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ABSTRACT OF DISSERTATION 
 
 
 
 

DEVELOPMENT OF A MULTILAYERED ASSOCIATION POLYMER SYSTEM 
FOR SEQUENTIAL DRUG DELIVERY 

 
As all the physiological processes in our body are controlled by multiple 

biomolecules, comprehensive treatment of certain disease conditions may be more 
effectively achieved by administration of more than one type of drug. Thus, the primary 
objective of this research was to develop a multilayered, polymer-based system for 
sequential delivery of multiple drugs.  This particular device was designed aimed at the 
treatment of periodontitis, a highly prevalent oral inflammatory disease that affects 90% of 
the world population. This condition is caused by bacterial biofilm on the teeth, resulting 
in a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the 
tooth. Current treatment methods for periodontitis address specific parts of the disease, 
with no individual treatment serving as a complete therapy.   

 
The polymers used for the fabrication of this multilayered device consists of 

cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P).  After evaluating 
morphology of the resulting CAPP system, in vitro release of small molecule drugs and a 
model protein was studied from both single and multilayered devices. Drug release from 
single-layered CAPP films followed zero-order kinetics related to surface erosion property 
of the association polymer. Release studies from multilayered CAPP devices showed the 
possibility of achieving intermittent release of one type of drug as well as sequential release 
of more than one type of drug. Mathematical modeling accurately predicted the release 
profiles for both single layer and multilayered devices.  After the initial characterization of 
the CAPP system, the device was specifically modified to achieve sequential release of 
drugs aimed at the treatment of periodontitis. The four types of drugs used were 
metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit 
inflammation, prevent tissue destruction, and aid bone regeneration, respectively. To 
obtain different erosion times and achieve appropriate release profiles specific to the 
disease condition, the device was modified by increasing the number of layers or by 
inclusion of a slower eroding polymer layer. In all the cases, the device was able to release 
the four different drugs in the designed temporal sequence. Analysis of antibiotic and anti-
inflammatory bioactivity showed that drugs released from the devices retained 100% 
bioactivity.  
 



Following extensive studies on the in vitro sequential drug release from these 
devices, the in vivo drug release profiles were investigated. The CAPP devices with 
different release rates and dosage formulations were implanted in a rat calvarial onlay 
model, and the in vivo drug release and erosion was compared with in vitro results. In vivo 
studies showed sequential release of drugs comparable to those measured in vitro, with 
some difference in drug release rates observed. The present CAPP association polymer-
based multilayer devices can be used for localized, sequential delivery of multiple drugs 
for the possible treatment of complex disease conditions, and perhaps for tissue engineering 
applications, that require delivery of more than one type of biomolecule. 

 
 
KEYWORDS: Multiple drug delivery, Periodontitis, Cellulose acetate phthalate, 

Pluronic F-127, Sequential drug release, in vitro drug release, in vivo 
drug release. 
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Chapter 1 Introduction  

    
The human physiology is an intricate system involving a network of many organs 

and organ systems. Human body works and maintains its homeostatic condition depending 

on complex cascade of events with several signaling molecules, involving more than one 

organ or a system.  In the event of an injury or disease the physiological response required 

to bring the body back to normal condition also involves several factors working in an 

interrelated manner. One such condition which requires more than one factor that needs to 

be addressed for treatment is periodontitis. Treatment of this condition involves eradicating 

the microbial infection, controlling the inflammatory response, preventing bone resorption 

and aiding bone regeneration. The main aim of this research was to develop surface erosion 

based implantable polymeric device capable of delivering more than one  type of drug in 

the required temporal sequence for treatment of such complex medical condition. Chapter 

2 examines the background and significance of the releasing multiple drugs in the 

sequential order and also explores its usefulness in treatment of periodontitis. The details 

of the previous research and the use of surface eroding polymer used in this research are 

discussed. The types of drugs that are delivered using this device and their relevance in 

regard with the treatment of periodontitis are also briefly explained. 

General mass loss and drug release properties of the association polymer system 

(CAPP) comprising of cellulose acetate phthalate (CAP) and Pluronic F-127 is analysed in 

chapter 3. Different small molecule drugs and a model protein were loaded in the CAPP 

films at different doses and their zero order release was studied.  The fabrication of CAPP 

films in the form of multilayered devices for intermittent and sequential release of drugs 

are also discussed in chapter 3. These drug release profiles are predicted using a 

mathematical model and compared with the actual release profiles. Chapter 4 involves the 

fabrication of the CAPP multilayered device capable of releasing four drugs released in a 

sequential order, specifically aimed at the treatment of periodontitis. This included release 

of antibiotics, anti-inflammatory, anti-resorptive and osteogenic drug in the required 

temporal sequence. The bioactivity analysis of the released drug were performed and the 

multilayered device was also modified to obtain different erosion and release times by 

inclusion of slower eroding polymer layer.  
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Chapter 5 presents the in vitro and in vivo sequential release of four different drugs 

from the multilayer CAPP device. The in vivo drug release studies were performed by 

implantation of the multilayer device in the rat calvarium model. Multilayer CAPP device 

capable of releasing four different drugs in a sequential manner in vivo in different doses 

and erosion times were studied and compared with in vitro release. Based on the 

comparison of in vitro and in vivo release profiles, the possible changes that might be 

necessary in the device to achieve the appropriate in vivo release profile for treatment of 

specific disease conditions are also discussed.  

The ability of this CAPP based multilayer device for delivering more than one type 

of drug sequentially is further discussed in the conclusion, along with its possibility to serve 

as a complete treatment for periodontitis. This device will not only be useful in the 

treatment of periodontal disease, it will also serve as a model for fabrication of devices 

with the general capability for delivering multiple drugs for treatment of complex disease 

conditions and for tissue engineering.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Sharath kumar Chinnakavanam Sundararaj 2013  
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Chapter 2 Background and Significance 

 

2.1 Treatments requiring multiple drug delivery 

Pathogenesis of a disease condition is based on cascade of events with more than 

one type of biomolecules taking part in them. This creates the need for administration of 

multiple drugs for better and complete treatment of a particular disease condition. Some of 

the examples include severe bacterial infection required combination of antibiotics 

(Dowling 1957), infection accompanied by tissue loss (Younger, Duncan et al. 1998), 

cancer therapy (Wang, Rosano et al. 2010) and periodontitis (Rosen 2001). In the case of 

bacterial infection and biofilm formation more than one type of antibiotic agent may be 

required for complete elimination of infection (Griffiths, Ayob et al. 2011). Administration 

of more than one type of antibiotic would help fight different types of bacteria present and 

might also avoid the chances of bacteria developing resistance towards a particular drug 

(Dowling 1957, Griffiths, Ayob et al. 2011). Similarly in the case of bacterial infection 

which is accompanied with tissue loss, we need antibiotics to treat the infection followed 

by growth factors to aid tissue regeneration (Younger, Duncan et al. 1998). Another similar 

type of condition is periodontitis, an inflammatory condition caused due to bacterial 

infection that ultimately leads to tissue loss (Rosen 2001, Polimeni, Xiropaidis et al. 2006), 

would require antibiotics, anti-inflammatory and osteogenic agents for complete treatment. 

There is a growing body of research which suggests the need for multiple drug delivery or 

combinatorial drug therapy for effective cancer treatment (Chen and Jin 2010, Wang, 

Rosano et al. 2010, Cao and Bae 2012, Lee and Nan 2012). The process of wound healing 

also shows the presence multiple stages such as hemostasis, inflammation, proliferation 

and wound remodeling involving multiple biomolecules (Gurtner, Werner et al. 2008, 

Velnar, Bailey et al. 2009). 

Along with the treatment of the above mentioned conditions, more and more 

research indicate the need for multiple growth factors for tissue engineering applications. 

The importance of multiple growth factors for effective tissue regeneration has been 

reviewed by Chen et al. (Chen and Jin 2010). There are more of these studies on tissues 

like bone, cartilage and blood vessels. Studies have shown the effect of mixture of growth 

factors on increase in number of human alveolar bone cells in vitro (de Oliveira, de Oliva 
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et al. 2008). Yeh et al., showed the synergistic effect of osteogenic protein 1 and 

interleukin-6 (IL-6) in stimulating differentiation of rat osteoblastic cells (Yeh, Zavala et 

al. 2002), and the combined effect of insulin like growth factor I (IGF-I) and transforming 

growth factor (TGF-β) on chrondrogenesis in vitro was shown by Fukomuto et al. 

(Fukumoto, Sperling et al. 2003). The well-studied process of angiogenesis also shows the 

presence of multiple growth factors working together in a complex cascade of events 

starting with vasculogenesis (vessel formation), followed by angiogenic remodeling and 

maturation of blood vessels (Yancopoulos, Davis et al. 2000). Even for regeneration of 

nervous tissue and guidance of axons there are multiple factors involved (Dontchev and 

Letourneau 2003). For regeneration of more complex tissues like muscles both 

angiogenesis and myogenesis growth factors would be required (Borselli, Storrie et al. 

2010).  

The above examples show the need of multiple drugs for complete treatment of a 

condition or multiple growth factors for regeneration of a tissue. Growth factors are 

expressed in a time-dependent manner during the process of tissue regeneration. The 

sequential expression of growth factors in differentiation of osteoprogenitors to osteoblasts 

in vitro was investigated by Huang et al. (Huang, Nelson et al. 2007). The process of bone 

fracture healing (Cho, Gerstenfeld et al. 2002) and tendon to bone healing (Würgler-Hauri, 

Dourte et al. 2007) also involves temporal expression of several growth factors. Sequential 

delivery of growth factors has also shown to have positive effect on cartilage tissue 

engineering (Martin, Suetterlin et al. 2001, Worster, Brower‐Toland et al. 2001, Pei, Seidel 

et al. 2002). Sequential expression of growth factor can also be observed in the case of 

wound healing as seen in the spatiotemporal expression of periostin during skin 

development (Zhou, Wang et al. 2010).  Similar to the requirement of multiple growth 

factors for tissue regeneration, treatment of a complex disease condition also required 

temporal administration of different drug to counter the cascade of event that that form the 

basis for the pathogenesis of the condition. Thus sequential delivery of multiple 

drugs/growth factors in different temporal profiles would be critical for treatment of 

complex disease conditions and regeneration of tissues.   
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2.2 Current research on simultaneous and sequential multiple drug delivery systems 

Localized delivery of drug using biodegradable polymer systems has been studied 

widely and various drug delivery systems have been successfully fabricated for treatment 

of several disease conditions and regeneration of different types of tissues (Langer and 

Chasin 1990, Schacht 1990, Jain, Yenet Ayen et al. 2011). There are examples of drug 

delivery systems capable of releasing small molecule drugs and growth factors. For 

example widely used small molecule drugs like antibiotics has been delivered using 

different types of biodegradable polymers (Giamarellos-Bourboulis 2000, Tsourvakas 

2000, El-Husseiny, Patel et al. 2011). Similarly in the case of tissue engineering there are 

different types of delivery systems for local release of growth factors for bone regeneration 

(Geiger, Li et al. 2003, Saito, Murakami et al. 2005, Ginebra, Traykova et al. 2006). In 

spite of considerable success at both treatment of a disease and tissue regeneration, more 

and more research suggests the need for more than one type of drug for a comprehensive 

treatment of a complex disease condition like the ones that are discussed in the section 2.1 

or complete regeneration of a tissue. The multiple drug delivery devices aimed at treatment 

of complex disease condition and regeneration of tissue are mostly designed for 

simultaneous delivery of multiple agents (Lynch, de Castilla et al. 1991, Raschke, 

Wildemann et al. 2002, Nevins, Camelo et al. 2003, Simmons, Alsberg et al. 2004, Dogan, 

Gumusderelioglu et al. 2005, Peattie, Rieke et al. 2006, Riley, Fuegy et al. 2006, Nillesen, 

Geutjes et al. 2007, Patel, Young et al. 2008, Chen, Chen et al. 2009, Young, Patel et al. 

2009, Borselli, Storrie et al. 2010, Chen, Zhang et al. 2010) rather than sequential delivery.  

Poly(lactic-co-glycolic acid) (PLGA) is one of the most commonly used and well 

characterized biodegradable polymers used for fabrication of various drug delivery systems 

(Middleton and Tipton 2000, Makadia and Siegel 2011), and many of these multi-drug 

delivery systems discussed above are in part or completely fabricated using PLGA. PLGA 

in the form of porous scaffolds has been used for delivery of vascular endothelial growth 

factor (VEGF) and platelet-derived growth factor (PDGF) for angiogenesis (Richardson, 

Peters et al. 2001). PLGA has also been used along with β-tricalcium phosphate in the form 

of composite scaffolds for controlled dual release of dexamethasone and bovine serum 

albumin (as a model protein) (Yang, Tang et al. 2011). Different growth factors (IGF-I and 

TGF-β) have been loaded in PLGA microspheres and embedded in a poly(ethylene oxide) 
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hydrogel matrix to attain dual drug delivery (Elisseeff, McIntosh et al. 2001). A similar 

strategy was used by loading gelatin microspheres with VEGF and bone morphogenetic 

protein 2 (BMP-2) and confining them in a porous poly(propylene fumarate-co-ethylene 

glycol) hydrogel scaffold for bone regeneration in a critical size defect model (Patel, Young 

et al. 2008).  

Hydrogels have also been used for developing dual drug delivery systems. Alginate 

hydrogels have been used separately for delivery of BMP-2 and TGF-β3 for in vivo bone 

formation (Simmons, Alsberg et al. 2004) and in combination with calcium sulphate to 

deliver both IGF-I and VEGF for muscle regeneration (Borselli, Storrie et al. 2010). 

Glycidyl methacrylated dextran (Dex-GMA)/gelatin hybrid hydrogel scaffolds with the 

capability of delivering IGF-I and BMP-2 have been fabricated aimed at periodontal tissue 

engineering (Chen, Chen et al. 2009). Other than the above mentioned PLGA and hydrogel 

based systems a cell adhesive scaffold based on poly (2-hydroxyethyl-methacrylate)and 

poly(L-lysine) has been used for delivery of nerve growth factor (NGF) and neurotrophin-

3 (NF-3) to direct axonal growth (Moore, MacSween et al. 2006). There is also a dual 

delivery system in the form of polylactide coating for delivery of IGF-I and TGF-β to 

accelerate osteotomy healing (Raschke, Wildemann et al. 2002). Along with the above 

mentioned microscale dual delivery systems, there are different liposomal based nanoscale 

delivery system for delivery of multiple drugs for cancer treatment (Chen and Jin 2010, 

Lee and Nan 2012).   

The multi-drug delivery systems which have been discussed till now are mostly the 

ones that involve simultaneous release of the drugs or growth factors. As mentioned in the 

section 2.1 all the physiological conditions in our body are a cascade of events. So to treat 

a condition effectively the drugs must also be delivered in a sequential manner depending 

on the pathogenesis of the condition and the growth factors must be expressed in the 

appropriate temporal sequence for successful tissue regeneration. Considering the research 

done on drug delivery using biodegradable polymers, only a limited amount research has 

been conducted on sequential drug delivery systems (Chen, Silva et al. 2007, Buket 

Basmanav, Kose et al. 2008, Jaklenec, Hinckfuss et al. 2008, Kempen, Lu et al. 2009, 

Tengood, Kovach et al. 2010). As observed in the case of simultaneous multi-drug delivery 

systems, even in the case sequential drug delivery systems PLGA is the predominantly 
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used biodegradable polymer. PLGA has been used in the form microsphere-based scaffolds 

for sequential release of bioactive IGF-I and TGF-β1 (Jaklenec, Hinckfuss et al. 2008), in 

the form of porous bilayered scaffold to achieve spatiotemporal VEGF and PDGF delivery 

for blood vessel formation and maturation (Chen, Silva et al. 2007) and in the form of 

microspheres incorporated into a solid poly(propylene fumarate) (PPF) rod surrounded by 

a cylindrical gelatin hydrogel for local sequential VEGF and BMP-2 delivery (Kempen, 

Lu et al. 2009). The sequential release of BMP-2 and BMP-7 has been studied using two 

different delivery systems both involving PLGA. One system uses PLGA nanoparticles 

along with Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles 

embedded in the poly(ε-caprolactone) matrix for sequential release for in vitro bone 

regeneration (Yilgor, Tuzlakoglu et al. 2009, Yilgor, Hasirci et al. 2010), and the other 

system is based on microspheres of polyelectrolyte complexes of poly(4-vinyl pyridine) 

(P4VN) and alginic acid loaded with the growth factors BMP-2 and BMP-7 embedded into 

the scaffolds constructed of PLGA. (Buket Basmanav, Kose et al. 2008). Other examples 

of delivery systems for sequential drug release include the calcium sulphate nanoparticles 

incorporated in a double layer collagen membrane (Cao and Bae 2012) or the use of 

alginate hydrogels for sequential release of VEGF and PDGF (Hao, Silva et al. 2007). 

Sequential release kinetics of two (gentamicin and BMP-2) or three (gentamicin, IGF-I and 

BMP-2) bioactive molecules using one component poly (lactic acid) (PLA) coating on k-

wires were studied to treat infection and aid bone healing (Strobel, Bormann et al. 2011). 

  PLGA is a copolymer of glycolic acid and lactic acid linked together by ester 

linkages. PLGA undergoes bulk degradation resulting in characteristic initial burst release 

and diffusion of the loaded drug before complete polymer degradation (Makadia and Siegel 

2011). Even though sequential release is achieved to a certain extent, clear distinction 

between the temporal release profiles of different drugs/growth factors is not found in the 

sequential delivery systems mentioned in this section. For distinct sequential delivery of 

drugs a surface eroding system capable of releasing drugs only when the polymer erosion 

occurs would be more suitable, as it would avoid simultaneous diffusion of multiple drugs 

and aid release of one drug at a time if designed in an appropriate way. Polyanhydrides and 

poly(orthoesters) are the most common surface eroding polymers used to delivery drugs at 

a constant rate that is proportional to polymer erosion. Polyanhydrides are copolymers of 
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aromatic and aliphatic anhydrides that degrade in to non-toxic diacidic monomers. 

Poly(orthoesters) are hydrophobic surface eroding polymer prepared by tranesterification 

reaction or by the addition of polyols to diketene acetals (Uhrich, Cannizzaro et al. 1999, 

Heller, Barr et al. 2002, Kumar, Langer et al. 2002, Jain, Modi et al. 2005).  

For designing a device capable of loading and releasing multiple drugs, the polymer 

system chosen must be compatible with all the drugs that are part of the system, and the 

processing conditions involved must not affect the bioactivity of any of the drugs. Difficult 

processing conditions, like high processing temperature and poor solubility of 

polyanhydrides and poly(orthoesters), makes them a unsuitable for designing complex 

delivery systems without affecting the bioactivity of the drugs. An association polymer 

system (CAPP) formed via hydrogen bonds between cellulose acetate phthalate (CAP) and 

Pluronic F-127 (P) when mixed in an aprotic solvent, is a surface eroding system used for 

drug delivery (Xu and Lee 1993, Gates, Grad et al. 1994). The CAPP system has been 

previously used in the form compressed microsphere scaffolds for intermittent and 

sequential drug delivery of (Raiche and Puleo 2003, Raiche and Puleo 2004, Jeon, 

Piepgrass et al. 2008).  

 

2.3 Periodontitis and drugs used for its treatment 

Periodontitis is inflammatory condition caused by bacterial infection, which results 

in loss of soft tissue, alveolar bone and ultimately the tooth (Rosen 2001). Periodontitis is 

the most prevalent inflammatory disease in the world and is the leading cause of tooth loss 

in adults (Brown, Oliver et al. 1989, Albandar and Kingman 1999). Current methods 

involve treatment of infection using antibiotics, but in severe cases surgical intervention is 

required (Chen and Jin 2010). Some of the common treatment methods include mechanical 

debridement of periodontal pockets along with plaque control to fight the bacterial 

infection (Etienne 2003). There is no current treatment method available for complete cure 

of periodontitis (Chen and Jin 2010). Periodontitis is also considered as a risk factor for 

cardiovascular disease (Beck, Garcia et al. 1996) and preterm low birth weight (Beck, 

Garcia et al. 1996). Periodontitis being a condition with complex sequential relationship 

between infection, inflammation and tissue loss, it might require administration of multiple 

drugs in an appropriate sequence for proper treatment (Jeon, Piepgrass et al. 2008, Cochran 
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D L. (2003)). Local delivery of drugs has been attempted for treatment of periodontitis 

(Greenstein and Polson 1998). Vyas et al. reviewed the current research on controlled 

delivery systems for treatment of periodontitis (Vyas, Sihorkar et al. 2000). All these 

delivery systems are aimed at the delivery of one type of drug for treatment of one specific 

part of the periodontitis.  

Of the four types of drugs that are required for the complete treatment of 

periodontitis, the antibiotic is the first drug that has to be administered to fight the bacterial 

infection. There are different antibiotics, like amoxicillin (Griffiths, Ayob et al. 2011), 

Moxifloxacin (Ardila, Fernandez et al. 2010), clindamycin, metronidazole, 

phenoxymethylpenicillin and tetracycline (Slots and Ting 2002, Kulik, Lenkeit et al. 2008) 

(Eick and Pfister 2004) that have been used against the bacterial infection as a part of the 

periodontal treatment. Among these amoxicillin, tetracycline and metronidazole were the 

most effective antibiotics against different types of periodontal bacteria such as A. 

actinomycetemcomitans, P. gingivalis and P. intermedia/P. nigrescens (Kulik, Lenkeit et 

al. 2008). Amoxicillin, doxycycline and Metronidazole have been effectively tested against 

different strains of P gingivalis (Larsen 2002). Local delivery of antibiotics has been 

attempted for the treatment of periodontal infection (Bernie , Schwach-Abdellaoui, Vivien-

Castioni et al. 2000, Etienne 2003). Studies have shown that biofilm-associated P 

gingivalis might be resistant against metronidazole concentration that is being attained by 

systemic administration (Wright, Ellen et al. 1997). Metronidazole has been delivered 

locally for periodontal treatment in the form of gel (Sato, Fonseca et al. 2008), electrospun 

poly(L-lactide-co-D/L-lactide) fibers (Reise, Wyrwa et al. 2012) and mucoadhesive buccal 

formulation (Perioli, Ambrogi et al. 2004).  

The other type of drug that is administered for treatment of periodontitis is an anti-

inflammatory drug to counter the inflammatory response that was caused due to bacterial 

infection (Van Dyke 2008). Non-steroidal anti-inflammatory drugs (NSAIDs) have been 

one of the common class of drugs used in periodontal treatment (Williams, Jeffcoat et al. 

1984, Offenbacher, Williams et al. 1992, Howell and Williams 1993, Salvi and Lang 2005). 

Studies have shown that NSAIDs also have a positive effect by altering the human alveolar 

bone loss progression (Lynch, Williams et al. 1989, Howell, Jeffcoat et al. 1991, Dionne 

and Berthold 2001). Some of the commonly used NSAIDs for treating periodontitis include 
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flurbiprofen (Jeffcot, Williams et al. 1986, Lynch, Williams et al. 1989), ketoprofen (Reed, 

Smith et al. 1997), indomethacin (Williams, Offenbacher et al. 1988) and naproxen 

(Howell, Jeffcoat et al. 1991). Local delivery of these drugs have been attempted to treat 

periodontitis using acrylic bone cement as the delivery vehicle (Corry and Moran 1998) or 

delivery of these drugs using microspheres (Paquette, Oringer et al. 2003) or cellulose 

acetate films (Cetin, Buduneli et al. 2004). Flurbiprofen has been administered locally in 

topical form as an adjunct to non-surgical management of periodontal disease (Heasman, 

Benn et al. 1993). Similarly topical administration of ketoprofen in the form of cream 

(Howell, Martuscelli et al. 1996) or gel (Lawrence, Paquette et al. 1998) have shown 

positive results towards potential inhibition of disease progression (Paquette, Fiorellini et 

al. 1997, Paquette, Lawrence et al. 2000). 

The loss of alveolar bone caused because of the adverse inflammatory response 

(Cochran 2008) is treated using anti-resorptive agents. Bisphosponates are a class of anti-

resorptive drugs, which have been used for the treatment of periodontitis (Tenenbaum, 

Shelemay et al. 2002, Lane, Armitage et al. 2005, Shinoda and Takeyama 2006, Jeffcoat, 

Cizza et al. 2007, Badran, Kraehenmann et al. 2009). Residronate administered at an 

appropriate dosage has shown to inhibit bone resorption in periodontitis (Cetinkaya, Keles 

et al. 2008). Studies have also shown that the topical administration of olpadronate has 

effectively prevented bone loss caused by periodontitis (Goya, Paez et al. 2006). Local 

administration of bisphosphonate such as alendronate using gelatin sponges has also been 

shown to reduce bone loss in periodontal procedures such as mucoperiosteal flap surgery 

(Reddy, Weatherford et al. 1995, Yaffe, Fine et al. 1995, Yaffe, Iztkovich et al. 1997, 

Binderman, Adut et al. 2000, Kaynak, Meffert et al. 2000). Tetracycline has significant 

anti-matrix metalloproteinase activity and also inhibits osteoclast development, structure, 

and function, thereby helps prevent bone resorption (Vernillo and Rifkin 1998) 

Tetracycline has also been shown to be particularly effective against alveolar bone loss 

associated with periodontitis (Ramamurthy, Rifkin et al. 2002). Tetracycline when applied 

locally along with bisphosphonate reduced alveolar bone loss (Yaffe, Herman et al. 2003). 

Doxycycline, a type of tetracycline with antibacterial properties, when administered in 

subantimicrobial dose has been shown to improve efficacy of scaling and root planning 

along with having a positive effect on the management of severe, generalized, chronic 
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periodontitis (Caton, Ciancio et al. 2000, Novak, Johns et al. 2002). Doxycycline when 

delivered locally was equally effective as scaling and root planning (Garrett, Johnson et al. 

1999), and when combined with a NSAID had enhanced effect in inhibition of matrix 

metalloproteinase for treatment in chronic periodontitis patients (Lee, Ciancio et al. 2004).  

The final stage of periodontitis treatment would involve the regeneration of the lost 

tissue, which would include the regeneration of the alveolar bone. There are different 

growth factors that have been locally delivered using biodegradable polymers like PLGA, 

PLA and  poly(caprolactone) (PCL) for regeneration of bone (Tezcaner and Keskin 2011). 

One of the most common growth factor used for bone regeneration is BMP (Haidar, Hamdy 

et al. 2009, Brown, Li et al. 2011).  Different growth factors including the BMPs, have 

been used for alveolar bone regeneration and reconstruction (Graves, Kang et al. 1994, 

Sigurdsson, Lee et al. 1995, Giannobile 1996, Howell, Martuscelli et al. 1996, Toriumi, 

O'Grady et al. 1999, Raja, Byakod et al. 2009). Specifically BMP-2 has been used for 

periodontal reconstruction with significantly enhanced regeneration (Sigurdsson, Lee et al. 

1995, Wikesjo, Guglielmoni et al. 1999, Selvig, Sorensen et al. 2002, Saito, Saito et al. 

2003). BMP-2 has been delivered using gelatin based carrier system (Talwar, Di Silvio et 

al. 2001) or in the form of gene therapy for periodontal regeneration (Jin, Anusaksathien 

et al. 2003, Dunn, Jin et al. 2005, Chen, Chen et al. 2008, Lutz, Park et al. 2008). Other 

than BMP-2, platelet-derived growth factor has been studies for the purpose of periodontal 

regeneration (Giannobile, Lee et al. 2001, Nevins, Camelo et al. 2003). Combination of 

growth factors have also been used for periodontal regeneration, such as the application of 

human osteogenic protein-1 and BMP-2 (Ripamonti, Crooks et al. 2001) and the use of 

PDGF and IGF to enhance bone formation (Lynch, Williams et al. 1989, Lynch, de Castilla 

et al. 1991). Apart from the growth factors used for periodontal regeneration, simvastatin 

a small molecule drug has been shown to promote osteoblast viability and differentiation 

via membrane bound BMP-2 pathway (Chen and Jin 2010). Simvastatin has also been 

studied for its potential as osteogenic agent in treatment of periodontitis (Singh, Dodwad 

et al. , Yazawa, Zimmermann et al. 2005, Chen and Jin 2010). Simvastatin has been shown 

to promote osteoblast viability and differentiation via membrane bound BMP-2 pathway  

Studies have shown that the administration of simvastatin had a positive effect on the 

periodontitis-associated bone loss in rat model (Vaziri, Naserhojjati-Roodsari et al. 2007). 
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Local delivery of simvastatin in the form of injection (Morris, Lee et al. 2008) and gels 

(Thylin, McConnell et al. 2002) resulted in improved treatment outcome both in rat model 

(Stein, Lee et al. 2005, Seto, Ohba et al. 2008) and human clinical trials (Pradeep and 

Thorat 2010).  

 

2.4 Significance 

Published research on simultaneous and sequential release of drugs mostly involves 

only delivery of two types of drugs or growth factors. This research focuses on sequential 

release of four different drugs at different rates and doses to create a versatile system. Most 

of the multiple drug delivery systems are formed using more than one type of polymer and 

use combinations of microspheres or nanoparticles embedded in scaffold or matrix in a 

form of complex architecture resulting in a relatively difficult fabrication process. The 

multilayered device used in this research would be primarily formed using CAPP 

association polymer in the form of drug loaded films with a relatively simpler fabrication 

process. Even though the device is capable of delivering different types of drugs, this 

research is aimed at designing a device capable delivering four drugs in a predetermined 

sequence for stepwise treatment of periodontitis. Periodontitis was chosen as a 

representative example of a condition that may benefit by sequential drug delivery. The 

focus of this research is on developing a device specifically for sequential release of 

antibiotics, anti-inflammatory, anti-resorptive and osteogenic drugs for periodontal 

treatment by elimination of infections and inflammation, prevention of bone resorption and 

augmentation of alveolar bone growth. 

The drugs that were selected to be loaded in this device have already been 

successfully used separately for the treatment of a specific stage of periodontitis as 

discussed in section 2.3. The metronidazole (antibiotic) and ketoprofen (anti-

inflammatory) used as a part of this device are the currently being in use for periodontitis 

treatment. The third drug that is a part of this device, doxycycline, is a tetracycline with 

both anti-resorptive and antibiotic properties. This will help prevent bone resorption and 

also the antibiotic property of this drug will provide of protection, along with 

metronidazole against infection during the course of repair and regeneration.  The final 

osteogenic drug selected is simvastatin. Simvastatin, being a small molecule drug it is 
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relatively more robust during fabrication process than the growth factors that have been 

used for periodontal regeneration. This device will deliver these drugs in a sequential order 

to form an all-encompassing treatment for periodontitis. The device can be altered by 

inclusion of poly(sebasic acid) (PSA) layer or by changing the ratio of CAP:Pluronic to 

achieve different erosion times and release profiles as required by the severity of the 

condition. The amount of drug loaded and released from the CAPP films can also be altered 

based on the dose requirement, which would be of critical importance for effective 

treatment. The final part of this research included the study in vivo drug release profiles 

from these multiple drug delivery devices.  
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Chapter 3 Bioerodible System for Sequential Release of Multiple Drugs 

   

3.1 Introduction 

Several conditions, such as severe bacterial infection,(Dowling 1957)  

periodontitis,(2001) and traumatic bone loss along with infection,(Younger, Duncan et al. 

1998) require repeated administration of a drug or administration of more than one drug 

for efficacious treatment. As reviewed by Chen et al., delivery of multiple growth factors 

is also important for tissue engineering.(Chen, Zhang et al. 2010) Thus, this research was 

directed at developing a bioerodible system capable of delivering one or more types of drug 

in a predetermined temporal sequence, which could be helpful for treatment of different 

stages of complex diseases and also in tissue engineering.  

Polyanhydrides and polyorthoesters are two common classes of surface-eroding 

polymers employed for controlled delivery of drugs for a variety of purposes, including 

antimicrobial, anti-inflammatory, analgesic, cancer, and ocular applications.(Uhrich, 

Cannizzaro et al. 1999, Heller, Barr et al. 2002, Kumar, Langer et al. 2002, Jain, Modi et 

al. 2005) Surface-eroding polymers provide a constant rate of drug release that is directly 

proportional to polymer erosion.(Jain, Modi et al. 2005) As such, they provide highly 

controllable and reproducible drug release profiles(Uhrich, Cannizzaro et al. 1999) that 

would be useful for designing multiple drug delivery systems. Ease of processing is an 

important consideration for designing and developing a versatile drug delivery system 

capable of delivering more than one type of drug, but the high processing temperature and 

poor solubility in organic solvents cause difficulty in fabrication of some polyanhydrides 

and polyorthoesters into dosage forms.(Gopferich and Tessmar 2002, Heller, Barr et al. 

2002)   

An alternative, but less well known, surface-eroding system is composed of 

cellulose acetate phthalate (CAP) and Pluronic F-127 (P).  When mixed in an aprotic 

solvent, the polymers associate via hydrogen bonds.(Xu and Lee 1993) The properties of 

the CAPP system, such as ease in fabrication and drug loading, make it a suitable candidate 

for designing a surface-eroding multiple drug delivery system. The CAPP association 

polymer system has already been studied for the release of a single drug.(Xu and Lee 1993, 

Gates, Grad et al. 1994)  For example, Xu et al. demonstrated the effect of the CAP to 
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Pluronic ratio on erosion rate and drug release.(Xu and Lee 1993) The CAPP association 

polymer has also been used in the form of consolidated microspheres for the release of 

protein.(Raiche and Puleo 2003) Jeon et al. fabricated CAPP microsphere-based devices 

for intermittent release of simvastatin and showed positive results for osteoblast responses 

and bone formation in vitro and in vivo, respectively.(Jeon, Thomas et al. 2007, Jeon, 

Piepgrass et al. 2008) The same group also studied intermittent release of two different 

drugs using CAPP microsphere-based devices.(Jeon, Piepgrass et al. 2008)  There is less 

research, however, toward delivery of more than two drugs or biomolecules in a 

predetermined temporal sequence.  

In the present studies, different small molecule drugs, such as metronidazole 

(antibiotic), doxycycline (antibiotic/anti-resorptive), ketoprofen (anti-inflammatory) and 

simvastatin (hypolipidemic/osteogenic) along with a model protein (lysozyme) were 

loaded in CAPP films.  After evaluating individual layers, the morphology of multilayered 

devices and subsequent intermittent and sequential release profiles were measured.  To 

determine effects of encapsulation and release on bioactivity, enzymatic activity of the 

released model protein was determined.  
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3.2. Materials & Methods  

3.2.1 Fabrication of CAPP films   

CAPP films were fabricated by solvent casting. CAP (Sigma, St. Louis, MO) and 

Pluronic F-127 (Sigma) were mixed in the weight ratio of 70:30, respectively, and 

dissolved in acetone to obtain an 8% polymer solution. Either 2.5 or 5 wt% of drug was 

added to the acetone-polymer (CAPP) solution and mixed thoroughly until the drug was 

completely dissolved, except for the case of the model protein, which did not completely 

dissolve. The drug-polymer solution was poured in a Teflon dish and stored at 4ºC for 24 

hours for solvent evaporation to take place. Blank CAPP films were prepared in the same 

way but without the addition of drugs. For the present study, CAPP films were loaded with 

metronidazole (Sigma), doxycycline (Sigma), ketoprofen (Sigma), lysozyme (Sigma), or 

simvastatin (Haorui Pharma-Chem, Inc., Edison, NJ). Samples with 6 mm diameter and 

0.5 mm thickness were punched from the CAPP films for further study.  

Multilayered CAPP films were fabricated to obtain intermittent release of the same 

drug or sequential release of more than one drug. Figure 3.1 shows a schematic 

representation of the fabrication process. The drug-loaded and blank CAPP films were 

arranged in the desired sequence and then bonded together by compressing them after 5 μL 

of acetone were applied between the layers. For intermittent release of drugs, four-layered 

CAPP devices were prepared with alternating layers of blank and metronidazole-loaded 

films. For achieving sequential release of more than one type of drug, three-layered CAPP 

devices were fabricated using metronidazole- and ketoprofen-loaded CAPP films with 

blank films between the drug-containing layers. The stacked CAPP films were inserted into 

a 6 mm diameter polystyrene well, which acted as in impermeable backing to enable 

unidirectional polymer erosion and drug release. A similar procedure was followed to 

fabricate multilayered devices loaded with simvastatin and doxycycline. 
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Figure 3.1: Schematic representation of the process for fabricating multilayered CAPP 

devices. 

3.2.2 Morphological characterization of CAPP films 

Scanning electron microscopy (SEM) 

SEM imaging was used to study the overall morphology and interfaces of the blank 

and drug-loaded CAPP films that form the device. For this purpose, four-layered devices 

were fabricated with alternating metronidazole-loaded and blank films. The CAPP films 

were freeze-fractured, and the cross-section was sputter-coated with platinum and observed 

using an S-3200-N Hitachi instrument. 

Fluorescence imaging  

To analyze the spatial distribution of drug following device fabrication, a 

fluorescent molecule was incorporated into multilayered films. Fluorescein (Sigma) was 

loaded in CAPP films at 0.16 wt%, and multilayered CAPP films were fabricated with 

alternating layers of fluorescein-loaded and blank films. Thin (5 µm) cross-sections of the 

multilayered CAPP films were cut with a microtome and observed under epifluorescence 

(Olympus IX51). To determine the effect of aging on interlayer diffusion of fluorescein, 

samples were incubated at 37°C for 6 days followed by sectioning and microscopic 

analysis. Line profiling of the fluorescent microscopic images was conducted using ImageJ 

software. 

3.2.3 Drug release from single and multilayered CAPP films 

In vitro release studies were conducted for single-layered CAPP films by eroding 

the materials in 4 mL of phosphate-buffered saline (PBS), pH 7.4, at 37ºC on an orbital 

shaker.  Release supernatant was collected every one hour and replaced with fresh PBS. 

Blank CAPP films of the same dimensions were used as controls. Multilayered devices 
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were eroded in either 2 or 4 mL of PBS to study the effect of sink volume on device erosion 

and drug release. For multilayered devices, release supernatants were collected 

approximately every 8-10 hours and replaced with fresh PBS. Mass loss studies were 

conducted by measuring the remaining mass of the multilayered CAPP at regular intervals 

during its course of erosion in 2 ml of PBS. Three-layered blank devices were used as 

controls for the release and erosion studies. Because lysozyme loaded in the films did not 

dissolve completely, protein particles were distributed in the CAPP films. To determine 

whether the heterogeneous distribution affected release, the lysozyme-loaded films were 

tested in two orientations (protein side up and protein side down) within the polystyrene 

well.   

Supernatants were analyzed using UV spectroscopy (Powerwave HT, Biotek) to 

determine the concentration of metronidazole (318 nm) and doxycycline (350 nm). High 

performance liquid chromatography (HPLC; Shimadu Prominence) was used to measure 

the concentration of ketoprofen (mobile phase of acetonitrile (60):trifluroacetic acid (TFA) 

buffer (40); UV detection at 260 nm)  and simvastatin (mobile phase of acetonitrile 

(70):TFA buffer (30); UV detection at 240 nm).  The BCA protein assay (Pierce, Rockford, 

IL) was used to quantify the concentration of lysozyme. 

3.2.4 Mathematical modelling 

Release profiles for drugs released from the CAPP system were evaluated using 

Hopfenberg’s model for controlled release from erodible slabs (Equation 1):  

                                                                                            (1)  

where Mt is the amount of drug released (mg) at time t (hours), M∞ the total amount of 

drug released from the device (mg), ko the erosion constant (mg/hr/mm2), Co initial 

concentration of the drug in the device (mg/mm3), a the half thickness of the slab, and n=1 

for a slab.(Hopfenberg H 1976) Based on the conditions provided for the model, CAPP 

devices were considered erodible slabs. Furthermore, only one side of the slab was exposed 

for polymer erosion and drug release due to the presence of the polystyrene well. To 

accommodate this condition of unidirectional erosion and release, the term a (half the 

thickness of the slab) was replaced with 2a (total thickness of the slab in mm) in equation 
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(1). The predicted release profiles were compared with the experimentally determined 

cumulative release profiles. 

3.2.5 Bioactivity of the released protein 

Lysozyme bioactivity was measured by its ability to lyse cell walls of Micrococcus 

lysodeikticus (Sigma).(Ghaderi and Carlfors 1997, Jiang, Hu et al. 2005) Lysozyme release 

supernatant or standard dilutions of lysozyme in PBS were added to 0.5 mg/mL of M. 

lysodeikticus, and the absorbance at 450 nm was measured at 0 and 10 minutes. The 

observed and expected (obtained from the standard curve) absorbances were compared to 

determine the relative bioactivity of released lysozyme. 

3.2.6 Statistical analysis 

Experimental data were analyzed for statistical significance by the Student’s t-test 

using InStat (GraphPad Software, Inc., La Jolla, CA).  Slopes of the release profiles for 

different drugs as well as those obtained from mathematical modeling were analyzed by 

linear regression using Graphpad Prism software. 
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3.3 Results & Discussion 

3.3.1 Morphological characterization 

SEM showed clear demarcation between the alternating layers of drug-loaded and 

blank CAPP films along with some interlayer voids and defects that were likely created 

during multilayered fabrication (Figure 3.2 A). Figure 3.2 B shows the cross-section of a 

multilayered CAPP film with alternating layers of fluorescein-loaded and blank CAPP 

films visualized by fluorescence microscopy. Heterogeneity in distribution was observed 

on the top/side of the CAPP layer where it was attached to another CAPP layer. Figure 3.2 

C shows a cross-section of a sample after 6 days of incubation at 37°C. Both fluorescence 

images showed that layers loaded with fluorescein were distinctly separate from the blank 

CAPP layers. Line profiling quantitatively confirmed the distinction between the 

fluorescein-loaded and blank CAPP films. Line profiles obtained at three different sections 

of the multilayered device showed clear separation in brightness between layers. 

  

20 
 



  

 

 

 
 

 

21 
 



 

 

 

 

 
Figure 3.2: Morphology of multilayered CAPP devices.  (A) SEM image of the cross-

section showing four CAPP films attached to each other. Fluorescent images of 

multilayered CAPP devices with alternating fluorescein-loaded and blank films obtained 

(B) one day after fabrication and (C) after 6 days of incubation at 37ºC. (D) Line profiles 

showing the distinct difference between the fluorescein-loaded and blank layers at different 

locations (shown in Figure 3.2 B). 

  

22 
 



3.3.2 Single layer drug release profiles 

Release of individual drugs (metronidazole, ketoprofen, simvastatin, doxycycline, 

and lysozyme) from a single layer of CAPP showed sustained release of the drug during 

the course of erosion (8-10 hours) reflecting near zero-order kinetics (Figure 3.3 A and 3.3 

B).  The total amount of drug released from the CAPP films corresponded to the amount 

of drug loaded in the CAPP films. For example, 5 wt% of metronidazole and ketoprofen 

was loaded in the CAPP films, which resulted in 1 mg of drug in each sample. The 

cumulative release profile showed that, on average, 97% of the metronidazole and 89% of 

ketoprofen loaded in the CAPP films were detected (Figure 3.3 A). The loading of 

simvastatin and doxycycline was 2.5 wt%, resulting in 0.5 mg of drug present in each 

sample. The average percentages of simvastatin and doxycycline released were 100% and 

98%, respectively (Figure 3.3 B). Slopes of the release profiles for different small molecule 

drugs released from single-layered CAPP films were statistically similar. The release 

profiles of lysozyme-loaded CAPP films, however, differed from those of the other drugs 

(Figure 3C). Approximately 60% of the protein was released either during the first 4 hours 

of film erosion or during the final 4 hours, depending on which surface of lysozyme films 

was exposed to PBS. 
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Figure 3.3: Profiles showing release of drugs from CAPP films. (A) Cumulative release 

of metronidazole and ketoprofen (5 wt% loading). (B) Cumulative release of doxycycline 

and simvastatin (2.5 wt% loading).  (C) Instantaneous release of lysozyme from CAPP 

films with top or bottom surface exposed to PBS.  Data are mean ± standard deviation 

(n=3). 
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3.3.3 Intermittent and sequential drug release profiles 

Polymer erosion of multilayered (four-layered) CAPP devices with alternating 

metronidazole-loaded and blank layers resulted in intermittent release of the same drug 

(Figure 3.4 A). This release profile showed no release of drug during the initial stages of 

erosion (first 10 hours) due to the presence of blank layer on top, followed by release of 

metronidazole from the second CAPP layer (approximately 10-40  hours). The third (blank) 

layer delayed release of metronidazole from the fourth layer, while metronidazole from the 

final (bottom) layer of the device was released during the last stages (last 40 hours) of 

erosion.  

Figure 3.4 B shows release profiles for three-layered devices with metronidazole- 

and ketoprofen-loaded layers separated by an intermediate blank film eroded in 4 mL of 

PBS. Based on design of the device, metronidazole was released during the first 20-25 

hours of device erosion. The blank layer delayed the next phase of release, which involved 

release of ketoprofen during the final stages of device erosion (last 40-50 hours). When the 

same type of device was eroded in 2 mL of PBS, the total erosion time was around 155 

hours compared to only 77 hours observed for 4 mL PBS (Figure 3.4 C). Even though the 

device eroded more slowly when the amount of medium (PBS) was reduced, sequential 

drug release was still achieved. Metronidazole was released during the first 40 hours of 

device erosion followed by a small delay in the release of ketoprofen due to the presence 

of the blank layer; ketoprofen was again released during the last 100 hours of the device 

erosion.  
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Figure 3.4: Instantaneous drug release profiles for multilayered CAPP devices. (A) 

Intermittent release of metronidazole (blank-metronidazole-blank-metronidazole) during 

erosion in 4 mL of PBS. Sequential release of metronidazole followed by ketoprofen 

(metronidazole-blank-ketoprofen) during erosion in (B) 4 mL or (C) 2 mL of PBS. Data 

are mean ± standard deviation (n=3).   

Figure 3.5 A shows both empirical and predicted release of one drug 

(metronidazole) from a single layer CAPP film. As for films containing metronidazole and 

ketoprofen, multilayered devices with simvastatin and doxycycline eroded in 2 mL of PBS 

also followed the same sequential release pattern, with a total erosion time of 

approximately 160 hours (Figure 3.5 B). Simvastatin was released significantly faster 

during the first 50 hours of device erosion than doxycycline was released during the last 

100 hours (p<0.05), but there were no significant differences between the experimentally 

measured slopes and those predicted by mathematical modeling.  
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Figure 3.5: Comparison of observed and mathematically predicted cumulative release 

profiles for (A) metronidazole in a single layer CAPP film and (B) simvastatin followed 

by doxycycline in a three-layered film. Data are mean ± standard deviation (n=3). 
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3.3.4 Loading and release efficiency 

In general, 96.5% of the small molecule drugs loaded into CAPP films was 

released, irrespective of the type or wt% of the drug (Figure 3.6 A). There was no 

statistically significant difference between the observed and expected amount of 

metronidazole and doxycycline loaded and released from the CAPP multilayer devices. In 

the case of ketoprofen, 83% of the expected amount was released, and in the case of 

simvastatin 90% of the expected amount was released. 

3.3.5 Mass loss profiles 

Figure 3.6 B shows mass loss profiles for three-layered devices eroded in 2 mL of 

PBS. The profiles presented are for blank, sequential metronidazole and ketoprofen, and 

sequential simvastatin and doxycycline films. Both the blank devices and the drug-loaded 

devices eroded with linear mass loss profile characteristic of a zero-order system.  Neither 

loading nor the type of drug incorporated into the films had a significant effect on the 

erosion rate. 
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Figure 3.6: (A) Observed and expected amounts of drugs released from multilayered 

CAPP devices. (B) Mass loss profiles for multilayered devices with blank layers (blank), 

layers loaded with metronidazole and ketoprofen (metro and keto), or layers loaded with 

simvastatin and doxycycline (sim and doxy) degraded in 2 mL of PBS. 
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3.3.6 Bioactivity of released protein 

Figure 3.7 shows the bioactivity of lysozyme in release supernatants during the 

final 6 hours (time points when lysozyme release occurred) of film erosion. Results showed 

that, on an average, lysozyme released from the CAPP films retained 57% of the expected 

bioactivity. 

 

 
Figure 3.7: Retention of lysozyme bioactivity following release from CAPP films.  Data 

are mean ± standard deviation (n=3).  
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3.4 Discussion 

The main aim of this research was to develop a CAPP film-based system that will 

serve as a platform for delivery of different types of drugs, suitable for treatment of a broad 

range of disease conditions. These multilayered devices may also be adapted for delivery 

of more than one type of biomolecule for tissue engineering applications.  

The two polymers used for the association polymer, CAP and Pluronic F-127, form 

intermolecular hydrogen bonds in aprotic solvents, such as acetone, used during 

fabrication. In this case, carboxylic acid groups in CAP act as proton donors, and the ether 

sites in the non-ionic surfactant Pluronic F127 form the proton acceptors.(Gates, Grad et 

al. 1994) When the CAPP system is exposed to physiological conditions, deprotonation 

occurs and leads to dissolution of the CAPP into its CAP and Pluronic components. This 

type of mechanism results in erosion-based, sustained release of drugs.(Gates, Grad et al. 

1994, Raiche and Puleo 2003, Jeon, Thomas et al. 2007) CAP is commonly used as an 

enteric coating on tablets(Roxin, Karlsson et al. 1998), and Pluronic, an amphiphilic 

triblock copolymer, has been widely used for drug delivery purposes and as a surfactant. 

(Kabanov, Batrakova et al. 2002) In vivo studies have been performed with the CAPP 

association polymer system without any adverse effects.(Jeon, Piepgrass et al. 2008)  

The CAPP polymer system has been used in the form of microspheres(Jeon, 

Thomas et al. 2007) and single-layered films(Xu and Lee 1993) for zero-order release of 

different drugs, but the present research focused on its use in multilayered devices for 

delivery more than one type of drug. CAPP in the form of films is more appropriate for 

this application, as it suits the design of multilayered devices for sequential delivery of 

multiple drugs. The fabrication of the CAPP films involves a relatively simple solvent 

evaporation technique compared with other fabrication processes, such as melt processing 

and injection molding, needed for other surface-eroding polymers. Fabrication of the 

multilayered devices involved adhering individual CAPP films using acetone as a solvent 

for plasticizing the surface of the CAPP films without altering the bulk properties of the 

film. This simple technique without the use of potentially harsh processing conditions, such 

high temperature and pressure, reduces the chances of small molecule drugs losing 

bioactivity during the fabrication process. Limitations of these CAPP films include the 

non-uniform distribution of hydrophilic molecules, such as proteins and lack of mechanical 
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flexibility of the films which is being addressed by inclusion of a plasticizing agent during 

the fabrication process. 

3.4.1 Morphological characterization 

SEM and fluorescence microscopy were used to characterize the morphological 

properties of the multilayered CAPP device. SEM images of the cross-section of a four-

layered device showed demarcation between the CAPP layers, indicating the separation 

between the drug-loaded and blank layers. This type of separation between the layers was 

necessary to maintain the layer-based design of the device and enable sequential drug 

release. Cross-sectional images also showed that the small volume of solvent applied to 

bond layers dissolved only the surface of the films and did not affect the internal portions 

of the CAPP films.  

Further characterization using fluorescence imaging showed clear distinction 

between the fluorescent and blank layers.  Both qualitatively and quantitatively, 

fluorescence was not observed in the blank layers, which confirmed that there was no 

diffusion of fluorescein from loaded to unloaded layers during fabrication. An absence of 

interlayer diffusion even during incubation (“aging”) at 37°C for six days was confirmed 

by the distinct separation of fluorescein-loaded and blank layers 

3.4.2 Single layer drug release profiles 

As indicated previously, the primary aim of this research was to fabricate a drug 

delivery device that serves as a platform for delivery of wide spectrum of drugs in a 

specified sequential order. For this purpose, some of the most commonly used drug types, 

such as antibiotics (metronidazole and doxycycline), anti-inflammatory agents 

(ketoprofen), and a potentially osteogenic small molecule drug (simvastatin), along with a 

model protein (lysozyme) were chosen, and their loading and release were studied. All the 

CAPP films with drugs were inserted into a polystyrene well to aid unidirectional polymer 

erosion. Results for the drugs investigated in this study showcase the ability of the CAPP 

system to serve as delivery platform for a variety of biomolecules.  

Except for lysozyme, the other four drugs that were loaded and released are 

currently used for treatment in patients. Metronidazole is effective against most Gram-

negative and Gram-positive anaerobic bacteria and a wide variety of protozoans.(Freeman, 

Klutman et al. 1997) Doxycycline is one of the commonly prescribed tetracycline 
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antibiotics that are effective against variety of infectious agents.(Cunha, Domenico et al. 

2000) In addition, it also possesses bone anti-resorptive properties.(Vernillo and Rifkin 

1998) Ketoprofen, which is commonly used for treatment of arthritis(Veys 1991) and in 

dentistry,(Johnny G 1988) is a phenylproprionic acid derivative with analgesic, anti-

inflammatory, and antipyretic properties. The fourth small molecule drug used in this study 

was simvastatin, which is widely used for controlling high cholesterol level.(Todd and Goa 

1990) Importantly, however, simvastatin has the ability to stimulate bone formation via 

enhanced expression of bone morphogenetic protein 2 (BMP-2).(Chen, Sun et al. 2010)   

All four drugs were released in a sustained manner from the CAPP films and 

followed zero-order release kinetics. In vitro release results for the single layer CAPP films 

were statistically comparable to predictions from Hopfenberg’s model developed to predict 

drug release from a slab.(Hopfenberg H 1976) Irrespective of the type of drug or the 

amount of drug that was loaded, similar release rates were measured, and nearly all of the 

drug was accounted for during the experiments. As a nonionic surfactant, the Pluronic F-

127 component of this association polymer increases the solubilizing power of the 

system.(Xu and Lee 1993) This property allows a wide range of dosages to be achieved.  

The model protein that was loaded into and released from CAPP films was 

lysozyme. Being hydrophilic, lysozyme did not dissolve completely in acetone during the 

fabrication process. To determine the effect of the non-uniformly distributed lysozyme 

particles on the release profiles, lysozyme-loaded CAPP films were eroded in two different 

orientations. When the film surface that was in contact with the Teflon dish (bottom 

surface, where the undissolved lysozyme settled during fabrication) was attached face 

down in the impermeable well, the top surface (with fewer lysozyme particles) eroded 

initially, and protein was predominantly released during the final stages of the film erosion. 

When the film surface that was exposed to the atmosphere (top surface) during film 

fabrication faced the polystyrene, release of lysozyme occurred during the initial stages of 

films erosion. These release profiles further confirm that release of lysozyme occurred by 

surface erosion of polymer, because lysozyme was released only when the part of the 

polymer film with high concentration of lysozyme was exposed. 
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3.4.3 Intermittent and sequential release of drugs 

Erosion of multilayered devices in vitro resulted in successful release of drugs in 

both intermittent and sequential manners. These multilayered devices also had a 

polystyrene backing layer for unidirectional polymer erosion and drug release. Further 

research is being conducted to replace the non-degradable polystyrene with a 

biodegradable backing material suitable for in vivo implantation. 

Intermittent release of the antibiotic metronidazole was achieved using an 

intermediate blank CAPP layer. Similarly, sequential release of an antibiotic, 

metronidazole, and an anti-inflammatory agent, ketoprofen, was also demonstrated by 

placing a blank CAPP layer between drug-loaded layers. When incubated in a smaller 

volume of PBS, the same devices with metronidazole and ketoprofen eroded at a slower 

rate. These findings show the effect that the sink has on device erosion and the consequent 

release profile. In both release studies, the interval at which the samples were collected was 

the same (every 8-10 hours). The release byproducts generated during erosion of CAPP 

might have saturated the smaller volume of release medium and thereby prevented 

(slowed) further polymer erosion. When a larger volume of release medium was used, 

saturation with erosion byproducts would have occurred relatively slower, thereby 

resulting in faster erosion. In spite of the change in erosion rate, sequential release of 

metronidazole followed by the release of ketoprofen was not altered. In the multilayered 

devices, release of the second drug occurred in a relatively more sustained manner when 

compared to the first drug. When multilayered devices were eroded in 4 mL of PBS, the 

first drug was released within 20 hours, and the second drug was released over the last 50 

hours. This can be explained by the cylindrical polystyrene wells in which the layers were 

inserted. As CAPP eroded, PBS was retained within the well, and the reduced circulation 

of medium near the final layer resulted in relatively slower erosion and drug release. With 

only 2 mL of PBS, the first drug was released within 40 hours, and the second drug was 

released over the last 100 hours.  In this case, the combined effects of the reduced sink 

conditions and reduced mixing within the wells further slowed erosion, but the total amount 

of drug released was not significantly affected. Mass balance calculations again showed 

comparable expected and observed drug amounts loaded and released. Hopfenberg’s 

equation was also suitable for modeling sequential release of more than one drug from the 
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multilayer CAPP device.  The predicted profiles also showed that the rate of release of the 

first drug was approximately twice as fast as that for the second drug.  The predicted and 

experimentally measured release profiles were statistically similar for both the single layer 

and multilayered devices, indicating the suitability of this particular model for the present 

delivery system. This model for predicting the release profiles from CAPP devices would 

be helpful for further design of advanced multilayered devices.  

Mass loss profiles showed that CAPP devices, irrespective of the type of drugs 

loaded, followed a surface-erosion pattern. As such, the duration of the drug release as well 

as the time interval between the release peaks of the same or different drugs can be 

increased or decreased by altering the thickness of the blank CAPP films. Overall, the type 

and amount of drug loaded in the CAPP films can be altered to achieve a desired 

intermittent or sequential release using this multilayered system.   

3.4.4 Bioactivity of released protein 

Because proteins are more unstable compared to small molecule drugs, initial 

bioactivity testing was conducted for only the protein that was released from the CAPP 

films. Results showed that lysozyme lost approximately 40% of its activity during loading 

and delivery. Other commonly used bioerodible/biodegradable delivery systems, such as 

poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene gycol) (PEG), also result in loss 

of protein activity by aggregation, hydrolytic degradation, and chemical modification 

during the necessary manufacturing process, which can involve heating, pH changes, shear 

forces, organic solvents, drying and others.(Gombotz and Pettit 1995) With the CAPP 

delivery system, however, the amount of protein loaded can be easily altered, and 

excipients may enhance preservation of bioactivity.  

The present studies have shown that CAPP film-based devices can be used to 

deliver a wide variety of drugs and can be used to achieve sequential delivery of multiple 

drugs. These advantages will be helpful for customizing devices different applications. For 

example, some bacterial infections, which might involve more than one type of 

microorganism, require combination of antibiotics for treatment(Griffiths, Ayob et al.) to 

eliminate the infection and reduce the potential for developing antibiotic 

resistance.(Dowling 1957) The ability of this CAPP system to sequentially deliver anti-

inflammatory agents with other drugs creates the possibility of inflammation control and 
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pain management during wound healing. The system may also be useful for delivery of 

multiple growth factors for tissue engineering.  A growing body of research suggests the 

importance of more than one growth factor for regeneration of tissues, such as bone,(Jeon 

and Puleo 2008) (Raschke, Wildemann et al. 2002) (Yilgor, Tuzlakoglu et al. 2009) blood 

vessels,(Richardson, Peters et al. 2001) and cartilage.(Elisseeff, McIntosh et al. 2001) 

(Fukumoto, Sperling et al. 2003) 

There have been several attempts towards the delivery of multiple growth 

factors.(Chen, Chen et al.) Most of these approaches, however, have been successful for 

simultaneous delivery.(Lynch, de Castilla et al. 1991, Schmidmaier, Wildemann et al. 

2002, Nevins, Camelo et al. 2003, Simmons, Alsberg et al. 2004, Dogan, Gumusderelioglu 

et al. 2005, Peattie, Rieke et al. 2006, Riley, Fuegy et al. 2006, Nillesen, Geutjes et al. 

2007, Patel, Young et al. 2008, Chen, Chen et al. 2009, Young, Patel et al. 2009, Borselli, 

Storrie et al.)  Temporally controlled release has been obtained by other strategies, 

including fabrication scaffolds and/or microspheres consisting of one or more polymers 

each loaded with a different drug, e.g., PLGA in combination with gelatin hydrogels, 

poly(propylene fumarate), poly(4-vinyl pyridine), alginic acid, cellulose acetate.(Chen, 

Silva et al. 2007, Buket Basmanav, Kose et al. 2008, Jaklenec, Hinckfuss et al. 2008, 

Kempen, Lu et al. 2009, Tengood, Kovach et al. 2010) The system presented in this paper 

was composed of a single association polymer system in the form of multilayered films, 

which simplifies the fabrication process and eases loading of wide variety of drugs to 

obtain localized delivery of multiple drugs in a required temporal sequence. 

 

3.5 Conclusion 

The easy to fabricate CAPP association polymer can be used to achieve zero-order release 

of a wide variety of drugs.  As such, this system can serve as a general platform for 

localized, controlled drug delivery to treat several disease conditions. Different release 

profiles can be designed, including sustained release of one drug, intermittent release of a 

drug, or sequential release of multiple drugs. This system could be used for applications 

that require delivery of more than one type drug in a predetermined temporal sequence. 
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Chapter 4 Design of a Multiple Drug Delivery System Directed at Periodontitis 

  

4.1 Introduction 

Periodontitis is one of the most common inflammatory diseases and is a leading 

cause of tooth loss in adults (Brown, Oliver et al. 1989, Albandar and Kingman 1999). It 

is also related to systemic disorders, such as coronary artery disease, stroke, and diabetes 

(Soskolne and Klinger 2001, Chen, Chen et al. 2009). In the initial stages of periodontitis, 

the onset of bacterial infection is followed by the host response of active and progressive 

inflammation, leading to resorption and loss of tissue (Dionne and Berthold 2001). When 

periodontitis is well-established, effective therapeutic and surgical intervention is required 

for the removal of bacterial plaque, control of inflammation, and inhibition of progressive 

bone loss with subsequent complete repair and regeneration of functional periodontium 

(Chen, Chen et al. 2009). One of the most common methods for treating chronic 

periodontitis involves mechanical debridement of periodontal pockets by scaling and root 

planning along with effective plaque control to eliminate bacterial infection (Etienne 

2003). Subsequent periodontal regenerative procedures are time-consuming and 

financially demanding (Polimeni, Xiropaidis et al. 2006), and currently there is no ideal 

therapeutic approach to completely cure periodontitis and achieve predictable tissue 

regeneration (Chen, Chen et al. 2009). Because the progression of periodontitis involves a 

complex, sequential relationship between infection, inflammation, and tissue loss (Caton, 

Ciancio et al. 2000),  treatment might be improved by controlled release of multiple 

biologically active agents in an appropriate sequence (Cochran D L. (2003)).  

Vyas et al. reviewed controlled drug delivery systems that have been employed for 

treating periodontal diseases (Vyas, Sihorkar et al. 2000). Some approaches involved 

localized delivery of antibiotics for elimination of bacterial infection (Schwach-

Abdellaoui, Vivien-Castioni et al. 2000, Etienne 2003), while others have addressed 

inflammation (Queiroz-Junior, Pacheco et al. 2009, Srinivas, Medaiah et al. 2011) or bone 

resorption (Binderman, Adut et al. 2000). Periodontal regeneration has also been attempted 

using local delivery of osteogenic agents (King, King et al. 1998, Selvig, Sorensen et al. 

2002, Yazawa, Zimmermann et al. 2005, Seto, Ohba et al. 2008). None of these methods, 

however, addressed all aspects of the disease to achieve comprehensive treatment.  
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The present research was aimed at developing an “all-encompassing”, multiple 

drug delivery system capable of delivering antibacterial, anti-inflammatory, anti-

resorptive, and osteogenic agents in the appropriate sequence for potential treatment of 

periodontitis. Figure 4.1 shows a schematic representation of the order in which the drugs 

will be delivered at different stages based on pathogenesis of the disease.  

 
Figure 4.1: Proposed sequential drug delivery based on the pathogenesis of periodontal 

disease. 
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4.2 Materials & Methods 

4.2.1 Fabrication of multilayered devices 

Devices were fabricated using a surface-eroding association polymer system 

(CAPP) comprising cellulose acetate phthalate (CAP) (Sigma-Aldrich, St. Louis, MO) and 

Pluronic F-127 (P) (Sigma-Aldrich)  (Xu and Lee 1993, Raiche and Puleo 2003). CAPP 

films, prepared by a solvent evaporation technique, were used to fabricate the multilayer 

devices. CAP and Pluronic F-127 were mixed together in the weight ratio of 70:30, 

respectively, and dissolved in acetone to obtain an 8% polymer solution. The drug of 

interest (5 wt %) was added to the acetone-polymer solution and mixed thoroughly until 

the drug was completely dissolved. The drug-polymer solution was poured in a Teflon dish 

and stored at 4ºC for 24 hours for slow evaporation of the solvent. Blank CAPP films were 

prepared in the same way but without the addition of drugs. For this study, CAPP films 

were loaded with metronidazole (Sigma-Aldrich), ketoprofen (Sigma-Aldrich), 

doxycycline (Sigma-Aldrich), or simvastatin (Haorui Pharma-Chem, Inc., Edison, NJ). 

Samples with diameter of around 6 mm and thickness of 0.5 mm were punched out of the 

CAPP films. The drug-loaded discs were arranged in the desired sequence with alternating 

layers of blank CAPP films (Figure 4.2).  
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(A) 

 
(B) 

 
(C) 

Figure 4.2: Schematic representation of how multilayered CAPP devices were fabricated. 

(A) 7-layer device with one blank layer between drug layers.  (B) 10-layer device with two 

blank layers between drug layers.  (C) 10-layer device with PSA layer between the blank 

layers.  Note:  Illustration is not to scale. 
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The stack of the CAPP films was bonded together by compressing them after 

acetone had been applied between the layers. The multilayered device was then coated with 

poly(sebacic acid) (diacetoxy-terminated; PSA; Sigma-Aldrich), which acted as a barrier 

to enable unidirectional erosion and drug release. Blank (drug-free) multilayered devices 

were used for comparison. Three different device designs were investigated for increasing 

the duration of erosion and release.  In addition to the single CAPP blank layers, either two 

blank layers were used or a thin PSA layer was included between the blank layers.  

4.2.2 Mass loss and drug release 

The multilayered devices were eroded in phosphate-buffered saline (PBS), pH 7.4, 

during incubation at 37ºC with gentle shaking. After collecting the supernatants at regular 

time intervals, the samples were weighed and then fresh PBS was added. The measured 

mass of the samples was used to construct the mass loss profiles of the multilayered CAPP 

devices. Collected supernatants were used to determine the amount of metronidazole, 

ketoprofen, doxycycline, and simvastatin using high performance liquid chromatography 

(HPLC; Shimadzu Prominence). For measuring the concentration of ketoprofen, an 

isocratic mobile phase composed of acetonitrile (60%) and 0.1% trifluroacetic acid (TFA) 

in DI (deionized) water (40%) was used with UV detection at 260 nm, and for simvastatin, 

the isocratic mobile phase was acetonitrile (70%) and 0.1% TFA in DI water (30%) with 

UV detection at 240 nm. A gradient mobile phase with acetonitrile and 0.1% TFA in DI 

water was developed for measuring the concentration of metronidazole and doxycycline 

with UV detection at 318 and 350 nm, respectively. 

4.2.3 Mathematical modeling 

Profiles of drugs released from the multilayered CAPP device weres evaluated 

using Hopfenberg’s model for controlled release from erodible slabs (Eq. 1):  

                              
𝑀𝑀𝑡𝑡
𝑀𝑀∞

= 1 − �1 − 𝑘𝑘0 𝑡𝑡 
𝐶𝐶0 𝑎𝑎

�                                           (1) 

where Mt is the amount of drug released (mg) at time t (hours), M  ͚ the total amount of 

drug released from the device (mg), ko the erosion constant (mg/hr/mm2), Co initial 

concentration of the drug in the device (mg/mm3), a the half thickness of the slab, and n=1 

for a slab (Hopfenberg H 1976). Because only one side of the CAPP layer (slab) was 

exposed for polymer erosion and drug release due to the presence of the PSA barrier, the 
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term a (half the thickness of the slab) was replaced with 2a (total thickness of the slab in 

mm) in equation (1). The release profiles predicted using this mathematical model were 

compared with the experimentally-obtained cumulative release profiles of the four drugs.  

4.2.4 Bioactivity 

Bioactivity of released metronidazole or ketoprofen was measured to assess effects 

of encapsulation and release. The Kirby-Bauer assay was performed to test the antibacterial 

activity of metronidazole. An aliquot of Porphyromonas gingivalis (FDC381) (P. 

gingivalis) culture was uniformly spread on blood agar plates using polystyrene beads. 

Release supernatant (7 µL) containing metronidazole was added to 7 mm diameter filter 

paper discs and placed on the P. gingivalis-inoculated plates. After 24 hour incubation 

under anaerobic conditions, the plates were imaged, and the area of inhibition (clear zone) 

around the filter papers was measured using ImageJ software. Results from the release 

supernatants were compared to the clear zones obtained using serial dilutions of fresh 

antibiotic to determine the percent bioactivity. A cyclooxygenase (COX) inhibitor assay 

kit (Cayman Chemical Company, Ann Arbor, MI) was used to determine the bioactivity of 

the ketoprofen released from the CAPP films. Activity against COX-1 enzyme was 

measured using the manufacturer’s protocol. As for metronidazole, COX inhibition by the 

release supernatants was compared with that of freshly prepared standard dilutions of 

ketoprofen to determine the percent bioactivity.  

4.2.5 Statistical analysis 

Mass loss and drug release profiles, both experimental and predicted from 

mathematical modeling, were analyzed by linear regression using GraphPad Prism 

software (La Jolla, CA). Statistically significant differences between the bioactivity of the 

“fresh” drugs and the those released from the CAPP films were determined using the 

Student’s t-test (InStat, GraphPad Software). 
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4.3 Results  

4.3.1 Mass loss profiles 

Figure 4.3 shows the mass loss profiles for the multilayered CAPP devices when 

eroded in PBS. Both the control (blank) devices without drug and the drug-loaded CAPP 

devices followed similar linear erosion profiles (Figure 4.3 A). There was no statistically 

significant difference between the slopes of the mass loss curves during the course of the 

study.  Mass loss profiles of the multilayered devices with single blank layers, two blank 

layers, and with PSA blank layers are shown in Figure 4.3 B. Comparison of the slopes of 

the mass loss curves also showed that there were no statistically significant differences in 

the rate of erosion between the different types of devices.  The y-intercept of the lines 

indicates the average initial mass of the different devices. On average, mass loss occurred 

at a rate of 0.08 mg/mm2/hour when sink conditions were maintained by replacing PBS at 

regular time intervals. 
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(A) 

 
(B) 

 

Figure 4.3: Mass loss profiles for:  (A) 7-layered blank and drug-loaded CAPP devices; 

(B) Drug-loaded devices with one blank layer, two blank layers, or two blank layers along 

with PSA between the drug layers.  Data are mean ± standard deviation (n=3).  
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4.3.2 Drug release profiles 

Figure 4.4 A shows the instantaneous profiles for four drugs released from the 

multilayered delivery system. Because metronidazole was loaded in the layer initially 

exposed when erosion started, it was the first drug released within 15-20 hours of 

incubation in PBS. This was followed by release of the anti-inflammatory drug ketoprofen 

during the course of further device erosion. Ketoprofen release finished midway (around 

40 hours) through the total device erosion time (70-80 hours). The third drug released from 

the system was doxycycline, which started around 25 hour and lasted through 50 hours.  

The last drug, simvastatin, was released during the final stages of device erosion (50-80 

hours).  

The multilayered devices fabricated with two blank layers, instead of just one, 

between the drug-loaded layers showed similar sequential release of four drugs (Figure 4.4 

B). With two blank layers, however, the separation between the drug release peaks was 

more distinct, and the erosion time of the whole device was increased to 120 hours. In this 

case, the first drug, metronidazole, was released within the first 25 hours followed by the 

release of ketoprofen through 60 hours, which was half the erosion time of the device. 

Release of the third drug, doxycycline, started at around 40 hours and lasted until 100 

hours, and this was followed by release of simvastatin through complete erosion of the 

devices at 120 hours.  
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(C) 

Figure 4.4: Fractional instantaneous release profiles of four drugs from: (A) 7-layer 

devices with single blank layers; (B) 10-layer devices with two blank layers; and (C) 10-

layer devices with double blank layers plus PSA.  Data are mean ± standard deviation 

(n=3). 
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The use of the PSA layers between the CAPP blank layers further increased the 

erosion time of the device to 160 hours. Release of metronidazole occurred within the first 

25 hours, as in the case of the other two device types. But the presence of PSA layers before 

the other drug layers slowed erosion and extended the release periods of ketoprofen, 

doxycycline, and simvastatin to 20-80, 50-100, and 90-160 hours, respectively. The times 

at which the peaks were observed for all four drugs in the three different device types are 

given in Table 4.1.   

Table 4.1: Time of metronidazole, ketoprofen, doxycycline, and simvastatin peaks for the 

three types of devices fabricated and tested. 

 Device 
type 

Metronidazole 
(hour) 

Ketoprofen 
(hour) 

Doxycycline 
(hour) 

Simvastatin 
(hour) 

Total 
erosion 

time 
(hours) 

One blank 9 24 38 53 78 

Two 
blanks 9 36 70 100 116 

PSA with 
two blanks 10 38 74 103 161 

 
4.3.3 Mathematical modeling and mass balance 

In vitro release of four drugs from the multilayered devices was compared to the 

profiles predicted using Hopfenberg’s model.  Figure 4.5 shows representative results for 

the double blank layer devices. The predicted release profiles were similar to those 

measured for sequential release of the four drugs from the multilayered CAPP devices. 

Linear regression showed that there were no statistically significant differences between 

the slopes of the predicted and experimental drug release profiles. The measured amounts 

of drugs released were not significantly different from the expected amounts.  
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Figure 4.5: Cumulative drug release from double blank layer devices along with 

mathematical modeling. 

4.3.4 Bioactivity 

Figure 4.6 shows the bioactivity of the metronidazole supernatants at 1, 3, and 5 

hours of release from single-layered CAPP films as measured by the ability to kill P. 

gingivalis. The results of the Kirby-Bauer assay showed that the observed area of inhibition 

caused by the metronidazole supernatants from all the release/erosion supernatants was 

about 10% higher than that expected from fresh antibiotic solutions of the same 

concentration. Even though the observed area of inhibition was higher than expected, 

statistical analysis showed that the difference was statistically significant at only the 5 hour 

time point  (p = 0.0152). Release supernatants from blank CAPP films, which were used 

as controls, did not produce any clear area (not shown).  

By measuring inhibition of COX-1 enzyme activity, ketoprofen in release 

supernatants was also found to have retained its bioactivity (Figure 6). Even though the 

assay results showed that the ketoprofen from the release supernatant had more than 100% 

bioactivity retention, about 120% on an average, statistical analysis showed that there were 

no significant differences.  
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Figure 4.6: Percentage of bioactivity retained by metronidazole and ketoprofen released 

from CAPP films.  Data are mean ± standard deviation (n=3).   
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4.4 Discussion 

The complexity of periodontal pathogenesis necessitates use of more than one type 

of drug for complete treatment of the condition. For this purpose, a localized delivery 

system capable of releasing multiple drugs in a sequential order would be ideal. Chen et al. 

(Chen and Jin 2010) and Santo et al. (Santo, Gomes et al. 2013) have given a detailed 

account of current research on multiple drug delivery systems for tissue engineering. The 

majority of these multiple drug delivery systems were designed for release of more than 

one type of drug simultaneously (Lynch, de Castilla et al. 1991, Simmons, Alsberg et al. 

2004, Dogan, Gumusderelioglu et al. 2005, Peattie, Rieke et al. 2006, Patel, Young et al. 

2008, Chen, Chen et al. 2009, Borselli, Storrie et al. 2010) or sequential release of more 

than one type of drug by using composite devices comprising more than one polymer 

(Chen, Silva et al. 2007, Buket Basmanav, Kose et al. 2008, Jaklenec, Hinckfuss et al. 

2008, Kempen, Lu et al. 2009, Tengood, Kovach et al. 2010). The multilayered delivery 

devices designed for the present research using a single association polymer system 

successfully released four different drugs in the desired temporal sequence for potential 

treatment of periodontitis. The sequence in which these four drugs are delivered is of 

critical importance for the treatment of the disease. For example, administration of an 

osteogenic agent before elimination of the bacterial infection and inflammation would not 

be as effective for tissue regeneration.  

Delivery devices based on the CAPP association polymer system have been used 

for drug release both in the form of films and microspheres (Gates, Grad et al. 1994, Jeon, 

Piepgrass et al. 2008). For the present research, the physical form of films was selected for 

designing a system for sequential drug release. Previous research demonstrated that CAPP 

films can deliver drugs in a near-zero-order fashion(Sharath C. Sundararaj 2013). In 

agreement, the mass loss profile followed a linear pattern with the mass loss occurring at a 

rate of 2.5 mg/hour, suggesting surface erosion and drug release. Use of the surface-eroding 

polyanhydride poly(sebacic acid), which erodes more slowly than does CAPP, as a barrier 

layer limited erosion to only one surface and, therefore, unidirectional erosion and drug 

release.  

Selection of the appropriate drugs is also an important factor for successful therapy. 

The first step in the treatment of periodontitis involves elimination of the bacterial 
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infection. The initial stages of wound management are critical for repair and regeneration 

of periodontal tissues, because the innate regenerative potential of the periodontium is 

dependent on wound stability (Polimeni, Xiropaidis et al. 2006). The  localized delivery of 

various antimicrobial agents for treatment of chronic periodontitis and its advantages have 

been discussed by Etienne (Etienne 2003). Of the various antimicrobial agents used, 

including tetracycline, chlorhexidine, doxycycline, and minocycline (Etienne 2003), 

metronidazole was chosen for this research because it is one of the most commonly used 

antibiotics against periodontal pathogens. Metronidazole concentrations achieved by 

systemic administration might not be effective against biofilm-associated P. gingivalis 

(Wright, Ellen et al. 1997), however, which further increases the need for localized 

antibiotic delivery for the treatment of chronic periodontal conditions. Porphyromonas 

gingivalis is a pathogenic bacterium commonly associated with periodontal infections 

(Tribble, Lamont et al. 2007, Japoni, Vasin et al. 2011). Metronidazole has been shown to 

significantly reduce P. gingivalis infection compared to other antibiotics in vitro (Eick and 

Pfister 2004), and it is effective against different strains (Larsen 2002). Localized delivery 

of metronidazole has been achieved in the form of gels for treatment (Sato, Fonseca et al. 

2008), and studies have shown that metronidazole can readily attain minimum inhibitory 

concentrations in gingival tissue and crevicular fluid (Van Oosten, Notten et al. 1986, 

Tenenbaum, Cuisinier et al. 1993). Besides gels, metronidazole has also been loaded and 

released using CAPP films by Gates et al. (Gates, Grad et al. 1994) and by the authors 

(Sharath C. Sundararaj 2013). The effectiveness of metronidazole as an antimicrobial agent 

against periodontal pathogens and its successful localized delivery using CAPP films 

makes it an appropriate option for the first drug to be delivered for the treatment of 

periodontitis. 

The bacterial infection associated with periodontitis results in an exuberant host 

response, with chronic inflammation leading to the loss of soft tissue and resorption of the 

alveolar bone (Williams 1990). The persistence of inflammation will affect the 

regenerative process even if growth factors or other osteogenic agents are provided (Caton, 

Ciancio et al. 2000). Consequently, the inflammatory response must be controlled before 

attempting to prevent bone resorption and aid regeneration. The present CAPP system was 

capable of releasing the anti-inflammatory drug ketoprofen before delivering antiresorptive 
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and osteogenic agents. Ketoprofen has been successfully used in the treatment of 

periodontitis (Paquette, Fiorellini et al. 1997, Salvi and Lang 2005). Both systemic and 

topical administration of ketoprofen in the form of gels was effective in reducing 

prostaglandin levels in gingival crevicular fluid in adult periodontal patients, which thus 

aided inhibition of disease progression (Lawrence, Paquette et al. 1998, Paquette, 

Lawrence et al. 2000).  Both metronidazole and ketoprofen retained essentially 100% of 

their bioactivity, which shows that the loading of drugs in the CAPP films and their 

subsequent release did not adversely affect the drugs.   

After ketoprofen, doxycycline was released from the CAPP delivery system. 

Doxycycline, a tetracycline derivative, has significant anti-matrix metalloproteinase 

activity and also inhibits osteoclast development, structure, and function (Vernillo and 

Rifkin 1998). Furthermore, doxycycline also has antimicrobial properties and has been 

shown to be effective against P. gingivalis (Larsen 2002). Llindhe et al. showed the 

effectiveness of locally delivered tetracycline using hollow fibers in periodontal pockets 

for the elimination or reduction of clinical symptoms of periodontitis  (Llindhe, Heijl et al. 

1979). These factors make doxycycline an appropriate third drug released to inhibit tissue 

loss. The antimicrobial properties of doxycycline along with metronidazole which was 

delivered first, provide continuous protection against bacteria at the site of repair and 

regeneration. In the case of severe bacterial infection, a combination of antibiotics might 

be more effective for periodontal treatment (Griffiths, Ayob et al. 2011), and this type of 

multiple antibiotic delivery can be readily achieved using this CAPP system.  

Simvastatin was the final drug released from the CAPP system.  Beside its common 

use for cholesterol control (Todd and Goa 1990), simvastatin serves as an osteogenic agent 

(Chen, Sun et al. 2010). Apart from aiding general bone regeneration by increasing the 

expression of BMP-2 (Mundy, Garrett et al. 1999), simvastatin has been specifically used 

for periodontal regeneration (Pradeep and Thorat 2010). Simvastatin is a cost-effective 

option when compared to BMP-2, and topical administration of simvastatin has the 

potential to effectively recover alveolar bone loss (Seto, Ohba et al. 2008). Simvastatin has 

been shown to have a positive effect on the periodontal ligament cells (Yazawa, 

Zimmermann et al. 2005), which have the capacity to regenerate the periodontal attachment 

(Karring, Nyman et al. 1993). Other studies have shown that simvastatin inhibits 
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inflammation and encourages angiogenesis, which might have further positive effects on 

bone formation (Edwards and Spector 2002). Simvastatin has been loaded into and released 

from CAPP microspheres m compressed in the form of films for in vivo bone regeneration 

(Jeon, Piepgrass et al. 2008). Along with its effectiveness in overall periodontal 

regeneration, prior knowledge on delivery of simvastatin using CAPP system makes it a 

suitable final drug to be released from this multilayered CAPP delivery system. 

Two main advantages of this system include: 1) the relative ease with which the 

CAPP films can be fabricated using the solvent evaporation technique and 2) the capability 

of the devices to release a variety of bioactive drugs in a sequential manner. The dose of 

drugs loaded in the CAPP films can be altered based on the severity of the condition and 

the type of drug used. The time of drug release can also be controlled by altering the 

thickness of the layers of CAPP films. Use of two blank layers instead of one resulted in 

more distinct separation of drug release peaks and also increased the total erosion time of 

the devices, in spite of slight overlapping that was observed between the adjacent drug 

release peaks. The use of approximately 300 µm thick PSA layers between the CAPP blank 

layers further increased the total erosion time of the device by approximately a factor of 

two in comparison with the devices with single blank layers, with only a slight increase in 

the overall thickness. Thus, the PSA layers can be increased in thickness or they can replace 

the blank CAPP layers completely to achieve an even longer erosion time, depending on 

the treatment requirements. Adjustments in the device design make it possible to achieve 

different erosion times as well as different release times for the drugs. This type of 

versatility will be critical in designing devices based on the specificity of disease 

conditions.     

 

4.5 Conclusions 

The multilayered, bioerodible CAPP delivery system was successful in releasing 

four different drugs in a predetermined temporal sequence based on the pathogenesis of 

periodontitis. This device serves as an initial step in the development of multiple drug 

delivery systems for use against periodontitis or other complex disease condition, which 

ideally will intervene at different stages of the disease to provide a more comprehensive 

treatment for the condition.   
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Chapter 5 Comparison of In vitro and In vivo Sequential Drug Release 

   

5.1 Introduction 

The transition of a polymer-based drug delivery device from in vitro studies to in 

vivo testing is an important step in characterization of the device properties and 

performance. There is a vast amount of reviews available on the release of drug molecules 

from polymeric devices in vitro (Langer and Chasin 1990, Schacht 1990, Jain, Yenet Ayen 

et al. 2011), most of these in vivo studies have been logically aimed at determining 

effectiveness of the drug released for treating a particular condition or regeneration of a 

tissue, but not necessarily the in vivo drug release pattern. Comparatively there are few 

published studies available on in vivo biomaterial degradation/erosion and drug release 

profiles from these advanced devices (Schmidt, Wenz et al. 1995, Mäder, Crémmilleux et 

al. 1997, Avgoustakis, Beletsi et al. 2002, Yang, Chu et al. 2002, Mittal, Sahana et al. 2007, 

Zolnik and Burgess 2008, Evren ALĞIN YAPAR 2010, Mashayekhi, Mobedi et al. 2013).  

Due to the highly dynamic physiological environment in which the device would 

be implanted, the material would be exposed to different cell types and numerous 

biomolecules (Hutmacher, Hurzeler et al. 1996), and studies have shown the effect of 

enzymes on biodegradable polymers, such as poly(glycolic acid) and poly(lactic acid) 

(Williams and Mort 1977, DF. 1981). The biodegradable polymers used for drug delivery 

follow different degradation rates in vivo when compared to in vitro conditions (Domb and 

Nudelman 1995, Hutmacher, Hurzeler et al. 1996, Tracy, Ward et al. 1999, Bolgen, 

Menceloglu et al. 2005, Zolnik and Burgess 2008, Lockwood, Hergenrother et al. 2010), 

and these differences would ultimately result in altered drug release profiles. 

Understanding of in vivo drug release will be useful for improving the device, providing 

data by which delivery can be tailored more specifically for its intended purpose in disease 

treatment or tissue regeneration.  

The surface-eroding CAPP association polymer system comprising cellulose 

acetate phthalate (CAP) and Pluronic F-127 (P) was previously designed to deliver four 

different drugs in a particular sequence aimed at treating periodontitis in a step-by-step 

manner (Sharath C. Sundararaj 2013). In the present studies, after in vitro characterization 

of the CAPP system by in vitro mass loss and drug release measurements, in vivo erosion 
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and drug release properties were analyzed. The main aim of this research was to compare 

the in vitro and in vivo behaviors of a multilayered device with the capability of sequential 

release. 

 

5.2 Materials & Methods 

5.2.1 Fabrication of multilayer device 

CAPP films were prepared by solvent evaporation after mixing CAP (Sigma-

Aldrich, St. Louis, MO) and Pluronic F-127 (Sigma-Aldrich) together in the weight ratio 

of 90:10, respectively. The mixture was dissolved in acetone to obtain an 8% polymer 

solution followed by the addition and dissolution of the drug of interest (1 or 5 wt%) in the 

polymer solution. The drug-polymer solution was poured in a Teflon dish and stored at 4ºC 

for 24 hours for slow evaporation of the solvent. Blank CAPP films were prepared in the 

same way but without the addition of drugs. For the present study, CAPP films were loaded 

with metronidazole (Sigma-Aldrich), ketoprofen (Sigma-Aldrich), doxycycline (Sigma-

Aldrich), or simvastatin (Haorui Pharma-Chem, Inc., Edison, NJ). Samples with diameter 

of around 6 mm and thickness of 0.5 mm were punched out of the CAPP films. The drug-

loaded discs were arranged in the desired sequence with alternating layers of two blank 

CAPP films to fabricate multilayered devices. The stack of the CAPP films was bonded 

together by application of acetone between the layers. The multilayered device was then 

coated with poly(sebacic acid) (diacetoxy-terminated; PSA; Sigma-Aldrich), which acted 

as a barrier to enable unidirectional erosion and drug release. The completed device was 

wound with 4-0 poly(glycolic acid) (PGA) (Oasis, Mettawa, IL) suture for circumferential 

reinforcement followed by compression at 1,500 N using a BOSE ELF 3300 to consolidate 

the layers and reduce the overall thickness of the device. Blank (drug-free) multilayered 

devices were used for comparison. To increase the duration of erosion and release, a second 

type of device was fabricated with a thin PSA layer included between the two blank layers. 

Figure 5.1 shows a schematic representation of the process involved in fabrication of the 

two types of multilayered CAPP devices. For fabrication of the devices used for, the CAPP 

films and PSA were UV-sterilized for 1.5 hours, the solvents sterile-filtered, and assembly 

conducted in a laminar flow hood.  
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Figure 5.1: Fabrication of fast eroding and slow eroding multilayer device using 

metronidazole, ketoprofen, doxycycline and simvastatin loaded CAPP layers.  

5.2.2 In vitro studies 

The multilayered CAPP devices were eroded in phosphate-buffered saline (PBS), 

pH of 7.4, during incubation at 37ºC with gentle shaking. At regular time intervals, the 

supernatant was collected, the mass of the samples was measured, and fresh PBS was 

added. Sample masses were used to construct the mass loss profile of the multilayered 

devices. Supernatants were used to determine the amount of drug (metronidazole, 

ketoprofen, doxycycline, and simvastatin) using high performance liquid chromatography 

(HPLC; Hitachi Primaide) equipped with a C18 column (Kinetix; Phenomenex, Torrance, 

CA). For measuring the concentration of ketoprofen, an isocratic mobile phase of 

acetonitrile (60%) and 0.1% trifluoracetic acid (TFA; 40%) was used with UV detection at 

260 nm, and for simvastatin, the isocratic mobile phase was acetonitrile (70%) and 0.1% 

TFA (30%) with UV detection at 240 nm was used. A gradient mobile phase with 

acetonitrile and 0.1% TFA was developed for measuring the concentrations of 

metronidazole and doxycycline with UV detection at 318 and 350 nm, respectively. 
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5.2.3 In vivo studies 

All animal studies were conducted at the University of Kentucky in accordance 

with a protocol approved by the Institutional Animal Care and Use Committee (IACUC). 

Male Sprague-Dawley rats between the ages of 6 and 8 weeks were used. Four different 

types of devices were implanted:  1) blank, 2) high drug dose (5 wt%), 3) low drug dose (1 

wt%), and 4) low drug dose with PSA blank layers for longer erosion time. After 

anesthetization and skin preparation, a transverse incision was made between the ears of 

the animal, and the periosteum was slightly elevated to expose the calvarium.  CAPP 

devices were placed with the drug-releasing side facing the bone, and the incision was 

sutured (Figure 5.2). Animals were euthanized at specific time points (Table 5.1), and the 

devices were retrieved for analysis. Implants were cross-sectioned using a razor blade and 

imaged for morphological analysis (Figure 5.3).  Residual mass and thickness of the CAPP 

layers present in the device were also measured. The retrieved devices were then 

completely dissolved in PBS, and the solution containing dissolved drugs and CAPP was 

filtered using a 0.45 µm syringe filter. This filtered solution was analyzed using same 

HPLC methods as described in the in vitro drug release section to determine the residual 

drug content.  
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                                 (A)                                                                     (B) 

Figure 5.2: Implantation of a CAPP device over the rat calvarium. (A) Site of implantation 

during the surgery and (B) after closure. 

 
Figure 5.3: Cross-sectional images of devices retrieved following implantation for 

increasing durations. (A) High dose devices, (B) low dose devices, and (C) low dose 

devices with PSA blank layers. 
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Table 5.1: Time points at which samples were retrieved during the course of in vivo study 

(number of animals at each time point n=3) 

Device type Time points of device retrieval (days) 

High dose devices 0.5 1 2 3 4 5 - 7 - 9 10 - - 

Low dose devices - 1 2 - 4 - 6 - 8 - 10 - - 

Low dose devices with 
PSA - 1 - 3 - 5 - - 8 - - 12 18 

Blank devices - - - 3 - - 6 - - 9 - - - 

 
5.2.4 Statistical analysis 

Slopes of the in vitro and in vivo mass loss and thickness loss profiles were analyzed 

by linear regression using Graphpad Prism software.  Differences were considered 

significant when p<0.05.   
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5.3 Results  

5.3.1 In vitro mass loss profiles 

Figure 5.4 shows mass loss profiles for the multilayered CAPP devices when 

eroded in PBS. Both types of CAPP devices, either with two blank layers or with a PSA 

layer between the two blank layers, followed similar linear erosion profiles. There was a 

statistically significant difference between the slopes of the mass loss curves during the 

course of the study (p<0.0001).  Mass loss occurred at a faster rate for devices with just 

two blank layers when compared with devices also having the PSA layer. Mass loss 

occurred at a rate of 0.04 mg/mm2/hour for 90:10 CAPP layers when sink conditions were 

maintained by replacing PBS at regular time intervals.  

 

 
Figure 5.4: In vitro mass loss of 90:10 CAPP devices with two blanks (y = -1.229x + 

236.35) and 90:10 CAPP devices with PSA layer between the blank layers (y = -0.8823x 

+ 253). 

 

5.3.2 In vitro drug release profiles 

Figure 5.5 A shows the instantaneous profiles for four drugs released from the 

multilayered delivery system with two blank layers. Because metronidazole was loaded in 

the outermost layer, it was released during the first 30-40 hours of incubation in PBS. This 

was followed by release of the anti-inflammatory drug ketoprofen from 40-90 hours during 
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the course of further device erosion. The third drug released from the system was 

doxycycline, which started around 70 hours and lasted through 150 hours.  The last drug, 

simvastatin, was released during the final stages of device erosion (125-240 hours).  

 

(A) 

 
(B) 

Figure 5.5: Sequential drug release from in vitro studies (A) 90:10 CAPP devices and (B) 

90:10 CAPP devices with PSA layer between the blank layers. 
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The use of the PSA between the blank CAPP layers further increased the erosion 

time of devices to 300 hours. Release of metronidazole occurred within the first 40 hours, 

as in the case of devices without PSA layer, but the presence of PSA layers before the other 

drug layers slowed erosion and extended the release periods of other three drugs. Release 

of ketoprofen occurred through 125-135 hours, which was close to half of the total erosion 

time of the device. Release of the third drug, doxycycline, started at around 115 hours and 

lasted until 235 hours, and this was followed by simvastatin from 220 hours through 

complete erosion of the devices at around 300 hours. The times at which the peaks were 

observed in vitro for all four drugs in the two different device types are summarized in 

Table 5.2. 

Table 5.2: Time of metronidazole, ketoprofen, doxycycline, and simvastatin peaks for the 

two types of devices fabricated and tested.  

Device 
type 

Metronidazole 
(hour) 

Ketoprofen 
(hour) 

Doxycycline 
(hour) 

Simvastatin 
(hour) 

Total 
erosion 

time 
(hours) 

Two 
blanks 19 61 99 173 235 

PSA with 
two blanks 19 90 181 293 300 

 

5.3.3 In vivo thickness and mass loss profiles 

Cross-sections of the retrieved devices from all three groups (high dose, low dose, 

and slow-eroding low dose) showed gradual reduction in thickness of the CAPP layers 

(Figure 5.3). The high and low dose groups with two blank layers followed a similar loss 

in thickness, with almost all the CAPP layers eroded by day 10. The slower-eroding, low 

dose group with PSA layers eroded at a slower rate and had CAPP layers present in them 

even at day 18. Figure 5.6 A shows the thickness loss profiles for the three types of devices 

over the course of study. The high and low dose devices with two blank layers followed a 

biphasic pattern with thickness loss occurring at a faster rate until day three or four 

(approximately loss of first four layers, which includes the metronidazole and ketoprofen 

layers) followed by a slower rate of thickness loss until complete erosion by day 10. There 

was no statistically significant difference between the thickness loss profiles of the high 

and low dose groups. The slow-eroding, low dose group followed a similar biphasic 
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thickness loss pattern as observed in the case of faster-eroding devices, but at a slower rate 

with only 80% of thickness loss occurring by day 18. The slope of the thickness loss curve 

of the slow-eroding devices with PSA layers was significantly different from those for 

devices with just two blank layers (p=0.04). 

The mass of devices measured after retrieval was used to construct the mass loss 

profiles shown in Figure 5.6 B. The high and low dose groups with two blank layers 

followed similar mass loss profiles, with no significant difference between the slopes of 

the curves. The slow-eroding low dose devices with PSA layers followed a mass loss 

profile but with a slower rate that was significantly different from that for devices with two 

blank layers (p=0.002). 
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(A) 

 
(B) 

Figure 5.6: In vivo (A) thickness and (B) mass loss of high dose 90:10 CAPP devices, low 

dose 90:10 CAPP devices, and low dose slow eroding 90:10 CAPP devices with PSA layer 

between the blank layers. 
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5.3.4 In vivo drug release profiles 

HPLC measurement of the amount of drug present in the retrieved device was used 

to construct in vivo drug releases profile based on the percentage of different drugs 

remaining in the retrieved devices. For high dose devices (Figure 5.7 A), metronidazole 

was essentially gone at 12 hours, but 100% of the other three drugs was present. After one 

day of implantation, the retrieved devices showed about 50% of ketoprofen present and 

nearly 100% of doxycycline and simvastatin. There was no significant amount of 

ketoprofen observed after the second time point. The presence of doxycycline in the 

retrieved implants was observed until day 4. Approximately 100% of the simvastatin was 

found in the retrieved devices until the final stages of the study (day 9-10). In the case of 

low dose devices, a similar type of release pattern was observed (Figure 5.7 B), with 

metronidazole completely released by first time point (24 hours) and nearly 100% of the 

other three drugs still present in the implant. Implants retrieved at the second time point 

(day 2) showed retention of 100% doxycycline and simvastatin, with ketoprofen 

completely released with the exception of some trace amounts. There were traces of 

doxycycline observed in the remaining time points, with simvastatin measured in the 

retrieved devices until the last time point.  

Devices with intermediate PSA layers followed a sequential release pattern of four 

drugs but at a slower rate (Figure 5.7 C). Similar to the high and low dose devices, 

metronidazole was completely released within 24 hours. Ketoprofen was observed in the 

devices until day 3 and traces observed in devices retrieved on day 5. Through day 12, 

nearly 100% of doxycycline was found in the retrieved devices, and at day 18 (last time 

point) approximately 50% of the doxycycline was observed. With the devices not being 

completely eroded by day 18, almost 100% of simvastatin was observed in all the retrieved 

devices. Release of the last drug (simvastatin) was observed to be more delayed in all the 

three types of devices when compared with the other three drugs released. Table 5.3 gives 

an overview of the time points through which the specific drugs were observed in vivo for 

the different types of devices.  
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(C) 

Figure 5.7: Sequential drug release from in vivo studies: (A) high dose devices, (B) low 

dose devices, and (C) low dose devices with PSA layers. 

 

Table 5.3: Comparison of in vitro and in vivo release of metronidazole, ketoprofen, 

doxycycline, and simvastatin, indicating the time points through which the release of 

particular type of drug occurred for the specific types of devices.  Note:  times given in 

hours.   

Drug type 

Faster eroding devices Slower eroding devices 

In vitro 
in vivo 

(high dose) 

in vivo 

(low dose) 
In vitro in vivo 

Metronidazole 30 ≤12 ≤24 30 ≤24 

Ketoprofen 90 72-96 72-96 135 120 

Doxycycline 150 
144-180 

(with traces observed in later 
time points) 

144-180 

(with traces observed in 
later time points) 

240 432 

Simvastatin 235 >240 >240 300 >430 
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5.3.5 Comparison of in vitro and in vivo drug release profiles 

In vitro and in vivo release profiles for devices with two blank CAPP layers are 

compared in Figure 5.8A. For these faster-eroding devices, metronidazole release (from 

the first layer exposed) was completed within the first 12-24 hours in vitro and by 30 hours 

in vivo.  Ketoprofen release in vivo occurred slightly faster than in vitro; in both the cases, 

ketoprofen release was complete within 90-100 hours. For the third drug, doxycycline, in 

vivo release occurred at a slightly slower rate when compared to that of the in vitro release. 

Doxycycline was completely released by 150 hours in vitro, compared to release of 80-

90% at this time in vivo. Simvastatin release (from the last layer) in vivo was much slower 

than under in vitro conditions. By 240 hours, simvastatin was completely released in vitro, 

but simvastatin layers remained in the devices retrieved at 10 days of implantation.  

Figure 5.8B compares in vitro and in vivo cumulative release profiles for devices 

with PSA layers that slow erosion. Similar to the faster-eroding devices, metronidazole 

release also occurred within 24hours for the slower-eroding devices under both conditions. 

Release of ketoprofen again occurred faster in vitro when compared to in vivo. It took 

approximately 150 hours for complete release of ketoprofen from slower-eroding devices 

in vitro, whereas 90% of the drug was released by 72 hours from slower-eroding devices 

in vivo. Similar to the faster-eroding devices, doxycycline (third drug) release in vivo was 

slower than its in vitro release. Only 53% of doxycycline was released in vivo by 288 hours 

compared to complete release in vitro by 240 hours. Simvastatin release from slow-eroding 

devices in vitro was completed by 300 hours, but all devices retrieved at day 18 (last time 

point) had the complete simvastatin layer still present, indicating that simvastatin release 

had not yet started before 432 hours. Table 5.3 summarizes the temporal differences 

71 
 



between the faster- and slower-eroding devices in vitro and in vivo based on the time points 

through which release of a particular type of drug occurred. 

 

 

Figure 5.8: Comparison of in vitro and in vivo cumulative drug release of metronidazole 

(M), ketoprofen (K), doxycycline (D) and simvastatin (S) from (A) faster and (B) slower 

eroding multilayered CAPP devices. 
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Figure 5.9 directly compares in vitro mass loss and in vivo thickness loss for the 

fast- and slow-eroding devices. In vivo thickness loss was used instead of mass loss because 

blood and tissue adherent on retrieved devices made in vivo mass measurements inaccurate. 

These plots show the increased erosion rate during the initial stages and relatively slower 

erosion rate that was observed during the final stages for both types of devices in vivo.  

 

 

Figure 5.9: Comparison of in vitro mass loss and in vivo thickness loss of (A) faster and 

(B) slower eroding multilayered CAPP devices. 
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5.4 Discussion 

Multilayered devices based on the CAPP association polymer system have 

demonstrated the ability to deliver different types of drugs in a required sequence in vitro 

(Sharath C. Sundararaj 2013). Previous research involving this system was conducted using 

a CAP:P ratio of 70:30. In this particular study, the system was modified to have a ratio of 

90:10 to achieve longer erosion times.  The main aim of this research was to investigate 

the performance of this CAPP system under in vivo conditions and relate the findings to 

what is seen with standard in vitro release experiments. Pilot in vivo studies (data not 

shown) showed that devices with the CAP:P ratio of 90:10 had longer erosion time when 

compared to devices fabricated using 70:30. These in vivo data were comparable to the 

present in vitro data, which showed that the 90:10 CAPP devices (complete erosion time 

of 240 hours) had a two-fold increase in erosion time compared with similar devices made 

with 70:30 CAPP (complete erosion time of 120 hours) (Sharath C. Sundararaj 2013). 

Based on these in vitro and pilot in vivo results, multilayered devices were fabricated with 

90:10 CAPP films for a larger scale study to compare in vitro and in vivo material 

responses. To achieve an even longer erosion time, PSA layers, which erode more slowly 

than does CAPP, was incorporated between the blank layers. 

In addition to the primary component of CAPP, the surface-eroding polyanhydride 

PSA (Kipper, Shen et al. 2002) was a part of the delivery system. PSA was used as a barrier 

in all devices and as a blank layer in the slower-eroding devices. The rate of erosion of 

PSA is slower than that of CAPP, making it an appropriate material of choice for a barrier 

layer to achieve unidirectional erosion.  Furthermore, the thin (approximately 300 µm) 

intermediate layers between the blank CAPP layers further decreased the erosion rate. The 

presence of three layers of PSA decreased the overall rate of mass loss, thereby increasing 

the total erosion time of the device with only a slight increase in total thickness of the 

device (< 1 mm) when compared to the devices with just two blank CAPP layers. The 

adjustable nature of the delivery system with respect to the erosion time creates the 

possibility of designing devices based on specific disease conditions. 

In vitro mass loss and drug release 

In vitro, devices with two blank layers showed sequential release of the four drugs 

metronidazole, ketoprofen, doxycycline, and simvastatin. As intended, slower-eroding 
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devices with PSA layers also showed sequential release of the four drugs, with better 

distinction between the drug release peaks compared to devices without PSA layers. 

Attachment of the final simvastatin-loaded CAPP layer to the PSA barrier might have 

affected the erosion rate of this particular layer, which resulted in the less uniform release 

of simvastatin compared to the other drugs. This can be resolved in future device 

fabrication by incorporating a thin blank CAPP layer between the simvastatin layer and 

PSA barrier; in this way, the drug layer and PSA barrier are separated, which should avoid 

non-uniform erosion and drug release. It was also observed that the simvastatin and 

doxycycline release peaks were broader and took more time to release. This could be 

because of the cylindrical, well-shaped design of the PSA barrier leading to retention of 

PBS within the barrier shell as the initial CAPP layers eroded, resulting in reduced 

circulation of fluid near the final drug layers leading to slower erosion of polymer and 

release of drugs. 

In vivo thickness loss, mass loss, and drug release 

The bottom CAPP layers were seen at day 18 in the case of devices with PSA layers 

compared to near complete erosion in devices with just CAPP layers by day 10.  This 

observation shows that the PSA-containing devices retained their slower-eroding 

properties in vivo, as it was previously demonstrated in vitro. Quantitatively, the loss of 

thickness followed a pattern comparable to that seen qualititively of the findings observed 

in the cross-sectional images. The biphasic thickness loss patterns observed for both the 

high and low dose devices were not significantly different, indicating that the amount of 

drug loaded in the device did not have any effect on the erosion rate of the device. Thus, 

dosing can be adjusted for different future applications. Devices with PSA layers also 

followed a similar biphasic thickness loss pattern but at a slower erosion rate, 

demonstrating the ability of the PSA layers to slow down the erosion rate of the device 

without drastically altering the erosion pattern. Even though the presence of blood and 

tissue attached to the remaining CAPP layers and the PSA barrier of retrieved devices made 

it difficult to accurately measure mass, the pattern of mass loss observed was comparable 

to that of the thickness loss. The biphasic thickness and mass loss patterns could be mostly 

due to reduced circulation of fluid because of cylindrical well-based design of the PSA 

barrier layer as described in the previous in vitro mass loss and drug release section. Along 
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with the reduced circulation of fluid after the erosion of the initial CAPP layers, the 

ingrowth of fibrous tissues in to the well-shaped PSA shell could have further slowed 

erosion of CAPP layers in the deeper end of the devices in vivo. 

Analysis of the drugs present in the retrieved devices indicated that the drugs were 

released in a step-by-step manner in vivo.  For example, when the first drug, metronidazole, 

was completely released, the other three drugs were still present in the device.  Importantly, 

the other drugs were not released by diffusion. This type of behavior was observed for the 

rest of the four drugs. For all three types of devices, i.e., high dose, low dose, and slow-

eroding, drug release occurred in the intended sequential manner in vivo. This indicates 

that the dose of the drug or the rate of device erosion did not have a substantive effect on 

the sequential drug release pattern. Even in vivo, the CAPP layer loaded with simvastatin 

attached to the PSA barrier resulted in non-uniform erosion and drug release as observed 

in vitro. The extended release of doxycycline and simvastatin relative to the release of first 

two drugs, metronidazole and ketoprofen, was comparable to the in vitro release of these 

drug in the particular sequence. This also corresponds with the biphasic mass loss and 

thickness loss that was observed in vivo. 

 

Comparison of in vitro and in vivo performance 

On the whole, devices initially eroded and released drugs more quickly, but during 

the later stages, the device design and physiological conditions played major roles in 

reducing the rates of polymer erosion and drug release when compared to their in vitro 

behaviors. The faster-eroding devices are predicted to last 270-300 hours and the slower 

eroding device for 500-600 hours in vivo. Formation of fibrous tissue, observed in the 

devices retrieved after one week of implantation, combined with the previously described 

retention of fluid within the cylindrical, cup-shaped PSA barrier appeared to have slowed 

the clearance of erosion byproducts and the consequent erosion-dependent release of drugs.  

These effects were more distinct in the case of slower-eroding devices. 

Along with differences in overall erosion rate in vitro and in vivo, the release rate 

of specific drugs was affected by their position in the multilayered device. The first two 

drugs were released faster and the last two drugs were released more slowly in vivo, when 

compared to their corresponding in vitro release profiles.  This comparative information 
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could be valuable for precisely designing devices capable of releasing multiple drugs in a 

predetermined sequential order. For example, the particular drugs selected make the system 

relevant for potential treatment of periodontitis (Sharath C. Sundararaj 2013). Knowing the 

effect of implantation on the erosion and release profiles enables “tuning” the system to 

deliver the active agents at a particular time. The in vivo results clearly suggest that the last 

drug released from the device would be delayed when compared to the corresponding in 

vitro release from the same device. Based on this, the PSA layer before the simvastatin 

layer can be removed to counter the delay that occurs in vivo or the blank CAPP layers can 

be replaced by thicker PSA layers to further delay the release if required. 

Comparisons of in vivo and in vitro drug release have generally been conducted for 

delivery systems containing a single drug, with the in vivo drug release calculated by the 

measuring the amount of drug in the plasma or by measuring the amount of drug remaining 

in the device/delivery system (Schmidt, Wenz et al. 1995) (Avgoustakis, Beletsi et al. 2002, 

Mittal, Sahana et al. 2007, Zolnik and Burgess 2008). Based on the type of polymer used, 

type of delivery system, and the physiological effects on the device, release profiles are 

similar both in vitro and in vivo in some cases (Schmidt, Wenz et al. 1995). In others, in 

vitro release was different from what was measured in vivo (Zolnik and Burgess 2008). 

The present study involved a in vivo/in vitro comparison of drug release for a more complex 

delivery system involving sequential release of multiple (four) drugs. The comparison 

indicates a difference between the in vitro and in vivo drug release profiles. Such 

information can be useful for designing complex multiple drug delivery systems and 

understanding how they are affected by physiological conditions. 

 

5.5 Conclusions 

Multilayered, bioerodible CAPP devices were successful in delivering four drugs 

in a sequential manner both in vitro and in vivo. Polymer erosion rate can be adjusted to 

shift release peaks, and drug dose can be changed while maintaining the temporal nature 

of the profile. Although the overall time course was longer in vivo, erosion and release 

were initially faster but then slowed in comparison to standard in vitro conditions. This 

type of comparative information will be useful for modifying the delivery system to obtain 

programmed sequential release profiles.  
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Chapter 6 Conclusion 

 

A CAPP association polymer based device has been developed, capable of 

releasing multiple drugs by in a predetermined temporal sequence. The initial studies 

showed that the CAPP association polymer fabricated in the form of films can be used to 

load and release different types of small molecule drugs and a model protein primarily by 

surface erosion. Bioactivity analysis of the released drugs showed the complete retention 

of bioactivity in small molecule drugs. The device fabricated in the form of multilayered 

CAPP films was able to release the same drug in an intermittent fashion and two different 

types of drugs in a sequential order. Even though the CAPP multilayer device was designed 

for releasing different types of drugs sequentially in any required order for treatment of 

complex disease conditions and tissue engineering purposes, this device was specifically 

modified for sequential release of four drugs for stepwise treatment of periodontitis. The 

device was capable of releasing antibiotic, anti-inflammatory, anti-resorptive and 

osteogenic agents in a temporal sequence aimed at the treatment of infection, inflammation, 

tissue loss and alveolar bone regeneration stages of periodontal disease. Different erosion 

times of the devices were obtained by changing the CAP:Pluronic ratio from 70:30 to 90:10 

and by inclusion of a slower eroding PSA layer in between the CAPP layers. This would 

make it possible to change the erosion time of the device, thus altering the drug release 

rates based on the requirement of the condition. The sequential release of these four drugs 

has also been successfully demonstrated in vivo. Devices loaded with both high and low 

doses of drugs followed sequential release pattern in a supracalvarial implantation site, 

indicating the possibility of achieving different drug doses depending on the severity of the 

condition. Comparison of the in vitro and in vivo drug release profiles provided insights on 

the possible changes in the device that might be required for its use in the treatment in 

animal model. Future work would involve the modification of this device based on the in 

vivo data obtained for treatment in a periodontal animal model and exploring other possible 

tissue engineering and treatment application which might need this type of sequential 

multiple drug delivery system.  
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