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ABSTRACT OF DISSERTATION 

DIETARY ANTIOXIDANT SUPPLEMENTATION (ECONOMASE–BIOPLEX) TO 

ALLEVIATE ADVERSE IMPACTS OF OXIDIZED OIL ON BROILER 

MEAT QUALITY: A CHEMICAL, TEXTURAL, ENZYMATIC, 

AND PROTEOMIC STUDY 

This study investigated the influence of dietary antioxidants and quality of oil on 

the oxidative and enzymatic properties of chicken broiler meat stored in an oxygen-

enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable 

polyvinylchloride (PVC) or skin (SK) packaging systems during retail display 2–4 °C for 

up to 14, 7, and 21 d, respectively. Broilers were fed a diet either with a low-oxidized oil 

(peroxide vale POV 23 meq O2/kg) or with a high-oxidized oil (POV 121 meq O2/kg), 

supplemented with an antioxidant pack (200 ppm EconomasE and organic minerals Se, 

Zn, Cu, Mn, and Fe as in Bioplex) in substitution for vitamin E and inorganic minerals 

for 42 d. 

In all packaging systems, lipid oxidation and protein oxidation were inhibited by 

up to 65% with an antioxidant-supplemented diet when compared to diets without 

antioxidant supplements. Antioxidant enzyme activities were significantly higher (P < 

0.05) in the antioxidant-supplemented diets compared with control diets, regardless of oil 

quality.  

Meat samples from the antioxidant-supplemented group, irrespective of oil 

quality, has less purge and cooking loss compared to control diets. In all packaging 

systems, meat shear force was higher (P < 0.05) for broilers fed high-oxidized diets than 

the low-oxidized groups. Comparison between muscle types (breast as white vs. thigh as 

red) showed a similar trend in muscle susceptibility to oxidized oil in the diet but greater 

protection of antioxidant supplements for thigh meat in both physiochemical and textural 

properties. 

Dietary regimen influenced protein expression in broiler breast meat. Three 

protein spots from 2-dimensional gel electrophoresis, identified by mass spectrometry as 

glyceraldehyde 3-phosphate dehydrogenase, creatine kinase, and heat shock protein beta-

1 were over-abundant in muscle from low-oxidized diets. The differential proteomes that 



suggested down regulation of the genes encoding antioxidative proteins upon feeding 

oxidized oil may be implicated in the broiler meat quality deterioration during storage. 

In summary, feeding diets with poor oil quality increased the vulnerability of 

lipids and proteins to oxidation in broiler breast and thigh meat during refrigerated and / 

or frozen storage in various packaging conditions, yet these effects were alleviated upon 

dietary supplementation with antioxidants. 

KEYWORDS: Dietary Antioxidants, Oxidized Oil, Chicken Meat, Lipid and Protein 

Oxidation, Packaging Systems 
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CHAPTER 1 

INTRODUCTION 

A key factor that determines consumers’ acceptance or rejection of fresh meat and 

meat products is palatability, of which flavor and texture (juiciness and tenderness) are 

the primary quality traits. A central cause of quality deterioration during retail or home 

storage (refrigerated or frozen) is lipid and protein oxidation, which produces rancid off-

flavors and decreases juiciness and tenderness. Meat quality is influenced by a variety of 

factors such as animal heredity, feeding system, nutritional status, pre-slaughter and 

slaughter condition, and meat process conditions (Anderson et al., 2005). Poultry meat, in 

particular, is much more susceptible to lipid oxidation due to the high proportion of 

polyunsaturated fatty acids (PUFAs). For this reason, the oxidative stability of poultry 

meat and meat products presents a great challenge to meat producers and processors. 

Oxidation occurs ubiquitously in fresh and processed muscle foods due to the 

abundance of unsaturated phospholipids, heme pigments, metal catalysts, and various 

other oxidizing agents present in skeletal muscle. The losses in quality are manifested by 

adverse changes in flavor, color, texture and nutritive value, and the possible production 

of toxic compounds (Kanner et al., 1994). Modification of intracellular and membrane 

proteins in muscle can be readily modified by reactive oxygen species generated by lipid 

oxidation, metal- or enzyme-catalyzed oxidative reactions, and other chemical and 

biological processes (Lund et al., 2011). Lipid oxidation in muscle systems is initiated at 

the membrane level in the intracellular phospholipid fractions and generation of lipid 

radicals can consequently attack other muscle components, such as proteins. 



2 

 

Furthermore, the presence of transition metals, notably iron, is pivotal in facilitating the 

generation of radical species capable of abstracting a proton from an unsaturated fatty 

acid (Gray et al., 1996). Oxidative modification of proteins can cause fragmentation and 

conformational changes, ultimately modifying their physical and chemical properties 

such as water-binding in fresh meat (Rowe et al., 2004). Reduced water-binding activity 

in oxidatively stressed muscle tissue was identified using low-field NMR (Bertram et al. 

2007). Similarly, Liu et al. (2009) viewed significant losses in hydration capacity of 

myofibrils when exposed to an oxidizing environment. The restriction in transverse 

swelling of myofibrils during salt irrigation was due to increased myosin cross-linking 

through disulfide bonds.  

Previous studies have shown that overall quality and shelf life can be improved 

through dietary vitamin E supplementation. Dietary vitamin E has been found to decrease 

lipid oxidation and discoloration and reduce drip loss in pork (Guo et al., 2006), lamb 

(Macit et al., 2003) and poultry (Li et al., 2013) which may be attributed to the protection 

of myofibrillar proteins from oxidation. Furthermore, endogenous delivery of 

antioxidants may offer greater protection of unsaturated lipids and proteins compared 

with exogenous incorporation, since dietary antioxidants can be absorbed and distributed 

into muscle both inside the cell and at the membrane (Mitsumoto, 2000). Previous studies 

have also focused on the effect of vitamin C, selenium and synthetic antioxidants on 

growth characteristics or oxidative stability of lipids in meat (Engberg et al., 1996; Xiao 

et al., 2011). However, few studies have focused on the relationship between dietary 

feeding strategy and the overall quality of fresh meat during storage. 
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Meat quality is manifested through a complexity of biochemical processes in the 

muscle, which are influenced by various external factors in both the live animal and post-

mortem. The implementation of proteomic tools such as two-dimensional gel 

electrophoresis coupled with mass spectrometry can aid in the achievement of sustainable 

animal production and improved and consistent product quality. Accordingly, the 

nutrigenomic approach has been introduced as a first step in the development of pro-

active quality control and assurance systems to fulfill future demands from the industry 

and consumers. Nutrigenomics is the study of the effect of nutrition or dietary 

components on the transcriptome of cells and tissues. The broad scope of nutrigenomics 

involves studying the effect of nutrition or dietary components on the structure, integrity 

and function of the genome (Mutch et al., 2005). Currently, most of the nutrigenomic 

studies on meat animals, including poultry, are focused on the performance of animals in 

relation to specific dietary compounds, for example, their growth characteristics and 

carcass traits. Very little research has been done to establish the relationship between 

feeding bioactive compounds and the resulting quality of the end product – meat.  

The aim of this research was to elucidate the in situ role of dietary antioxidant 

supplementation and quality of oil on the oxidative, enzymatic, and textural properties of 

fresh chicken meat stored in different atmospheres and to identify whether dietary 

regimen would influence protein expression. meat particle size reduction (grinding) 

would accentuate oxidation-induced alteration in water-binding properties of meat. The 

specific objectives of my dissertation research were: 
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1. To identify the likely benefits of dietary antioxidants for inhibiting oxidative 

changes and protecting eating quality of chicken meat packaged under modified 

atmospheres. 

 

2. To determine how dietary antioxidant regimens would influence the storage 

stability and quality of chicken meat. 

 

3. To assess how lipids, pigments, and proteins of different muscle fiber types (dark 

vs. light chicken meat) are affected by dietary oxidized oil and antioxidants. 

 

4. To explore the molecular mechanism for the influence of dietary antioxidants on 

meat quality through proteomic and enzymatic tools.  

 

 

 

 

 

 

 

 

 

 

 

Copyright © Rebecca M. Delles, 2013 
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CHAPTER 2 

  

LITERATURE REVIEW 

 

2.1. Broiler Production 

 Chickens are the most abundant birds in the world. Currently, poultry products 

(broiler meat in particular) have the highest per capita consumption in the United States. 

People eat various different poultry products including chicken wings, hot dogs, chicken 

nuggets, chicken-patties, fried, roasted, marinated chicken, etc… However, not all 

poultry products are consumed. For instance, eggs are used for the production of 

vaccines, antibodies, and pharmacological proteins. Part of the recent increase in poultry 

production can be attributed to the development of new, further-processed and value-

added products. 

 In the United States, poultry houses are equipped with a nipple and cup waterer, 

which must remain fully functional, along with supplemental jug waterers. Feed is placed 

in the feeders and on paper placed on the floor of the pen to encourage young birds to eat. 

Generally, broilers are brooded in a portion of the house until a certain age before being 

given access to the entire barn. These facilities generally have litter floors and the amount 

of light the birds are exposed to is regulated.  

 

2.1.1. Broiler Meat Quality Concerns and Issues. Over the past two decades, 

the consumption of poultry meat, particularly chicken, has increased dramatically (50%; 

from 60 lb/capita to 90 lb/capita) while the consumer demand for red meat (beef and 

pork) has remained stagnant over this period (USDA, 2009). Among the reasons are the 

relatively high feed conversion rate and being a “healthier” meat source (white meat) for 
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poultry as perceived by the consumer. Thus, the growing pressure on breeders, 

nutritionists and growers to increase the growth rate of birds, feed efficiency and size of 

breast muscle has placed additional stress on the developing birds potentially resulting in 

histological and biochemical modifications of the muscle tissue thereby impairing some 

meat quality traits (Petracci and Cavani, 2012). The most common concerns are 

associated with deep pectoral muscle disease, white striping, and pale, soft and exudate 

(PSE) – like conditions.  

Today, poultry is marketed in about half the time and at twice the body weight 

compared to 50 years ago (Barbut et al., 2008), these improvements are primarily due to 

genetic selection of high heritable body weight. Yet there has been an increase in 

incidence of pectoral myopathies in concert with increased growth rate and muscle size. 

For instance, birds selected for breast muscle development have a significantly higher 

risk of deep pectoral muscle disease occurrence (Petracci and Cavani, 2012). Deep 

pectoral myopathy is an ischemic necrosis that develops in the supracoracoideus or 

pectoralis minor muscle due to the inability of the muscle mass to swell in response to 

increased circulation. The pectoral muscle in poultry is surrounded by an inelastic fascia 

and the sternum, thus when the muscles are exercised such as in wing flapping the muscle 

mass may increase in size to a point where the muscle itself becomes strangulated, 

resulting in the occlusion of the blood vessels and ultimately tissue necrosis (Bianchi et 

al., 2006). There is no consumer health issues associated with deep pectoral myopathy, 

except that the breast muscle is aesthetically undesirable. The loss of the most valuable 

part of the chicken carcass results in major losses to the poultry industry. To decrease the 
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incidence of pectoral myopathies reduced activity of wing flapping, triggered by feed and 

water depletion, loud noises, high heat, and high human traffic, should be addressed. 

 White striping is a recent defect in chicken breast meat that could negatively 

influence the purchasing decision of consumers. White striping refers to the occurrence 

of different degrees of white striations found parallel to the muscle fibers. Moderate to 

severe degrees of white striping can potentially reduce the visual acceptance and 

purchase intent of the consumer due to the fatty or marbled appearance of the product 

(Kuttappan et al., 2012). The condition is mainly associated with heavier birds. 

Bauermeister et al. (2009) reported a higher incidence in birds processed at 8 week than 

at 6 week of age, possibly due to their higher body weight at time of slaughter. Similarly, 

Kuttappan et al. (2012) reported higher degrees of white striping in thicker and heavier 

fillets, which is associated with increased growth rates. Furthermore, the histological 

studies conducted by Kuttappan et al. (2013) suggested that a higher degree of white 

striping is associated with muscle damage and myopathic changes, indicating that 

enhanced growth rate in birds could result in muscle damage which is manifested 

primarily as white striping. Lack of adequate development in the capillary or other 

supporting systems in fast growing birds may contribute to growth-induced myopathy 

(Mahon, 1999).  

Another challenge in the broiler meat industry is the recent development of PSE 

or PSE-like meat. PSE is most commonly associated with pork products and is 

characterized by light color, flaccid texture, poor water-holding capacity and substantially 

reduced cooking yield. In swine, specific genetic mutations have been linked to the 

development of PSE: (1) the Ryanodine receptor and halothane gene mutation causes 
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Porcine Stress Syndrome (PSS) or Malignant Hyperthermia (MH), which results in a 

rapid and ultimate low pH at high temperatures; (2) Rendement Napole (RN) gene 

mutation results in a normal pH decline but to an ultimate low pH (Barbut et al., 2008). 

However, Strasburg and Chiang (2009) reported inconclusive data linking PSE-like 

conditions in poultry to a genetic mutation. Other hypotheses are considered as having 

the potential to cause PSE meat: (1) the nature and metabolism of the breast muscle; (2) 

the size of the muscle and muscle fibers (Dransfield and Sosnicki, 1999); (3) perimortem 

environmental conditions (Berri et al., 2005). Some studies have reported an elevated 

incidence of spontaneous or idiopathic myopathy and an increased susceptibility to 

stress-induced myopathy in rapidly growing strains of poultry (Sandercock et al., 2006). 

These pathologies are attributed to alterations in intracellular calcium homeostasis 

(Sandercock and Mitchell, 2003) and concurrent changes in the integrity of the 

sarcolemma, which may result from excessive muscle fiber hypertrophy and inadequate 

development of support tissues and vascular supply (McRae et al., 2007; McRae et al., 

2006). Furthermore, faster growing and/or heavier birds are more susceptible to heat 

stress. Mujahid et al. (2005) reported an increase in superoxide free radical production in 

the skeletal muscle of birds exhibiting acute stress, which may induce muscle damage 

thereby altering cellular metabolism and tissue structure integrity, potentially resulting in 

PSE-like meat.  

Today, with the advent of proteomics in muscle biology and meat science there 

are greater possibilities to further investigate and identify meat quality associated 

problems. Proteomic studies are becoming increasingly popular to study the relationship 

between genome and functional properties of meat. While genome contains information 
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on which genes and alleles are present in the genome, the proteome contains information 

on which genes are actually being expressed. The implementation of proteomic 

technologies will advance the meat science industry through improved quality of fresh 

and processed meat and meat products and advanced animal production methods. 

 

2.1.2. Factors Affecting Meat Quality. To an average consumer, “meat quality” 

describes eating quality, which includes color, tenderness, juiciness, flavor, and the 

consistency of the meat in its raw and cooked states. Quality is a complex, multivariate 

property of meat that is influenced by animal heredity, feeding system, nutritional status, 

pre-slaughter and slaughter condition, and meat processing conditions (Anderson et al., 

2005).  

  

2.1.3. Pre-Slaughter Conditions. How an animal is handled prior to slaughter 

greatly impacts the quality of meat and meat products. Pork carcasses, especially, are 

known to possess either normal, Pale, Soft and Exudate (PSE) or Dark, Firm and Dry 

(DFD) conditions. PSE can occur in both pork and poultry and is characterized by an 

abnormally light color, poor fiber structure consistency, and low water0-holding capacity. 

This occurs due to an accelerated rate of glycolysis, post-mortem, resulting in a ultimate 

low pH. Genetic predispositions and high stress levels prior to slaughter are the main 

factors that contribute to PSE meat. Calmer animals will have lower body temperatures, 

which will help reduce protein denaturation. Eliminating wing flapping, vocalizations, 

and excessive movement as animals move from the farm into the holding pen can help 

reduce PSE. Also, reducing the length and roughness of transportation and human 
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handling can also help reduce the incidence of PSE. For poultry, automatic loaders and 

unloaders may be useful. Following transportation and unloading, animals should be 

given an extensive rest period before slaughter. DFD occurs more often in beef and is 

characterized by a dark, purplish red to black color, firm texture, and dry appearance. 

This usually occurs as a result if an animal’s depleted glycogen reserves prior to 

slaughter, resulting in a high ultimate pH. In rested, calm cattle muscle glycogen levels 

will be 0.8% to 1.0% prior to slaughter. However, animals are exposed to long-term 

stress may have glycogen levels around 0.6%, thereby hindering post-mortem pH decline. 

Long-term stress in cattle depletes their glycogen reserves. In beef, the normal pH is 

between 5.4–5.7. However, DFD will have a higher pH range, 5.9–6.5. The depletion of 

muscle glycogen may be caused by a variety of severe pre-slaughter stresses including 

transport exhaustion, fear, climatic stress, aggressive behavior with young bulls, hunger, 

prolonged withholding of feed prior to slaughter, mixing of unfamilar animals and 

extreme adrenaline excitement (Miller, 2007). Replenishing muscle glycogen stored can 

reduce the incidence of DFD, but may take several days post stress. 

 

2.1.4. Dietary Regimen. Like humans, diet plays an important role in the overall 

health and performance of an animal. Furthermore, nutrition has a regulatory effect on 

biological processes in muscle, which can influence the quality of meat and meat 

products (Anderson et al., 2005). Previous research has primarily focused on the 

performance of animals in relation to specific dietary compounds, for example, their 

growth characteristics and carcass traits.  However, in the past few decades researchers 
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are focusing on the relationship between feeding bioactive compounds or specific waste 

products (i.e. dried distillers grain) and the resulting quality of the end product – meat.  

Recently, consumers are pushing livestock producers to feed and raise farm 

animals without antibiotics, hormones, or synthetic feed additives.  Therefore, bioactive 

compounds such as oligosaccharides, emulsifiers, carotenoids, vitamins, and minerals are 

used in animal feedstuff to either promote immunity, aid in digestion, and/or improve 

growth characteristics. When incorporated into feed and food components, the above 

bioactive compounds have a broad range of effects in animals. Historically, plants have 

been used for medicinal purposes by humans to treat aliments. Thus, there is global 

interest in harnessing bioactive properties of plants and their secondary compounds as 

alternatives to chemical, drugs and growth promoters (Durmic and Blache, 2012).  

Antibiotic growth promoters in poultry feed increased weight gain, feed 

utilization, and overall well-being in birds (Gustafson and Bowen, 1997). However, the 

controversial subject of antibiotics in animal feed and the development of resistant 

bacteria led to a complete ban on antibiotics in poultry feed by the European Union, with 

the United States reducing and limiting the amount and type of antibiotics used (Sims et 

al., 2004). Today, global demands for “antibiotic-free” and “organic” poultry products 

are directing producers to search for alternative growth promoters.  

Mannan oligosaccharides (MOS) is derived from the outer cell wall of yeast and 

has been reported to increase the body weight of turkeys, reduce large intestinal 

concentrations of pathogenic bacteria, such as Clostridium perfingens and Escherichia 

coli, and increase concentrations of mutualistic microflora, such as Lactobacilli  (Sims et 

al., 2004). MOS and frutooligosaccharides act as a prebiotic in that they are nondigestible 
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feed ingredients that benefit the host through selective stimulation of the growth or 

metabolic activity of specific microflora (Gibson and Roberfroid, 1995; Ferket, 2004). 

Spring et al. (2000) and Ije et al (2001), reported that MOS can effectively suppress 

enteric pathogens, enhance immunity, and improve the integrity of the intestinal mucosa 

in broilers. Similarly, Baurhoo et al. (2007) described that purified lignin and MOS 

increased beneficial ceca microflora, villi height and number of goblet cells in the 

jejunum and lowered the population of E.coli in fecal material. Therefore, MOS, lignin, 

and possibly other products may serve as an alternative to the use of antibiotics as a 

growth promoter in poultry production. 

Phytogenic additives are a new class of plant-derived products that are currently 

being used in animal feed to improve the performance of the livestock/ flock. These 

compounds are usually derived from fruits, vegetables, grains, spices, herbs, seeds, bark, 

etc… The use of feed additives is usually subject to restrictive regulations and is 

generally applied by the farmer to healthy animals for nutritional purposes throughout the 

entire feeding period (Windisch et al., 2008). Phytogenic compounds possess various 

phenolic compounds, of which some bear antioxidative properties. For instance, volatile 

oils from Labiaceae, such as rosemary, mint, thyme and oregano, have strong antioxidant 

activity due to the large amount of terpenes present. Specifically, rosemary contains 

rosmarinic acid and rosmarol (Cuppett and Hall, 1998). Fruits are rich in anthocyanins, 

and certain leaves, such as green tea are abundant in flavonoids, all of which have radical 

scavenging properties. The structure of the phenolic compound greatly influences its 

redox potential. Teissedre and Waterhouse (2000) reported that thyme has a high 

antioxidant activity, which was due to the presence of phenolic hydroxyl groups in 
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thymol, which act as hydrogen donors to peroxyl radicals thereby retarding lipid 

oxidation.  

Phytogenic additives have also been reported to aid with digestion through the 

stimulation of gastric and intestinal secretions and enhanced enzyme activity (Platel and 

Srinivasan, 2004).  Rao et al. (2003) reported that various spices and spice extracts 

enhanced pancreatic lipase and amylase in rats. Furthermore, rats fed anise oil showed 

accelerated glucose absorption (Kreydiyyeh et al., 2003). Essential oils added to dietary 

feed enhanced trypsin and amylase activities in broilers (Jang et al., 2004).  

Finally, many of the aforementioned compounds also possess antimicrobial 

properties due to the potential of hydrophobic essential oils to penetrate the bacterial cell 

membrane, disintegrate membrane structures, and cause ion leakage (Windisch et al., 

2008). Jamroz et al. (2006) reported that phytogenic feed additives stimulated intestinal 

secretion of mucus in broilers, which may impair the adhesion of pathogens and reduce 

gastrointestinal distress. However, the efficacy of the essential oils against pathogenic 

microbes is dose-dependent and may not be present at high enough levels in the dietary 

feed. Thus more research is needed in this area. 

Dried distillers grain (DDGS) is a by-product from the fermentation and 

distillation of corn into bio-ethanol. DDGS has a high level of crude protein, lysine, 

methionine, and unsaturated fatty acids, which has been used in animal feed (Lemenager 

et al., 2006). Min et al. (2012) reported that feeding broilers up to 25% DDGS increased 

the ratio of polyunsaturated to saturated fatty acids in breast fillets, yet, samples from 

birds fed up to 10% DDGS had lower lipid oxidation, drip loss and cooking loss. 
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2.2. Dietary Antioxidants and Meat Quality 

With a relatively high proportion of polyunsaturated fatty acids (PUFA), poultry 

meat is much more susceptible to lipid oxidation than beef and pork. For this reason, the 

oxidative stability of poultry meat and meat products presents a great challenge to meat 

producers and processors. One of the novel approaches to overcoming oxidation and 

related problems with poultry meat and meat products is to feed the birds antioxidant 

diets. Enhancing diets with antioxidants and optimizing nutrient intake not only could 

reduce lipid oxidation but also may improve water-holding capacity and textural traits of 

meat. The use of dietary antioxidants has a distinct advantage over incorporation of 

antioxidants to meat through processing because dietary antioxidants absorbed by the 

bird can be effectively distributed in muscle (meat) both inside the cell and at the 

membrane, which is not possible if the antioxidants are incorporated into meat through 

blending and mixing. Several feeding studies have clearly demonstrated this difference 

and shown remarkable protection of some key quality parameters of meat by antioxidants 

formulated in animal feed. Vitamin E (α-tocopherol) is perhaps the best researched 

dietary antioxidant. It is an essential nutrient for the growth and health for animal species 

by functioning as an antioxidant in various biological systems. α-Tocopherol neutralizes 

free radicals slowing the propagation of lipid oxidation of the highly unsaturated fatty 

acids in the cellular and subcellular membranes (Burton and Traber, 1990). The 

molecular structure of α-tocopherol allows it to protect highly oxidizable PUFA from 

peroxidation by reactive oxygen species (ROS) produced by adjacent membrane-bound 

enzymes through radical delocalization. Aside from tocopherols, many other nutrients 

have been shown to enhance the quality of meat. Examples are magnesium, selenium, 
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vitamin C, vitamin A, creatine, and conjugated linoleic acids. Kietzmann and Jablonski 

(1985) reported that incorporation of magnesium into swine diets lowered plasma cortisol 

and catecholamine concentrations during stress. Swigert et al. (2004) found that 

magnesium supplemented diets improved pork quality. Pigs supplemented with 

magnesium produced lower purge loss, and a higher ultimate pH, potentially due to the 

lowering of stress induced hormones. Hamilton et al. (2003) also reported that 

supplementation with magnesium lowered Minolta L* values, indicating darker muscle 

color, increased pH, and had lower drip loss compared to control treatments. 

Antioxidants can potentially promote meat tenderness as well. Tenderness and 

associated juiciness (water-holding capacity) are important quality parameters of meat as 

well. Increased tenderness is attributed to postmortem proteolysis of key cytoskeletal 

proteins which is mediated by the calcium activated calpain enzyme system (calpain). 

Variations in muscle tenderness may be attributed to the activity rate of calpastatin, an 

enzyme that inhibits calpain. Studies have shown that calpain is remarkably susceptible 

to endogenous oxidants, such as hydrogen peroxide (Guttmann et al., 1997). When 

exposed to an oxidizing environment, m-calpain was readily inactivated, resulting in a 

reduced tenderness and decreased water-holding capacity of post-mortem beef muscle 

(Rowe et al., 2004). Although chicken dark meat (thigh; drumsticks) does not have a 

perceived toughness problem, the texture of chicken light meat (breast) is often 

considered less than desirable by many consumers. It is not clear whether dietary 

antioxidants could protect calpain, thereby ensuring normal proteolysis during post-

mortem storage needed for desirable tenderness. Assuming dietary antioxidants can 
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promote the activity of muscle endogenous proteases, the meat flavor would improve as 

well because products of proteolysis (short peptides, amino acids) impart savory tastes.   

 

 2.2.1 Selenium. Selenium can be found within all cells and tissue of an animal 

and is an essential micronutrient for various metabolic functions, such as reproduction 

and thyroid hormone metabolism and cellular immune response. Selenium deficiency is 

the cause of various degenerative diseases in animals; most notable are skeletal and 

cardiac myopathies, and liver necrosis. Thus, mineral supplements are often incorporated 

into animal feedstuff to maintain optimal health of the animal. The extent to which 

selenium is absorbed from the gastrointestinal tract and its retention and distribution 

within the body varies with the species, chemical form, and amount ingested. Organic 

forms of selenium, such as selenocysteine and selenomethionine are more effectively 

absorbed than inorganic compounds like selenites or selenates (Kinal et al., 2012). It is a 

result of active transport of selenium amino acid complexes through epithelial cells of 

intestine compared with passive diffusion of selenates’ or selenites’ ions (Sunde, 1997). 

Also, dietary levels of selenium directly influence muscle selenium concentrations. 

Various studies have shown an increase in tissue Se levels upon increasing levels of 

supplementation (Qin et al., 2007). In animal feeds, naturally occurring selenium is 

primarily found as selenoamino acids, with selenomethionine (SeMet) compromising 

more than 50 % of total Se in many feed ingredients, (Schrauzer, 2003).  

Selenocysteine is the form of Se present in selenoenzymes such as glutathione 

peroxidase (GsPx). SeMet can be incorporated into proteins in place of methionine, or be 

reformed to selenocysteine. Dietary methionine levels will affect the extent to which 
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SeMet is incorporated into general proteins (Butler et al., 1989). GsPx can be found in 

different parts of the cell: cytosol, plasma or phospholipid, which is membrane bound 

(Daniels, 1996). As one of the primary antioxidant enzymes in mammals, GsPx protects 

cells and tissues against free radical damage and apoptosis. Four selenium atoms are 

covalently bound to cysteine residues in the enzyme glutathione peroxidase, which could 

potentially work synergistically with vitamin E. Glutathione peroxidase is an enzyme that 

catalyzes the reduction of hydrogen peroxide and lipid peroxides, thereby preventing 

oxidative damage. In humans, adequate intake of Se may decrease the risk of cancer, 

cardiovascular disease, and other immunodeficiencies (Hartikainen, 2005). Daun and 

Akesson (2004) noted an excellent correlation between glutathione peroxidase activity 

and Se content in tissues of cattle, pigs, and poultry. O’Grady et al. (2001) also reported 

an increase in glutathione peroxidase activity with increasing Se levels. Skrivanova et al. 

(2007) discovered an increase in oxidative stability in veal meat, along with increased 

glutathione peroxidase activity, when the animal was fed a Se-supplemented diet. 

Similarly, Benedetti et al. (2012) reported that rats fed high selenium bread had higher 

liver GsPx activity and lower hepatic MDA content after exposure to oxidative stress, 

attributed to the higher selenium intake. 

 

 2.2.2 Vitamin E. Vitamin E is the standard term used to describe at least eight 

naturally occurring compounds that exhibit the biological activity of α-tocopherols 

(Jensen and Lauridsen, 2007) This group comprises α β, γ, δ - tocopherol and tocotrienol. 

Vitamin E is a vital component of biological membranes with membrane-stabilizing 

properties and potent antioxidant activity. Furthermore, muscle health is dependent upon 
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an adequate supply of dietary vitamin E and although rare, vitamin E deficiency in 

humans is associated with muscle weakness, elevated creatine kinase (CK), and 

myopathy (Howard et al., 2011). In animals, early studies have reported profuse myocyte 

necrosis and lethal muscular dystrophy due to vitamin E deficiency.  

There are two general mechanisms by which vitamin E could interact with cells or 

molecules to promote muscle health, (1) stabilizer or; (2) antioxidant. Vitamin E can act 

as a stabilizer in that the hydrophobic, phytal tail is anchored into the lipid bilayer and the 

chromonal ring lies at the membrane-water interface (Howard et al., 2011). Furthermore, 

the integration of vitamin E into the cell membrane may alter the bilayer physical 

properties potentially through fluidity (Neunert et al., 2010). The major biological 

evidence for a ‘stabilizing’ role is that erythrocyte lysis, induced by oxidative stress and 

other stressors is prevented by vitamin E supplementation and exacerbated by vitamin E 

depletion (Ahmad and Suhail, 2002). Moreover, the major symptom of vitamin E 

deficiency is hemolytic anemia. Often time premature newborns are commonly 

supplemented with vitamin E to stabilize their red blood cells and prevent hemolytic 

anemia. The second proposed mechanism of action for vitamin E is as a potent 

antioxidant. The chromanol head of vitamin E, located within the hydrophilic portion of 

the bilayer quenches free radicals and prevents potentially harmful phospholipid 

oxidation events. During strenuous exercise, skeletal muscle accumulates reactive oxygen 

species (ROS) and consequently increases lipid peroxidation, which can be alleviated 

through vitamin E supplementation (Sacheck et al., 2003). Interestingly, Howard et al. 

(2011) reported that vitamin E promotes plasma membrane repair of myoblasts. Thus, 
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vitamin E supplementation is not only required for homeostasis, but also may reduce 

oxidative deterioration of meat during processing and storage. 

Vitamin E cannot be synthesized by animals and has to be supplied by the diet, 

thus its presence in body tissues is a reflection of dietary availability. Dietary vitamin E is 

commonly supplemented in the diet as α-tocopherol acetate, which is characterized by 

great stability during storage, feed processing, and passage through the forestomach of 

the animal. With dietary supplementation, the vitamin is properly physiologically 

incorporated within biomembranes, where its effect is maximal, making it a more 

effective source than when adding vitamin E as a postmortem supplement (Mitsumoto, 

2000). Despite the possible influence of α-tocopherol on meat quality characteristics such 

as water retention and cholesterol oxidation, most studies have primarily concentrated on 

its effects on lipid oxidation and color stability (ref). Early studies have demonstrated 

delayed lipid oxidation and color deterioration of beef from cattle fed vitamin E 

supplementation diets (Morrissey et al., 2000). Ripoll et al. (2013) reported that dietary 

vitamin E supplemented lamb showed delayed metmyoglobin formation during storage 

compared to unsupplemented lamb and that the length of the finishing period feeding 

(supplemented with vitamin E) directly influenced muscle vitamin E content. 

Incorporation of α-tocopherol into pork patties through processing also showed some 

protective effect (Chen et al., 2008); however, the effect was not nearly as much as that 

through dietary method. Gao et al. (2010) also reported that feeding high levels of α-

tocopherol lowered thiobarbituric acid-reactive substances production in the tissue and 

plasma of oxidatively stressed broilers. Recently, inclusion of recycled vegetable oils, 

highly oxidized, has provided animal meat producers an economically feasible means of 
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increasing the energy density of their livestock (Boler et al., 2012). However, adverse 

effects on overall meat quality can result from animals consuming diets composed of 

supplemented fat, typically high in polyunsaturated fatty acids (Gatlin et al., 2002). To 

alleviate the potential of greater susceptibility to lipid and protein oxidation, producers 

are adding antioxidants, particularly vitamin E, to feedstuff. Boler et al. (2012) reported 

that dietary vitamin E supplementation partially ameliorated the negative effects of 

feeding oxidized fat through the reduction of protein oxidation. Similarly, Xiao et al. 

(2011) and Li et al (2013) reported decreased lipid and protein oxidation, and improved 

tenderness, respectively, in chickens fed a vitamin E supplemented diet. Although, much 

research has been conducted evaluating the effects of dietary vitamin E and meat quality; 

the effects of other antioxidant-supplemented diets are much less known but should be 

investigated. 

 

 2.2.3 Algae. Fruits and vegetables contain various antioxidant and bioactive 

compounds, such as polyphenols, carotenoids, and isoprenoids that are beneficial to 

human health.  In humans and animals, reactive oxygen species (ROS) are formed during 

metabolism and can cause oxidative stress. Under homeostatic circumstances, the 

antioxidant defense system efficiently neutralizes ROS, but in a challenged state the 

host’s defense system will become compromised resulting in oxidative stress (Yeum et 

al., 2004). Consumption of products high in antioxidant and bioactive compounds has 

been reported to alleviate cellular stress (Cornish and Garbary, 2010; Halliwell and 

Gutteridge, 2007). Various studies have reported the health-promoting benefit of 

consuming fruits and vegetables (Escudero-Lopez, et al., 2013; Park et al., 2003). 
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Similarly, some marine organisms, such as seaweeds and algae, possess strong 

antioxidant activity, such as high potent 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 

hydroxyl (OH) radical scavenging activities and strong reducing ability (Cho et al. 2011). 

Simiarly, Sachrinda et al. (2007) reported high radical scavenging activity and singlet 

oxygen quenching activities of marine carotenoid and fucoxanthins. Takamatsu et al. 

(2003) stated that algae had similar chlorophyll, carotenoid, tocopherol derivatives and 

isopreoid compounds that were structurally similar to plant-derived antioxidants. The in 

vivo efficacy of algae-derived antioxidant activity was demonstrated in mice where 

topical and dietary treatment with polyphenols extracted from brown algae decreased 

UVB-induced skin tumor development (Hwang et al., 2006). 

Several studies have reported that increased consumption of long chain fatty acids 

such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can significantly 

improve cardiovascular health by helping maintain normal serum triacylglycerol levels 

and normal blood platelet reactivity (Breslow, 2006; Park and Harris, 2002). Highly 

unsaturated fatty acids such as DHA and EPA are intermittent in modern and specifically 

in western diets. Currently, the level of DHA found in animal products such as eggs, 

beef, pork, and chicken is minimal (Givens et al., 2006). Humans cannot efficiently 

synthesize DHA and EPA and thus must obtain these vital fatty acids from dietary 

sources. Although fish and algae is a primary dietary source of DHA and EPA, the 

consumption in the United States and in other parts of the world is low. A primary source 

of EPA and DHA are fish oil or flaxseed oil supplements, however, due to the threat of 

over-fishing and an enforcement of sustainable fishing practices alternative sources of 

DHA and EPA must be investigated. Therefore, there has been a recent push to 
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supplement algae in dietary animal feed to enrich eggs, fish, and possibly meat with DHA 

and EPA (Woods and Fearon, 2009). Fredriksson et al. (2006) reported that inclusion of 

up to 20% algae in the diet of laying hens significantly increased the amount of EPA and 

DHA and total carotenoid content in the egg yolk. Much of the fatty acid profile of the 

meat from monogastrics is greatly influenced by their diet. For instance, Min et al. (2012) 

reported that feeding broiler chickens up to 15% distillers dried grains with solubles 

(DDGS) increased the PUFA to saturated fatty acid ratio of meat as well as cooking loss 

and shear force. Thus, the incorporation of algae into an animal may increase the EPA 

and DHA content of the meat, but may also change the fatty acid and flavor profile. For 

example, meat from lamb fed a fish oil/algae diet had significantly higher levels of EPA 

and DHA, along with more volatile compounds, which was scored least favorable in a 

trained sensory panel compared to the control (Elmore et al., 2005).  

 

reaction that occurs in three main steps: initiation, propagation, and termination. Initiation 

ensues when a radical or non-radical species abstracts a labile hydrogen atom from a 

methylene group of a lipid (LH) to form a lipid radical (L
∙
). The abstraction of hydrogen 

atoms from fatty acid chains results in an unstable carbon radical, commonly known as 

an alkyl radical, which is stabilized through delocalization over the double bonds 

resulting in double bond shifting (Min and Ahn, 2005). Depending on the level of 

molecular oxygen present within a system the formed fatty acid radical can undergo 

various rearrangements. In the presence of oxygen, peroxyl radicals (LOO
∙
) are primarily  

2.3. Oxidative Processes  

 2.3.1. Mechanism of Lipid Oxidation. Lipid oxidation is a free radical chain 
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generated, while under very low oxygen conditions, L
∙
 can react with other molecules 

such as proteins or other lipids. During propagation LOO
∙
 will abstract a hydrogen atom 

from neighboring lipids or fatty acids to form a hydroperoxide (LOOH) and a new lipid 

radical (L
∙
). In food, hydroperoxides (ROOH) may be responsible for the development of 

off-flavors or for further reactions with other constituents such as proteins. Furthermore, 

formed hydroperoxides may undergo scission to form additional products including 

ketones, aldehydes, organic acids, and hydrocarbons. Some of these products retain a 

double bond, which, because of the preceding bond rearrangement, makes them highly 

reactive α, β unsaturated aldehydes (so called “-enals”) (McIntyre and Hazan, 2010). 

These electrophilic species readily covalently modify nucleophilic groups on target 

proteins and they extensively derivatize reduced glutathione, thereby decreasing cellular 

antioxidant protection (McIntyre and Hazan, 2010). Lipid oxidation is terminated through 

the binding of two radical species to form a non-radical product. In the presence of 

oxygen, the predominant free radical is the peroxyl radical since oxygen will be added 

onto alkyl radicals at diffusion-limited rates (Fennema, 2008). Under atmospheric 

conditions termination of lipid oxidation may occur between peroxyl and alkoxyl 

radicals. In low oxygen environments, such as frying oils, termination reactions can occur 

between alkyl radicals to form fatty acid dimers. Furthermore, lipid oxidation products 

can yield polymers, which usually occur during high heating. The equation below 

summarizes the reactions of lipid oxidation. 

 

 

 

Initiation: LH + O
2

1 
→ L

 ∙ 
 

Propagation: L
 ∙
 + O

2
 → LOO

∙
 

  
     LOO

∙
 + LH → LOOH + L

∙
 

Termination: LOO
∙
 + L

∙
 → Non-radical product 



24 

 

 

depends on the extent to which deterioration has occurred. Researchers are also interested 

in determining the effects of certain processes or antioxidants on the stability of a 

product. Thus some criterion for assessing the extent of oxidation is required. Sensory 

analysis is one of the most sensitive techniques that provides data pertaining to practical 

applications, but is not useful for routine analyses and generally lacks reproducibility. 

Consequently, many chemical and physical methods have been developed to quantify 

oxidative deterioration with food products that correlate with off-flavor development. In 

food products abstraction reactions and rearrangements of alkoxyl and peroxyl result in 

the production of endoperoxides and epoxides as secondary products (Pike, 2003). 

Various methods have been developed to measure different compounds that form or 

degrade throughout lipid oxidative processes. Peroxide value, p-anisidine value, iodine 

value, volatile organic compounds, thiobarbituric acids, and conjugated dienes and 

trienes are common methods to assess lipid oxidation in food.  

Peroxide value is one of the oldest and most commonly used methods to test for 

oxidative rancidity. It measures the concentration of peroxides and hydroperoxides 

formed during the initial stages of lipid oxidation and is defined as the milliequivalents 

(mEq) of peroxides per kilogram of sample. Peroxide value is measured through the 

addition of potassium iodide and lipids, where excess potassium iodide reacts with 

peroxides and the iodine is liberated. Titration with standardized sodium thiosulfate, will 

yield a colorless solution once all the excess iodine reacts with sodium molecules. The 

equation below summarizes the reaction of peroxide value.  

 2.3.2. Methods to Measure Lipid Oxidation. The acceptability of a food product 
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 Double bonds in lipids are changed from nonconjugated to conjugated bonds 

upon oxidation. Conjugated dienes give rise to an absorption peak at 230–235 nm, while 

conjugate trienes are measured at 270 nm. Ultraviolet detection of conjugated dienes is 

simple, fast, and useful for monitoring the early stages of oxidation. However, this 

method is less specific and sensitive compared to other methods, and the results may be 

affected by the presence of compounds absorbing in the same region, such as carotenoids 

(Shahidi and Zhong, 2005).  

 Primary oxidation products, such as hydroperoxides, are unstable and susceptible 

to decomposition. The decomposition of primary lipid oxidation products can give rise tp 

secondary products including aldehydes, ketones, alcohols, hydrocarbons, volatile 

organic acids, and epoxy compounds (Shahidi and Zhong, 2005). Thiobarbituric acid 

reactive substances (TBARS) measures malondialdehyde, a compound formed during the 

degradation of polyunsaturated fatty acids. Malondialdehyde reacts with thiobarbituric 

acid to form a colored complex that can be measured spectrophotometrically.  

 The p-anisidine value (p-AnV) method estimates the amount of α- and β-

unsaturated aldehydes (mainly 2-alkenes and 2,4-dienals), generated during the 

decomposition of hydroperoxides (Pike, 2003). The reaction with p-anisidine reagent 

with aldehydes, under acidic conditions forms yellowish products that absorb at 350 nm.  
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I
-  

→  ROH + K
+
OH

-
 + I
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blue colorless 
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 Finally, carbonyl compounds, including aldehydes and ketones, are major 

contributors to off-flavors and odors associated with rancidity. Volatile compounds can 

be measured using gas chromatography, while total carbonyls can be measured using a 

colorimetric assay with 2,4-dinitrophenylhydrazine (DNPH). DNPH reacts with carbonyl 

compounds to form a yellow hydrazine. Because food is a dynamic system, two or more 

methods should be used to draw a more complete picture.  

 

lipid oxidation since they contain both unsaturated lipids and pro-oxidant components. In 

meat, lipids are present as either intermuscular or intramuscular fat. Intermuscular fat is 

generally stored in specialized connective tissues as a large deposit, while intramuscular 

fat is integrated into the tissue and widely dispersed (Love and Pearson, 1971). Of the 

muscle lipid fractions, the polar phospholipids contain the highest proportion of 

unsaturated fatty acids, which is primarily responsible for lipid oxidation in muscle foods. 

Lipid oxidation is a major cause of quality deterioration in meat and meat products. 

Undesirable changes in color, flavor, and nutritional value occurs as lipids, present in 

meat, oxidize and interact with other constituents, such as pigments, proteins, 

carbohydrates and vitamins. Pigment and lipid oxidation are interrelated, and ferric 

hemes are believed to promote lipid oxidation (Faustman et al., 2010). Iron and ascorbic 

acid may also function as prooxidants in meat. Sodium chloride accelerates oxidation of 

the triglycerides, although the mechanism of salt catalysis is not completely known. 

Cooked meat undergoes rapid deterioration due to tissue lipid oxidation. Refrigerated and 

frozen fresh meats are also susceptible to lipid and protein oxidation, which causes 

 2.3.3 Impact of Lipid Oxidation on Meat Quality. Muscle foods are prone to 
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quality losses due to ‘freezer-burn.’ Protein denaturation and cross-linking may result 

from lipid oxidation in stored freeze-dried meat. With increased consumption of 

prepackaged raw meat and precooked convenience meat items, control of oxidation has 

become increasingly important. Antioxidants, such as vitamin E, and chelating agents, 

such as phosphates, are the most effective inhibitors of lipid oxidation (Mitsumoto, 

2000). 

 

contains two, highly reactive unpaired electrons. Formation of free radical intermediates 

occurs in oxidation reactions involving oxygen in the ground state (Fridovich, 1972). Of 

primary concern are the effects of reactive oxygen species (ROS) and reactive substances 

(RS), which are capable of oxidizing cellular proteins, lipids, and nucleic acids, resulting 

in cellular membrane instability. ROS and RS may be generated by a wide variety of 

physiological and non-physiological processes, such as the formation of hydrogen 

peroxide by endogenous oxidases, conversion of H2O2 to OH
•
 by metal catalyzed 

oxidation systems, formation of alkyl radicals, peroxides, and aldehydes during lipid 

peroxidation, among others (Berlett and Stadtman, 1997). In live tissue, aerobic cells are 

able to defend themselves against ROS damage through various enzymes, such as 

superoxide dismutase, catalase, and glutathione peroxidase (Fridovich, 1972). However, 

over time the accumulation of oxidatively modified proteins may lead to a number of 

physiological disorders and diseases. The sites of free radical attack occur at the amino 

acid side chains and peptide backbone on proteins, which lead to protein polymerization 

and fragmentation.  

2.3.4. Mechanism of Protein Oxidation. In the ground state, molecular oxygen 
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 All amino acid residues of proteins are theoretically subject to attack by free 

radicals and nonradical ROS. However, some amino acids such as cysteine and 

methionine are particularly sensitive to oxidation by almost all forms of ROS. Under mild 

conditions, cysteine residues are converted to disulfides and methionine residues are 

converted to methionine sulfoxide (MeSOX) residues (Berlett and Stadtman, 1997). 

Aromatic amino acid residues are also among the preferred targets for ROS attack. 

Oxidative cleavage of proteins by the α-amidation pathway or by oxidation of glutamyl 

side chains leads to the formation of protein carbonyl derivatives (Stadtman and Berlett, 

1997).  

Protein carbonyls are highly reactive groups, whether they were derived from 

proteins or originate from a non-protein source. Carbonyl groups from oxidized proteins 

will react with an electron dense protein molecule (i.e. the free amino group of a lysine 

residue) forming a covalent cross-linkage (Feeney et al., 1975). In oxidized muscle, the 

carbonyl-amino cross-linking (Schiff base) between protein molecules causes 

polymerization and aggregation that can be non-dissociable. Mild or complete unfolding 

of protein molecules due to oxidation can increase the exposure of nonpolar residues, 

leading to hydrophobic association of proteins. Peptide bond cleavage may also occur 

through ROS attack on the side chains of glutamic acid and aspartic acid residues 

(Garrison, 1987). The abstraction of a hydrogen atom from side chain carbon atoms of 

both amino acid residues leads to the formation of peptide fragments. 

 

various modifications of the protein, such as carbonyl formation and amino acid 

2.3.5. Methods to Measure Protein Oxidation. Oxidative reactions results in 
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alterations. The colorimetric DNPH assay is a universal technique applied when 

measuring protein oxidation in muscle food systems. In this method, DNPH reacts with 

protein carbonyls to generate hydrazones and the absorbance is read at 370 nm (Levine et 

al., 1990).  

All amino acids are potential targets of oxidative modifications; however, sulfur-

containing and aromatic amino acid residues are particularly sensitive to oxidation, which 

can be measured through a variety of methods. For instance, cysteine residues (i.e. 

protein thiols) can cross-link, forming disulfide bonds. These changes can be assessed 

using gel electrophoresis with and without the addition of a reducing agent, such as β-

mercaptoethanol, and Ellman’s reagent (5,5’-dithiolbis-(2-nitrobenzoic acid): DTNB). 

Adding a reducing agent to the sample and seeing a recovery in band width and intensity 

is indicative of disulfide bond formation. DTNB is used o quantify the number or 

concentration of thiol groups present in a sample. Thiols react with DTNB and at neutral 

or alkaline pH will ionize to form the yellow compound, NTB
2-

. Losses in tryptophan 

residues are measured fluorescently, where decreases of tryptophan are determined by the 

emission spectra recorded from 300 to 400 nm at the excitation wavelength of 283 nm 

(Lund et al., 2011). Tyrosine residues are susceptible to dimerization linked by 1,3-

dityrosine, a highly fluorescent molecule that is resistant to acid hydrolysis and protease 

activity (Saeed et al., 2006). Dityrosine is measured by fluorescent measurements at 325 

nm excitation and 400 nm emission or reversed phase high pressure liquid 

chromatography (RP-HPLC). HPLC attached to a fluorescence detector is the general 

method used for the analysis of amino acids and formation of dityrosine. For instance, 

tyrosine peaks will elute at 25 min, while dityrosine elutes at 31 min (Saeed et al., 2006).  
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Changes to protein molecular structure due to oxidation can be investigated by 

multidimensional nuclear magnetic resonance (NMR) spectroscopy, electron spin 

resonance (ESR), and fourier transform infrared spectroscopy (FTIR). ESR can analyze 

materials with unpaired electrons, such as radicals, while NMR and FTIR can be utilized 

to study conformational changes in oxidized proteins. NMR is used to assess chemical 

modification of proteins at an atomic level, while FTIR can pinpoint specific chemical 

modifications and help assess their impact on the global secondary structure of a protein. 

 

cause of quality deterioration in muscle foods due to the formation of rancid odor, off 

flavors, and off color. Fresh and processed muscle foods are susceptible to oxidative 

processes due to the high concentrations of heme pigments, unsaturated lipids, metal 

catalysts, and various oxidizing agents. These agents may function as a precursor or 

catalyst for the production of reactive oxygen species and reactive substances.  

 Myosin molecules are made up of approximately 4500 amino acid residues and 

40 residues are cysteine (Strehler et al., 1986). When exposed to oxidative conditions, as 

much as one-third of free sulfhydryls are lost (Srinivasan and Xiong 1996; Wang et al.,  

1997). Ooizumi and Xiong (2004) investigated the impact of hydroxyl radicals on the 

conformational and biochemical characteristics of chicken myofibrillar proteins. 

Exposure to hydroxyl radicals led to progressive aggregation inside and between myosin 

molecules. Extreme cross-linking may be the cause of reduced tenderness in meat 

products. Kim et al. (2010) reported a decrease in tenderness and juiciness in beef steaks 

2.3.6. Impact of Protein Oxidation on Meat Quality. Oxidation is the leading 
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packaged in high-oxygen MAP, which resulted from protein oxidation and 

polymerization of intermolecular cross-links between myosin. 

Amino acids with reactive side chains are susceptible to lipid radicals and their 

by-products. Lipid oxidation deteriorates food quality and alters protein functionality 

because it affects different components such as lipids, proteins, vitamins, and other 

compounds. Proteins may react with oxidized lipids through two different mechanisms: 

(1) free radicals produced by cleavage of hydroperoxides react with proteins forming 

protein free radicals and subsequent by-products; (2) secondary products of lipid 

oxidation (i.e. aldehydes, ketones) react with ε-amino groups forming protein aggregates 

(Tironi et al., 2002). Malondialdehyde (MDA) is a major secondary product formed from 

lipid oxidation. MDA is able to react with NH2 groups of proteins, nucleic acids, and 

phospholipids. The formation of covalent bonds cause these molecules to cross-link, thus 

inactivating and modifying their physiochemical properties (Aubourg 1993). However, 

oxidative attacks of amino acids in muscle tissue may occur independently of lipids. 

Heme iron (Fe
2+

) is proposed to complex with a metal binding site on the protein which 

reacts with H2O2 to generate oxygen species that attack side chains of amino acid 

residues (Stadtman and Oliver, 1991). Uchida et al. (1992) reported the polymerization of 

collagen under copper- and iron- H2O2 oxidizing systems. Furthermore, metal-catalyzed 

oxidation results in the loss of enzyme activity and increase in carbonyl groups (Levine et 

al., 1990). 

Formation of protein aggregates through covalent and noncovalent forces are one 

of the major consequences of protein oxidation by ROS and other oxidizing agents. The 

conversion of amino acid residues, such as histidine, into carbonyl derivatives, and the 
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formation of disulfide linkages reduce the functionality of proteins (Xiong and Decker, 

1995). Liu et al. (2000) reported an increase in carbonyls, amines, disulfide bonds, 

myosin polymerization and a decrease in thermal stability and gel forming ability in 

myofibrils oxidized with FeCl3/H2O2/ascorbate. Whether from red meat, poultry, or fish 

species, previous studies have shown that under oxidative conditions, all muscle proteins 

are susceptible to oxidative damage caused by lipid oxidation byproducts, metal ions, and 

other prooxidants indigenous to muscle or generated during meat processing (Decker et 

al., 1993; Wan et al., 1993).  
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CHAPTER 3 

 

DIETARY ANTIOXIDANT SUPPLEMENTATION ENHANCES LIPID AND PROTEIN 

OXIDATIVE STABILITY OF CHICKEN MEAT THROUGH PROMOTION OF 

ANTIOXIDANT ENZYME ACTIVITY 

 

3.1. Summary 

 

Recent nutrigenomic studies have shown that animal nutrition can have a major 

influence on tissue gene expression. Dietary antioxidant supplements can enhance the 

quality of meat through modification of tissue metabolic processes. This study 

investigated the influence of dietary antioxidants and quality of oil on the oxidative and 

enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package 

(HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or 

skin (SK) packaging systems during retail display at 2–4 °C for up to 21 d. Broilers were 

fed a diet either with a low-oxidized oil (peroxide value POV 23 meq O2/kg) or with a 

high-oxidized oil (POV 121 meq O2/kg), supplemented with an antioxidant pack (200 

ppm EconomasE and organic minerals Se, Zn, Cu, Mn, and Fe as in Bioplex) in 

substitution for vitamin E and inorganic minerals for 42 d. Lipid and protein oxidation 

and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation 

(TBARS) was inhibited by up to 32.5% (P < 0.05) with an antioxidant-supplemented diet 

when compared to diets without antioxidants, particularly in the HiOx and PVC systems. 

Protein sulfhydryls were significantly protected by antioxidant diets, e.g., by 14.6% and 

17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples. 

Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly 

higher (P < 0.05) in antioxidant-supplemented diets compared with the basal diet, 



34 

 

regardless of oil quality. Also, serum carbonyls were lower (P < 0.05) in broilers fed a 

low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary 

antioxidants can minimize the oxidative instability of proteins and lipids, and the 

protection may be linked to improved cellular antioxidant enzymatic activity. 
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3.2. Introduction 

 

Oxidation is a result of natural metabolic processes but excessive formation of 

reactive species, such as free radicals, can damage to important biomolecules (i.e., lipids, 

proteins, and nucleic acids) in the body of humans and animals alike. The rate of 

oxidation increases in result to the following: (1) high intake of oxidized lipids and pro-

oxidants; (2) deterioration of sensitive polyunsaturated fatty acids (PUFAs); and (3) low 

intake of antioxidative nutrients (Morrissey et al., 1998; Smet et al., 2008). In muscle 

foods, oxidative reactions continue post-mortem and are a leading cause of quality 

deterioration during processing and storage. With a relatively high proportion of PUFAs, 

poultry meat is more susceptible to oxidative processes, specifically lipid oxidation, than 

beef or pork. Therefore, incorporation of dietary antioxidants, such as vitamin E and 

selenium (Se) in poultry feed, has been implemented to achieve optimal growth 

performance, reproduction, and meat quality.  

A major challenge in broiler production is the expense of in raising birds, where 

60–75% of the total incurred cost is in feed alone (Tahir and Pesti, 2012). In recent years, 

the rising cost of raw materials and energy has driven up the prices of vitamin E and 

animal feedstuff, forcing producers to find less expensive alternative dietary sources. 

Often for economical poultry rearing, highly oxidized, recycled vegetable oils (e.g., 

reused frying oils) are often used as an added fat source in poultry feed to increase the 

energy density (Tavárez et al., 2011). Xiao et al. (2011) reported that EconomasE 

(EcoE), an algae-based antioxidant containing Se yeast, reduced the amount of vitamin E 

required in broiler feed without compromising growth performance, overall health, or 

meat quality. Unfortunately, vegetable oils rich in PUFAs are highly susceptible to 
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oxidative deterioration. The products of lipid oxidation can decrease the nutrient content 

of the feed by reacting with proteins, lipids, and fat-soluble vitamins, which may even 

form toxic products that can adversely affect broiler performance and health (Engberg et 

al., 1996). Crespo and Garcia (2002) reported that broilers deposit PUFAs into their 

tissues similar to the rates present in their diet, and Eder et al. (2003) showed that dietary 

thermoxidized oils suppressed gene expression of lipogenic enzymes in rats. Hence, 

utilizing oxidized oil in broiler feed may result in decreased shelf-life and quality 

consistency of meat due to the potential suppression of gene expression for antioxidant 

enzymes.  

Recently, nutrigenomic studies coupled with proteomic investigations have 

indicated a potential link between dietary nutrients and the expression of specific 

enzymes and metabolites in muscle (Hesketh, 2008). Li et al. (2009) reported that dietary 

supplementation with α-tocopherol improved meat tenderness and reduced lipid oxidation 

in broiler breast and thigh meat. However, the influence of dietary antioxidants on the 

genetic and regulatory mechanisms which define metabolic and physiological changes in 

muscle tissue is complex and poorly understood. The present study was designed to 

assess the influence of dietary EcoE/Se/ organic mineral-based antioxidants and quality 

of oil on the oxidative and enzymatic properties of chicken broiler breast meat. To relate 

the study to in situ situations, harvested meat was packaged and stored in an oxygen-

enriched (HiOx: 80% O2/20% CO2), air-permeable polyvinylchloride (PVC), or skin 

(SK) packaging systems during retail display at 2–4 °C for up to 21 d.   
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3.3. Material and Methods 

 

3.3.1. Materials 

 A commercial algae-based antioxidant pack containing Se yeast as in EcoE and 

organic minerals as in Bioplex, was supplied by Alltech Inc. (Nicholasville, KY). 

Soybean oil was acquired from a local retailer, and the initial peroxide value (POV), 

determined according to AOCS (2007), was 23 meq O2/kg. To create oxidized oil, 

aluminum pans (41×13×4 cm) each containing 5 kg of the above oil were heated in a 

convection oven at 95 °C ± 5 °C for up to 7 d. The POV of the oxidized oil was 

monitored intermittently. When the POV reached the target level (120 meq O2/kg), 

heating was discontinued and the oxidized oil was cooled to room temperature. The 

actual POV of the final cooled oil was 121 meq O2/kg and it was used immediately for 

diet preparation. All chemicals (reagent grade) were purchased from Fischer Scientific 

(Pittsburgh, PA) or Sigma-Aldrich (St. Louis, MO) unless specified otherwise. 

 

3.3.2. Broiler Production  

 All procedures used in the study herein were approved by the University of 

Kentucky Animal Care and Use Committee. Three independent feeding trials (n = 3) over 

a two-year period were performed. In each, 960 male broilers were raised from 1 to 42 d 

of age and randomly placed in 48 floor pens with 20 birds per pen. Each pen was 

randomly designated one of four dietary treatments consisting of feeding: (1) basal diet–

low oxidized oil (LO); (2) basal diet–low oxidized oil, supplemented with antioxidants 

(ALO); (3) basal diet–high oxidized oil (HO); (4) basal diet–high oxidized oil, 

supplemented with antioxidants (AHO). Broilers were randomly distributed into the 4 
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dietary groups with 12 replicate pens for each diet. Each pen was equipped with a feeder, 

a nipple drinker line and a litter of soft wood shavings. Birds consumed feed in mash 

form and water on an ad libitum basis. A starter diet containing 22% crude protein (CP) 

and 3,120 kcal/kg was fed from 0–21 d of age and a grower diet containing 20% CP and 

3,150 kcal/kg was fed from 21–42 d of age (Table 3.1 and Table 3.2). Photoperiod 

consisted of 23 h of light and 2 h of dark throughout the experiment. 

 

3.3.3. Meat Preparation, Packaging, and Storage 

 After 42 d of feeding, one broiler from each of the 48 pens (4 diets × 12 pens) was 

randomly selected, humanely harvested, de-feathered, then chilled in ice slurries for 1.5 

h. Both sides of the breast (Pectoralis major) were then removed and skinned. Per diet, 

one randomly selected broiler breast was placed in a Cryovac black processor tray, 

CS977 (22×17×4 cm; Sealed Air Corporation, Elmwood Park, NJ) and sealed with 

Cryovac Lidstock 1050 MAP ethylene vinyl alcohol film (1.0 mil, < 20 cc/m
2
/24 h 

oxygen transmission rate at 4.4 °C using an InPack Junior A10 packaging machine (Ross 

Industries Inc., Midland, VA). A gas mixture of 80% O2/20% CO2 (Scott-Gross 

Company Inc., Lexington, KY) was used for the HiOx packaging. For PVC, one breast 

per diet was placed on #2 supermarket white polystyrene trays (20.8×14.5×2.3 cm in 

dimension; Pactive LLC; Lake Forest, IL) and overwrapped with an air-permeable 

polyvinylchloride film (15,500–16,275 cm
3
/m

2
/24 h oxygen transmission rate at 23 °C; 

E-Z Wrap Crystal Clear PVC Wrap, Koch Supplies, North Kansas City, MO). For SK, 

broiler breasts were packaged using Cryovac black processor trays and sealed with a 
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Table 3.1. Composition of the experimental diets 

Nutrient 
LO ALO HO AHO 

Starter Grower Starter Grower Starter Grower Starter Grower 

ME, kcal/kg 3120 3150 3120 3150 3120 3150 3120 3150 

CP, % 22 20 22 20 22 20 22 20 

Lysine, % 1.24 1.11 1.24 1.11 1.24 1.11 1.24 1.11 

TSAA, % 0.90 0.72 0.90 0.72 0.90 0.72 0.90 0.72 

AvP, % 0.45 0.41 0.45 0.41 0.45 0.41 0.45 0.41 

Ca, % 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.90 

 

Vitamin E, IU/kg 

 

50 

 

50 

 

10 

 

10 

 

50 

 

50 

 

10 

 

10 
1
Se, ppm 0.30 0.30 − − 0.30 0.30 − − 

2
Zn, ppm 100 100 25 25 100 100 25 25 

2
Cu, ppm 125 125 31 31 125 125 31 31 

2
Mn, ppm 90 90 23 23 90 90 23 23 

2
Fe, ppm 80 80 20 20 80 80 20 20 

3
EconomaseE, ppm − − 200 200 − − 200 200 

Soybean oil, %, LO 4.4 3.4 4.4 3.4 − − − − 

Soybean oil, %, HO − − − − 4.4 3.4 4.4 3.4 
1
As in Selenite. 

2
As inorganic minerals for Diets LO and HO; as in Bioplex for Diets ALO and AHO. 

3A tocopherol-Se based antioxidant blend.
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Table 3.2. Ingredient and nutrient composition (as-fed basis) of the basal diet 

 

Item Starter diet (1–21d) Grower diet (22–42d) 

Ingredient % of diet % of diet 

Corn 53.41 61.26 

Soybean meal  

(48%CP) 
38.00 31.40 

Soybean oil  

(low or high oxidized) 
4.40 3.40 

Salt 0.45 0.45 

Limestone 1.33 1.30 

Dicalcium phosphate 1.76 1.54 

DL-Methionine 0.15 0.15 

Vitamin premix
1 0.25 0.25 

Mineral premix
2
 0.25 0.25 

Nutrient (calculated values)   

AMEn, kcal/kg 3.12 3.15 

Protein, % 22.00 20.00 

Ca, % 1.00 0.90 

Nonphytate P, % 0.45 0.41 

TSAA, % 0.90 0.72 

Lysine, % 1.24 1.11 

1
Supplied per kg diet for all diets: 11,025 IU of vitamin A (retinyl acetate), 0.0882 mg of vitamin D3 

(cholecalciferol), 0.91 mg of vitamin K3 (2-methyl-1, 4-naphthoquinone), 2 mg of thiamin, 8 mg of 

riboflavin, 55 mg of niacin, 18 mg of Ca pantothenate, 5 mg of vitamin B6 (pyridoxines), 0.221 mg of 

biotin, 1 mg of folic acid, 478 mg of choline, 28 µg of vitamin B12 (cyanocobalamin).Vitamin E (DL-α-

tocopheryl acetate): 50 IU/kg for LO & HO diets, 10 IU/kg for ALO & AHO diets 
2
Supplied per kg diet for LO & HO diets: 80 mg Fe as FeSO4·H2O, 90 mg Mn as MnSO4·H2O, 125 mg Cu 

as CuSO4·5H2O, 100 mg Zn as ZnO, 0.35 mg I as KIO3, and 0.30 mg Se as sodium selenite. 

Supplied per kg diet for ALO & AHO diets: 20 mg Fe as Bioplex Fe, 23 Mn as Bioplex Mn, 31 mg Cu as 

Bioplex Cu, 25 mg Zn as Bioplex Zn, 0.35 mg of iodine as KIO3, and 0.30 mg  

Se as Selplex.                                                   
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Cryovac V834HB polyolefin film (4.0 mil, 1 cc/m
2
/24 h oxygen transmission rate at 23 

°C). All packaged samples were stored in a retail display cooler (2–4 °C) for up to 21days 

and received approximately 1076 lux of warm white fluorescent light to stimulate retail 

storage conditions. Storage time was defined in the present study started from the day of 

breast meat collection (day 0) and ended after 7 day (PVC), 14 day (HiOx), and 21 day 

(SK). 

 

3.3.4. Antioxidative Minerals and Vitamin in Muscle Tissue 

Eight broilers per dietary treatment (total of 32 per trial) were humanely 

harvested, and the Pectoralis  major muscle tissue was removed and stored at –20 °C 

until use. Selenium content was measured according to Olson et al. (1975) as detailed by 

Cantor and Tarino (1982). Zinc (Zn) level was determined as described by Montaser and 

Golightly (1992). Vitamin E was determined using the procedure of Liu et al. (1996). 

 

3.3.5. Lipid Oxidation 

Lipid oxidation in stored muscle samples was measured as thiobarbituric acid-

reactive substances (TBARS) according to Sinnhuber and Yu (1977). The TBARS 

concentration, using a molar extinction coefficient of 152,000 M/cm for the 

chromophore, was expressed as mg MDA per kg muscle.  

 

3.3.6. Protein Oxidation 

Because myofibrillar proteins are responsible for most of the meat quality attributes 

important to broilers, i.e., water-holding, tenderness, and texture (Xiong, 2000), this 
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muscle protein group was selected for protein oxidation analysis. Myofibrils were 

isolated from meat on the appropriate storage days using a rigor buffer containing 0.1 M 

KCl, 2 mM MgCl2, 1 mM EGTA, and 10 mM K2HPO4 (pH 7.0) as previously described 

(Xiong et al., 2000). Protein concentration was determined by the Biuret method. 

Myofibril pellets were kept on ice and all the measurements were completed within 24 h 

of isolation. 

Protein carbonyls were measured according to the 2,4-dinitrophenylhydrazine 

(DNPH) colorimetric method as described by Levine et al. (1990). The carbonyl content 

expressed as nmol per mg protein was calculated using a molar absorption coefficient of 

22,000 M/cm for the formed protein hydrazones. Sulfhydryls were determined using 5,5’ 

dithio-bis(2-nitrobenzoic acid) (DTNB) (Ellman, 1959). Total sulfhydryl content was 

calculated using the molar extinction coefficient of 13,600 M/cm and expressed as nmol 

per mg protein. 

 

3.3.7. Antioxidant Enzymes 

Six broilers per dietary treatment (total of 24 per trial) were humanely harvested. 

Immediately following exsanguination, aliquots of Pectoralis major muscle samples 

(approximately 5 g each) were removed from each broiler, cryogenically frozen in liquid 

N2 (–196 °C), and stored in a –80 °C freezer until use. Upon enzyme analysis, partially 

thawed muscle samples were mixed into 20 mL of chilled buffer (0.05 M Tris-HCl, 1 

mM EDTA, pH 7.0) and homogenized for 30 s at 75,000 rpm with a Model PT 10/35 

Polytron homogenizer fitted with a PTA-20TS generator (Kinematica Ag, Switzerland). 

The homogenate was centrifuged for 10 min at 10,000 × g at 4 °C and the supernatant 
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was filtered through 4 layers of grade 10 mesh cheese cloth. Protein content was 

measured using the Biuret method. Cu–Zn superoxide dismutase (SOD) activity was 

determined according to Marklund and Marklund (1974) and Gatellier et al. (2004) using 

the inhibition of pyrogallol in a basic medium. Catalase (CAT) activity was measured by 

the rate of H2O2 disappearance according to Aebi (1974). Glutathione peroxidase (GsPx) 

activity was determined according to Beutler (1957).  

 

3.3.8. Serum Protein Carbonyls 

The chemical composition of blood serum, which is influenced by diet, is often 

used as an indicator of the nutritional status of an animal (Liotta et al., 2003). Hence, 

blood samples were taken from broilers by cardiac puncture immediately postmortem. 

Samples were allowed to clot at room temperature before centrifugation at 1,2000 × g for 

15 min to separate serum. The serum was transferred to nalgene tubes, cryogenically 

frozen in liquid nitrogen, and then stored in an –80 °C freezer. Serum was thawed at 4 °C 

in darkness then protein carbonyl content was determined according to Levine et al. 

(1990) as stated above.  

 

3.3.9. Statistical Analysis 

 Three independent animal feeding trials (n = 3) over a two-year period each with 

duplicate or triplicate muscle sample analyses were conducted. Data were subjected to 

analysis of variance (ANOVA) using the Statistix software 9.0 (Analytical Software, 

Tallahassee, FL) with general linear model’s procedure to determine the significance of 

main treatment factors (diet, packaging systems, and storage time). Least Square 



 

44 

 

Differences (LSD) all-pairwise multiple comparisons were performed to separate the 

means when a treatment effect was found significant (P < 0.05). In addition, interactions 

between diet, packaging, and storage time were analyzed. 

 

3.4. Results and Discussion 

 

3.4.1. Tissue Antioxidative Minerals and Vitamin 

 Minerals and vitamins are generally added to animal feedstuff for growth, 

maintenance, and sustenance of life; yet the bioavailability, absorption, and distribution 

of these micronutrients in various tissues may vary with feed quality. Breast meat was 

chosen for the analysis since it is the most valuable cut on the bird and a greater 

distribution of antioxidative minerals and vitamins to this area may help improve 

oxidative stability. The effects of dietary antioxidant supplementation and oil quality on 

Se, Zn, and vitamin E content in broiler breast tissue can be seen in Table 3.3. Diets with 

antioxidant supplementation (ALO, AHO) significantly (P < 0.05) increased tissue Se 

content compared to the basal diet (LO, HO). There was no significant (P < 0.05) 

difference in tissue Zn and vitamin E levels among dietary treatments. However, birds 

fed a high-oxidized diet had slightly lower zinc and vitamin E levels compared to their 

respective counterparts. Boler et al. (2012) reported lower vitamin E levels in the back fat 

of barrows fed a high-oxidized corn oil diet supplemented with synthetic antioxidants 

compared to the fresh corn oil diet supplemented with synthetic antioxidants.  
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Table 3.3. Effects of dietary antioxidants and oil quality on tissue vitamin and mineral 

content of broilers. 
 

Diet Se (ppb) Zn (ppm) VE (µg/g) 

LO 170.78
b 

6.85
 

134.18
 

ALO 300.68
a 

6.67
 

128.98
 

HO 172.10
b 

6.58
 

127.36
 

AHO 328.94
a 

6.37
 

121.13
 

P - value < 0.0001 0.3449 0.4891 
 
ab

 Means (n = 3) between dietary treatments without a common lowercase superscript 

differ significantly (P < 0.05). 
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3.4.2. Lipid Oxidation  

 For all dietary treatments, lipid oxidation increased throughout the first 7 d of 

storage under each packaging condition (Table 3.4). HiOx and PVC meat samples  

exhibited significant signs of microbial spoilage after 14 and 7 d, respectively, and 

therefore not analyzed beyond these storage times. Compared with the HO dietary 

treatments, regardless of antioxidant supplementation, the low-oxidized samples (LO, 

ALO) had lower TBARS values in all packaging conditions, in agreement with Tavárez 

et al. (2011) who reported a reduced TBARS production in retail display breast meat 

from broilers fed a commercial blend of ethoxyquin and propyl gallate. On d 14, the 

TBARS value of the HO dietary group was significantly higher (P < 0.05) compared with 

the LO samples packaged under HiOx. Furthermore, HiOx and PVC produced higher 

amounts of TBARS (P < 0.05) than SK throughout storage. Delles et al. (2011) reported 

similar oxidative susceptibility and subsequent higher TBARS values of pork muscle 

packaged in HiOx and PVC compared with vacuum packaging (similar to SK). Samples 

from birds fed an antioxidant supplemented diet, regardless of oil quality, showed lower 

TBARS formation compared with basal dietary regimes. Other studies focusing on 

natural antioxidants have also shown that feeding broilers high levels of α-tocopherol (De 

Winne and Dirinck, 1996) and selenium (Ryu et al., 2005) delay the onset of oxidative 

off-flavor formation in chicken meat during storage.  

Lipid oxidation in muscle foods occurs primarily in the highly unsaturated 

phospholipids of the subcellular membranes (Frankel, 1980). The molecular structure of 

α-tocopherol allows it to protect highly oxidizable PUFAs through neutralization of free 

radicals in the cellular and subcellular membranes (Liebler, 1993). The lower levels of   
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Table 3.4. Effects of diets on lipid oxidation (TBARS, mg/kg MDA) in broiler meat packaged in oxygen-enriched 

(HiOx), air-permeable polyvinylchloride (PVC), or skin (SK) packaging systems during refrigerated storage at 2 °C.  

 

Diet

0 d 4 d 7 d 14 d 4 d 7 d 4 d 7 d 14 d 21 d

LO 0.046
c

0.172
b

0.315
aAB

0.305
aB

0.212
b

0.278
aB

0.116
b

0.262
a

0.242
a

0.247
aAB

ALO 0.064
c

0.136
b

0.279
aB

0.269
aB

0.177
b

0.232
aB

0.116
b

0.229
a

0.214
a

0.204
aB

HO 0.05
c

0.208
b

0.379
aA

0.399
aA

0.254
b

0.352
aA

0.158
b

0.298
a

0.277
a

0.279
aA

AHO 0.053
c

0.165
b

0.348
aAB

0.342
aAB

0.23
b

0.288
aAB

0.133
b

0.267
a

0.269
a

0.256
aAB

P  - value 0.3284 0.2651 0.0508 0.0129 0.0826 0.015 0.0773 0.7571 0.1877 0.0298

Packaging * * * * * * * *

PVCHiOx SK

 
a–c

 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common 

lowercase superscript differ significantly (P < 0.05). 
AB

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common 

uppercase superscript differ significantly (P < 0.05). 

* Means between packaging systems on the same days differ significantly (P < 0.05); there was no diet × packaging 

interaction. 
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TBARS formation in the antioxidant supplemented diets may be attributed to a similar 

membranal protective effect as that of α-tocopherol. Furthermore, tissue vitamin E or Zn 

levels did not significantly differ between diets (Table 3.3), indicating that an 

algae/Se/organic mineral-based antioxidant can be an effective vitamin E and Zn 

replacement. 

 

3.4.3. Protein Oxidation 

 Dietary intake of oxidized oil has been reported to increase the oxidative stress in 

vivo and potentially cause an imbalance between the production of reactive oxygen 

species (ROS) and the defense mechanism of an animal’s body (Hayam et al., 1995; 

Boler et al., 2012). Furthermore, oxidized oil may damage dietary vitamins and increase 

the susceptibility of the gastrointestinal tract and other tissues to lipid and protein 

oxidation (Sheehy et al., 1994; Zhang et al., 2011b). Proteins are a major target of 

reactive oxygen species; the accumulation of oxidized products in the muscle tissue leads 

to meat quality deterioration. Hence, oxidative chemical modifications, including reduced 

tryptophan fluorescence, loss of sulfhydryl groups, intra- and inter-molecular crosslinks, 

and formation of carbonyl derivatives, have a detrimental effect on meat quality (Xiong, 

2000).  

In the present study, muscle tissue protein carbonyl content increased during 

storage for all dietary treatments and all packaging conditions (Table 3.5). The carbonyl 

level in HO samples, irrespective of packaging condition, was higher than those in LO 

samples. However, muscle samples from antioxidant-supplemented diets had lower 

carbonyl content compared with the basal group. For example, SK samples after 21 d had 



 

 

 

4
9

 

 

 

 

Table 3.5. Effects of diets on protein carbonyl formation (nmol/ mg protein) in broiler meat packaged in 

oxygen-enriched (HiOx), air-permeable polyvinylchloride (PVC), or skin (SK) packaging systems during 

refrigerated storage at 2 °C.  
 

Diet

0 d 4 d 7 d 14 d 4 d 7 d 4 d 7 d 14 d 21 d

LO 0.189
dB

0.565
cAB

1.004
b

1.145
a

0.508
bAB

0.925
aB

0.387
cB

0.751
bBC

0.92
a

1.025
aB

ALO 0.167
cB

0.472
bB

0.994
a

1.009
a

0.417
bB

0.844
aB

0.314
cC

0.674
bC

0.934
a

0.947
aC

HO 0.235
cA

0.707
bA

1.05
a

1.116
a

0.625
bA

1.065
aA

0.46
cA

0.842
bA

0.945
b

1.092
aA

AHO 0.203
dAB

0.608
cAB

0.927
b

1.127
a

0.538
bAB

0.949
aAB

0.41
cAB

0.792
bAB

0.968
a

1.046
aAB

P  - value 0.0257 0.0397 0.6058 0.2299 0.0386 0.0124 0.0007 0.0035 0.8269 0.0002

Packaging * * * * * * * *

PVCHiOx SK

 
a–c

 Means (n = 3) between days within the same diet (same row) within the same packaging system without a 

common lowercase superscript differ significantly (P < 0.05). 
AB

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a 

common uppercase superscript differ significantly (P < 0.05). 

* Means between packaging systems on the same days differ significantly (P < 0.05); there was no diet × 

packaging interaction. 
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lower amounts of carbonyls (P < 0.05) in the ALO group compared with LO. The impact 

of packaging systems and storage time on protein carbonyl formation was overall similar 

to that of TBARS, suggesting a possible relationship between lipid oxidation and protein 

carbonyl formation. Malondialdehyde (MDA), a secondary dicarbonyl product of lipid 

oxidation, can interact with amine groups in proteins, generating protein-bound carbonyls 

(Buttkus, 1967; Hidalgo et al., 1998). The loss of TBARS formation after 7 d and, 

conversely, the increase in protein carbonyl content, suggests that some of the MDA 

bound to amino acid side chains forming extra carbonyl compounds.  

Sulfhydryls from cysteine residues are highly susceptible to oxidation by most 

forms of ROS and provide an additional assessment of protein oxidation (Lund et al., 

2011). As shown in Table 3.6, samples from broilers fed an antioxidant treatment (ALO, 

AHO), regardless of oil quality or packaging condition, showed greater protein sulfhydryl 

retention compared with their respective controls (LO, HO). Furthermore, samples from 

broilers fed a HO diet, initially (d 0) already had a lower (P < 0.05) sulfhydryl content 

compared with LO samples; this oxidation-associated effect was extended to stored meat 

packaged under all three conditions, i.e., 14 d for HiOx, 4 d for PVC, and 4, 7, and 21 d 

for SK. Significant (P < 0.05) losses of sulfhydryls occurred from d 0 to d 4 in HiOx and 

PVC for all dietary treatments, whereas SK samples remained relatively constant. By d 7, 

all packaging systems showed significant (P < 0.05) losses in protein sulfhydryls. The 

reduced carbonyl formation and sulfhydryl disappearance in antioxidant-supplemented 

samples may be due to reduced reactive species formation in vivo. EcoE functions as a 

natural antioxidant by altering the expression of various gene transcripts, which may 

increase the total antioxidant capacity in the serum of broilers (Xiao et al., 2011). 
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Table 3.6. Effects of diets on free sulfhydryl (nmol/ mg protein) in broiler meat packaged in oxygen-enriched (HiOx), 

air-permeable polyvinylchloride (PVC), or skin (SK) packaging systems during refrigerated storage at 2 °C.   
 

Diet

0 d 4 d 7 d 14 d 4 d 7 d 4 d 7 d 14 d 21 d

LO 87.28
aB

70.23
bBC

52.95
c

45.72
dA

66.12
bB

51.54
cB

83.75
aA

70.72
bA

52.28
c

48.99
cA

ALO 93.48
aA

77.49
bA

52.24
c

40.43
dAB

71.54
bA

59.09
cA

85.36
bA

70.23
cA

58.08
d

53.44
dA

HO 81.16
aC

65.00
bC

50.46
c

38.08
dB

61.81
bB

44.36
cC

76.34
aC

58.44
bB

56.79
b

39.87
cB

AHO 82.41
aC

72.93
bAB

55.92
c

37.81
dB

63.76
bB

52.27
cB

79.37
aB

64.81
bAB

57.98
c

41.66
dB

P - value 0.0000 0.0017 0.3061 0.0225 0.0039 0.0000 0.0000 0.0071 0.3389 0.0001

Packaging * * * * * * * *

PVCHiOx SK

 
a–d

 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common 

lowercase superscript differ significantly (P < 0.05). 
A–C

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common 

uppercase superscript differ significantly (P < 0.05). 

* Means between packaging systems on the same days differ significantly (P < 0.05); there was no diet × packaging 

interaction. 
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Selenium, an antioxidant mineral, has strong antioxidant properties and serves as a 

cofactor for glutathione peroxidase, an enzyme that catalyzes the reduction of hydrogen 

peroxide and lipid peroxides, thereby preventing oxidative damage. Finally, various 

studies have reported beneficial effects of organic minerals on broiler performance, 

health and meat quality that may be attributed to its greater bioavailability and absorption 

compared to inorganic minerals (Castellini et al., 2002; Bao et al., 2007; Aksu et al., 

2011). 

 

3.4.4. Serum Protein Carbonyls 

 Dietary PUFAs greatly influence serum lipid concentrations, lipid profiles, and lipid 

metabolism by regulating gene expression through alteration of transcription factors 

involved in the absorption, extracellular transport, cellular uptake, metabolism, and 

elimination of lipids in the animal (Jump, 2002; Ringseis and Eder, 2005). Dietary 

supplementation with oxidized oil resulted in higher levels of protein carbonyl formation 

in blood serum (Figure 3.1), in agreement with Zhang et al. (2011b), who reported that 

5% inclusion of oxidized animal-vegetable fat in broiler diets increased plasma carbonyl 

content. Low-oxidized samples supplemented with antioxidants (ALO) showed 

significantly lower (P < 0.05) serum carbonyl content compared with all other dietary 

groups. The greater serum carbonyl content in broilers fed a HO diet may be attributed to 

the propagation of dietary lipid peroxides and subsequent attack of blood serum proteins, 

such as albumin, upon the transportation of fatty acids by chylomicrons to various tissues 

in the bird. Hence, feeding broilers a high-oxidized diet increases oxidative stress, in 

vivo.  
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Figure 3.1. Effects of dietary treatments on carbonyl content isolated from blood. 

Different uppercase letters (A,B) indicate significant difference (P < 0.05) of means (n = 

3) between dietary treatments. 
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3.4.5. Antioxidant Enzyme Activities 

 Oxidative stress is the imbalance between the production and degradation of ROS, 

such as superoxide anion, hydrogen peroxide, and lipid peroxides. Enzymatic inactivation 

of ROS in muscle tissue is mainly achieved by SOD, CAT, and GsPx with each having a 

unique mechanism. SOD and CAT are antioxidant enzymes that directly react with 

radical species, whereas GsPx regenerates oxidized antioxidants. Although the metabolic 

pathways for oxidized lipids after ingestion has not been fully elucidated, some studies 

have suggested that absorption of lipid peroxides is dependent upon antioxidant defense 

enzymes that metabolize lipid derivatives in the mucosa of the digestive tract (Aw and 

Williams, 1992) and in the liver (Takahashi et al., 2002; Zalejska-Fiolka et al., 2010).  

 Ingestion of the high-oxidized diets (HO, AHO) resulted in reduction in the 

activity of SOD, CAT, and GsPx compared with their respective low-oxidized 

counterparts (Figure 3.2). Specifically, SOD activity was significantly (P < 0.05) higher 

in samples from antioxidant supplemented diets than the basal diet. Gatellier et al. (2004) 

reported an increase in tissue SOD activity from bovine fed a high vitamin E pasture diet. 

Interestingly, the presence of antioxidants in the high-oxidized diet alleviated some of the 

negative effects of oxidized oil on SOD, resulting in similar SOD enzymatic rates 

between LO and AHO samples, which may be attributed to the gene upper regulation in 

response to antioxidant supplementation. There was no significant correlation between 

SOD and CAT activity (Figure 3.2) and zinc and vitamin E levels (Table 2). Tissue 

samples from broilers fed a high-oxidized treatment without antioxidant supplementation 

(HO) showed the lowest (P < 0.05) SOD activity. CAT showed a similar trend to that of 

SOD. In agreement, Srivastava et al. (2010) noticed a significant decline in tissue SOD 
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Figure 3.2. Effects of dietary treatments on tissue antioxidant enzyme activities (SOD, 

CAT, GsPx) in broiler meat. Different uppercase letters (A–C) indicate significant 

difference (P < 0.05) of means (n = 3) between dietary treatments. 
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and CAT activity in rats fed repeatedly boiled sunflower oil. The antioxidant treatment 

groups ALO and AHO had higher CAT reactivity compared with LO and HO, 

respectively. Prolonged dietary stress may cause oxidative tissue damage as evidenced by 

loss in the activity of the coupled antioxidant enzymes, SOD and CAT. DaCosta and 

Huang (2007) reported a general decline in SOD and CAT antioxidant enzyme activities 

and an increase in lipid oxidation of grass plant species upon drought stress, indicating 

that the production of free radicals may exceed the scavenging capacity of the antioxidant 

defense system under extreme stress conditions. 

Glutathione peroxidase is a key antioxidant enzyme within most cells that reduces 

hydrogen peroxide to water and lipid peroxides to their respective alcohols (Sies, 1999). 

Compared with basal dietary regimes, regardless of oil quality, the antioxidant treatment 

groups (ALO, AHO) had significantly (P < 0.05) higher GsPx activity compared with the 

basal dietary group (LO, HO). HO had the lowest GsPx activity. Bansal et al. (2005) 

reported a decrease in glutathione reductase activity as well as total glutathione content in 

the liver of rats fed nitrosamine compounds, a hepatic carcinogen. However, rats pre-

treated with oral doses of vitamin E showed improved glutathione reductase activity and 

increased levels of total glutathione content, indicating an elevation in antioxidant 

activity and a counteraction against nitrosamine-induced oxidative stress. As shown in 

Table 3.2, birds fed diets supplemented with the algae/Se/organic mineral-based 

antioxidants had higher levels of tissue Se, coinciding with a higher reactivity of GsPx 

(Figure 3.2). Zhang et al. (2011a) also found that oral doses of selenium increased blood 

and serum GsPx activity.  
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The reduction of the tissue antioxidant enzyme efficacy as a consequence of 

feeding oxidized oil may be attributed to chemical toxicity of oxidized PUFAs. It appears 

that the attenuated enzyme activity may be ultimately related to the alteration or 

reduction in gene expression and transcription. Ringseis and Eder (2005) evidenced 

reduced transcription of proteosomal and lysosomal enzymes in rats fed oxidized 

cholesterol. The proteosomal pathway is responsible for the protein repair mechanism 

required to rescue oxidized proteins and prevent cellular cytoxicity. Hence, a loss in 

proteasome function may contribute to the accumulation of oxidized proteins and loss in 

the activity of the antioxidant defense mechanism (Grune et al., 2003) and ultimately 

reduce meat quality. It appears that the observed differences between dietary treatments 

(LO, ALO, HO, AHO) in muscle tissue TBARS, protein carbonyls, and sulfhydryls were 

associated with CAT, SOD and GsPx antioxidant enzyme activity. Figure 3.3 depicts a 

schematic diagram of the potential interaction of oxidized oils with respect to broiler 

meat oxidative stability and antioxidant enzyme potential. Nevertheless, more work is 

needed to fully clarify the mechanism of dietary antioxidants and oxidized oil on the 

metabolic and physiological changes in muscle tissue. 

 

3.5. Conclusion 

 

The results indicate that feeding diets with high-oxidized oil increased the vulnerability 

of lipids and proteins to oxidation and reduced the activities of tissue antioxidant defense 

enzymes. However, the dietary supplementation with an algae/Se/organic mineral-based 

antioxidant blend, negated these effects. Furthermore, dietary antioxidant 
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supplementation imparted a protective barrier against oxidation of broiler breast meat 

under HiOx, PVC, and SK packaging conditions throughout retail display. The improved 

oxidative stability appears to be associated with enhanced cellular antioxidant enzymatic 

activity and reduced ROS propagation in vivo. Further research is warranted to establish 

the precise in situ relationship between dietary antioxidants, tissue enzyme activity and 

meat quality.  
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Figure 3.3. Schematic diagram of the mechanism of dietary oxidized oil on muscle tissue 

oxidation 
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CHAPTER 4 

 

AUGMENTATION OF WATER-HOLDING AND TEXTURAL PROPERTIES OF 

BREAST MEAT FROM OXIDATIVELY STRESSED BROILERS THROUGH 

DIETARY ANTIOXIDANT REGIMENS 

 

4.1. Summary  

 

Previous studies have shown that the inclusion of antioxidants in broiler diets 

reduced the adverse muscle physicochemical changes associated with feeding oxidized 

oil. In the present study, the impact of dietary antioxidants and level of oil oxidation on 

textural attributes of chicken meat stored in oxygen-enriched (HiOx), air-permeable 

polyvinylchloride (PVC), or skin (SK) packaging systems during retail display at 2–4 °C 

for up to 14, 7, and 21 days, respectively, was assessed. Broilers were fed a diet with 

either a low-oxidized oil (peroxide value POV 23 meq O2/kg) or high-oxidized oil (POV 

121 meq O2/kg), supplemented with an antioxidant pack (200 ppm EconomasE and 

organic minerals Se, Zn, Cu, Mn, and Fe as in Bioplex) for 42 d. Fatty acids and radical 

scavenging activities of the dietary feed were analyzed. Meat color, pH, myofibrillar 

protein profile, purge loss, cooking loss, and shear force were measured. Diets with high-

oxidized oil had reduced (P < 0.05) stearic, linoleic, and linolenic acid content compared 

diets with low-oxidized oil, regardless of antioxidant supplementation. Yet, as expected, 

the presence of antioxidants imparted greater radical scavenging capacity. Meat color and 

pH were variable between dietary treatments throughout storage. Although 

electrophoresis revealed significant losses of myosin due to feeding high-oxidized diets, 

the losses were alleviated by the antioxidant supplementation (P < 0.05). Meat samples 
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from chicks fed antioxidant containing diets, irrespective of oil quality, had less (P < ?) 

purge and cooking loss compared to those fed control diets (no antioxidants). In all 

packaging systems, meat shear force was higher for broilers fed high-oxidized diets than 

those fed low-oxidized diets. The results clearly demonstrate the beneficial effects of 

dietary antioxidant supplementation on the quality of broiler meat negatively impacted by 

dietary oxidized oil under different package systems.  
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4.2. Introduction 

 

Consumer demand for healthier, lower fat meat and meat products has led to 

increased consumption of poultry over the past few decades. Recent studies have shown 

poultry meat can be a potential functional food for human health because it contains 

many bioactive substances, such as conjugated linoleic acid (CLA), vitamins and 

antioxidants, and a beneficial n-6 to n-3 polyunsaturated fatty acids (PUFAs) ratio 

(Grashorn, 2007). The burgeoning demand for poultry meat has resulted in increased 

pressure on breeders to produce larger birds in less time. Currently, poultry meat is 

market ready in approximately half the time with double the weight compared to 50 years 

ago (Barbut et al., 2008). Selection for rapid muscle growth has placed added stress on 

the growing birds that may have resulted in histological and biochemical modifications of 

broiler muscle tissue leading to poor, inconsistent meat quality (Barbut et al., 2008). 

Birds grown at a faster rate have been reported to possess inconsistent fiber quality, and 

overly tender/ soft chicken meat (Macrae et al., 2006).  

In order to reach fast growing potential of modern broiler breed, high energy and 

protein diets are required. In the past few decades, broiler producers have routinely added 

fat to commercial diets to increase the overall energy density (Engberg et al., 1996). Yet 

these fats, particularly vegetable oils which are rich in PUFAs, are highly susceptible to 

oxidative deterioration in the storage and processing conditions of feedmills. Previous 

studies have shown that oxidized dietary fat negatively influences broiler performance, 

health, and meat quality (Engberg et al., 1996; Tavárez et al., 2011; Xiao et al., 2011). 

The susceptibility of lipids and proteins to oxidative processes plays a crucial role on the 

quality of fresh meat throughout storage and cooking. A key factor that determines 
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consumers’ acceptance or rejection of fresh poultry meat and meat products is 

palatability, of which flavor and texture (juiciness and tenderness) are the primary quality 

traits. Central causes of quality deterioration during retail or home storage (refrigerated or 

frozen) are lipid and protein oxidation, which produce rancid flavors and decrease 

juiciness and tenderness. Quality losses in fresh meat products are generally characterized 

by discoloration, flavor deterioration, reduced juiciness and tenderness and loss of 

nutrients.  

Poultry meat is extremely susceptible to lipid oxidation due to the relatively high 

proportion of PUFAs. One approach to overcoming oxidation and its related problems is 

to enhance the diet with synthetic antioxidants (Smet et al, 2008; Tavárez et al., 2011; 

Xiao et al., 2011). However, increasing health concerns over the use of chemical 

additives in food has shifted consumer preferences toward more natural and organic 

products. Thus, dietary supplementation with synthetic antioxidants may be deemed 

undesirable by consumers. Yet, the use of dietary antioxidants has a distinct advantage 

over direct incorporation of antioxidants into meat during processing because nutritional 

antioxidants absorbed by the bird can be effectively distributed in muscle (meat) both 

inside the cell and at the membrane (Mitsumoto, 2000).  

Enhancing diets with natural antioxidants and optimizing nutrient regimen could 

not only reduce oxidative damage that occurs in the live animal but also may improve the 

water-holding capacity and textural traits of meat and meat products. Our previous study, 

Chapter 3, showed enhanced lipid and protein oxidative stability of breast meat of 

broilers fed a natural algae and organic mineral -based antioxidant blend. However, few 

studies have investigated the impact of dietary antioxidants and oil quality on meat 
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sensory attributes. Therefore, this study investigated the influence of dietary antioxidants 

and oil quality on the physical-chemical properties of chicken breast meat stored in either 

an oxygen-enriched (HiOx: 80% O2/20% CO2), air-permeable polyvinylchloride (PVC), 

or skin (SK) packaging system during retail display at 2–4 °C for up to 21 days. Broilers 

were fed either a diet with a low-oxidized oil (23 meq O2/kg) or high-oxidized oil (121 

meq O2/kg) supplemented with or without an antioxidant blend for 42 days. 

 

4.3. Materials and Methods 
 

4.3.1. Materials 

A commercial algae-based antioxidant containing Se yeast as in EcoE and organic 

minerals as in Bioplex, was supplied by Alltech Inc. (Nicholasville, KY). Soybean oil 

was acquired from a local retailer, and the initial peroxide value (POV), 23 meq O2/kg, 

was determined according to AOCS (2007). Thermally oxidized oil was prepared as 

detailed in Chapter 3.3.1. The final POV of the pooled oxidized oil was 121 meq O2/kg 

which was used immediately for diet preparation. All chemicals (reagent grade) were 

purchased from Fischer Scientific (Pittsburgh, PA) or Sigma-Aldrich (St. Louis, MO) 

unless specified otherwise. 

 

4.3.2. Animals and Experimental Design  

 Animals were raised, fed, harvested, and packaged according to Chapter 3.3. 

Briefly, nine hundred and sixty male broilers raised from 1 to 42 d of age were randomly 

placed in 48 floor pens with 20 birds per pen. Each pen was randomly designated one of 

four dietary treatments: (1) basal diet–low oxidized oil (LO); (2) basal diet–low oxidized, 
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supplemented with antioxidants (ALO); (3) basal diet–high oxidized oil (HO); (4) basal 

diet–high oxidized oil, supplemented with antioxidants (AHO); for a total of 4 treatments 

with 12 replicate pens. Each pen was equipped with a feeder, a nipple drinker line, and a 

litter of soft wood shavings. Birds consumed feed in mash form and water on an ad 

libitum basis. A starter diet containing 22% crude protein (CP) and 3,120 kcal/kg was fed 

from 1–21 d of age and a grower diet containing 20% CP and 3,150 kcal/kg was fed from 

21–42 d of age (Table 3.1). Photoperiod consisted of 22 h of light and 2 h of dark during 

the entire experiment.  

 After 42 d of feeding, one broiler from each pen (48 total pens: 4 diets × 12 pens) 

was randomly selected, humanely slaughtered, de-feathered, then chilled in ice slurries 

for 1.5 h. Both sides of the breast (Pectoralis major) were removed and skinned. One 

randomly selected broiler breast, per diet, was packaged in either HiOx: 80% O2 and 20% 

CO2, PVC, or SK packaging, as detailed by Chapter 3.3.3. 

 

4.3.3. Dietary Feed Analysis 

The antioxidant potential of the water and lipid soluble fractions of the dietary 

feed were assessed using the radical cation ABTS (2,2’-Azino-bis[3-ethylbenzthiazoline-

6-sulfonic acid]) and DPPH (2,2-Diphenyl-1-picrylhydrazyl) scavenging activities. The 

ABTS radical scavenging activity of the water-soluble fraction of the dietary feed was 

determined by a decolorization assay (Pellegrini et al., 1999). The lipid soluble fraction 

was extracted with methanol: chloroform (2:1) extraction according to Bligh and Dyer 

(1959). The chloroform layer was isolated and used to assess the DPPH
●
 radical 

scavenging activity according to Brand-Williams, et al. (1995). The degree of radical 
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scavenging activity of the dietary feed samples was calculated based on a Trolox standard 

curve and the results were expressed as Trolox equivalent antioxidant capacity (TEAC, 

μM). 

The fatty acid content was marked as fatty acids methyl esters and determined by 

Hewlett Packard series 6890, Model G1530A gas chromatogram (Agilent Technologies, 

Santa Clara, CA). 

 

4.3.4. Instrumental Color 

Colorimetric values (L*, a*, b*) of the surface of chicken breast meat were 

determined using a Chroma Meter CR-300 equipped with a 1-cm aperture, Illuminant C 

(Minolta, Osaka, Japan). Colorimetric measurements were taken in triplicate random 

locations. 

 

4.3.5. pH 

From the center of each chicken breast, a portion was excised and minced in a Model 

51BL31 micro blender (Waring Commercial, Torrington, CT) at low speed setting for 15 

sec. Aliquots of 5 g of the minced meat samples were mixed with 15 mL deionized water 

in a 50 mL conical tube, then homogenized for 30 s at 75000 rpm with a Polytron PT 

10/35 fitted with PTA-20TS generator (Kinematica Ag, Switzerland). The pH of the 

slurry was measured with an accuFlow flushable junction Ag/AgCl reference electrode 

(Fisher Scientific, Pittsburgh, PA.). All samples were measured in triplicate. 
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4.3.6. Preparation of Myofibrils 

Myofibrils were isolated from chicken breast meat on the appropriate storage day and 

packaging treatment using a rigor buffer containing 0.1 M KCl, 2 mM MgCl2, 1 mM 

EGTA, and 10 mM K2HPO4 (pH 7.0) as described by Xiong et al. (2000). Protein 

concentration was determined by the Biuret method. Myofibril pellets were stored on ice 

under refrigeration and used within 72 h of isolation. 

 

4.3.7. Gel Electrophoresis 

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) was 

performed according to Laemmli (1970) on myofibril samples with a 10% acrylamide 

resolving gel and a 3% stacking gel. To each gel lane, 25 μg of protein (1 mg/ mL final 

protein concentration) was loaded. Selected protein bands, notably myosin heavy chain 

(MHC), were quantitatively analyzed using the UN–SCAN–IT Gel
TM

 digitizing software (Ver. 

6.1, Silk Scientific Corp., Orem, Utah, U.S.A.). 

 

4.3.8. Purge Loss 

During storage, a certain amount of exudate was expelled from fresh, whole chicken 

breast in all packages. The percent loss of liquid, expressed as purge loss (%), was 

calculated from the weight difference of fresh meat samples before and after respective 

storage days.  

 

4.3.9. Cooking Loss and Muscle Shear Force 

Chicken breast meat was baked in a 176 °C oven until the internal temperature 

reached 77 °C, approximately 25 min. Cooking loss was defined as the percentage of 
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meat juice lost during cooking; the values were obtained from the weight of breasts 

before and after cooking. Cooked breasts were stored at 2–4°C for textural analysis, the 

following day core samples measuring 1.27 cm in diameter were removed from the breast 

meat parallel to the direction of the muscle fiber. To evaluate tenderness, cores were 

placed in an EZ-Test Model Shimadzu Instrument (Shimadzu Corporation, Kyoto, Japan) 

equipped with a Warner-Bratzler shearing device and a 500 N load cell and crosshead 

speed of 100 mm/min. The results were expressed in N. 

 

4.3.10. Statistical Analysis 

Over a two year period three independent feeding trials (n = 3), each with 

duplicate or triplicate sample analyses were performed. Data were subjected to analysis 

of variance (ANOVA) using the Statistix software 9.0 (Analytical Software, Tallahassee, 

FL) with general linear model’s procedure to determine the significance of main 

treatment factors (diet, packaging systems, and storage time). Least Square Differences 

(LSD) all-pairwise multiple comparisons were performed when a treatment effect was 

found significant (P < 0.05).  

 

4.4. Results and Discussion 
 

 

4.4.1. Dietary Feed 

 The fatty acid profile was measured to assess the influence of oxidized oil on feed 

quality. The fatty acid composition of dietary feed samples differed between low-

oxidized oil and high-oxidized oil, yet the addition of antioxidants did not show 

appreciable differences (Table 4.1). The stearic acid (C18:0) content was significantly (P 
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Table 4.1. Fatty acid profile of treatment diets. 
 

Fatty Acid 

(mg/g) 

Dietary Treatment 

LO ALO HO AHO 

C18:0 4.2 ± 0.39
a 

4.01 ± 0.31
ab 

3.64 ± 0.37
c 

3.74 ± 0.31
bc 

C18:1 14.37 ± 1.07
a 

14.35 ± 1.06
a 

13.64 ± 0.91
a 

13.82 ± 0.95
a 

C18:2 52.99 ± 8.32
a 

49.35 ± 9.92
a 

43.28 ± 7.91
b 

41.07 ± 10.98
b 

C18:3 14.25 ± 0.76
a 

13.16 ± 0.65
ab 

12.7 ± 0.52
b 

10.65 ± 1.21
c 

 

a–c
 Means (n = 2) between dietary treatments without a common lowercase superscript 

differ significantly (P < 0.05). 
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< 0.05) lower in HO samples compared with LO, while there was no significant 

differences in oleic acid (C18:1) content between dietary treatments. Comparison 

between feed samples revealed a significantly (P < 0.05) lower amount of linoleic acid 

(C18:2) and α-linolenic acid (C18:3) content in HO and AHO compared to LO and ALO 

samples, respectively. Similarly, Kowalski (2007) reported a greater loss in linoleic acid 

content compared to oleic acid in heated sunflower and olive oil. Fatty acids with a 

higher degree of unsaturation are more susceptible to oxidation compared to saturated 

counterparts. Thus, feed with high-oxidized oil had lower levels of linoleic and α-

linolenic acid content due to losses imparted by thermal oxidation. 

 The ABTS
•+ 

and DPPH
•
 radical scavenging assays have been widely used for the 

assessment of antioxidant activity of various foods and food systems. In this study, both 

ABTS
•+ 

and DPPH
•
 assays were used to assess the water and lipid soluble fractions of the 

dietary feed, respectively. The ABTS
•+ 

radical scavenging activity was significantly (P < 

0.05) greater in ALO samples compared to all other dietary treatments (Figure 4.1). AHO 

showed slightly greater scavenging activity compared to HO samples. The greater radical 

quenching ability of the antioxidant supplemented diets, regardless of oil quality, may be 

attributed to either Se yeast or algae in EcoE. Se incorporation in a variety of foods, such 

as yeast, green tea, rice, and algae have been shown to enhance antioxidant activity (Xu 

et al., 2003; Xu and Hu, 2004; Chen and Wong, 2008). Chen and Wong (2008) reported 

greater ABTS
•+ 

radical scavenging activity of extracts isolated from Se-enriched 

Spirulina platensis, a blue-green microalgae. Moreover, algae contain natural 

antioxidants, such as polyphenols that act as potent radical quenchers (Wang et al., 2009), 

which may contribute to the greater ABTS
•+ 

scavenging ability of the water soluble  
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Figure 4.1. Effects of oxidized oil on radical scavenging activities (ABTS, DPPH) of 

experimental diets. Different uppercase letters (A–B) indicate significant difference (P < 

0.05) between dietary treatments (n = 2). 
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fraction of EcoE supplemented diets. 

DPPH
•
 radical-quenching capacity was measured in the lipid soluble fraction and 

although the results were not significantly different, the greatest antioxidant activity was 

noted in ALO samples while HO samples had the lowest scavenging capacity. The 

greater radical scavenging activity of the antioxidant supplemented treatments, 

irrespective of oil quality, may be attributed to the algae component of the antioxidant. 

Sulphated polysaccharides, such as astaxanthin and fucoxanthin, can be found in algae 

and have been reported to possess excellent antioxidant potential (Zhao et al., 2008).  

 

4.4.2. Instrumental Color and pH 

Meat discoloration is a complex process that is influenced by a variety of internal 

(myoglobin concentration, heme redox stability, oxidation status) and external (pH, 

temperature, packaging atmosphere) factors (Faustman et al., 2010). In the present study, 

the composition of packaging atmospheres significantly (P < 0.05) impacted the surface 

color of fresh chicken meat during storage (Table 4.2). While the colorimetric L* 

(lightness) value of all fresh meat samples did not show appreciable changes (P >0.05) 

during storage, there were notable differences in a* (redness) and b* (yellowness) values. 

The colorimetric a* values for LO samples showed a significant (P < 0.05) reduction 

after the first 4 days in HiOx and PVC samples, but the a* value remained unchanged for 

ALO samples, potentially indicating a more stable myoglobin structure due to reduced 

lipid oxidation. Our previous study, Chapter 3, reported reduced lipid oxidation in the 

antioxidant supplemented groups, regardless of oil quality. The colorimetric b* 
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Table 4.2. Effects of diets on surface color (L*, a*, b*) in broiler meat packaged in oxygen-enriched (HiOx), air-permeable 

polyvinylchloride (PVC), or skin (SK) packaging systems during refrigerated storage at 2 °C.  

 

Diet
0 d 4 d 7 d 14 d 4 d 7 d 4 d 7 d 14 d 21 d

LO 61.16 63.8 63.77 64.86 61.2 63.03 62.56 61.68 63.98 60.31
B

ALO 64.04 62.63 63.84 65.02 61.47 62.02 63.83 61.79 62.44 61.95
B

HO 62.19 63.26 64.54 64.91 61.4 62.95 64.25 62.22 63.7 64.18
A

AHO 61.48 64.85 64.24 65.54 61.85 61.6 61.29 63.73 63.04 65.13
A

P  - value 0.1556 0.2067 0.9500 0.9122 0.9431 0.6671 0.2437 0.2766 0.4397 0.0004

Packaging * * * * * * * *

Diet
0 d 4 d 7 d 14 d 4 d 7 d 4 d 7 d 14 d 21 d

LO 12.48
a

8.67
b

8.22
b

9.36
b

9.80
b

8.89
b 11.4 11.97 12.16 13.50

A

ALO 10.62 10.04 10.45 10.01 9.54 9.08 11.2 11.47 11.31 10.92
B

HO 10.98
a 8.84 9.19 9.39 9.73

ab
8.46

b 10.7 11.57 11.1 11.06
B

AHO 11.26
a

8.27
b

8.46
b

9.29
b 9.43 9.82 11.2 10.92 11.93 10.71

B

P  - value 0.114 0.0878 0.3509 0.8748 0.9493 0.7306 0.7525 0.7978 0.5364 0.0002

Packaging * * * * * * * *

Diet
0 d 4 d 7 d 14 d 4 d 7 d 4 d 7 d 14 d 21 d

LO 6.66
bB

13.01
a

12.27
aB

13.15
a

12.96
a

13.65
a

9.33
aA

8.42
a

9.96
a

9.76
a

ALO 9.53
bA

13.63
a

11.79
aB

12.55
a

12.23
a

13.36
a

8.30
bAB

8.14
b

9.29
b

11.89
a

HO 7.94
bAB

12.47
a

12.29
aB

11.72
a

12.60
a

13.01
a

9.54
abA

8.31
b

10.29
a 9.58

AHO 8.20
bAB

12.28
a

13.32
aA

13.06
a

12.79
a

13.69
a

7.56
cB

9.87
ab

9.51
ab

11.91
a

P  - value 0.0274 0.2105 0.0315 0.1244 0.6756 0.8077 0.0162 0.3298 0.4942 0.0724

Packaging * * * * * * * *

L* 

a*

b*

SK

HiOx PVC SK

HiOx PVC SK

HiOx PVC

 
a–c

 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common 

lowercase superscript differ significantly (P < 0.05). 
A,B

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common 

uppercase superscript differ significantly (P < 0.05). 

* Means between packaging systems on the same days differ significantly (P < 0.05); there was no diet × packaging 

interaction. 
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(yellowness) values of meat samples in all packaging systems showed an increase over 

time with SK samples resulting in the least pronounced changes. The appreciable 

increase in b* values in all samples throughout storage indicates that neither antioxidant 

supplementation nor oxidized oil significantly influenced the yellowness of chicken 

breast meat during retail display. Similarly, Zouari et al. (2010) reported no improvement 

in the color stability of chicken meat supplemented with vitamin E.  

Exposure to fluorescent lighting during retail display can increase lipid and 

myoglobin oxidation, due to photooxidation and microbial growth (Gatellier et al., 2001). 

Liu et al (1995) and Chen et al. (2010) reported that dietary vitamin E supplementation 

improved the color stability of beef and pork, respectively. However, the influence of 

antioxidant supplementation or oxidized oil did not greatly influence the color of chicken 

breast meat. More appreciable changes may be seen in chicken thigh meat, which has a 

higher concentration of heme pigment.   

 Dietary treatment had no (P > 0.05) apparent influence on the pH of muscle 

samples (Table 4.3) during the first 7 d of storage. On d 14, the low-oxidized samples 

packaged in HiOx, regardless of antioxidant supplementation (LO, ALO), had higher pH 

values compared to high-oxidized samples. However, on d 21, antioxidant supplemented 

samples, regardless of oil quality (ALO, AHO), had higher pH values compared to the 

basal treatment group. Although there were decreases in the basal dietary treatment 

during storage the magnitude of the changes appeared to be unsubstantial. The consistent 

pH values between different dietary treatments and packaging systems, which averaged 

5.90 ± 0.19, reflected a high homogeneity between the samples. Furthermore, the results 

are relatively consistent with the color of the muscle samples (Table 4.2), which showed 
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Table 4.3. Effects of diets on pH in broiler meat packaged in oxygen-enriched (HiOx), air-permeable polyvinylchloride 

(PVC), or skin (SK) packaging systems during refrigerated storage at 2 °C.  

Diet

0 d 4 d 7 d 14 d 4 d 7 d 4 d 7 d 14 d 21 d

LO 6.07
aA

5.87
b

5.80
b

6.00
aA

5.83
bB

5.88
aB 5.92 5.80

C 5.73 5.73
C

ALO 5.94
aB 5.91 5.84 5.91

AB
5.96

aA
5.86

bB 6.04 5.91
A 5.79 5.91

AB

HO 6.04
AB 5.92 5.77 5.81

B
5.88

B
5.86

B 5.87 5.82
BC 5.8 5.83

BC

AHO 5.94
B 5.89 5.8 5.88

B
5.89

B
5.93

A 5.94 5.85
B 5.77 5.98

A

P - value 0.0425 0.9431 0.1071 0.0097 0.0045 0.0023 0.1202 0.0005 0.2287 0.0037

Packaging * * * * *

HiOx SKPVC

 

a–c
 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common 

lowercase superscript differ significantly (P < 0.05).
 

A–C
 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common 

uppercase superscript differ significantly (P < 0.05). 

* Means between packaging systems on the same days differ significantly (P < 0.05); there was no diet × packaging 

interaction. 

 



 

76 

 

insignificant changes in L* values in all packaging systems throughout storage. Swatland 

(2008) reported that pH influenced the color of breast muscle; low pH scatters back more 

light, resulting in a pale color, while a high pH allows more light to be transmitted into 

the tissue, leading to a darker color.  

 

4.4.3. Protein Aggregation and Losses  

To identify how antioxidant supplementation and dietary oxidized oil would affect 

protein- protein interactions during storage under different oxygen atmospheres, isolated 

myofibrils were subjected to SDS–PAGE. The results revealed significant, time-

dependent losses of myosin heavy chain (MHC) and concomitant production of high 

molecular weight (MW) polymers for all dietary treatments and packaging systems 

throughout storage (Figure 4.2, top panel). The electrophoretic patterns of the samples of 

all dietary treatments from HiOx and PVC for the first 7 d appeared similar. Specifically, 

the loss of the MHC of the HO group was more extensive than AHO. However, for the 

first 7 d of storage all samples stored under SK showed less appreciable MHC losses 

compared to HiOx and PVC. When the samples were treated with +ME (Figure 4.2, 

bottom panel), the MHC was nearly fully recovered, thus polymerization of myosin 

through disulfide bond cross linkages was largely responsible for the disappearance of 

MHC.  

The above results were in agreement with the sulfhydryl analysis of our previous 

study (Table 3.5), supporting that oxidation of sulfhydryls contributed to myosin 

aggregation. Furthermore, skeletal muscle undergoing protein thiol oxidation may cause 

changes in protein function, contributing to dystrophic pathology and altered muscle  
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Figure 4.2. Effect of dietary treatments on the SDS-PAGE patterns of myosin heavy 

chain in myofibrils isolated from fresh chicken breast meat packaged in oxygen-enriched 

(HiOx), air-permeable polyvinylchloride (PVC), or skin (SK) packaging systems during 

refrigerated storage at 2 °C. Electrophoresis was run under non-reducing (–βME: A) and 

reducing (+βME: B) conditions. (1) LO; (2) ALO; (3) HO; (4) AHO. 
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performance (Prakash et al., 2009). Terrill et al. (2013) identified elevated protein thiol 

oxidation in mice with greater susceptibility to muscular myopathies. In the present 

study, the results indicated a protective effect, albeit small, of dietary antioxidants against 

myosin oxidation during storage and an antagonistic effect of dietary oxidized oil on 

protein oxidation. The electrophoretic data indicated that the SK packaging system, 

which allowed for a minimal amount of oxygen transmission, was not capable of 

preventing myosin loss due to disulfide bond formation. MHC appeared to be prone to 

the oxidative conversion from monomers to disulfide cross-linked polymers, in 

agreement with various studies (Xiong et al., 2009; Estevez, 2011). Similarly, Dhanarajan 

et al. (2011) reported that oxidative stress activates protein degradation and the losses in 

actin and myosin were associated with selective muscle dystrophy. Protein aggregates 

that can be formed through disulfide cross-linkages, Schiff base adducts, dityrosine 

formation, and carbon-carbon covalent bonds (Berlett & Stadtman, 1997) have been 

reported to reduce water-holding capacity and tenderness of fresh pork and beef, 

respectively, during storage (Lund et al., 2007; Liu et al., 2010). 

 

4.4.4. Water-Holding Capacity 

 The amount of exudate (purge loss) was lower in antioxidant supplemented 

samples (ALO, AHO), regardless of oil quality or packaging system, compared to the 

basal group (LO, HO), respectively (Table 4.4). Within the first 7 d of storage, the 

amount of purge loss differed significantly (P < 0.05) only between diets packaged in 

HiOx. On the other hand, PVC and SK samples did not show an appreciable amount of 
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Table 4.4. Effects of diets on purge loss (%) in broiler meat packaged in oxygen-enriched (HiOx), air-permeable 

polyvinylchloride (PVC), or skin (SK) packaging systems during refrigerated storage at 2 °C.  

 

Diet

4 d 7 d 14 d 4 d 7 d 4 d 7 d 14 d 21 d

LO 1.125
c

2.003
bAB

2.777
aA

1.313
b

2.18
aAB

1.141
b

1.363
b

2.519
aA

2.096
aBC

ALO 0.986 1.298
B

1.814
B

1.100
b

1.744
aB

1.033
b

1.226
b

1.48
abB

1.799
aC

HO 1.419
b

2.586
aA

3.179
aA

1.523
b

2.647
aA

1.502
b

1.581
b

2.391
aA

2.935
aA

AHO 1.123 1.938
AB

2.065
B

1.258
b

2.383
aA

0.957
c

1.436
b

1.824
bAB

2.525
aAB

P  - value 0.3246 0.0056 0.0008 0.2305 0.0431 0.1122 0.4472 0.0158 0.0029

HiOx SKPVC

 
 

a–c
 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common 

lowercase superscript differ significantly (P < 0.05). 
A–C

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common 

uppercase superscript differ significantly (P < 0.05). 

There was no significant difference (P < 0.05) of packaging or diet × packaging interaction. 
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purge loss for the first 7 days of storage; a significant difference (P < 0.05) between 

dietary treatments was not observed until d 14 in SK, consistent with a lower degree of 

protein oxidation. Similarly, Zhang et al. (2011) reported a higher percentage of drip loss 

of breast meat from broilers fed a diet with 5% oxidized oil compared to the control and  

antioxidant-supplemented samples. Several studies have reported a loss in ability of fresh 

muscle to retain endogenous and exogenous (brine marinated) water upon oxidation of 

myofibrillar proteins (Xiong et al., 2010; Delles et al., 2011). Myofibrils isolated from 

broilers fed a control diet exhibited a greater tendency to produce protein carbonyls when 

compared to broilers fed an antioxidant supplemented treatment (Table 3.4). Thus, the 

aggregation of myosin (Figure 4.2) and the increase in protein carbonyl formation 

appeared to contribute to the reduced water-holding capacity (WHC), potentially through 

a reduction of the myofibrillar lattice (Liu et al., 2011). Microscopic examination with 

fluorescent immunohisochemical staining revealed an increase in protein carbonyls 

between the periphery and inside the cells and an increase in extracellular space due to 

the disintegration of collagen fibers during refrigerated storage of beef (Astruc et al., 

2007). Similarly, in humans, excessive oxidative stress may cause irreversible oxidative 

damage to proteins and lipids, characterized by muscle weakness and progressive skeletal 

muscle wasting and degeneration (Terrill et al., 2013). Therefore, cellular damage to 

proteins due to oxidative stress, in vivo, may contribute to a weakening of skeletal muscle 

and ultimately reduce textural properties in meat.  

 The amount of moisture loss during cooking directly influences the palatability 

(i.e. juiciness and tenderness) and overall consumer acceptance of a product. Although 

the results from cooking loss (Table 4.5) did not show a clear trend in moisture loss upon 
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Table 4.5. Effects of diets on cooking loss (%) in broiler meat packaged in oxygen-enriched (HiOx), air-permeable 

polyvinylchloride (PVC), or skin (SK) packaging systems during refrigerated storage at 2 °C.  

Diet

0 d 4 d 7 d 14 d 4 d 7 d 4 d 7 d 14 d 21 d

LO 22.88
A 20.23 19.94 23.00 16.96

B
20.8

A 22.52 20.44 22.48 20.31
AB

ALO 17.58
B 19.00 18.88 20.66 13.87

C
17.24

AB 18.87 17.08 19.23 16.52
B

HO 21.92
A 20.85 20.77 22.59 21.84

A
19.64

A 20.78 19.74 21.19 24.32
A

AHO 20.84
AB 18.98 20.67 21.44 18.39

B
15.28

B 20.24 18.76 20.37 16.79
B

P - value 0.0392 0.5273 0.4215 0.4389 0.0011 0.0509 0.2012 0.1975 0.2266 0.0138

Packaging * * * * * * * *

PVC SKHiOx

 
a
 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common lowercase 

superscript differ significantly (P < 0.05). 
A–C

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common 

uppercase superscript differ significantly (P < 0.05). 

* Means between packaging systems on the same days differ significantly (P < 0.05); there was no diet × packaging 

interaction. 
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cooking, it was noted that ALO muscle stored for 4 days under PVC had the lowest 

percent cooking loss compared to all other dietary treatments. This may be attributed to 

the protective effect of the antioxidant supplementation against tissue oxidative damage, 

resulting in reduced protein carbonyls (Table 3.3), and the retention of free sulfhydryls 

(Table 3.4) and myosin heavy chain (MHC) (Figure 4.2). The denaturation of 

myofibrillar proteins can result in reduced water-holding capacity due to loss of integrity 

of the myofibrillar structure (Liu et al., 2010). Thus, the higher cooking loss in broiler 

breast meat from the high-oxidized group is indicative of higher levels of protein 

oxidation, which could change the structure and biochemical function of proteins through 

fragmentation, aggregation, and polymerization (Estévez, 2011). Furthermore, Sülzle et 

al. (2004) reported that heating fats at a lower temperature for a long period generated 

mainly primary lipid peroxidation products, which have a severe effect on lipid 

metabolism. Absorption of primary and secondary lipid oxidation products can react with 

proteins, potentially leading to oxidative processes that generate protein carbonyls, 

peptide scission, and protein polymers. Therefore, consumption of oxidized oils can 

result in protein damage in postmortem muscle leading to functional changes of proteins, 

such as reduced water-holding capacity.  

 

4.4.5. Warner-Bratzler Shear Force 

The shear force values increased during storage regardless of dietary treatment or 

packaging conditions (Table 4.6). In HiOx, specifically, shear force values of muscle 

samples from antioxidant supplemented diets, regardless of oil quality, were lower than 

the basal dietary group and differed significantly (P < 0.05) on d 4 and 14 of storage. 
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Table 4.6. Effects of diets on textural properties (shear force, N) in broiler meat packaged in oxygen-enriched (HiOx), air-

permeable polyvinylchloride (PVC), or skin (SK) packaging systems during refrigerated storage at 2 °C.  

Diet

0 d 4 d 7 d 14 d 4 d 7 d 4 d 7 d 14 d 21 d

LO 11.12
cB

17.17
bAB

19.39
bA

23.58
aB

13.16
bBC

18.98
cAB

11.63
d

11.63
cBC

20.06
bB

22.63
aAB

ALO 10.67
dB

14.02
cC

17.06
bB

20.85
aC

12.98
bC

17.71
aB

13.04
c

13.04
cC

17.95
bC

20.18
aB

HO 13.29
cA

19.09
bA

21.52
bA

26.41
aA

16.95
bA

20.06
aA

13.88
c

13.88
bA

23.67
aA

24.81
aA

AHO 11.8
cAB

15.37
bBC

20.29
aA

22.45
aBC

15.46
bAB

19.83
aA

12.14
c

12.14
bAB

20.16
aB

21.69
aB

P - value <0.0001 0.0004 0.003 0.0005 0.008 0.0431 0.3554 0.0035 0.0001 0.0076

Packaging * * * * *         * * *

HiOx PVC SK

 
a–d

 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common lowercase 

superscript differ significantly (P < 0.05). 
A–C

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common uppercase 

superscript differ significantly (P < 0.05). 

* Means between packaging systems on the same days differ significantly (P < 0.05); there was no diet × packaging interaction 
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Numerous studies have found significant correlations between protein carbonyl content 

and increased instrumental texture (decreased tenderness) in beef (Rowe et al., 2004; 

Zakrys et al., 2009). Protein oxidation has been reported to reduce meat tenderness 

through decreased proteolytic degradation through endogenous enzyme inactivation 

and/or increased protein cross-linkages through disulfide bond formation (Lund et al., 

2011). The results were in agreement with the electrophoresis data (Figure 4.2) that 

showed a loss of the MHC through disulfide bond cross-linking correlated with a 

decrease in tenderness throughout storage. Furthermore, the loss of the MHC was less 

pronounced in ALO samples compared to LO, in concert with the shear force values that 

were lower in ALO than LO samples. Indicating that protein oxidation, specifically 

through disulfide bond formation in the MHC, has a negative impact on tenderness of  

cooked chicken breast meat. 

 

4.5. Conclusion 

 

In summary, addition of high-oxidized oil in dietary feed altered the fatty acid profile and 

lowered the radical-scavenging capacity, which was improved with the addition of 

antioxidants. Furthermore, dietary antioxidant supplementation alleviates the negative 

impact of high-oxidized oil on meat quality, specifically through increased water-holding 

capacity and tenderness of broiler meat during refrigerated storage under various 

packaging conditions. Additional research is needed to provide a more complete picture 

of meat quality during the farm to food conversion. This could lead to the development of 

more consistent meat products, increased consumer confidence, and cost-effective feed 

formulations.         Copyright © Rebecca M. Delles, 2013 



 

85 

 

CHAPTER 5 

 

INFLUENCE OF DIETARY ANTIOXIDANT SUPPLEMENTATION ON THE 

OXIDATIVE STABILITY OF DIFFERENT BROILER MUSCLE TYPES 

 

5.1. Summary  

 

Studies have shown that animal nutrition can have a major impact on tissue gene 

expression, consequently affecting the quality of meat and meat products. This study 

investigated the influence of dietary antioxidants and quality of oil on the oxidative and 

physiochemical properties of chicken broiler breast and thigh meat stored in either an 

oxygen-enriched (HiOx: 80% O2/20% CO2) or an air-permeable polyvinylchloride (PVC) 

packaging system during retail display at 2–4 °C for up to 14 and 7 days, respectively. 

Broilers were fed 42 days a diet with either a low-oxidized (peroxide value 23 meq 

O2/kg) or high-oxidized (121 meq O2/kg) oil, supplemented with or without an 

algae/selenium-based antioxidant (EconomasE) with organic minerals (Se, Zn, Cu, Mn, 

and Fe as in Bioplex). Lipid and protein oxidation, myofibrillar protein profile, and purge 

loss were analyzed. In both packaging systems, lipid oxidation (TBARS) was inhibited 

by up to 65 and 57% in chicken breast and thigh, respectively, with an antioxidant-

supplemented diet compared to those without antioxidant. In both breast and thigh 

samples, protein sulfhydryls and water-holding capacity (purge loss) were better 

protected by the antioxidant dietary treatment, regardless of oil quality. Thigh muscles 

had up to 7-fold greater TBARS formation and more extensive losses in myosin heavy 

chain compared to breast samples. Antioxidant supplementation showed a greater 

protective effect against lipid oxidation and water-holding capacity in the high-oxidized 



 

86 

 

group. The results suggest that dietary antioxidants can minimize the negative impact of 

oxidized oil on broiler meat quality, and this protection was more pronounced for thigh 

than for breast muscle, indicating inherent variations between muscle fiber types. 
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5.2. Introduction 

 

To the average consumer, “meat quality” describes eating quality, which includes 

color, tenderness, juiciness, flavor, and consistency of meat in its raw and cooked states. 

Quality is a complex, multivariate property of meat that is influenced by animal heredity, 

feeding system, nutritional status, pre-slaughter and slaughter conditions and meat 

processing conditions (Anderson et al., 2005). To consumers, the most important meat 

sensory attributes are flavor, tenderness and juiciness all of which are directly influenced 

by the oxidative stability of lipids and proteins during processing and storage. Poultry 

meat has a higher proportion of polyunsaturated fatty acids (PUFAs) compared to beef or 

pork and is more susceptible to lipid oxidation. However, the continuous demand for 

high-quality, shelf-stable meat and meat products in the United States calls for the 

development of new strategies beyond traditional animal production practices. 

Previously, synthetic antioxidants such as butylated hydroxytoluene (BHT), butylated 

hydroxyanisole (BHA), and ethoxyquin (EQ) have been incorporated as an additive in 

animal feed to hinder rancidity but has also be found in the resulting meat and meat 

products (Błaszczyk, et al., 2013). A growing number of consumers are concerned about 

the use of the aforementioned antioxidants due to their possible carcinogenicity. 

Recently, the incorporation of natural antioxidants in dietary feed to optimize nutrient 

regimens has been investigated (Avila-Ramos et al., 2013; Luna et al., 2010). 

Myofibrillar proteins play an important role in the quality of meat, specifically 

tenderness and juiciness. The functional properties of myofibrillar proteins (i.e. water-

binding) are influenced by fiber type, and several studies have revealed large variations in 

the quality between red and white meat of chicken (Xiong, 2005; Lesiów and Xiong, 
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2003). Compared to white meat, red meat contains a larger amount of lipids and higher 

concentration of heme protein, inorganic iron and mitochondria, which act as catalysts for 

lipid and protein oxidation. Therefore, the aim of this study was to investigate the effects 

of dietary antioxidants on oxidative stability of both white (breast) and red (thigh) 

chicken meat packaged and stored in an oxygen-enriched package (HiOx: 80% O2/20% 

CO2) in comparison with air-permeable polyvinylchloride (PVC) during retail display at 

2–4 °C for up to 14 d.   

 

5.3 Materials and Methods 

 

5.3.1. Materials 

 A commercial algae-based antioxidant containing Se yeast (EcoE) and organic 

minerals, as in Bioplex, was supplied by Alltech Inc. (Nicholasville, KY). The initial 

peroxide value (PV) of soybean oil, acquired from a local retailer, was 23 meq O2/kg as 

determined according to AOCS (2007). Oxidized oil was prepared as detailed in Chapter 

3.3.1. Briefly, the above oil (5 kg) was heated in a convection oven at 95 °C ± 5 °C for up 

to 7 d. The peroxide value of the oxidized oil was monitored intermittently, until the PV 

reached the target level of 120 meq O2/kg; the final PV upon addition to dietary 

feedstuffs was 121 meq O2/kg. Chemicals (all reagent grade) were purchased from 

Fischer Scientific (Pittsburgh, PA) or Sigma-Aldrich (St. Louis, MO) unless specified 

otherwise. 
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5.3.2. Broiler Production  

All procedures used in the study herein were approved by the University of 

Kentucky Animal Care and Use Committee. Over a two-year period three independent 

feeding trials (n = 3) were performed in which birds were raised from 1 to 42 d of age. In 

each trial, nine hundred and sixty female broilers were randomly placed in 48 floor pens 

with 20 birds per pen, each randomly designated one of four dietary treatments consisted 

of feeding: (1) basal diet–low oxidized oil (LO); (2) basal diet–low oxidized oil, 

supplemented with antioxidants (ALO); (3) basal diet–high oxidized oil (HO); (4) basal 

diet–high oxidized oil, supplemented with antioxidants (AHO). Broilers were randomly 

distributed into the 4 dietary groups with 12 replicate pens for each diet. Each pen was 

equipped with a feeder, a nipple drinker line, and a litter of soft wood shavings. Birds 

consumed feed in mash form and water on an ad libitum basis. A starter diet containing 

22% crude protein (CP) and 3,120 kcal/kg was fed from 0–21 d of age and a grower diet 

containing 20% CP and 3,150 kcal/kg was fed from 21–42 d of age (Table 3.1). 

Photoperiod consisted of 22 h of light and 2 h of dark throughout the experiment. 

 

5.3.3. Meat Preparation, Packaging, and Storage 

 After 42 d of feeding, one broiler from each of the 48 pens (4 diets × 12 pens) was 

randomly selected, humanely harvested, de-feathered, then chilled in an ice slurry for 1.5 

h. Both sides of the breast (Pectoralis major) and thighs (Biceps femoris) were then 

removed, skinned, vacuum packaged (99% vacuum) and stored in a –30 °C freezer until 

use. Per diet, one randomly selected broiler breast or thigh (deboned) was placed in a 

Cryovac black processor tray, CS977 (22×17×4 cm; Sealed Air Corporation, Elmwood 
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Park, NJ) and sealed with Cryovac Lidstock 1050 MAP ethylene vinyl alcohol film (1.0 

mil, < 20 cc/m
2
/24 h oxygen transmission rate at 4.4 °C) using an InPack Junior A10 

packaging machine (Ross Industries Inc., Midland, VA). A gas mixture of 80% O2/20% 

CO2 (Scott-Gross Company Inc., Lexington, KY) was used for the HiOx packaging. For 

PVC, one breast per diet was placed on #2 supermarket white polystyrene trays 

(20.8×14.5×2.3 cm in dimension; Pactive LLC; Lake Forest, IL) and overwrapped with 

an air-permeable polyvinylchloride film (15,500–16,275 cm
3
/m

2
/24 h oxygen 

transmission rate at 23 °C; E-Z Wrap Crystal Clear PVC Wrap, Koch Supplies, North 

Kansas City, MO). 

 

5.3.4. Lipid Oxidation 

Lipid oxidation in stored muscle samples was measured as thiobarbituric acid-

reactive substances (TBARS) according to Sinnhuber and Yu (1977). The TBARS 

concentration, using a molar extinction coefficient of 152,000 M
-1

 cm
-1

 for the 

chromophore, was expressed as mg MDA per kg muscle.  

 

5.3.5. Protein Oxidation 

Because myofibrillar proteins are responsible for most of the meat quality 

attributes important to broilers, i.e., water-holding, tenderness, and texture (Xiong, 2000), 

this muscle group was selected for protein oxidation analysis. Myofibrils were isolated 

from meat on the appropriate storage days using a rigor buffer containing 0.1 M KCl, 2 

mM MgCl2, 1 mM EGTA, and 10 mM K2HPO4 (pH 7.0) as previously described (Xiong 
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et al., 2000). Protein concentration was determined by the Biuret method. Myofibrillar 

pellets were kept on ice and all analyses were completed within 24 h of isolation. 

Protein carbonyls were measured according to the 2,4-dinitrophenylhydrazine 

(DNPH) colorimetric method as described by Levine et al. (1990). The carbonyl content 

expressed as nmol per mg protein was calculated using a molar absorption coefficient of 

22,000 M
−1

 cm
−1

 for the formed protein hydrazones. Sulfhydryls were determined using 

5,5’ dithio-bis(2-nitrobenzoic acid) (DTNB). Total sulfhydryl content was calculated 

using the molar extinction coefficient of 13,600 M
-1

 cm
-1

 and expressed as nmol per mg 

protein. 

 

5.3.6. Instrumental Color 

Colorimetric values (L*, a*, b*) of the meat samples were determined using a 

Chroma Meter CR-300 equipped with a 1-cm aperture, Illuminant C (Minolta, Osaka, 

Japan). Colorimetric measurements were taken in triplicate, each at a random location of 

the surface of the breast meat. 

 

5.3.7. pH 

From the center of each chicken breast or thigh, a portion was excised and minced in 

a Model 51BL31 micro blender (Waring Commercial, Torrington, Conn.) at low speed 

setting for 15 sec. Aliquots of 5 g of the minced meat samples were each mixed with 15 

mL deionized water in a 50 mL conical tube, then homogenized for 30 s at 75000 rpm 

with a Polytron PT 10/35 fitted with PTA-20TS generator (Kinematica Ag, Switzerland). 
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The pH of the slurries was measured with an accuflow flushable junction Ag/AgCl 

reference electrode (Fisher Scientific, Pittsburgh, PA.).  

 

5.3.8. Preparation of Myofibrils 

Myofibrils were isolated from chicken breast or thigh meat on their appropriate 

storage day and packaging treatment using a rigor buffer containing 0.1 M KCl, 2 mM 

MgCl2, 1 mM EGTA, and 10 mM K2HPO4 (pH 7.0) as described by Delles et al. (2011). 

Protein concentration was determined by the Biuret method. Myofibrillar pellets were 

stored on ice under refrigeration and used within 24 h of isolation. 

 

5.3.9. Gel Electrophoresis 

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) was 

performed according to Laemmli (1970) on myofibril samples with a 10% acrylamide 

resolving gel and 3% acrylamide stacking gel. To each gel lane, 25 μg of protein (1 

mg/mL final protein concentration) was loaded.  

 

5.3.10. Purge Loss 

During storage, a certain amount of exudate was expelled from fresh, whole chicken 

breast and thigh in all packages. The percent loss of liquid, expressed as purge loss (%), 

was calculated from the weight difference of fresh meat samples before and after 

respective storage days.  
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5.3.11. Statistical Analysis 

Over a two-year period, three independent feeding trials (n = 3), each with duplicate or 

triplicate muscle sample analyses were performed. Data were subjected to analysis of 

variance (ANOVA) using the Statistix software 9.0 (Analytical Software, Tallahassee, 

FL) with general linear model’s procedure to determine the significance of dietary 

treatment, packaging systems and storage time. Least Square Differences (LSD) all-

pairwise multiple comparisons were performed when a treatment effect was found 

significant (P < 0.05). In addition, interactions between diet, packaging, and storage time 

were analyzed. 

 

5.4 Results and Discussion 

 

5.4.1. Lipid Oxidation 

Fat or oil is commonly added to poultry diets to increase energy density, yet other 

benefits have been reported such as improved absorption of fat-soluble vitamins, and 

peristalsis of the intestine, and increased feed intake (Baião and Lara, 2005). However, 

vegetable oils are highly susceptible to oxidation due to their high content of PUFAs. 

Previous studies have shown that dietary supplementation of oxidized oil adversely 

affected the growth and development of chickens (Engber et al., 1996) and reduced 

chicken meat quality (Racanicci et al., 2008). The decrease in animal viability and overall 

quality of chicken meat may be attributed to increased susceptibility to lipid oxidation. 

Consumption of oxidized oils can destroy important dietary vitamins and nutrients and 

increase oxidative stress in vivo, which may potentially reduce the efficacy of the 

antioxidative system in muscle tissue. Table 3.2 and Figure 3.2 reported reduced tissue 
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selenium content and glutathione peroxidase activity in the breast tissue of broilers fed a 

high oxidized oil diet. Thus, consumption of oxidized lipids may increase the absorption 

of lipid-derived radicals into the bloodstream, propagating oxidative reactions throughout 

various tissues of the bird, including skeletal muscle, thereby influencing meat quality 

during storage. 

In the present study, lipid oxidation increased throughout the first 4 d of storage for 

all dietary treatments, packaging conditions, and muscle types (Table 5.1). Compared to 

breast, thigh samples had significantly higher TBARS content (P < 0.05) due to the 

greater amount of lipids and high concentrations of heme proteins and inorganic iron, 

both of which are catalysts for lipid and protein oxidation. Similarly, sardines underwent 

rapid lipid oxidation due to the high content of polyunsaturated fatty acids (Chaijan et al., 

2006). Supplementation with antioxidants exhibited a greater protective effect in thigh 

samples packaged in HiOx compared with breast samples, which may be attributed to the 

higher concentration of myoglobin present in red (thigh) fibers compared with white 

(breast). Oxidation of myoglobin produces superoxide anions and hydrogen peroxides 

which can further react with iron to produce hydroxyl radicals, thus contributing to 

greater oxidative susceptibility of red fibers compared with white fibers (Chaijan et al., 

2008). Dietary antioxidant treatment groups (ALO, AHO) had lower TBARS values 

under all packaging conditions when compared to basal dietary regimes, regardless of oil 

quality (LO, HO). Previous studies have shown that feeding broilers high levels of 

selenium (Ryu et al., 2005) or tocopherols (Smet et al., 2008) delayed the onset of off-

flavor formation and reduced lipid oxidation. TBARS values of HO thigh meat stored in 

HiOx were significantly higher (P < 0.05) than all other dietary treatments throughout 
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Table 5.1. Effects of diets on lipid oxidation (TBARS, mg/kg MDA) in broiler breast (white) and thigh (red) meat packaged in 

oxygen-enriched (HiOx) or air-permeable polyvinylchloride (PVC) packaging systems during refrigerated storage at 2 °C.  
 

Muscle 

Type Diet

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7

LO 0.050
cB

0.232
cAB

0.660
b

0.979
aA

0.050
cB

0.174
b

0.340
aB

ALO 0.054
cB

0.191
bB

0.463
a

0.342
bB

0.054
cB

0.138
b

0.330
aB

HO 0.095
dA

0.274
cA

0.547
b

0.787
aAB

0.095
cA

0.264
b

0.535
Aa

AHO 0.065
bB

0.186
bB

0.512
a

0.505
aB

0.065
cB

0.197
b

0.476
aA

P  - value 0.013 0.024 0.188 0.032

Packaging NS * NS *

Diet

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7

LO 0.31
cAB

0.85
bcB

1.14
bAB

2.37
a

0.31
bAB

0.53
ab

0.73
aAB

ALO 0.34
bAB

0.77
bB

0.78
bB

2.47
a

0.34
AB 0.41 0.49

B

HO 0.41
dA

1.08
cA

1.69
bA

2.80
a

0.41
A 0.58 0.94

A

AHO 0.41
cB

0.75
bB

0.74
bB

2.09
a

0.41
bB

0.69
a

0.68
a

P  - value 0.049 0.011 0.007 0.098 0.049 0.452 0.013

Packaging NS NS NS NS

White

PVCHiOx

Red

HiOx PVC

 
 

a–c
 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common 

lowercase superscript differ significantly (P < 0.05). 
AB

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common 

uppercase superscript differ significantly (P < 0.05). 
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storage, most likely due to dietary oxidized oil increasing the susceptibility of PUFAs to 

oxidation (Engberg et al., 1996). Furthermore, samples packaged under HiOx showed a 

higher degree of lipid oxidation compared to PVC.  

 

5.4.2. Protein Oxidation 

Due to the presence of oxidizable lipids, heme pigments, transition metal ions, and 

oxidative enzymes, muscle foods are highly susceptible to oxidation, which can result in 

the generation of protein carbonyls. The DNPH method has been widely employed for 

the quantification of carbonyl compounds (Lund et al., 2011). As shown in Table 5.2, 

protein carbonyl content was significantly (P < 0.05) higher in thigh samples compared to 

breast, in agreement with the TBARS data (Table 5.1). The greater oxidative stability in 

breast samples may be attributed to not only a lower amount of lipids, myoglobin, and 

iron, but also to a higher concentration of indigenous antioxidants, such as carnosine, 

anserine, and antioxidative enzymes (Chan et al., 1994). Carnosine and anserine are rich 

in white (breast) fibers, but relatively deficient in red (thigh) fibers (Davey, 1960). HO 

thigh samples, packaged in HiOx and PVC exhibited greater sensitivity to protein 

oxidation compared to breast samples. For example, on 7 d, HO thigh samples packaged 

in HiOx had an 85.6% higher carbonyl content compared to HO breast samples. 

However, the protective effect of antioxidant supplements was similar between both 

breast and thigh samples most likely due to a masking effect from freezing of samples 

prior to analysis. Benjakul and Bauer (2001) suggested that the freeze-thaw process 

damages cellular membranes and heme-proteins, resulting in the release of pro-oxidants, 

which would be intensified in predominately red fiber meats. Similarly, Xiao et al. (2011)  
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Muscle

Type Diet

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7

LO 0.37 0.53 0.52 0.83 0.37 0.74 0.60

ALO 0.33 0.38 0.36 0.90 0.33 0.55 0.34

HO 0.55 0.76 0.67 1.39 0.55 0.57 0.63

AHO 0.25 0.61 0.52 0.92 0.25 0.75 0.75

P  - value 0.008 0.008 0.393 0.001 0.008 0.0661 0.013

Packaging NS NS NS NS

Diet

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7

LO 1.78 2.42 3.40 5.53 1.78 1.90 3.10

ALO 1.23 2.23 2.96 4.72 1.23 2.49 2.88

HO 2.09 2.88 4.26 5.00 2.09 2.88 3.70

AHO 1.80 2.54 3.73 4.76 1.80 2.28 3.83

P  - value 0.004 0.304 0.014 0.007 0.004 0.067 0.002

Packaging NS NS NS NS

HiOx PVC

White

HiOx PVC

Red

 

a–d
 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common 

lowercase superscript differ significantly (P < 0.05). 
A–C

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common 

uppercase superscript differ significantly (P < 0.05). 

Table 5.2. Effects of diets on protein carbonyl formation (nmol/ mg protein) in broiler breast (white) and thigh (red) meat 

packaged in oxygen-enriched (HiOx) or air-permeable polyvinylchloride (PVC) packaging systems during refrigerated 

storage at 2 °C.  
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reported that broilers fed a 5% oxidized animal-vegetable fat produced higher amounts of 

carbonyls compared to the control. Furthermore, a promoting effect of HiOx on the 

formation of protein carbonyls in both breast and thigh samples was observed, although 

there was no significant difference (P > 0.05) between packaging treatments. Throughout 

storage the inhibitory effect of dietary antioxidant supplementation was much weaker or 

even negligible in the high-oxidized (HO, AHO) breast samples packaged in PVC. 

Carotenoids are fat-soluble antioxidants and may have a greater protective effect against 

lipid oxidation than protein oxidation. Salminen et al. (2006) postulated that antioxidants 

primarily protect lipids against oxidative reactions. Furthermore, the greater efficacy of 

the antioxidant supplementation against protein oxidation in the HiOx packaging 

treatment may be due to the augmented oxidative environment. Throughout storage there 

was an overall increase in protein carbonyl content of breast and thigh samples in both 

HiOx and PVC packaging. Microscopic examination of beef during storage revealed an 

increase in protein carbonyls along the periphery of cells throughout ten days of 

refrigerated storage (Astruc et al., 2007).  

Sulfhydryls from cysteine residues are highly susceptible to oxidation and provide 

an additional assessment of protein oxidation. As shown in Table 5.3, there were 

significant losses in sulfhydryl content within the first 7 d of storage for all samples. 

Thigh meat showed greater losses in sulfhydryl content compared to breast meat, which 

is in agreement with the TBARS (Table 5.1) and carbonyl (Table 5.2) data. Furthermore, 

antioxidant dietary supplementation, regardless of oil quality, packaging type, or muscle 

sample (ALO, AHO), showed greater protein sulfhydryl maintenance compared with the 

basal dietary treatment. Samples from broilers fed high dietary oxidized oil (HO, AHO)  



 

 

 

9
9

 

Table 5.3. Effects of diets on free sulfhydryl (nmol/ mg protein) in broiler breast (white) and thigh (red) meat packaged 

oxygen-enriched (HiOx) or air-permeable polyvinylchloride (PVC) packaging systems during refrigerated storage at 2 °C.   

 

MuscleType Diet   HiOx PVC 

White 

  

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7 

LO 

 

58.97 52.77 43.06 24.09 58.97 52.84 27.94 

ALO 

 

62.68 57.18 44.02 26.86 62.68 54 35.25 

HO 

 

52.74 46.08 31.23 18.8 52.74 46.64 34.51 

AHO 

 

57.21 49.61 39.29 19.24 57.21 49.19 37.48 

P - value 

 

0.020 < 0.0001 < 0.0001 < 0.0001 0.020 < 0.0001 < 0.0001 

Packaging 

  

NS * 

  

NS * 

  Diet   HiOx PVC 

Red 

    Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7 

LO 

 

57.87 42.97 36.25 14.04 57.87 34.88 31.03 

ALO 

 

60.96 45.69 36.03 17.94 60.96 44.83 32.79 

HO 

 

40.59 41.99 23.31 21.25 40.59 34.02 30.59 

AHO 

 

44.19 38.6 27.65 17.08 44.19 39.39 32.13 

P - value 

 

< 0.0001 0.011 0.001 0.128 < 0.0001 0.000 0.522 

Packaging     NS NS     NS NS 
 

a–c
 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common 

lowercase superscript differ significantly (P < 0.05). 
AB

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common 

uppercase superscript differ significantly (P < 0.05). 
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showed greater sulfhydryl destruction compared to the low oxidized oil regimen. The loss 

in sulfhydryls may be attributed to the formation of disulfide bonds due to oxidatively 

induced cross-linking. Antioxidants, such as carotenoids and selenium, may minimize the 

negative effects of dietary and environmental stresses placed on the birds throughout  

rearing. Specifically, the aforementioned antioxidants can accumulate in various tissues 

and either delocalize radicals, reduce peroxides, or serve as cofactors for antioxidative  

enzymes, thereby slowing the propagation of lipid oxidation of the highly unsaturated 

fatty acids in the cellular and subcellular membranes and concertedly reducing protein 

oxidation. 

Other chemical modifications as a result of protein oxidation include loss of 

tryptophan and sulfhydryl groups and formation of intra- and inter-molecular crosslinks, 

which detrimentally affects meat quality (Xiong, 2000). The gel electrophoresis (SDS- 

PAGE) results revealed significant, time-dependent losses of myosin heavy chain (MHC) 

and concurrent production of high molecular-weight (MW) polymers for all dietary 

treatments, packaging systems, and muscle type throughout storage (Figure 5.1, top 

panel). Thigh samples showed significantly notable losses of the MHC, initially and 

throughout storage, compared to breast. Frozen storage appeared to exacerbate 

myofibrillar denaturation in thigh samples more greatly than breast. Breast and thigh 

samples from broilers fed a high-oxidized diet (HO, AHO) packaged in HiOx had more 

extensive losses of MHC compared to low-oxidized samples, which was apparent in the 

first 4 d of storage. Electrophoretic patterns from chickens fed an antioxidant 

supplemented diet showed less extensive losses of the MHC compared to their respective 

controls. When the samples were treated with +ME (Figure 5.1, bottom panel), the 
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Figure 5.1. Effect of dietary treatments on the SDS–PAGE patterns of myosin heavy chain in myofibrils isolated from pre-

frozen chicken breast (A, B) or thigh (C, D) meat in oxygen-enriched (HiOx) or air-permeable polyvinylchloride (PVC) 

packaging systems during refrigerated storage at 2 °C. Electrophoresis was run under non-reducing (–βME: A, C) and 

reducing (+βME: B, D) conditions.
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MHC was nearly fully recovered, thus polymerization of myosin through disulfide bond 

cross linkages was largely responsible for the disappearance of MHC. The above results 

were in agreement with the sulfhydryl analysis (Table 5.3), supporting that oxidation of 

sulfhydryls contributed to myosin aggregation. The results indicated a protective effect of 

dietary antioxidants against protein oxidation during storage and a negative influence of 

dietary oxidized oil on protein oxidation. The greater oxidative stability in the 

algae/Se/organic mineral-based antioxidant supplemented dietary group may be attributed 

to either: (1) the neutralization of free radicals by algae based carotenoids, or (2) increase 

in glutathione peroxidase activity, thereby slowing the propagation of lipid and protein 

oxidation. 

 

5.4.3. Meat Quality 

To investigate the impact of dietary antioxidant supplementation and oil quality 

on water retention properties during storage, the amount of exudate (purge loss) from 

breast and thigh meat were measured (Table 5.4). In PVC, only, breast samples from 

antioxidant-supplemented diets, regardless of oil quality (ALO, AHO), had lower 

amounts of purge compared to LO and HO, respectively. A similar effect was noted in 

chicken thigh samples packaged under HiOx. The larger amount of percent purge loss 

from the basal dietary group (LO, HO) may be attributed to a higher degree of protein 

oxidation. Oxidatively induced formation of disulfide bonds within myosin and between 

myosin molecules has been shown to decrease water-holding capacity of myofibrils (Kim 

et al., 2010; Liu et al., 2010). Specifically, disulfide cross-linkages between myosin tails 
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Muscle 

Type Diet   HiOx PVC 

 

 

 

Day 

4 

Day 

7 Day 14 Day 4 Day 7 

White 

LO 

 

0.23 0.66 0.98 0.17 0.34 

ALO 

 

0.19 0.46 0.34 0.14 0.33 

HO 

 

0.27 0.55 0.79 0.26 0.54 

AHO 

 

0.19 0.51 0.51 0.20 0.48 

P - value 

 

0.826 0.488 0.051 0.840 0.937 

Packaging 

 

* * 

 

* * 

     Diet   HiOx PVC 

Red 

 

 

Day 

4 

Day 

7 Day 14 Day 4 Day 7 

LO 

 

4.23 6.41 9.62 5.23 7.73 

ALO 

 

3.14 4.88 7.04 4.05 6.39 

HO 

 

3.99 7.19 11.71 6.63 6.02 

AHO 

 

3.30 5.71 11.36 4.79 7.97 

P - value 

 

0.840 0.158 0.634 0.585 0.840 

Packaging   NS NS   NS NS 
 

ab
 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common 

lowercase superscript differ significantly (P < 0.05). 

There was no significant difference (P < 0.05) of diet × packaging interaction. 

 

Table 5.4. Effects of diets on purge loss (%) in broiler breast (white) and thigh (red) meat packaged in oxygen-enriched 
(HiOx) or air-permeable polyvinylchloride (PVC) packaging systems during refrigerated storage at 2 °C.  
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were shown to be a major constraint in myofibrillar swelling during salt marination, 

which negatively influenced water-holding capacity due to an enlargement of 

intercellular gaps (Liu et al., 2010). In the present study, the amount of purge loss 

increased, overall, throughout storage for all samples and packaging conditions, in 

parallel with the protein carbonyl content (Table 5.2). However, variations in purge loss 

during storage may be due to the inconsistent size of the chicken breast (238.7 ± 34.5 g) 

and thigh (81.4 ± 11.1 g) samples. Furthermore, chicken breast samples had a greater 

amount of purge loss compared to thigh samples. The difference was most likely due to 

the greater amount of water present in the breast sample size (167.09 ± 24.2 g) compared 

to thigh meat sample size (57.0 ± 7.8 g).  

The influence of pH on the water-holding capacity of chicken breast or thigh 

samples was negligible, as shown in Table 5.5. The consistent pH values between 

different dietary treatments, muscle types, and packaging systems, which averaged 5.96 ± 

0.18 in breast samples and 6.00 ± 0.16 in thigh samples, reflected a high homogeneity 

between broiler birds. Furthermore, dietary treatment had a small effect on pH during 

storage. A significant difference (P < 0.05) was noted only on d 7 HiOx breast sample 

and d 4 PVC and d 14 HiOx thigh samples. 

The surface meat color of the breast and thigh samples, expressed by L*, a*, and 

b*, varied between dietary regimen, muscle type, and packaging treatment (Table 5.6). 

The composition of packaging atmospheres significantly (P < 0.05) impacted the a* 

(redness) in both breast and thigh samples, but only influenced L* (lightness) in thighs 

and yellowness (b*) in breast meat. While the colorimetric L* value of breast samples 
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Muscle Type Diet   HiOx PVC 

White 

  

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7 

LO 

 

5.94
bc

 5.89
c
 6.16

aA
 6.08

ab
 5.94 5.71 5.96 

ALO 

 

5.97
c
 6.06

a
 6.08

abB
 5.98

bc
 5.97 6.03 6.04 

HO 

 

5.97 5.82 5.98
C
 5.96 5.97 5.85 6.00 

AHO 

 

5.89
bc

 5.70
c
 6.11

aB
 6.04

ab
 5.89

a
 5.79

b
 6.00

a
 

P - value 

 

0.888 0.153 <0.0001 0.096 0.888 0.235 0.235 

Packaging 
  

NS * 

  

NS * 

  Diet   HiOx PVC 

Red 

  
Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7 

LO 

 

6.02 6.02 5.92 6.06
A
 6.02

a
 6.04

aB
 5.76

b
 

ALO 

 

6.07
ab

 6.13
a
 5.88

b
 5.94

bB
 6.07

ab
 6.16

aAB
 5.87

b
 

HO 

 

6.11
a
 6.14

a
 5.88

b
 5.95

bB
 6.11

b
 6.22

aA
 5.82

c
 

AHO 

 

6.09
a
 6.11

a
 5.89

b
 5.97

bB
 6.09

a
 6.16

aAB
 5.85

b
 

P - value 

 

0.266 0.108 0.397 0.002 0.266 0.002 0.081 

Packaging     * *     * * 
 

a–c
 Means (n = 3) between days within the same diet (same row) within the same packaging system without a common 

lowercase superscript differ significantly (P < 0.05). 
AB

 Means (n = 3) between diets on the same day (same column) within the same packaging system without a common 

uppercase superscript differ significantly (P < 0.05). 

* Means between packaging systems on the same days differ significantly (P < 0.05); there was no diet × packaging 

interaction.

Table 5.5. Effects of diets on pH in broiler breast (white) and thigh (red) meat packaged in oxygen-enriched (HiOx) or air-

permeable polyvinylchloride (PVC) packaging systems during refrigerated storage at 2 °C.  

 



 

106 

 

 
a–c

 Means (n = 3) between days within the same diet (same row) within the same packaging 

system without a common lowercase superscript differ significantly (P < 0.05). 
A,B

 Means (n = 3) between diets on the same day (same column) within the same packaging 

system without a common uppercase superscript differ significantly (P < 0.05). 

* Means between packaging systems on the same days differ significantly (P < 0.05); there was  

no diet × packaging interaction

Fiber Type Diet

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7

LO 61.94
c

63.91
bA

63.06
b

68.71
aA 61.94 60.56 62.65

ALO 61.00
ab

59.7
bcB

63.87
a

58.27
cB 61.00 61.26 60.94

HO 59.41
b

60.33
bB

63.19
a

62.3
aA

59.41
b

61.86
ab

63.11
a

AHO 60.43 60.92
B 62.57 55.8

B
60.43

b
62.24

a
63.41

a

Package NS NS NS NS

Diet

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7

LO 50.53
c

55.92
bc

57.9
ab

63.78
a

50.53
b

51.89
ab

59.52
a

ALO 56.01
b

58.63
b

57.90
b

66.20
a 56.01 56.86 61.50

HO 56.88
b

58.24
b

60.39
b

66.10
a

56.88
b

55.63
b

62.53
a

AHO 50.54
c

57.95
bc

59.44
b

66.01
a

50.54
b

59.94
b

60.30
a

Package * NS * NS

Diet

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7

LO 9.77
a

11.79
aB

12.03
a

4.65
bB 9.77 11.83 9.29

ALO 12.45 13.86
A 11.42 12.54

A 12.45 12.16 11.34

HO 11.46
ab

12.96
aA

11.97
ab

10.31
bAB 11.46 12.39 11.34

AHO 12.37 13.03
A 13.09 12.78

A
12.37

a
11.07

ab
9.61

b

Pkg * * * *

Diet

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7

LO 17.53
ab

17.62
a

14.43
b

10.98
c 17.53 17.44 14.69

ALO 15.92
a

16.67
a

14.55
b

10.81
c

15.92
a

16.90
a

13.74
b

HO 14.86
b

17.28
a

14.9
b

9.42
c

14.86
ab

16.50
a

13.3
b

AHO 15.04 17.44 15.17 9.54 15.04 15.75 14.22

Pkg * * * *

Diet

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7

LO 8.80 12.31 11.66 11.9 8.80
c

12.61
b

15.93
a

ALO 10.88
c

12.93
b

14.95
a

12.07
b 10.88 12.65 14.02

HO 9.62
b

14.04
a

14.60
a

11.77
b

9.62
c

12.39
b

15.56
a

AHO 10.55
b

14.23
a

12.95
a

12.63
a

10.55
c

11.91
b

14.86
a

Pkg * NS * NS

Diet

Day 0 Day 4 Day 7 Day 14 Day 0 Day 4 Day 7

LO 11.73 14.10 11.27 9.83 11.73 11.7 10.56

ALO 10.01 14.18 11.8 10.3 10.01 9.87 10.3

HO 8.21 12.83 11.44 8.95 8.21
b

12.02
a

8.95
ab

AHO 8.80
b

11.75
b

12.17
a

9.42
b 8.80 10.33 9.67

Package NS NS NS NS

b* Value

White

Red

L* Value

White

Red

a* Value

White

Red

HiOx PVC

HiOx PVC

HiOx PVC

HiOx PVC

HiOx PVC

HiOx PVC

Table 5.6. Effects of diets on surface color (L*, a*, b*) in broiler breast (white) and thigh 

(red) meat packaged in oxygen-enriched (HiOx) or air-permeable polyvinylchloride 

(PVC) packaging systems during refrigerated storage at 2 °C.  
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varied throughout storage, there was a notable increase in thigh surface color. However, 

significant differences (P < 0.05) between dietary groups were apparent only in breast 

meat. For breast meat packaged in HiOx, the a* value of the antioxidant supplemented 

group remained unchanged throughout storage, potentially indicating a more stable 

myoglobin structure and reduced oxidation. Although, the lower concentration of 

myoglobin present in the breast samples may have impacted the results. Various 

endogenous and exogenous factors influence meat color, such as pH, muscle source, 

presence of antioxidants, lipid oxidation, temperature, and packaging conditions (Suman 

and Joseph, 2013). However, thigh samples packaged in HiOx showed a greater 

reduction in redness in the high-oxidized dietary group (HO, AHO), compared with the 

low-oxidized treatments (LO, ALO). The colorimetric b* (yellowness) values of breast 

meat samples in all packaging systems showed an overall increase over time, yet thigh 

samples showed an initial increase then decrease throughout storage. The appreciable 

increase in b* values in all samples throughout storage indicates that neither antioxidant 

supplementation nor oxidized oil significantly influenced the yellowness of chicken 

breast meat during retail display. Similarly, Ryu et al. (2005) reported no improvement in 

the color stability of chicken meat supplemented with vitamin E or selenium.  

 

5.5. Conclusion 

 

The results indicate that dietary antioxidant supplementation imparts a protective 

barrier against oxidation of broiler breast and thigh meat under both HiOx and PVC 

packaging conditions throughout retail storage, thereby minimizing the negative impact of 

oxidized oil on broiler meat quality. The improved water-holding capacity of meat, the 
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most notable benefit, can be attributed to the reduced protein oxidation and retention of the 

myosin heavy chain. Chicken thigh meat showed more extensive oxidative damage due to 

the higher amount of lipids, heme proteins, and inorganic iron, compared to chicken breast 

meat. 
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CHAPTER 6 

 

DIFFERENTIATION OF CHICKEN SARCOPLASMIC PROTEOME AS INDUCED BY 

DIETARY ANTIOXIDANT SUPPLEMENTATION 

 

6.1. Summary  

 

 

Animal nutrition can have a major influence on tissue gene expression, and 

dietary antioxidant supplements can enhance the quality of meat through modification of 

tissue metabolic processes. This study investigated differences in the sarcoplasmic 

proteome of breast muscle from broiler chickens fed diets of different Redox potentials. 

Broilers were fed either a diet with a low-oxidized (peroxide value 23 meq O2/kg) or 

high-oxidized (121 meq O2/kg) oil, supplemented with an antioxidant pack (200 ppm 

EconomasE and organic minerals Se, Zn, Cu, Mn, and Fe as in Bioplex) for 42 d. Protein 

expression was analyzed using 2-dimensional gel electrophoresis and mass spectrometry. 

Statistical analysis indicated that 4 protein spots were differentially abundant (P < 0.05) 

between dietary treatments with spot intensity difference of 1.5-fold or more. 

Glyceraldehyde 3-phosphate dehydrogenase and creatine kinase were overabundant in 

birds fed low-oxidized oil supplemented with antioxidants. Triose phosphate isomerase 

and heat shock protein beta-1 were more abundant in birds fed a diet without 

antioxidants. Dietary regimen with antioxidants influenced protein expression in broiler 

breast meat, which may greatly contribute to overall meat quality. 
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6.2. Introduction 

 

In the United States, there is a continuous demand for high-quality, shelf-stable 

meat and meat products. Yet, meat quality is a complex concept since there are a variety 

of extrinsic and intrinsic factors that affect sensory attributes, such as tenderness, 

juiciness, and flavor. In the post-genomic era, proteomic tools such as two-dimensional 

gel electrophoresis are utilized to elucidate the biochemical mechanisms influencing 

muscle-to-meat conversion and meat tenderness (Mullen et al., 2006; Joseph et al, 2012; 

Paredi et al., 2013). Two-dimensional gel electrophoresis (2D gel) was first utilized to 

assess changes of porcine muscle in relation to meat tenderness. Lametsch et al. (2003) 

observed significant changes in 103 myofibrillar protein spots isolated from porcine 

longissimus dorsi muscle at time of slaughter and at 72 hour postmortem; twenty-seven 

of these spots were identified. This initial research led to more recent application of 2D 

gel in the study of beef quality, particularly tenderness.  

Tenderness is one of the most important attributes influencing consumption of 

beef, yet there is a large variation in the rate and extent of post-mortem tenderization, 

which leads to inconsistency in meat tenderness. Variability in meat tenderness depends, 

in part, on differences in muscle fiber type (glycolytic vs. oxidative), glycogen content, 

collagen content, and protease activities. Therefore, muscle composition can greatly 

affect product quality. Recently, researchers have been exploiting proteomics to identify 

markers for meat tenderness in cattle (Bendixen, 2005; Bernard et al, 2007; Jia et al, 

2009; Kee et al, 2008). Jia et al. (2009) reported that peroxiredoxin-6, an antioxidant 

enzyme that plays a role in protecting cells from oxidative stress, may be a potential 

protein marker for post-mortem meat tenderness.  
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As described above, the majority of proteomic research related to meat quality has 

primarily focused on beef and, to a lesser extent, pork. Despite the proven success of 2D 

gel proteomics in revealing some fundamental factors that influence red meat tenderness, 

it has not been utilized for poultry meat quality. For example, the differential 

abundance/expression of sarcoplasmic and myofibrillar proteins in broiler meat and their 

influence on meat quality have not been characterized. Although tenderness may not be a 

practical issue for most broiler meat, water-binding, drip loss, cooking loss, and flavor 

are common concerns that are all related to the quality of muscle proteins and metabolic 

enzymes. How the nutrition and quality of poultry diet affects the expression of muscle 

proteins and enzymes, as well as their metabolism during meat retail display must be 

studied.  

Recently, nutrigenomic studies coupled with proteomic investigations have 

indicated a potential link between dietary nutrients and the expression of specific 

enzymes and metabolites in muscle (Hesketh, 2008). Li et al. (2009) reported that dietary 

supplementation with α-tocopherol improved meat tenderness and reduced lipid oxidation 

on broiler breast and thigh meat potentially through the modification of lipid metabolic 

enzymes. However, the genetic and regulatory mechanisms which define these metabolic 

physiological changes in muscle tissue are complex and poorly understood. Proteomic 

techniques are required to fully elucidate the biochemical mechanisms influencing 

muscle-to-meat conversion and water-holding capacity. Therefore, the objective of our 

study was to determine the impact of dietary feed, specifically oxidized oil and 

antioxidant supplementation with a commercial algae-based antioxidant containing Se 
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yeast and organic minerals, on muscle protein expression using 2D gel electrophoresis 

and mass spectrometry of broiler breast meat. 

 

6.3 Materials and Methods 

 

6.3.1. Materials 

 A commercial algae-based antioxidant containing Se yeast, EcoE, and organic 

minerals, Bioplex, was supplied by Alltech Inc. (Nicholasville, KY). Soybean oil was 

acquired from a local retailer with an initial peroxide value (POV) of 23 meq O2/kg as 

determined according to AOCS (2007). To create oxidized oil, aluminum pans (41×13×4 

cm) each containing 5 kg of the above oil were heated in a convection oven at 95 °C ± 5 

°C for up to 7 d. The POV of the oxidized oil was monitored intermittently. When the 

POV reached the target level (120 meq O2/kg), heating was discontinued and the oxidized 

oil was cooled to room temperature. The POV of the final pooled oil was 121 meq O2/kg 

and was used immediately for diet preparation. All chemicals (reagent grade) were 

purchased from Fischer Scientific (Pittsburgh, PA) or Sigma-Aldrich (St. Louis, MO) 

unless specified otherwise. 

 

6.3.2. Broiler Production  

 Three independent feeding trials (n = 3) over a two-year period were performed. 

In each, 960 male broilers were raised from 1 to 42 d of age and randomly placed in 48 

floor pens with 20 birds per pen. Each pen was randomly designated one of four dietary 

treatments consisting of feeding: (1) basal diet–low oxidized oil (LO); (2) basal diet–low 
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oxidized oil, supplemented with antioxidants (ALO); (3) basal diet–high oxidized oil 

(HO); (4) basal diet–high oxidized oil, supplemented with antioxidants (AHO). Broilers 

were randomly distributed into the 4 dietary groups with 12 replicate pens for each diet. 

Each pen was equipped with a feeder, a nipple drinker line, and a litter of soft wood 

shavings. Birds consumed feed in mash form and water on an ad libitum basis. A starter 

diet containing 22% crude protein (CP) and 3,120 kcal/kg was fed from 0–21 d of age 

and a grower diet containing 20% CP and 3,150 kcal/kg was fed from 21–42 d of age 

(Table 3.1). Photoperiod consisted of 22 h of light and 2 h of dark throughout the 

experiment. 

 

6.3.3. Tissue Preparation and Isolation of Sarcoplasmic Proteome 

 After 42 d of feeding, six broilers per dietary treatment (total of 24 per trial) were 

randomly selected and humanely harvested. Immediately following exsanguination, 

aliquots of Pectoralis major muscle samples (approximately 5 g each) were removed 

from each broiler, frozen in liquid N2 (–196 °C), and stored in a –80 °C freezer until use, 

within one year. Upon sarcoplasmic proteome extraction, partially thawed muscle 

samples were homogenized in cold extraction buffer (40 mM Tris, 5 mM EDTA, pH 8.0) 

at the ratio 1:4 (w/v) using a Model 51BL31 micro blender (Waring Commercial, 

Torrington, CT). The homogenate was centrifuged at 10,000 × g for 15 min at 4 °C. The 

supernatant was filtered using a #1 Whatman filter paper. 
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6.3.4. Two-Dimensional Electrophoresis and Gel Image Analysis 

 The protein concentration of the sarcoplasmic proteins was determined using the 

Bradford assay (Bio-Rad). The sarcoplasmic proteome, 1200 µg, was mixed with 

rehydration buffer (Bio-Rad, Hercules, CA), optimized to 9 M urea, 4% CHAPS, 50 mM 

DTT, 0.2% Bio-Lyte 3/10 ampholyte, and 0.0001% Bromophenol Blue, loaded onto 

immobilized pH gradient (IPG) strips (pH 5–8, 17 cm), and subjected to passive 

rehydration for 16 h. First dimension isoelectric focusing (IEF) was conducted by 

applying a linear increase in voltage, initially, followed by a rapid voltage ramping to 

attain a total of 80 kVh, using a Protean IEF cell system (Bio-Rad). After IEF, the IPG 

strips were equilibrated in equilibration buffer I (6 M urea, 0.375 M Tris-HCl, pH 8.8, 

2% SDS, 20% Glycerol, 2.5% (w/v) iodoacetamide), then in equilibration buffer II (6 M 

urea, 0.375 M Tris-HCl, pH 8.8, 2% SDS, 20% Glycerol, 2% (w/v) DTT), each for 15 

min. The proteins were separated in the second dimension by 12% SDS-PAGE using a 

Protean XL system (Bio-Rad). The gels were stained with Colloidal Coomassie Blue for 

5 days and de-stained for 1 day. Samples from each dietary treatment (LO, ALO, HO, 

AHO) were ran in duplicate. The stained gels were analyzed using PDQUEST software 

(Bio-rad) for image analysis.  

 

6.3.5. Protein Identification by Mass Spectrometry  

 Significantly different (P < 0.05) spots were excised from the gel using a scalpel. 

Excised gel spots were minced and placed in a low-retention microcentrifuge tube and 

destained two times or until colorless with 50 mMNH4HCO3/50% CH3CN (supernatants 

were discard) before it was dried in SpeedVac. After reduction with 10 
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mM DTT (Dithiothreitol) at 56°C for 30min and alkylation with 50 mM  IAA 

(Iodoacetamide)  at 25°C for 30min, the gel was dehydrated with ACN and dried 

with SpeedVac before digestion was performed with trypsin solution (Sigma, 20 ng/ul in 

5% acetic acid was added to decrease the pH of the solution between 2 and 3 to stop the 

enzymatic reaction.  

LC-MS/MS analysis was performed using an LTQ-Orbitrap mass spectrometer 

(Thermo Fisher Scientific, Waltham, MA) coupled with an Eksigent Nanoflex cHiPLC™ 

system (Eksigent , Dublin, CA) through a nano-electrospray ionization source. The 

peptide samples were separated with a reversed phase cHiPLC column (75 μm x 150 

mm) at a flow rate of 300 nL/min. Mobile phase A was water with 0.1% (v/v) formic acid 

while B was acetonitrile with 0.1% (v/v) formic acid. A 50 min gradient condition was 

applied: initial 3% mobile phase B was increased linearly to 50% in 24 min and further to 

85% and 95% for 5 min each before it was decreased to 3% and re-equilibrated. The 

mass analysis method consisted of one segment with eight scan events. The 1st scan 

event was an Orbitrap MS scan (100−1600 m/z) with 60,000 resolution for parent ions 

followed by data dependent MS/MS for fragmentation of the 7 most intense ions with 

collision induced dissociation (CID) method.  

The LC-MS/MS data were submitted to a local mascot server for MS/MS protein 

identification via Proteome Discoverer (version 1.3, Thermo Fisher Scientific, Waltham, 

MA) against other lobe-finned fish and tetrapod clade taxonomy subset of Swissprot 

database. Typical parameters used in the MASCOT MS/MS ion search were: trypsin 

digest with maximum of two miscleavages, cysteine carbamidomethylation, methionine 

40 mM NH4HCO3,  9% CH3CN) overnight at 37˚C. A solution of 50% ACN with 
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oxidation, a maximum of 10 ppm MS error tolerance, and a maximum of 0.8 Da MS/MS 

error tolerance.  A decoy database was built and searched. Filter settings that determine 

false discovery rates (FDR) are used to distribute the confidence indicators for the 

peptide matches. Peptide matches that pass the filter associated with the strict FDR (with 

target setting of 0.01) are assigned as high confidence. For MS/MS ion search, proteins 

with two or more high confidence peptides were considered unambiguous identifications 

without manual inspection. Proteins identified with one high confidence peptide were 

manually inspected and confirmed. 

 

6.3.6. Statistical Analysis 

Three independent trials (n = 3) each with duplicate gel analyses per dietary 

treatment (total of 8 per trial) were conducted. PDQUEST software (Bio-rad) was used to 

detect and match spots from each dietary group which were normalized by expressing the 

relative quantity of each spot (ppm) as the ratio of individual spot quantity to the total 

quantity of valid spots. For each spot in a given dietary sample, spot quantity values in 

triplicate gels were averaged for statistical analysis. A spot was considered to be 

significant in differential abundance when it was associated with P < 0.05 in a pairwise 

Student t-test. 
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6.4 Results and Discussion 

 

6.4.1. Sarcoplasmic Proteome Analysis 

 Colloidal Coomassie blue staining of 2-DE gels was used to determine the effects 

of dietary feeding regimen (oxidized oil and/or antioxidants) on protein expression 

(Figure 6.1). Statistical analysis indicated that 4 protein spots were differentially 

abundant (P < 0.05) between dietary treatments with spot intensity difference of 1.5-fold 

or more (Figure 6.2). The differently abundant protein spots were excised from the gels, 

subjected to in-gel tryptic digestion, and analyzed by tandem MS. The resulting mass 

spectra were used to identify proteins through MS/MS ion search using MASCOT 

software, where all proteins were matched to Gallus gallus in the Swissprot database. 

Table 6.1 details the proteins identified by tandem MS along with their Swissprot 

accession number, species, functional category, overabundance in diet, molecular weight, 

isoelectric pH, and sequence coverage. The identified proteins include glyceraldehyde 3-

phosphate dehydrogenase, triose phosphate isomerase, creatine kinase, and heat shock 

protein beta-1.  

 

6.4.2. Metabolic Enzymes 

 Chicken breast muscle is fairly homogenous and is comprised of predominately 

fast twitch type IIx, glycolytic fibers. These fibers contain low myoglobin content, few 

mitochondria, large amount of creatine phosphate, and can utilize ATP quickly. 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and triose phosphate isomerase 

are important enzymes in the glycolytic pathway. In the present study, GAPDH was more 

abundant in ALO compared with LO and AHO. Joseph et al. (2012) reported that
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Figure 6.1. Effect of dietary treatments on the Coomassie-stained two-dimensional gels of the sarcoplasmic proteins extracted 

from fresh chicken breast (A–D). Dietary treatments LO: A; ALO: B; HO: C; AHO: D. 
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Figure 6.2. Coomassie-stained two-dimensional gels of the sarcoplasmic proteins extracted from fresh chicken breast muscle. 

Four spots, differentially abundant in LO and ALO are numbered. Dietary treatments LO: A; ALO: B 
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Table 6.1. Spot number refers to the numbered spots in gel images (Figure 6.2). For each spot, different parameters related to 

protein identification are provided (Swissprot accession number; species; sequence coverage of peptides in tandem mass 

spectrometry; theoretical protein mass (kDa) and isoelectric pH (pI)). For each protein, functional category of the protein, diet 

with greater abundance of the protein, and spot ratio are indicated. 

 

 

 

Spot Protein 

Accession 

Number Species 

Functional 

Category 

Overabundant 

in Diet 

Sequence 

Coverage 

Spot 

Ratio 

Molecular 

Weight pI 

1 
Heat shock protein 

beta-1 
Q00649 Gallus gallus Chaperone LO 64.77 1.75 21.7 6.1 

2 
Triosephosphate 

isomerase 
P00940 Gallus gallus Enzyme HO 78.63 2.00 26.6 7.2 

3 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

P00356 Gallus gallus Enzyme ALO 56.16 2.00 35.7 8.5 

4 Creatine Kinase P00565 Gallus gallus Enzyme ALO 71.39 1.61 43.3 7.0 
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muscles with pronounced glycolytic metabolism had improved color stability. In our 

previous study (Chapter 4), the a* value remained unchanged for ALO samples packaged 

in HiOx and PVC compared with all other dietary treatments, potentially indicating a 

more stable myoglobin structure due to a greater abundance of GADPH in the tissue. 

Supplementation with an algae-based antioxidant containing Se yeast may be 

incorporated into the cellular membrane and reduce lipid and myoglobin oxidation, also 

improving color stability. However, cattle with more abundant fast gylcolytic type 

proteins, such as GAPDH and triphosphate isomerase, had less tender meat (Picard et al., 

2012), which disagreed with our previous study (Chapter 4). This may be attributed to the 

difference in species. Furthermore, Anderson (2011) stated that glyceraldehyde-3-

phosphate dehydrogenase was not a robust indicator of tenderness across muscles 

because alterations to the relative abundance of these proteins were not directly related to 

the amount of tenderization that occurred during postmortem storage. Similarly, Triose 3-

phosphate isomerase, another glycolytic enzyme, was higher in HO compared with AHO.  

 Creatine kinase (CK) regenerates ATP by catalyzing the reversible transfer of an 

N-phosphoryl group from phosphocreatine to ADP (Kenyon and Reed, 1983). There are 

5 different isoforms of CK, 3 cytosolic (brain, muscle, and heterodimer) and 2 

mitochondrial (ubiquitous and sarcomeric). Muscle type CK has been found to contribute 

to the M-line, indicating a structural role in the sarcomere (Turner et al., 1973). Upon the 

conversion of muscle to meat, muscle CK utilizes phosphocreatine to generate ATP 

through the re-phosphorylation of ADP, which may delay the onset of rigor mortis. In the 

present study, CK was overabundant in ALO samples compared with AHO. The greater 

abundance of CK in the ALO samples may have contributed to the overall meat quality 
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through a delayed onset of rigor mortis. In our previous studies, ALO breast samples had 

lower lipid and protein oxidation (Chapter 3) and improved tenderness and juiciness 

(Chapter 4) which may be influenced, in part, by a slower fall in pH during rigor mortis. 

Thus, the lower carcass temperature and a slower fall in pH could reduce the incidence of 

pale, soft and exudate (PSE) meat and protein denaturation. Finally, other studies have 

also shown that mitochondrial CK can act as an antioxidant by reducing the rate of 

mitochondrial reactive oxygen species (ROS) generation through an ADP re-cycling 

mechanism (Meyer et al., 2006; Santiago et al., 2008). Therefore, feeding an algae-based 

antioxidant containing Se yeast and organic minerals to broilers may increase the 

expression of creatine kinase, acting as an antioxidant against oxidative stress thereby 

reducing ROS generation, ultimately improving the oxidative stability of lipids and 

proteins in chicken breast meat. 

 

6.4.3. Small Heat Shock Proteins 

 Small Heat shock proteins (sHSPs) have a molecular mass ranging from 12 to 43 

kDa and are comprised of a large and diverse family of proteins that act as molecular 

chaperones, which assist in the non-covalent folding or unfolding of proteins. The 

expression of sHSPs is increased in response to different kinds of injury or stress, such as 

heat shock. Specifically, sHSPs play an important role in the prevention of the formation 

of insoluble actin aggregates, which can be induced upon heat shock or other stressors 

(Pivovarova et al., 2007). In the present study, HSP beta-1 was more abundant in LO 

compared with HO. The higher abundance in the basal dietary group (LO) could be due 

to a lower degree of oxidative stress in vivo. Whitam and Fortes (2008) reported that HSP 
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expression reduces ROS generation through the activation of antioxidants. In our 

previous study, broilers fed a high-oxidized diet without antioxidant supplementation had 

a higher amount of carbonyl formation (protein oxidation) and lower antioxidant enzyme 

activity in the breast muscle (Figure 3.2). Therefore, the lower amount of HSP beta-1 in 

HO samples may be due to long term stress lowering the expression of genes encoding 

for sHSPs, ultimately reducing tissue antioxidant enzymatic activity. Overexpression of 

sHSPs proportionally increased the level of intracellular glutathione and decreased the 

level of ROS (Mehlen et al., 1996). Jammes et al. (2009) reported that patients suffering 

from chronic fatigue syndrome had higher levels of TBARS and lower levels of HSP-27 

kDa and HSP-70 kDa compared to healthy individuals. 

 HSP-27 kDa, specifically, plays an important role in the stabilization of 

myofibrillar proteins by protecting denatured actin from aggregation (Pivovarova et al., 

2005). Actin is an important myofibrillar protein and a primary constituent of the cell 

cytoskeleton for muscle contraction. HSP-27 kDa forms soluble complexes with 

denatured actin, thereby protecting the cytoskeleton from damage caused by the 

accumulation of large insoluble aggregates under heat shock conditions (Pivovarova et 

al., 2007). Thus, meat samples with higher amounts of HSP-27 kDa may result in better 

consumption quality (i.e. improved juiciness and tenderness) due to a lower degree of 

insoluble aggregates present within the myofibrillar matrix. Previous studies have mainly 

focused on the correlation between protein oxidation and meat quality (Kim et al., 2010; 

Lund et al., 2011; Rowe et al., 2004). Beef steaks packaged in HiOx had a greater degree 

of myosin heavy chain cross-linking, due to protein oxidation, and significantly lower 

tenderness and juiciness scores compared to steaks packaged under vacuum (Kim et al., 
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2010). Similarly, Liu et al. (2010) reported increased carbonyl content, higher degree of 

myofibrillar and sarcoplasmic protein cross-linking and reduced water-holding capacity 

in pork muscle exposed to a strong oxidizing environment. Therefore, the larger 

abundance of chaperone proteins present may reduce protein denaturation and 

aggregation and ultimately improve tenderness and juiciness of meat throughout storage. 

 

6.5. Conclusion 

 

 

In conclusion, 2-DE and mass spectrometry were utilized to interpret the effects 

of dietary oxidized oil and antioxidant supplementation on specific protein expression in 

chicken broiler breast meat. The overabundance proteins functioning as metabolic 

enzymes and chaperone proteins in the low-oxidized dietary regimen may positively 

correlate with greater oxidative stability based on previous studies. Thus, more work is 

needed to elucidate the interaction between dietary regimen and protein expression in 

order to improve the oxidative stability of meat. Utilizing proteomics to examine the 

biochemical mechanisms influencing meat quality during the farm to food conversion 

could lead to the development of more consistent meat products, increased consumer 

confidence, and cost-effective feed formulations. 

 

 

 

 

 

 

 

 

 

Copyright © Rebecca M. Delles, 2013 



 

125 

 

CHAPTER 7 

 

 

OVERALL CONCLUSIONS 

 

 

In conclusion, feeding diets with poor quality oil increased the vulnerability of 

lipids and proteins to oxidative processes in broiler breast and thigh meat during 

refrigerated and/ or frozen storage in various packaging conditions, yet these effects were 

alleviated upon dietary supplementation with a commercial algae-based antioxidant pack 

containing Se yeast (EcoE) and organic minerals (Bioplex). The protective barrier 

imparted by dietary antioxidant supplementation may be attributed to enhanced cellular 

antioxidant enzymatic activity and reduced ROS propagation in vivo. In fresh chicken 

breast meat, samples from birds fed an antioxidant supplemented diet (ALO, AHO) 

showed higher catalase, superoxide dismutase, and glutathione peroxidase enzymatic 

activity, compared to their respective controls, which may have contributed to their 

greater oxidative stability throughout storage. Furthermore, the reduced lipid and protein 

oxidation improved the water-holding capacity and tenderness of fresh chicken breast 

meat, potentially through the minimization of disulfide bond cross-linking of the myosin 

heavy chain. Although the negative effects of poor quality oil on broiler meat quality 

were exacerbated in pre-frozen chicken thigh meat, dietary supplementation with 

antioxidants thwarted these properties.  

Proteomic data revealed enzymatic and antioxidative proteins overabundant in the 

dietary group fed low-oxidized oil, regardless of antioxidant supplementation. Feeding 

broilers poor quality oil for an extended period appeared to correlate with long term 

stress, which may lower the expression of genes encoding for antioxidative proteins, 
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ultimately reducing oxidative stability, meat quality, and storage stability of fresh and 

pre-frozen chicken breast meat. 

The results show that feeding regimen influences gene and protein expression. 

Therefore, utilizing nutrigenomics to upregulate genes that encode for proteins that favor 

specific meat quality traits and improve oxidative stability can be done through 

programmed nutrition. Feeding broilers a diet supplemented with EconomasE–Bioplex 

can improve chicken meat quality through the upregulation of specific antioxidant 

proteins, such as glyceraldehyde 3 phosphate, creatine kinase and heat shock protein β-1, 

and antioxidant enzymes like catalase, superoxide dismutase and glutathione peroxidase.  
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