs with antisera specific to CP and RdRp showed that only p18S-40M 

construct  failed to express RdRp (Fig. 4.12A bottom panel). The expression of this 

construct was repeated using the dual-fluorescence system, again the 18S_40M gave a 

much lower RFP expression from the downstream ORF (Fig. 4.12B). Results from 

deletion experiments related to the 5’ and 3’ ends of CP sequence in Figs. 4 and 5 

already showed that upstream sequences beyond -38 nucleotides did not alter 

reinitiation of translation of the downstream gene, ruling out that binding may occur close 

to -40 nt, -65 nt and -90 nt. Therefore, the result obtained with the 18S_40M following 

nucleotide mutations suggest that the unsuccessful expression of RdRp was due to the 

change in pseudoknot structure rather than any other possibility.   
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Figure 4.1 Expression of reporter genes in H. victoriae.  

(A) Schematic representation of monocistronic reporter constructs to express two 

luciferase genes and two fluorescent protein genes in fungus H. victoriae. Fluc, Firefly 

luciferase; Rluc, Renilla luciferase; eGFP, enhanced green fluorescence gene; RFP: 

DsRed fluorescence gene. Reporter genes were inserted separately between fungal 

promoter and fungal terminator sequences, and a 6x His-tag sequence was fused to the 

3’-terminus of each gene. Pgpd1’, gpd1 promoter (nt 1-nt 707) from Cochliobolus 

heterostrophus (Acc.No. X63516); TtrpC, His and hyg was similarly represented as in 

Fig. 3.1A. (B) and (C) Western blot analysis of total protein extracts from random-

selected transformants (T1-T7) containing Fluc-His construct (B) and Rluc-His construct 

(C). Specific His-tag antiserum was used for detecting translational products. Controls 

for in vivo Fluc and Rluc expression are from bacterially expressed proteins in E. coli 

BL21 DE3 cells using plasmid pET-21a-Fluc and pET-21a-Rluc. Fluc was expressed 

from bacterial cells with an expected size of ~66 kDa whereas Rluc with an expected 

size of ~36 kDa. (D) Top, epifluorescence images of green fluorescence from the 

hyphae of transformants obtained from the transformation of fungal protoplasts with the 

eGFP construct. Virus-free H. victoriae isolate B-2 was used for preparing protoplasts for 

all transformation experiments. Empty vector transformants serve as negative controls 
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(Control). Bottom, Western blot analysis of total protein extracts from randomly-selected 

eGFP transformants (T1-T6). The eGFP protein was detected with a His-tag specific 

antiserum. The positions of protein size marker bands are indicated on the left. 

Photographs of protein extracts from different transformants were taken under laboratory 

light conditions and listed below. Western blot analysis was carried out by SDS-PAGE 

on 10% polyacrylamide gels. (E) Similar experiments were carried out as in (B), but with 

the RFP construct. Red fluorescence and RFP protein from randomly selected 

transformants, T1-T5, were examined.   
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Figure 4.2 Establishment of a dual-fluorescence system and expression of 

reporter genes from the dual-reporter construct. 

(A) Schematic representation of the dual-reporter construct eGFP-CP:RFP. This 

bicistronic plasmid contains two ORFs, with the 5’-proximal ORF encoding eGFP fused 

to full-length CP ORF of HvV190S (eGFP-CP) and the 3’-proximal ORF encoding RFP 

ORF with a His-tag sequence fused to its 3’ end (RFP-His). The start codon of RFP-His 

ORF overlaps the stop codon of eGFP-CP ORF in the stop/restart site AUGA, indicated 

in boldface and underlined. In RFP ORF, the first two codons AUGAGU are derived from 

RdRp ORF followed by the unique ClaI restriction site sequence and complete RFP 

ORF. (B) Western blot analysis of transformants obtained from fungal transformation 

with plasmid eGFP-CP:RFP. Antiserum to eGFP and to His-tag were used to detect the 

upstream eGFP-CP fusion protein and the downstream RFP protein. The positions of 

eGFP and RFP proteins are indicated on the right, and those of the protein size markers 

on the left. Ten times more sample was loaded into SDS-PAGE gel for detecting RFP 

than eGFP-CP, and this is applicable to all Western blot analysis pertinent to bicistronic 

constructs. (C) Fluorescence characterization of eGFP and RFP expressed from the 

bicistronic plasmid eGFP-CP:RFP. Total protein extracts from five transformants (T1-T5) 

were subjected to fluorescence measurement in a microplate reader. Green fluorophore 

readouts (Left, upper panel) and red fluorophore readouts (right, upper panel) from each 

individual transfromants were given as relative fluorescence units (RFU). Error bars 

indicate standard error. The linearization relationship of each RFP readout to the 

corresponding GFP readout from five transfromants was analyzed using the scatter plot 

(Bottom).   
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Figure 4.3 Effect of mutating CP stop codon in AUGA motif on expression of the 

downstream gene. 

(A) Schematic representation of the plasmid “CP no-stop” in which the stop codon of 

fused eGFP-CP ORF was mutated from UGA to UGG (mutated nucleotide in green). In 

this construct, the stop/restart signal was uncoupled. After transformed into H. victoriae, 

the translational product from the downstream ORF was analyzed using Western blotting 

and a His-tag specific antiserum (B).     
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Figure 4.4 Construction of a monocistronic plasmid containing two reporter genes 

and its expression in H. victoriae. 

(A) Schematic diagram representing the structure of eGFP-CPt-RFP plasmid, in which 

both eGFP and RFP reporters were fused to the CP ORF at its 5’- or 3’- termini, 

respectively, thus generating a monocistronic vector of fused three genes (fused 3-gene 

construct). The C-terminal region (~ 900 nt) of CP ORF was truncated to remove its 

putative proteolytic sites and designated as CPt. (B) Western blot analysis of 

transformants with the monocistronic plasmid shown in A. Specific antisera to GFP and 

RFP were used to detect the translational products. Transformants from the 

monocistronic constructs of a single reporter genes, as shown in Fig. 4.1, served as 

positive controls for eGFP and RFP, respectively. (C) Fluorescence measurement of 

eGFP and RFP expressed from the fused 3-gene plasmid. Experiments were carried out 
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similarly to that in Fig. 4.2C. Six transformants (T1-T6) obtained were used to measure 

their green and red fluorescence and to plot the linear regression graph. Error bars 

indicate standard error. (D) In vitro translation of reporter genes from bi- and mono- 

cistronic recombinant plasmids. Top, Schematic representation of the basic structures of 

two plasmids for in vitro translation, T7-eGFP-CP:RFP and T7-eGFP-CPt-RFP. The 

construction of the two plasmids is based on pGEM-T easy vector from Invitrogen. Their 

genomic organizations are same as those in Fig.4.2A and Fig. 4.4A except that different 

promoters and backbone vectors were used. T7, T7 polymerase promoter sequence. 

Bottom, The autoradiograph of in vitro translational products labeled with 35S-methionine 

and fractionated on 10% polyacrylamide gel using SDS-PAGE. Luc gene (luciferase, 66 

kDa) supplied with the kit serves as a control for translational product. The positions of 

different proteins expressed from in vitro translation for each construct were indicated 

with arrows. The positions of protein size marker bands are indicated on the left.  
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Figure 4.5 Determination of reinitiation efficiency of the downstream ORF in 

HvV190S. 

Determination of reinitiation efficiency of RFP translation by comparing the 

monocistronic plasmid, eGFP-CPt-RFP (without stop/restart motif) and the bicistronic 

plasmid, eGFP-CP:RFP (with stop/restart signal). The analysis was based on the 

fluorescence readouts from five transformants used in Fig. 4.2C and six transformants 

used in Fig. 4.4C. The mean ratio of RFP to GFP from eGFP-CP:RFP was calculated 

and compared to the mean ratio of RFP to GFP of eGFP-CPt-RFP. Results show the 

mean and standard deviations for four replicates of independent protein extracts for 

each transformant.  
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Figure 4.6 Definition of the upstream sequence boundary for RFP reinitiation by 

introducing a series of truncation into to the 5’ end of the CP ORF.  

(A) Schematic diagram representing the different truncations introduced into the 

upstream CP ORF to generate six constructs based on the dual-reporter plasmid eGFP-

CP:RFP. The truncated region was indicated by a dashed line for each construct and the 

remainder CP ORF was indicated with numbers at ends relative to the first A in the 

stop/restart site, AUGA. The full-length CP ORF is drawn at top of mutant diagrams and 

its start codon is located at -2315 upstream of the start/stop site. (B) Western blot 

analysis to demonstrate the influence of truncations introduced into the 5’ end of CP 

ORF on RFP expression. The positions of different products detected with antisera to 

GFP or His-tag are indicated on the left. CP no-stop construct was included as a 

negative control for RFP expression. (C) At least five transformants from each construct 

were measured for green and red fluorescence. The mean ratio of RFP to GFP from 

different transformants for each construct was divided by that from the full-length 

construct. The rate was converted into percentage for this experiment. Asterisks indicate 

a statistically significant difference between the input two constructs (original construct 

and truncated construct) based on t-test (P < 0.01).  (D) In vitro translation of mutant 

bicistronic plasmids with introduced truncation to the 5’ of the CP ORF. The organization 

of mutant constructs for in vitro translation were the same as in Fig. 4.6A. The different 

constructs made and analysis of their translational products were similar to those in Fig. 

4.4D. Luc gene (luciferase, 66 kDa) was supplied with the kit and served as a control for 

translational product. The positions of different proteins from in vitro translation are 

shown with arrows. The positions of protein size marker bands are indicated on the left. 
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Figure 4.7 Further confirmation of upstream sequence boundary for RFP 

reinitiation by introducing nucleotide deletions to the 3’ end of CP ORF.  

(A) Schematic diagram represents 12 nt-deletions (except CP3’_d6 with a larger 

deletion) were introduced into the 3’ end of CP ORF at different positions relative to the 

stop/restart site based on the dual-reporter vector eGFP-CP:RFP. The deleted parts for 

each construct were indicated with dashed lines with both ends indicated with numbers 

relative to the first A in stop/restart site AUGA. The full-length CP ORF is shown at the 

top of the representation of mutant constructs similar to Fig. 4.6A. (B) Western blot 

analysis was performed similarly to Fig. 4.6B. (C) Fluorescence analysis was done in the 

same manner as in Fig. 4.6C.   
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Figure 4.8 Effect of swapping HvV190S pseudoknot with that from other 

victoriviruses on RFP expression from the downstream ORF. 

(A) Diagram representing a predicted H-type RNA pseudoknot structure within the 

terminal 38 nucleotides of CP ORF. This pseudoknot structure consists of stem 1 (cyan) 

and stem 2 (orange) (indicated with dashes lines) and two resultant loops (loop 1 and 

loop 2). The nucleotide positions relative to stop/restart sites are indicated. (B) List of 

victoriviruses selected for the pseudoknot swapping with that predicted in HvV190S. 

Pseudoknot swapping was based on the dual-fluorescence plasmid eGFP-CP:RFP. The 

swapped part includes the whole sequence spanning each pseudoknot to the 

stop/restart site (the entire sequences listed here for each virus). The second codon 

AGU from RdRp ORF (in green) was added downstream the stop/restart sites if it is 

lacking in the sequence of viruses followed by the ClaI restriction site sequence and 

RFP ORF. Nucleotides involved in each stem of the pseudoknots are indicated in the 

same way as for HvV190S for the color-coded stem 1 and stem 2. Stop/restart site for 

each is in boldface and underlined. Abbreviations of virus names are listed in Fig. 3.7 of 

Chapter 3. Pseudoknot swapped into HvV190S was predicted with HPknotter and 

results were shown in the right column together with corresponding MFE. (C) Five 
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transformants from each construct were selected to measure the green and red 

fluorescence. The mean ratio of RFP to GFP from different transformants for each 

construct was compared to that from wild type pseudoknot-containing construct.   
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Figure 4.9 Effect of replacing the predicted pseudoknot in HvV190S with the long 

stem-loop predicted in SsRV2 on RdRp reinitiation. 

Long stem-loop in SsRV2 alone (in bracket) was inserted into the similar position for 

HvV190S pseudoknot. This long stem-loop was also indicated with color for its 

nucleotides similarly as HvV190S pseudoknot as in Fig. 4.8A, in which nucleotides in 

cyan represent the lower part of the long stem-loop whereas those in orange represent 

the upper part. The re-predicted stem-loop after swapped into HvV190S was indicated 

on the bottom. (B) Western blot analysis of VLPs containing construct with swapped 

stem-loop structure in HvV190S with CP- and RdRp- antiserum. 
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Figure 4.10 Influence of nucleotide mutations in stem 1 and stem 2 of predicted 

pseudoknot on RFP expression.  

(A) Top panel, List of mutagenizing constructs containing nucleotide mutations 

complementary to the original sequences of both stems. Mutations (in green colored) 

were introduced to one strand (for PK1, PK2, PK4 and PK5) or to both strands (for PK3 

and PK6). Wild type pseudoknot in HvV190S is listed at the top of mutant constructs and 

colored similarly as previously described. Sequences were predicted for pseudoknot 

formation subsequent to mutation using HPknotter and the results are listed in the right 

column together with corresponding MFE. The reformed pseudoknot in mutant 

constructs were underlined. The construction of all mutant plasmids was based on 

plasmid p190S in Chapter 3. Bottom panel, Western blot analysis of viral proteins 

expressed from different constructs with CP- or RdRp-specific antisera. Virus-like 

particles (VLPs) were purified from transformants with the original plasmid p190S and 

p190S-derived mutant constructs. The positions of different proteins from VLPs are 

shown on the left. (B) Top panel, Sequence of a construct with a nt mutation (in 

underlined green) introduced into the alternative stem1 formed in PK2 in (A). Bottom 

panel, Western blot analysis of transformants containing PK2-1 construct. (C) Top panel, 

similar to (A), different combination of mutations were introduced into two stems of 

predicted pseudoknot structure, but construction of all mutant plasmids was based on 
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the dual-reporter plasmid eGFP-CP:RFP. Bottom panel, fluorescence intensity 

measurement with transformants containing constructs shown at the top. (D) Amino acid 

analysis in CP reading frame for sequences immediately upstream of stop/restart sites 

for all constructs in (A), (B) and (C). “*” represented stop codon signal for translation of 

CP ORF. Amino acids were colored similarly to the primary sequences for stem1 (cyan) 

and stem2 (orange) of the wild type.  Mutated amino acids encoded by mutant 

constructs were indicated in green.  
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Figure 4.11 Role of pseudoknot loops and flanking region sequences on RFP 

expression. 

Top, Sequences of a series of mutagenizing constructs that introduce mutations into 

sequences in predicted loops and flanking regions relevant to pseudoknot structure in 

HvV190S are listed. Original sequence of construct eGFP-CP:RFP is listed at top. 

Mutations were introduced separately to all nucleotides in loops1 and 2 and also those 

comprising two regions bordering the predicted pseudoknot shown in Fig.4.8A. Mutated 

nucleotides are complementary to the original ones and are printed in green. 

Pseudoknots were predicted for mutant constructs and the results are shown in the right 

column with corresponding MFE. Bottom, fluorescence intensity measurement with 

transformants containing constructs shown at the top of the figure.   
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Figure 4.12 Potential binding of HvV190S sequences to complementary sequences 

in 18S rRNA. 

(A) Top, List of possible binding sites found between 18S rRNA of C. heterostrophus  

And ~100 nucleotides stretch upstream of stop/restart site of HvV190S. The 18S rRNA 

relevant nucleotides involved in putative binding to HvV190s sequence and their 

positions in 18S rRNA are listed. The corresponding viral sequences for binding and 

their positions are also indicated, which is relative to the stop/restart site with a “-”sign 

indicating positions upstream of this signal site. Predicted viral sequences are 

completely or partially mutated to their complementary sequences. Results from 

pseudoknot prediction for each mutant construct was shown at right with corresponding 

MFE. GenBank accession number for 18S rRNA is AY544727.1. Bottom, Western blot 

analysis of translational products for each construct with antisera specific for CP and 

RdRp. (B) Confirmation of low expression level of the downstream RFP ORF from 

plasmid p18S_40M using the dual-fluorescence assay. Same mutations as introduced in 

the upstream viral sequence in p18S_40M were introduced into eGFP-CP:RFP to 

generate plasmid Fluo_18S_40M. Five Fluo_18S_40M transformants were selected at 

random to measure green and red fluorescence. The mean ratio of RFP to GFP from 

different transformants was compared to that from the original construct.   
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5  CHAPTER FIVE: Discussion 

 

Several lines of evidence have previously been presented in support of the conclusion 

that HvV190S expresses its RdRp from the downstream ORF (ORF2) of its genome-

length, bicistronic mRNA via an internal-initiation mechanism, proposed to be coupled 

termination–reinitiation (14, 15, 25). Moreover, as inferred from shared AUGA or similar 

such sequence motifs involving ORF1 (CP) stop codon and ORF2 start codon, RdRp 

expression strategy is thought to be a distinguishing characteristic of at least 14 other 

viruses closely related to HvV190S, which constitute the genus Victorivirus in family 

Totiviridae (8, 19). Despite the previous evidence, the occurrence of translational coupling 

in these viruses has not been widely appreciated. 

 

In this dissertation, two RNA sequence determinants were identified for coupled 

translation of RdRp from the downstream ORF of HvV190S: 1, Translation coupling 

requires that the CP stop and RdRp start codons remain relatively closely spaced (Fig. 

3.3); 2, A predicted pseudoknot structure is present within close proximity upstream of the 

CP stop codon (Fig. 3.5 and Fig. 3.6). Translation of the upstream (CP) ORF and 

termination at its stop codon are absolute requirements for reinitiation at the RdRp start 

codon, distinguishing this process from IRES-mediated initiation (37), as well as from 

leaky scanning (38) and ribosomal shunting (39, 109). Leaky scanning can be further ruled 

out since there are >20 AUG codons in reasonably favorable context upstream of the 

RdRp start codon. The fact that RdRp is expressed from its downstream start codon as a 

separate, nonfused protein also distinguishes this process from ribosomal frameshifting 

(40) and in-frame read-through of termination codons (28), which generate fusion proteins.  

 

The identification of a predicted RNA structure element (pseudoknot) as a key determinant 

of the stop–restart mechanism in HvV190S and other victoriviruses is an exciting aspect 

of this study. Results indicate that the predicted structure element must be located closely 

upstream of the CP stop codon, presumably so that it can tether the terminating ribosome 

or components thereof, which can then reinitiate with finite efficiency at the next 

downstream start codon (58). Even though the restart codon is very close to the predicted 

structure element (only 6–13 nt downstream) and CP stop codon (within 2 nt) in all of wild-

type victoriviruses, the fact that HvV190S RdRp can initiate at the AUG2 position, which 

is 90 nt downstream of the predicted pseudoknot (80 nt downstream the CP stop codon) 
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when the AUG1 codon is mutated to GUG, suggests that the very close juxtaposition seen 

in the wild-type viruses is not strictly required, though it may be favored for other reasons 

that have yet to identified. There does appear to be a limit to how far downstream the 

restart codon can be located, however, in that reinitiation does not occur effectively at the 

AUG3 position, which is 207 nt downstream of the putative pseudoknot in HvV190S, when 

both AUG1 and AUG2 are mutated to GUG. 

 

In this study, a dual fluorescence assay was developed in H. victoriae that can be 

adapted for studies on low frequency events in fungi. This is the first report for using 

such dual fluorescence assay in a filamentous fungus. The use of fluorescent reporters 

not only circumvents the extra steps needed for an enzyme assay or expensive 

substrates for luciferase reporters or unavoidable exposure to isotopes, but also 

circumvents the need for considering gene insertion copy number and requiring equal 

amount of material used each time whenever they are subjected for quantitative 

analysis. This method also provides an effective alternative to dual luciferase assays for 

research on recording events in those fungi in which luciferases are not expressed well.  

 

The dual-fluorescence vector, eGFP-CP:RFP, which was developed for this study, 

maintains the wild-type organization of the HvV190S genome including the AUGA motif 

and the regulatory sequences within the CP ORF. Translation of the RFP-His coding 

sequence, which replaced the RdRp ORF in the HvV190S genome, is effectively 

initiated from the downstream ORF of this construct. The findings that parallel changes 

in red and green fluorescence were manifest in the different eGFP-CP:RFP 

transformants suggested that fluorescence intensities correspond well with the 

expression levels of the two fluorescent proteins. The high consistency of this system, 

which was substantiated by strong correlation (R2 = 0.910) in linear-regression analysis, 

allowed us to use it as a sensitive and reliable quantitative tool for measuring the rate of 

re-initiation from the downstream ORF of a bicistronic construct. For determining the 

efficiency of reinitiation in the dual-fluorescence system, this construct, eGFP-CPt-RFP, 

was established to express a single protein with each end of truncated CP fused to a 

reporter. The importance of this construct is that it allows us to quantitate the relative 

fluorescence intensities of eGFP and RFP when translated from the same ORF, and 

thus in approximately equal amounts, in H. victoriae, thereby providing a means for 

normalizing relative levels of eGFP and RFP translation when using instead the eGFP-
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CP:RFP construct. The extremely high correlation value (R2 = 0.998) for RFP to GFP in 

vector eGFP-CPt-RFP suggested both RFP and GFP are translated from the same 

monocistronic ORF. By comparing the bicistronic vector and the monocistronic vector 

with GFP as a control for two vectors, RdRp reinitiation efficiency for HvV190S 

downstream ORF was determined to be ~ 3.9%. This rate suggests that 3.9% of 

ribosomes that terminate at the upstream ORF will continue to translate RdRp ORF, in 

other words, it suggests every 100 moles of CP molecules are synthesized, there will be 

appropriate 4 moles of RdRp molecules are made. The value is similar to the observed 

molar ratio in HvV190S viral particles of 1~2 molecules of polymerase to 120 molecules 

of capsid proteins (12, 73). With this assay, the entire upstream sequence of CP ORF 

was examined for the definition of RNA elements required for reinitiaton of RdRp 

translation. RNA sequence elements were defined to comprise the terminal 38 

nucleotides at the 3’ end of the CP ORF (Fig. 4.6). Although the limited proteolytic 

processing was observed for both above two vectors on their translational fusion 

proteins, the processed fused proteins due to the N- or C- terminal modification did not 

seem to affect the value of measured fluorescence since results were reproduced in all 

experiments described in Fig. 4.7. However, experiments have not yet set up to confirm 

if it is true that all the constructs have the same rate for the degradation on fusion 

proteins. It will be interesting to check if the RFP to GFP ratio changes when 

transformants are challenged with protease inhibitors that inhibit the limited proteolytic 

processing or reduced the natural degradation by comparing to those from non-

challenged. 

 

I have previously attempted to define the required RNA sequence boundary at the 3’ end 

of CP ORF for RdRp translation in experiments involving purified VLPs (See Fig.3.9). 

However, none of these constructs showed RdRp expression, based on detection of 

packaged RdRp in purified VLPs. No conclusions were drawn from these experiments 

since it was not possible to distinguish between lack of RdRp synthesis and 

unsuccessful RdRp packaging. However, based on other results presented in this study, 

it can now be clarified that only the terminal 38 nucleotides out of 170 nucleotides 

contribute to reinitiation of translation of the downstream ORF. Upstream sequences 

beyond those 38 nucleotides might be involved in the mediation of RdRp packaging into 

VLPs.  
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Pseudoknot in SsRV1 is most similar to that of HvV190S since they share the same 

number of nucleotides in the stem-loops and have similar GC content; they differ the 

most in the length of the inter-region and organization of stop-restart codons (Fig. 4.8B). 

It was previously confirmed that reinitiation of downstream RdRp is tolerated by varying 

stop/restart sites, either overlapped or separated stop/restart codons (Fig. 3.3) provided 

they are closely located to each other. Such flexible requirement for stop-restart codons 

is also true for caliciviruses (62). Thus the disparity in expression levels of RFP from 

various pseudoknots should not be due to variations in stop/restart sites. Then next 

consideration is the spacer-region between pseudoknots and stop/restart sites. The 

existence of an authentic pseudoknot in SsRV1 was supported by efficient RFP 

reintiation from mutant PK9 in Fig. 4.10C, in which mutated pseudoknot of HvV190S was 

changed to that of SsRV1. The difference between PK9 and PK_SsRV1 is that PK9 

possesses wild type spacer-region as in HvV190S whereas PK_SsRV1 contains its own 

short spacer-region. This suggested that the pseudoknot predicted for SsRV1 indeed 

reinitiated downstream gene translation in HvV190S and should play a similar role in 

SsRV1. Thus the short inter-region provides the most likely explanation of the low level 

of RFP reinitiation. The length of spacer region known to launch reinitiation has a 

minimum of 6 nucleotides to a maximum of 13 nucleotides for HvV190S, which was 

experimentally tested (Fig. 3.6). SsRV1 represents the minimum one with 6 nucleotides, 

BfTV1 and TcV1 represent the largest two with 10 nucleotides and CeRV1, MoV1 and 

GaRV-L1 represent the middle three with 7, 8 and 9 nucleotides, respectively. Since the 

authentic reinitiation efficiency for RdRp of SsRV1 in its original host was not yet 

reported, it is thus unclear whether it is really due to the short inter-region. The long 

stem-loop in SsRV2, when inserted into HvV190S in a similar position did not launch 

reinitiation of RdRp translation from the downstream ORF of HvV190S genome, which 

suggest that the long stem-loop structure might not perform a similar function as 

pseudoknot regarding translation reinitiation. The unsuccessful reinitiation of RdRp 

expression from the downstream ORF in the recombinant SsRV2-HvV190S construct 

(see Fig. 4.8C) suggests that SsRV2 might employ a different strategy to translate its 

downstream ORF. Alternatively, there might be sequence errors in the region upstream 

the stop-restart motif that affect pseudoknot prediction. 

 

Direct examination for a correlation between the existence of a predicted pseudoknot in 

HvV190S and reinitiation of translation was performed in experiments described in Fig. 
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4.10. Results of Western blot analysis of RdRp expression and packaging within VLPs 

and those of fluorescence intensity measurements matched very well the results of 

pseudoknot prediction using program HPknotter (with one exception; PK4 in Fig. 4.10A). 

These findings strongly suggest that there is a positive correlation between predicted 

secondary structures and authentic expression of the downstream ORF. Although PK4 

did not express RdRp as expected, this might be explained based on its suboptimal 

spacer length of 5 nts between the reformed pseudoknot and stop/restart. A minimum of 

6 nts was found for naturally occurring victoriviruses (see Fig. 3.7) and experimentally 

tested efficient spacer length (see Fig. 3.6). However, this construct raises the question 

that changes at the amino acid level instead of nt level (pseudoknot structure) might 

affect CP-RdRp interaction, thus packaging of RdRp into VLPs.  

 

To address the argument that amino acid level changes instead of changes in nt 

sequences (subsequently pseudoknot structure) or a combination of both control 

reinitiation of the downstream ORF and packaging in VLPs, deduced amino acid 

sequences immediately upstream of stop/restart site for all constructs used in Fig. 

4.10A-C were determined and listed in Fig. 4.10D. PK1 contains codon changes due to 

nucleotide mutations introduced into the primary sequence of one strand of stem 1 

whereas PK2 contains codon changes due to nucleotide mutations introduced into the 

other strand of stem 1. Different results from PK1 and PK2 (PK2 expressed RdRp while 

PK1 did not) may suggest that amino acid changes due to mutations in the first strand of 

stem 1 probably controls RdRp packaging. However, PK3 rules out this possibility since 

it contains codon changes that are also contained in PK1 and PK2, but it expressed 

RdRp, suggesting that lack of detection of RdRp expression is not necessarily due to 

amino acids changes and consequently absence of packaging. To confirm that it is due 

to the function of an alternative pseudoknot existing in PK2, construct PK2-1 was made 

(Fig. 4.10B), in which a single nucleotide A was introduced that did not change amino 

acid sequence but did disrupt the formation of stem 1. Comparing results of VLPs from 

PK2 and PK2-1, we can state that base pairing in stem 1 instead of changes in amino 

acids encoded by the primary sequences of stem 1 affects RdRp reinitiation. It is difficult, 

however, to differentiate the effect of the primary sequences of stem 2 and its encoded 

amino acids from base pairing role of stem 2 on RdRp reintiation/packaging since all 

three constructs with mutations in stem 2 (PK4-6) did not package RdRp or reinitiate 

RdRp translation. However, experiments with constructs PK10-12 in Fig. 4.10C, 
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perfectly confirmed that reinitiation of translation from the downstream ORF was 

controlled authentically by a simple pseudoknot rather than at the amino acid level or 

primary nt sequences. Since experiments in Fig.4.10 involved two different methods, 

analyzing the expression of RdRp through purified VLPs was proven indirectly correct 

since it was reproduced well by dual-fluorescence assay. That is, nucleotide mutations in 

pseudoknot structure did not affect the packaging of RdRp protein into VLPs. The 

existence of an authentic pseudoknot structure and its critical role in reinitiaton of 

translation has thus been determined. 

 

It needs to be pointed out that in this dual-fluorescence assay, the 5’ UTR and the 

majority of RdRp sequence in the genome of HvV190S was lacking, thus it may be 

argued that the identified sequence elements might not be sufficient since the missing 

sequences might be playing a role. Recently, reinitiation of translation has been verified 

for a protein kinase gene, ORF36 of Kaposi’s sarcoma-associated herpesvirus (KSHV, 

dsDNA virus). A short upstream ORF (uORF) located at its 5’ UTR seems critical in 

ORF36 reinitiation (110). However, this example resembles the translation mechanism 

used by eukaryotic genes, such as GCN4 gene (111). Study of SART1 (a 

retrotransposon) however, deserves attention because its major features are reminiscent 

of the reinitiation mechanism in RNA viruses except that two downstream RNA 

secondary structures were identified to contribute to reinititiation (84). A recent study on 

victorivirus RnVV1 also proposed that a secondary structure in the downstream ORF 

might be involved in reinitiation of translation (83). Because HvV190S and some other 

victoriviruses are predicted to form a comparable secondary structure downstream the 

AUGA motif, I carried out mutational analysis to disrupt secondary structure of two stem 

loops predicted downstream the AUGA motif of HvV190S. Results showed all mutants 

expressed RdRp efficiently (Fig. 3.8). Thus results indicate that downstream sequences 

are dispensable. Furthermore, when RdRp sequence was replaced by RFP for the 

downstream ORF together with the 5’ UTR was completely removed from the bicistronic 

constructs, efficient reinitiation of RFP translation was obtained provided the required 

upstream pseudoknot and AUGA motif were maintained. This finding confirms that both 

downstream RdRp sequence and 5’UTR, although possible, are not essential. 

In summary, this study presents compelling evidence that victoriviruses employ a 

coupled translation (stop-restart) strategy to express their RdRp from their downstream 

ORF. The stop-restart mechanism is utilized mostly by viruses with ssRNA genomes 
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(caliciviruess, pneumoviruses and hypoviruses) and victoriviruses represent the only 

known example of dsRNA viruses that use this strategy. Reinitiation depends on a 

pseudoknot structure, 32 nt upstream AUGA motif and pseudoknot structure needs to be 

located in a limited spacer distance to the AUGA motif which requires a minimum of 6 

nts and a maximum of 18 nts. The determinant role of mRNA-rRNA interactions in 

reinitiation on caliciviral and influenza B viral RNAs, probably used to tether 40S 

ribosomal subunits to the mRNA after termination in time for initiation factors to be 

recruited to the AUG of the downstream ORF, however, was not critical in reinitiation on 

HvV190S. Initiation factor eIF3 was shown to be involved in termination-reinitiation 

process for both caliciviral and influenza B viral RNAs. Supplementary eIF3 has been 

shown to stimulate reinitiation at the wild-type FCV TURBS and BM2 ORF of influzenza 

B by associating with TURBS that binds 40S subunits which are destined to reinitiate 

translation (89, 92). eIF3 has also been shown to play an important role in reinitiation on 

eukaryotic GCN4 gene. eIF3 is retained on ribosomes throughout uORF1 translation 

and, upon termination, interacts with its 5’ enhancer to stabilize mRNA association with 

post-termination 40S subunits and enable resumption of scanning for reinitiation 

downstream (111, 112)  At present, HvV190S represents a novel mechanism for RNA 

virus termination-reinitiation. Wether or not eIF3 plays a similar role in reinitiation on 

HvV190S remains unknown. It will be very interesting to identify such initiation factors 

and to explore the roles they have played in reinitiation on HvV190S, which will uncover 

this novel mechanism possessed by victoriviruses more in detail.     
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6 APPENDIX 

LIST OF ABBREVIATIONS 

Abbreviation Expansion 

CP Coat protein 

RdRp RNA-dependent RNA polymerase 

ORF Open reading frame 

UTR Untranslated region 

dsRNA  Double-stranded RNA 

GTP Guanosine-5'-triphosphate 

mRNA Message RNA 

IRES Internal ribosome entry site 

RNA Ribonucleic acid 

TMV Tobacco mosaic virus 

CMV Cucumber mosaic virus 

BMV Brome mosaic virus 

BYDV Barley yellow dwarf virus 

CaMV Cauliflower mosaic virus 

hyg Hygromycin B phosphotransferase  

RSV Respiratory syncytial virus 

RSV Rous sarcoma virus 

PVM Pneumovirus of mice 

RHDV Rabbit haemorrhagic disease virus 

FCV Feline calicivirus 

CHV1 Cryponectria hypovirus 1 

HvV190S Helminthosporium victoriae virus 190S 

HvV145S Helminthosporium victoriae virus 145S 

gpd1 Glycerol-3-phosphate dehydrogenase 1 

cDNA Complementary DNA 

eGFP Enhanced green fluorescence protein 

RFP Red fluorescence protein 

Rluc Renilla luciferase 

Fluc Firefly luciferase 

CAT Chloramphenicol acetyltransferase 

BfTV1 Botryotinia fuckeliana totivirus 1 

GaRV-L1 Gremmeniella abietina RNA virus L1 

SsRV1 Sphaeropsis sapnea RNA viruses 1 

MoV1 Magnaporthe oryzae viruses 1 

TcV1 Tolypocladium cylindrosporum virus 1 

CeRV1 Chalara elegans RNA virus 1 
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BbRV1 Beauveria bassiana RNA virus 1 

CmRV Coniothyrium minitans RNA virus 

EfV1 Epichloe festucae virus 1 

HmTV-17 Helicobasidium mompa totivirus 1-17 

MoV2 Magnaporthe oryzae viruses 2 

RnVV1 Rosellinia necatrix victorivirus 1 

SsRV2 Sphaeropsis sapnea RNA viruses 1 

IPTG Isopropyl β-D-1-thiogalactopyranoside  

LB Liquid broth 

DNA Deoxyribonucleic acid 

PEG Polyethylene glycol  

PBS Phosphate buffered saline  

PMSF Phenylmethylsulfonyl fluoride  

PDA Potato dextrose agar  

VLP Virus-like particle 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

BCIP 5-Bromo-4-chloro-3-indolyl phosphate 

NBT Nitro blue tetrazolium 

dCTP Deoxycytidine triphosphate 

C Degree centigrade 

PCR Polymerase chain reaction 

g/µg Gram/microgram 

l/µl Liter/microliter 

h hour 

EDTA Ethylene diamine tetra acetic acid 

DTT Dithiothreitol 

EtBr Ethidium bromide 

M/Mm/uM Molar/millimolar/micromolar 

MOPS 3-(N-morpholino) propanesulfonic acid 
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