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ABSTRACT OF THESIS 
 
 
 
 

DISTRIBUTION AND IMPACTS OF PETROLEUM HYDROCARBONS IN 
LOUISIANA TIDAL MARSH SEDIMENTS FOLLOWING THE DEEPWATER 

HORIZON OIL SPILL 
 

Following the 2010 Deepwater Horizon (DWH) spill, sediment cores were 
analyzed from marshes at various levels of oiling to determine how deeply oil penetrated 
sediment in these marsh environments, and if at these sites it had quantifiably affected 
benthic ecosystems.  Minimum mixing depths were determined from penetration of the 
lithogenic radionuclide 234Th, which ranged from 0.25 to 4.5 cm.  Sediment accumulation 
rates were determined using 210Pb, with verification from 137Cs in selected cores.  Lead-
210 profiles revealed long-term (decadal) mixing.  Bay Jimmy, Louisiana was 
significantly affected by the DWH oil spill, as indicated by total polycyclic aromatic 
hydrocarbon concentrations of up to 21,913 ppb.  This is far above the level at which 
adverse biological effects occur (4,022 ppb).  Benthic foraminifera responded to the 
heavy oiling by decreases to standing stock and depth of habitation relative to unoiled 
sites, as well as exhibiting deformities.  These data clearly show that oil can be quickly 
mixed into salt marsh sediments, with demonstrable impacts on indigenous benthos.  
Further, radioisotope inventories indicated that most of the sampled sites are in a net 
erosional state.   Should marshes containing trapped DWH oil be submerged by rising sea 
level, there is a great potential for the remobilization of oil. 
 
KEYWORDS: Deepwater Horizon; wetlands; radiogenic isotope geochemistry; 
petroleum hydrocarbons; benthic processes. 
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CHAPTER ONE: INTRODUCTION 

1.1 Event Background 

On April 20, 2010, an explosion occurred on the Deepwater Horizon (DWH) 

drilling rig, causing oil to begin flowing out of the Macondo wellhead, located 

approximately 1,500 meters below on the seafloor.  By the time the leak was capped 

nearly three months later on July 15, 2010, an estimated 4.9 million barrels (205.8 million 

U.S. gallons) of oil had leaked into the Gulf of Mexico (GOMx) (FRTG, 2011).  By 

August 2010, oil landings had been reported along the Louisiana, Mississippi, Alabama 

and Florida coastlines, resulting in hydrocarbons being introduced to the sediments in 

these areas (Rosenbauer et al., 2010) (Figure 1.1). 

1.2 Marshes: Background and Importance 

Tidal salt or brackish marshes are coastal wetlands that are regularly flooded by 

tides.  Tidal marshes along the northern GOMx serve many important ecological 

functions, including providing a habitat for numerous species of fish, birds and 

invertebrates (DeLaune et al., 1979), slowing shoreline erosion (Möller et al., 1999), 

filtering and absorbing excess nutrients and pollutants (Valiela et al., 2004), and 

sequestering carbon (Chmura et al., 2003).  They also offer human and commercial 

benefits by acting as a buffer zone from hurricanes (Costanza et al., 2008) and providing 

economic stimulus from recreational services (Batker et al., 2010).  The coastal plains of 

Mississippi and Louisiana are dissected by river drainage systems, including the 

Mississippi and Pearl Rivers, and over time the sediment deposits from these rivers have 

constructed coastal marsh habitats.  There are nearly one million acres of saline and 

brackish marshland bordering the Mississippi and Louisiana coastlines (Batker et al., 
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2010), sustaining high concentrations of plant and animal life.  The commercial fishing 

industry harvests more than 1 billion pounds of seafood from the GOMx each year 

(NOAA, 2010a), and it is estimated that 90% of that catch spawns or lives at some point 

in their lives in coastal salt marshes (NOAA, 2010b).  

Tidal marshes are valuable ecosystems, but their coastal locations make them 

susceptible to oil spills (Culbertson et al., 2008).  Oil spilled into the ocean is easily 

transported via tidal currents and wind-produced transient currents to the shore and 

incorporated into sediments (Means and McMillin, 1993).  Although some studies have 

found that marshes bordering the northern GOMx may have high natural recovery 

potential post-oiling (DeLaune and Wright, 2011), they are also considered to be the 

shoreline type most capable of long-term oil preservation.  Peacock et al. (2005) and 

Reddy et al. (2002) found that, in spite of erosion and microbial degradation, it is typical 

for oil residues to persist in the fine-grained sediments of a salt marsh for decades or 

longer after a spill.  These studies concerned the 1969 Florida barge oil spill near Wild 

Harbor, Massachusetts.  While this bay-enclosed, Northern Atlantic salt marsh is not 

completely analogous to the salt marshes of the northern GOMx, these studies are 

important because they provide a rare set of data on the long-term fate and effects of 

petroleum hydrocarbons in these environments. 

1.3 Research Goals 

This thesis originally proposed to test two key hypotheses: 

H1: Salt marsh sediments of Dry Bread Island and Bay Jimmy, Louisiana were 

significantly impacted by the DWH oil spill, as indicated by total polycyclic aromatic 
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hydrocarbon (TPAH) concentrations well above what is considered the upper limit 

background for these areas (1.5 µg g-1) (Iqbal et al., 2007). 

H2: These moderately to heavily DWH-oiled marsh sediments would be 

discernible from pristine to lightly DWH-oiled marsh sediments by exhibiting (a) high 

concentrations of sedimentary organic carbon (SOC), (b) shallower bioturbation depths, 

and (c) low abundance and depth of habitation of benthic meiofauna, as indicated by 

foraminifera. 

To test the above hypotheses, the following variables were quantified: (1) total 

petroleum hydrocarbon (TPH) and TPAH concentrations for selected marsh sediments; 

(2) sediment grain size and physical properties; (3) SOC concentrations; (4) sediment 

accumulation rates; (5) bioturbation depths; and (6) changes to benthic meiofauna 

communities.  These objectives were meant to allow for determining how deeply oil from 

the DWH spill had penetrated sediment in these marsh environments, and if at these sites 

it had quantifiably affected benthic ecosystems.  The significance of each of these 

variables is explained in the remaining sections of this chapter. 

1.4 Petroleum Hydrocarbons 

Petroleum hydrocarbons are organic compounds that represent the main 

constituents of crude oil.  Petroleum hydrocarbons include such chemical compounds as 

benzene, toluene and naphthalene.  PAHs are one class of petroleum hydrocarbon, and 

have a molecular structure that includes two or more fused benzene rings.  Petrogenic 

PAHs are formed from the breakdown of organic material and are associated with fossil 

fuels.  Pyrogenic PAHs are associated with the incomplete combustion of organic fuels.  

It was expected that both types of PAHs would be seen in this study due to in situ burning 
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following the DWH spill (discussed in Chapter Four).  Due to the variety of conditions in 

PAH formation, PAHs from these different sources yield different molecular distribution 

patterns.  Petrogenic sources of hydrocarbons are reflected by the predominance of low 

molecular weight (LMW) PAHs, whereas pyrogenic sources are reflected by largely high 

molecular weight PAHs.  On the basis of these differences, signature ratios of PAH 

components of the same molecular mass can be used to characterize source (Yunker et 

al., 1996; Yan et al., 2005).  Reddy et al. (2011) determined that the oil of interest in this 

study, the Macondo-1 well oil (MC252), contains approximately 3.9% PAHs by weight. 

The fate of PAHs following an oil spill is of particular interest because of their 

potential for bioaccumulation and toxicity to flora and fauna.  The U.S. Department of 

Health and Human Services (DHHS) lists the following PAH compounds as being known 

animal carcinogens: benz[a]anthracene, benzo[b]fluoranthene, benzo[j]fluoranthene, 

benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a.h]anthracene, and ideno[1,2,3-

c,d]pyrene.  Animal studies show that these PAHs can affect the hematopoietic (blood 

production), immune, reproductive, and neurologic systems and cause developmental 

defects (ATSDR, 1995).  The U.S. Environmental Protection Agency (EPA) does not 

maintain a general toxicity level for total PAHs, but does assign maximum contaminant 

levels for drinking water for the seven carcinogenic PAH compounds as indicated by the 

DHHS.  Table 1.1 summarizes the PAH compounds measured in this thesis, as well as 

their respective carcinogenicity classifications. 

Based on a review of compiled biological and chemical data from marine and 

estuarine sediments, Long et al. (1995) reported that adverse biological effects occur at 

PAH concentrations higher than 4,022 ng g-1 (ppb).  At present, NOAA uses this value as 
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an Effects Range-Low, or the level above which 10 percent of organisms show adverse 

effects to PAHs.  Because of the highly adsorptive nature of organic-rich, fine-grained 

sediments found in marshes, PAHs can concentrate in these areas (Means and McMillin, 

1993; Hartmann et al., 2004; Colombo et al., 2006).  This means that organisms living in 

salt marshes may be subjected to higher levels of PAHs than those organisms residing in 

deeper water nearer to the initial site of the spill.  

1.5 Sediment Physical Properties 

It was expected that PAHs would rapidly associate with suspended and deposited 

organic sediment particles because of their nonpolar nature/limited water solubility (e.g., 

Mackay and Shiu, 1975; Smith, 2011).  However, the presence of fine-grained sediments 

can also be important in the retention of oils in marsh sediments.  For these reasons, it 

was important to determine the grain size profile for the uppermost portion of each core 

that could have been affected by oil. 

Additionally, quantification of sediment sizes and textures can provide 

information on what benthic organisms are expected to live at each study location, which 

can then be compared in areas more or less contaminated with petroleum hydrocarbons.  

For example, a change in the major sediment grain size accumulating in the marsh 

changes the physical and chemical environment, strongly affecting distribution of 

foraminiferal assemblages (Murray, 2006). 

1.6 Sedimentary Organic Carbon (SOC) 

SOC includes particulate materials and compounds derived from plant and 

animals, and is a highly reactive sedimentary substrate.  In the case of an oil spill where 

large amounts of organic contaminants are released into the environment, it is expected 



 6 

that SOC will be affiliated with these contaminants (Polymenakou et al., 2006).  This can 

be reflected in the sedimentary profile initially as an increase in SOC.  However, because 

SOC is directly correlated with macrofaunal density, and the deposition of PAHs can 

perturb vegetation and benthic fauna (Burdige, 2007), SOC may later decline as the total 

biomass decreases (Hyland et al., 2005).  Elemental analysis allows for the determination 

of SOC concentrations and inventories in sediments.  It is then possible to combine these 

concentrations with sediment accumulation rates derived from 210Pb and 137Cs in order to 

make quantitative estimates of SOC flux over time.  

1.7 Radiochemistry 

The suite of radionuclides (234Th, 7Be, 210Pb, 137Cs) used in this study were chosen 

due to their range of half-lives, and their particle-reactive nature, which allows them to 

become concentrated in fine-grained, organic-rich sediments.  Clays have high cation 

exchange capacity, and because these radioisotopes have higher adsorption energies than 

many other cations, they are preferentially adsorbed to clay-rich soils and sediments 

(Frere et al., 1963).  Each radionuclide outlined below has a different chemistry, source, 

and half-life, allowing for the measurement of sediment accumulation rates and mixing 

depths using multiple radionuclide proxies, reducing possible errors from relying on only 

one method.   

1.7.1 Lead-210 

Lead-210 (t1/2 = 22.4 years) is a continually produced, naturally occurring 

radionuclide.  The atmospheric origin for 210Pb is derived from the decay of 238U to the 

noble gas 222Rn at or near Earth’s surface.  Supported 210Pb is produced through in situ 

decay of 222Rn at depth in a soil or sediment.  A portion of 222Rn escapes to the 
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atmosphere, where it undergoes decay to 210Pb, which is then supplied to Earth’s surface 

by wet (precipitation) and dry (aerosols) deposition.  This 210Pb is then bound to organic 

and inorganic sediments and deposited, and is referred to as unsupported, or “excess” 

210Pb (210Pbxs).  Lead-210 geochronology has been broadly applied to sediments in 

coastal settings, including wetland environments, over time scales of about a century 

(e.g., Smoak and Patchineelam, 1999; Mudd et al., 2009).  

1.7.2 Cesium-137 

Because of variability in sedimentary sections, independent tracers such as 137Cs 

have been successfully used in conjunction with 210Pb to corroborate calculations of 

sediment accumulation and chronology.  Cesium-137 is a moderately long-lived (t1/2 = 

30.2 years) fission product radionuclide.  In the 1940s, the United States and other 

countries began aboveground nuclear weapons testing, releasing fallout radionuclides 

including 137Cs into the atmosphere.  Cesium-137 first appeared in the atmosphere in 

significant quantity in 1953.  After its release to the atmosphere, it is deposited on Earth’s 

surface by wet and dry deposition and subsequently adsorbed onto sediments.  Above-

ground nuclear weapons testing peaked in 1963 before the Partial Test Ban Treaty was 

ratified, and both the first instance (~1953) and this 1963 peak of 137Cs activity can be 

used to date sediment and derive a sediment accumulation rate (e.g., Santschi et al., 2001; 

Yeager et al., 2007).  In a well-preserved sediment record, the shape of the 137Cs activity 

concentration versus depth profile can be used to identify these two marker horizons 

(Williams and Hamilton, 1995).  These stratigraphic variations in 137Cs concentrations 

have been documented in various environments, including coastal marshes (e.g., 

DeLaune et al., 1978; Williams and Hamilton, 1995). 
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1.7.3 Thorium-234 

Thorium-234 (t1/2 = 24.1 days) has widely been used for the determination of 

mixing rates in marine sediment (e.g., Pope et al., 1996; Wheatcroft and Martin, 1996; 

Smoak and Patchineelam, 1999; Yeager et al., 2004).  Thorium-234 is produced by the 

decay of 238U (Figure 1.2), which is present in marine and brackish waters.  Thorium and 

uranium reach secular equilibrium at shallow depths in the water column, and the thorium 

then binds strongly to organic and inorganic particulate matter, which can then be 

deposited.  It is possible to then determine the sediment mixing depth by the maximum 

penetration depth of the excess 234Th [234Thxs = total 234Th - (234Thsupp = 238U)].  Thorium-

234 is typically used as a tracer of biological mixing intensity because the rate of 

biological particle mixing generally exceeds that of sediment accumulation (Wheatcroft 

and Martin, 1996).  Sediment profiles of 234Thxs activity concentration can be used to 

compute the particulate biodiffusion coefficient (Db), which represents the intensity of 

bioturbation (Wheatcroft and Martin, 1996).  Because of its short half-life (24.1 days), 

234Th is typically used to examine sedimentary processes that have occurred within the 

last ~100 days prior to sampling (Pope et al., 1996).  This is useful in a study such as this, 

where resulting fluctuations in benthic populations and diversity may occur over very 

short timescales.   

1.7.4 Beryllium-7 

Beryllium-7 (t1/2 = 53.5 days) is likewise a naturally occurring radionuclide, but it 

is cosmogenically produced in Earth’s atmosphere by the interaction of oxygen and 

nitrogen with cosmic ray neutrons.  About two-thirds of 7Be is produced in the 

stratosphere, and the remaining one-third is produced in the troposphere (Lal and Peters, 
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1967).  Because of the lengthy residence time (~ 1 year) of aerosol particles in the 

stratosphere, however, the main continuous flux of 7Be to Earth’s surface results from 

tropospheric precipitation (Sharma et al., 1987).  Once on the Earth’s surface, 7Be is 

strongly adsorbed onto inorganic particles, such as clay minerals, but does not have much 

affinity for organic material (Bloom and Crecelius, 1983).  The continuous fallout of 7Be 

and its rapid decay in near-shore fine-grained sediments makes it a useful indicator of 

reworking in sediment deposited on time scales within several half-lives of measurement 

(~ 1 year) (Krishnaswami et al., 1980; Murray et al., 1992).  Changes in bioturbation 

intensity (Bd) and bioturbation depths can be studied by determining the distribution of 

7Be in the sediment (e.g., Sharma et al., 1987; Yeager et al., 2004; Mudd et al., 2009). 

1.8 Benthos 

With respect to marine pollution concerns, the majority of the media’s attention is 

often paid to large-bodied organisms such as birds and dolphins, whereas smaller-bodied 

organisms receive relatively little attention.  This study focuses on benthic organisms 

having diameters approximately between 45 µm and 500 µm.  Many tidal marshes are 

sites of high primary productivity, and the benthic organisms living on and in sediments 

play an important role in the productivity of the marsh.  Certain organisms, such as 

polychaetes, constantly rework sediments as they burrow into them.  These bioturbators 

circulate and remineralize organic matter and nutrients within sediments (Burns et al., 

1993), as well as increase the oxygen content of sediments (Hippensteel, 2005).  These 

processes are essential in supporting the nutrient demands of a healthy marsh ecosystem.  

Because bioturbation is a biological process, its extent is dependent on the environment 

and the diversity and density of indigenous species, and thus varies from low to high 
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marsh.  Sharma et al. (1987) suggested that primary bioturbators, such as fiddler crabs, 

prefer the soft muddy sediments of the low marsh, where root densities are lowest.  

Hippensteel and Martin (1999) supported this theory by comparing depositional 

environments within marsh cores.  They found that the highest mixing parameters were 

recorded in low marsh cores, whereas the lowest mixing parameter was recorded in a 

high marsh core. 

Sediment mixing can also influence the transfer of particle-bound compounds 

(i.e., oil) and can destroy or distort the record of natural and/or anthropogenic processes.  

In this way, bioturbators play a role in the fate of organic contaminants; it is common for 

sediment mixing by bioturbators to allow for natural remediation of contaminants via 

enhanced microbial degradation at the sediment-water interface (Gardner et al., 1979) 

and where oxygenated water is pumped through burrows (Beeftink and Rozema, 1988).  

Bioturbation depths determined from 7Be and 234Th can be correlated with 

changes in meiofauna.  Meiofauna are represented in this study by benthic foraminifera, 

which have been used to infer the overall health of the benthos in connection with 

bioturbation data.   

Changes to meiofaunal assemblages in terms of total abundance and number of 

species can occur when there is a buildup of pollutants over time, allowing for the 

monitoring of pollution by studying these faunal changes (Martin, 2000).  Where there is 

no baseline study of the area prior to pollution, analysis of sediment cores extending into 

pre-pollution time periods can be invaluable, provided that early diagenesis has not 

biased the fossil assemblage through differential dissolution (Alve, 1995). 
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Foraminifera are a highly successful group of microorganisms that are ubiquitous 

in marine and brackish environments.  Nearly all foraminifera possess a test (shell) of one 

or more chambers that surrounds the organism.  The test is most commonly composed of 

secreted calcium carbonate (CaCO3), but may also be organic (not mineralized), 

agglutinated (cemented sediment grains acquired from the environment), or, in rare cases, 

composed of opaline silica.  Foraminifers grow by either periodically adding new 

chambers or increasing the size of a single chamber (Goldstein, 1999). 

The vast majority of extant foraminifera are benthic, but there are 40-50 known 

planktonic species (Sen Gupta, 1999).  Planktonic species are intolerant of brackish 

water, and have not been found in salinities below 30‰ (Arnold and Parker, 1999).  As 

such, this study is focused on benthic species, which typically have limited mobility and 

are therefore directly influenced by any stresses introduced to the benthic environment 

(Bilyard, 1987).  There are several other advantages to using benthic foraminifera: (1) 

they are abundant enough that they can be collected in statistically significant numbers; 

(2) their tests are often well preserved in the sediment column; and (3) their relatively 

short life spans (a few weeks up to five years) make their community structures 

susceptible to environmental changes (Yanko et al., 1999). 

 Foraminifera tend to develop malformed tests in stressed environments, making 

them useful as environmental quality indicators (Martínez-Colón et al., 2009).  Changes 

in many factors can present as environmental stressors, though, such as temperature, pH, 

salinity, and turbidity.  However, many studies have shown that, in otherwise healthy 

ecosystems, foraminiferal populations are predominantly controlled by food supply (e.g., 

Murray, 2001).  In this case, the presence of oil can serve as an environmental stressor 
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because of its toxicity to plants that would become organic detritus, from which infaunal 

marsh foraminifera harvest bacteria for nutrition (Goldstein, 1999).  Other studies have 

indicated that over-exposure to petroleum hydrocarbons directly affect the foraminifera.  

Morvan et al. (2004) performed both culture and in situ studies of foraminiferal 

assemblages in response to oil contamination following the 1999 Erika oil spill in 

intertidal zones off the Atlantic coast of France.  The culture study showed that with 

increasing amounts of oil contamination, growth and reproduction events decreased 

dramatically and the incidence of morphological abnormalities increased. 

Morphological abnormalities in benthic foraminifera have been used as proxies of 

the degree of environmental stress, such as that posed by oil (Yanko et al., 1998; 

Polovodova and Schönfeld, 2008).  These abnormalities affect test development, 

resulting in features such as double apertures and twisted chambers (Yanko et al., 1999).  

In a comprehensive review of the effects of pollution on foraminifera, Alve (1995) 

provided several generalizations: (1) during their short lifespan, foraminifera respond 

quickly to natural and anthropogenic environmental changes; (2) tolerant or opportunistic 

species of foraminifera benefit from certain types of contamination and the resulting 

reduction in competition; and (3) decreased diversity can be found close to contaminant 

outfalls.  Not only are meiofauna, such as benthic foraminifera, useful indicators of 

pollution, but they are also important sources of carbon to higher trophic levels.  Thus, 

damage to meiofaunal diversity and overall population sizes could cause ecological 

ramifications farther up the food chain. 

 Changes of the benthos in near shore environments may be principally driven by 

fluctuations in organic matter input (Pearson and Rosenberg, 1978).  The delivery of 
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petroleum hydrocarbons to an ecosystem results in organic enrichment.  Organic matter is 

the food source for benthic fauna, but over-exposure to pollutants, such as petroleum 

hydrocarbons, can induce enhanced microbial respiration and result in hypoxia (Pearson 

and Rosenberg, 1978).  As pollution increases, the total population size of foraminifera 

may increase due to rising numbers of tolerant species; however, overall species diversity 

falls.  When hypertrophic conditions are reached, the number of foraminiferal tests peak.  

This is commonly followed by the development of an abiotic zone at the maxima of 

pollution (Alve, 1995).  Pearson and Rosenberg (1978) determined that a similar pattern 

was apparent in the macrobenthos; as input of organic contaminants increase, diversity 

decreases to a few opportunistic species that develop large populations. 
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Table 1.1.  Measured PAHs and their respective EPA classifications.  A * indicates a 
compound that is considered to be a known animal carcinogen by the DHHS.  A B2 
classification is a probable human carcinogen, a C rating is a possible human carcinogen, 
and a D rating denotes that the compound is not classifiable.  

 

Compound 
EPA 

Carcinogenicity 
Classification 

EPA Maximum 
Contaminant Level 

(mg L-1) 
Naphthalene C -- 
Biphenyl D -- 
Acenaphthylene D -- 
Acenaphthene D -- 
Fluorene D -- 
Phenanthrene D -- 
Anthracene D -- 
Dibenzothiophene -- -- 
Fluoranthene D -- 
Pyrene D -- 
Benz(a)anthracene* B2 0.0001 
Chrysene B2 0.0002 
Benzo(b)fluoranthene* B2 0.0002 
Benzo(k)fluoranthene* B2 0.0002 
Benzo(e)pyrene D -- 
Benzo(a)pyrene* B2 0.0002 
Perylene -- -- 
Indeno(1,2,3-c,d)pyrene* B2 0.0004 
Dibenz(a,h)anthracene* B2 0.0003 
Benzo(g,h,i)perylene D -- 
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Figure 1.1. Location of the Macondo wellhead and composite spatial surface extent of the 
DWH oil spill in the Northern Gulf of Mexico (NOAA, 2013).
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Figure 1.2.  The 238U decay series.  Shows the half-life and types of radioactive decay of 
each isotope.  From Chang, 2007. 
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CHAPTER TWO: METHODOLOGY 

2.1 Geologic Setting and Study Area 

The modern Mississippi Delta plain began to form during the Holocene, 

approximately 7,500 to 5,000 years ago (Coleman et al., 1998), and since that time has 

been shaped by episodes of building and abandonment of various delta lobes.  The 

geomorphology of these abandoned lobes has been described by Fisk (1944), Kolb and 

Van Lopik (1958), Frazier (1967), and many others.  The marsh deposits in the 

Mississippi River Delta are characterized by a sedimentary sequence consisting of 

shallow marine bay clays and marsh peats (Gosselink, 1984). 

Following the DWH spill, five sampling locations were chosen based on data 

from NOAA’s Environmental Response Management Application (ERMA), and included 

marsh islands and inlets in the northern GOMx that were expected to receive variable 

amounts of oil (Figure 2.1).  The station names and their respective amount of expected 

oiling are as follows: Belle Fontaine, MS: little to no oiling; Rigolets, LA: moderate 

oiling; Keel Boat Pass, LA: moderate oiling; Dry Bread Island, LA: heavy oiling; and 

Bay Jimmy, LA: very heavy oiling (Table 2.1).  Three of these five locations were chosen 

as a subset at the start of this project; however, it was later decided that a fourth station 

would be a beneficial addition.  Thus, four of the original five stations will be discussed 

below (sans Belle Fontaine, MS). 

2.2 Sampling Method 

Sampling was completed in multiple stages, with samples taken approximately 

one year apart in 2010 and 2011; however, only the 2010 samples were analyzed for this 

thesis project.  The exception is Bay Jimmy, which was sampled in 2011 and 2012, but 
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only the 2011 samples are used in this thesis.  Replicate push cores of less than one meter 

in length were collected along transects at each station.  Each core was assigned to a 

marsh environment based on changes in vegetation and relative elevation (Table 2.2, 

Figure 2.2). The “low” core was always taken within the subtidal zone of the marsh.  This 

area is typically at nearly marine salinities and is characterized by little to no vegetation 

and a muddy facies, due to almost constant inundation by water.  The “mid” and “high” 

cores were taken within the intertidal zone.  The intertidal zone experiences daily 

inundation by tides, and is significantly influenced by local winds, storms, and tidal 

regime.  The intertidal zone can have variable physical characteristics based on several 

factors, including duration of tidal submergence, wave and current energy, and the source 

of the sediment load (Frey and Basan, 1978).  The intertidal zone can be broken into 

several marsh environments; here, we have sampled in the middle and high marshes.  

Thick plots of Spartina alterniflora are typical of the middle marsh.  These grasses are 

excellent at capturing sediment and nutrients from the incoming tides.  The high marsh is 

topographically higher, having less frequent inundation by tides, and therefore has 

increased contributions of plant detritus to sedimentary substrates (Williams and 

Hamilton, 1995).  

Tidal ranges for marshes along the Louisiana coastline vary from approximately 

0.3 to 0.5 m, although tides associated with storm fronts can push water up to elevations 

of 1 m or more above mean sea level (NOAA, 2009).  These areas have a diurnal tidal 

cycle, meaning that they experience one high and one low tide per lunar day. 
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2.3 Thesis Sampling Sites 

2.3.1 The Rigolets 

This sampling site is abbreviated RIG for all labeling and identification purposes. 

A close-up image of the sampling sites is seen in Figure 2.3.  RIG is located north of the 

present day Mississippi River Delta in a strait running between Lakes Pontchartrain and 

Borgne.  This strait forms the boundary between New Orleans and St. Tammany 

Parishes.  It is part of the Pontchartrain basin, the oldest drainage basin in the Mississippi 

River Delta Plain (Gosselink, 1984).  2,500 to 1,000 years ago, progradation of the St. 

Bernard Delta complex formed the south shore of Lake Pontchartrain and RIG (Kolb and 

Van Lopik, 1958).  This area contains extensive marshes with well-developed salt and 

brackish zones.  Additionally, it is generally a low energy environment, and because it is 

protected from the waters of the GOMx, it was expected to accumulate mainly fine-

grained sediment. 

The USGS monitors salinity in most marshes along the GOMx.  Seasonal ranges 

for median daily salinity at RIG (USGS gauge 301001089442600) vary from 

approximately 3 to 6‰ in spring and increase to just over 10‰ in late summer (USGS, 

2013).  It is notable that salinity was atypically low (< 5‰) from June to September of 

2010 due to controlled diversions of Mississippi River water intended to hold off surface 

oil from the spill (State of Louisiana, 2010).  On the day of sampling, however, salinity 

appeared to be unaffected, as masured pore water salinities at the High and Mid sites 

were 12 and 6‰, respectively. 

Definition of marsh position was based on changes in vegetation at all sites.  A 

mudflat with submerged fringing Spartina alterniflora (smooth cordgrass) defined the 
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area where the Low core was taken at RIG.  The area surrounding the Mid core was 

dominated by Spartina alterniflora.  The High core was taken in an area containing 

Spartina alterniflora, Spartina patens (saltmarsh cordgrass) and Distichlis spicata 

(seashore saltgrass).   

RIG was reported as heavily oiled in NOAA’s Shoreline Cleanup Assessment 

Technique (SCAT) as of July 9, 2010.  Even so, there were no site-specific Shoreline 

Treatment Recommendations (STRs) for this location.  However, there was some 

shoreline cleanup treatment conducted early on under General STRs for the entire region.  

These treatment methods may have included use of sorbents, low pressure flushing, and 

skimmers and vacuums to remove oil near the marsh edge and in adjacent nearshore 

waters.    

2.3.2 Keel Boat Pass Island 

This sampling site is abbreviated KBP for all labeling and identification purposes.  

KBP is located north of the Mississippi River Delta in the Chandeleur Sound, part of the 

St. Bernard lobe of the Mississippi River Delta complex.  The Chandeleur Sound is a 

shallow bay, with an average depth of 3 m, and is somewhat protected from GOMx 

waters by the Chandeleur Islands.  This provides for a low energy environment, but less 

so than at an inlet site like RIG.  KBP was expected to accumulate more sand than RIG 

due to its more open setting.  KBP lies approximately 80 km east of New Orleans, LA.  

An image of the sampling sites is seen in Figure 2.4. 

Seasonal ranges of salinity in the Chandeleur Sound (USGS gauge 07374526) are 

considered intermediate for this area, ranging from 5 to 9‰ in spring and increasing to 10 
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to 15‰ during summer (USGS, 2013).  On the day of sampling, open water salinity was 

measured to be 13.4‰, with pore water salinity at the High site being 29‰.   

An unvegetated mudflat defined the area where the Low core was taken at KBP.  

The Mid core was taken in an area dominated by Spartina alterniflora and Salicornia 

bigelovii (dwarf saltwort).  The area surrounding the High core graded into Spartina 

alterniflora with Salicornia bigelovii, Batis maritima (turtleweed), and another 

herbaceous species. 

Some of the heaviest oiling following the DWH spill was reported in NOAA’s 

SCAT along portions of the KBP shoreline.  However, these oiled areas were patchily 

distributed and not widespread.  At the time of sampling, sorbent boom had been placed 

offshore but no oil was visible.  While it was suspected that KBP might have been 

exposed to oil, measurements revealed that it in fact had the lowest surface sediment 

TPAH concentrations of any site considered herein.  Therefore, it was chosen to be the 

“control” station for this study.  However, as indicated in the results from foraminiferal 

data, even KBP does not adequately serve as a true control. 

2.3.3 Dry Bread Island 

This sampling site is abbreviated DBI for all labeling and identification purposes.  

Like KBP, DBI is located in the Chandeleur Sound, and is approximately 75 km east of 

New Orleans, LA.  An image of the sampling sites is seen in Figure 2.5. 

The typical salinities reported above for KBP also apply to DBI.  DBI was 

sampled during the timeframe of controlled diversions of river water following the DWH 

spill.  USGS gauge 07374526 recorded unusually low salinities from less than 1 to 7‰ 
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during the period from July to late August, 2010.   However, on the day of sampling open 

water salinity was measured to be 13.5‰ and pore water salinity was 16-17‰.  

The contact between the subtidal and intertidal zones of the marsh was 

characterized by a large erosional marsh scarp (1 to 2 feet high) at this site.  The Low 

core was taken within the unvegetated subtidal zone, and the Mid core was taken above 

the scarp in the intertidal zone.  The Mid core was surrounded by Spartina alterniflora.  

The area around the High core was characterized by a change in vegetation to Distichlis 

spicata with some Batis maritima.   

DBI was reported as heavily oiled in the SCAT.  Oiling conditions were described 

as a 6 meter wide band of fresh oil and mousse covering 60% of the marsh vegetation 

(Zengel and Michel, 2013).  Large patches of oil were indeed observed at the time of 

sampling for this project (Figure 2.6).  Sorbent boom was placed just seaward of the 

marsh edge sometime after July, 2010 to prevent additional oil from reaching the marsh 

and to capture any oil released during cleaning.  This sorbent boom was still present at 

the time of sampling.  In addition, low pressure flushing was allowed as part of the site-

specific STRs, and may have been carried out at this site (Figure 2.7).   

2.3.4 Bay Jimmy 

This sampling site is abbreviated BJ for all labeling and identification purposes.  

Bay Jimmy is a small body of water located approximately 60 km south of New Orleans, 

LA.  An image of the sampling sites is seen in Figure 2.8.  Bay Jimmy is part of upper 

Barataria Bay, a basin bounded on the east by a distributary ridge of the current 

Mississippi River channel.   
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Salinity in Barataria Bay (USGS gauge 07380251) is considered intermediate for 

this area, ranging from 5 to 15‰ in spring and increasing to 16‰ during late summer 

(USGS, 2013). 

A largely non-vegetated mudflat defined the area where the Low core was taken.  

The area surrounding the Mid core was strongly dominated by Spartina alterniflora, with 

a trace of Distichlis spicata and Batis maritima.  The High core was taken in an area 

dominated by Spartina patens, with some Juncus roemerianus (needle rush). 

The SCAT indicated that locations in Barataria Bay (including Bay Jimmy) were 

heavily oiled.  Zengel and Michel (2013) reported that initial oiling bands on the 

shoreline were typically 10 meters wide and covered more than 90% of the vegetation 

(Figure 2.9).  They also reported heavily oiled wrack lines, heavily oiled vegetation mats, 

and thick (2-3 cm) layers of surface oil residue and mousse on the marsh substrate.  They 

indicated that the mousse layer did not appear to be weathering where it was trapped 

below laid-over vegetation and wrack.  Bay Jimmy and surrounding areas continue to be 

closed to commercial and recreational fishing due to the DWH spill through the 2013 

fishing season (LDWF, 2013). 

2.4 Laboratory Methods 

All cores were refrigerated until analysis could begin.  One core from each station 

was described, graphically logged and photographed prior to sectioning.  Samples for 

determining bulk density were collected at 2 cm intervals and at obvious textural changes 

within each sediment core.  Each bulk density sample was collected using a syringe of 

known volume, dried in an oven at 70° C, and re-weighed to obtain a bulk density value. 
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Cores to be used for radiochemistry and sedimentology were sectioned at 0.5 cm 

intervals over the first 3 cm, at 1 cm intervals thereafter to 30 cm, and at 2 cm intervals 

thereafter to the end of the core.  Bulk sediment samples from each interval were dried in 

an oven at 70° C.   

Cores to be used for organic geochemical analyses were sectioned using two 

different sampling schemes.  RIG and KBP were sampled at 5 cm intervals for the 

entirety of the core.  DBI and BJ were sampled at 1 cm intervals over the first 30 cm, and 

at 2 cm intervals thereafter to the end of the core.  A subset of these samples was selected 

from the near surface of each core for determination of TPH and TPAH concentrations.  

These samples were kept refrigerated in amber vials until they were shipped to 

collaborators at the Geochemical and Environmental Research Group at Texas A&M 

University in College Station, Texas for analysis. 

Grain size analysis was completed at each sectioning interval over the top 30 cm 

of each sediment core.  In preparation for grain size determination, 1 to 3 grams of 

sediment was gently separated from the bulk sample, avoiding any large pieces of shelly 

material.  A sodium hexametaphosphate solution was added to disperse sediment 

samples.  If large quantities of organic material were visible, the sample was rinsed with 

distilled water over a No. 35 U.S. Standard Sieve (500 µm).  The macro-organic matter 

collected on the sieve was dried and the weight recorded.  For all samples, any remaining 

organic matter was destroyed by adding 30% H2O2 to the sample over heat to prevent the 

organic matter from acting as a binding agent (Day, 1965).  The samples were inspected 

frequently while being heated, and an additional 10 mL of H2O2 or distilled water was 

alternately added whenever a sample came near dryness.  When the samples were no 
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longer visibly reacting, they were removed from the hotplates.  The samples were then 

rinsed into a centrifuge tube with distilled water and centrifuged with 0.5 M MgCl2 until 

the supernatant was clear and the pH was near neutral.  After decanting the supernatant, 

the remaining sediment was dried in an oven at 70° C.  A Malvern Instruments 

Mastersizer S2000 particle size analyzer was then used to quantify the relative quantities 

of major mineral sediment size fractions including sand, silt and clay (sensu Wentworth).  

This instrument can accurately resolve particles from 0.02 µm to 2 mm in diameter.   

Another portion of each sample was disaggregated with a mortar and pestle, and 

then ground in a Retsch RM-200 Mortar Miller.  Again, samples with an abundance of 

macro-organic matter were sieved through a No. 35 U.S. Standard Sieve.  Aliquots of the 

crushed sediment were used to determine: (1) carbonate percentages, (2) SOC 

concentrations, (3) activities of 234Th, 7Be and 137Cs by gamma counting, and (4) activity 

of 210Pb by alpha counting its granddaughter, 210Po. 

Determination of carbonate content in the samples was made using a weight-loss 

method modified from Molnia (1974).  Samples of approximately 300 mg were weighed 

and subjected to a 10% solution of HCl to destroy any inorganic carbon.  After sonicating 

and heating the solution, it was rinsed via vacuum-filtration through 0.4 µm membrane 

filters with distilled water.  The remaining residue was dried at 70° C.  The filter and 

insoluble sediment were then weighed again to calculate a carbonate percentage.  From 

this, subsamples of 5 mg were placed into tin capsules for determination of SOC.  These 

samples were analyzed using a Costech ECS 4010 Elemental Analyzer, which relies on 

thermal combustion to break the sample down into N2 and CO2 for detection (Yeager and 

Santschi, 2003; Yeager et al., 2004).  To ensure data quality, 10% of the total number of 
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samples were analyzed in duplicate.  In cases where the duplicate sample showed more 

than 15% deviation from the original sample, a triplicate sample was run.  SOC 

concentrations were used to calculate an overall SOC inventory for each core as follows: 

interval thickness  ×  (1  –  porosity  ×  grain density)  ×  SOC
0-30cm

 

In order to resolve 234Th, 7Be and 137Cs profiles, high-resolution gamma 

spectrometry was used as described in Yeager et al. (2004).  In summary, samples of 1 to 

10 g were placed into plastic test tubes and sealed with epoxy.  Silica gel was added to 

those samples that did not have equal geometries.  After waiting 21 days for secular 

equilibrium to be reached between 226Ra and 222Rn (daughter isotopes of 234Th), the 

samples were run on a Canberra DSA-1000 multi-channel analyzer mated to a GCW3023 

HP-Ge well detector.  Counts were repeated on a subset of representative samples six or 

more months after collection to determine 234Thxs.  This allowed all 234Thxs to decay and 

leave only that portion of the total 234Th that is supported by direct decay of 238U 

(234Thsupp). 

Sediment accumulation rates were determined where possible using 137Cs by the 

following equation: 

S =
Dpk
T
  

where S is sediment accumulation, Dpk is the mass depth at which either the 137Cs 

maximum occurs (1963) or the first incidence of 137Cs can be determined (1953), and T is 

time (Yeager et al., 2007). 

In order to determine 210Pb activity, alpha spectrometry was used.  Samples were 

spiked with a known amount of 209Po tracer (Eckert & Ziegler Isotope Products, Catalog 

No. 7209) and completely digested over heat using concentrated acids (HF, HCl and 
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HNO3).  Ascorbic acid was then added to bind free Fe(III).  Samples were plated by 

adding a silver disc to the solution, which provides a surface for the deposition of 

Polonium isotopes (Yeager et al., 2004).  To ensure data quality, a blank sample was run 

with every set of ten samples.  A Canberra Alpha Analyst Integrated Alpha Spectrometer, 

model 7200-12, was used to count the samples.  The added 209Po tracer, which does not 

occur in nature, is used as a reference point for determining the amount of 210Po in the 

sample.  It is assumed that 210Po, an alpha emitter, is in secular equilibrium with 210Pb.   

There are several methods of reconstructing geochronology using 210Pb.  One 

method is to estimate age and/or average historical sedimentation rates by comparing the 

210Pb profile to atmospherically supported 210Pb inventories (Noller, 2000).  However, 

these inventory-based models assume a constant rate of sedimentation, which is not 

accurate for marsh settings that generally experience pulsed sedimentation.  For the 

locations studied here, a more appropriate model is the Constant Rate of Supply (CRS) 

model, also known in the literature as the Constant Flux model (Noller, 2000).  The CRS 

model assumes: (1) 210Pbxs is supplied to sediments at a constant rate over time, (2) the 

initial concentration within the sediment is variable, and (3) the rate of sediment 

deposition/accumulation is also variable (Goldberg, 1963).  The activity of 210Pbxs (Cx) 

can be determined at any depth (x) using the law of radioactive decay: 

Cx = C0e-λt  

where λ is the decay constant for 210Pb (0.031 yr-1) and C0 is the initial concentration of 

210Pb.  Samples that provided a negative rate were considered extraneous and excluded 

from the remainder of the model.  From the activity of 210Pbxs, the age of a deposit at 

depth x can be determined from the following relation: 
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t = 
1
λ
ln
A0
Ax

  

where A0 is the total 210Pbxs in the sediment column and Ax is the total 210Pbxs activity 

beneath depth x (Appleby and Oldfield, 1978).  A sediment accumulation rate (Sa) for 

each depth interval can then be derived from the change in mass (ΔM) over change in 

time (Δt), as follows: 

Sa  =  
∆M
∆t

 

An averaged sediment accumulation rate may then be determined for an entire core. 

Meiofauna samples were taken from push cores as well.  Cores used for 

identifying and counting foraminifera were collected, sectioned, and analyzed by Dr. 

Charlotte Brunner and her research group at the University of Southern Mississippi.  All 

of the data referenced in this thesis can be found in Brunner et al. (2013).  The method 

can be summarized as follows.  Cores were sectioned at 1 cm intervals to a depth of 10 

cm within 24 hours of sampling.  A buffered solution of 0.5 g rose Bengal per liter of 

seawater was mixed into each interval in order to stain and identify living or recently 

living specimens.  The samples were then wet sieved on a 45-µm screen to capture both 

juvenile and adult foraminifera.  The retained silt and sand-sized material was then 

refrigerated in alcohol to preserve the samples until they could be counted.  At that time, 

the samples were split with a settling-type splitter into aliquots that could be conveniently 

viewed on a gridded Petri dish and inspected under an Olympus SZX12 dissecting 

microscope.  All specimens from each aliquot were identified to species until 

approximately 300 total specimens were counted from each depth interval to determine 

species diversity and density, with deformed specimens being noted as well.  The depth 
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of habitation (DOH) is defined as the depth at which 95% of stained specimens are 

accumulated, and the standing stock is calculated as the sum of densities from the surface 

to the depth of habitation.
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Table 2.1.  Summary of site-specific sampling information. 

Sampling Site Core Label 
Latitude 

(degrees, minutes, 
seconds) 

Longitude 
(degrees, minutes, 

seconds) 
Collection date 

Belle Fontaine Low  30°21'12.80"N  88°45'14.11"W 5/13/10 
 Mid  30°21'12.90"N  88°45'14.10"W 5/13/10 
 High  30°21'13.00"N  88°45'14.10"W 5/13/10 

 
Keel Boat Pass Low  29°52'43.30"N  89°14'33.90"W 5/27/10 

Island Mid  29°52'43.40"N  89°14'34.40"W 5/27/10 
 High  29°52'43.60"N  89°14'34.90"W 5/27/10 

 
Rigolets Low  30°09'52.20"N  89°40'5.70"W 8/1/10 

 Mid  30°09'52.20"N  89°40'6.00"W 8/1/10 
 High  30°09'52.00"N  89°40'6.10"W 8/1/10 

 
Dry Bread  Low  29°50'32.00"N  89°18'14.00"W 8/4/10 

Island Mid  29°50'32.00"N  89°18'14.80"W 8/4/10 
 High  29°50'32.10"N  89°18'14.90"W 8/4/10 

 
Bay Jimmy Low  29°26'35.70"N  89°53'59.00"W 6/4/11 

 Mid  29°26'35.90"N  89°53'59.30"W 6/4/11 
 High 29°26'36.10"N  89°53'59.50"W 6/4/11 
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Table 2.2.  Marsh environment classifications for sampled cores.  

Sampling Site Core Label Corresponding Environment 

Keel Boat Pass Island Low Subtidal zone 
 Mid Middle marsh 
 High High marsh 
   

Rigolets Low Subtidal zone 
 Mid (Lower) Middle marsh 
 High (Upper) Middle marsh 
   

Dry Bread Island Low Subtidal zone 
 Mid Middle marsh 
 High High marsh 
   

Bay Jimmy Low Subtidal zone 
 Mid Middle marsh 
 High High marsh 
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Figure 2.1.  Map of all station locations and Macondo wellhead.  Imagery courtesy of 
ESRI. 
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Figure 2.2.  Photo illustrating marsh environments at Bay Jimmy.  
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Figure 2.3.  Image of Rigolets Pass, LA sampling locations.  Imagery courtesy of Google 
Earth (2012). 
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Figure 2.4.  Image of Keel Boat Pass Island, LA sampling locations.  Imagery courtesy of 
Google Earth (2012).  
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Figure 2.5.  Image of Dry Bread Island, LA sampling locations.  Imagery courtesy of 
Google Earth (2012). 
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Figure 2.6.  Photograph of oil on dead patches of marsh grass (August 4, 2010).  Photo 
credit: Dr. Charlotte Brunner. 
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Figure 2.7.  Photograph of low pressure, high volume marsh flushing tested at Bay 
Jimmy, LA in September 2010.  NOAA reports indicate that little to no oil was 
effectively mobilized from the sediment during demonstrations, and the flushing may 
have actually damaged the marsh by scouring sediments (Zengel and Michel, 2013).  
However, following vegetation cutting, this remediation method was approved for use at 
DBI and other sites.  
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Figure 2.8.  Image of Bay Jimmy, LA sampling locations.  Imagery courtesy of Google 
Earth (2012). 
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Figure 2.9.  Photograph of June 2010 initial oiling conditions at Bay Jimmy, LA.  Photo 
credit: Zengel and Michel (2013). 
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CHAPTER THREE: RESULTS 

Results are presented in the following order: sedimentology (grain size, 

stratigraphy, bulk density, SOC, carbonate); organic geochemistry (TPH/PAH); 

radiochemistry (210Pb, 7Be, 137Cs, 234Th); and micropaleontology (foraminifera).  For each 

of these analyses, the order in which stations are discussed is as follows: RIG, KBP, DBI, 

and BJ. 

3.1 Grain Size 

Sediments from all sites were evaluated for grain size distribution to a depth of 30 

cm.  At RIG, all three coring sites were clearly dominated by silt (up to 89%).  The 

percentage of clay was low (2 to 26%) both down-section and across-transect.  The 

percentage of sand was variable, but remained relatively small (2 to 32%) at the Low and 

Mid sites, with higher percentages at the High site (6 to 57%) (Figure 3.1; see Appendix 

3 for all data). 

Because KBP demonstrated more variability upon visual inspection than the other 

stations, grain size was further analyzed from 30 to 50 cm in intervals of 2 cm.  The clay 

content remained relatively small at the Low and Mid sites (1 to 10%), with slightly more 

variation at the High site (1 to 25%).  Each core was dominated by alternating layers of 

silt and sand, which varied both across-transect and down-core. 

DBI exhibited a general trend of coarsening with movement toward the High site.  

The Low site was dominated by silt (44 to 89%), while the High site was dominated by 

sand (41 to 90%).  Similar to KBP, the clay content remained small for all cores (2 to 

13%). 
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BJ was dominated by silt at all sites, with higher amounts of clay (3 to 43%), 

especially at the Mid site. 

3.2 Stratigraphy 

Where grain size data were available, percentages of sand, silt and clay were 

plotted on a Folk Ternary Diagram (Appendix 1) to give an average sediment size for the 

stratigraphic diagram.  Below the depth of grain size characterization, the descriptions 

were based on visual interpretation of the core.  Distance between cores was determined 

using the Haversine formula (Appendix 2).  No elevation data were collected, so all cores 

begin at a zero depth.   

As seen in the stratigraphic diagram for RIG (Figure 3.2), all sites contained 

organic matter and plant debris, although with decreasing prevalence down-core.  

At KBP, all sites contained organic matter and plant debris (Figure 3.2).  The Low 

and Mid sites had a thin shell hash layer at the surface, but the High site lacked shells.   

The stratigraphic diagram for DBI shows alternating layers of silt and sandy silt at 

the Low site, and sandy silt and silty sand at the Mid and High sites (Figure 3.3).  There 

was a small shell hash layer at the surface of the Low core, but shells were sparse in the 

Mid and High cores.  Roots were prevalent at the Low site, but there was little visible 

macro-organic matter.  The Mid and High sites had larger quantities of organic matter, as 

well as roots. 

BJ was characterized at all sites by alternating layers of silt and sandy silt, with a 

small amount of mud at the High site (Figure 3.3).  Plant material and other organic 

matter were prevalent in all cores.  The shell hash layer present at the Chandeleur sites 

(KBP and DBI), however, is totally absent at BJ.   
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Every core illustrated the layering of episodic sedimentation that is typical of a 

salt marsh setting. 

3.3 Bulk Density 

Bulk density was calculated for the entirety of each core (Appendix 4).  At RIG, 

values increased with movement toward the seaward edge, ranging from 0.378 to 0.801 g 

cm-3 at the High site, 0.465 to 1.060 g cm-3 at the Mid site, and 0.642 to 1.143 g cm-3 at 

the Low site.  When plotted against depth, each core showed a similar trend; generally, 

there were mid-range values at the surface, followed by a rapid decline, and then a 

gradual increase to a maximum bulk density near the bottom of the core (Figure 3.4).  

None of the other sites showed any obvious significant trends with respect to depth (Fig. 

3.4).  At KBP and DBI, the Low and Mid sites were generally denser than the High sites, 

with values ranging from 0.261 to 1.403 g cm-3, and 0.187 to 1.081 g cm-3, respectively.  

Bulk density values at BJ were lower than at the Chandeleur sites.  Bulk density ranged 

from 0.210 to 0.521 g cm-3 at the High site, 0.318 to 0.933 g cm-3 at the Mid site, and 

0.145 to 0.462 g cm-3 at the Low site.  The cores were apparently highly mixed and, 

again, no trend with depth was visible. 

3.4 Sedimentary Organic Carbon 

SOC was determined at each sample interval to a depth of 30 cm (Appendix 3).  

Depth profiles for each site are found in Figure 3.5.  At RIG, SOC varied from 1 to 3% at 

the Low site, 0.4 to 21% at the Mid site, and 1 to 9% at the High site.  Under steady-state 

conditions, an ideal SOC trend has a high at the surface, with exponential decline below 

(Burdige, 2007).  None of the cores at RIG exhibit this trend, or any evident trends with 

depth.  The Mid and High sites, in particular, illustrate pervasive mixing at this station. 
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SOC showed more variation with movement toward the drier end of the marsh at 

KBP.  SOC varied from 0.3 to 4% at the Low site, 0.5 to 6% at the Mid site, and 0.2 to 

27% at the High site.  When graphed, none of the cores show trends with depth.  In the 

High core, there were peaks from 2.5-3 cm, 9-11 cm, and 18-21 cm depth, corresponding 

to peat facies.  The High site at KBP was the only core of any station that showed a well-

defined peat-like zone.  Peat was described as any unit containing semi-carbonized plant 

remains with a moisture content of at least 75%. 

At DBI, SOC again showed more variation with movement toward the drier end 

of the marsh, with variation from 1 to 6% at the Low site, 2 to 16% at the Mid site, and 1 

to 19% at the High site.  The Mid and High sites have the ideal trend for SOC.  The Low 

site, however, shows no trend with depth. 

At BJ, SOC varied from 4 to 25% at the Low site, 5 to 15% at the Mid site, and 8 

to 23% at the High site.  While the High site had generally higher SOC than the Mid or 

Low sites, unlike the Chandeleur sites, BJ showed no trend of increasing SOC variation 

with movement toward the drier (high) end of the marsh.  In general, BJ had higher SOC 

concentrations than the Chandeleur sites at all zones, but especially at the Low site. 

SOC inventories were also calculated.  These values are reported in Appendix 3. 

3.5 Carbonate 

Like SOC, the carbonate percentage was calculated for every core at each sample 

interval to a depth of 30 cm (Appendix 4).  At RIG, carbonate varied from 4-12%, with 

the High site showing the most variation.  There were no apparent trends with depth.   

At KBP, carbonate percentages varied from 1 to 7% at the Low site and 3 to 19% 

at the High site.  At DBI, carbonate percentages varied from 5 to 11% at the Low site and 
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4 to 16% at the High site.  Surprisingly, while there was a small shell layer at the surface 

of the Low core at DBI, this was not indicated in the carbonate values.  The Mid cores at 

KBP and DBI exhibited very high percentages of carbonate at the surface (up to 59 and 

60%, respectively), which decreased down-core (approximately 9 and 10%, respectively, 

at 30 cm depth).   

At BJ, carbonate varied from 5 to 20%, with the Mid and Low sites being slightly 

skewed toward the lower end of the range.   

3.6 Organic Geochemistry 

After analyzing 320 sites along the Louisiana coast, Iqbal et al. (2007) found 

1,500 ng g-1 (ppb) to be the upper limit [TPAH] baseline for marsh sites in southeastern 

Louisiana.  In the Iqbal study, the three-year average [TPAH] concentration for 95% of 

the sites was less than 7,500 ng g-1, a defined limit of fivefold the baseline high 

concentration.  It is important to note that none of the samples in the Iqbal et al. study had 

a concentration exceeding 9,600 ng g-1. 

The total and compound-specific results of all samples analyzed for TPAH and 

TPH are found in Appendices 6 and 7, respectively.  Levels of [TPAH] are summarized 

in Figure 3.6.  Values of [TPAH] are reported without perylene, which can be produced 

biogenically (Budzinski et al., 1997).  At RIG, samples were bulked from 0-5 cm and 6-

10 cm, for a total of two samples at each site.  [TPH] was below 120 µg g-1 at all three 

RIG sites, and the [TPAH] levels at all sites were consistently below upper-level 

background for this area (263.1 to 1064.9 ng g-1). 
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Samples were similarly bulked at KBP.  [TPH] was below 100 µg g-1 at all KBP 

sites.  The [TPAH] levels at KBP were also quite low, and well below the upper-level 

background (72.8 to 284.9 ng g-1). 

Because it was collected later and was expected to be a heavily impacted site, 

DBI was sampled at a higher resolution than the previous two sites.  Samples were 

analyzed at 0-1, 1-2, 2-3, 3-4 and 4-5 cm intervals for each core.  There was wide 

variation in both [TPH] and [TPAH] along transect at DBI.  The High and Low sites had 

[TPH] near or below 100 µg g-1.  However, the Mid site revealed [TPH] up to 956 µg g-1 

near the surface.  At a depth of 3 cm, [TPH] dropped back down to approximately 50 µg 

g-1.  With regard to [TPAH], the Low and Mid sites ranged between 96 and 467 ng g-1.  

These values are well below the upper limit background for the area.  However, the High 

site revealed [TPAH] up to 5,420 ng g-1.  All five compounds listed by the DHHS as 

animal carcinogens (benz(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, 

dibenz(a,h)anthracene, and ideno(1,2,3-c,d)pyrene) were detected at the High site.  

Seven samples were analyzed from the BJ cores at one cm intervals to a depth of 

3 cm at the High site and 2 cm at the Mid and Low sites.  The High site had [TPAH] 

ranging from 4,345 to 18,279 ng g-1.  The Mid site had [TPAH] ranging from 19,356 to 

21,913 ng g-1.  The Low site had [TPAH] ranging from 7,768 to 7,775 ng g-1.  Every 

sample analyzed from BJ had a value above the level at which biological effects can be 

seen (4,022 ng g-1).  In addition, all five compounds listed by the DHHS as animal 

carcinogens were detected in every BJ sample analyzed.  [TPH] was likewise extremely 

high at the BJ Mid and High sites (1,705 to 6,937 µg g-1). 
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3.7 Lead-210 

Not all sites were suitable for the determination of sediment mass accumulation 

rates (g cm-2 y-1) using 210Pbxs due to sediment mixing.  However, sites at RIG, KBP and 

BJ were appropriate for the CRS model.  Average rates are summarized in Table 3.1 (see 

Appendix 5 for all data). 

All three sites at RIG were able to be modeled (Figure 3.7).  Each site showed the 

same general trend: a very slow steady increase in accumulation rate over the last 100 

years, until approximately 10 years before sampling (in 2010) when rates began quickly 

increasing.  This trend is most convincing at the High site (R2 = 0.76, p < 0.01). 

The Low and Mid sites at KBP were modeled (Figure 3.7).  The Mid site showed 

a similar general as those exhibited by the RIG sites, steady accumulation rates over the 

last 90 years, generally fluctuating between ~0.1 and 0.4 g cm-2 y-1 (Figure 3.7).  Then, 

approximately 10 years before sampling (in 2010), rates began to increase.  It is 

interesting that while the general trend of increase over the last 10 years is apparent at the 

Mid site, it is strongly influenced by a short period several years before sampling, when 

accumulation rates were nearly tenfold higher than the average.  

The Low and High sites at BJ were also appropriate for modeling (Figure 3.7).  At 

these sites, there was a steady increase in sedimentation rate over the last 100 years.   

3.8 Beryllium-7 

Beryllium-7 was present to a depth of 0.25 cm at the Mid site and 2.75 cm at the 

High site at RIG.  Beryllium-7 was not detected at the Low site.  At KBP, 7Be was only 

present at the High site.  At this location, 7Be was present to a depth of 2.5 cm.  
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Beryllium-7 was not detected in any of the cores at DBI or BJ.  All tabular 7Be data can 

be found in Appendix 5. 

3.9 Cesium-137 

Like 7Be, 137Cs was only sporadically present (Appendix 5).  At RIG, 137Cs was 

only detected at the Mid and High sites.  The absence of significant 137Cs at the Low site 

precluded its use to assess sediment accumulation rates.  However, the Mid and High 

sites were suitable for determination of sediment accumulation rates, which are 

summarized in Table 3.1.  The rate at the High site is a minimum rate, as the full profile 

has not been constrained to date.  The profile for the Mid site illustrating the first instance 

of 137Cs (corresponding to the year 1953) and the maximum of 137Cs (corresponding to 

the year 1963) is shown in Figure 3.8.  Because of mixing in the top of the core, the first 

instance of 137Cs yielded a sedimentation accumulation rate that was in better agreement 

with the 210Pbxs rate than when using the 1963 peak.   

At KBP, 137Cs was detected in the Mid and Low cores, but full profiles have not 

been constrained to date. 

At DBI, 137Cs was only detected at the Mid site below a depth of 13.5 cm.  

However, there is no discernible peak usable for calculating an age for the sediment. 

Cesium-137 was detected in all cores at BJ, but full profiles have not been 

constrained to date. 

3.10 Thorium-234 

The depth of penetration of 234Thxs for each core is illustrated in Figures 3.9 and 

3.10 and is summarized in Table 3.2.  The mixing depth is defined as the maximum 

penetration depth of 234Thxs in the sediment column.  Given the half-life of 24.1 days, 
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these values can be considered minimum mixing depths over the ~60 day (2.5 half-lives) 

memory of 234Th. 

3.11 Foraminifera 

All foraminiferal data are from Brunner et al. (2013).  A total of eight sites were 

used in the Brunner et al. study, including the four stations focused on in this thesis.  It is 

important to note that only cores from intertidal sites were used for the foraminifera 

study.  At RIG and BJ, the highest (High) marsh core was used to describe the intertidal 

zone, and at KBP and DBI the Mid core was used.  The standing stock and depth of 

habitation (DOH) for each site are summarized in Table 3.3.   

Brunner et al. (2013) determined a normal, regional condition for middle marsh 

foraminifera based on two control sites.  These control sites were located along the north 

shore of the western Mississippi Sound in Pearl and Jourdan River marshes, and were 

sampled seasonally from 2004 to 2005, prior to the DWH spill.  At these sites, the DOH 

varied, but was consistently deeper than 7.5 cm.  During the summer months, the 

standing stocks at the control sites were 1,200 to 1,500 specimens/10 cm2.   

At RIG, a lightly oiled site, the standing stock was highly elevated (6,676 

specimens/10 cm2) as compared to the control sites.  The DOH was unaffected when 

compared to the summer DOH at the control sites.  The moderately oiled DBI site had a 

shallower DOH and reduced standing stock compared to RIG and the control sites.  KBP 

also had a shallow DOH and reduced standing stock, although the reasoning behind this 

is not yet resolved.  At BJ, the most heavily oiled site, not only was the standing stock 

well below that of the control sites and RIG (400 to 800 specimens/10 cm2), but the DOH 
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was several centimeters shallower as well.  Brunner et al. (2013) attributed this to a 

nearly abiotic zone created by heavy contamination by PAHs. 

Both BJ cores contained specimens that were highly deformed (Figure 3.11).  

These deformities occurred at frequencies from 4 to 8%.  The deformities observed 

include reversals in coiling direction, changes in the axis of coiling, misshapen chambers, 

multiple apertures, and extreme chamber inflation, among other characteristics.  None of 

the deformed specimens observed were stained by rose Bengal, which means that they 

were dead at the time of collection.  It is significant, however, that no grossly deformed 

specimens (dead or alive) were seen at any other site from this thesis. 
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Table 3.1.  Sediment accumulation rates for all sites.  Dashed lines indicate that the 
profile was not sufficiently resolved for modeling.  Uncertainties reported at 1-sigma.   
 

 
Station 

  
Core Label 

 210Pbxs Average 
Accumulation 

Rate (g cm-2 y-1) 

210Pbxs Average 
Linear Accumulation 

Rate (cm y-1) 

137Cs Average 
Accumulation 
Rate (cm y-1) 

RIG  Low  0.42 ± 0.23 0.58 ± 0.34 -- 
  Mid  0.31 ± 0.07 0.56 ± 0.12 0.14 ± 0.02 
  High   0.30 ± 0.22 0.56 ± 0.33 0.31 ± 0.02 
       

KBP  Low  0.20 ± 0.10 0.27 ± 0.14 -- 
  Mid  0.58 ± 0.78 0.71 ± 0.85 -- 
  High   -- -- -- 
       

BJ  Low  0.09 ± 0.04 0.28 ± 0.12 -- 
  Mid  -- -- -- 
  High   0.18 ± 0.10 0.58 ± 0.37 -- 
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Table 3.2.  Mixing depths derived from 234Th profiles.  Asterisks indicate minimum 
depths, as the full profiles were not resolved. 
 
Station  Core Label  Minimum Mixing Depth 

(cm) 
RIG  Low  1.75 

  Mid  3.5 
  High   4.5 
     

KBP  Low  2.25 
  Mid  2.25 
  High   3.5 
     

DBI  Low  2.25 
  Mid  3.5* 
  High   3.5 
     

BJ  Low  4.5 
  Mid  3.5* 
  High   4.5* 
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Table 3.3.  Standing stock and depth of habitation for all sites.  Full dataset available in 
Brunner et al. (2013). 
 
Station  Standing Stock  Depth of Habitation 

  (live specimens/10 cm2)  (cm) 
RIG  6,676  > 10 

KBP  157  6 

DBI  461  6 

BJ (1)  843  3 

BJ (2)  406  4 
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Figure 3.1.  Grain size distributions for all sites.   
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Figure 3.2.  Stratigraphic diagrams for RIG and KBP.   
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Figure 3.3.  Stratigraphic diagrams for DBI and BJ.  
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Figure 3.4.  Bulk density plots for all sites.  
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Figure 3.5.  Percentages of sedimentary organic carbon (SOC) versus depth for all sites. 
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Figure 3.6.  Total PAH concentrations (without perylene) for all sites.  The dotted line 
indicates the upper limit background level (1,500 ng g-1).  

Total [PAH] without perylene (ng/g)

0 1000 2000 3000 4000 5000 6000

D
ep

th
 (c

m
)

0.5

1.5

2.5

3.5

4.5

0 500 1000 1500 2000

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

Total [PAH] without perylene (ng/g)

0 500 1000 1500 2000

D
ep

th
 (c

m
)

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

0 5000 10000 15000 20000 25000

0.5

1.5

2.5

3.5

4.5

High
Mid
Low

RIG KBP

DBI BJ



 60 

 

Figure 3.7.  210Pbxs-based mass accumulation rates over time.  All trends are best fit by an 
exponential regression.  In addition, several points that fell well outside the general trend 
were also excluded based on the concept of nonlocal mixing (e.g., worm burrows).  
However, all points are plotted on the graph (points excluded from trends are represented 
by unfilled squares), and all data can be found in Appendix 5.   
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Figure 3.8.  137Cs radionuclide profile for RIG Mid site.  The first instance of activity and 
peak in activity, corresponding to the years 1953 and 1963, respectively, are indicated 
with dotted lines. 
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Figure 3.9.  234Thxs and 238U activities versus depth for RIG and KBP sites. 
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Figure 3.10.  234Thxs and 238U activities versus depth for DBI and BJ sites. 
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Figure 3.11. Specimens of Balticammina pseudomacrescens.  Left: normal form; middle: 
specimen with deformed chambers; right: chamber inflation.  All samples were identified 
and photographed by the author using an Olympus SZX16 microscope. 
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CHAPTER FOUR: DISCUSSION 

4.1 Physical Property Constraints on Oil Deposition 

Oil is relatively water insoluble, and thus is subject to sedimentary deposition.  

Because fine-grained sediments have a highly adsorptive nature, hydrocarbons easily 

attach to them (Means and McMillin, 1993).  This can allow for the concentration of oil 

in marsh sediments to levels far above that of the originally polluted water column.  BJ 

was dominated by silt with a high clay content, making it susceptible to retaining 

contaminants in its sediment.  Indeed, PAH levels at BJ were quite high, even at the Low 

site.   

4.2 Sedimentary Organic Carbon as an Indicator of Pollution 

In addition to fine-grained sediments, hydrocarbons have been shown to be 

preferentially associated with the organic component of solid phase matrices (Schlautman 

and Morgan, 1993; Kim et al., 1999).   Following the DWH spill, Natter et al. (2012) 

investigated the degradation of oil in salt marsh sediments and pore waters on the Gulf 

Coast, including Bay Jimmy and The Rigolets.  They demonstrated that very high levels 

of SOC in marsh sediments were associated with heavily oiled sites following the DWH 

spill.  Other studies, such as Polymenakou et al. (2006) and Burdige (2007), have also 

concluded that organic carbon should positively correlate with [TPAH] because PAHs 

are an organic contaminant.  However, these studies were conducted in deep ocean 

environments where sediment accumulation rates are relatively low, as are the depths and 

intensities of sediment mixing.   

It was still expected that with such high [TPAH] at the BJ sites (up to 21,913 ng g-

1), the SOC profiles would reflect these peaks at the surface.  In fact, this is not evident.  
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The lack of any obvious trend with depth in most cores revealed these sites were highly 

mixed.  It is important to note here that significant spatial heterogeneity, or “patchiness”, 

of oil was seen at BJ and other sites.  Spatial heterogeneity of oil may result from several 

factors, including bioturbation of sediment by benthic organisms, movement of larger 

organisms (birds, crabs, etc.) on the marsh surface, or small-scale variations in tidal 

advancement of water up the marsh interface.  When revisited in June 2012, patches of 

oil were still found on the marsh surface at BJ (Figure 4.1).  In addition, the cores used 

for foraminiferal analyses at BJ support this, as they had different standing stocks.  It is 

therefore plausible that, even though they were intended to be replicates, the core used for 

hydrocarbon analyses was more heavily oiled than the cores used for sedimentology. 

When looking at a salt marsh, though, it is prudent to consider the high amount of 

ambient terrestrial organic carbon.  Terrestrial organic matter is delivered to the marsh 

via rivers and tidal inundation, or is produced in situ, and consists of living biomass, plant 

litter, and soil organic matter.  In this study, anomalously high peaks in the SOC profile 

most closely corresponded with changes in stratigraphy.  Areas with large quantities of 

roots and decaying plant matter (terrestrial organic matter) revealed peaks in the SOC 

profile.  The correlation between SOC peaks and stratigraphy is most obvious at the KBP 

High site, where there were defined zones containing peat (Figures 3.2 and 3.5). 

While terrestrial organic matter and patchiness may play a role, there is a better 

way to investigate relationships with SOC than concentration over depth profiles.  An 

inventory-based approach allows for SOC concentrations to be integrated over a common 

depth.  By looking at changes in overall carbon stocks, we can reduce uncertainties due to 

site-specific differences in biomass.  While individual SOC profiles did not correlate with 
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hydrocarbon levels, SOC inventories demonstrated exponential relationships with TPH 

and PAH inventories (Table 4.1, Figure 4.2).  These relationships were most pronounced 

at BJ.  Since SOC was not part of the original oil, this indicates that either SOC was 

associated with hydrocarbons during transport or upon deposition in the marsh.  

4.3 Source and Weathering of Hydrocarbons 

Parent and alkyl-substituted PAHs are excellent forensic tracers due to their 

thermodynamic stability (Yunker et al., 2002).  Because of this stability, it is possible to 

utilize parent and alkyl homologue PAHs for source characterization.  Those PAHs 

derived from the Macondo oil may be of pyrogenic (combustion) or petrogenic (i.e., 

petroleum) origin, depending on whether or not they have been burned prior to reaching 

the marsh.  Following an oil spill like this one, one expects to find large quantities of 

TPH, and low molecular weight (LWM) and alkylated PAHs (Lima et al., 2003; White et 

al., 2005; Wang et al., 2007).  During and after the DWH event, a large amount of oil was 

burned inefficiently at the sea surface, and so we expected a higher proportion of 

combustion-derived PAHs contributing to the overall hydrocarbon distribution.  This will 

be discussed later in more depth.   

For all molecular ratio analyses, only those samples with [TPAH] above 

background values were used.  To provide a greater sampling distribution, data collected 

by the Operational Science Advisory Team (OSAT) were plotted as well (NOAA, 2013) 

(Appendix 7e-f).  All OSAT samples included were taken from marsh sediments between 

September 20 and 22, 2011, and were less than 3 km away from the stations sampled in 

this thesis.  In order to be consistent with the OSAT data, only those ratios from the 

uppermost 2 cm of sediment collected for this thesis were used.  The only samples from 
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this thesis that had above background PAH values in the uppermost 2 cm were those 

from BJ.   

It was reported by Yunker et al. (2002) that PAHs of molecular masses 178 and 

202 are most frequently used as parent PAH source indicators.  For mass 178, an 

anthracene to anthracene plus phenanthrene (An/An+Phen) ratio < 0.10 is usually taken 

as an indication of petrogenic sources, while a ratio > 0.10 indicates a dominance of 

pyrogenic sources (Yunker et al., 2002).  For mass 202, a fluoranthene to fluoranthene 

plus pyrene (Fl/Fl+Py) ratio < 0.50 is usually taken as an indication of petrogenic 

sources, while a ratio > 0.50 indicates a dominance of pyrogenic sources (Yunker et al., 

2002).  The Macondo-252 well oil sample plots clearly in the zone of petrogenic 

(petroleum) sourcing based on both ratios (Figure 4.3).  Most of the marsh samples plot 

in the zone of petrogenic sourcing based on Fl/Fl+Py, but in the zone of pyrogenic 

(combustion) sourcing based on An/An+Phen.  Both molecular ratios have been used 

with great success in many studies, but mass 202 may be more definitive because it has a 

larger difference in thermodynamic stability between the isomers.  PAHs with smaller 

energy differences, like mass 178, may be less responsive to source identification. 

 Many studies have also successfully used ratios of C0 to C1 alkyl PAH 

homologues for source characterization (e.g., Gogou et al., 1996; Budzinski et al., 1997).  

The literature indicates that ratios of C0/C0+C1 for the fluoranthene/pyrene (F/P) series are 

< 0.50 for petrogenic sources, and > 0.50 for pyrogenic sources.  Ratios of C0/C0+C1 for 

the phenanthrene/anthracene (P/A) series are similar, but more variable.  Low C0/C0+C1 

P/A ratios (less than ~ 0.40) generally indicate petrogenic sources, but many of the ratios 

from pyrogenic sources are also < 0.40 (Yunker et al., 2002).  From Figures 4.4, 4.5, and 



 69 

4.6, it can clearly be seen that the Macondo Oil plots firmly within the petrogenic source 

area.   In addition to all of the OSAT data points, many of the BJ samples from this thesis 

plot within the petrogenic source zone as well. 

Unsurprisingly, however, the preceding plots do show that PAH ratios indicate 

mixed sources.  PAHs in the northern GOMx are derived from a variety of sources, 

including Macondo well oil, natural oil seeps, the burning of fossil fuels, atmospheric 

transport, and other oil spills.  Several processes may have modified these PAH 

assemblages, confounding the initial interpretation as to the sources of the PAHs.  These 

processes include burning of oil slicks, biodegradation, phase partitioning, and physical 

transport.  It is known that extensive burning took place at the sea surface during efforts 

to stop the flow of oil from the well to the shore.  In situ burning of oil is utilized to 

remove fairly fresh oil before it emulsifies.  The burning process generally consumes the 

majority of the oil, but it does leave a viscous and dense residue behind, and also 

generates considerable quantities of particulate matter (including pyrogenic PAHs) which 

can then either sink to the sea floor, be transported in the water column, or be 

atmospherically transported and deposited elsewhere (Brock et al., 2011) (Figure 4.7).  

The National Incident Command’s Flow Rate Technical Group estimated that 5% 

(245,000 barrels, or 1.03 million gallons) of the oil released during the spill was burned 

during response efforts (Federal Interagency Solutions Group, 2010).  More specifically, 

it has been verified that at least 409 controlled burns occurred between late April and mid 

July, 2010, with up to 26 burns taking place in one day (Allen, et al., 2011).  Allen et al. 

(2011) estimated the total volume of oil burned at sea to be between 220,400 and 310,300 

barrels (9.3 to 13.0 million gallons).  These burns were typically carried out within 15 
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miles of the DWH spill source.  From a review of the Navy Operational Global 

Atmospheric Prediction System (NOGAPS) data set, Hénaff et al. (2012) showed that the 

prevailing wind direction in the GOMx from April to July 2010 was generally northward 

from the Gulf.  With so many burns occurring during this period, it is entirely possible 

that some quantity of combusted PAHs would be transported as aerosols and deposited 

along the coastline. 

The burning of oil at the sea surface is certainly one cause as to why some 

homologue signatures are skewed toward the pyrogenic source zone, but weathering is 

definitely a contributing factor as well.  It is well known that some PAHs react faster than 

others in chemical processes such as photodegradation (Federal Interagency Solutions 

Group, 2010).  Therefore, it is unsurprising that PAH ratios in these samples would 

depart from those seen in the source oil.  

 One way to assess the importance of weathering is to examine a double-ratio plot 

for the PAHs C2-phenanthrenes/C2-chrysenes versus C3-phenanthrenes/C3-chrysenes 

(e.g., Sauer et al., 1998).  Chrysenes tend to weather more slowly than phenanthrenes, so 

as the oil weathers these ratios become smaller (Wang and Fingas, 2003).  Samples from 

this project and others follow a general linear trend of weathering with distance and time 

from the well (Figure 4.8).  The Macondo oil has the highest ratios, followed by deep-

water sediment samples collected in 2010 (Appendix 7c-d).  Samples collected in 2011 

from Bay Jimmy generally have the lowest ratios, indicating that they have been heavily 

weathered compared to the source oil.  Surface sediment samples from the other marsh 

sites with comparatively lower [TPAH] did not even register both of these compounds. 
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Alkanes have also been used to evaluate the source and weathering of oils.  The 

carbon preference index (CPI) of a sample is the weighted ratio of odd to even long-chain 

n-alkanes, and was calculated using the following equation (Bray and Evans, 1961): 

CPI = 0.5[(Σ(C25 – C33)odd / Σ(C24 – C32)even) + (Σ(C25 – C33)odd / Σ(C26 – C34)even)] 

The n-alkanes in crude oil usually have an even distribution of odd and even carbon 

numbers (CPI = 1).  In contrast, in plant waxes, odd-chain n-alkanes generally have a CPI 

greater than 4 (and up to 10) times more abundant than even-chain n-alkanes (Hong et al., 

1995).  Where there is a mixture of high terrigenous inputs as well as fossil fuels, it can 

be expected that the CPI will be slightly elevated.  In this study, Macondo-252 oil had the 

expected CPI of 1, and all sampled locations have a CPI below 4, consistent with the 

incorporation of oil (Table 4.2). 

The unresolved complex mixture (UCM) is the portion of petroleum 

hydrocarbons that cannot be resolved by gas chromatography.  Because the molecules 

that make up the UCM are structurally complex, they are resistant to biological 

degradation (Hong et al., 1995).  The accumulation of high concentrations of the UCM 

fraction in sediments provides evidence for long-term petroleum contamination (Reddy et 

al., 2002).  Excluding the KBP High site at which no UCM was detected, UCM 

concentrations ranged from 9.88 to 4219.7 µg g-1, which accounted for 45 to 97% of the 

non-aromatic hydrocarbons (Table 4.2).  The relative importance of the UCM can be 

determined by expressing the ratio of unresolved to resolved compounds (U/R).  U/R 

ratios of greater than 4 indicate petroleum contamination (Mazurek and Simoneit, 1984).  

At the Mid and High sites of BJ, the U/R reached values greater than 30 (Table 4.2).  In 

addition, the isoprenoid hydrocarbons phytane and pristane are not primary constituents 



 72 

of terrestrial biota (Simoneit et al., 1980).  Their persistent presence in BJ Mid and High 

hydrocarbon fractions, combined with high U/R values, indicates petroleum 

contamination. 

LMW n-alkanes (C16 – C26) have short chains and are preferentially lost in 

microbial degradation, evaporation, and dissolution (Wang et al., 1995a; Wang et al., 

1995b).  The loss of LMW n-alkanes (Figure 4.9), combined with CPIs below 4 and high 

amounts of UCM, confirms that oil was degraded before being deposited in the marshes, 

and further indicates that the oil residues found at BJ are the least degraded of the 

collected samples.  This may simply be due to the magnitude of oiling at this site. 

4.4 Sensitivity of Radioisotope Tracers 

It was anticipated at the outset of this project that the intense physical and 

biological mixing, coupled with erosion, might hinder the resolution and interpretation of 

the radioisotope data.  Indeed, this was the case; vertical mixing rendered nearly all of the 

137Cs and some of the 210Pb data (discussed later) inconclusive.   

Beryllium-7 was particularly troubling.  The constant fallout radionuclide 7Be was 

measured to determine short-term sediment mixing depths.  Where 7Be was detected, it 

was confined to the near surface (0-2.75 cm).  This suggests there was little mixing in the 

short-term memory of 7Be (< 1 year).  However, in most cases, there was a conspicuous 

absence of 7Be.  This is most likely due to one of three scenarios.  First, sediment 

composition at some sites likely constrained 7Be sorption.  Beryllium-7 does not have an 

affinity for coarse-grained sediment or organic matter (Bloom and Crecelius, 1983).  All 

sites were characterized by large quantities of macro-organic matter, and the Chandeleur 

sites were quite sandy.  Second, it is well documented that many Louisiana marshes along 
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the GOMx are rapidly retreating.  Therefore, the absence of 7Be could be due to rapid 

erosion of the marsh surface.  A third option is related to the cleanup of marshes 

following the DWH spill.  In addition to the water flushing methods mentioned earlier, 

raking, skimming, and even vacuuming (Figure 4.10) were all approved, and utilized 

methods of removing oil from the marsh surface.  Any one of these methods has the 

potential to remove sediment or scour the marsh surface.  In particular, the vacuuming 

was controversial, with reports of effectiveness ranging from “large volumes of recovered 

oil” to simply “removal of marsh sediments and gouging of the marsh substrate” (Zengel 

and Michel, 2013).  BJ was subjected to both flushing and vacuuming during cleanup 

activities.  While there are no confirmed reports of flushing or vacuuming at KBP or 

DBI, these methods were approved for the two islands and may have taken place (Zengel 

and Michel, 2013).   

It is also possible that a combination of these factors may have led to the absence 

and/or shallow penetration depth of 7Be in near surface sediments.  Unfortunately, there 

are too many factors complicating interpretation, and the question of the missing 7Be 

remains unresolved.   

It may have been beneficial to assess sediment accumulation rates by using 

additional short-term dating techniques (i.e., feldspar or glitter marker horizons, pollen 

analysis, rod sediment elevation tables (RSETs)).  However, in addition to the fact that 

marker horizons or RSETs would need to have been in place prior to the unexpected 

DWH spill to be useful, mixing may still have been problematic.  

It was originally anticipated that a bioturbation coefficient would be calculated 

from 234Thxs.  However, the 210Pb profiles revealed such a large amount of physical 
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mixing that it was not prudent to attempt to assign a certain amount of that mixing as 

biological.  Regardless, 234Thxs allowed for the determination of minimum mixing depths. 

At many stations, 234Thxs was still present in the deepest samples counted. 

As expected, there does not appear to be any correlation between the 234Thxs 

mixing depths and DOH for foraminifera, as foraminifera are not major bioturbators.  

However, the DOH does indirectly indicate how deeply the sediment is bioturbated.   

Macrofauna, such as polychaetes and oligochaetes, constantly rework sediments as they 

burrow into them.  It has been suggested by many that the bioirrigation and sediment 

oxidation capacity of macrofauna has a large impact on the vertical distribution of 

foraminifera (e.g., Goldstein et al., 1995; Jorissen et al., 1995; Gross, 2000; Bouchet et 

al., 2009).  If this is the case, then it can be assumed that the DOH can also be interpreted 

as a minimum bioturbation depth for macrofauna.   

4.5 Implications of Sediment Mixing on Hydrocarbon Transport and Fate 

As indicated in section 1.4, the barge Florida ran aground in Buzzards Bay, 

Massachusetts in September, 1969, spilling 700,000 L of No. 2 fuel oil (Reddy et al., 

2002; Peacock et al., 2005).  Despite the use of oil booms, both subtidal and intertidal 

areas of nearby marshes were heavily contaminated with oil.  Unoiled sediments accreted 

at a rate of 0.35 cm yr-1 now overlay sediments oiled during the spill (White et al., 2005).  

Nearly forty years later, researchers found that a substantial residue of the oil was still 

present 8-20 cm below the surface (Reddy et al., 2002; Peacock et al., 2005).  While most 

of the volatile and water-soluble compounds have been removed, concentrations of PAHs 

remain nearly identical to those measured several years after the spill (Reddy et al., 2002; 
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Peacock et al., 2005).  This suggests that PAHs may persist indefinitely in the sediment 

record at the Buzzards Bay marsh.   

Given short-term mixing depths of 4.5 cm or deeper, it is plausible that oil 

delivered to GOMx marshes could be mixed deeply into the sediment substrate.  High 

[TPAH] from 3-4 cm at the DBI High site and very high [TPAH] from 2-3 cm at the BJ 

High site shows that oil has effectively been mixed into sediments.  Sediment 

accumulation rates of up to 0.55 g cm-2 y-1 (0.71 cm yr-1) suggest that PAHs mixed into 

the substrate could be quickly buried.  Once PAHs are buried in the sediment profile, it 

becomes very difficult for them to be further broken down.  Bauer and Capone (1985) 

demonstrated that microbes in intertidal sediments rapidly degrade anthracenes and 

naphthalene in oxic environments.  While oxygen is much less available once PAHs are 

buried, macrofaunal bioturbation, physical mixing and benthic photosynthesis 

periodically oxidize sediments.  It is obvious from 234Thxs profiles that the sediments in 

Louisiana salt marshes are well mixed, and this may lend a hand to remediating buried 

oil. 

4.6 Lead-210 Sediment Accumulation Rates and Implications for Survival of 

Marshes 

Due to vertical mixing in the sediment column, many of the cores were unsuitable 

for CRS modeling.  However, all of the RIG and KBP cores that were modeled showed 

an increase in sediment accumulation over approximately the last decade prior to 

sampling in 2010.  On August 29, 2005, Hurricane Katrina made landfall in Louisiana 

and Mississippi as a category 3 hurricane with sustained winds of 125 mph (NOAA, 

2005a).  Less than one month later, Hurricane Rita, the most intense cyclone ever 
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recorded in the Gulf of Mexico, passed close by Louisiana with wind gusts of 180 mph 

(NOAA, 2005b).  Turner et al. (2006) found that these two storms resulted in more than 

131,106 metric tons of inorganic sediments accumulating in Louisianan coastal wetlands.  

It is important to note, however, that even where Hurricanes Katrina and Rita increased 

average sedimentation rates, there is no measurement of how much sediment was first 

scoured from marsh surfaces, and 210Pbxs-based accumulation rates do not take into 

account sediment that is removed.  At KBP, it is obvious from satellite images that 

significant erosion took place following the hurricanes (Figure 4.11).  This point is 

further exhibited in the 210Pbxs inventories.  Based on Appleby and Oldfield (1992), the 

expected fallout inventory for southern North America is 495 mBq cm-2.  Inventories are 

far less than this at four of the six sites modeled, meaning that they are in a net erosional 

state.  Cesium-137 inventories too are below the expected value (98 mBq cm-2) at all 

sites. 

Both the emergence and continued survival of tidal salt marshes are related to the 

rate of relative sea level (RSL) rise (Mudd, 2011).  One component of RSL change is 

land subsidence, such as that occurring in the Mississippi River delta.  Shinkle and Dokka 

(2004) performed a geodetic survey with first-order leveling data based on U.S. National 

Geodetic Survey benchmarks, and found that large sections of the Mississippi River delta 

were subsiding at rates of 10-15 mm yr-1.  Several recent studies have attributed the rapid 

subsidence of marsh surfaces in the Gulf of Mexico to compaction of sediments and 

down-warping of the underlying crust (Meckel et al., 2006; Nicholls et al., 2007; 

Törnqvist et al., 2008). 
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There are several mechanisms that cause changes in eustatic sea level through 

geologic time, but the effects of global warming have resulted in a more rapid sea level 

rise in the last century (IPCC, 2007).  Penland and Ramsey (1990) analyzed National 

Ocean Survey and U.S. Army Corps of Engineers tidal gauge databases along the Gulf 

Coast, and found that Louisiana is experiencing higher rates of RSL rise than any other 

Gulf Coast state (maxima of 1.04 and 1.19 cm yr-1).  Considering that the average 

sediment accumulation rates measured in this thesis are likely elevated over the short-

term by the effects of Hurricanes Katrina and Rita, and considering current subsidence 

rates in the Mississippi River delta, the rate at which RSL is rising in Louisiana well 

exceeds sediment accumulation in these marshes.  

Where Louisiana salt marshes were once naturally sustained by inputs of 

inorganic mineral matter from the Mississippi River, controlled modifications to the 

hydrology of the river have diminished this sediment supply.  Now, marshes that would 

have helped to buffer the Louisiana coastline against sea-level rise are becoming more 

dependent on below-ground plant productivity to sustain marsh surface elevation 

(Langley et al., 2009).  Unfortunately, the DWH spill exacerbated this problem by 

devastating plant communities in heavily-oiled areas.  Lin and Mendelssohn (2012) 

investigated the effects of DWH oiling on Spartina alterniflora and Juncus roemerianus, 

two of the species common in the marshes studied in this thesis.  At moderately oiled 

sites, Juncus roemerianus showed reduced above-ground biomass and shoot density, 

while Spartina alterniflora appeared to be unaffected.  Heavy oiling in Barataria Bay 

(including Bay Jimmy) resulted in nearly complete mortality of both species.  Given the 

concerns with rising sea level along the GOMx coast, this is particularly troubling.  
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Should these marshes experience long-term submergence, erosion will likely remobilize 

and redistribute buried PAHs back into GOMx waters.   

Additionally, edge erosion of the marsh platform has the potential for 

remobilizing PAHs.  Wilson and Allison (2008) analyzed transects of marsh and adjacent 

bay sediments in areas of Louisiana where the subaerial marsh platform had disappeared 

over the last ~80 years.  The vibracores taken in Barataria Bay revealed an obvious 

ravinement surface at the marsh edge.  They found that, on average, 1.5 m3 of sediment 

per m shore-length is eroded from Barataria Bay marshes every year.  They also 

determined that, while subsidence plays a role in the loss of elevation of a marsh, wave 

erosion caused 48 to 75% of that loss at Barataria Bay.  This illustrates another way that 

PAHs may be released back into the aqueous environment. 

4.7 Effects to Benthos (Meiofauna) Represented by Foraminifera 

There are five PAH compounds listed by the U.S. Department of Health and 

Human Services as being carcinogenic to animals (benz(a)anthracene, 

benzo(b)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, and ideno(1,2,3-

c,d)pyrene).  Table 4.3 shows the percentage of these compounds over the [TPAH] for 

the four most polluted sites.  While BJ is 11% and below, these compounds comprise up 

to 32% of the oil residues at DBI.  This is an important factor when considering the 

possible impacts to the benthos, and ecosystem in general. 

Brunner et al. (2013) suggested that the highly elevated standing stock at RIG 

could be attributed to a hypertrophic zone created by the small amount of oiling.  In 

contrast, the shallow DOH and reduced standing stock at BJ and DBI are consistent with 

ill effects caused by oil pollution (Alve, 1995; Martinez-Colon, 2008).  However, the 
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shallow DOH and low standing stock at KBP remain unexplained.  Brunner et al. (2013) 

note that it (and DBI) had a distinctly different sedimentological environment than all 

other sites (carbonate-rich and sandy versus organic-rich and silty).  This difference in 

lithology at KBP may be the cause for the low density and shallow DOH of foraminifera 

at this site.  Another factor could be that the site is a rookery, and rookeries are known for 

eutrophication from bird excrement (Ellis et al., 2006).     

    Perhaps a more dramatic indication of severe ecological effects is demonstrated 

by foraminiferal deformities.  Alve (1995) indicated that heavy exposure to pollution 

could manifest as test abnormalities in foraminifera.  As discussed in Chapter One, rapid 

changes in variables such as temperature, pH, salinity, and turbidity can also induce 

deformities in foraminifera.  River diversions in the summer of 2010 did cause reductions 

to salinity.  However, the only site that showed deformities was BJ, while KBP and DBI 

were also subjected to reduced salinities.  In addition, BJ was sampled in June 2011, 

nearly a year after salinities had returned to normal.  While it is true that none of the 

deformed specimens found in the BJ cores were alive at the time of sampling, it seems 

that if the culprit was salinity, the Chandeleur sites would have been affected as well.  

Brunner et al. (2013) thus cautiously attributed the deformities to effects of the DWH 

spill. 
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Table 4.1.  Inventories for 7Be, 137Cs, 210Pbxs, and SOC.  Inventories for radionuclides are 
provided in mBq cm-2 and inventories for SOC are given in mg cm-2.  The expected 
210Pbxs inventory from atmospheric deposition alone is 495 mBq cm-2 based on southern 
North America (Appleby and Oldfield, 1992).  The expected 137Cs inventory from 
atmospheric deposition alone is 98 mBq cm-2 based on average coastal Louisiana (Milan 
et al., 1995). 
 
Station  Core Label  7Be  137Cs 	   210Pbxs  SOC 

RIG  Low  0  0 	   325.17  461.020 
  Mid  1.71  47.23 	   332.26  708.769 
  High   14.20  38.35 	   566.61  692.092 
       	      

KBP  Low  0  -- 	   174.24  405.374 
  Mid  0  -- 	   386.87  545.313 
  High   19.17  0 	   --  797.468 
       	      

DBI  Low  0  0 	   --  677.737 
  Mid  0  9.69 	   --  738.747 
  High   0  0 	   --  571.023 
       	      

BJ  Low  0  -- 	   101.00  916.119 
  Mid  0  -- 	   --  1261.842 
  High   0  -- 	   652.61  1246.922 
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Table 4.2.  Petroleum hydrocarbon data for all stations.  All values are averages over the 
top 5 cm of sediment.  TPH = total petroleum hydrocarbons; UCM = unresolved complex 
mixture; U/R = ratio of unresolved to resolved compounds; CPI = carbon preference 
index. 
 
Station  Core Label  TPH  UCM  U/R  CPI 

RIG  Low  38.94  29.04  2.93  2.1 
  Mid  111.23  65.29  1.42  3.4 
  High   63.54  44.01  2.25  2.1 
           

KBP  Low  47.65  30.58  1.79  1.0 
  Mid  22.20  9.88  0.80  1.9 
  High   19.19  0  0  2.8 
           

DBI  Low  78.32  37.07  0.95  1.1 
  Mid  464.15  346.44  2.81  0.9 
  High   68.32  40.32  1.40  2.5 
           

BJ  Low  333.85  292.06  6.97  3.0 
  Mid  3806.51  3,689.33  31.36  2.0 
  High   4351.80  4,219.70  30.45  2.6 
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Table 4.3.  Percentages of known PAH compound carcinogens composing [TPAH] in oil 
residues.  Only those samples with [TPAH] above background level are shown. 
 
Station  Core 

Label 
 Depth 

(cm) 
 [TPAH] w/o 

perylene (ng/g) 
 % of known 

carcinogens 
DBI  High   2 - 3  5,420.30  28% 

  High   3 - 4  3,118.2  32% 
         

BJ  High   0 - 1  4,345.48  11% 
  High  1 - 2  18,279.4  1.7% 
  High  2 - 3  11,510.8  1.7% 
  Mid  0 - 1  19,356.2  0.65% 
  Mid  1 - 2  21,913.3  0.54% 
  Low  0 - 1  7,768.2  0.46% 
  Low  1 - 2   7,774.6  0.34% 
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Figure 4.1.  Photograph of oil patch at Bay Jimmy in June, 2012. 
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Figure 4.2.  Plots of SOC inventories versus PAH and TPH inventories.  All inventories 
were calculated over the uppermost 2 cm of sediment for each core.  Because the 
sampling intervals at the lightly oiled sites (RIG and KBP) were bulked from 0 to 5 cm, it 
was not possible to explore PAH and TPH inventories at these sites.   
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Figure 4.3.  PAH compound cross plot for the ratios of Fl/Fl+Py versus An/An+Phen.   
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Figure 4.4.  PAH compound cross plot for the ratios of C0/(C0+C1) P/A versus 
An/An+Phen.  Note that the tentative petroleum/combustion boundaries provided for 
C0/C0+C1 P/A are based on fewer literature data points than the boundaries given for the 
parent PAH ratios and accordingly are less certain (Yunker et al., 2002). 
  

C0/(C0+C1) P/A

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
as

s 
17

8:
 A

n/
A

n+
P

he
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Macondo Oil
Bay Jimmy
OSAT - Bay Jimmy

petroleum or combustion                                combustion

combustion

petroleum



 87 

 
 
Figure 4.5.  PAH compound cross plot for the ratios of C0/(C0+C1) P/A versus Fl/Fl+Py. 
Note that the tentative petroleum/combustion boundaries provided for C0/C0+C1 P/A are 
based on fewer literature data points than the boundaries given for the parent PAH ratios 
and accordingly are less certain (Yunker et al., 2002). 
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Figure 4.6.  PAH compound cross plot for the ratios of C0/(C0+C1) F/P versus Fl/Fl+Py. 
Note that the tentative petroleum/combustion boundaries provided for C0/C0+C1 F/P are 
based on fewer literature data points than the boundaries given for the parent PAH ratios 
and accordingly are less certain (Yunker et al., 2002). 
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Figure 4.7.  Photograph of an at sea controlled burn operation following the DWH spill.  
In this method, pairs of shrimp boats approximately 50 m apart would collect oil in their 
booms in a U-shaped configuration.  A small boat would then position itself upwind of 
the contained oil and use a handheld igniter to activate the burn.  Burns were monitored 
from the water and air.  Imagery courtesy of Allen et al. (2011). 
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Figure 4.8.  PAH compound cross plot for the ratios of C2 phenanthrene/chrysene versus 
C3 phenanthrene/chrysene.  The GIP samples were collected on an October, 2010 
oceanographic cruise led by Dr. Kevin Yeager in the northern GOMx.  These station 
locations were selected to provide a general radial coverage surrounding the Macondo 
Well.   

C2-Phen/C2-Chry

0 2 4 6 8

C
3-

P
he

n/
C

3-
C

hr
y

0

2

4

6

8

10

Macondo Oil
Bay Jimmy
OSAT - Bay Jimmy
2010 GIP



 91 

 
 

Figure 4.9.  Levels of n-alkanes for Macondo-252 oil and representative cores from each 
site. 
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Figure 4.10.  Photograph of vessel-based marsh vacuuming being performed as part of 
approved cleanup activities.  Photo courtesy of U.S. Coast Guard.  
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Figure 4.11. Effect of 2005 hurricane season on eastern edge of KBP.  Image (a) was 
taken prior to Hurricanes Katrina and Rita on January 19, 2004, and image (b) was taken 
following the hurricanes on October 28, 2005.  2010 sampling sites are indicated with red 
circles.  Imagery courtesy of U.S. Geological Survey.  
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CHAPTER FIVE: SUMMARY AND CONCLUSIONS 

This thesis is part of a larger research effort examining conditions following the 

DWH spill from baseline to maximum exposure in a complete time series.  The primary 

goal of this thesis was to determine how deeply oil from the 2010 Deepwater Horizon 

(DWH) spill has penetrated sediments in marshes along the Gulf Coast, and whether oil 

has quantifiably affected benthic ecosystems at these sites.  This thesis focused on four 

field sites in Louisiana.  Of the over 7,000 km of shoreline surveyed two years post-

release, Louisiana was the only state to still have surface oiling conditions characterized 

as “heavy” (Michel et al., 2013). 

The two hypotheses that were to be evaluated in this thesis were as follows: 

H1: Salt marsh sediments of Dry Bread Island and Bay Jimmy, Louisiana were 

significantly impacted by the DWH oil spill, as indicated by TPAH concentrations well 

above what is considered upper limit background for these areas (1.5 µg g-1) (Iqbal et al., 

2007). 

H2: These moderately to heavily DWH-oiled marsh sediments would be 

discernible from pristine to lightly DWH-oiled marsh sediments by exhibiting (a) high 

concentrations of SOC, (b) shallower bioturbation depths, and (c) low abundance and 

depth of habitation of meiofauna, as indicated by foraminifera. 

Regarding H1, BJ was the only site with [TPAH] consistently above the upper 

limit background.  DBI did have one sample at the High site with [TPAH] above this 

limit as well, but the majority of samples were below the limit.  Because of this, BJ was 

the only site considered “significantly impacted”.   
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Molecular ratios of PAH parent and alkyl homologs indicate that the oil delivered 

to Louisiana marshes was highly weathered.  However, the prevalence of LMW n-

alkanes in samples from Bay Jimmy suggests that this oil was not as heavily weathered as 

at other sites.  Very high [TPAH] of over 11,000 ng g-1 at a depth of 3 cm at the Bay 

Jimmy High site shows that oil has been mixed into sediments.  Once PAHs are buried in 

the sediment profile, it becomes very difficult for them to be further broken down. 

Regarding H2, anomalously high peaks of SOC were associated with changes in 

the amount of terrestrial organic material (i.e., roots, plant debris) with depth.  However, 

SOC inventories demonstrated strong positive relationships with TPH and PAH 

inventories in the uppermost 3 cm of sediment at DBI and BJ.  This relationship can be 

explained by the influx of oil attached to organic matter.  Short-term (< 1 year) 

bioturbation depths were not adequately quantified because of the strong overprint of 

physical mixing, in addition to the absence of 7Be.  The cause of the absence of 7Be at 

most sites is unresolved, but could be due to sediment composition constraints on 7Be 

sorption (coarse-grained sediment, high organic matter contents), rapid erosion of the 

marsh surface, or oil clean up activities.  Minimum mixing depths were instead derived 

from 234Thxs profiles.  Penetration depths of 234Thxs ranged between 0.25 and 4.5 cm.  

Sediment accumulation rates were determined using 210Pb, with verification from an 

independent tracer, 137Cs, in selected cores.  Accumulation rates ranged from 0.19 to 0.55 

g cm-2 y-1 (0.27 to 0.71 cm y-1) and were highly affected by the 2005 hurricane season.  

As expected given their locations, 210Pbxs profiles reveal thorough, long-term (decadal) 

sediment mixing at all sites.   
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The U.S. government has estimated that 23% (1.1 million barrels or 47.3 million 

U.S. gallons) of the oil released in DWH remains in the environment (Federal 

Interagency Solutions Group, 2010).  The fate of this oil was considered unknown, but 

possibilities suggested were that the oil remained in the water column, settled to the 

seafloor, mixed with sediment, was ingested by microbes, or was collected during shore 

cleanup activities.  While it may be impossible to ascertain the fate of all the oil, the data 

in this thesis suggest that some of the oil was most definitely mixed into the sediment.  

Radioisotope inventories indicate that most of the sampled sites are, unsurprisingly, in a 

net erosional state.   This means that oil trapped in salt marsh sediments poses an ongoing 

threat to the environment.  As marshes containing trapped DWH oil continue to be 

eroded by wave action, or be submerged by rising sea level, there is a great potential for 

the remobilization of oil. 

While it is unclear whether the benthos at DBI were detrimentally affected by the 

deposition of oil in Louisiana salt marshes, there were demonstrable impacts at BJ.  

Benthic foraminifera responded to the heavy oiling at Bay Jimmy by developing 

deformities and by showing decreases to both standing stock and DOH.  These results are 

troubling, and long-term monitoring of oil in Barataria Bay and other coastal locations is 

warranted. 
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APPENDIX 1 

Appendix 1a 
Folk ternary diagrams for all RIG cores. Points are shown for all grain size data 0.5 to 30 
cm.  Plotted using SEDPLOT (Poppe and Eliason, 2008). 
 
 

 
 

     High           Mid  
 

  
 

      Low 
  



 98 

Appendix 1b 
Folk ternary diagrams for all KBP cores.  Points are shown for all grain size data 0.5 to 
50 cm.  Plotted using SEDPLOT (Poppe and Eliason, 2008).

 
 

     High           Mid  
 

 
 

      Low 
  



 99 

Appendix 1c 
Folk ternary diagrams for all DBI cores. Points are shown for all grain size data 0.5 to 30 
cm.  Plotted using SEDPLOT (Poppe and Eliason, 2008). 
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Appendix 1d 
Folk ternary diagrams for all BJ cores.  Points are shown for all grain size data 0.5 to 30 
cm.  Plotted using SEDPLOT (Poppe and Eliason, 2008). 
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APPENDIX 2 
 
Haversine formula calculations to determine distance between two latitude/longitude 
points. 
 
Site 

  
Lat 1 (rad) Lon 1 (rad) Lat 2 (rad) Lon 2 (rad) 

 
Dist (rad) Dist (m) 

RIG 
Low/ 
Mid 

 
0.5265 1.5650 0.5265 1.5650 

 
0.00000 7.980 

 

Mid/ 
High 

 
0.5265 1.5650 0.5265 1.5650 

 
0.00000 6.784 

KBP 
Low/ 
Mid 

 
0.5215 1.5576 0.5215 1.5576 

 
0.00000 13.758 

 

Mid/ 
High 

 
0.5215 1.5576 0.5215 1.5576 

 
0.00000 14.778 

DBI 
Low/ 
Mid 

 
0.5208 1.5586 0.5208 1.5587 

 
0.00000 21.412 

 

Mid/ 
High 

 
0.5208 1.5587 0.5208 1.5587 

 
0.00000 4.122 

BJ 
Low/ 
Mid 

 
0.5139 1.5690 0.5139 1.5690 

 
0.00000 10.244 

 
Mid/ 
High  0.5139 1.5690 0.5139 1.5690  0.00000 8.110 

 
  



 102 

APPENDIX 3 
 
Appendix 3a   
Elemental analysis and grain size data for Rigolets High site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 4.400 12.435 24.900 26.97 66.95 5.98 sandy silt 
0.5-1 0.75 8.009 21.754 25.563 38.03 57.21 4.66 sandy silt 
1-1.5 1.25 2.902 9.084 19.000 37.53 56.43 5.93 sandy silt 
1.5-2 1.75 3.318 9.872 24.429 44.43 50.91 4.55 sandy silt 
2-2.5 2.25 1.499 4.928 19.000 39.96 56.90 3.04 sandy silt 
2.5-3 2.75 4.544 16.731 20.909 49.26 48.55 2.07 sandy silt 
3-4 3.5 2.399 17.318 17.714 56.93 41.22 1.75 silty sand 
4-5 4.5 3.415 22.400 19.444 56.13 40.54 3.23 silty sand 
5-6 5.5 2.981 16.670 16.667 40.12 55.44 4.34 sandy silt 
6-7 6.5 4.057 18.526 17.000 21.01 72.43 6.48 sandy silt 
7-8 7.5 7.183 30.322 22.750 19.26 73.49 7.16 sandy silt 
8-9 8.5 8.605 39.447 21.850 10.56 79.06 10.30 sandy silt 

9-10 9.5 5.221 24.702 16.625 16.04 74.16 9.72 sandy silt 
10-11 10.5 5.947 29.047 17.706 18.77 72.96 8.20 sandy silt 
11-12 11.5 7.228 34.729 22.938 11.74 79.31 8.88 sandy silt 
12-13 12.5 5.788 28.755 17.176 24.80 66.15 8.98 sandy silt 
13-14 13.5 4.725 22.160 17.071 12.93 77.48 9.51 sandy silt 
14-15 14.5 3.614 16.980 18.200 11.11 80.85 7.97 sandy silt 
15-16 15.5 4.981 23.109 17.067 13.64 79.78 6.50 sandy silt 
16-17 16.5 5.255 26.294 17.667 13.54 78.18 8.19 sandy silt 
17-18 17.5 4.938 24.279 16.867 15.62 76.02 8.27 sandy silt 
18-19 18.5 5.218 25.637 17.733 7.52 76.85 15.54 silt 
19-20 19.5 5.868 27.372 18.625 12.94 77.86 9.11 sandy silt 
20-21 20.5 1.744 8.485 22.000 18.71 73.22 7.97 sandy silt 
21-22 21.5 2.462 13.657 17.857 31.90 64.93 3.04 sandy silt 
22-23 22.5 1.912 8.863 19.400 13.08 78.40 8.43 sandy silt 
23-24 23.5 5.903 23.655 18.813 8.53 78.40 12.99 silt 
24-25 24.5 5.191 21.862 18.133 9.93 77.80 12.19 sandy silt 
25-26 25.5 4.767 20.894 17.357 5.98 81.19 12.76 silt 
26-27 26.5 5.178 22.513 17.267 7.49 78.86 13.56 silt 
27-28 27.5 4.729 21.062 16.929 12.17 77.79 9.97 sandy silt 
28-29 28.5 5.351 23.456 17.933 11.52 77.53 10.87 sandy silt 
29-30 29.5 5.763 25.099 18.063 10.02 79.03 10.87 sandy silt 

	   	    Total 
Inventory 

     

	   	    692.092      
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Appendix 3b 
Elemental analysis and grain size data for Rigolets Mid site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 1.900 6.748 19.600 32.42 63.03 4.44 sandy silt 
0.5-1 0.75 2.600 9.173 16.500 30.89 65.09 3.92 sandy silt 
1-1.5 1.25 3.400 11.667 16.091 29.90 64.04 5.97 sandy silt 
1.5-2 1.75 3.900 12.034 15.077 26.80 69.07 4.03 sandy silt 
2-2.5 2.25 4.600 13.646 19.250 30.93 65.37 3.60 sandy silt 
2.5-3 2.75 5.500 15.551 19.786 23.15 66.53 10.22 sandy silt 
3-4 3.5 4.400 23.310 16.214 23.09 67.52 9.30 sandy silt 
4-5 4.5 4.600 24.015 16.714 11.99 79.62 8.31 sandy silt 
5-6 5.5 0.710 3.801 17.917 17.95 73.88 8.09 sandy silt 
6-7 6.5 0.588 3.177 17.727 12.15 79.99 7.79 sandy silt 
7-8 7.5 0.435 2.342 17.444 8.66 64.96 26.31 silt 
8-9 8.5 3.765 19.018 17.818 9.52 81.42 8.98 silt 

9-10 9.5 4.049 19.718 16.833 16.38 78.31 5.22 sandy silt 
10-11 10.5 3.937 18.880 17.636 6.51 83.51 9.90 silt 
11-12 11.5 4.314 21.445 18.083 14.04 78.72 7.15 sandy silt 
12-13 12.5 20.700 99.643 6.766 5.07 85.56 9.29 silt 
13-14 13.5 5.900 28.597 20.133 7.74 82.11 10.07 silt 
14-15 14.5 5.100 24.606 19.846 2.73 79.91 17.28 silt 
15-16 15.5 7.200 35.715 22.750 6.33 84.33 9.27 silt 
16-17 16.5 4.600 21.995 19.250 4.55 79.03 16.33 silt 
17-18 17.5 4.600 21.973 18.077 17.53 74.52 7.90 sandy silt 
18-19 18.5 6.000 27.881 20.200 8.48 81.19 10.27 silt 
19-20 19.5 5.500 27.074 20.214 5.14 84.99 9.80 silt 
20-21 20.5 4.300 20.208 18.583 20.24 70.44 9.26 sandy silt 
21-22 21.5 4.300 21.068 16.000 4.11 87.64 8.19 silt 
22-23 22.5 4.700 24.613 21.909 13.96 79.52 6.45 sandy silt 
23-24 23.5 5.400 28.938 19.500 5.28 86.05 8.60 silt 
24-25 24.5 4.000 22.453 17.083 5.66 85.62 8.65 silt 
25-26 25.5 2.800 17.083 17.875 11.64 79.97 8.31 sandy silt 
26-27 26.5 3.200 19.648 18.000 2.65 86.69 10.59 silt 
27-28 27.5 4.800 30.404 20.500 23.52 69.81 6.61 sandy silt 
28-29 28.5 2.500 16.192 16.250 9.84 82.19 7.91 sandy silt 
29-30 29.5 2.400 16.152 17.143 1.67 88.55 9.71 silt 

	   	    Total 
Inventory 

     

	   	    708.769      
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Appendix 3c 
Elemental analysis and grain size data for Rigolets Low site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 1.2 4.729 21.667 20.61 75.80 3.50 sandy silt 
0.5-1 0.75 1.1 4.468 14.000 22.18 72.51 5.22 sandy silt 
1-1.5 1.25 1.1 4.396 11.600 21.27 74.85 3.79 sandy silt 
1.5-2 1.75 1.2 4.807 12.600 25.65 70.61 3.65 sandy silt 
2-2.5 2.25 1 4.219 13.000 19.31 73.54 7.05 sandy silt 
2.5-3 2.75 1.3 5.235 13.200 22.93 73.59 3.39 sandy silt 
3-4 3.5 1.5 11.399 12.833 22.14 70.38 7.38 sandy silt 
4-5 4.5 2.1 14.105 17.833 23.90 70.62 5.39 sandy silt 
5-6 5.5 2.6 16.795 14.667 19.29 74.33 6.29 sandy silt 
6-7 6.5 2.7 17.335 17.250 11.21 79.97 8.74 sandy silt 
7-8 7.5 2.8 18.027 17.250 15.97 77.22 6.74 sandy silt 
8-9 8.5 2.9 18.779 14.800 13.80 79.71 6.41 sandy silt 

9-10 9.5 2.6 16.745 16.875 7.83 81.74 10.36 silt 
10-11 10.5 2.6 17.652 16.750 6.84 83.57 9.52 silt 
11-12 11.5 2.4 16.681 17.857 4.95 82.04 12.93 silt 
12-13 12.5 2.2 16.100 16.000 7.98 80.49 11.45 silt 
13-14 13.5 2.3 16.499 16.714 3.70 83.85 12.37 silt 
14-15 14.5 2.3 17.018 14.250 3.64 83.58 12.70 silt 
15-16 15.5 2.2 16.464 15.714 9.19 84.63 6.11 silt 
16-17 16.5 2.1 17.348 15.286 4.67 78.03 17.21 silt 
17-18 17.5 2 15.395 16.500 8.29 79.92 11.71 silt 
18-19 18.5 2 15.015 14.571 4.97 85.60 9.36 silt 
19-20 19.5 1.9 14.347 14.286 3.37 83.28 13.29 silt 
20-21 20.5 2.1 16.341 15.286 6.75 78.02 15.14 silt 
21-22 21.5 1.8 14.053 15.000 7.92 78.74 13.26 silt 
22-23 22.5 1.9 16.086 15.833 8.94 81.46 9.53 silt 
23-24 23.5 2.1 15.588 13.500 2.48 86.58 10.87 silt 
24-25 24.5 2.1 17.867 15.714 5.53 79.18 15.21 silt 
25-26 25.5 2.2 16.100 16.000 6.13 83.82 9.97 silt 
26-27 26.5 2.2 16.054 18.667 3.53 84.62 11.77 silt 
27-28 27.5 1.8 13.670 15.000 12.74 72.19 14.99 sandy silt 
28-29 28.5 2.1 15.851 18.500 8.57 81.21 10.15 silt 
29-30 29.5 2.1 15.851 15.857 5.96 85.25 8.72 silt 

	   	    Total 
Inventory 

     

	   	    461.020      
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Appendix 3d 
Elemental analysis and grain size data for Keel Boat Pass High site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 3.790 15.807 28.500 65.58 33.44 0.98 silty sand 
0.5-1 0.75 3.980 16.814 34.000 64.06 34.67 1.27 silty sand 
1-1.5 1.25 6.352 19.905 32.200 60.76 37.18 2.06 silty sand 
1.5-2 1.75 9.465 21.552 34.071 57.93 40.33 1.74 silty sand 
2-2.5 2.25 13.902 27.006 30.522 48.92 48.58 2.50 sandy silt 
2.5-3 2.75 15.050 28.641 30.160 61.23 37.50 1.27 silty sand 
3-4 3.5 5.855 33.732 33.000 53.69 43.61 2.70 silty sand 
4-5 4.5 5.477 42.434 30.889 59.20 39.44 1.36 silty sand 
5-6 5.5 4.632 35.365 29.000 56.62 41.93 1.45 silty sand 
6-7 6.5 3.337 25.971 23.556 44.84 44.41 10.75 sandy silt 
7-8 7.5 1.096 10.301 18.667 69.44 29.59 0.97 silty sand 
8-9 8.5 3.316 25.879 27.667 52.63 45.99 1.38 silty sand 

9-10 9.5 6.004 35.663 38.375 42.92 32.07 25.01 sandy mud 
10-11 10.5 7.502 42.442 29.231 60.02 35.99 3.99 silty sand 
11-12 11.5 2.555 23.074 26.000 61.22 36.52 2.26 silty sand 
12-13 12.5 0.918 10.055 15.667 58.76 39.12 2.12 silty sand 
13-14 13.5 2.670 24.105 22.667 42.48 33.66 23.86 sandy mud 
14-15 14.5 2.750 27.583 22.667 50.96 36.45 12.59 silty sand 
15-16 15.5 0.770 9.362 13.000 51.68 44.39 3.93 silty sand 
16-17 16.5 0.600 6.287 14.000 68.90 28.16 2.94 silty sand 
17-18 17.5 9.705 36.018 27.333 24.22 63.05 12.73 sandy silt 
18-19 18.5 25.077 69.819 23.463 41.47 52.79 5.74 sandy silt 
19-20 19.5 26.729 71.162 23.328 40.79 51.23 7.98 sandy silt 
20-21 20.5 20.348 53.174 22.622 29.32 63.42 7.26 sandy silt 
21-22 21.5 4.012 21.692 20.100 33.05 63.43 3.52 sandy silt 
22-23 22.5 1.163 11.985 14.750 35.14 61.39 3.47 sandy silt 
23-24 23.5 0.493 6.487 12.500 53.54 44.67 1.79 silty sand 
24-25 24.5 0.301 4.110 7.500 56.45 41.35 2.20 silty sand 
25-26 25.5 0.219 3.072 - 65.36 33.30 1.34 silty sand 
26-27 26.5 0.172 2.390 - 72.57 26.46 0.97 silty sand 
27-28 27.5 0.200 1.999 - 44.95 49.94 5.11 sandy silt 
28-29 28.5 1.766 14.600 14.833 25.57 68.90 5.53 sandy silt 
29-30 29.5 2.441 18.981 17.714 19.25 71.71 9.04 sandy silt 
30-31 30.5 - - - - - - - 
31-32 31.5 - - - 45.72 52.23 2.05 sandy silt 
32-33 32.5 - - - - - - - 
33-34 33.5 - - - 30.94 62.54 6.52 - 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

34-35 34.5 - - - 23.31 68.93 7.76 sandy silt 
35-36 35.5 - - - 16.37 75.98 7.65 - 
36-37 36.5 - - - - - - - 
37-38 37.5 - - - 25.45 68.22 6.33 - 
38-39 38.5 - - - - - - - 
39-40 39.5 - - - 13.21 79.8 6.99 sandy silt 
40-41 40.5 - - - - - - - 
41-42 41.5 - - - 33.86 61.59 4.55 - 
42-43 42.5 - - - - - - - 
43-44 43.5 - - - 40.41 55.48 4.11 - 
44-45 44.5 - - - 24.34 66.35 9.31 sandy silt 
45-46 45.5 - - - 43.89 53.84 2.27 - 
46-47 46.5 - - - - - - - 
47-48 47.5 - - - 75.03 23.81 1.16 - 
48-49 48.5 - - - - - - - 
49-50 49.5 - - - 35.07 59.26 5.67 sandy silt 

   Total 
Inventory 

     

   797.468      
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Appendix 3e  
Elemental analysis and grain size data for Keel Boat Pass Mid site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 5.860 19.718 21.200 58.87 38.51 2.62 silty sand 
0.5-1 0.75 3.200 13.151 23.143 59.61 37.25 3.14 silty sand 
1-1.5 1.25 2.700 11.778 23.167 66.05 31.82 2.13 silty sand 
1.5-2 1.75 2.900 12.249 21.000 65.27 32.44 2.29 silty sand 
2-2.5 2.25 2.000 9.305 20.600 69.53 28.78 1.69 silty sand 
2.5-3 2.75 1.600 7.317 20.250 64.13 33.04 2.83 silty sand 
3-4 3.5 2.100 20.569 21.000 69.78 28.15 2.07 silty sand 
4-5 4.5 2.800 25.140 20.143 76.01 22 1.99 silty sand 
5-6 5.5 1.000 9.622 16.333 57.71 37.35 4.94 silty sand 
6-7 6.5 1.600 14.711 19.500 52.05 42.38 5.57 silty sand 
7-8 7.5 2.400 18.155 20.500 37.6 57.31 5.09 sandy silt 
8-9 8.5 2.000 14.152 19.800 25.03 68.28 6.69 sandy silt 

9-10 9.5 2.200 16.190 16.000 35.06 57.97 6.97 sandy silt 
10-11 10.5 2.400 18.766 17.429 42.08 52.75 5.17 sandy silt 
11-12 11.5 2.200 20.041 18.500 44.09 52.62 3.29 sandy silt 
12-13 12.5 1.600 15.934 20.000 67.51 30.85 1.64 silty sand 
13-14 13.5 0.800 7.984 13.333 44.3 51.67 4.03 sandy silt 
14-15 14.5 1.200 10.900 15.000 37.41 57.59 5 sandy silt 
15-16 15.5 3.000 22.229 15.200 14.53 79.16 6.31 sandy silt 
16-17 16.5 3.043 20.169 14.667 8.47 84.29 7.24 silt 
17-18 17.5 4.100 24.804 15.923 10.12 83.87 6.01 sandy silt 
18-19 18.5 3.700 21.723 15.750 6.96 84.43 8.61 silt 
19-20 19.5 5.500 30.342 19.786 33.44 59.72 6.84 sandy silt 
20-21 20.5 3.500 20.492 16.091 29.57 63.22 7.21 sandy silt 
21-22 21.5 4.000 21.212 15.385 37.43 56.35 6.22 sandy silt 
22-23 22.5 4.300 20.340 16.846 20.3 72.22 7.48 sandy silt 
23-24 23.5 6.200 27.465 15.650 14.88 77.31 7.81 sandy silt 
24-25 24.5 3.200 17.378 16.000 28.6 65.49 5.91 sandy silt 
25-26 25.5 2.900 21.193 16.111 39.74 54.77 5.49 sandy silt 
26-27 26.5 1.036 9.789 20.500 60.08 36.6 3.32 silty sand 
27-28 27.5 0.500 5.347 - 73.79 24.64 1.57 silty sand 
28-29 28.5 1.000 10.924 16.000 66.86 31.93 1.21 silty sand 
29-30 29.5 0.600 6.224 16.000 62.88 34.96 2.16 silty sand 
30-31 30.5 - - - - - - - 
31-32 31.5 - - - 48.6 48.12 3.28 sandy silt 
32-33 32.5 - - - - - - - 
33-34 33.5 - - - 40.73 54.65 4.62 sandy silt 
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Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

34-35 34.5 - - - - - - - 
35-36 35.5 - - - 34.61 61.72 3.67 sandy silt 
36-37 36.5 - - - - - - - 
37-38 37.5 - - - 42.74 52.89 4.37 sandy silt 
38-39 38.5 - - - - - - - 
39-40 39.5 - - - 59.79 37.86 2.35 silty sand 
40-41 40.5 - - - - - - - 
41-42 41.5 - - - 35.58 58.79 5.63 sandy silt 
42-43 42.5 - - - - - - - 
43-44 43.5 - - - 25.69 68.52 5.79 sandy silt 
44-45 44.5 - - - - - - - 
45-46 45.5 - - - 32.84 63.37 3.79 sandy silt 
46-47 46.5 - - - - - - - 
47-48 47.5 - - - 34.46 63.93 1.61 sandy silt 
48-49 48.5 - - - - - - - 
49-50 49.5 - - - 47.71 50.91 1.38 sandy silt 

   Total 
Inventory 

     

   545.313      
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Appendix 3f   
Elemental analysis and grain size data for Keel Boat Pass Low site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 2.075 8.946 17.667 59.31 38.16 2.53 silty sand 
0.5-1 0.75 1.700 7.296 21.000 43.14 51.58 5.28 sandy silt 
1-1.5 1.25 1.600 6.634 20.000 42.44 52.88 4.68 sandy silt 
1.5-2 1.75 2.000 8.487 20.600 26.85 68.34 4.81 sandy silt 
2-2.5 2.25 1.700 7.085 21.250 22.05 68.77 9.18 sandy silt 
2.5-3 2.75 2.100 7.948 17.667 31.85 62.83 5.32 sandy silt 
3-4 3.5 2.400 16.348 20.333 31.91 60.59 7.50 sandy silt 
4-5 4.5 2.100 13.297 15.429 9.67 81.66 8.67 silt 
5-6 5.5 3.196 19.423 18.333 14.92 75.56 9.52 sandy silt 
6-7 6.5 2.559 16.826 17.778 30.25 64.11 5.64 sandy silt 
7-8 7.5 2.003 13.456 17.000 42.37 53.97 3.66 sandy silt 
8-9 8.5 1.976 13.548 16.500 42.74 51.75 5.51 sandy silt 

9-10 9.5 2.034 14.973 17.333 44.76 51.55 3.69 sandy silt 
10-11 10.5 2.494 16.789 17.857 49.52 47.26 3.22 sandy silt 
11-12 11.5 1.762 14.685 18.200 50.56 46.52 2.92 silty sand 
12-13 12.5 1.190 11.095 20.000 40.71 53.81 5.48 sandy silt 
13-14 13.5 0.721 7.629 18.000 52.68 42.90 4.42 silty sand 
14-15 14.5 0.951 10.494 25.000 78.72 19.69 1.59 silty sand 
15-16 15.5 0.509 5.723 13.000 45.27 50.14 4.59 sandy silt 
16-17 16.5 0.317 3.548 9.000 74.24 24.00 1.76 silty sand 
17-18 17.5 0.621 7.050 15.500 66.59 31.40 2.01 silty sand 
18-19 18.5 0.860 9.375 14.667 58.39 39.00 2.61 silty sand 
19-20 19.5 0.621 6.723 10.333 46.48 50.00 3.52 sandy silt 
20-21 20.5 1.885 17.364 23.500 41.79 53.64 4.57 sandy silt 
21-22 21.5 1.534 12.722 15.000 45.56 49.79 4.65 sandy silt 
22-23 22.5 2.422 17.223 15.375 36.48 59.78 3.74 sandy silt 
23-24 23.5 4.369 23.534 19.909 33.99 61.81 4.20 sandy silt 
24-25 24.5 3.459 21.591 19.778 33.73 61.71 4.56 sandy silt 
25-26 25.5 1.659 12.708 16.600 35.01 61.33 3.66 sandy silt 
26-27 26.5 1.183 11.088 24.000 47.52 50.25 2.23 sandy silt 
27-28 27.5 1.025 10.647 17.333 56.20 41.12 2.68 silty sand 
28-29 28.5 1.667 14.695 17.000 51.89 44.28 3.83 silty sand 
29-30 29.5 1.961 16.424 16.500 45.31 51.07 3.62 sandy silt 
30-31 30.5 - - - - - - - 
31-32 31.5 - - - 32.00 64.60 3.40 sandy silt 
32-33 32.5 - - - - - - - 
33-34 33.5 - - - 23.85 68.38 7.77 sandy silt 
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Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

34-35 34.5 - - - - - - - 
35-36 35.5 - - - 22.47 69.63 7.90 sandy silt 
36-37 36.5 - - - - - - - 
37-38 37.5 - - - 33.70 61.94 4.36 sandy silt 
38-39 38.5 - - - - - - - 
39-40 39.5 - - - 41.26 57.38 1.36 sandy silt 
40-41 40.5 - - - - - - - 
41-42 41.5 - - - 21.13 74.52 4.35 sandy silt 
42-43 42.5 - - - - - - - 
43-44 43.5 - - - 14.75 76.64 8.61 sandy silt 
44-45 44.5 - - - - - - - 
45-46 45.5 - - - 42.31 55.44 2.25 sandy silt 
46-47 46.5 - - - - - - - 
47-48 47.5 - - - 14.64 77.10 8.26 sandy silt 
48-49 48.5 - - - - - - - 
49-50 49.5 - - - 24.53 70.12 5.35 sandy silt 

   Total 
Inventory 

     

   405.374      
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Appendix 3g   
Elemental analysis and grain size data for Dry Bread Island High site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 18.900 17.655 27.882 40.61 54.46 4.93 sandy silt 
0.5-1 0.75 8.500 14.824 24.722 60.52 36.44 3.04 silty sand 
1-1.5 1.25 6.000 18.543 26.917 74.18 24.85 0.97 silty sand 
1.5-2 1.75 2.900 10.199 24.500 90.00 9.42 0.58 sand 
2-2.5 2.25 2.000 7.395 26.250 76.98 21.97 1.05 silty sand 
2.5-3 2.75 3.000 9.066 30.200 81.71 17.41 0.88 silty sand 
3-4 3.5 4.400 23.024 20.818 82.36 16.96 0.69 silty sand 
4-5 4.5 4.700 23.819 27.000 79.51 19.00 1.49 silty sand 
5-6 5.5 4.400 21.897 27.125 71.75 26.30 1.96 silty sand 
6-7 6.5 3.200 17.389 21.857 74.87 23.92 1.21 silty sand 
7-8 7.5 4.000 22.559 20.400 73.54 25.39 1.07 silty sand 
8-9 8.5 4.200 28.595 23.667 75.41 23.53 1.06 silty sand 

9-10 9.5 1.600 13.032 16.800 76.69 22.40 0.91 silty sand 
10-11 10.5 1.500 11.466 24.667 81.68 17.72 0.61 silty sand 
11-12 11.5 1.900 12.330 24.250 73.59 25.26 1.15 silty sand 
12-13 12.5 2.200 13.127 22.600 70.03 28.54 1.43 silty sand 
13-14 13.5 2.100 11.293 21.600 58.26 37.58 4.16 silty sand 
14-15 14.5 6.400 32.412 22.786 69.06 29.43 1.51 silty sand 
15-16 15.5 1.300 7.002 22.667 44.66 50.85 4.48 sandy silt 
16-17 16.5 2.900 16.470 20.857 61.35 36.30 2.34 silty sand 
17-18 17.5 2.500 14.868 20.667 53.44 42.04 4.52 silty sand 
18-19 18.5 4.300 25.389 19.545 42.70 51.83 5.47 sandy silt 
19-20 19.5 3.700 22.704 21.333 45.31 51.53 3.15 sandy silt 
20-21 20.5 4.400 26.029 20.364 41.62 52.97 5.32 - 
21-22 21.5 2.500 17.107 20.667 63.37 35.11 1.53 silty sand 
22-23 22.5 2.300 17.026 23.000 54.46 42.59 2.85 - 
23-24 23.5 2.400 17.617 17.714 48.70 48.07 3.22 sandy silt 
24-25 24.5 2.500 17.731 18.714 52.8 43.17 3.93 - 
25-26 25.5 1.700 12.794 18.000 53.16 44.80 2.04 silty sand 
26-27 26.5 1.100 7.937 23.667 41.28 54.60 4.02 - 
27-28 27.5 3.100 19.379 22.429 33.79 60.74 5.47 sandy silt 
28-29 28.5 3.100 17.499 20.000 39.22 54.92 5.75 - 
29-30 29.5 4.600 22.846 20.000 41.54 55.41 3.05 sandy silt 

   Total 
Inventory 

     

   571.023      
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Appendix 3h  
Elemental analysis and grain size data for Dry Bread Island Mid site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% 
Sand 

% Silt % Clay Folk 
classification 

0-0.5 0.25 16.000 28.696 29.033 41.39 54.72 3.89 sandy silt 
0.5-1 0.75 9.800 30.795 25.450 57.99 38.47 3.54 silty sand 
1-1.5 1.25 5.600 18.516 20.857 56.38 40.96 2.67 silty sand 
1.5-2 1.75 3.600 15.246 22.875 74.70 24.03 1.27 silty sand 
2-2.5 2.25 3.100 15.279 20.750 60.95 36.31 2.74 silty sand 
2.5-3 2.75 2.700 14.587 22.833 62.34 35.26 2.41 silty sand 
3-4 3.5 2.400 24.383 18.857 67.45 30.58 1.97 silty sand 
4-5 4.5 3.100 27.553 23.286 53.71 42.55 3.74 silty sand 
5-6 5.5 2.700 22.695 17.625 67.21 31.12 1.67 silty sand 
6-7 6.5 3.600 29.720 19.300 68.01 29.80 2.19 silty sand 
7-8 7.5 2.600 19.220 19.714 58.07 40.11 1.82 silty sand 
8-9 8.5 4.200 27.975 19.636 56.10 41.85 2.05 silty sand 

9-10 9.5 3.900 25.505 20.400 48.65 47.81 3.54 sandy silt 
10-11 10.5 3.100 19.249 20.125 41.58 54.77 3.65 sandy silt 
11-12 11.5 3.000 16.999 19.375 44.72 52.67 2.61 sandy silt 
12-13 12.5 5.800 32.696 20.333 34.46 61.60 3.94 sandy silt 
13-14 13.5 5.900 33.216 19.933 32.76 62.55 4.69 sandy silt 
14-15 14.5 4.400 23.537 18.583 34.57 61.53 3.90 sandy silt 
15-16 15.5 3.800 20.267 19.100 34.54 61.77 3.70 sandy silt 
16-17 16.5 3.800 19.403 19.200 40.66 56.84 2.50 sandy silt 
17-18 17.5 3.800 19.894 17.778 29.08 64.77 6.15 sandy silt 
18-19 18.5 4.900 25.457 17.714 27.67 66.96 5.37 sandy silt 
19-20 19.5 3.200 16.290 16.400 27.28 67.21 5.51 sandy silt 
20-21 20.5 4.800 25.733 20.083 41.77 54.96 3.45 - 
21-22 21.5 2.600 14.244 18.571 35.11 61.63 3.26 sandy silt 
22-23 22.5 5.700 31.627 22.231 39.74 58.18 1.99 - 
23-24 23.5 3.400 19.546 18.778 30.49 64.56 4.96 sandy silt 
24-25 24.5 5.800 33.558 20.786 35.19 58.92 5.78 - 
25-26 25.5 2.000 12.010 20.400 20.96 72.29 6.75 sandy silt 
26-27 26.5 2.700 16.608 22.091 44.37 52.19 3.06 - 
27-28 27.5 2.700 16.122 20.000 17.23 67.12 15.65 sandy silt 
28-29 28.5 3.200 22.383 22.857 32.97 60.78 6.14 - 
29-30 29.5 2.900 19.735 18.375 43.45 52.98 3.57 sandy silt 

   Total 
Inventory 

     

   738.747      
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Appendix 3i   
Elemental analysis and grain size data for Dry Bread Island Low site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 1.700 7.895 18.400 43.86 52.73 3.41 sandy silt 
0.5-1 0.75 0.800 4.105 20.000 54.10 43.99 1.91 silty sand 
1-1.5 1.25 1.300 6.511 21.333 46.10 49.25 4.65 sandy silt 
1.5-2 1.75 1.500 6.322 19.250 36.21 58.23 5.56 sandy silt 
2-2.5 2.25 1.400 5.030 18.500 23.31 67.94 8.75 sandy silt 
2.5-3 2.75 2.600 9.453 19.286 23.26 66.76 9.98 sandy silt 
3-4 3.5 4.100 28.489 17.333 34.02 57.56 8.42 sandy silt 
4-5 4.5 5.100 28.872 18.643 21.18 71.07 7.75 sandy silt 
5-6 5.5 4.910 29.127 16.600 19.93 72.23 7.84 sandy silt 
6-7 6.5 3.759 22.616 16.643 21.92 71.35 6.73 sandy silt 
7-8 7.5 4.556 26.057 16.714 8.37 84.48 7.15 silt 
8-9 8.5 5.468 29.029 18.467 8.13 83.54 8.33 silt 

9-10 9.5 5.603 30.126 17.625 2.41 89.02 8.57 silt 
10-11 10.5 4.730 27.725 17.143 9.49 80.69 9.82 silt 
11-12 11.5 4.330 27.722 16.769 11.45 78.14 10.41 sandy silt 
12-13 12.5 3.711 22.465 17.000 3.04 87.05 9.91 silt 
13-14 13.5 3.400 22.917 14.250 3.94 84.11 11.95 silt 
14-15 14.5 3.000 24.076 13.818 15.09 77.65 7.26 sandy silt 
15-16 15.5 2.100 17.395 13.125 8.64 81.76 9.60 silt 
16-17 16.5 2.200 18.073 14.625 23.09 70.39 6.52 sandy silt 
17-18 17.5 2.300 18.536 13.000 12.68 79.97 7.35 sandy silt 
18-19 18.5 1.500 14.121 12.667 9.44 79.32 11.24 silt 
19-20 19.5 3.500 25.692 15.417 7.48 85.21 7.31 silt 
20-21 20.5 1.900 13.717 15.833 8.00 81.55 10.35 - 
21-22 21.5 2.500 21.364 16.125 21.34 73.03 5.63 sandy silt 
22-23 22.5 2.200 16.603 14.000 12.43 79.55 7.93 - 
23-24 23.5 2.400 22.196 17.714 17.83 75.46 6.71 sandy silt 
24-25 24.5 2.500 20.913 18.714 28.33 67.55 4.01 - 
25-26 25.5 3.100 22.902 14.727 17.30 74.57 8.13 sandy silt 
26-27 26.5 3.000 21.858 15.500 25.72 68.44 5.74 - 
27-28 27.5 3.700 24.998 16.545 17.26 74.86 7.88 sandy silt 
28-29 28.5 5.300 29.620 16.353 3.94 82.91 13.06 - 
29-30 29.5 6.000 31.214 15.400 4.64 81.90 13.46 silt 

   Total 
Inventory 

     

   677.737      
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Appendix 3j   
Elemental analysis and grain size data for Bay Jimmy High site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 15.340 25.641 15.653 na na na na 
0.5-1 0.75 16.550 29.259 19.857 15.02 76.99 7.99 sandy silt 
1-1.5 1.25 11.330 25.434 20.571 29.02 64.68 6.30 sandy silt 
1.5-2 1.75 12.803 25.229 20.406 12.86 79.95 7.19 sandy silt 
2-2.5 2.25 15.298 26.267 18.256 9.96 79.17 10.87 silt 
2.5-3 2.75 14.148 22.703 19.297 8.32 49.05 42.63 mud 
3-4 3.5 16.116 49.403 16.160 11.32 78.42 10.26 sandy silt 
4-5 4.5 17.457 51.068 19.500 13.14 74.42 12.44 sandy silt 
5-6 5.5 19.615 49.610 22.455 7.32 74.24 18.44 silt 
6-7 6.5 21.027 46.613 21.192 11.76 75.62 12.62 sandy silt 
7-8 7.5 23.423 49.221 19.650 10.79 74.00 15.21 sandy silt 
8-9 8.5 23.447 53.010 20.167 12.90 74.07 13.03 sandy silt 

9-10 9.5 19.291 53.296 20.102 24.59 68.78 6.63 sandy silt 
10-11 10.5 16.545 46.848 19.349 6.10 54.83 39.07 mud 
11-12 11.5 15.909 40.032 18.767 4.32 79.22 16.46 silt 
12-13 12.5 16.654 43.677 17.633 14.36 74.75 10.89 sandy silt 
13-14 13.5 14.624 39.761 15.220 9.39 77.06 13.55 silt 
14-15 14.5 16.132 45.504 20.268 11.41 79.39 9.20 sandy silt 
15-16 15.5 17.047 44.345 20.738 5.74 75.94 18.32 silt 
16-17 16.5 13.805 38.624 18.100 11.04 73.04 15.92 sandy silt 
17-18 17.5 12.334 41.539 15.634 10.28 79.35 10.37 sandy silt 
18-19 18.5 10.149 33.580 16.677 17.92 72.25 9.83 sandy silt 
19-20 19.5 10.004 35.444 17.552 13.52 77.78 8.70 sandy silt 
20-21 20.5 8.706 33.007 19.217 6.75 80.75 12.50 silt 
21-22 21.5 8.236 32.192 18.304 9.49 81.45 9.06 silt 
22-23 22.5 8.344 31.962 18.304 23.66 70.47 5.87 sandy silt 
23-24 23.5 8.917 31.231 18.240 8.89 75.42 15.69 silt 
24-25 24.5 9.303 33.725 18.192 9.10 80.41 10.49 silt 
25-26 25.5 9.106 33.936 10.386 4.28 83.89 11.83 silt 
26-27 26.5 8.749 33.502 16.148 8.19 81.03 10.78 silt 
27-28 27.5 10.067 35.283 19.074 9.60 79.62 10.78 silt 
28-29 28.5 9.805 33.816 15.906 9.55 81.47 8.98 silt 
29-30 29.5 9.486 32.163 19.400 27.87 64.92 7.21 sandy silt 

   Total 
Inventory 

     

   1246.922      
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Appendix 3k 
Elemental analysis and grain size data for Bay Jimmy Mid site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 5.215 16.179 20.846 54.31 42.79 2.90 silty sand 
0.5-1 0.75 8.663 28.746 19.174 48.75 48.14 3.11 sandy silt 
1-1.5 1.25 5.592 16.366 20.786 38.96 55.74 5.30 sandy silt 
1.5-2 1.75 6.637 18.333 21.000 33.40 59.70 6.90 sandy silt 
2-2.5 2.25 4.725 14.937 22.273 26.55 65.45 8.00 sandy silt 
2.5-3 2.75 9.497 27.195 18.538 36.81 58.95 4.24 sandy silt 
3-4 3.5 10.372 44.412 20.840 32.32 60.98 6.70 sandy silt 
4-5 4.5 8.632 35.180 18.000 29.28 63.22 7.50 sandy silt 
5-6 5.5 9.006 37.100 19.870 27.01 66.07 6.92 sandy silt 
6-7 6.5 8.194 33.285 20.367 45.36 51.76 2.88 sandy silt 
7-8 7.5 10.648 49.945 22.417 36.04 57.26 6.70 sandy silt 
8-9 8.5 10.447 42.644 21.200 37.87 58.13 4.00 sandy silt 

9-10 9.5 10.371 43.448 20.115 38.94 57.67 3.39 sandy silt 
10-11 10.5 8.897 38.305 20.409 34.42 61.28 4.30 sandy silt 
11-12 11.5 8.049 34.314 16.120 34.85 60.63 4.52 sandy silt 
12-13 12.5 9.482 43.785 20.167 40.66 54.55 4.79 sandy silt 
13-14 13.5 11.010 48.304 20.036 31.61 60.08 8.31 sandy silt 
14-15 14.5 8.519 38.844 19.217 32.39 56.96 10.65 sandy silt 
15-16 15.5 9.123 40.553 18.038 30.31 64.60 5.09 sandy silt 
16-17 16.5 9.255 38.254 19.625 28.93 62.15 8.92 sandy silt 
17-18 17.5 9.665 40.080 19.346 20.92 69.80 9.28 sandy silt 
18-19 18.5 13.782 48.527 15.977 21.21 71.27 7.52 sandy silt 
19-20 19.5 14.658 50.517 18.846 13.85 75.33 10.82 sandy silt 
20-21 20.5 14.221 47.423 17.976 5.22 85.56 9.22 silt 
21-22 21.5 14.046 44.687 19.432 8.31 79.29 12.40 silt 
22-23 22.5 13.243 45.898 19.000 14.06 76.72 9.22 sandy silt 
23-24 23.5 12.601 46.433 20.063 14.54 75.96 9.50 sandy silt 
24-25 24.5 12.235 41.925 19.063 8.67 81.68 9.65 silt 
25-26 25.5 12.685 41.651 16.974 8.06 82.76 9.18 silt 
26-27 26.5 12.572 41.995 19.636 6.73 85.04 8.23 silt 
27-28 27.5 11.632 39.884 17.676 21.09 72.46 6.45 sandy silt 
28-29 28.5 11.560 39.475 16.886 6.86 79.07 14.07 silt 
29-30 29.5 10.891 43.221 13.600 7.52 83.72 8.76 silt 

	   	    Total 
Inventory 

     

	   	    1261.842      
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Appendix 3l  
Elemental analysis and grain size data for Bay Jimmy Low site. 
 

Sample 
interval 

(cm) 

Plot depth 
(cm) 

SOC (%) SOC 
Inventory 
(mg cm-2) 

C/N 
Ratio 

% Sand % Silt % Clay Folk 
classification 

0-0.5 0.25 7.881 14.363 17.826 26.89 67.04 6.07 sandy silt 
0.5-1 0.75 6.603 10.998 19.529 17.29 70.55 12.16 sandy silt 
1-1.5 1.25 7.127 12.120 17.476 22.30 71.90 5.80 sandy silt 
1.5-2 1.75 7.475 13.410 17.500 13.44 82.03 4.53 sandy silt 
2-2.5 2.25 6.859 12.463 16.524 16.29 76.84 6.87 sandy silt 
2.5-3 2.75 6.729 12.328 13.640 4.83 85.64 9.53 silt 
3-4 3.5 7.084 25.946 17.800 8.71 84.97 6.32 silt 
4-5 4.5 12.293 32.018 19.273 2.02 85.88 12.10 silt 
5-6 5.5 11.843 33.698 16.472 10.66 83.89 5.45 sandy silt 
6-7 6.5 6.417 24.663 18.556 9.80 85.65 4.55 silt 
7-8 7.5 6.755 28.737 20.412 7.59 81.89 10.52 silt 
8-9 8.5 4.038 18.063 18.818 11.65 84.56 3.79 sandy silt 

9-10 9.5 7.409 27.894 19.842 9.34 82.51 8.15 silt 
10-11 10.5 9.404 32.452 12.231 12.01 80.24 7.75 sandy silt 
11-12 11.5 9.636 26.431 18.407 11.32 80.82 7.86 sandy silt 
12-13 12.5 7.895 26.719 20.000 13.52 79.94 6.54 sandy silt 
13-14 13.5 7.289 27.880 18.800 15.70 77.97 6.33 sandy silt 
14-15 14.5 9.806 25.719 17.643 8.02 82.32 9.66 silt 
15-16 15.5 14.579 35.625 16.636 9.57 81.43 9.00 silt 
16-17 16.5 8.855 27.693 20.500 10.06 82.56 7.38 sandy silt 
17-18 17.5 7.233 25.642 20.611 22.39 71.68 5.93 sandy silt 
18-19 18.5 4.814 22.132 20.250 14.94 80.08 4.98 sandy silt 
19-20 19.5 4.219 18.802 18.000 18.74 75.85 5.41 sandy silt 
20-21 20.5 12.355 31.367 17.914 10.72 78.89 10.39 sandy silt 
21-22 21.5 14.116 30.193 18.789 7.29 82.49 10.22 silt 
22-23 22.5 15.885 30.788 18.721 5.89 85.49 8.62 silt 
23-24 23.5 19.499 39.380 21.370 2.41 84.50 13.09 silt 
24-25 24.5 12.548 35.008 21.759 2.97 80.75 16.28 silt 
25-26 25.5 12.478 38.720 17.972 3.07 81.13 15.80 silt 
26-27 26.5 16.439 40.748 18.435 4.62 82.20 13.18 silt 
27-28 27.5 23.920 45.539 19.355 3.55 75.10 21.35 silt 
28-29 28.5 24.620 44.182 20.097 2.50 88.15 9.35 silt 
29-30 29.5 24.577 44.401 18.191 1.70 90.20 8.10 silt 

	   	    Total 
Inventory 

     

	   	    916.119      
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APPENDIX 4 
 
Appendix 4a 
Carbonate values for all RIG sites. 
 
Sample interval 

(cm) 
Plot depth 

(cm) 
Carbonate (%) 

  HIGH MID LOW 
0-0.5 0.25 7.133 5.796 6.213 
0.5-1 0.75 6.721 5.162 4.826 
1-1.5 1.25 5.083 5.170 4.508 
1.5-2 1.75 5.336 5.670 5.226 
2-2.5 2.25 5.788 5.873 5.904 
2.5-3 2.75 6.045 5.393 4.381 
3-4 3.5 5.462 5.859 5.098 
4-5 4.5 5.083 6.515 5.267 
5-6 5.5 8.093 6.242 6.420 
6-7 6.5 8.443 6.053 5.429 
7-8 7.5 10.993 6.114 5.000 
8-9 8.5 12.356 6.902 5.209 

9-10 9.5 10.328 6.858 5.603 
10-11 10.5 11.664 10.323 6.664 
11-12 11.5 9.833 8.383 5.956 
12-13 12.5 10.321 11.638 5.240 
13-14 13.5 9.700 9.336 5.179 
14-15 14.5 8.355 12.767 5.473 
15-16 15.5 7.543 10.781 6.140 
16-17 16.5 8.633 13.311 7.664 
17-18 17.5 9.585 11.635 8.000 
18-19 18.5 11.243 9.816 6.808 
19-20 19.5 9.106 13.967 7.148 
20-21 20.5 3.695 9.990 8.414 
21-22 21.5 6.929 9.220 7.470 
22-23 22.5 7.448 10.657 8.890 
23-24 23.5 9.678 9.574 7.206 
24-25 24.5 10.294 7.171 10.272 
25-26 25.5 8.475 7.963 6.594 
26-27 26.5 11.905 8.154 6.532 
27-28 27.5 10.023 8.417 5.683 
28-29 28.5 10.692 7.982 6.083 
29-30 29.5 12.392 7.532 5.627 

 
  



 118 

Appendix 4b 
Carbonate values for all KBP sites. 
 
Sample interval 

(cm) 
Plot depth 

(cm) 
Carbonate (%) 

  HIGH MID LOW 
0-0.5 0.25 6.680 17.444 1.385 
0.5-1 0.75 5.693 11.416 5.682 
1-1.5 1.25 7.317 11.262 4.853 
1.5-2 1.75 9.573 11.152 4.495 
2-2.5 2.25 10.460 8.575 4.469 
2.5-3 2.75 11.233 8.563 4.771 
3-4 3.5 9.378 7.583 4.538 
4-5 4.5 7.193 8.831 5.311 
5-6 5.5 9.064 5.347 5.452 
6-7 6.5 6.504 5.948 5.717 
7-8 7.5 4.065 6.517 4.286 
8-9 8.5 6.486 6.801 4.322 

9-10 9.5 9.546 6.565 4.443 
10-11 10.5 13.481 7.072 5.229 
11-12 11.5 5.964 6.379 4.957 
12-13 12.5 4.850 5.389 5.036 
13-14 13.5 7.369 5.781 4.371 
14-15 14.5 6.974 7.183 5.499 
15-16 15.5 4.011 7.784 4.186 
16-17 16.5 3.498 8.424 3.550 
17-18 17.5 9.993 9.166 4.565 
18-19 18.5 18.708 9.103 4.965 
19-20 19.5 18.787 15.995 3.851 
20-21 20.5 16.628 1.526 4.730 
21-22 21.5 10.997 9.374 4.926 
22-23 22.5 6.748 9.973 5.423 
23-24 23.5 6.645 10.925 7.418 
24-25 24.5 5.838 8.756 6.820 
25-26 25.5 5.665 8.419 6.476 
26-27 26.5 5.204 6.533 4.876 
27-28 27.5 4.771 5.167 3.951 
28-29 28.5 7.270 6.019 4.477 
29-30 29.5 7.931 5.948 4.599 
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Appendix 4c 
Carbonate values for all DBI sites. 
 
Sample interval 

(cm) 
Plot depth 

(cm) 
Carbonate (%) 

  HIGH MID LOW 
0-0.5 0.25 15.772 59.533 5.675 
0.5-1 0.75 9.273 47.635 5.199 
1-1.5 1.25 6.088 48.168 6.072 
1.5-2 1.75 5.229 40.920 6.348 
2-2.5 2.25 5.289 35.122 7.859 
2.5-3 2.75 5.179 29.743 8.286 
3-4 3.5 7.240 16.777 8.361 
4-5 4.5 6.973 12.541 9.026 
5-6 5.5 7.859 18.882 9.427 
6-7 6.5 7.236 16.844 8.085 
7-8 7.5 7.195 12.529 7.897 
8-9 8.5 5.519 12.600 8.775 

9-10 9.5 4.064 12.210 9.630 
10-11 10.5 4.025 21.265 9.657 
11-12 11.5 4.559 11.565 9.266 
12-13 12.5 4.292 11.093 8.553 
13-14 13.5 5.413 10.633 8.225 
14-15 14.5 6.113 10.213 7.461 
15-16 15.5 5.066 11.451 7.261 
16-17 16.5 6.330 11.155 8.403 
17-18 17.5 6.045 11.421 8.640 
18-19 18.5 9.566 14.919 8.179 
19-20 19.5 7.314 12.719 8.920 
20-21 20.5 8.447 10.622 7.726 
21-22 21.5 6.758 9.844 6.326 
22-23 22.5 7.451 16.229 7.288 
23-24 23.5 6.504 12.327 5.515 
24-25 24.5 7.155 11.640 6.213 
25-26 25.5 7.209 11.089 8.667 
26-27 26.5 4.053 10.407 6.957 
27-28 27.5 7.302 9.496 8.425 
28-29 28.5 9.364 9.262 10.649 
29-30 29.5 10.719 9.599 11.011 
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Appendix 4d 
Carbonate values for all BJ sites. 
 
Sample interval 

(cm) 
Plot depth 

(cm) 
Carbonate (%) 

  HIGH MID LOW 
0-0.5 0.25 - 6.956 12.087 
0.5-1 0.75 16.552 8.923 12.368 
1-1.5 1.25 12.976 5.561 12.156 
1.5-2 1.75 14.817 8.163 12.028 
2-2.5 2.25 16.184 7.011 10.835 
2.5-3 2.75 15.728 8.684 11.537 
3-4 3.5 16.513 10.010 12.832 
4-5 4.5 15.547 9.361 15.099 
5-6 5.5 19.021 7.958 13.246 
6-7 6.5 19.722 8.717 10.148 
7-8 7.5 20.389 10.425 9.082 
8-9 8.5 18.233 9.426 10.325 

9-10 9.5 15.481 10.422 11.834 
10-11 10.5 16.792 9.720 13.132 
11-12 11.5 16.909 9.082 6.314 
12-13 12.5 16.904 7.499 12.223 
13-14 13.5 16.451 9.109 10.521 
14-15 14.5 17.038 8.583 13.160 
15-16 15.5 16.804 8.601 14.546 
16-17 16.5 16.026 7.917 11.436 
17-18 17.5 15.846 8.557 10.993 
18-19 18.5 15.031 12.314 8.991 
19-20 19.5 13.109 12.244 8.281 
20-21 20.5 13.054 11.663 12.815 
21-22 21.5 11.130 12.000 16.037 
22-23 22.5 12.846 9.997 18.802 
23-24 23.5 12.085 9.454 17.992 
24-25 24.5 12.421 8.433 14.681 
25-26 25.5 12.504 10.979 13.741 
26-27 26.5 11.695 10.672 15.955 
27-28 27.5 12.373 10.238 20.335 
28-29 28.5 13.145 12.900 19.354 
29-30 29.5 12.938 10.509 20.488 
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APPENDIX 5 
 
Appendix 5a 
Calculated porosity and bulk density values for all RIG sites. 
 

Sample 
interval (cm) 

Plot 
depth 
(cm) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

  HIGH MID LOW 
0-0.5 0.25 0.767 0.565 0.712 0.710 0.682 0.788 
0.5-1 0.75 0.771 0.543 0.713 0.706 0.673 0.812 
1-1.5 1.25 0.745 0.626 0.719 0.686 0.678 0.799 
1.5-2 1.75 0.757 0.595 0.747 0.617 0.677 0.801 
2-2.5 2.25 0.734 0.657 0.755 0.593 0.660 0.844 
2.5-3 2.75 0.697 0.736 0.766 0.565 0.675 0.805 
3-4 3.5 0.707 0.722 0.782 0.530 0.693 0.760 
4-5 4.5 0.732 0.656 0.785 0.522 0.728 0.672 
5-6 5.5 0.772 0.559 0.785 0.535 0.737 0.646 
6-7 6.5 0.812 0.457 0.783 0.540 0.739 0.642 
7-8 7.5 0.823 0.422 0.784 0.538 0.738 0.644 
8-9 8.5 0.806 0.458 0.793 0.505 0.736 0.648 

9-10 9.5 0.804 0.473 0.800 0.487 0.738 0.644 
10-11 10.5 0.797 0.488 0.803 0.480 0.724 0.679 
11-12 11.5 0.798 0.480 0.796 0.497 0.718 0.695 
12-13 12.5 0.794 0.497 0.778 0.481 0.703 0.732 
13-14 13.5 0.807 0.469 0.799 0.485 0.709 0.717 
14-15 14.5 0.808 0.470 0.801 0.482 0.700 0.740 
15-16 15.5 0.808 0.464 0.792 0.496 0.696 0.748 
16-17 16.5 0.793 0.500 0.803 0.478 0.665 0.826 
17-18 17.5 0.797 0.492 0.803 0.478 0.688 0.770 
18-19 18.5 0.797 0.491 0.807 0.465 0.696 0.751 
19-20 19.5 0.806 0.466 0.796 0.492 0.694 0.755 
20-21 20.5 0.803 0.487 0.807 0.470 0.685 0.778 
21-22 21.5 0.775 0.555 0.798 0.490 0.684 0.781 
22-23 22.5 0.812 0.464 0.784 0.524 0.657 0.847 
23-24 23.5 0.833 0.401 0.778 0.536 0.699 0.742 
24-25 24.5 0.826 0.421 0.770 0.561 0.655 0.851 
25-26 25.5 0.819 0.438 0.752 0.610 0.703 0.732 
26-27 26.5 0.820 0.435 0.749 0.614 0.704 0.730 
27-28 27.5 0.816 0.445 0.739 0.633 0.693 0.759 
28-29 28.5 0.818 0.438 0.737 0.648 0.694 0.755 
29-30 29.5 0.819 0.436 0.727 0.673 0.694 0.755 
30-31 30.5 0.823 0.443 0.733 0.668 0.694 0.764 
31-32 31.5 0.823 0.441 0.725 0.687 0.698 0.756 
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Sample 
interval (cm) 

Plot 
depth 
(cm) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

  HIGH MID LOW 
32-33 32.5 0.830 0.424 0.719 0.702 0.700 0.749 
33-34 33.5 0.841 0.398 0.714 0.714 0.703 0.743 
34-35 34.5 0.849 0.378 0.710 0.724 0.704 0.739 
35-36 35.5 0.826 0.434 0.711 0.723 0.704 0.739 
36-37 36.5 0.822 0.445 0.706 0.735 0.704 0.741 
37-38 37.5 0.824 0.439 0.709 0.727 0.700 0.749 
38-39 38.5 0.816 0.460 0.708 0.729 0.693 0.769 
39-40 39.5 0.825 0.439 0.706 0.735 0.693 0.766 
40-41 40.5 0.817 0.458 0.697 0.756 0.688 0.780 
41-42 41.5 0.820 0.451 0.686 0.786 0.689 0.779 
42-43 42.5 0.820 0.451 0.684 0.790 0.689 0.777 
43-44 43.5 0.801 0.497 0.675 0.813 0.686 0.785 
44-45 44.5 0.804 0.491 0.680 0.800 0.676 0.809 
45-46 45.5 0.786 0.534 0.706 0.734 0.671 0.822 
46-47 46.5 0.794 0.515 0.710 0.725 0.664 0.840 
47-48 47.5 0.786 0.535 0.703 0.742 0.654 0.866 
48-49 48.5 0.806 0.484 0.702 0.746 0.647 0.884 
49-50 49.5 0.795 0.513 0.695 0.763 0.645 0.886 
50-52 51 0.783 0.543 0.675 0.812 0.609 0.977 
52-54 53 0.753 0.618 0.682 0.794 0.578 1.055 
54-56 55 0.742 0.646 0.675 0.812 0.592 1.020 
56-58 57 0.732 0.670 0.666 0.835 0.593 1.018 
58-60 59 0.728 0.680 0.660 0.851 0.574 1.065 
60-62 61 0.727 0.684 0.654 0.866 0.576 1.059 
62-64 63 0.725 0.689 0.638 0.905 0.573 1.067 
64-66 65 0.725 0.688 0.646 0.886 0.563 1.092 
66-68 67 0.730 0.676 0.641 0.898 0.556 1.110 
68-70 69 0.721 0.698 0.630 0.926 0.550 1.125 
70-72 71 0.717 0.707 0.599 1.001 0.552 1.121 
72-74 73 0.718 0.706 0.576 1.060 0.557 1.107 
74-76 75 0.723 0.693 - - 0.543 1.143 
76-78 77 0.727 0.682 - - 0.546 1.136 
78-80 79 0.711 0.723 - - 0.547 1.133 
80-82 81 0.685 0.787 - - 0.551 1.122 
82-84 83 0.684 0.790 - - 0.548 1.129 
84-86 85 0.683 0.792 - - 0.548 1.129 
86-88 87 0.680 0.801 - - 0.551 1.124 
88-89 88.5 - - - - 0.553 1.118 
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Appendix 5b 
Calculated porosity and bulk density values for all KBP sites. 
 

Sample 
interval (cm) 

Plot 
depth 
(cm) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

  HIGH MID LOW 
0-0.5 0.25 0.658 0.834 0.720 0.673 0.650 0.862 
0.5-1 0.75 0.653 0.845 0.664 0.822 0.653 0.858 
1-1.5 1.25 0.739 0.627 0.645 0.872 0.665 0.829 
1.5-2 1.75 0.806 0.455 0.656 0.845 0.656 0.849 
2-2.5 2.25 0.829 0.389 0.623 0.931 0.663 0.834 
2.5-3 2.75 0.832 0.381 0.630 0.915 0.693 0.757 
3-4 3.5 0.761 0.576 0.603 0.979 0.723 0.681 
4-5 4.5 0.679 0.775 0.634 0.898 0.743 0.633 
5-6 5.5 0.685 0.764 0.613 0.962 0.752 0.608 
6-7 6.5 0.682 0.778 0.628 0.919 0.733 0.658 
7-8 7.5 0.621 0.940 0.693 0.756 0.728 0.672 
8-9 8.5 0.681 0.780 0.713 0.708 0.722 0.686 

9-10 9.5 0.753 0.594 0.701 0.736 0.702 0.736 
10-11 10.5 0.762 0.566 0.682 0.782 0.726 0.673 
11-12 11.5 0.633 0.903 0.630 0.911 0.663 0.833 
12-13 12.5 0.559 1.095 0.598 0.996 0.624 0.932 
13-14 13.5 0.633 0.903 0.599 0.998 0.575 1.058 
14-15 14.5 0.592 1.003 0.634 0.908 0.556 1.103 
15-16 15.5 0.511 1.216 0.698 0.741 0.549 1.124 
16-17 16.5 0.579 1.048 0.730 0.663 0.551 1.119 
17-18 17.5 0.842 0.371 0.751 0.605 0.544 1.135 
18-19 18.5 0.867 0.278 0.759 0.587 0.562 1.090 
19-20 19.5 0.872 0.266 0.771 0.552 0.565 1.083 
20-21 20.5 0.880 0.261 0.760 0.585 0.627 0.921 
21-22 21.5 0.778 0.541 0.782 0.530 0.665 0.829 
22-23 22.5 0.585 1.031 0.805 0.473 0.711 0.711 
23-24 23.5 0.472 1.316 0.815 0.443 0.778 0.539 
24-25 24.5 0.453 1.366 0.778 0.543 0.745 0.624 
25-26 25.5 0.438 1.403 0.702 0.731 0.690 0.766 
26-27 26.5 0.444 1.389 0.620 0.945 0.622 0.937 
27-28 27.5 0.600 0.999 0.571 1.069 0.582 1.039 
28-29 28.5 0.666 0.827 0.560 1.092 0.644 0.882 
29-30 29.5 0.684 0.778 0.583 1.037 0.661 0.838 
30-31 30.5 0.694 0.764 0.594 1.015 0.775 0.561 
31-32 31.5 0.611 0.972 0.600 1.000 0.773 0.569 
32-33 32.5 0.572 1.071 0.584 1.039 0.747 0.633 
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Sample 
interval (cm) 

Plot 
depth 
(cm) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

  HIGH MID LOW 
33-34 33.5 0.654 0.864 0.653 0.866 0.700 0.749 
34-35 34.5 0.711 0.722 0.703 0.743 0.652 0.871 
35-36 35.5 0.755 0.613 0.750 0.626 0.624 0.940 
36-37 36.5 0.796 0.511 0.730 0.676 0.630 0.925 
37-38 37.5 0.788 0.530 0.673 0.816 0.607 0.982 
38-39 38.5 0.775 0.561 0.587 1.034 0.591 1.023 
39-40 39.5 0.748 0.630 0.521 1.198 0.663 0.843 
40-41 40.5 0.723 0.693 0.603 0.993 0.684 0.790 
41-42 41.5 0.783 0.543 0.764 0.589 0.654 0.865 
42-43 42.5 0.823 0.442 0.780 0.551 0.670 0.826 
43-44 43.5 0.762 0.596 0.782 0.546 0.673 0.816 
44-45 44.5 0.711 0.722 0.756 0.611 0.658 0.855 
45-46 45.5 0.608 0.981 0.656 0.861 0.688 0.779 
46-47 46.5 0.547 1.134 0.594 1.014 0.743 0.643 
47-48 47.5 0.518 1.206 0.587 1.033 0.744 0.639 
48-49 48.5 0.582 1.044 0.611 0.972 0.698 0.755 
49-50 49.5 0.646 0.884 0.544 1.139 0.677 0.807 
50-52 51 0.583 1.042 0.622 0.944 0.709 0.729 
52-54 53 0.742 0.645 0.674 0.815 0.638 0.905 
54-56 55 0.756 0.611 0.680 0.801 0.640 0.900 
56-58 57 0.598 1.006 0.627 0.932 0.603 0.992 
58-60 59 0.659 0.854 - - - - 
60-62 61 0.793 0.518 - - - - 
62-64 63 0.757 0.607 - - - - 
64-66 65 0.642 0.895 - - - - 
66-68 67 0.628 0.930 - - - - 
68-70 69 0.682 0.794 - - - - 
70-72 71 0.676 0.811 - - - - 
72-74 73 0.697 0.758 - - - - 
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Appendix 5c 
Calculated porosity and bulk density values for all DBI sites. 
 

Sample 
interval (cm) 

Plot 
depth 
(cm) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

  HIGH MID LOW 
0-0.5 0.25 0.915 0.187 0.840 0.359 0.624 0.359 
0.5-1 0.75 0.187 0.349 0.732 0.628 0.587 0.628 
1-1.5 1.25 0.852 0.618 0.726 0.661 0.596 0.661 
1.5-2 1.75 0.349 0.703 0.653 0.847 0.660 0.847 
2-2.5 2.25 0.743 0.739 0.598 0.986 0.710 0.986 
2.5-3 2.75 0.618 0.604 0.560 1.081 0.704 1.081 
3-4 3.5 0.713 0.523 0.587 1.016 0.715 1.016 
4-5 4.5 0.703 0.507 0.637 0.889 0.766 0.889 
5-6 5.5 0.700 0.498 0.658 0.841 0.755 0.841 
6-7 6.5 0.739 0.543 0.662 0.826 0.753 0.826 
7-8 7.5 0.754 0.564 0.699 0.739 0.764 0.739 
8-9 8.5 0.604 0.681 0.726 0.666 0.780 0.666 

9-10 9.5 0.785 0.815 0.732 0.654 0.777 0.654 
10-11 10.5 0.523 0.764 0.747 0.621 0.758 0.621 
11-12 11.5 0.791 0.649 0.769 0.567 0.737 0.567 
12-13 12.5 0.507 0.597 0.766 0.564 0.752 0.564 
13-14 13.5 0.795 0.538 0.766 0.563 0.724 0.563 
14-15 14.5 0.498 0.506 0.780 0.535 0.673 0.535 
15-16 15.5 0.778 0.539 0.781 0.533 0.664 0.533 
16-17 16.5 0.543 0.568 0.791 0.511 0.667 0.511 
17-18 17.5 0.768 0.595 0.785 0.524 0.673 0.524 
18-19 18.5 0.564 0.590 0.785 0.520 0.620 0.520 
19-20 19.5 0.749 0.614 0.792 0.509 0.700 0.509 
20-21 20.5 0.757 0.592 0.779 0.536 0.708 0.536 
21-22 21.5 0.722 0.684 0.777 0.548 0.653 0.548 
22-23 22.5 0.699 0.740 0.770 0.555 0.694 0.555 
23-24 23.5 0.702 0.734 0.765 0.575 0.624 0.575 
24-25 24.5 0.712 0.709 0.760 0.579 0.660 0.579 
25-26 25.5 0.696 0.753 0.757 0.601 0.699 0.601 
26-27 26.5 0.709 0.722 0.750 0.615 0.703 0.615 
27-28 27.5 0.745 0.625 0.757 0.597 0.723 0.597 
28-29 28.5 0.770 0.564 0.714 0.699 0.769 0.699 
29-30 29.5 0.795 0.497 0.723 0.681 0.784 0.681 
30-31 30.5 0.807 0.483 0.746 0.634 0.770 0.634 
31-32 31.5 0.806 0.486 0.761 0.596 0.777 0.596 
32-33 32.5 0.808 0.480 0.759 0.603 0.750 0.603 
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Sample 
interval (cm) 

Plot 
depth 
(cm) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

  HIGH MID LOW 
33-34 33.5 0.817 0.458 0.809 0.477 0.747 0.477 
34-35 34.5 0.821 0.449 0.824 0.439 0.743 0.439 
35-36 35.5 0.805 0.488 0.828 0.429 0.760 0.429 
36-37 36.5 0.737 0.657 0.815 0.462 0.761 0.462 
37-38 37.5 0.771 0.572 0.813 0.468 0.743 0.468 
38-39 38.5 0.805 0.487 0.815 0.463 0.712 0.463 
39-40 39.5 0.791 0.523 0.776 0.560 0.714 0.560 
40-41 40.5 0.752 0.620 0.737 0.658 0.736 0.658 
41-42 41.5 0.740 0.649 0.702 0.745 0.721 0.745 
42-43 42.5 0.778 0.554 0.717 0.706 0.738 0.706 
43-44 43.5 0.781 0.547 0.617 0.958 0.663 0.958 
44-45 44.5 0.767 0.583 0.634 0.915 0.632 0.915 
45-46 45.5 0.752 0.620 0.769 0.578 0.640 0.578 
46-47 46.5 0.667 0.832 0.755 0.614 0.633 0.614 
47-48 47.5 0.704 0.739 0.763 0.593 0.671 0.593 
48-49 48.5 0.776 0.560 0.740 0.650 0.696 0.650 
49-50 49.5 0.789 0.526 0.668 0.830 0.720 0.830 
50-52 51 0.808 0.479 0.707 0.732 0.642 0.732 
52-54 53 0.819 0.453 0.713 0.718 0.649 0.718 
54-56 55 0.785 0.539 0.722 0.696 0.664 0.696 
56-58 57 0.697 0.758 0.731 0.671 0.573 0.671 
58-60 59 0.664 0.841 0.675 0.813 0.684 0.813 
60-62 61 0.763 0.592 0.773 0.567 0.664 0.567 
62-64 63 0.784 0.540 0.752 0.619 0.740 0.619 
64-66 65 - - 0.810 0.474 0.781 0.474 
66-68 67 - - 0.788 0.531 0.801 0.531 
68-70 69 - - 0.720 0.701 0.787 0.701 
70-72 71 - - 0.702 0.746 0.808 0.746 
72-74 73 - - 0.656 0.861 0.802 0.861 
74-76 75 - - 0.695 0.763 - - 
76-78 77 - - 0.661 0.846 - - 
78-80 79 - - 0.737 0.656 - - 
80-82 81 - - 0.751 0.622 - - 
82-84 83 - - 0.766 0.585 - - 
84-86 85 - - 0.730 0.675 - - 
86-88 87 - - 0.801 0.497 - - 
88-90 89 - - 0.705 0.739 - - 
90-91 90.5 - - 0.776 0.560 - - 
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Appendix 5d 
Calculated porosity and bulk density values for all BJ sites. 
 

Sample 
interval (cm) 

Plot 
depth 
(cm) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

  HIGH MID LOW 
0-0.5 0.25 0.852 0.339 0.743 0.620 0.846 0.364 

0.5-1 0.75 0.842 0.354 0.719 0.664 0.861 0.333 

1-1.5 1.25 0.806 0.449 0.757 0.585 0.857 0.340 

1.5-2 1.75 0.828 0.394 0.769 0.552 0.849 0.359 

2-2.5 2.25 0.848 0.343 0.739 0.632 0.848 0.363 

2.5-3 2.75 0.859 0.321 0.756 0.573 0.847 0.366 

3-4 3.5 0.863 0.307 0.817 0.428 0.847 0.366 

4-5 4.5 0.868 0.293 0.827 0.408 0.887 0.260 

5-6 5.5 0.884 0.253 0.825 0.412 0.877 0.285 

6-7 6.5 0.898 0.222 0.829 0.406 0.840 0.384 

7-8 7.5 0.901 0.210 0.799 0.469 0.822 0.425 

8-9 8.5 0.894 0.226 0.825 0.408 0.816 0.447 

9-10 9.5 0.874 0.276 0.821 0.419 0.842 0.376 

10-11 10.5 0.873 0.283 0.817 0.431 0.853 0.345 

11-12 11.5 0.888 0.252 0.820 0.426 0.883 0.274 

12-13 12.5 0.883 0.262 0.803 0.462 0.857 0.338 

13-14 13.5 0.880 0.272 0.811 0.439 0.840 0.382 

14-15 14.5 0.874 0.282 0.807 0.456 0.888 0.262 

15-16 15.5 0.883 0.260 0.811 0.445 0.892 0.244 

16-17 16.5 0.877 0.280 0.824 0.413 0.867 0.313 

17-18 17.5 0.854 0.337 0.823 0.415 0.851 0.355 

18-19 18.5 0.858 0.331 0.846 0.352 0.810 0.460 

19-20 19.5 0.849 0.354 0.848 0.345 0.817 0.446 

20-21 20.5 0.839 0.379 0.853 0.333 0.890 0.254 

21-22 21.5 0.835 0.391 0.860 0.318 0.906 0.214 

22-23 22.5 0.838 0.383 0.849 0.347 0.914 0.194 

23-24 23.5 0.851 0.350 0.840 0.368 0.908 0.202 

24-25 24.5 0.846 0.363 0.851 0.343 0.879 0.279 

25-26 25.5 0.842 0.373 0.857 0.328 0.865 0.310 

26-27 26.5 0.838 0.383 0.855 0.334 0.889 0.248 

27-28 27.5 0.850 0.350 0.852 0.343 0.910 0.190 

28-29 28.5 0.853 0.345 0.852 0.341 0.915 0.179 

29-30 29.5 0.856 0.339 0.851 0.373 0.914 0.181 

30-31 30.5 0.848 0.379 0.845 0.387 0.919 0.203 

31-32 31.5 0.852 0.371 0.839 0.404 0.929 0.177 

32-33 32.5 0.858 0.355 0.833 0.418 0.929 0.178 
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Sample 
interval (cm) 

Plot 
depth 
(cm) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

Porosity 
(%) 

Bulk density 
(g cm-3) 

  HIGH MID LOW 
33-34 33.5 0.862 0.344 0.838 0.405 0.924 0.189 

34-35 34.5 0.852 0.369 0.832 0.419 0.918 0.206 

35-36 35.5 0.857 0.357 0.843 0.391 0.924 0.191 

36-37 36.5 0.857 0.356 0.845 0.387 0.931 0.172 

37-38 37.5 0.854 0.366 0.844 0.390 0.940 0.150 

38-39 38.5 0.877 0.307 0.845 0.387 0.936 0.160 

39-40 39.5 0.852 0.369 0.839 0.404 0.931 0.173 

40-41 40.5 0.824 0.440 0.851 0.373 0.926 0.186 

41-42 41.5 0.809 0.477 0.862 0.345 0.925 0.188 

42-43 42.5 0.792 0.521 0.865 0.337 0.929 0.178 

43-44 43.5 0.761 0.598 0.852 0.371 0.932 0.169 

44-45 44.5 0.722 0.696 0.851 0.372 0.936 0.160 

45-46 45.5 0.673 0.819 0.843 0.392 0.935 0.163 

46-47 46.5 0.606 0.985 0.842 0.395 0.931 0.173 

47-48 47.5 0.674 0.816 0.849 0.377 0.924 0.191 

48-49 48.5 0.749 0.627 0.839 0.401 0.903 0.243 

49-50 49.5 0.750 0.626 0.830 0.426 0.884 0.290 

50-52 51 - - 0.826 0.435 0.838 0.405 

52-54 53 - - 0.805 0.487 0.869 0.328 

54-56 55 - - 0.704 0.740 0.942 0.145 

56-58 57 - - 0.627 0.933 0.936 0.159 
58-60 59 - - 0.673 0.817 0.932 0.170 
60-62 61 - - 0.805 0.488 0.925 0.188 

62-64 63 - - 0.865 0.338 - - 

64-66 65 - - 0.820 0.451 - - 

66-68 67 - - 0.872 0.320 - - 

68-70 69 - - 0.858 0.356 - - 

70-72 71 - - 0.829 0.428 - - 
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APPENDIX 6 
 
Appendix 6a 
7Be, 137Cs, and 210Pb values for Rigolets High site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
0-0.5 0.25 26.20 2.33 0.92 0.10 46.72 2.67 32.37 1.65 
0.5-1 0.75 11.36 0.80 1.58 0.13 53.36 3.25 39.01 2.23 
1-1.5 1.25 6.48 0.57 1.52 0.15 32.26 1.87 17.91 0.86 
1.5-2 1.75 2.00 0.15 1.15 0.11 37.92 2.27 23.56 1.25 
2-2.5 2.25 0.00 0.00 0.00 0.00 39.03 2.16 24.68 1.14 
2.5-3 2.75 2.94 0.21 0.00 0.00 38.99 2.11 24.63 1.09 
3-4 3.5 0.00 0.00 0.00 0.00 35.85 2.15 21.50 1.13 
4-5 4.5 0.00 0.00 1.13 0.09 43.01 2.47 28.65 1.46 
5-6 5.5 0.00 0.00 0.00 0.00 39.97 2.52 25.62 1.50 
6-7 6.5 0.00 0.00 1.87 0.18 51.27 3.38 36.91 2.36 
7-8 7.5 0.00 0.00 3.34 0.39 61.98 3.70 47.62 2.69 
8-9 8.5 0.00 0.00 2.88 0.26 52.49 3.29 38.13 2.27 

9-10 9.5 0.00 0.00 4.71 0.29 72.00 4.86 57.65 3.85 
10-11 10.5 0.00 0.00 2.48 0.16 58.18 4.01 43.83 2.99 
11-12 11.5 0.00 0.00 3.88 0.34 63.13 3.99 48.78 2.97 
12-13 12.5 0.00 0.00 4.16 0.30 71.47 4.69 57.12 3.67 
13-14 13.5 0.00 0.00 2.00 0.19 53.90 3.37 39.55 2.35 
14-15 14.5 0.00 0.00 4.54 0.37 19.41 1.16 5.06 0.15 
15-16 15.5 0.00 0.00 5.30 0.55 51.56 3.18 37.21 2.16 
16-17 16.5 0.00 0.00 5.73 0.61 39.95 2.38 25.60 1.37 
17-18 17.5 0.00 0.00 4.77 0.33 53.26 3.07 38.90 2.05 
18-19 18.5 0.00 0.00 4.07 0.38 47.46 3.01 33.10 1.99 
19-20 19.5 0.00 0.00 4.78 0.30 50.70 3.03 36.35 2.01 
20-21 20.5 - - 2.69 0.21 37.59 2.33 23.24 1.32 
21-22 21.5 - - 3.34 0.38 38.66 2.26 24.31 1.25 
22-23 22.5 - - 6.88 0.63 39.70 2.42 25.35 1.40 
23-24 23.5 - - 9.55 0.88 47.48 2.75 33.13 1.74 
24-25 24.5 - - - - 44.29 2.55 29.93 1.53 
25-26 25.5 - - - - 40.48 2.30 26.13 1.28 
26-27 26.5 - - - - 42.17 2.33 27.82 1.31 
27-28 27.5 - - - - 41.45 2.47 27.10 1.45 
28-29 28.5 - - - - 41.08 2.30 26.73 1.28 
29-30 29.5 - - - - 31.94 1.78 17.59 0.76 
30-31 30.5 - - - - 33.95 2.11 19.59 1.10 
31-32 31.5 - - - - 31.26 1.81 16.91 0.80 
32-33 32.5 - - - - 35.88 2.41 21.53 1.40 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
33-34 33.5 - - - - 36.11 2.08 21.75 1.07 
34-35 34.5 - - - - 31.60 2.07 17.24 1.05 
35-36 35.5 - - - - 35.54 2.31 21.19 1.29 
36-37 36.5 - - - - 34.55 1.55 20.20 0.53 
37-38 37.5 - - - - - - - - 
38-39 38.5 - - - - 32.77 2.04 18.42 1.02 
39-40 39.5 - - - - 32.16 2.09 17.81 1.08 
40-41 40.5 - - - - 28.18 1.63 13.83 0.61 
41-42 41.5 - - - - 25.34 1.59 10.99 0.57 
42-43 42.5 - - - - 22.81 1.25 8.45 0.23 
43-44 43.5 - - - - 15.80 0.99 1.45 -0.03 
44-45 44.5 - - - - 15.70 0.97 1.35 -0.05 
45-46 45.5 - - - - 15.98 1.01 1.63 -0.01 
46-47 46.5 - - - - 12.29 1.03 -2.06 0.02 
47-48 47.5 - - - - 14.55 0.89 0.20 -0.12 
48-49 48.5 - - - - 15.31 0.87 0.96 -0.14 
49-50 49.5 - - - - 13.19 1.28 -1.16 0.27 
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Appendix 6b 
Radioisotope values for Rigolets Mid site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
0-0.5 0.25 4.81 0.41 1.82 0.14 36.37 2.26 22.71 1.33 
0.5-1 0.75 0.00 0.00 2.63 0.23 36.81 2.13 23.15 1.21 
1-1.5 1.25 0.00 0.00 2.69 0.19 36.77 1.97 23.11 1.05 
1.5-2 1.75 0.00 0.00 3.72 0.25 34.19 1.95 20.53 1.02 
2-2.5 2.25 0.00 0.00 6.84 0.55 35.82 1.68 22.16 0.75 
2.5-3 2.75 0.00 0.00 7.50 0.65 40.08 2.09 26.42 1.17 
3-4 3.5 0.00 0.00 7.34 0.64 37.67 2.25 24.01 1.33 
4-5 4.5 0.00 0.00 4.98 0.37 39.74 2.51 26.08 1.59 
5-6 5.5 0.00 0.00 7.32 0.49 38.35 2.50 24.69 1.57 
6-7 6.5 0.00 0.00 9.55 1.00 34.08 1.96 20.42 1.04 
7-8 7.5 0.00 0.00 6.61 0.55 33.46 2.05 19.80 1.12 
8-9 8.5 0.00 0.00 9.15 0.90 36.26 2.31 22.60 1.39 

9-10 9.5 0.00 0.00 7.31 0.71 33.94 1.92 20.28 1.00 
10-11 10.5 0.00 0.00 3.59 0.28 35.19 2.16 21.53 1.24 
11-12 11.5 0.00 0.00 4.31 0.46 31.64 2.04 17.98 1.12 
12-13 12.5 0.00 0.00 3.65 0.40 27.06 1.62 13.40 0.70 
13-14 13.5 0.00 0.00 3.86 0.30 37.26 2.52 23.60 1.60 
14-15 14.5 0.00 0.00 2.81 0.29 30.80 1.77 17.14 0.84 
15-16 15.5 0.00 0.00 3.33 0.32 28.31 1.57 14.65 0.65 
16-17 16.5 0.00 0.00 2.13 0.16 25.62 1.65 11.96 0.72 
17-18 17.5 0.00 0.00 1.27 0.10 28.13 1.79 14.47 0.87 
18-19 18.5 0.00 0.00 0.00 0.00 29.57 1.82 15.91 0.89 
19-20 19.5 0.00 0.00 0.00 0.00 22.56 1.38 8.90 0.46 
20-21 20.5 - - - - 29.56 1.97 15.90 1.04 
21-22 21.5 - - - - 28.28 1.84 14.62 0.92 
22-23 22.5 - - - - 23.89 1.49 10.23 0.56 
23-24 23.5 - - - - 22.87 1.40 9.21 0.47 
24-25 24.5 - - - - 26.69 1.69 13.03 0.76 
25-26 25.5 - - - - 23.31 1.54 9.65 0.62 
26-27 26.5 - - - - 24.46 1.43 10.80 0.50 
27-28 27.5 - - - - 25.48 1.60 11.82 0.68 
28-29 28.5 - - - - 23.72 1.37 10.06 0.44 
29-30 29.5 - - - - 20.56 1.21 6.90 0.28 
30-31 30.5 - - - - 24.70 1.36 11.04 0.44 
31-32 31.5 - - - - 19.43 1.23 5.77 0.30 
32-33 32.5 - - - - 18.59 1.16 4.93 0.24 
33-34 33.5 - - - - 24.41 1.38 10.75 0.45 
34-35 34.5 - - - - 20.61 1.34 6.95 0.41 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
35-36 35.5 - - - - 26.31 1.69 12.65 0.77 
36-37 36.5 - - - - 21.25 1.24 7.59 0.32 
37-38 37.5 - - - - 22.44 1.23 8.78 0.30 
38-39 38.5 - - - - 23.05 1.38 9.39 0.46 
39-40 39.5 - - - - 22.07 1.28 8.41 0.36 
40-41 40.5 - - - - 12.41 1.05 -1.25 0.12 
41-42 41.5 - - - - 14.68 0.81 1.02 -0.11 
42-43 42.5 - - - - - - - - 
43-44 43.5 - - - - 12.89 0.87 -0.77 -0.06 
44-45 44.5 - - - - 14.42 0.89 0.76 -0.04 
45-46 45.5 - - - - - - - - 
46-47 46.5 - - - - 15.39 0.99 1.73 0.06 
47-48 47.5 - - - - 15.01 0.94 1.35 0.02 
48-49 48.5 - - - - 12.15 0.93 -1.51 0.01 
49-50 49.5 - - - - 13.82 0.90 0.16 -0.02 
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Appendix 6c 
Radioisotope values for Rigolets Low site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
0-0.5 0.25 0.00 0.00 0.00 0.00 32.88 1.76 16.07 0.72 
0.5-1 0.75 0.00 0.00 0.00 0.00 31.93 1.53 15.11 0.49 
1-1.5 1.25 0.00 0.00 0.00 0.00 34.84 2.25 18.03 1.21 
1.5-2 1.75 0.00 0.00 0.00 0.00 33.16 2.18 16.35 1.14 
2-2.5 2.25 0.00 0.00 0.00 0.00 39.75 2.30 22.93 1.26 
2.5-3 2.75 0.00 0.00 0.00 0.00 33.07 1.94 16.26 0.90 
3-4 3.5 0.00 0.00 0.00 0.00 34.34 2.04 17.53 1.00 
4-5 4.5 0.00 0.00 0.00 0.00 27.34 1.63 10.53 0.59 
5-6 5.5 0.00 0.00 0.00 0.00 28.84 1.86 12.03 0.82 
6-7 6.5 0.00 0.00 0.00 0.00 30.30 2.02 13.49 0.98 
7-8 7.5 0.00 0.00 0.00 0.00 31.73 1.95 14.92 0.91 
8-9 8.5 0.00 0.00 0.00 0.00 25.70 1.52 8.89 0.49 

9-10 9.5 0.00 0.00 0.00 0.00 28.18 1.42 11.36 0.38 
10-11 10.5 0.00 0.00 0.00 0.00 28.11 1.69 11.30 0.65 
11-12 11.5 0.00 0.00 0.00 0.00 24.95 1.48 8.14 0.44 
12-13 12.5 0.00 0.00 0.00 0.00 26.96 1.78 10.15 0.74 
13-14 13.5 0.00 0.00 0.00 0.00 25.34 1.59 8.53 0.55 
14-15 14.5 0.00 0.00 0.00 0.00 31.41 2.02 14.60 0.98 
15-16 15.5 0.00 0.00 0.00 0.00 30.41 1.94 13.60 0.90 
16-17 16.5 - - - - 31.70 1.87 14.89 0.83 
17-18 17.5 - - - - 26.15 1.62 9.33 0.58 
18-19 18.5 - - - - 29.36 1.71 12.54 0.68 
19-20 19.5 0.00 0.00 0.00 0.00 27.13 1.58 10.32 0.55 
20-21 20.5 - - - - 25.76 1.53 8.95 0.49 
21-22 21.5 - - - - 29.05 1.74 12.24 0.70 
22-23 22.5 - - - - 31.29 1.78 14.48 0.74 
23-24 23.5 - - - - 28.49 1.77 11.68 0.73 
24-25 24.5 0.00 0.00 0.00 0.00 32.49 2.22 15.68 1.19 
25-26 25.5 - - - - 18.03 1.21 1.21 0.17 
26-27 26.5 - - - - 25.61 1.48 8.79 0.44 
27-28 27.5 - - - - 22.94 1.29 6.13 0.25 
28-29 28.5 - - - - 31.55 2.15 14.74 1.11 
29-30 29.5 0.00 0.00 0.00 0.00 30.79 2.11 13.98 1.07 
30-31 30.5 - - - - 26.80 1.71 9.99 0.67 
31-32 31.5 - - - - 24.22 1.43 7.41 0.39 
32-33 32.5 - - - - 22.34 1.31 5.53 0.27 
33-34 33.5 - - - - 24.61 1.58 7.80 0.54 
34-35 34.5 - - - - 25.09 1.60 8.27 0.56 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
35-36 35.5 - - - - 24.56 1.47 7.75 0.43 
36-37 36.5 - - - - 25.60 1.40 8.79 0.36 
37-38 37.5 - - - - 26.53 1.49 9.72 0.45 
38-39 38.5 - - - - 17.98 1.08 1.17 0.04 
39-40 39.5 - - - - 23.88 1.49 7.07 0.45 
40-41 40.5 - - - - 16.55 0.98 -0.26 -0.06 
41-42 41.5 - - - - 16.02 0.97 -0.79 -0.07 
42-43 42.5 - - - - 14.95 0.95 -1.86 -0.09 
43-44 43.5 - - - - 14.80 0.93 -2.01 -0.11 
44-45 44.5 - - - - 18.00 1.07 1.19 0.03 
45-46 45.5 - - - - 16.87 1.11 0.06 0.07 
46-47 46.5 - - - - - - - - 
47-48 47.5 - - - - 15.56 0.94 -1.25 -0.10 
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Appendix 6d 
Radioisotope values for Keel Boat Pass Island High site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be error 
(mBq/g) 

137Cs 
(Bq/kg) 

137Cs error 
(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb error 
(Bq/kg) 

0-0.5 0.25 33.99 2.87 0.00 0.00 56.29 3.19 
0.5-1 0.75 11.82 1.27 0.00 0.00 34.47 2.14 
1-1.5 1.25 13.35 1.33 0.00 0.00 38.82 2.27 
1.5-2 1.75 7.54 0.80 0.00 0.00 49.03 2.79 
2-2.5 2.25 0.00 0.00 0.00 0.00 56.56 3.91 
2.5-3 2.75 0.00 0.00 0.00 0.00 49.19 2.97 
3-4 3.5 0.00 0.00 0.00 0.00 44.38 2.57 
4-5 4.5 0.00 0.00 0.00 0.00 - - 
5-6 5.5 - - - - 54.40 3.24 
6-7 6.5 - - - - 42.78 2.81 
7-8 7.5 - - - - 28.43 1.80 
8-9 8.5 - - - - 41.29 2.63 

9-10 9.5 - - - - 40.32 2.43 
10-11 10.5 - - - - 43.30 2.20 
11-12 11.5 - - - - 31.53 1.85 
12-13 12.5 - - - - 24.81 1.27 
13-14 13.5 - - - - 30.25 1.79 
14-15 14.5 - - - - 30.21 1.51 
15-16 15.5 - - - - 26.39 1.54 
16-17 16.5 - - - - 19.83 1.17 
17-18 17.5 - - - - 39.66 2.36 
18-19 18.5 - - - - 49.97 3.08 
19-20 19.5 - - - - 62.06 4.71 
20-21 20.5 - - - - 76.35 3.96 
21-22 21.5 - - - - 47.14 2.81 
22-23 22.5 - - - - 31.04 1.87 
23-24 23.5 - - - - 25.40 1.50 
24-25 24.5 - - - - 25.20 1.47 
25-26 25.5 - - - - 23.41 1.42 
26-27 26.5 - - - - 21.40 1.23 
27-28 27.5 - - - - 29.15 1.63 
28-29 28.5 - - - - 49.61 2.87 
29-30 29.5 - - - - 51.35 2.86 
30-31 30.5 - - - - 52.94 3.46 
31-32 31.5 - - - - 49.60 3.13 
32-33 32.5 - - - - 47.75 3.33 
33-34 33.5 - - - - 51.48 3.25 
34-35 34.5 - - - - 49.12 3.03 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be error 
(mBq/g) 

137Cs 
(Bq/kg) 

137Cs error 
(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb error 
(Bq/kg) 

35-36 35.5 - - - - 52.65 3.35 
36-37 36.5 - - - - 51.90 3.24 
37-38 37.5 - - - - 40.69 2.68 
38-39 38.5 - - - - 41.83 2.72 
39-40 39.5 - - - - 46.15 3.25 
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Appendix 6e 
Radioisotope values for Keel Boat Pass Island Mid site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
0-0.5 0.25 0.00 0.00 0.00 0.00 41.30 2.40 18.06 1.01 
0.5-1 0.75 0.00 0.00 0.00 0.00 37.16 2.19 13.92 0.79 
1-1.5 1.25 0.00 0.00 0.00 0.00 35.57 1.96 12.33 0.57 
1.5-2 1.75 0.00 0.00 0.00 0.00 31.48 1.74 8.24 0.34 
2-2.5 2.25 0.00 0.00 0.51 0.04 34.94 2.07 11.70 0.67 
2.5-3 2.75 0.00 0.00 0.00 0.00 20.47 1.23 -2.77 -0.16 
3-4 3.5 0.00 0.00 0.00 0.00 25.96 1.52 2.72 0.13 
4-5 4.5 - - - - - - - - 
5-6 5.5 - - - - 28.22 1.56 4.98 0.17 
6-7 6.5 - - - - 45.22 2.57 21.98 1.18 
7-8 7.5 - - - - 51.12 3.25 27.88 1.85 
8-9 8.5 - - - - 48.16 2.67 24.92 1.28 

9-10 9.5 - - - - 42.91 2.97 19.67 1.58 
10-11 10.5 - - - - 37.31 2.34 14.07 0.94 
11-12 11.5 - - - - 40.63 2.53 17.40 1.14 
12-13 12.5 - - - - 43.37 2.94 20.13 1.54 
13-14 13.5 - - - - 34.85 2.16 11.61 0.76 
14-15 14.5 - - - - 45.66 2.95 22.42 1.56 
15-16 15.5 - - - - 50.16 3.03 26.92 1.63 
16-17 16.5 - - - - 48.58 2.85 25.34 1.45 
17-18 17.5 - - - - 44.08 2.68 20.84 1.28 
18-19 18.5 - - - - 37.83 2.17 14.59 0.78 
19-20 19.5 - - - - 38.25 2.29 15.01 0.89 
20-21 20.5 - - - - 45.91 2.84 22.68 1.44 
21-22 21.5 - - - - 40.91 2.50 17.67 1.11 
22-23 22.5 - - - - 49.59 2.93 26.35 1.54 
23-24 23.5 - - - - 50.37 3.16 27.13 1.76 
24-25 24.5 - - - - 45.34 2.73 22.10 1.33 
25-26 25.5 - - - - 35.09 2.21 11.85 0.81 
26-27 26.5 - - - - 23.08 1.30 -0.16 -0.09 
27-28 27.5 - - - - 22.10 1.30 -1.14 -0.09 
28-29 28.5 - - - - 22.82 1.28 -0.42 -0.11 
29-30 29.5 - - - - 20.96 1.21 -2.28 -0.19 
30-31 30.5 - - - - 27.98 1.82 4.74 0.42 
31-32 31.5 - - - - 20.29 1.13 -2.95 -0.27 
32-33 32.5 - - - - 27.96 1.57 4.73 0.18 
33-34 33.5 - - - - 26.43 1.50 3.19 0.10 
34-35 34.5 - - - - 30.58 1.82 7.34 0.43 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
35-36 35.5 - - - - 52.71 3.09 29.47 1.70 
36-37 36.5 - - - - 26.09 1.42 2.85 0.02 
37-38 37.5 - - - - 26.16 1.71 2.92 0.31 
38-39 38.5 - - - - 22.38 1.41 -0.86 0.02 
39-40 39.5 - - - - 20.76 1.22 -2.48 -0.18 
40-41 40.5 - - - - 25.32 1.47 2.08 0.08 
41-42 41.5 - - - - 35.68 2.33 12.44 0.93 
42-43 42.5 - - - - 34.44 2.18 11.20 0.78 
43-44 43.5 - - - - 31.38 1.65 8.14 0.26 
44-45 44.5 - - - - 31.51 1.86 8.27 0.46 
45-46 45.5 - - - - 24.76 1.61 1.52 0.22 
46-47 46.5 - - - - 23.57 1.50 0.33 0.10 
47-48 47.5 - - - - 24.24 1.41 1.00 0.01 
48-49 48.5 - - - - 23.08 1.33 -0.16 -0.06 
49-50 49.5 - - - - 22.40 1.45 -0.84 0.05 
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Appendix 6f 
Radioisotope values for Keel Boat Pass Island Low site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
0-0.5 0.25 0.00 0.00 0.00 0.00 37.53 2.03 10.81 0.47 
0.5-1 0.75 0.00 0.00 0.00 0.00 44.80 2.65 18.08 1.10 
1-1.5 1.25 0.00 0.00 0.00 0.00 45.01 2.47 18.29 0.91 
1.5-2 1.75 0.00 0.00 0.84 0.11 53.03 3.30 26.31 1.75 
2-2.5 2.25 0.00 0.00 0.00 0.00 46.64 2.78 19.92 1.23 
2.5-3 2.75 0.00 0.00 0.00 0.00 48.80 2.87 22.08 1.31 
3-4 3.5 0.00 0.00 1.71 0.17 39.87 2.15 13.15 0.60 
4-5 4.5 - - - - 35.11 2.16 8.38 0.60 
5-6 5.5 - - - - 39.44 2.83 12.72 1.27 
6-7 6.5 - - - - 43.47 2.42 16.75 0.86 
7-8 7.5 - - - - 43.86 2.46 17.14 0.90 
8-9 8.5 - - - - 41.74 2.45 15.02 0.89 

9-10 9.5 - - - - 34.10 2.06 7.38 0.50 
10-11 10.5 - - - - 32.78 1.82 6.06 0.26 
11-12 11.5 - - - - 33.49 2.01 6.77 0.45 
12-13 12.5 - - - - 28.43 1.62 1.71 0.06 
13-14 13.5 - - - - 22.83 1.34 -3.89 -0.22 
14-15 14.5 - - - - 25.04 1.42 -1.69 -0.13 
15-16 15.5 - - - - 23.10 1.39 -3.62 -0.16 
16-17 16.5 - - - - 18.58 1.10 -8.15 -0.46 
17-18 17.5 - - - - 20.97 1.19 -5.75 -0.37 
18-19 18.5 - - - - 25.92 1.58 -0.81 0.02 
19-20 19.5 - - - - 28.96 1.49 2.24 -0.07 
20-21 20.5 - - - - 32.99 2.10 6.27 0.55 
21-22 21.5 - - - - 29.07 1.88 2.35 0.32 
22-23 22.5 - - - - 33.66 2.27 6.94 0.71 
23-24 23.5 - - - - 39.01 2.40 12.29 0.85 
24-25 24.5 - - - - 37.05 2.18 10.33 0.63 
25-26 25.5 - - - - 35.12 2.29 8.40 0.74 
26-27 26.5 - - - - 29.13 1.84 2.41 0.28 
27-28 27.5 - - - - 24.61 1.59 -2.11 0.04 
28-29 28.5 - - - - 28.28 1.75 1.56 0.19 
29-30 29.5 - - - - 32.56 1.86 5.83 0.30 
30-31 30.5 - - - - 37.21 2.42 10.49 0.86 
31-32 31.5 - - - - 32.34 1.71 5.61 0.15 
32-33 32.5 - - - - 28.90 1.70 2.18 0.15 
33-34 33.5 - - - - 27.66 1.80 0.94 0.24 
34-35 34.5 - - - - 25.37 1.41 -1.36 -0.14 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
35-36 35.5 - - - - 26.57 1.51 -0.15 -0.05 
36-37 36.5 - - - - 24.56 1.27 -2.16 -0.29 
37-38 37.5 - - - - 25.72 1.45 -1.00 -0.11 
38-39 38.5 - - - - 26.19 1.55 -0.53 -0.01 
39-40 39.5 - - - - 28.25 1.67 1.53 0.11 
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Appendix 6g 
Radioisotope values for Dry Bread Island High site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be error 
(mBq/g) 

137Cs 
(Bq/kg) 

137Cs error 
(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb error 
(Bq/kg) 

0-0.5 0.25 0.00 0.00 0.00 0.00 36.43 2.29 
0.5-1 0.75 0.00 0.00 0.00 0.00 37.37 2.40 
1-1.5 1.25 0.00 0.00 0.00 0.00 31.71 1.83 
1.5-2 1.75 0.00 0.00 0.00 0.00 28.38 1.66 
2-2.5 2.25 0.00 0.00 0.00 0.00 23.56 1.38 
2.5-3 2.75 0.00 0.00 0.00 0.00 22.57 1.42 
3-4 3.5 0.00 0.00 0.00 0.00 19.73 0.98 
4-5 4.5 0.00 0.00 0.00 0.00 20.47 0.89 
5-6 5.5 - - - - 22.05 0.98 
6-7 6.5 - - - - 22.38 1.14 
7-8 7.5 - - - - 31.62 1.85 
8-9 8.5 - - - - 25.09 1.49 

9-10 9.5 0.00 0.00 0.00 0.00 21.08 1.22 
10-11 10.5 - - - - 20.21 1.17 
11-12 11.5 - - - - 22.28 1.27 
12-13 12.5 - - - - 24.52 1.45 
13-14 13.5 - - - - 23.33 1.30 
14-15 14.5 0.00 0.00 0.00 0.00 27.17 1.65 
15-16 15.5 - - - - 25.03 1.44 
16-17 16.5 - - - - 26.10 1.51 
17-18 17.5 - - - - 30.52 1.83 
18-19 18.5 - - - - 36.03 2.23 
19-20 19.5 0.00 0.00 0.00 0.00 34.30 1.87 
20-21 20.5 - - - - 33.40 2.07 
21-22 21.5 - - - - 29.37 1.97 
22-23 22.5 - - - - 29.66 1.87 
23-24 23.5 - - - - - - 
24-25 24.5 0.00 0.00 0.00 0.00 32.59 1.99 
25-26 25.5 - - - - 21.69 1.30 
26-27 26.5 - - - - 20.46 1.23 
27-28 27.5 - - - - 28.37 1.86 
28-29 28.5 - - - - 32.90 1.91 
29-30 29.5 0.00 0.00 0.00 0.00 37.82 2.69 
30-31 30.5 - - - - 45.86 2.13 
31-32 31.5 - - - - 39.82 2.38 
32-33 32.5 - - - - 41.96 2.58 
33-34 33.5 - - - - 34.06 2.19 
34-35 34.5 - - - - 32.56 1.88 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be error 
(mBq/g) 

137Cs 
(Bq/kg) 

137Cs error 
(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb error 
(Bq/kg) 

35-36 35.5 - - - - 34.28 2.08 
36-37 36.5 - - - - 31.40 1.87 
37-38 37.5 - - - - 30.80 1.97 
38-39 38.5 - - - - 22.33 1.35 
39-40 39.5 - - - - 29.88 1.94 
40-41 40.5 - - - - 44.21 3.05 
41-42 41.5 - - - - 34.83 1.92 
42-43 42.5 - - - - 39.44 2.49 
43-44 43.5 - - - - 55.01 3.46 
44-45 44.5 - - - - 46.44 2.82 
45-46 45.5 - - - - 37.69 2.30 
46-47 46.5 - - - - 31.35 1.81 
47-48 47.5 - - - - 34.00 2.05 
48-49 48.5 - - - - 38.28 2.12 
49-50 49.5 - - - - 50.53 3.09 
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Appendix 6h 
Radioisotope values for Dry Bread Island Mid site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be error 
(mBq/g) 

137Cs 
(Bq/kg) 

137Cs error 
(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb error 
(Bq/kg) 

0-0.5 0.25 0.00 0.00 0.00 0.00 15.54 0.97 
0.5-1 0.75 0.00 0.00 0.00 0.00 19.24 1.16 
1-1.5 1.25 0.00 0.00 0.00 0.00 15.06 0.88 
1.5-2 1.75 0.00 0.00 0.00 0.00 17.59 1.10 
2-2.5 2.25 0.00 0.00 0.00 0.00 24.53 1.70 
2.5-3 2.75 0.00 0.00 0.00 0.00 18.17 1.05 
3-4 3.5 0.00 0.00 0.00 0.00 27.84 1.55 
4-5 4.5 0.00 0.00 0.00 0.00 37.77 2.20 
5-6 5.5 0.00 0.00 0.00 0.00 31.81 1.79 
6-7 6.5 0.00 0.00 0.00 0.00 33.33 2.02 
7-8 7.5 0.00 0.00 0.00 0.00 33.09 1.97 
8-9 8.5 0.00 0.00 0.00 0.00 36.40 2.25 

9-10 9.5 0.00 0.00 0.00 0.00 35.35 1.77 
10-11 10.5 0.00 0.00 0.00 0.00 33.84 1.99 
11-12 11.5 0.00 0.00 0.00 0.00 38.70 2.36 
12-13 12.5 0.00 0.00 0.00 0.00 36.23 1.98 
13-14 13.5 0.00 0.00 1.16 0.12 36.83 2.31 
14-15 14.5 0.00 0.00 1.04 0.09 39.80 2.35 
15-16 15.5 0.00 0.00 0.00 0.00 34.61 2.05 
16-17 16.5 0.00 0.00 0.00 0.00 37.92 2.09 
17-18 17.5 0.00 0.00 0.00 0.00 36.04 2.03 
18-19 18.5 0.00 0.00 1.21 0.12 30.80 1.36 
19-20 19.5 0.00 0.00 1.22 0.12 37.75 1.94 
20-21 20.5 0.00 0.00 1.23 0.14 32.09 1.69 
21-22 21.5 0.00 0.00 2.29 0.30 38.16 2.37 
22-23 22.5 0.00 0.00 0.00 0.00 34.05 2.04 
23-24 23.5 0.00 0.00 1.54 0.21 32.72 2.09 
24-25 24.5 0.00 0.00 1.43 0.16 - - 
25-26 25.5 0.00 0.00 1.13 0.12 31.69 2.02 
26-27 26.5 0.00 0.00 1.94 0.18 34.59 2.10 
27-28 27.5 0.00 0.00 1.01 0.07 30.32 1.78 
28-29 28.5 0.00 0.00 0.00 0.00 28.51 1.50 
29-30 29.5 0.00 0.00 0.00 0.00 32.22 1.54 
30-31 30.5 0.00 0.00 0.000 0.000 42.07 2.54 
31-32 31.5 0.00 0.00 1.905 0.187 36.44 2.35 
32-33 32.5 - - - - 34.74 2.02 
33-34 33.5 - - - - 39.49 2.51 
34-35 34.5 - - - - 45.12 2.92 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be error 
(mBq/g) 

137Cs 
(Bq/kg) 

137Cs error 
(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb error 
(Bq/kg) 

35-36 35.5 - - - - 41.69 2.55 
36-37 36.5 - - - - 39.14 2.30 
37-38 37.5 - - - - 41.17 2.67 
38-39 38.5 - - - - 28.67 1.79 
39-40 39.5 - - - - 38.76 2.51 
40-41 40.5 - - - - 45.41 3.08 
41-42 41.5 - - - - 38.58 2.22 
42-43 42.5 - - - - 35.94 2.24 
43-44 43.5 - - - - 37.51 2.34 
44-45 44.5 - - - - 34.57 1.86 
45-46 45.5 - - - - 35.77 2.04 
46-47 46.5 - - - - 36.03 2.02 
47-48 47.5 - - - - 35.23 2.56 
48-49 48.5 - - - - 35.38 2.49 
49-50 49.5 - - - - 37.89 2.45 

 
  



 145 

Appendix 6i 
Radioisotope values for Dry Bread Island Low site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be error 
(mBq/g) 

137Cs 
(Bq/kg) 

137Cs error 
(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb error 
(Bq/kg) 

0-0.5 0.25 0.00 0.00 0.00 0.00 19.15 1.11 
0.5-1 0.75 0.00 0.00 0.00 0.00 25.69 1.48 
1-1.5 1.25 0.00 0.00 0.00 0.00 23.62 1.30 
1.5-2 1.75 0.00 0.00 0.00 0.00 24.03 1.40 
2-2.5 2.25 0.00 0.00 0.00 0.00 20.63 1.16 
2.5-3 2.75 0.00 0.00 0.00 0.00 25.69 1.44 
3-4 3.5 0.00 0.00 0.00 0.00 22.89 1.36 
4-5 4.5 0.00 0.00 0.00 0.00 23.66 1.38 
5-6 5.5 0.00 0.00 0.00 0.00 9.15 0.51 
6-7 6.5 0.00 0.00 0.00 0.00 28.39 1.50 
7-8 7.5 0.00 0.00 0.00 0.00 25.53 1.49 
8-9 8.5 0.00 0.00 0.00 0.00 24.58 1.44 

9-10 9.5 0.00 0.00 0.00 0.00 26.56 1.53 
10-11 10.5 0.00 0.00 0.00 0.00 31.80 1.90 
11-12 11.5 0.00 0.00 0.00 0.00 27.78 1.53 
12-13 12.5 0.00 0.00 0.00 0.00 24.96 1.42 
13-14 13.5 0.00 0.00 0.00 0.00 23.25 1.23 
14-15 14.5 0.00 0.00 0.00 0.00 23.42 1.35 
15-16 15.5 - - - - 22.74 1.30 
16-17 16.5 - - - - 24.63 1.43 
17-18 17.5 - - - - 23.97 1.25 
18-19 18.5 - - - - 21.84 1.04 
19-20 19.5 0.00 0.00 0.00 0.00 23.15 1.24 
20-21 20.5 - - - - 23.82 1.30 
21-22 21.5 - - - - 23.19 1.28 
22-23 22.5 - - - - 21.12 1.09 
23-24 23.5 - - - - 18.85 0.92 
24-25 24.5 0.00 0.00 0.00 0.00 21.18 1.24 
25-26 25.5 - - - - 21.30 1.22 
26-27 26.5 - - - - 24.41 1.47 
27-28 27.5 - - - - 19.32 1.15 
28-29 28.5 - - - - 21.75 1.27 
29-30 29.5 - - - - 22.77 1.32 
30-31 30.5 - - - - 19.54 1.23 
31-32 31.5 - - - - 22.56 1.35 
32-33 32.5 - - - - 22.35 1.38 
33-34 33.5 - - - - 23.88 1.50 
34-35 34.5 - - - - 24.21 1.34 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be error 
(mBq/g) 

137Cs 
(Bq/kg) 

137Cs error 
(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb error 
(Bq/kg) 

35-36 35.5 - - - - 24.57 1.54 
36-37 36.5 - - - - 26.26 1.66 
37-38 37.5 - - - - 22.73 1.43 
38-39 38.5 - - - - 20.68 1.12 
39-40 39.5 - - - - 16.09 1.00 
40-41 40.5 - - - - 23.75 1.52 
41-42 41.5 - - - - 20.37 1.32 
42-43 42.5 - - - - 26.21 1.61 
43-44 43.5 - - - - 22.95 1.29 
44-45 44.5 - - - - 24.50 1.53 
45-46 45.5 - - - - 27.02 1.73 
46-47 46.5 - - - - 23.89 1.64 
47-48 47.5 - - - - 26.44 1.54 
48-49 48.5 - - - - 25.41 1.72 
49-50 49.5 - - - - 22.99 1.60 
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Appendix 6j 
Radioisotope values for Bay Jimmy High site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
0-0.5 0.25 0.00 0.00 2.03 0.17 - - - - 
0.5-1 0.75 0.00 0.00 0.00 0.00 75.95 4.58 43.60 2.52 
1-1.5 1.25 0.00 0.00 1.79 0.24 75.93 4.65 43.57 2.59 
1.5-2 1.75 0.00 0.00 1.64 0.20 75.58 4.85 43.23 2.79 
2-2.5 2.25 0.00 0.00 1.72 0.14 93.88 6.01 61.53 3.95 
2.5-3 2.75 0.00 0.00 - - 86.18 6.36 53.82 4.30 
3-4 3.5 0.00 0.00 2.04 0.23 85.55 5.52 53.20 3.46 
4-5 4.5 0.00 0.00 2.21 0.21 91.93 6.27 59.58 4.21 
5-6 5.5 - - - - 77.60 5.53 45.25 3.47 
6-7 6.5 - - - - 103.49 6.18 71.14 4.11 
7-8 7.5 - - - - 98.31 6.95 65.96 4.89 
8-9 8.5 - - - - 116.47 6.92 84.12 4.86 

9-10 9.5 - - - - 116.03 6.67 83.68 4.61 
10-11 10.5 - - - - 87.43 5.66 55.07 3.60 
11-12 11.5 - - - - 92.08 6.13 59.73 4.07 
12-13 12.5 - - - - 94.23 5.18 61.87 3.12 
13-14 13.5 - - - - 88.80 4.36 56.45 2.30 
14-15 14.5 - - - - 85.69 4.54 53.34 2.47 
15-16 15.5 - - - - 101.68 6.34 69.33 4.28 
16-17 16.5 - - - - 91.89 5.85 59.54 3.79 
17-18 17.5 - - - - 73.77 5.54 41.42 3.48 
18-19 18.5 - - - - 90.72 6.17 58.36 4.11 
19-20 19.5 - - - - 74.68 5.64 42.32 3.58 
20-21 20.5 - - - - 78.19 5.06 45.84 3.00 
21-22 21.5 - - - - 83.03 4.53 50.67 2.47 
22-23 22.5 - - - - 91.12 5.24 58.77 3.18 
23-24 23.5 - - - - 105.02 7.44 72.67 5.38 
24-25 24.5 - - - - 92.04 7.00 59.69 4.94 
25-26 25.5 - - - - 101.25 6.02 68.89 3.96 
26-27 26.5 - - - - 89.25 6.18 56.90 4.12 
27-28 27.5 - - - - 90.54 6.95 58.19 4.89 
28-29 28.5 - - - - 64.61 4.01 32.25 1.95 
29-30 29.5 - - - - 84.02 4.92 51.66 2.86 
30-31 30.5 - - - - 74.01 4.96 41.66 2.90 
31-32 31.5 - - - - 66.64 4.60 34.29 2.54 
32-33 32.5 - - - - 64.45 4.08 32.09 2.01 
33-34 33.5 - - - - 65.15 4.37 32.80 2.31 
34-35 34.5 - - - - 64.46 3.57 32.10 1.50 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
35-36 35.5 - - - - 61.16 4.28 28.81 2.22 
36-37 36.5 - - - - 74.42 6.05 42.07 3.99 
37-38 37.5 - - - - 58.15 4.22 25.80 2.16 
38-39 38.5 - - - - 59.27 3.19 26.92 1.13 
39-40 39.5 - - - - 62.22 3.77 29.87 1.71 
40-41 40.5 - - - - - - - - 
41-42 41.5 - - - - 45.35 2.61 12.99 0.55 
42-43 42.5 - - - - 36.84 2.26 4.49 0.20 
43-44 43.5 - - - - 34.70 2.05 2.35 -0.01 
44-45 44.5 - - - - 32.03 2.13 -0.32 0.07 
45-46 45.5 - - - - 30.33 2.00 -2.02 -0.06 
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Appendix 6k 
Radioisotope values for Bay Jimmy Mid site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be error 
(mBq/g) 

137Cs 
(Bq/kg) 

137Cs error 
(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb error 
(Bq/kg) 

0-0.5 0.25 0.00 0.00 0.00 0.00 51.87 3.37 
0.5-1 0.75 0.00 0.00 0.57 0.07 52.48 2.82 
1-1.5 1.25 0.00 0.00 1.56 0.23 54.93 2.59 
1.5-2 1.75 0.00 0.00 1.44 0.11 64.31 4.56 
2-2.5 2.25 0.00 0.00 0.96 0.11 47.25 3.06 
2.5-3 2.75 0.00 0.00 1.47 0.16 63.65 4.07 
3-4 3.5 0.00 0.00 1.57 0.19 73.34 4.78 
4-5 4.5 0.00 0.00 1.35 0.15 67.40 3.93 
5-6 5.5 - - - - 65.03 4.48 
6-7 6.5 - - - - 76.61 5.28 
7-8 7.5 - - - - 72.48 4.17 
8-9 8.5 - - - - 75.35 4.28 

9-10 9.5 - - - - 74.90 4.35 
10-11 10.5 - - - - 79.76 5.28 
11-12 11.5 - - - - 55.01 3.38 
12-13 12.5 - - - - 55.98 3.60 
13-14 13.5 - - - - - - 
14-15 14.5 - - - - 59.14 3.83 
15-16 15.5 - - - - 65.38 3.98 
16-17 16.5 - - - - 62.32 3.83 
17-18 17.5 - - - - 60.45 3.89 
18-19 18.5 - - - - 75.25 5.20 
19-20 19.5 - - - - 70.71 3.97 
20-21 20.5 - - - - 72.74 5.00 
21-22 21.5 - - - - 54.78 3.81 
22-23 22.5 - - - - 71.40 4.28 
23-24 23.5 - - - - 62.26 4.00 
24-25 24.5 - - - - 61.72 3.54 
25-26 25.5 - - - - 55.84 3.73 
26-27 26.5 - - - - 67.09 3.63 
27-28 27.5 - - - - 67.58 4.97 
28-29 28.5 - - - - 69.50 4.67 
29-30 29.5 - - - - 72.88 5.37 
30-31 30.5 - - - - 94.03 5.51 
31-32 31.5 - - - - 98.43 5.63 
32-33 32.5 - - - - 100.96 7.00 
33-34 33.5 - - - - 85.37 6.69 
34-35 34.5 - - - - 90.46 6.74 
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Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be error 
(mBq/g) 

137Cs 
(Bq/kg) 

137Cs error 
(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb error 
(Bq/kg) 

35-36 35.5 - - - - 86.98 5.09 
36-37 36.5 - - - - 84.18 5.84 
37-38 37.5 - - - - 85.35 5.71 
38-39 38.5 - - - - 78.69 5.32 
39-40 39.5 - - - - 80.58 5.28 
40-41 40.5 - - - - 89.38 5.11 
41-42 41.5 - - - - 66.68 4.26 
42-43 42.5 - - - - 68.46 4.28 
43-44 43.5 - - - - 72.83 4.57 
44-45 44.5 - - - - 63.68 4.13 
45-46 45.5 - - - - 70.65 4.05 
46-47 46.5 - - - - 58.47 3.47 
47-48 47.5 - - - - 60.40 2.94 
48-49 48.5 - - - - 60.17 4.38 
49-50 49.5 - - - - 61.79 4.09 
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Appendix 6l 
Radioisotope values for Bay Jimmy Low site. 
 

Sample 
interval 

(cm) 

Plot 
depth 
(cm) 

7Be 
(mBq/g) 

7Be 
error 

(mBq/g) 

137Cs 
(Bq/kg) 

137Cs 
error 

(Bq/kg) 

210Pb 
(Bq/kg) 

210Pb 
error 

(Bq/kg) 

210Pbxs 
(Bq/kg) 

210Pbxs 
error 

(Bq/kg) 
0-0.5 0.25 0.00 0.00 16.72 1.24 40.42 2.45 24.00 1.30 
0.5-1 0.75 0.00 0.00 21.25 1.37 - - - - 
1-1.5 1.25 0.00 0.00 18.95 1.24 42.76 2.47 26.34 1.31 
1.5-2 1.75 0.00 0.00 17.70 1.16 38.05 2.74 21.63 1.59 
2-2.5 2.25 0.00 0.00 12.26 0.79 38.45 2.31 22.03 1.16 
2.5-3 2.75 0.00 0.00 7.40 0.55 35.34 2.42 18.92 1.26 
3-4 3.5 0.00 0.00 5.90 0.37 43.84 2.50 27.42 1.34 
4-5 4.5 0.00 0.00 3.07 0.20 44.87 2.95 28.45 1.79 
5-6 5.5 - - - - 37.91 2.54 21.49 1.39 
6-7 6.5 - - - - 27.86 1.78 11.44 0.63 
7-8 7.5 - - - - 25.97 1.69 9.55 0.53 
8-9 8.5 - - - - 25.02 1.63 8.60 0.47 

9-10 9.5 - - - - 24.04 1.63 7.62 0.47 
10-11 10.5 - - - - 30.51 2.18 14.09 1.02 
11-12 11.5 - - - - 25.91 1.85 9.49 0.69 
12-13 12.5 - - - - 20.57 1.45 4.15 0.29 
13-14 13.5 - - - - 27.10 1.74 10.68 0.58 
14-15 14.5 - - - - 26.39 1.75 9.98 0.59 
15-16 15.5 - - - - 24.33 1.69 7.91 0.53 
16-17 16.5 - - - - 23.59 1.50 7.17 0.34 
17-18 17.5 - - - - 22.37 1.41 5.95 0.25 
18-19 18.5 - - - - 25.35 1.65 8.93 0.49 
19-20 19.5 - - - - 22.08 1.35 5.66 0.19 
20-21 20.5 - - - - 24.33 1.37 7.91 0.21 
21-22 21.5 - - - - 30.93 1.97 14.51 0.81 
22-23 22.5 - - - - 26.77 1.60 10.35 0.45 
23-24 23.5 - - - - 21.27 1.40 4.85 0.24 
24-25 24.5 - - - - 18.53 1.20 2.11 0.04 
25-26 25.5 - - - - 20.13 1.41 3.71 0.25 
26-27 26.5 - - - - 19.76 1.19 3.34 0.03 
27-28 27.5 - - - - 20.47 1.28 4.05 0.12 
28-29 28.5 - - - - 17.86 1.13 1.44 -0.02 
29-30 29.5 - - - - 20.75 1.41 4.33 0.25 
30-31 30.5 - - - - 20.35 1.18 3.93 0.02 
31-32 31.5 - - - - 18.09 1.15 1.67 -0.01 
32-33 32.5 - - - - 17.04 1.07 0.62 -0.09 
33-34 33.5 - - - - 15.77 1.27 -0.65 0.11 
34-35 34.5 - - - - 16.45 1.14 0.03 -0.02 
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APPENDIX 7 
 
234Th and 238U data for all sites. 
    

Station Core Label Plot depth 
(cm) 

Decay-corrected 
234Thxs (Bq kg-1) 

Decay-corrected 
234Thxs error 

238U 
(Bq kg-1) 

238U error 

RIG High 0.25 86.95 5.60 43.25 2.61 

  0.75 66.12 4.98 48.80 3.86 

  1.25 92.95 5.43 46.34 3.69 

  1.75 54.48 4.12 49.08 4.22 

  2.25 66.38 5.22 50.16 2.93 

  2.75 51.13 4.61 42.12 2.18 
  3.5 82.68 5.70 49.62 2.66 
  4.5 158.11 11.28 38.25 2.28 
 Mid 0.25 47.79 3.58 62.37 4.05 
  0.75 221.31 15.90 55.05 4.87 
  1.25 70.92 5.54 52.95 4.48 
  1.75 88.05 6.77 64.29 4.00 
  2.25 43.97 3.43 73.32 5.38 
  2.75 168.34 14.58 50.20 3.52 
  3.5 99.87 9.61 57.25 4.37 
 Low 0.25 51.65 3.57 33.88 1.54 
  0.75 86.16 7.95 41.05 1.91 
  1.25 77.69 5.81 41.16 9.34 
  1.75 10.40 0.95 47.98 10.93 
  2.25 0.00 0.00 60.62 13.73 
  2.75 0.00 0.00 71.09 4.01 
  3.5 0.00 0.00 63.92 2.71 
  4.5 0.00 0.00 62.60 2.62 

KBP High 0.25 19.38 1.85 38.38 3.00 
  0.75 23.00 2.02 33.36 2.24 
  1.25 20.07 1.70 25.18 2.02 
  1.75 34.60 3.05 22.13 2.37 
  2.25 34.49 3.07 28.40 2.57 
  2.75 26.06 2.45 26.77 2.14 
  3.5 35.98 3.28 26.97 6.15 
  4.5 0.00 0.00 44.03 10.00 
 Mid 0.25 36.78 3.25 29.68 1.95 
  0.75 0.00 0.00 29.39 2.16 
  1.25 0.00 0.00 34.45 7.80 
  1.75 0.00 0.00 40.05 9.08 
  2.25 3.20 0.33 29.54 1.85 
  2.75 0.00 0.00 39.77 8.98 
  3.5 0.00 0.00 26.35 1.70 
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Station Core Label Plot depth 
(cm) 

Decay-corrected 
234Thxs (Bq kg-1) 

Decay-corrected 
234Thxs error 

238U 
(Bq kg-1) 

238U error 

KBP Low 0.25 86.62 6.20 33.54 2.01 
  0.75 46.32 4.83 32.14 2.15 
  1.25 43.37 4.33 37.83 3.51 
  1.75 36.58 3.63 44.10 4.49 
  2.25 39.13 3.71 40.14 3.16 
  2.75 0.00 0.00 39.84 4.06 
  3.5 0.00 0.00 42.95 3.96 

DBI High 0.25 74.09 5.72 26.91 2.01 
  0.75 68.55 6.60 31.08 1.79 
  1.25 121.23 11.67 54.73 3.75 
  1.75 0.00 0.00 66.55 4.03 
  2.25 79.44 6.74 51.68 3.08 
  2.75 327.51 27.14 36.37 2.19 
  3.5 262.37 18.05 32.12 1.62 
  4.5 0.00 0.00 26.43 5.98 
 Mid 0.25 0.00 0.00 1.37 0.11 
  0.75 71.28 6.29 9.86 0.75 
  1.25 2554.97 239.55 10.50 0.57 
  1.75 204.03 12.38 4.71 0.37 
  2.25 160.20 13.12 12.54 0.90 
  2.75 0.00 0.00 18.50 1.06 
  3.5 447.63 43.36 25.96 1.78 
 Low 0.25 15.86 1.25 41.87 2.76 
  0.75 53.00 3.56 30.17 7.13 
  1.25 0.00 0.00 45.47 2.78 
  1.75 42.67 3.26 35.53 1.98 
  2.25 51.94 4.11 46.87 3.56 
  2.75 0.00 0.00 47.79 3.03 

BJ High 0.25 140.64 7.23 35.57 2.17 
  0.75 784.14 56.23 24.78 1.02 
  1.25 464.16 30.94 39.40 3.36 
  1.75 1418.13 94.31 36.06 2.47 
  2.25 0.00 0.00 44.16 2.38 
  2.75 0.00 0.00 39.35 1.95 
  3.5 0.00 0.00 41.89 3.72 
  4.5 1035.30 100.22 35.60 2.86 
 Mid 0.25 458.20 30.65 30.77 2.63 
  0.75 1020.65 89.75 28.16 1.96 
  1.25 1414.10 117.13 29.27 1.54 
  1.75 714.84 63.47 28.61 2.45 
  2.25 1816.42 173.29 24.13 1.28 
  2.75 - - - - 
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Station Core Label Plot depth 
(cm) 

Decay-corrected 
234Thxs (Bq kg-1) 

Decay-corrected 
234Thxs error 

238U 
(Bq kg-1) 

238U error 

BJ Mid 3.5 1383.01 126.99 37.68 2.40 
  4.5 0.00 0.00 39.86 2.55 
 Low 0.25 1262.31 106.42 53.22 3.64 
  0.75 2962.32 222.88 53.81 4.08 
  1.25 2416.81 196.27 50.23 3.27 
  1.75 1682.46 158.01 54.93 3.85 
  2.25 139.97 9.80 58.15 3.64 
  2.75 33.45 3.00 66.93 3.51 
  3.5 3598.91 336.27 49.71 2.62 
  4.5 4157.80 384.15 59.82 4.60 

 
  



 155 

APPENDIX 8 
 
Appendix 8a 
Compound-specific polycyclic aromatic hydrocarbon data.  All units are ng/g.  A label of 
“nd” indicates that the compound was below detection limits. 
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RIG High 5 cm 1106.9 1064.9 15.2 10.7 19.1 16.3 nd 
  10 cm 780.0 751.8 22.3 18.5 39.5 31.8 nd 
 Mid 5 cm 565.9 535.3 12.7 9.2 27.9 20.9 nd 
  10 cm 506.4 482.0 13.8 9.3 17.7 15.2 nd 
 Low 5 cm 611.1 577.9 14.3 13.6 17.2 25.8 nd 
  10 cm 274.3 263.1 15.7 10.1 11.9 8.8 nd 

KBP High 5 cm 93.4 74.2 12.2 10.1 10.6 8.4 nd 
  10 cm 284.9 264.5 32.6 26.3 27.8 15.9 nd 
 Mid 5 cm 95.9 72.8 10.8 10.6 9.1 7.0 nd 
  10 cm 148.7 118.9 6.1 5.9 6.9 7.7 nd 
 Low 5 cm 144.1 115.5 6.3 6.3 10.3 6.4 nd 
  10 cm 154.9 114.8 5.4 4.9 7.2 5.2 nd 

DBI High  1 cm 107.2 78.6 17.7 16.0 nd nd nd 
  2 cm 92.7 71.6 15.5 14.5 15.3 nd nd 
  3 cm 5503.2 5420.3 12.4 9.9 12.0 nd nd 
  4 cm 3183.6 3118.2 23.3 20.6 20.6 nd nd 
  5 cm 142.9 131.9 17.8 15.7 16.3 nd nd 
 Mid 1 cm 375.2 309.3 35.1 39.3 58.1 nd nd 
  2 cm 511.7 467.3 33.2 24.8 40.3 51.1 nd 
  3 cm 292.6 261.8 23.6 14.6 22.2 15.4 nd 
  4 cm 169.3 153.6 14.3 13.7 14.5 8.9 nd 
  5 cm 112.2 99.5 8.8 6.5 8.6 4.5 nd 
 Low 1 cm 170.3 141.4 6.4 6.7 11.3 8.4 nd 
  2 cm 225.6 178.6 6.8 6.2 12.4 7.9 nd 
  3 cm 265.1 228.7 8.2 6.3 10.6 8.0 nd 
  4 cm 246.4 211.9 9.8 9.1 11.6 8.2 nd 
  5 cm 268.2 227.5 8.9 7.1 10.1 7.1 nd 

BJ High 1 cm 4357.6 4345.5 18.0 14.1 12.2 13.1 14.0 
  2 cm 18521.6 18279.4 332.1 191.1 220.1 258.9 305.4 
  3 cm 11599.1 11510.8 337.7 164.2 155.3 197.7 244.4 
 Mid 1 cm 19422.0 19356.2 152.2 96.3 101.6 155.3 297.4 
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BJ Mid 2 cm 21973.6 21913.3 96.1 57.1 56.8 87.1 130.4 
 Low 1 cm 7779.5 7768.2 219.8 181.1 208.5 278.6 412.9 
  2 cm 7802.7 7774.6 206.7 164.0 176.9 274.6 310.9 
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RIG High 5 cm 3.3 17.1 4.1 8.8 11.7 nd nd 
  10 cm 5.9 26.0 nd 3.4 52.0 55.9 26.0 
 Mid 5 cm 4.6 12.2 10.8 4.2 2.6 21.9 nd 
  10 cm 3.4 8.5 16.8 3.9 37.2 35.5 nd 
 Low 5 cm 4.1 9.0 1.8 4.1 1.5 nd nd 
  10 cm 3.2 2.8 0.6 2.2 33.6 36.6 nd 

KBP High 5 cm 3.1 nd nd nd 9.8 nd nd 
  10 cm 7.1 nd nd 2.8 45.9 43.7 nd 
 Mid 5 cm 2.7 nd nd 1.3 6.8 nd nd 
  10 cm 1.8 0.5 nd 1.1 20.3 13.0 3.6 
 Low 5 cm 3.3 nd nd 1.5 15.5 22.1 nd 
  10 cm 1.6 0.4 nd 1.4 17.1 13.6 nd 

DBI High  1 cm 5.9 nd nd nd nd nd nd 
  2 cm 4.7 nd nd nd nd nd nd 
  3 cm 5.0 100.0 nd nd nd nd nd 
  4 cm 7.3 97.2 nd nd nd nd nd 
  5 cm 3.5 1.6 nd nd nd nd nd 
 Mid 1 cm 17.7 nd nd nd nd nd nd 
  2 cm 13.3 nd nd 4.2 66.9 nd nd 
  3 cm 8.9 0.7 nd 3.2 38.8 nd nd 
  4 cm 3.5 1.8 nd 1.5 19.1 nd nd 
  5 cm 2.3 0.5 nd 1.4 16.1 7.6 nd 
 Low 1 cm 2.3 0.6 0.7 2.9 28.6 nd nd 
  2 cm 2.4 0.7 nd 3.7 41.4 nd nd 
  3 cm 2.3 0.6 nd 3.9 36.9 32.4 nd 
  4 cm 3.3 0.7 nd 4.2 48.0 31.0 nd 
  5 cm 3.0 nd nd 4.4 49.5 33.6 10.8 

BJ High 1 cm nd 2.3 1.9 11.0 20.9 32.7 0.0 
  2 cm 30.9 9.0 6.3 35.1 119.8 345.6 1262.6 
  3 cm 1098.7 5.9 22.6 94.1 128.2 384.5 547.5 
 Mid 1 cm 846.1 4.3 12.0 80.1 111.2 445.7 957.7 
  2 cm 400.0 3.7 6.8 31.1 86.7 423.6 1136.8 
 Low 1 cm 1231.4 6.6 21.5 118.8 142.1 418.8 605.7 
  2 cm 1242.6 3.7 19.6 113.8 147.2 465.1 504.9 
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RIG High 5 cm 68.7 29.2 34.8 32.0 nd nd 3.2 
  10 cm 14.3 18.3 18.5 18.7 14.3 6.4 nd 
 Mid 5 cm 14.0 15.6 17.1 16.5 nd nd 2.9 
  10 cm 14.4 10.7 13.7 9.4 6.8 nd 3.7 
 Low 5 cm 17.0 12.9 23.0 24.5 17.6 nd nd 
  10 cm 11.9 3.9 8.6 6.8 nd nd 1.3 

KBP High 5 cm 8.2 1.6 nd nd nd nd nd 
  10 cm 13.9 2.2 11.6 nd nd nd nd 
 Mid 5 cm 5.8 1.3 5.3 nd nd nd nd 
  10 cm 4.6 1.1 3.5 2.4 nd nd nd 
 Low 5 cm 3.8 2.0 0.0 nd nd nd nd 
  10 cm 4.4 1.3 4.6 4.1 nd nd nd 

DBI High 1 cm 7.5 1.8 nd nd nd nd nd 
  2 cm 5.7 1.0 nd nd nd nd nd 
  3 cm 10.9 103.7 55.6 75.7 37.5 nd nd 
  4 cm 8.8 70.3 21.0 37.0 22.3 nd nd 
  5 cm 6.0 1.9 5.4 nd nd nd nd 
 Mid 1 cm 21.5 3.6 nd 34.9 nd nd nd 
  2 cm 12.3 3.0 26.0 34.4 29.8 nd nd 
  3 cm 8.1 2.4 17.6 25.1 15.1 nd nd 
  4 cm 5.5 2.6 6.9 nd nd nd nd 
  5 cm 5.0 1.1 7.9 nd nd nd 0.7 
 Low 1 cm 9.8 4.2 6.1 nd nd nd nd 
  2 cm 9.7 2.9 8.9 nd nd nd 2.0 
  3 cm 9.9 3.0 6.9 3.8 nd nd  
  4 cm 9.9 5.3 7.3 nd nd nd nd 
  5 cm 10.1 3.1 6.8 nd nd nd nd 

BJ High 1 cm 45.1 15.2 75.7 160.1 275.7 543.1 6.0 
  2 cm 103.0 59.9 256.7 588.2 1673.8 2078.6 13.3 
  3 cm 186.6 28.3 472.6 696.9 543.6 337.3 32.5 
 Mid 1 cm 211.9 19.6 692.4 992.6 721.2 1139.8 43.3 
  2 cm 82.2 17.8 228.6 334.1 502.9 1441.5 22.6 
 Low 1 cm 168.7 17.9 470.7 856.1 251.3 143.1 29.1 
  2 cm 188.4 14.2 556.1 1006.8 378.7 96.1 35.1 
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RIG High 5 cm 2.5 3.1 2.1 140.2 113.4 55.4 34.4 
  10 cm 2.1 3.2 nd 52.7 41.7 25.7 21.6 
 Mid 5 cm 2.2 3.0 2.3 46.2 36.4 22.4 25.2 
  10 cm 2.4 2.9 2.1 36.1 24.5 14.2 31.0 
 Low 5 cm nd nd nd 49.1 46.0 24.8 26.6 
  10 cm 1.2 nd nd 22.0 15.1 8.9 nd 

KBP High 5 cm nd nd nd 5.8 4.5 nd nd 
  10 cm nd nd nd 11.5 10.4 nd nd 
 Mid 5 cm nd nd nd 5.1 3.5 nd nd 
  10 cm 0.8 nd nd 4.8 3.4 2.0 nd 
 Low 5 cm nd nd nd 5.3 4.2 3.1 6.2 
  10 cm 1.0 1.6 nd 4.8 3.5 2.5 6.2 

DBI High 1 cm nd nd nd 8.5 5.0 nd nd 
  2 cm nd nd nd 6.2 4.0 nd nd 
  3 cm nd nd nd 748.8 544.1 294.0 258.5 
  4 cm nd nd nd 209.5 183.2 138.8 113.1 
  5 cm 1.3 nd nd 7.1 5.2 4.4 11.3 
 Mid 1 cm nd nd nd 22.0 15.4 nd nd 
  2 cm 5.0 14.7 13.9 11.5 8.6 nd nd 
  3 cm nd 8.3 7.0 8.0 5.7 3.9 nd 
  4 cm 1.2 nd nd 4.5 3.6 3.2 4.4 
  5 cm nd nd nd 5.4 3.6 2.5 nd 
 Low 1 cm nd nd nd 13.5 7.5 nd nd 
  2 cm 1.5 nd nd 12.7 6.9 3.4 7.2 
  3 cm 1.4 nd nd 12.8 7.2 4.1 5.2 
  4 cm 1.4 nd nd 13.2 7.5 3.5 nd 
  5 cm 1.4 nd nd 14.4 7.8 3.3 nd 

BJ High 1 cm 23.7 56.1 144.4 82.5 8.8 360.5 356.4 
  2 cm 108.1 377.5 912.8 116.8 205.3 770.2 1248.9 
  3 cm 191.2 496.1 396.5 175.6 274.2 328.7 403.2 
 Mid 1 cm 282.4 672.3 597.9 96.6 311.4 648.7 937.3 
  2 cm 115.9 191.5 377.3 78.8 173.3 748.7 1569.5 
 Low 1 cm 189.5 446.2 308.1 57.6 149.7 147.3 137.6 
  2 cm 234.8 610.7 440.0 66.7 182.3 158.0 57.2 
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RIG High 5 cm 13.6 51.3 59.7 25.2 10.1 nd nd 
  10 cm 8.3 19.6 35.6 14.9 8.5 nd nd 
 Mid 5 cm nd 18.6 26.0 15.8 9.6 nd nd 
  10 cm nd 11.8 17.9 11.4 8.0 nd nd 
 Low 5 cm nd 21.5 32.1 25.4 11.3 nd nd 
  10 cm nd 4.1 6.9 11.7 3.7 nd nd 

KBP High 5 cm nd nd nd nd nd nd nd 
  10 cm nd 1.9 2.8 nd nd nd nd 
 Mid 5 cm nd 1.4 2.2 nd nd nd nd 
  10 cm nd 1.8 3.0 2.6 nd nd nd 
 Low 5 cm nd 3.2 5.3 2.2 nd nd nd 
  10 cm 3.4 2.0 3.3 3.1 3.5 nd nd 

DBI High 1 cm nd 2.2 6.6 nd nd nd nd 
  2 cm nd 1.7 3.2 nd nd nd nd 
  3 cm 113.7 425.9 659.7 227.2 42.9 nd nd 
  4 cm 68.2 236.4 458.9 145.0 41.9 nd nd 
  5 cm 0.0 2.6 4.3 nd nd nd nd 
 Mid 1 cm nd 7.6 42.5 nd nd nd nd 
  2 cm nd 6.4 23.1 22.9 17.1 nd nd 
  3 cm nd 1.8 5.0 16.4 5.3 nd nd 
  4 cm nd 3.4 5.7 nd nd nd nd 
  5 cm nd 1.8 3.0 2.4 nd nd nd 
 Low 1 cm nd 2.8 8.2 nd nd nd nd 
  2 cm nd 3.2 6.6 4.2 nd nd nd 
  3 cm nd 3.3 6.6 5.5 nd nd nd 
  4 cm nd 3.5 7.1 nd nd nd nd 
  5 cm nd 3.8 7.6 nd nd nd nd 

BJ High 1 cm 454.8 385.4 305.8 0.0 431.6 207.1 64.1 
  2 cm 2231.8 149.2 996.8 139.3 699.8 1212.7 595.1 
  3 cm 361.0 40.6 541.6 848.9 820.0 473.0 146.8 
 Mid 1 cm 1131.1 20.2 1707.0 2253.6 1837.0 972.4 249.0 
  2 cm 1670.5 15.8 2456.7 3699.2 2856.6 1358.0 788.4 
 Low 1 cm 115.1 6.5 25.5 92.5 114.1 76.3 73.6 
  2 cm 16.5 5.5 17.7 20.4 6.3 7.5 10.2 



 161 

 

St
at

io
n 

C
or

e 
La

be
l 

Sa
m

pl
in

g 
In

te
rv

al
 

B
en

zo
(b

)f
lu

or
an

th
en

e 

B
en

zo
(k

)f
lu

or
an

th
en

e 

B
en

zo
(e

)p
yr

en
e 

B
en

zo
(a

)p
yr

en
e 

Pe
ry

le
ne

 

In
de

no
(1

,2
,3

-c
,d

)p
yr

en
e 

D
ib

en
z(

a,
h)

an
th

ra
ce

ne
 

B
en

zo
(g

,h
,i)

pe
ry

le
ne

 

RIG High 5 cm 86.7 31.8 44.9 41.1 42.0 39.1 5.3 31.0 
  10 cm 48.3 16.0 23.3 18.8 28.2 20.4 4.1 15.4 
 Mid 5 cm 45.7 15.8 21.6 15.4 30.6 17.3 2.8 15.7 
  10 cm 35.2 11.8 15.6 10.0 24.4 14.0 2.5 10.8 
 Low 5 cm 48.9 17.7 25.5 20.6 33.2 19.2 4.2 18.7 
  10 cm 11.1 3.5 4.9 3.0 11.2 4.9 0.8 3.6 

KBP High 5 cm nd nd nd nd 19.2 nd nd nd 
  10 cm nd nd nd nd 20.4 nd 4.3 3.9 
 Mid 5 cm nd nd nd nd 23.1 nd nd nd 
  10 cm 5.2 1.6 nd 1.8 29.8 2.1 9.5 2.0 
 Low 5 cm 6.1 2.4 nd nd 28.7 nd nd nd 
  10 cm 4.3 1.1 nd nd 40.1 1.8 nd 1.6 

DBI High 1 cm 4.9 2.6 nd nd 28.6 nd nd nd 
  2 cm nd nd nd nd 21.1 nd nd nd 
  3 cm 642.6 229.5 240.4 205.4 82.9 205.0 41.3 118.8 
  4 cm 474.8 161.8 169.6 142.8 65.4 134.8 32.1 85.9 
  5 cm 5.6 1.9 5.3 1.8 11.1 2.6 6.8 3.7 
 Mid 1 cm 11.7 nd nd nd 65.9 nd nd nd 
  2 cm 4.9 nd nd nd 44.4 nd nd nd 
  3 cm 3.2 nd 1.7 nd 30.8 nd nd nd 
  4 cm 10.8 3.1 5.7 4.7 15.7 3.3 4.3 3.5 
  5 cm 2.7 1.3 1.0 0.8 12.7 nd 3.5 0.7 
 Low 1 cm 7.2 2.3 2.5 1.4 28.9 4.3 nd 3.8 
  2 cm 8.2 2.5 2.8 2.2 46.9 4.1 5.0 3.3 
  3 cm 10.5 2.7 2.7 3.3 36.4 6.2 16.4 4.5 
  4 cm 9.4 2.8 nd nd 34.5 4.7 7.2 3.3 
  5 cm 10.5 2.8 nd 2.9 40.7 5.1 10.2 3.6 

BJ High 1 cm 44.9 15.9 92.3 22.2 12.1 8.8 4.4 14.9 
  2 cm 113.7 25.3 389.5 15.0 242.2 29.7 0.9 50.5 
  3 cm 73.2 18.0 127.7 38.6 88.4 31.2 14.6 32.2 
 Mid 1 cm 66.2 10.1 403.4 12.4 65.7 12.5 14.2 39.8 
  2 cm 40.4 13.7 494.7 31.5 60.3 17.6 13.0 56.2 
 Low 1 cm 13.2 4.1 7.3 4.5 11.3 6.5 4.9 5.7 
  2 cm 13.4 4.9 5.9 3.0 28.2 3.3 1.5 3.7 
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Appendix 8b 
Calculated compound-specific polycyclic aromatic hydrocarbon data.  All units are ng/g. 
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RIG High 5 cm 103.4 66.8 1.2 2.4 0.5 0.3 0.6 0.6 
  10 cm 55.6 57.8 1.3 0.8 0.4 0.6 0.6 0.6 
 Mid 5 cm 47.6 33.6 1.3 0.9 0.4 0.5 0.5 0.6 
  10 cm 45.2 29.8 1.5 1.4 0.4 0.4 0.6 0.6 
 Low 5 cm 51.4 65.1 1.1 1.3 0.4 0.4 0.5 0.5 
  10 cm 8.9 15.4 1.5 3.1 0.4 0.2 0.6 0.6 

KBP High 5 cm   1.3 5.2  0.2  0.6 
  10 cm  11.6 1.1 6.3 0.4 0.1  0.5 
 Mid 5 cm  5.3 1.5 4.6 0.4 0.2  0.6 
  10 cm 2.0 5.9 1.4 4.2 0.4 0.2 0.5 0.6 
 Low 5 cm 9.3  1.2 1.9 0.4 0.3  0.6 
  10 cm 12.1 8.7 1.4 3.3 0.4 0.2 0.5 0.6 

DBI High 1 cm   1.7 4.1 0.2 0.2  0.6 
  2 cm   1.6 5.7 0.3 0.1  0.6 
  3 cm 666.2 168.8 1.4 0.1 0.4 0.9 0.6 0.6 
  4 cm 320.1 80.3 1.1 0.1 0.3 0.9 0.6 0.5 
  5 cm 15.7 5.4 1.4 3.1 0.4 0.2 0.4 0.6 
 Mid 1 cm  34.9 1.4 5.9 0.2 0.1  0.6 
  2 cm  90.2 1.3 4.2 0.2 0.2  0.6 
  3 cm 3.9 57.8 1.4 3.4 0.3 0.2  0.6 
  4 cm 7.5 6.9 1.2 2.1 0.4 0.3 0.5 0.6 
  5 cm 2.5 7.9 1.5 4.5 0.4 0.2  0.6 
 Low 1 cm  6.1 1.8 2.3 0.3 0.3 0.5 0.6 
  2 cm 10.7 8.9 1.8 3.4 0.3 0.2 0.6 0.6 
  3 cm 9.3 10.6 1.8 3.3 0.3 0.2 0.6 0.6 
  4 cm 3.5 7.3 1.8 1.9 0.3 0.3 0.6 0.6 
  5 cm 3.3 6.8 1.9 3.3 0.3 0.2 0.6 0.6 

BJ High 1 cm 1171.6 1054.7 9.4 3.0 0.6 0.3 0.4 0.9 
  2 cm 4251.0 4597.4 0.6 1.7 0.1 0.4 0.4 0.4 
  3 cm 1092.8 2050.2 0.6 6.6 0.1 0.1 0.5 0.4 
 Mid 1 cm 2717.0 3546.1 0.3 10.8 0.0 0.1 0.2 0.2 
  2 cm 3988.6 2507.0 0.5 4.6 0.0 0.2 0.2 0.3 
 Low 1 cm 400.0 1721.2 0.4 9.4 0.2 0.1 0.5 0.3 
  2 cm 231.6 2037.6 0.4 13.3 0.2 0.1 0.5 0.3 
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RIG High 5 cm 3.2  0.1   0.7 0.8 
  10 cm 2.2  0.2   0.6 0.8 
 Mid 5 cm 1.7  0.2   0.6 0.8 
  10 cm 1.2  0.3 0.3  0.6 0.8 
 Low 5 cm 2.2     0.6 0.8 
  10 cm 1.8     0.6 0.8 

KBP High 5 cm        
  10 cm      0.6  
 Mid 5 cm      0.6  
  10 cm      0.6 0.8 
 Low 5 cm       0.8 
  10 cm 1.2  0.4   0.6 0.8 

DBI High 1 cm        
  2 cm        
  3 cm 1.8     0.7 0.8 
  4 cm 0.9     0.8 0.7 
  5 cm      0.6 0.7 
 Mid 1 cm        
  2 cm 2.0  0.4 0.5  0.4  
  3 cm 4.7  0.3 0.5  0.4 0.8 
  4 cm      0.5 0.7 
  5 cm      0.4 0.8 
 Low 1 cm      0.7  
  2 cm      0.6 0.9 
  3 cm      0.7 0.8 
  4 cm      0.7 0.9 
  5 cm      0.7 0.9 

BJ High 1 cm 0.4 1.3 0.4 0.5 0.7 0.4 0.2 
  2 cm 0.8 1.4 0.6 0.5 0.8 0.4 0.3 
  3 cm 0.8 1.1 0.7 0.7 0.8 0.3 0.6 
 Mid 1 cm 0.5 0.7 0.7 0.8 0.6 0.3 0.4 
  2 cm 0.1 0.4 0.6 0.8 0.3 0.3 0.3 
 Low 1 cm 7.5 3.3 0.5 1.2 4.0 0.3 0.6 
  2 cm 160.8 50.2 0.6 1.2 58.4 0.3 0.6 
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Appendix 8c 
Compound-specific polycyclic aromatic hydrocarbon data for 2010 GIP samples.  All 
units are ng/g.  A label of “nd” indicates that the compound was below detection limits. 
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GIP_1_10MC 2 cm - 231.9 8.4 7.5 11.6 7.8 4.5 
GIP_2_10MC 2 cm - 513.8 10.7 10.9 14.2 10.5 5.5 
GIP_3_10MC 2 cm - 477.3 11.2 14.1 32.3 10.5 8.4 

GIP_12_10MC 2 cm 825.6 700.0 20.8 25.3 24.3 17.8 10.9 
GIP_15_10MC 2 cm 6158.4 6133.2 19.0 23.6 41.6 160.2 292.6 
GIP_16_10MC 1 cm 2512.2 2191.6 34.1 51.8 50.5 58.1 0.0 
GIP_17_10MC 1 cm 3077.3 3077.3 19.7 32.0 27.8 36.0 0.0 
GIP_17_10MC 2 cm 427.2 415.3 11.5 11.5 9.4 7.4 6.4 
GIP_18_10MC 1 cm 1821.2 1821.2 18.3 31.8 115.0 205.1 0.0 
GIP_19_10MC 2 cm 294.5 290.1 15.8 14.4 10.9 6.0 5.1 
GIP_22_10MC 2 cm 155.8 152.9 13.8 10.5 5.8 3.3 2.5 
GIP_23_10MC 1 cm 819.8 819.8 24.1 28.4 26.2 28.0 0.0 
GIP_25_10MC 2 cm - 1085.8 12.7 13.3 14.5 19.1 21.1 
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GIP_1_10MC 2 cm 2.1 1.4 1.9 1.6 7.5 11.5 12.9 5.7 
GIP_2_10MC 2 cm 2.8 1.9 2.1 2.0 5.1 17.9 13.8 2.6 
GIP_3_10MC 2 cm 2.9 1.4 1.3 1.7 8.0 13.4 99.2 7.7 

GIP_12_10MC 2 cm 9.0 6.1 2.1 3.3 15.2 23.7 29.4 20.6 
GIP_15_10MC 2 cm 8.7 2.3 3.1 6.1 82.1 178.9 378.4 46.6 
GIP_16_10MC 1 cm 10.5 10.3 0.0 6.7 4.2 0.0 0.0 38.6 
GIP_17_10MC 1 cm 5.8 8.4 0.0 0.0 0.0 117.5 222.9 19.4 
GIP_17_10MC 2 cm 3.2 2.7 1.8 1.5 8.8 14.0 20.5 9.3 
GIP_18_10MC 1 cm 8.2 5.2 0.0 0.0 0.0 0.0 0.0 54.3 
GIP_19_10MC 2 cm 3.6 3.3 1.1 1.4 5.7 6.1 5.5 12.9 
GIP_22_10MC 2 cm 2.5 1.2 0.8 2.2 3.7 4.9 10.0 6.2 
GIP_23_10MC 1 cm 6.6 0.0 0.0 3.6 39.4 50.4 61.6 13.2 
GIP_25_10MC 2 cm 3.2 3.5 2.4 4.0 12.4 38.4 66.5 15.8 



 165 

 

St
at

io
n 

Sa
m

pl
in

g 
In

te
rv

al
 

A
nt

hr
ac

en
e 

C
1-

Ph
en

an
th

re
ne

s/
A

nt
hr

ac
en

es
 

C
2-

Ph
en

an
th

re
ne

s/
A

nt
hr

ac
en

es
 

C
3-

Ph
en

an
th

re
ne

s/
A

nt
hr

ac
en

es
 

C
4-

Ph
en

an
th

re
ne

s/
A

nt
hr

ac
en

es
 

D
ib

en
zo

th
io

ph
en

e 

C
1-

D
ib

en
zo

th
io

ph
en

es
 

GIP_1_10MC 2 cm 2.9 8.2 14.6 8.1 13.0 1.4 2.7 
GIP_2_10MC 2 cm 2.9 11.5 18.2 11.6 10.0 1.1 3.3 
GIP_3_10MC 2 cm 3.9 10.1 23.2 19.9 14.7 1.0 1.7 

GIP_12_10MC 2 cm 12.9 27.1 33.1 36.4 20.6 2.4 7.0 
GIP_15_10MC 2 cm 9.0 264.6 843.7 828.5 578.8 13.9 73.3 
GIP_16_10MC 1 cm 16.3 60.1 136.4 184.9 109.3 5.4 0.0 
GIP_17_10MC 1 cm 6.1 58.2 183.8 324.2 191.7 2.3 14.9 
GIP_17_10MC 2 cm 3.3 12.3 19.6 22.6 23.0 2.0 3.1 
GIP_18_10MC 1 cm 4.2 179.9 173.9 150.2 54.4 0.0 38.2 
GIP_19_10MC 2 cm 10.0 14.1 12.5 7.1 7.0 1.2 2.6 
GIP_22_10MC 2 cm 1.8 6.6 4.4 4.6 4.3 0.8 1.7 
GIP_23_10MC 1 cm 4.9 15.4 37.5 73.3 0.0 1.2 3.1 
GIP_25_10MC 2 cm 5.7 33.0 111.3 120.3 84.7 2.6 11.0 
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GIP_1_10MC 2 cm 3.8 5.0 5.8 5.7 4.7 5.3 0.0 3.2 
GIP_2_10MC 2 cm 4.6 7.5 9.9 10.1 9.7 7.4 4.4 4.4 
GIP_3_10MC 2 cm 4.2 6.9 7.6 8.3 8.0 9.1 8.4 3.9 

GIP_12_10MC 2 cm 11.3 14.4 24.0 28.5 25.7 18.4 16.0 14.6 
GIP_15_10MC 2 cm 269.4 326.0 28.8 53.8 153.2 203.8 108.5 19.8 
GIP_16_10MC 1 cm 44.5 70.1 48.6 62.8 53.6 97.2 0.0 32.8 
GIP_17_10MC 1 cm 54.8 118.2 21.7 30.0 61.9 127.8 0.0 14.3 
GIP_17_10MC 2 cm 7.5 9.4 9.2 8.5 10.4 10.8 12.5 4.5 
GIP_18_10MC 1 cm 74.7 45.5 15.8 17.9 21.3 0.0 0.0 6.5 
GIP_19_10MC 2 cm 2.6 3.2 11.7 12.0 8.8 6.0 3.5 4.4 
GIP_22_10MC 2 cm 1.5 1.6 4.8 4.0 2.4 2.0 1.7 3.3 
GIP_23_10MC 1 cm 11.1 23.6 12.5 12.9 19.7 30.9 0.0 4.3 
GIP_25_10MC 2 cm 40.1 50.5 14.2 17.1 21.6 34.7 20.3 9.9 
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GIP_1_10MC 2 cm 5.0 4.5 6.9 5.4 9.6 7.2 4.3 
GIP_2_10MC 2 cm 7.8 8.1 11.3 6.7 4.7 13.2 7.9 
GIP_3_10MC 2 cm 6.8 7.2 9.7 11.4 37.6 12.1 10.4 

GIP_12_10MC 2 cm 18.0 19.2 17.0 13.6 12.6 29.6 13.3 
GIP_15_10MC 2 cm 117.6 260.6 299.6 187.8 70.7 35.4 12.7 
GIP_16_10MC 1 cm 106.6 169.2 203.5 126.9 0.0 71.2 25.0 
GIP_17_10MC 1 cm 158.9 347.9 451.1 180.8 58.2 38.9 9.6 
GIP_17_10MC 2 cm 17.0 21.9 31.1 17.9 12.0 12.1 6.1 
GIP_18_10MC 1 cm 71.8 152.6 175.1 89.7 30.0 19.1 5.7 
GIP_19_10MC 2 cm 9.2 5.3 5.5 5.8 5.4 13.4 6.7 
GIP_22_10MC 2 cm 4.2 1.7 1.8 2.5 2.2 6.5 4.0 
GIP_23_10MC 1 cm 35.5 68.5 89.2 42.4 0.0 14.5 3.2 
GIP_25_10MC 2 cm 30.9 44.8 61.8 36.4 21.8 18.8 7.0 
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GIP_1_10MC 2 cm 4.1 2.3 61.1 6.5 2.3 5.2 
GIP_2_10MC 2 cm 7.5 5.6 224.4 10.3 3.1 11.0 
GIP_3_10MC 2 cm 6.8 4.3 190.6 9.3 3.6 10.2 

GIP_12_10MC 2 cm 19.1 11.2 125.5 18.3 5.9 21.5 
GIP_15_10MC 2 cm 53.0 19.9 25.2 22.2 13.3 22.2 
GIP_16_10MC 1 cm 63.5 149.6 320.7 35.8 10.1 43.5 
GIP_17_10MC 1 cm 89.8 0.0 0.0 15.2 15.7 12.2 
GIP_17_10MC 2 cm 9.6 3.5 11.9 9.4 3.6 4.5 
GIP_18_10MC 1 cm 36.3 0.0 0.0 9.4 6.0 5.4 
GIP_19_10MC 2 cm 8.4 3.4 4.5 13.9 3.6 11.2 
GIP_22_10MC 2 cm 3.2 1.0 2.9 5.4 4.5 3.0 
GIP_23_10MC 1 cm 17.9 0.0 0.0 7.7 3.6 5.2 
GIP_25_10MC 2 cm 17.9 6.0 14.7 17.3 5.6 13.7 
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Appendix 8d 
Calculated compound-specific polycyclic aromatic hydrocarbon data for 2010 GIP 
samples.  All units are ng/g. 
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GIP_1_10MC 2 cm 10.0 43.9 1.0 2.0 0.4 0.3 0.6 
GIP_2_10MC 2 cm 21.5 51.2 1.0 0.9 0.4 0.5 0.5 
GIP_3_10MC 2 cm 25.5 67.9 0.9 2.0 0.4 0.3 0.5 

GIP_12_10MC 2 cm 60.1 117.2 0.8 1.6 0.4 0.4 0.5 
GIP_15_10MC 2 cm 465.4 2515.6 0.5 5.2 0.1 0.2 0.5 
GIP_16_10MC 1 cm 150.8 490.7 0.8 2.4 0.2 0.3 0.5 
GIP_17_10MC 1 cm 189.7 757.9 0.7 3.2 0.1 0.2 0.6 
GIP_17_10MC 2 cm 33.7 77.5 1.1 2.8 0.2 0.3 0.7 
GIP_18_10MC 1 cm 21.3 558.3 0.9 13.0 0.1 0.1 0.6 
GIP_19_10MC 2 cm 18.3 40.6 1.0 1.3 0.3 0.4 0.6 
GIP_22_10MC 2 cm 6.1 19.8 1.2 3.4 0.4 0.2 0.6 
GIP_23_10MC 1 cm 50.6 126.2 1.0 2.7 0.1 0.3 0.6 
GIP_25_10MC 2 cm 76.5 349.2 0.8 2.8 0.2 0.3 0.6 
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GIP_1_10MC 2 cm 0.5 2.1 1.5 0.3 0.6 0.9 0.5 0.7 
GIP_2_10MC 2 cm 0.5 1.6 1.7 0.3 0.6 1.1 0.3 0.7 
GIP_3_10MC 2 cm 0.5 2.4 1.7 0.2 0.3 0.6 0.5 0.7 

GIP_12_10MC 2 cm 0.5 1.9 2.7 0.3 0.4 1.1 0.6 0.7 
GIP_15_10MC 2 cm 0.3 2.8 4.4 0.3 0.4 1.7 0.2 0.4 
GIP_16_10MC 1 cm 0.4 0.7 1.5 0.3 0.4 0.6 0.5 0.7 
GIP_17_10MC 1 cm 0.4 0.4 1.8 0.3 0.4 0.7 0.3 0.5 
GIP_17_10MC 2 cm 0.5 0.6 1.3 0.4 0.4 0.5 0.5 0.6 
GIP_18_10MC 1 cm 0.5 1.0 1.7 0.4 0.3 0.5 0.2 0.6 
GIP_19_10MC 2 cm 0.5 2.3 1.2 0.2 0.4 0.5 0.6 0.7 
GIP_22_10MC 2 cm 0.5 2.4 1.8 0.3 0.4 0.6 0.5 0.8 
GIP_23_10MC 1 cm 0.5 0.4 1.7 0.3 0.3 0.6 0.5 0.6 
GIP_25_10MC 2 cm 0.5 1.8 3.3 0.4 0.4 1.4 0.4 0.6 
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Appendix 8e 
Compound-specific polycyclic aromatic hydrocarbon data for selected 2011 OSAT 
samples collected at Bay Jimmy.  All samples were bulked from 0 to 2 cm depth.  All 
units are ng/g.   
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LAAP39323 190763.44 190613.44 12.6 24.7 75.7 380 2300 9.96 
LAAP39325 25073.76 24967.76 8.8 5.97 12.5 23.9 194 1.76 
LAAP39329 4657.113 4635.213 8.28 3.53 5.9 8.95 25.9 1.43 
LAAP39347 209502.59 20494.09 20.4 44.4 130 563 3160 8.6 
LAAP39349 22250.407 22204.907 6.79 5.67 11.4 11.5 75.2 2.3 
LAAP39351 3402.562 3377.262 9.79 5.45 13.6 12.1 13.1 2.59 
LAAP39353 126083.01 126022.81 24.2 34.7 90 304 2280 10.1 
LAAP39356 10582.799 10581.419 6.16 4.72 11.7 9.67 37.3 2.07 
LAAP39357 4757.58 4733.38 4.33 3.9 9.49 8.87 17.5 1.79 
LAAP39362 721.85 706.35 7.13 5.36 11.9 9.33 8.76 2.39 
LAAP39363 342.719 332.119 6.97 5 13.1 11.3 10.9 2.18 
LAAP39364 1634.26 1614.56 7.78 5.68 15.4 12.4 11.5 2.73 
LAAP39372 1514.639 1508.899 3.95 4.32 8.53 7.25 4.11 1.83 
LAAP39374 1305.051 1293.651 4.25 3.41 6.4 4.85 4.44 1.73 
LAAP39376 3398.227 3373.927 6.07 4.85 8.7 7.02 6.27 2.04 
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LAAP39323 5.56 45.6 44.8 479 2250 8280 193 3.83 1890 
LAAP39325 78.7 3.6 5.95 1.63 268 1190 21 136 127 
LAAP39329 1.3 1.79 1.81 8.34 38.2 124 6.21 5.03 55.3 
LAAP39347 8.99 4.9 56.2 868 3360 13800 251 196 2400 
LAAP39349 2 0.935 3.82 1.54 154 1100 10.8 19.7 1.2 
LAAP39351 1.05 1.04 2.74 1.73 1.73 1.73 6.3 4.7 24.5 
LAAP39353 17.6 22.5 56.3 489 2400 11800 110 174 815 
LAAP39356 0.938 0.793 2.7 1.33 102 498 6.91 11.6 1.04 
LAAP39357 0.965 0.679 2.06 5.72 1.47 107 6.22 3.97 1.15 
LAAP39362 3.9 1.48 1.82 2.71 1.41 1.41 5.29 2.34 12.1 
LAAP39363 0.905 1.24 1.62 2.7 1.62 1.62 4.68 1.44 16 
LAAP39364 1.04 2.44 3.03 4.34 1.62 1.62 18.6 2.93 25.2 
LAAP39372 0.713 0.999 1.61 3.4 1.68 1.68 4.81 1.89 1.31 
LAAP39374 0.857 0.858 1.17 1.5 7.56 1.44 4.76 1.84 10.9 
LAAP39376 0.878 0.878 1.76 2.61 14.2 33.4 6.29 2.58 16.7 
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LAAP39323 8470 21300 33200 2.26 1520 6210 14400 2.78 
LAAP39325 406 1480 2950 0.85 0.85 376 1140 37.1 
LAAP39329 182 342 562 2.19 15.5 90.5 253 10.9 
LAAP39347 8840 18500 30100 4.3 1140 6060 12500 5.3 
LAAP39349 247 1100 2700 0.805 0.805 163 959 16.6 
LAAP39351 106 206 456 1.58 12.2 34.6 232 10.8 
LAAP39353 4470 12800 18500 5.88 514 4570 9860 91.3 
LAAP39356 135 599 1310 0.696 0.696 113 532 10.3 
LAAP39357 63.1 204 587 2.13 0.769 35.4 147 12 
LAAP39362 31.7 30.1 77.6 1.25 2.89 7.23 12.3 10.7 
LAAP39363 12 10.1 33.7 0.984 2.14 3.82 4.78 8.2 
LAAP39364 47.6 59.1 210 1.97 5.01 13.8 28.2 33.6 
LAAP39372 17.6 21.7 166 1.02 0.876 0.876 0.876 8.74 
LAAP39374 28.3 34.6 173 0.84 0.753 0.753 8.05 10 
LAAP39376 62.1 188 470 1.2 0.771 18.2 99 9.71 
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LAAP39323 1670 6220 11800 16500 2.26 13200 13200 12400 8120 6530 
LAAP39325 140 703 1260 1840 0.85 2770 2770 2540 1870 1690 
LAAP39329 25.4 105 208 249 0.873 592 592 529 350 277 
LAAP39347 821 5090 10600 15300 4.3 19100 19100 17300 11300 9420 
LAAP39349 84.6 520 1140 1770 0.805 3020 3020 2710 1840 1760 
LAAP39351 23.2 82.8 178 201 0.906 399 399 406 286 262 
LAAP39353 781 3250 5630 8280 5.88 9390 9390 9740 5870 4570 
LAAP39356 51.7 280 578 810 0.696 1290 1290 1290 979 756 
LAAP39357 29.8 132 228 288 0.769 683 683 610 455 390 
LAAP39362 13.1 19.6 29.7 30.6 6.73 71.8 71.8 69.3 51.5 60.9 
LAAP39363 8.56 7.65 12.1 11 2.79 24.2 24.2 24.3 17.3 29.5 
LAAP39364 35 38.7 63.4 72.7 11.2 193 193 185 129 144 
LAAP39372 10.5 37.1 87.1 95.5 0.876 256 256 234 126 154 
LAAP39374 13.5 30.7 55.1 68.2 4.02 177 177 175 126 125 
LAAP39376 19.5 75.6 110 156 0.771 484 484 468 334 302 
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LAAP39323 719 1.79 2460 220 150 55.6 108 255 
LAAP39325 438 92.3 665 234 106 152 56.7 152 
LAAP39329 25.1 0.69 102 4.52 21.9 5.17 3.31 14.4 
LAAP39347 1140 3.4 3620 387 8.5 80.3 139 307 
LAAP39349 117 0.637 539 24.9 45.5 14.2 17.7 59.7 
LAAP39351 24.7 0.716 65.1 3.94 25.3 4.72 2.67 9.85 
LAAP39353 784 4.65 1540 151 60.2 59.7 121 198 
LAAP39356 76.5 0.55 216 10.4 1.38 7.25 9.92 24.7 
LAAP39357 40.7 0.608 123 6.19 24.2 6.7 4.86 17.1 
LAAP39362 13 3.5 18 7.03 15.5 5.39 1.8 7.1 
LAAP39363 4.92 1.65 6.87 2.66 10.6 1.97 0.905 3.05 
LAAP39364 23 4.58 40.8 9.69 19.7 8 3.28 11.9 
LAAP39372 7.33 0.693 61.7 2.63 5.74 3.3 1.47 10.4 
LAAP39374 11.1 1.49 46.7 4.16 11.4 3.76 2.41 9.66 
LAAP39376 32.4 0.609 74 3.96 24.3 6.16 3.71 14.7 
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Appendix 8f 
Calculated compound-specific polycyclic aromatic hydrocarbon data for selected 2011 
OSAT samples collected at Bay Jimmy.  All samples were bulked from 0 to 2 cm depth. 
All units are ng/g. 
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LAAP39323 34520.0 64860.0 0.0 50.4 0.0 0.0 0.2 0.0 
LAAP39325 3803.0 4963.0 0.3 0.2 0.0 0.9 0.5 0.2 
LAAP39329 562.0 1141.3 0.4 1.2 0.0 0.4 0.3 0.3 
LAAP39347 30990.0 59840.0 0.0 1.3 0.0 0.4 0.2 0.0 
LAAP39349 3430.0 4048.2 0.2 0.5 0.0 0.6 0.2 0.2 
LAAP39351 461.8 792.5 0.5 1.3 0.0 0.4 0.3 0.3 
LAAP39353 17160.0 36585.0 0.1 0.6 0.0 0.6 0.2 0.1 
LAAP39356 1668.0 2045.0 0.2 0.6 0.0 0.6 0.2 0.2 
LAAP39357 648.0 855.3 0.4 1.6 0.0 0.4 0.3 0.3 
LAAP39362 79.9 151.5 0.8 2.3 0.1 0.3 0.4 0.4 
LAAP39363 30.8 71.8 1.0 3.3 0.1 0.2 0.4 0.5 
LAAP39364 174.8 341.9 1.0 6.3 0.1 0.1 0.4 0.5 
LAAP39372 219.7 206.6 0.8 2.5 0.0 0.3 0.2 0.5 
LAAP39374 154.0 246.8 0.7 2.6 0.0 0.3 0.3 0.4 
LAAP39376 341.6 736.8 0.5 2.4 0.0 0.3 0.3 0.3 
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LAAP39323 0.7 2.6 0.7 0.7 1.8 0.1 0.2 
LAAP39325 0.2 0.8 0.9 0.8 0.6 0.6 0.2 
LAAP39329 0.3 1.0 0.5 0.7 0.7 0.2 0.3 
LAAP39347 0.5 1.6 0.7 0.7 1.1 0.2 0.1 
LAAP39349 0.1 0.6 0.7 0.9 0.5 1.0 0.2 
LAAP39351 0.3 0.7 0.3 1.1 0.8 0.3 0.3 
LAAP39353 0.5 2.2 1.0 0.8 1.7 0.3 0.2 
LAAP39356 0.1 0.6 0.8 0.9 0.5 0.9 0.2 
LAAP39357 0.1 0.4 0.6 0.7 0.3 0.9 0.2 
LAAP39362 0.5 0.6 0.2 0.4 0.2 0.4 0.5 
LAAP39363 0.5 0.6 0.3 0.5 0.3 0.3 0.7 
LAAP39364 0.3 0.5 0.3 0.5 0.2 0.5 0.6 
LAAP39372 0.1 0.2 0.0 0.0 0.0 0.8 0.3 
LAAP39374 0.2 0.3 0.0 0.2 0.1 0.4 0.4 
LAAP39376 0.1 0.6 0.3 0.5 0.3 0.3 0.3 
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APPENDIX 9 
 
Appendix 9a 
Compound-specific petroleum hydrocarbon data.  All units are µg/g. 
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RIG High 5 cm 27.5 5.5 17.6 2.8 23.3 14.5 12.3 32.0 
  10 cm 49.1 2.3 77.1 8.6 72.7 35.2 25.6 29.7 
 Mid 5 cm 17.4 5.6 18.8 5.7 24.5 10.1 18.8 23.8 
  10 cm 15.9 4.5 19.5 7.6 24.3 11.6 11.7 14.9 
 Low 5 cm 18.3 3.6 16.1 8.7 25.3 17.7 18.2 36.5 
  10 cm 25.4 7.6 22.2 9.7 39.8 15.2 18.8 25.7 

KBP High 5 cm 51.2 12.3 36.0 11.5 33.4 12.4 20.1 40.1 
  10 cm 32.1 6.1 36.3 11.4 41.1 11.1 23.8 28.0 
 Mid 5 cm 40.6 21.6 35.6 16.6 31.5 12.2 20.1 25.1 
  10 cm 32.7 6.1 15.7 7.7 29.8 12.6 18.1 31.2 
 Low 5 cm 160.4 6.1 11.9 5.7 20.6 18.0 17.2 66.8 
  10 cm 32.4 6.4 20.6 10.9 33.8 15.9 18.1 86.4 

DBI High  1 cm 27.9 10.0 28.9 15.1 34.3 14.7 27.5 42.2 
  2 cm 19.9 10.2 22.5 7.8 28.9 10.6 19.4 22.3 
  3 cm 29.1 11.0 26.7 11.6 28.8 10.8 14.9 16.6 
  4 cm 25.7 20.9 25.4 10.1 23.7 11.8 18.0 15.9 
  5 cm 1.1 4.5 24.2 7.5 33.7 12.9 24.4 28.4 
 Mid 1 cm 77.8 19.8 95.8 42.7 164.0 264.2 191.8 472.9 
  2 cm 108.7 13.0 89.0 41.9 147.7 150.0 102.8 407.6 
  3 cm 49.7 7.0 55.6 25.6 110.4 86.0 87.2 214.2 
  4 cm 29.6 4.6 20.8 9.4 30.0 19.1 22.1 43.9 
  5 cm 16.0 5.5 23.4 7.7 38.0 16.0 18.4 44.1 
 Low 1 cm 16.9 2.9 13.9 7.9 29.1 16.9 26.2 29.0 
  2 cm 7.4 4.6 16.6 7.8 28.5 9.4 22.1 31.3 
  3 cm 22.0 7.9 18.3 11.6 31.0 11.2 18.4 28.8 
  4 cm 37.7 11.6 29.5 15.0 50.2 18.5 29.4 27.8 
  5 cm 35.8 10.9 34.1 15.0 48.9 19.1 31.2 30.4 

BJ High 2 cm 254.2 148.0 125.6 113.2 220.5 262.1 436.1 1923.7 
  3 cm 154.5 124.2 923.5 923.2 1107 654.4 1450.6 809.2 
 Mid 1 cm 84.3 129.9 370.8 473.7 706.6 536.8 1363.4 1125.1 
  2 cm 106.6 140.3 310.2 333.9 476.0 392.7 970.1 1936.9 
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BJ Low 1 cm 90.7 315.3 891.2 1182.8 1715.5 1040.3 2517.1 1336.1 
  2 cm 83.9 366.7 966.5 1150.6 1438.0 931.9 2273.2 1297.7 
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RIG High 5 cm 8.5 33.3 4.2 21.1 35.6 80.9 67.5 182.1 
  10 cm 11.0 52.4 0.0 37.8 61.1 93.7 154.2 283.9 
 Mid 5 cm 16.1 33.8 46.6 26.8 37.0 70.7 39.1 145.7 
  10 cm 3.1 35.6 20.7 21.5 40.3 68.9 32.9 133.0 
 Low 5 cm 17.7 26.5 7.3 31.9 32.8 55.0 29.4 92.8 
  10 cm 3.9 46.6 2.2 27.1 60.8 73.4 64.9 158.1 

KBP High 5 cm 7.9 24.3 2.3 39.4 41.6 79.6 57.2 303.9 
  10 cm 7.6 46.4 6.6 57.7 59.4 123.7 91.7 535.1 
 Mid 5 cm 12.3 21.9 2.3 25.4 30.6 47.0 27.6 80.3 
  10 cm 7.3 38.9 4.8 29.1 18.0 40.7 28.2 109.9 
 Low 5 cm 25.8 28.6 2.6 30.3 21.4 51.0 29.7 135.3 
  10 cm 16.0 32.0 4.8 40.8 28.1 40.8 35.1 201.3 

DBI High  1 cm 21.0 42.7 1.9 74.3 34.6 86.8 60.9 281.7 
  2 cm 12.4 31.1 2.8 52.6 30.1 59.9 38.9 204.8 
  3 cm 12.7 27.1 2.1 26.3 22.4 72.1 36.9 300.7 
  4 cm 17.7 30.9 2.0 45.0 27.8 73.9 53.4 218.4 
  5 cm 4.8 35.1 4.2 41.2 24.8 71.1 42.6 296.4 
 Mid 1 cm 82.3 178.1 9.0 463.2 187.9 389.7 207.4 1614.8 
  2 cm 49.6 131.0 9.0 355.3 77.5 309.3 215.0 1899.6 
  3 cm 24.6 83.4 9.1 229.1 69.2 205.3 135.9 831.7 
  4 cm 8.0 28.4 5.9 38.8 31.1 48.7 38.4 121.1 
  5 cm 6.3 37.2 2.6 44.0 25.7 58.2 45.2 108.4 
 Low 1 cm 5.2 46.9 4.9 67.9 30.3 71.3 54.8 213.0 
  2 cm 6.9 53.3 3.6 20.7 28.0 46.5 39.3 182.6 
  3 cm 10.2 68.6 3.7 32.0 21.8 50.4 38.9 196.7 
  4 cm 4.0 69.8 14.5 35.0 39.2 62.6 58.6 242.8 
  5 cm 10.3 71.2 2.0 76.3 44.3 83.7 78.9 282.1 

BJ High 2 cm 6323.2 1070.3 9602.3 3961.5 4413.2 1642.8 2010.5 3301.3 
  3 cm 1077 899.4 1264.9 667.5 536.1 271.3 280.1 753.6 
 Mid 1 cm 1202.4 1605.3 2263.1 793.1 988.4 960.2 391.9 903.1 
  2 cm 6056.1 2063.6 8923.1 3679.1 2115.7 3055.4 358.8 1762.1 
 Low 1 cm 1631.7 1702.7 1684.4 310.9 908.5 681.4 617.3 985.4 
  2 cm 1268.8 1888.7 1723.5 1031.5 833.7 735.1 585.0 814.7 
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RIG High 5 cm 270.4 294.1 106.8 378.7 174.4 599.0 85.1 602.5 
  10 cm 603.2 362.5 176.0 521.9 289.2 896.5 173.9 910.8 
 Mid 5 cm 28.2 451.0 197.7 901.0 242.7 1056.9 165.5 1243.0 
  10 cm 129.4 562.0 307.2 1042.4 357.5 776.9 259.3 924.5 
 Low 5 cm 89.0 151.1 83.9 333.0 96.8 273.9 33.1 177.5 
  10 cm 225.2 314.1 182.5 716.8 179.6 313.9 112.9 390.0 

KBP High 5 cm 130.2 801.1 140.4 989.9 140.9 995.0 122.5 463.9 
  10 cm 226.1 1513.6 233.6 1469.2 134.1 1030.8 241.4 651.2 
 Mid 5 cm 46.5 206.0 102.5 327.6 103.9 544.6 62.0 383.3 
  10 cm 40.3 212.4 69.0 390.0 138.6 1040.2 188.8 1018.6 
 Low 5 cm 85.0 282.6 178.0 421.1 216.3 773.9 166.1 658.1 
  10 cm 89.9 273.0 150.6 410.4 174.6 756.9 159.2 733.7 

DBI High  1 cm 165.8 764.8 186.5 761.1 136.9 733.8 197.3 415.3 
  2 cm 123.5 636.9 129.0 598.4 77.3 487.3 141.9 308.6 
  3 cm 114.6 985.9 110.6 743.5 136.7 439.4 90.5 263.9 
  4 cm 258.6 931.5 188.1 644.0 196.3 578.2 227.2 289.0 
  5 cm 167.5 966.7 175.6 1052.9 186.1 459.3 157.0 467.9 
 Mid 1 cm 591.1 3471.9 678.0 3257.7 581.3 1472.5 878.8 1115.9 
  2 cm 231.7 3587.7 624.1 3397.9 360.2 1605.6 1159.8 1777.9 
  3 cm 256.3 1461.9 278.3 1248.9 240.4 793.6 708.1 807.5 
  4 cm 62.0 179.3 61.2 259.3 51.2 175.0 92.0 280.6 
  5 cm 70.6 194.6 68.2 185.4 41.3 182.6 78.2 205.1 
 Low 1 cm 47.7 329.9 404.7 603.5 246.3 1834.9 395.4 1876.0 
  2 cm 71.4 277.0 316.2 420.3 146.8 1074.8 250.5 1235.0 
  3 cm 84.6 315.1 404.3 470.0 132.1 1122.0 244.9 1286.7 
  4 cm 191.1 477.3 609.0 790.7 533.6 1524.8 638.3 1788.6 
  5 cm 91.7 384.0 357.7 623.4 230.7 1716.8 588.5 2196.3 

BJ High 2 cm 3919.9 7837.2 2618.0 9316.2 3436.3 5728.8 1416.6 1345.4 
  3 cm 608.1 1420.6 561.2 1013.2 287.6 2844.4 1582.3 3178.9 
 Mid 1 cm 810 1625.7 337 822.5 506.8 1416.9 1894.6 2942.5 
  2 cm 2531.0 3512.4 1301.6 3035.1 1007.5 3552.1 2832.7 3001.3 
 Low 1 cm 1892.0 1420.2 490.6 1500.4 612.9 2490.0 822.6 2727.9 
  2 cm 1531.6 1118.5 381.4 1197.4 487.6 1976.3 634.1 2146.9 
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RIG High 5 cm 69.5 404.2 783.2 106.7 4442.9 63.54 44.01 
  10 cm 152.3 601.6 506.2 169.3 6357.4 68.21 44.01 
 Mid 5 cm 117.5 1086.1 9284.8 324.1 15638.9 111.23 65.29 
  10 cm 119.1 665.0 701.9 164.0 6474.9 51.81 30.65 
 Low 5 cm 46.1 120.7 672.7 35.2 2550.8 38.94 29.04 
  10 cm 71.3 310.5 606.1 70.9 4095.0 47.91 27.3 

KBP High 5 cm 379.0 254.5 1170.3 427.3 6788.0 19.19 0 
  10 cm 608.4 427.3 1438.9 30.2 9122.8 85.3 31.03 
 Mid 5 cm 295.2 273.7 1296.0 76.2 4168.2 22.2 9.88 
  10 cm 1076.5 564.8 2754.5 116.4 8040.4 36.29 14.46 
 Low 5 cm 873.9 371.8 7857.8 84.9 12600.5 47.65 30.58 
  10 cm 108.2 434.8 167.7 117.4 4199.5 32.92 17.11 

DBI High  1 cm 65.9 196.8 3868.9 1018.7 9316.2 102.82 68.78 
  2 cm 343.7 245.0 2042.5 348.1 6056.2 58.08 32.57 
  3 cm 262.6 136.8 1664.0 20.5 5618.7 50.25 26.48 
  4 cm 372.0 216.2 1757.7 355.7 6634.7 61.07 32.26 
  5 cm 26.4 122.7 80.7 22.1 4541.6 69.36 41.53 
 Mid 1 cm 9105.3 1316.6 20831.1 298.8 48060.3 743.79 532.33 
  2 cm 7168.1 1212.3 47434.8 7645.1 80312.1 514.11 296.82 
  3 cm 2323.2 486.7 12278.1 244.4 23351.1 956.06 851.66 
  4 cm 317.9 110.4 1823.3 20.2 3932.2 51.86 29.75 
  5 cm 188.0 89.6 1837.0 23.6 3660.8 54.92 21.66 
 Low 1 cm 2492.0 1050.8 3494.8 345.5 13758.4 80.46 49.44 
  2 cm 1826.4 740.6 2461.3 192.4 9521.1 64.51 26.48 
  3 cm 2171.0 764.9 2182.1 208.7 9957.7 72.95 35.57 
  4 cm 1980.2 1079.6 3314.4 272.3 13946.0 75.16 32.79 
  5 cm 2300.6 1385.6 5050.2 329.7 16129.5 98.5 41.07 

BJ High 2 cm 326.9 158.0 610.1 703.2 73225.1 6937.1 6734.5 
  3 cm 612.7 1173.2 374.4 384.3 25937.2 1766.55 1704.9 
 Mid 1 cm 645.7 717.6 214.8 223.6 26055.7 2414.18 2338.77 
  2 cm 458.5 259.8 288.6 294.7 54755.4 5198.84 5039.89 
 Low 1 cm 557.9 1469.4 190.5 438.4 32224.0 362.49 318.77 
  2 cm 407.2 1215.2 143.3 375.2 29004.0 305.2 265.35 

  



 180 

Appendix 9b 
Calculated compound-specific petroleum hydrocarbon data.   
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RIG High 5 cm 2.5 3.8 7.9 69.3 2.3 0.4 
  10 cm 2.4 2.7 -- 64.5 1.8 0.4 
 Mid 5 cm 3.4 1.5 0.7 58.7 1.4 0.1 
  10 cm 2.8 4.8 1.7 59.2 1.4 0.3 
 Low 5 cm 2.1 2.1 3.6 74.6 2.9 0.4 
  10 cm 2.2 6.6 21.5 57.0 1.3 0.4 

KBP High 5 cm 2.8 5.1 10.4 0.0 0.0 0.3 
  10 cm 2.7 3.7 7.0 36.4 0.6 0.5 
 Mid 5 cm 1.9 2.0 9.4 44.5 0.8 0.2 
  10 cm 1.4 4.3 8.2 39.8 0.7 0.1 
 Low 5 cm 1.0 2.6 11.2 64.2 1.8 0.1 
  10 cm 3.6 5.4 6.6 52.0 1.1 0.3 

DBI High  1 cm 2.2 2.0 22.7 66.9 2.0 0.2 
  2 cm 1.8 1.8 11.3 56.1 1.3 0.3 
  3 cm 2.4 1.3 13.2 52.7 1.1 0.5 
  4 cm 1.6 0.9 15.3 52.8 1.1 0.4 
  5 cm 4.6 5.9 8.4 59.9 1.5 0.7 
 Mid 1 cm 0.6 5.7 19.8 71.6 2.5 0.2 
  2 cm 0.7 8.2 14.6 57.7 1.4 0.1 
  3 cm 0.8 8.7 9.2 89.1 8.2 0.2 
  4 cm 1.1 5.5 4.8 57.4 1.3 0.2 
  5 cm 1.2 7.1 14.1 39.4 0.7 0.3 
 Low 1 cm 1.2 5.6 9.6 61.4 1.6 0.1 
  2 cm 1.1 4.6 14.9 41.0 0.7 0.1 
  3 cm 1.0 2.8 18.7 48.8 1.0 0.1 
  4 cm 1.1 6.9 4.8 43.6 0.8 0.2 
  5 cm 1.3 2.9 35.4 41.7 0.7 0.1 

BJ High 2 cm 2.5 0.3 0.1 97.1 33.2 2.1 
  3 cm 2.7 0.8 0.7 96.5 27.7 0.9 
 Mid 1 cm 1.9 0.9 0.7 96.9 31.0 1.5 
  2 cm 2.0 0.3 0.2 96.9 31.7 2.6 
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