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ABSTRACT OF DISSERTATION 

 

 

POLYMER MICELLES FOR TUNABLE DRUG RELEASE AND ENHANCED 
ANTITUMOR EFFICACY 

 

Cancer remains a leading cause of death in the United States. The most common 
treatment options include chemotherapy, but poor solubility, adverse side effects and 
differential drug sensitivity hamper clinical applications. Current chemotherapy generally 
aims to deliver drugs at the limit of toxicity, assuming that higher dosage increases 
efficacy, with little attention paid to potential benefits of tunable release. Growing 
evidence suggests that releasing drugs at a constant rate will be as effective as a single 
bolus dose. To test this hypothesis, it is critical to develop drug delivery systems that 
fine-tune drug release and elucidate the impact of tunable drug release rates on 
chemotherapeutic efficacy.  

Block copolymer micelles, spherical nanoassemblies with a core-shell structure, 
are widely used in recent research. Micelles for this study were engineered to release a 
model drug (doxorubicin: DOX) at differential rates under acidic conditions, 
corresponding to tumor tissue (pH < 7). Three specific aims were pursued: to develop 
drug carriers capable of tuning drug release rates; to determine activity of developed 
carriers in vitro; and to elucidate effects of tunable drug release rates in vivo. 

Block copolymers with covalently linked DOX were synthesized and self-
associated, forming micelles. Drug binding linkers (glycine, aminobenzoate, or 
hydrazide) were used to tune release of DOX. Micelles were characterized to determine 
physicochemical properties such as particle size, drug entrapment yields, and drug release 
parameters. Characterization revealed that drug release profiles were modulated by 
interchanging drug binding linkers.  

Micelles were evaluated in vitro to elucidate the effect of tunable drug release. 
Micelles delivered drugs at a slower, prolonged rate compared to free DOX. Cytotoxicity 
and cellular internalization analysis revealed that by slowing release rates, micelles kill 
cells more efficiently.  

Biodistribution studies showed that micelles decrease DOX accumulation in 
peripheral tissue while increasing the maximum tolerated dose. Antitumor activity studies 

   



verified that micelles with slower release rates better suppressed tumor growth. This 
further confirms that release rates play a key role in chemotherapeutic efficacy. 

Therefore, this thesis provides better insights into the effects of tunable drug 
release in tumors, leading the way for improved chemotherapy treatments in the future. 

Key words: Cancer, Chemotherapy, Drug Delivery Systems, Polymer Micelles, Tunable 
Drug Release 
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CHAPTER ONE 

1 STATEMENT OF AIMS 

Chemotherapy continues to play a major role in cancer therapy as viable cancer treatment 

options remain scarce (1). In an effort to improve current chemotherapeutic regimens, the 

nanotechnology field has developed a variety of nanotechnology-based drug delivery 

systems (NDDSs) including polymer micelles (2, 3), liposomes (4, 5), crosslinked 

nanoassemblies (6), and dendrimers (7). In preclinical and clinical studies, NDDSs have 

shown promise by increasing bioavailability, lowering toxicity, and enhancing solubility 

of chemotherapeutic agents (8-10). Because of these benefits, researchers have continued 

to develop more complex NDDSs with a myriad of capabilities, such as combination 

therapy (11), active targeting (12, 13), and imaging (14). Additionally, NDDSs have been 

designed to respond to environmental stimuli, releasing drug payloads in specific 

conditions (15-17). The design of this environmental responsive release is based on 

changes in pH (18-21), temperature (22, 23), redox potential (24-26), or enzymes (27). 

While these factors provide a rationale for the use of NDDSs, recent developments 

in the field have focused on toxicity reduction (28, 29). Treatments often overlook the 

potential benefits of controlled drug release, and in most cases, chemotherapeutic agents 

are delivered at the limit of toxicity with the assumption that more drug equates to 

successful treatment (30). It has been observed that delivering drugs at a constant rate can 

be as effective, if not more so, than a single bolus dose (31-33). It is crucial to clarify the 

effects of controlled drug release to provide optimal treatment paradigms. It is therefore 

hypothesized that the elucidation of drug release effects will lead to enhanced antitumor 

efficacy. 

1 
   



To elucidate the antitumor effects of tunable drug release in vivo, three specific 

aims are proposed: 

1.1 To Tune Drug Release Rates 

To observe the effects of tunable drug release rates in vitro and in vivo, the tools capable 

of modifying drug release rates must first be developed. Polymer micelles have been 

selected as the NDDS of choice because of their promising results in clinical trials (21). 

Polymer micelles are typically composed of amphiphilic block copolymers. Based on 

concentration, block copolymers spontaneously form spherical nanoassemblies capable 

of carrying a drug payload (34). Herein, micelles will be prepared using modified 

poly(ethylene glycol)-poly(β-benzyl-L-aspartate) [PEG-p(BLA)] block copolymers. 

Through facile chemical modifications, drug binding linkers (HYD, ABZ-HYD, or GLY-

HYD) will be introduced to the polymer backbone. The model drug doxorubicin (DOX) 

will be conjugated to the block copolymers using a hydrazone bond. Reconstituting final 

block copolymers in aqueous solution will produce polymer micelles. The hydrazone 

bond has been studied extensively in literature. The hydrolysis of the hydrazone bond has 

been shown to be pH-sensitive, as the bond is cleaved more rapidly in acidic conditions 

(35). A hydrazone bond enables polymer micelles to release DOX based on pH changes. 

Tuning release rates will be accomplished in one of two ways: adjusting hydrophobic unit 

chain length or inserting drug binding linkers. Drug release studies will confirm modified 

release rates. Initially, an all-encompassing drug release model will be used to determine 

the optimal method for tuning drug release rates (chain length versus drug binding 

linker). An in-depth analysis of drug release will be performed once a method for 

developing a polymer micelle system is established. A mathematical model describing 
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drug release will identify key differences between micellar formulations. Polymer 

micelles will be characterized thoroughly by determining their particle size, surface 

charge, and drug loading. 

1.2 To Determine Activity of Carriers Modulating Drug Release in Vitro 

Prepared polymer micelles will be tested in vitro. The human cancer cell lines DU145, 

A549, and HT29 will be used for cytotoxicity assays. The cytotoxicity of block 

copolymers will be determined, ensuring that only one active pharmaceutical ingredient 

is present in the micelle formulations. Additionally, the activity of DOX released from 

polymer micelles will be confirmed. Once the activity of DOX is established, the effects 

of drug release rates on cytotoxicity will be observed. Cells will be exposed to DOX, 

either as a free drug or in micellar formulations, for two different lengths of time: 48 and 

72 hours. The half-maximal inhibitory concentration will then be determined for each 

treatment period. To better understand the impact of differential drug release, cellular 

internalization of free DOX will be compared to the internalization of DOX from 

polymer micelles. The uptake of block copolymers will also be examined.  

1.3 To Elucidate Effects of Tunable Drug Release in Vivo  

In vivo studies are required not only to further understand the effects of tunable drug 

release, but also to provide guidance to improve chemotherapeutic treatment. Xenograft 

models will be used for biodistribution and antitumor studies. The biodistribution of 

DOX, either from polymer micelles or as free DOX, will be analyzed. Polymer micelle 

treatment is expected to minimize DOX accumulation in peripheral tissue relative to 

treatment with free drug. The accumulation of polymer micelles at the tumor site will 

also be a key factor. With the exception of drug release rates, prepared polymer micelles 
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will be designed to have similar properties and will therefore be expected to accumulate 

similarly at the tumor site. Antitumor activity of polymer micelles and DOX will be 

evaluated. The efficacy of polymer micelles will elucidate the effect of tunable drug 

release. Depending on micellar treatment, the efficacy will vary as the drug release 

parameters change; providing a guide to optimize future treatments.  
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CHAPTER TWO 

2 BACKGROUND 

2.1  Cancer Chemotherapy 

Cancer is the second leading cause of mortality in the United States, accounting for 

nearly one in every four deaths (36). Treatment options generally include surgery, 

radiation, chemotherapy, or, most commonly, a combination of the three (37). In the 

majority of cases, chemotherapy is used in some degree but is limited by toxic side-

effects and drug resistance hindering the potential of most available drugs (38, 39). The 

differential drug sensitivity of cancer cells, depending on disease stages and lesions, also 

makes chemotherapy challenging (40-42). There are neither successful dosage forms nor 

therapeutic paradigms currently available to resolve these issues simultaneously.  

2.2 Nanotechnology-Based Drug Delivery Systems 

Recently, NDDSs using carriers such as water-soluble polymers, liposomes, and polymer 

micelles have been developed to circumvent issues associated with chemotherapeutic 

treatments (43, 44). These nanoparticle drug carriers have numerous advantages, 

including higher solubility, increased bioavailability, enhanced tumor accumulation, and 

lower adverse toxicity in comparison to free drug formulations (45-47). NDDSs generally 

contain both a hydrophobic and a hydrophilic component. Poorly-soluble drugs are 

incorporated into the hydrophobic section, while the hydrophilic segments enhance 

solubility (15). Particle size and surface modifications play key roles in the design of 

NDDSs. Carefully designed NDDSs exhibit reduced uptake by mononuclear phagocytes 

and prolonged circulation times. NDDSs with a poly(ethylene glycol) (PEG) shell are 

capable of avoiding the reticuloendothelial system (48, 49). At the same time, particles 
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larger than ~10 nm can circumvent renal clearance (50). It is important to note that tumor 

vasculature forms rapidly and irregularly, leaving fenestrations in the tumor blood vessels 

ranging from 100 nm to 1.2 µm, with the majority falling in the 380-780 nm range (51, 

52). NDDSs are too large to penetrate healthy blood vessels but can accumulate 

intratumorally via these fenestrations (53). Therefore, NDDSs preferentially accumulate 

at tumor sites. This accumulation minimizes distribution of cancer therapeutics to 

peripheral tissue (54, 55). Additionally, tumors have poor lymphatic drainage, enhancing 

retention of NDDSs (56). This phenomenon is known as the enhanced permeation and 

retention (EPR) effect (51, 57). NDDSs can take advantage of the EPR effect, 

simultaneously decreasing the toxicity and enhancing intratumoral accumulation of 

chemotherapeutics. Drug accumulation at the tumor site after NDDSs treatment varies, 

ranging from a small percentage to upwards of 10% of the dose, while the uptake 

treatment with free drug is typically only around one percent (58). Several factors affect 

the drug accumulation from NDDSs treatment, including tumor size, tumor type, and 

physicochemical properties of the NDDS (58).  

2.3 Tunable Drug Release  

The development of NDDSs is typically focused on delivering chemotherapeutic agents 

as close to the maximum tolerated dose as possible. The potential benefits of rate of drug 

delivery are often overlooked. Studies have shown that chemotherapeutic efficacy in vivo 

depends both on drug dose and therapeutic schedules (59, 60). Growing evidence 

suggests that releasing chemotherapeutic agents at a slow rate will be as effective as a 

single bolus dose (61-63). Nevertheless, the primary focus of NDDSs research has been 

to improve solubility and tumor-specific accumulation of drugs (64-66). Targeted drug 
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delivery in conjunction with reduced toxicity can achieve considerable therapeutic 

efficacy, yet therapeutic potential of drug carriers is often over- or underestimated by the 

extent of tumor-specific drug delivery (67, 68). Recent studies have demonstrated that 

cancer cells exposed to smaller amounts of drug over longer periods appear to be at least 

as sensitive to chemotherapy as cells incubated with a higher drug dose for a shorter 

period (69). This supports the rationale that controlling the temporal distribution of 

anticancer drugs would significantly impact the therapeutic response of relative to 

conventional chemotherapy, potentially optimizing treatment methods. As such, it is 

critical to elucidate the effects of drug release rates on chemotherapeutic efficacy. To 

accomplish this goal, it is essential to develop nanoparticle drug carriers that are capable 

of fine-tune drug release.  

2.4 Block Copolymer Micelles 

Block copolymer micelles are attractive candidates as nanoparticle drug carriers. Polymer 

micelles have high drug loading capacity and high water solubility. Additionally, 

polymer micelles are easily modified (70, 71). Polymer micelles are composed of 

amphiphilic block copolymers that self-associate to form spherical nanoassemblies 

through an entropy-driven process (72, 73). Polymer micelles consist of a hydrophilic 

shell and a hydrophobic core. The core environment can play an important role in particle 

stability (74). Furthermore, poorly-soluble drug molecules can be incorporated into 

micelles by physical entrapment or chemical conjugation (75, 76). Hydrophobic and ionic 

interactions have also been used to facilitate physical drug entrapment. The early burst 

release of drugs is always a concern with physically-entrapped drugs (77-79). Burst 

release can be prevented by chemically conjugating therapeutic agents to the block 
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copolymer backbone (80, 81). The shell is frequently composed of a hydrophilic polymer 

such as PEG which can enhance drug solubility (82). An additional benefit to the core-

shell structure is the resulting polymer micelle size, typically ranging from 10 to 100 nm. 

This size range enables polymer micelles to take advantage of the EPR effect (9, 83, 84). 

Animal studies show that polymer micelles can circumvent the body’s defense system in 

vivo, leading to prolonged plasma retention time (12, 85-87). 

2.5 PEG-poly(β-benzyl-L-aspartate) Block Copolymer Micelles 

In this study, biocompatible block copolymer micelles were used to delineate the in vitro 

and in vivo effects of tunable drug release. Facile chemical modifications can be made to 

the core domain of polymer micelles without changing physicochemical properties (21). 

Herein, polymer micelles were prepared from block copolymers based on a PEG-p(BLA) 

scaffold. Modifications to the hydrophobic portion (BLA) of block copolymers led to 

differential drug release. 

The overall design of block copolymers is shown in Figure 1. One of three drug 

binding linkers (HYD, ABZ-HYD, or GLY-HYD) was introduced into the PEG-p(BLA) 

scaffold (Figure 1A). The drug binding linkers were composed of hydrazide groups and 

spacers. The hydrazide groups were used to covalently attach the model drug DOX to 

block copolymers through a hydrazone bond. Final block copolymers were used to 

prepare micelles.  

DOX was used as the model drug in this study due to its chemical characteristics. 

DOX contains a ketone group at its C13 position, allowing for facile hydrazone bond 

formation. It also possesses spectrometric advantages, as it is detectable by color and 

fluorescence. Additionally, the hydrazone linkage permits the release of the actual drug, 
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Figure 1. Spatial and Temporal Control of Drug Distribution Using Tunable pH-
Sensitive Polymer Micelles 
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not an analogue while maintaining the structure of the block copolymer scaffold (88).  

 Hydrazone bonds are relatively stable at physiological pH but cleaved more 

rapidly in acidic conditions (89, 90). This Schiff base bond has been used extensively and 

the mechanism of hydrolysis has been established (91-93). It should be noted that the 

hydrolysis rates of hydrazone bonds vary depending on the functional groups adjacent to 

the hydrazide group (94, 95). By inserting a spacer prior to the hydrazide group, the 

hydrolysis rate of the hydrazone bond can be modified (35). In this study, the effects of 

ABZ and GLY spacers were explored.  

 It is known that the intratumoral pH is more acidic (6.8-7.2) than physiological 

pH (7.4). Intracellular pH in certain organelles is even lower, falling to 5.0 in endosomes 

and lysosomes (96). These pH variations permit hydrazone bound DOX to be released 

differentially (97, 98). This acidic pH-triggered release is key to observing the effects of 

release rates in vitro and in vivo. Herein, synthesized block copolymers contained 

hydrazone bound DOX. These block copolymers were used to prepared polymer 

micelles, which were expected to show differential drug release rates based on changes in 

pH. The hydrophobic portion of block copolymers was altered to further tune the release 

rates of DOX.  

Developed polymer micelles herein served as a means to observe the effects of 

differential drug release rates on cells. The efficacy of DOX as a free drug was compared 

to DOX in a micellar formulation in an in vitro cell culture system. Efficacy was 

investigated in multiple cancer cell lines including colon, prostate, and lung cancer. 

Additionally, total DOX internalization was observed after treatment with free drug or 

micellar formulations. The combined results of efficacy and internalization studies 
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provided critical information on the effects of differential drug release. Results shed light 

on the potential benefits of tunable drug release. 

Though in vitro analysis guided polymer micelle preparation, in vivo studies 

provided further information on the effects of tunable drug release. The antitumor 

efficacy of micellar treatments was compared to free drug treatment. Polymer micelles 

were expected to preferentially accumulate at the tumor site due to the EPR effect (Figure 

1B). Polymer micelles herein were prepared from block copolymers with an identical 

number of hydrophilic repeating units; only the hydrophobic portions of block 

copolymers were modified. Block copolymer scaffolds underwent simple drug binding 

linker modification and covalent attachment of DOX. Therefore, micelles prepared from 

block copolymers were expected to have similar physicochemical properties. Preparing 

micelles with similar characteristics was expected to lead to comparable micellar tumor 

accumulation. Holding everything constant, the primary factor impacting antitumor 

efficacy was differential drug release. The antitumor efficacy of micellar formulations 

was observed, with each micelle formulation representing a different drug release profile 

(Figure 1C).  

 

**Portions of Chapter 2 were previously published in (21). Reproduced with kind 

permission from Springer Science and Business Media: Pharmaceutical Research, 

Volume 27, 2010, pages 2330-2342, PEG-poly(amino acid) Block Copolymer Micelles 

for Tunable Drug Release, Andrei Ponta and Younsoo Bae, Figure 1, Copyright 2010 is 

given to the publication in which the material was originally published. 

Copyright © Andrei G. Ponta 2013  
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CHAPTER THREE 

3 MODULATING DOXORUBICIN DRUG RELEASE UTILIZING POLYMER MICELLES BASED 

ON MODIFIED PEG-P(AMINO ACID) BLOCK COPOLYMERS  

3.1 Introduction  

This work focuses on the development and characterization of polymer micelles because 

of their versatility and prior success in preclinical and clinical atmospheres (99-103). 

Polymer micelles are spherical nanoassemblies generally prepared from amphiphilic 

block copolymers (104). Depending on concentration, block copolymers spontaneously 

form a characteristic core-shell structure. The core consists of the hydrophobic portion of 

block copolymers while the shell is composed of the hydrophilic portion. This structure 

enables polymer micelles to protect drug payloads and functional groups from the 

external environment (105, 106). It is hypothesized that drug release rates could be 

modulated by modifying the polymer micelle core. Herein, two factors affecting drug 

release are analyzed simultaneously: hydrophobic repeating unit chain length and drug 

binding linker modification.  

Three block copolymer scaffolds based on PEG-p(BLA) were synthesized to 

prepare polymer micelles. Each scaffold has an increasing number of hydrophobic 

repeating units: 5, 15, and 35. The hydrophobic portion of these block copolymers was 

modified through the introduction of drug binding linkers; two such linkers were inserted 

into the scaffold: glycine-hydrazide (GLY-HYD) and aminobenzoate-hydrazide (ABZ-

HYD). DOX, an FDA-approved chemotherapeutic, was subsequently conjugated to block 

copolymers through a hydrazone bond. The final block copolymers were then used to 

prepare micelles.  
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Literature shows that hydrazone bonds are relatively stable at physiological pH, 

whereas the bond can be cleaved in more acidic conditions (107, 108). The rate of 

hydrolysis can be altered by inserting a spacer (glycine or aminobenzoate) prior to the 

hydrazide moiety. Designing block copolymers with spacers adjacent to the hydrazide 

group was expected to modify drug release. This approach is one possible method of 

tuning drug release. 

Block copolymers with an increasing number of hydrophobic repeating units 

(BLA) were synthesized. Preparing micelles from block copolymers with a greater 

number of BLA units was expected to produce a more hydrophobic core than micelles 

prepared from shorter chain length block copolymers. The change in hydrophobicity 

could in turn alter the stability of polymer micelles, thereby affecting drug release. This 

approach is a second possible method of tuning drug release. 

A collection of six block copolymers with different compositions was synthesized 

to prepare polymer micelles. Drug release studies were analyzed to investigate the effects 

of drug-binding linkers and hydrophobic unit chain length. Furthermore, the efficacy of 

DOX, as a free drug or as a micellar formulation, was determined in two human cancer 

cell lines: DU145 and A549 (prostate cancer and non-small cell lung cancer, 

respectively). The cellular internalization of free DOX was also observed and compared 

to the internalization of DOX from micellar treatment. This critical information can 

provide insight on the impact of differential drug release rates.  
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3.2 Materials and Methods 

3.2.1 Materials 

L-aspartic acid β-benzyl ester, anhydrous hydrazine, benzene, blue dextran, N,N-

dimethylformamide, triphosgene, anhydrous N,N-dimethylformamide (DMF), anhydrous 

dimethylsulfoxide (DMSO), doxorubicin hydrochloride (DOX), dimethylsulfoxide-d6 

(DMSO-d6), anhydrous ethyl ether, anhydrous hexane, anhydrous tetrahydrofuran (THF), 

acetate buffer solution, phosphate buffer solution, methyl 4-aminobenzoate, O-

benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate (HBTU), and 

sodium hydroxide (NaOH) were purchased from Sigma-Aldrich (USA). Glycine-OMe 

was purchased from Novabiochem (SUI). α-Methoxy-ω-amino poly(ethylene glycol) 

[PEG-NH2, molecular weight (MW) =12,266] was purchased from NOF Corporation 

(Japan). Regenerated cellulose dialysis bags [6,000-8,000 molecular weight cut off 

(MWCO)], Slide-A-Lyzer® dialysis cassettes (10,000 MWCO), Sephadex LH-20 gels, 

sterile filters (0.22 µm), and other cell culture supplies (e.g. 96-well culture plates, 

pipettes, and flasks) were purchased from Fisher Scientific (USA). Amicon-Ultra 

centrifugal ultrafiltration devices (30,000 MWCO) were purchased from Millipore 

(USA). Kaighn's modification of Ham's F-12 medium (F12-K), Dulbecco's modified 

Eagle's medium (DMEM), fetal bovine serum (FBS), trypsin-EDTA (0.25% trypsin and 

2.21 mM EDTA) and the cell lines DU145 and A549 were purchased from ATCC 

(USA). 

3.2.2 Monomer Synthesis 

The Fuchs-Farthing method was used to prepare β-benzyl-L-aspartate N-carboxy 

anhydride (BLA-NCA) (109). Triphosgene (2.88 g, 9.7 mmol) was added to β-benzyl-L-
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aspartate (BLA) (5.0 g, 22.4 mmol) in dry THF (100 mL) under N2 at 45°C with constant 

stirring at 45°C under N2. When the solution became clear, anhydrous hexane was slowly 

added until BLA-NCA crystals appeared and disappeared quickly. The final solution was 

stored in -20°C for BLA-NCA to produce needle-like BLA-NCA crystals which were 

used for block copolymer synthesis. 

3.2.3 PEG-p(BLA) Block Copolymer Scaffold Synthesis 

Three compositions of PEG-p(BLA) block copolymers were synthesized, each consisting 

of 12,000 MW PEG and an increasing number of BLA repeating units (5, 15, and 35). 

The number of BLA repeating units was precisely controlled by increasing the amount of 

BLA-NCA used in the reaction. PEG was freeze-dried prior to the reaction. Amine-

activated PEG was used as an initiator for the ring-opening polymerization of BLA-NCA 

(15, 110). BLA-NCA monomer (0.46 µmol, 183 µmol, 361 µmol) and PEG (42 µmol, 

183 µmol, 183 µmol) were placed in separate flasks and dissolved with anhydrous 

DMSO at a 50 mg/mL concentration. Dissolved monomers were then added to the PEG 

solution, and the polymerization was carried out with constant stirring at 45°C under N2. 

Pure PEG-p(BLA) block copolymers were collected after repeated ether precipitation to 

remove DMSO. Briefly, polymer solution was added to excess ether in a conical tube. 

Contents were mixed and centrifuged. Supernatant was discarded, removing DMSO and 

other impurities. Solubility tests confirmed that PEG-p(BLA) precipitates in ether, while 

unreacted BLA readily dissolves in ether. The resulting polymer precipitate was 

dissolved in benzene and freeze-dried, producing a pure white polymer powder. Any 

remaining BLA was removed in the subsequent step of the synthesis process as block 
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copolymers were later dialyzed. Amine-activated PEG was no longer present since BLA-

NCA was added in excess. 

3.2.4 Drug Binding Linker Insertion and DOX Conjugation 

Carbazate drug binding linkers were introduced to PEG-p(BLA) scaffolds. The BLA side 

chains were modified according to the following steps: deprotection, spacer coupling, and 

end-group functionalization with hydrazine (Figure 2). Benzyl groups of PEG-p(BLA) 

block copolymers were deprotected with 0.1 N NaOH, resulting in PEG-p(Asp) block 

copolymers. Freeze-dried PEG-p(Asp) (12 µmol) was coupled with methyl 4-

aminobenzoate (ABZ-OMe) (130 µmol, 450 µmol, 680 µmol) or glycine methyl ester 

(GLY-OMe) (129 µmol, 400 µmol, 700 µmol) spacers. This reaction used HBTU to 

couple spacers to the Asp portion of block copolymers. The reaction was performed in 

DMF overnight with constant stirring at 45°C. The amount of spacers added to the 

reaction mixture was increased based on the number of Asp repeating units (5, 15, or 35). 

Side-chain modified block copolymers [PEG-p(Asp-ABZ) or PEG-p(Asp-GLY)] were 

thoroughly purified to remove unreacted ABZ-OMe and GLY-OMe. Products were first 

precipitated in ether and then dialyzed in a deionized water/methanol (50:50) solution. 

Finally, any remaining precipitates were removed by filtration.  

An aminolysis reaction in DMF was used to replace methyl esters of the spacers 

with hydrazide. PEG-p(Asp-ABZ) (5.4 µmol, 6.8 µmol, 4.9 µmol) and PEG-p(Asp-GLY) 

(5.9 µmol, 6.5 µmol, 5.1 µmol) were reacted with fivefold excess hydrazine (134 µmol, 

515 µmol, 856 µmol, and 145 µmol, 490 µmol, 890 µmol for the ABZ and GLY 

modified block copolymers, respectively). The reaction proceeded for one hour with 

constant stirring at 40°C. PEG-p(Asp-GLY-HYD) and PEG-p(Asp-ABZ-HYD) final  
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Figure 2. Synthesis Scheme for 12-5, 12-15, and 12-35 Block Copolymers with ABZ-HYD 
and GLY-HYD Drug Binding Linkers 
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products were collected. Impurities were removed through repetitive ether precipitation. 

Products were collected by freeze-drying. 

PEG-p(Asp-GLY-HYD) and PEG-p(Asp-ABZ-HYD) block copolymers were 

conjugated with DOX in DMSO for two days at 30°C. Unreacted drug and DMSO were 

removed using ether precipitation. The resulting products were further purified by a 

Sephadex LH-20 column eluted with methanol to remove drug molecules physically 

bound to block copolymers. Block copolymers with shorter hydrophobic chain lengths (5 

or 15) readily dissolved in methanol. Small amounts of DMSO were added to completely 

dissolve block polymers with longer hydrophobic chain lengths (35 repeating units) in 

methanol. The block copolymer fraction from the column was collected in a round-

bottom flask. Methanol was removed by rotary evaporation. A thin film was produced 

after rotary evaporation. For block copolymers with five and 15 hydrophobic repeating 

units, the film was directly dissolved in benzene and subsequently freeze-dried. Block 

copolymers with 35 hydrophobic repeating units were poorly soluble in benzene and 

were therefore redissolved in DMSO. Products were precipitated in ether and collected 

by freeze-drying from benzene/methanol mixed solvents. UV-Vis colorimetric analysis at 

480 nm was used to determine the degree of DOX conjugation for these block 

copolymers.  

3.2.5 Polymer Micelle Preparation 

Preparation of polymer micelles was carried out in one of two ways depending on the 

solubility of the final block copolymers. Irrespective of drug binding linker, shorter block 

copolymers were dissolved in deionized water and sonicated to prepare polymer micelles. 

Block copolymers containing 35 repeating units were found to be insoluble in deionized 
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water, so polymer micelles were prepared using a dilution method. Final block 

copolymers were dissolved in DMSO (<5 mg/mL) and subsequently titrated into a 

deionized water solution reaching a 0.5 mg/mL maximum concentration. DMSO was 

completely removed by repeated centrifugal ultrafiltration (30,000 MWCO) from 

deionized water. A clear concentrated polymeric micelle solution was obtained. UV-Vis 

colorimetric analysis at 480 nm was used to determine the drug loading content of the 

polymer micelles.  

Each of the polymer micelles are referred to by the MW of PEG x 103 followed by 

the number of hydrophobic repeating units and the spacer used in the reaction. 12-5 GLY 

micelles refer to polymer micelles formed from block copolymers containing a GLY 

spacer with five hydrophobic repeating units. If the spacer was omitted, both ABZ and 

GLY polymer micelles are discussed. For example, 12-5 micelles refer to both 12-5 GLY 

and 12-5 ABZ micelles.  

3.2.6 Analytical Methods 

1H-NMR measurements of block copolymers were performed in DMSO-d6 at 300 MHz 

normal proton frequencies. The spectrometer was equipped with an FTS Systems 

preconditioning device. The device included an internal temperature controller, 

refrigerating unit, and inclusion transfer line. Measurement conditions were set at a 

temperature of 25°C for all samples.  

Dynamic light scattering (DLS) was used to characterize polymer micelle size. 

Polymer micelles mean diameters were determined with a Zetasizer Nano-ZS (Malvern, 

UK) equipped with a He-Ne laser (4mW, 633 nm) light source and 173° angle scattered 

light collection configuration. The hydrodynamic diameter of polymer micelles was 
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calculated based on the Stokes-Einstein equation. The correlation function was curve-

fitted by a cumulant method to calculate mean size. Block copolymers were dissolved in 

deionized water at a 2 mg/mL concentration and measurements were taken at room 

temperature. Three separate polymer micelle solutions were prepared for each block 

copolymer composition to provide a precise analysis. Particle size based on number 

average distributions was presented as the average diameter ± standard deviation.  

Drug conjugation and loading were determined using a SpectraMax M5 

(Molecular Devices, USA) equipped with variable spectrum filters and SoftMax Pro 

software. Absorbance was measured in aqueous solutions using a 96 well plate at 25 ºC. 

It was determined that DOX has a fingerprint peak at 480 nm by taking the absorbance 

spectra of DOX from 400 to 800 nm. PEG-p(Asp-GLY-HYD-DOX) and PEG-p(Asp-

ABZ-HYD-DOX) spectra confirmed that the absorbance profile of DOX does not change 

after chemical modification. With DOX standards (0.98 to 250 µM), a calibration curve 

was prepared using the fingerprint peak at 480 nm. Drug loading and drug release were 

measured using this standard curve.  

3.2.7 Drug Release Study 

In preparation for release experiments, polymer micelle solutions (0.5 mL) were loaded 

into two Slide-A-Lyzer® (Thermo Scientific, USA) dialysis cassettes (10,000 MWCO). 

There were six sampling intervals so two cassettes were used for each individual 

experiment. The cassettes containing micellar solutions were placed in 4.0 L of 10 mM 

buffer solutions at two different pH conditions. For pH 5.0, sodium acetate buffer 

solution (0.01 M ionic strength) was used while potassium phosphate monobasic buffer 

solution (0.02 M ionic strength) was used for pH 7.4. The outer buffer solution pH was 
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measured periodically, verifying no pH drift. Additionally, manufacturer specifications 

indicated that sodium acetate buffer solution pH ranged from 5.00 to 5.02 at 37°C. 

Temperature was held constant at 37ºC throughout the drug release study to mimic 

physiological conditions. Similar to pH, the temperature of the buffer was measured 

regularly to ensure constant temperature. Samples were taken at 0, 0.5, 1, 3, 6, 24, and 48 

hours. At each interval, at least 50 µL were withdrawn from dialysis cassettes and 

collected in microtubes to be stored for analysis. The first cassette was used for sampling 

up to the three hour time point, with the remainder of the samples taken from the second 

cassette. This experiment was done in triplicate. 

3.2.8 In Vitro Cytotoxicity 

Cytotoxicity of drug loaded polymer micelles and free DOX was observed in two cancer 

cell lines: DU145 and A549. Cells were cultured in a humidified atmosphere with 5% 

CO2 at 37ºC. Cell culture media contained 10% FBS. DU145 cells were cultured in 

DMEM while A549 cells were cultured in F-12K. Cytotoxicity experiments were 

performed identically irrespective of cell line. Five thousand cells were seeded in 96-well 

plates and incubated for 24 hours. Cells were subsequently treated with solutions of free 

drug or micellar formulations at DOX-equivalent concentrations ranging from 10-5 µM to 

100 µM. The highest attainable DOX-equivalent concentration of 12-5 micelles was 10 

µM due to lower drug loading. The stability of block copolymers in media was not 

directly studied in this work, but similar systems reported no issues with stability in in 

vitro and in vivo studies (12, 86, 111). After 72 hours the number of viable cells was 

determined using a Resazurin assay (112). Each experiment was done in triplicate. The 
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half-maximal inhibitory concentration (IC50) was determined using Prism. The log 

(DOX concentration) versus response was fitted using nonlinear regression. 

The solubility of free DOX was not an issue in the concentration range used for 

the in vitro studies. The highest concentration used herein was 58 µg/mL, while in the 

literature, DOX was used at higher concentrations in cell culture media (113). 

Furthermore, precipitates were not seen upon visual inspection.  

3.2.9 DOX Cellular Uptake 

DOX uptake was determined in the A549 cell line. The cell culturing conditions from 

cytotoxicity experiments were maintained in cellular uptake studies. Uptake studies were 

performed using 96-well plates. Ten thousand cells were plated in 96-well plates which 

were subsequently placed in an incubator. After 24 hours, media was removed and 

replaced with drug-containing media. Drug containing media was the same as cell culture 

media. Internalization of free DOX was first observed. Cells were treated with a 100 µM 

DOX solution. After 30 minutes, cell culture medium was removed and cells were 

washed with PBS three times. Any free DOX remaining in plate wells was removed by 

the PBS wash. DOX binding to the cells was not analyzed specifically but the PBS wash 

was expected to minimize binding. Additional experiments performed in chapter six 

confirmed free DOX removal after PBS washing. After the last wash, any remaining PBS 

was removed and cells were lysed with 100 µL of DMSO. This procedure was repeated 

for the following time intervals: 1, 3, 6, 24, 48, and 72 hours. DOX fluorescence was 

measured spectrometrically with an excitation at 490 nm and emission at 590 nm to 

determine DOX concentration. The excitation wavelength was selected at the absorbance 
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peak of DOX. Holding the excitation wavelength at 490 nm, the emission spectra showed 

a DOX peak at approximately 590 nm. 

A calibration curve was prepared to quantify DOX concentration. DOX stock 

solutions were prepared in DMSO. A serial dilution was used to obtain a range of DOX 

concentrations (0.01-1000 µM). The fluorescence was measured and the results were 

plotted versus concentration to create a calibration curve. The linear range was from 0.1 

to 20 µM DOX. These concentrations were used as the lower and higher limits of 

detection. The response factor was confirmed with a second set of standards. DOX 

concentration in the lysed cellular solution was determined based on this calibration 

curve. 

DOX internalization in the presence of micelles was similarly observed. 

Experiments were conducted identically to studies of free DOX uptake. Cells were 

treated with solutions containing 12-15 GLY, 12-15 ABZ, and 12-35 GLY micelles at 

100 µM DOX-equivalent concentrations. At the predetermined time points cells were 

lysed and the fluorescent signal related to DOX was measured (excitation at 490 nm and 

emission at 590 nm). These measurements included both free DOX and DOX conjugated 

to block copolymers. Conjugated DOX had a similar fluorescent spectrum to free DOX, 

thus the resulting fluorescent signal was the combined total of free DOX and conjugated 

DOX.  

3.2.10 Statistics 

Statistical analyses were performed using two-way ANOVA at 5% significance level 

combined with Bonferroni Multiple Comparison Test. Data were recorded as mean ± 
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standard deviation or standard error, as indicated. Experiments were repeated at least 

three times. GraphPad Prism (GraphPad Software, USA) was used for all data analysis.  

3.3  Results 

3.3.1 Denotation 

Block copolymer compositions are in the form of X-Y, where X and Y denote PEG 

MW×103 and number of BLA repeating units, respectively. Modifications to the 

hydrophobic section of block copolymers are described sequentially, following Asp 

within the parenthesis. For example, PEG-p(Asp-GLY-HYD) describes PEG-p(Asp) 

block copolymers modified with a GLY spacer and a hydrazide moiety. ABZ and GLY 

micelles refer to micelles prepared from PEG-p(Asp-ABZ-HYD-DOX) and PEG-p(Asp-

GLY-HYD-DOX) block copolymers, respectively. 

3.3.2 Monomer and Block Copolymer Scaffold Synthesis 

BLA-NCA monomers were synthesized successfully using a previously described 

protocol (72). Needle-like BLA-NCA crystals were collected after purification. Three 

PEG-p(BLA) block copolymer scaffolds were synthesized, with 5, 15, or 35 BLA 

repeating units. The number of BLA repeating units on each scaffold was altered by 

changing the amount of BLA-NCA monomers added to the reaction mixture. Increasing 

monomer concentration used in the reaction resulted in an increased number of BLA 

units on the block copolymer scaffold.  

The number of BLA repeating units on each block copolymer scaffold was 

determined with 1H-NMR. PEG (12,000 MW) had a prominent peak at 3.5 ppm (Figure 

3A, denoted by letter a). The peak observed at 7.3 ppm represented the benzyl groups of 

BLA (Figure 3A, denoted by letter b). The number of BLA repeating units was  

24 
   



 

Figure 3. 1H-NMR Spectra Confirming PEG-p(BLA) Synthesis (A) and ABZ-HYD or 
GLY-HYD Insertion (B and C) 
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determined using the ratio of the PEG peak area to the BLA peak area. The integral 

ratios, in the form of PEG:BLA, of the three block copolymers synthesized were 1091:25, 

1091:77, and 1091:172. These ratios correspond to 5, 15, and 35 BLA repeating units. 

Final products yielded three PEG-p(BLA) block copolymer scaffolds which were 

subsequently modified with drug binding linkers.  

3.3.3 Drug Binding Linker Insertion and DOX Conjugation 

PEG-p(BLA) benzyl esters were removed after deprotection, producing PEG-p(Asp) 

block copolymers. GLY-OMe or ABZ-OMe spacers were coupled to the carboxyl groups 

of PEG-p(Asp) (Figure 3). A variety of methods and reaction conditions was tested in the 

coupling reaction until a protocol was established. DIC, NHS, and DMAP were used 

initially without success. Coupling with HBTU yielded the most promising results. The 

conjugation of GLY-OMe and ABZ-OMe to PEG-p(Asp) was confirmed using 1H-NMR 

(Figure 3). Successful spacer conjugation, in either case, resulted in the insertion of 

methyl ester groups. It should be noted that unreacted GLY-OMe and ABZ-OMe were 

removed after dialysis. A portion of the 1H-NMR spectra from 3 to 4 ppm was magnified 

to clearly see the appearance of methyl ester peaks. The peak related to GLY-OMe 

appeared at 3.7 ppm (Figure 3B’, denoted by a gray arrow). The methyl ester peaks of 

ABZ-OMe at 3.8 ppm (Figure 3C’, denoted by a gray arrow) were less prominent than 

their GLY-OMe counterparts, but ABZ benzyl peaks related to ABZ-OMe were observed 

at 7.8 ppm (Figure 3C, denoted by a gray arrow). In addition to confirming spacer 

insertion, 1H-NMR spectra showed successful PEG-p(BLA) deprotection. The benzyl 

peak which originally resulted from BLA groups (Figure 3A) was not present in the 1H-

26 
   



NMR spectra of PEG-p(Asp-ABZ-OMe) or PEG-p(Asp-GLY-OMe) (Figure 3B and 3C, 

denoted by black arrows).  

Block copolymer end-groups were functionalized by replacing methyl esters with 

hydrazine. 1H-NMR spectra of hydrazide groups are represented by broad peaks at ~9 

ppm. Methyl ester peak absence in conjunction with the appearance of broad peaks at 9 

ppm in both 1H-NMR spectra signified a successful reaction (Figure 3B and 3C, denoted 

by letter c). Specifically, PEG-p(Asp-GLY-OMe) 1H-NMR spectra clearly showed the 

methyl ester peak disappearance 3.7 ppm after the hydrazide reaction (Figure 3B’).  

Though PEG-p(Asp) block copolymers were successfully modified with GLY-

OMe and ABZ-OMe, quantification of the extent of reaction was not possible by 1H-

NMR due to peak overlap and broadening. Similarly, hydrazide insertion was not 

quantifiable. For these reasons, the minimal number of conjugation sites on each block 

copolymer was estimated by quantifying the drug molecules bound to block copolymers. 

DOX was conjugated to PEG-p(Asp-ABZ-HYD) or PEG-p(Asp-GLY-HYD) 

block copolymers through a hydrazone bond (Figures 2 and 4). In previous studies, the 

reaction conditions for DOX conjugation have been optimized through extensive testing 

of different solvents, temperatures, and concentrations. These studies determined that the 

drug conjugation reaction between DOX and hydrazide groups does not require an acid 

catalyst in DMSO. Successful DOX conjugation produced PEG-p(Asp-ABZ-HYD-DOX) 

or PEG-p(Asp-GLY-HYD-DOX) block copolymers. Ether precipitation removed free 

DOX. Afterwards, a Sephadex LH-20 column eluted with methanol removed remaining 

unreacted drug molecules. Briefly, dissolved block copolymers were added to the column 

for separation. Two red bands were observed, each with its own distinct color. The darker   
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Figure 4. Proposed Mechanism of pH-Sensitive Drug Release 
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band passed through the column more quickly than the lighter band. The first, darker 

band contained polymer-drug conjugates. This fraction was collected in a round bottom 

flask. Rotary evaporation removed methanol and final products were collected after 

freeze-drying. Solubility of block copolymers in benzene varied, hampering product 

collection by simple reconstitution and freeze-drying. 12-5 and 12-15 block copolymers 

were dissolved in benzene and freeze-dried. However, 12-35 block copolymers were 

insoluble in benzene and were therefore dissolved in DMSO. Ether precipitation was 

used to remove DMSO. Resulting polymers were then freeze-dried from 

benzene/methanol mixed solvents. 

DOX loading of final block copolymers was determined using UV-Vis 

spectrometry (Table 1). Drug loading was reported as weight/weight percent. For further 

analysis, the number of DOX molecules per block copolymer and the percentage of DOX 

molecules conjugated in proportion to available linkers were also calculated. DOX was 

successfully conjugated to all six block copolymers. With regard to weight/weight 

percent, drug loading increased as the number of hydrophobic repeating units increased. 

The drug loading of PEG-p(Asp-ABZ-HYD-DOX) and PEG-p(Asp-GLY-HYD-DOX) 

block copolymers increased from 4.0% to 11% and from 2.8% to 32%, respectively. It 

was apparent that increasing the hydrophobic chain lengths increased the number of DOX 

molecules conjugated to each block copolymer chain. The drug loading per conjugation 

site of PEG-p(Asp-GLY-HYD-DOX) block copolymers steadily increased from 13% to 

44% as the chain length was extended from five to 35 repeating units. The same 

phenomenon was observed in 12-5 and 12-15 PEG-p(Asp-ABZ-HYD-DOX) block 

copolymers. Here, the drug loading per conjugation site increased from 20% to 23%.   
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Table 1. Drug Loading of 12-5, 12-15, and 12-35 Micelles 

Compound Composition Drug loading 
weight % 

DOX molecule/ 
block copolymer 

Drug loading/ 
conjugation site (%) 

PEG-p(Asp-GLY-
HYD-DOX) 

12-5 2.80 ± 0.1 0.7 ± 0.1 13 ± 0.2 
12-15 10.4 ± 0.4 3.0 ± 0.2 20 ± 0.9 
12-35 31.7 ± 0.1 15 ± 0.1 44 ± 0.1 

PEG-p(Asp-ABZ-
HYD-DOX) 

12-5 4.10 ± 0.2 1.0 ± 0.1 20 ± 1.0 
12-15 10.9 ± 0.7 3.4 ± 0.2 23 ± 1.5 
12-35 11.5 ± 0.2 4.8 ± 0.1 14 ± 0.2 

Data were obtained by triplicate measurements and shown as average ± standard 
deviation. 
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Interestingly, drug loading per conjugation site decreased to 14% for the 12-35 PEG-

p(Asp-ABZ-HYD-DOX) composition. This result indicated that DOX was only 

conjugated to five out of a possible 35 drug binding sites. Increasing the number of Asp-

ABZ-HYD repeating units increased the number of DOX conjugation sites, but this had a 

negligible effect on drug loading. The introduction of ABZ spacers prior to the hydrazone 

may have induced steric hindrance, hampering DOX conjugation. Other factors, 

including charge density, length of spacers, and lipophilicity of the micelle core may 

have played a crucial role not only in drug loading but also in drug release. 

3.3.4 Polymer Micelle Preparation and Characterization 

Polymer micelles were prepared from polymer-drug conjugates as described in the 

experimental section. Intriguingly, simply dissolving 12-5 and 12-15 block copolymers in 

aqueous solution readily produced uniform micelles. However, block copolymers with 35 

repeating units precipitated in aqueous solution. For this reason, 12-35 micelles were 

prepared by an alternate method: block copolymers were dissolved in DMSO and then 

titrated in aqueous solution. DMSO was removed by centrifugal ultrafiltration.  

Prepared micelles were thoroughly characterized. Micelle particle size was 

determined using DLS. The number average distribution was reported. This measurement 

accounted for effects of large particle outliers by reporting the particle size of each 

individual population. In all DLS measurements, more than 99% of particles fell into a 

single population. Each of the six block copolymer compositions formed micelles with a 

diameter less than 50 nm (Table 2). Notably, GLY micelles showed no significant 

difference among the three different compositions, maintaining a particle size between 40 

and 45 nm. On the other hand, the particle size of ABZ micelles increased as the  
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Table 2. 12-5, 12-15, and 12-35 Micelle Particle Size Distribution 

Compound Composition Particle size (nm) 
PEG-p(Asp-GLY-HYD-DOX)  12-5 44 ± 9 

12-15 45 ± 11 
  12-35 40 ± 5 
PEG-p(Asp-ABZ-HYD-DOX) 12-5 11 ± 2 
  12-15 24 ± 6 
  12-35 43 ± 6 

Data were obtained by triplicate measurements and shown as average ± standard 
deviation. 
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hydrophobic chain lengths increased. Particle sizes of 12-5, 12-15, and 12-35 ABZ 

micelles were 11, 24, and 43 nm, respectively. A similar particle size was observed with 

12-35 ABZ and GLY micelles. 

3.3.5 Drug Release Study  

DOX release from micelles was observed over 48 hours. Seven measurements were taken 

during that period (0, 0.5, 1, 3, 6, 24, and 48 hours). There was unexpected drug release 

at pH 7.4 for all micellar formulations. At least 15% of DOX was released at 48 hours in 

every case (Figure 5). However, irrespective of micelle composition, DOX release was 

greater at pH 5.0 than at pH 7.4. 12-5 and 12-15 GLY micelles showed very similar drug 

release patterns at both pH 5.0 and pH 7.4. The extension of the hydrophobic chain length 

seemed to have had little effect on the release patterns for these two compositions. 

However, 12-35 GLY micelles had a different release profile, releasing the least amount 

of drug in both pH conditions. A similar pattern was observed with ABZ micelles. There 

was almost no difference in the release profiles of 12-5 and 12-15 ABZ micelles, while 

12-35 ABZ micelles released DOX the least. A trend was observed, with shorter chain 

length micelles maintaining similar release profiles, while longer chain length micelles 

released DOX more slowly. 

The total DOX release over a 48 hour period was analyzed to clarify pH effects 

(Figure 6). At pH 7.4, 12-5 GLY micelles released 30% of DOX, which increased to 40% 

at pH 5.0. The 12-15 GLY formulation had similar drug release, with 44% of DOX 

released at pH 7.4 and 57% at pH 5.0. Overall, 12-35 GLY micelles released the lowest 

amount of DOX. At pH 7.4 17% of DOX was released while only 37% was released at 

pH 5.0. 12-5 and 12-15 ABZ micelles had larger differences in total drug release between   
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Figure 5. Drug Release Analysis: Block Copolymer Chain Length and Spacer Effect. 
Lines Represent 1st Order Drug Release Model Fitting 
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Figure 6. Quantification of Total Drug Release after 48 hours. Error Bars Represent 
Standard Deviation  
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pH 5.0 and pH 7.4. 12-5 ABZ micelles released 60% of DOX at pH 5.0 but only 36% at 

pH 7.4. Almost identical values were seen for 12-15 ABZ micelles. At pH 5.0, 65% of 

DOX was released. This dropped to 30% at pH 7.4. DOX release from 12-35 ABZ 

micelles was minimized at both pH 5.0 and pH 7.4, with the maximum amount of DOX 

released being 30%.  

Differences in total drug release were not only observed when comparing micelles 

with the same spacer, but also when comparing those with different spacers. The total 

amount of drug released from ABZ and GLY micelles at pH 5.0 was significantly 

different. In 48 hours, 12-5 ABZ micelles released 60% of DOX, while 12-5 GLY 

micelles only released 40% of DOX. This trend continued for 12-15 micelles: ABZ 

micelles released 65% of DOX and GLY micelles released 55%. Interestingly, both 12-

35 GLY and ABZ micelles released similar amounts of DOX after 48 hours. Total drug 

release was 32% and 35% for 12-35 ABZ and GLY micelles, respectively. At pH 7.4, 

ABZ and GLY micelles released similar amounts of drug. Approximately 30-40% of 

DOX was released from 12-5 and 12-15 micelles. For the 12-35 composition, both ABZ 

and GLY released slightly less than 20% of drug.  

The release rates of DOX from micelles were determined at both pH 5.0 and pH 

7.4. Drug release was fitted to zero and first order models (Table 3). At pH 7.4, drug 

release rates of 12-5 and 12-15 micelles were not affected by either linker or hydrophobic 

chain length. All four of the micelles had zero order release rate constants between 0.66 

and 0.86 %*hour-1. First order release rate constants were between 0.007 and 0.011 hour-

1. 12-35 micelles had the lowest rate of DOX release. Based on the zero order release 

model, rate constants were 0.28 %*hour-1 for GLY micelles and 0.36 %*hour-1 for ABZ   
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Table 3. Drug Release Analysis from Micelles Varrying Block Copolymer Chain Length 

Drug release kinetic parameters were estimated with zero-order (k0) and first-order (k1) 
models. Release rates are reported as the best fit values with their standard error. % 
represents the drug remaining percent. 

 

  

Spacer Composition 
pH 5.0 pH 7.4 

k0 (%/hour) k1 (hour-1) k0 (%/hour) k1 (hour-1) 

ABZ 
5 1.42 ± 0.12 0.024 ± 0.0035 0.86 ± 0.08 0.010 ± 0.0011 
15 1.43 ± 0.11 0.025 ± 0.0031 0.74 ± 0.10 0.008 ± 0.0012 
35 0.60 ± 0.07 0.007 ± 0.0010 0.36 ± 0.11 0.004 ± 0.0006 

GLY 
5 0.98 ± 0.10 0.013 ± 0.0018 0.66 ± 0.18 0.007 ± 0.0023 
15 1.04 ± 0.22 0.019 ± 0.0072 0.80 ± 0.20 0.011 ± 0.0030 
35 0.70 ± 0.04 0.008 ± 0.0011 0.28 ± 0.03 0.003 ± 0.0006 
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micelles. First order release rate constants were 0.004 and 0.003 hour-1 for ABZ and GLY 

micelles, respectively. The release rates at pH 5.0 were analyzed to further evaluate the 

effect of spacers. Neither type of spacer nor chain length affected 12-5 and 12-15 micelle 

release rates. Conversely, release rates from 12-35 micelles were slower than 12-5 and 

12-15 micelles. 

Comparing the release rates at pH 5.0 and pH 7.4 for each micelle composition 

revealed a dramatic contrast. Zero order and first order release rates from 12-5 and 12-15 

GLY micelles increased at least 20% in pH 5.0. ABZ micelles showed an even greater 

change. Release rates of 12 -5 ABZ micelles were 40% higher in pH 5.0, while there was 

a twofold increase in release rates from 12-15 ABZ micelle. The release rates from 12-35 

micelles almost doubled in acidic conditions. 

3.3.6 In Vitro Cytotoxicity 

Cytotoxicity of DOX, either as a free drug or a micellar formulation, was determined in 

two cell lines, a lung cancer cell line (A549) and a prostate cancer cell line (DU145). The 

IC50 of each micellar treatment was compared to the IC50 of free DOX treatment (Figure 

7, Table 4). In the A549 cell line, the IC50 values after treatment with 12-5 ABZ, 12-15 

ABZ, and 12-35 ABZ micelles were 3.89, 2.95, and 3.80 µM, respectively. The IC50 of 

free DOX treatment was 2.95 µM. ABZ micellar treatment was statistically equivalent to 

treatment with free DOX. In order of increasing repeating units, treatment with GLY 

micelles resulted in IC50s of 5.35, 2.08, and 17.7 µM. Only treatment with the 12-35 

GLY formulation was statistically different than free DOX treatment. For the DU145 cell 

line, all micellar treatments had cytotoxic effects comparable to that of free DOX 

treatment, with the sole exception of 12-35 GLY micelles. ABZ formulations had an  
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Figure 7. Cytotoxicity Compariston of Treatments with 12-5, 12-15, 12-35 Micelles or 
Free DOX 
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Table 4. Cytotoxicity Determination after Treatments with 12-5, 12-15, 12-35 Micelles or 
Free DOX in A549 and DU145 Cells 

Cell Line Spacer Cytotoxicity DOX 12-5 12-15 12-35 
A549 ABZ log (IC50) 0.47 ± 0.05 0.59 ± 0.11 0.47 ± 0.08 0.58 ± 0.19 
  IC50 (µM) 2.95 3.89 2.95 3.80 
 GLY log (IC50) 0.47 ± 0.05 0.73 ± 0.15 0.32 ± 0.15 1.25 ± 0.28* 
  IC50 (µM) 2.95 5.35 2.08 17.7* 
DU145 ABZ log (IC50) -0.30 ± 0.08 0.014 ± 0.02 -0.077 ± 0.13 0.037 ± 0.27 

  IC50 (µM) 0.51 1.03 0.84 1.09 
 GLY log (IC50) -0.30 ± 0.08 -0.27 ± 0.19 -0.44 ± 0.13 0.44 ± 0.14** 
  IC50 (µM) 0.51 0.65 0.36 2.75** 

IC50 values are described in two ways: as log (IC50 concentration) ± the standard 
deviation; and as the corresponding IC50 concentration in µM. Statistical significance is 
indicated by * (p < 0.05), ** (p < 0.01). 
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IC50 of approximately 1.0 µM. Treatment with 12-5 and 12-15 GLY micelles resulted in 

lower IC50s of 0.65 and 0.36 µM, respectively. Treatment with the 12-35 GLY 

formulation resulted in an IC50 of 2.75 µM, the highest of any treatment. 

3.3.7 DOX Cellular Uptake 

The intracellular uptake of DOX was observed in the A549 cell line to elucidate the 

cytotoxic effects of drug loaded micelles. Cells were treated with solutions containing 

either free DOX or a micellar formulation. The three micellar formulations studied were 

12-15 GLY, 12-15 ABZ, and 12-35 GLY micelles. Cells were exposed to drug-

containing media for a set time period, after which the fluorescent signal of DOX was 

measured. This signal was thereafter converted to DOX concentrations. As previously 

stated, the DOX concentration measured from micellar treatment represents the combined 

total of free DOX and DOX conjugated to block copolymers. Cellular uptake results are 

reported as the percent DOX internalized (concentration of DOX 

internalized/concentration of DOX dose) (Figure 8). At each time point, free DOX was 

taken up by cells to a greater extent than DOX after micellar treatments. Initially, there 

was up to a 30-fold difference between free drug internalization and DOX internalization 

from micellar formulations. After 30 minutes, total DOX uptake from 12-15 ABZ and 

GLY micelle treatment was 0.02% and 0.08%, respectively, while DOX uptake from the 

12-35 GLY formulation was negligible. DOX uptake continually increased through the 

first 24 hours. At this point, DOX uptake from 12-15 GLY micellar formulations reached 

0.66%. DOX from 12-15 ABZ micelles was similarly taken up, but DOX uptake after 12-

35 GLY treatment remained minimal. DOX related internalization slowed regardless of 

therapeutic agent used after 24 hours.  
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Figure 8. Cellular Internalization of Micelle Related DOX (Conjugated and Free DOX) 
and Free DOX in A549 Cells 
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Area under the curve (AUC) analysis was performed over the 72 hours of the 

internalization study (Figure 9). The AUC of free DOX treatment approached 250 

%dose*hours, more than six times the AUCs of 12-15 ABZ and GLY treatments. The 

AUC of 12-15 treatments did not reach 50 % dose*hours. AUC analysis confirmed that 

treatment with 12-35 GLY micelles produced the lowest amount of DOX internalization.  

3.4 Discussion 

A NDDS platform from polymer micelles was designed to tune drug release rates. 

Polymer micelles were prepared from block copolymers based on poly(ethylene glycol)-

poly(amino acid) (Figure 1A). In previous works, NDDSs were developed primarily to 

improve the solubility and tumor-specific accumulation of chemotherapeutic agents, 

focusing on the spatial control of drug distribution (Figure 1B). The novel delivery 

system proposed in this study was expected to achieve controlled drug release through 

modifications of the micelle core (Figure 1C). Herein, the effects of the hydrophobic 

chain length and drug binding linkers are described. 

3.4.1 Monomer and Block Copolymer Scaffold Synthesis 

Three compositions of PEG-p(BLA) block copolymers were synthesized as scaffolds. 

Synthesis of PEG-p(BLA) was successful and replicable. By controlling the monomer 

ratio added, synthesis was predictable. Initially, polymers with 10, 20, and 40 

hydrophobic repeating units were targeted. Comparable block copolymers were 

synthesized, containing 5, 15, or 35 BLA repeating units. The slight deviation in 

synthesized block copolymer chain length was attributed to partially inactive BLA-NCA. 

The number of repeating units was increased from five to 35 to observe effects of the 

number of hydrophobic repeating units. 
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Figure 9. DOX Cellular Internalization AUC after Micellar and Free DOX Treatments 
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3.4.2 Drug Binding Linker Insertion and DOX Conjugation 

PEG-p(BLA) scaffolds were deprotected producing PEG-p(Asp). One of two drug 

binding linkers (GLY-HYD or ABZ-HYD) was then attached to the Asp moiety. A GLY 

or ABZ spacer was first inserted onto PEG-p(Asp) using a coupling reaction typically 

used in solid phase peptide synthesis (Figure 4). Different coupling methods were 

initially attempted without success. Using HBTU as the coupling agent proved key to 

inserting spacers. It was therefore surmised that the single molecule-mediated coupling 

mechanism of HBTU seemed to be least influenced by intramolecular steric hindrance at 

the PEG-p(Asp) side chain. Other coupling agents such as DCC, DIC, and EDC contain 

bulky active esters, which were involved in the coupling reaction. Another factor that 

made the coupling reaction challenging was the solubility of block copolymers, which 

changed as coupling reactions proceeded. After spacer insertion, block copolymers were 

modified with hydrazide groups. In the last step of synthesis, DOX was attached to block 

copolymers using a hydrazone bond.  

Acid-labile hydrazone linkages were employed in this study to modulate drug 

release from polymeric micelles. Carbazate drug binding linkers were used leading to 

hydrazone linkages of drug molecules possessing a ketone group. In addition to the 

hydrazine linkage, GLY or ABZ spacers were introduced prior to the hydrazine bond. 

The hydrazone bond is pH-sensitive, and previous work showed that the insertion of an 

ABZ spacer increased release rates, while GLY spacers decreased release rates (95, 114).  

To properly elucidate the relationship between linker design and drug release 

patterns, the selection of the model drug was considered to be an important factor. DOX, 

an anthracycline antibiotic, was proven effective against a wide range of cancers, but 
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adverse cytotoxicity kept it from reaching its full potential. Additionally, DOX proved 

useful due to its detectability by fluorescence and absorbance, hydrophobic nature, and 

well-defined physicochemical properties. Moreover, the clinically-proven therapeutic 

efficacy of DOX was expected to help elucidate the effects of tunable drug release on 

tumor chemotherapy. Lastly, studies constantly showed that developing a NDDS for 

DOX can improve the therapeutic index of DOX (49, 115).  

Each polymer composition synthesized revealed a different degree of drug 

conjugation (Table 1). In terms of weight/weight percent, drug loading increased as the 

hydrophobic chain length increased, presumably due to the increasing number of 

conjugation sites. Unsurprisingly, block copolymers with the shortest chain length had 

the lowest amount of conjugated DOX, with only one drug molecule attached per block 

copolymer. Drug loading for the 12-15 compositions increased to about three DOX 

molecules per block copolymer. In terms of drug loading per conjugation site, 12-5 and 

12-15 block copolymers were similar (~20%). Comparing spacer effects, 12-35 block 

copolymers had the largest difference in drug loading per conjugation site. GLY modified 

block copolymers contained between 15 and 16 DOX molecules per block copolymer, 

while ABZ micelles contained just five DOX molecules per block copolymer. Compared 

to GLY micelles, DOX conjugation was less efficient in ABZ micelles. It was surmised 

that the extension of the drug binding linker allowed the ABZ benzyl ring to cause steric 

hindrance.  

Micelles with shorter chain lengths proved less promising than those with longer 

chain lengths. For 12-5 micelles only one drug molecule was bound per block copolymer. 

Multiple drug molecules per block copolymer were conjugated onto 12-15 and 12-35 
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block copolymers. This high drug loading capacity maximizes the benefits of micellar 

treatment. In regard to the potential conjugation sites, overall drug conjugation was 

relatively low. Only the 12-35 GLY block copolymer showed conjugation greater than 

22%, leaving room for improvement. Results suggested that optimizing both the coupling 

reactions of spacers and the hydrazide insertion could lead to more effective drug 

conjugation. 

3.4.3 Polymer Micelle Preparation and Characterization 

PEG-poly(amino acid) block copolymers have been shown to readily form micelles, as 

was the case with the six block copolymers synthesized in this study. 12-5 and 12-15 

block copolymers were reconstituted in aqueous solution, forming micelles with a 

hydrodynamic diameter less than 50 nm. Longer chain length block copolymers were not 

directly soluble in solution. The 20 repeating-unit difference from 12-15 to 12-35 block 

copolymers changed the hydrophobic portion’s MW by approximately 5,000 g/mol. It 

was unsurprising that an effect on solubility was observed considering that total block 

copolymer MW of ranges from 13,000 to 25,000 g/mol. A dilution approach was used to 

prepare micelles with 12-35 block copolymers. Similar to 12-5 and 12-15 micelles, 12-35 

micelles had a diameter of approximately 40 nm.  

3.4.4 Drug Release Study  

Drug release studies were used to observe the effects of differential drug binding linkers 

(GLY-HYD or ABZ-HYD) and hydrophobic repeating unit length (5, 15, or 35) on DOX 

release. DOX was attached to block copolymers with a hydrazone bond. The hydrazone 

bond was shown to undergo hydrolysis more quickly in acidic intratumoral or 

intracellular environments (pH 5.0-6.8) (85). Therefore, DOX release was expected to be 
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pH-sensitive. To confirm this hypothesis, DOX release from micelles was observed under 

sink conditions in environments intended to mimic physiological and intracellular 

settings (Figure 5).  

Quantification of total drug release showed that more DOX is released in acidic 

conditions, regardless of spacer type and hydrophobic chain length. Depending on 

formulation, differences in amount of drug released were observed as early as the one 

hour time point. In addition to comparing drug released at individual time points, zero 

and first order release rates were determined and compared. Results indicated that DOX 

was released more quickly at pH 5.0. Zero order release rates were at least 20% slower at 

pH 7.4. There were greater differences in first order release rates, as drug release rates 

were two to three times lower at pH 7.4. The differences in release rates can be partially 

attributed to the use of the hydrazone bond. It was previously shown that hydrolysis of 

the hydrazine bond is pH-sensitive (116, 117). Literature showed that small molecules 

with hydrazone bonds have greater than tenfold differences in hydrolysis rates going 

from neutral to acidic conditions (35, 95, 118). It was surmised that DOX release from 

block copolymer micelles was also influenced by other factors. Core properties (i.e. steric 

hindrance, hydrophobicity) may have played a role in DOX release. This phenomenon 

was previously observed with polymeric carriers (90, 114).  

The hydrophobic chain length of polymer micelles was varied in an effort to tune 

drug release rates. 12-5 and 12-15 micelles released more DOX than 12-35 micelles at 

pH 7.4. This was also observed at pH 5.0. Interestingly, there were minimal differences 

between the amount of DOX released from 12-5 and 12-15 micelles. Release rate 

analysis confirmed that 12-5 and 12-15 micelles had equivalent release rates. This held 
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true in both pH 5.0 and pH 7.4. Though release rates from shorter chain length block 

copolymers were similar, extending the hydrophobic chain length to 35 slowed release 

significantly. It appeared that extending the chain length beyond a certain point 

significantly slows drug release rates.  

The secondary method to tune drug release rates was attempted by inserting a 

spacer prior to the hydrazone bond. Hydrolysis release rates are altered due to 

neighboring substituent effects (119, 120). More specifically, earlier works with ABZ and 

GLY spacers show that the insertion of ABZ leads to greater drug release at a faster rate 

than the insertion of GLY (114). In this study, total DOX release was statistically 

different when comparing 12-5 micelles with different spacers. Similarly, a difference 

was observed with 12-15 micelles but this difference was no longer evident with the 12-

35 micelles. Spacers had no effect on total DOX release when the hydrophobic chain 

length was increased to 35 units. More surprising was the fact that release rates of DOX 

were not statistically different when comparing micelles containing the same number of 

hydrophobic repeating units, but different spacers (GLY or ABZ). 

Modeling the drug release based on zero and first order release kinetics gave 

insight to DOX release from micelles, but both models oversimplified the drug release 

process. For DOX to be released from micelles, a minimum of three factors must be 

considered: hydrazone bond cleavage, DOX escape from micelle, and DOX partitioning 

within the micelle. Additionally, dynamic dialysis studies should account for the effects 

of the dialysis membrane. The rates reported herein are all-encompassing, combining all 

of the factors into a single observed rate constant.  

49 
   



The first order model was expected to describe the drug release more accurately, 

as hydrazone hydrolysis is often expressed as a first order process (118, 120). This only 

holds true under the assumption that hydrazone hydrolysis is rate limiting, and that 

remaining factors play minimal roles. In this study, first order release models produced 

better fits, specifically in terms of coefficient of determination. But even with the first 

order drug release model, there was room for improvement as drug release fitting at pH 

7.4 was poor. Additionally, determined rate constants had large variability. Determining 

spacer effects was thus inconclusive. However, there were significant differences in total 

drug release when comparing 12-5 and 12-15 GLY to their ABZ counterparts. The 

variability in release rates and poor fitting at pH 7.4 highlighted the need for a more 

complete drug release model. This would not only better describe DOX release from 

micelles, but also give insight into which factors impact drug release. 

3.4.5 In Vitro Cytotoxicity 

Cytotoxicity of micellar formulations was determined in the A549 and DU145 cell lines 

to evaluate micellar efficacy and to shed light on the effects of drug release rates in vitro. 

It is important to note that DOX conjugated to block copolymers through an ester linkage 

was not cytotoxic (121). Therefore, it was hypothesized that DOX must first to be 

cleaved from block copolymers to produce an active pharmaceutical ingredient. The 

cytotoxic effects of micellar DOX consisted of two possible routes. Entrapped DOX 

could be released extracellularly, at which point the free drug is internalized by the cells. 

Alternatively, micelles can be taken up by cells and release DOX intracellularly. The 

most likely scenario is that a combination of the two occurred in vitro. Nanoparticles, 

including micelles, have been shown to be taken up by cells through endocytosis (18, 
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122-125). During the endocytic cycle, pH drops as low as 4.5 in lysosomes (126, 127). At 

this low pH, DOX release from micelles was accelerated. Though drug release studies in 

media were not performed, it was expected that drug release in buffer would correlate 

with drug release in media. Additionally, cellular internalization studies showed very low 

DOX uptake due to micellar treatment, confirming slow drug release. 

Cytotoxicity experiments were performed over 72 hours. When determining 

efficacy, cells were treated with an equal amount of DOX in every study. Taking into 

account differential DOX release rates from micelles, the amount of free DOX available 

differed depending on the micelle formulation. Initially DOX was completely conjugated 

to block copolymers and was not available in its free active form. Over a 72 hour period, 

the concentration of free DOX from micellar treatments increased as more DOX was 

released. Micelles developed herein had two distinct release profiles, one from 12-5 and 

12-15 micelles and another from 12-35 micelles. Overall, 12-35 micelles released DOX 

at a slower rate than 12-5 and 12-15 micelles. In addition to micellar treatments, the 

cytotoxicity of free DOX was determined. Free DOX treatment represented a single bolus 

dose, as cells were instantaneously exposed to a large amount of DOX in the active form. 

In A549 cells, micellar treatments were equipotent to free DOX with the sole 

exception being the 12-35 GLY formulation (Figure 7, Table 4). Similar results were 

observed in DU145 cells, with micellar treatments having comparable IC50s to free DOX 

(Figure 7, Table 4). The 12-35 GLY formulation was again the exception, having a 

statistically higher IC50. Overall cytotoxicity results were intriguing. The amount of free 

DOX available for cells changed depending on treatment, but this change generally did 
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not hamper efficacy. Releasing DOX at a slow rate appeared to be as efficacious as 

exposing cells to a single large dose of free DOX.  

The exception to the rule was 12-35 GLY micelles. Cells treated with 12-35 

micelles yielded the least free DOX due to slow DOX release. The high IC50 in both 

A549 and DU145 cells after 12-35 GLY treatment was attributed to low free DOX 

availability. There appeared to be a point where slow release ceased to be beneficial. 

Additional factors such as intracellular uptake may have also played a role in efficacy. 

This could explain why 12-35 ABZ micelles were cytotoxic, even though they also 

released DOX at a slow rate.  

The effectiveness of micellar treatment with prolonged release showed that not 

only does dosage matter, but so does the rate of release. This was especially apparent 

when comparing 12-5 and 12-15 micelles to free DOX treatment. These micelles released 

DOX at a slow, prolonged rate yet were as efficacious as free DOX.  

3.4.6 DOX Cellular Uptake 

A549 cells were treated with DOX in micellar formulation or as a free drug. At specific 

intervals, the intracellular DOX concentration was measured (Figure 8). The intracellular 

concentration measured from micellar treatment included both free DOX and conjugated 

DOX, as the two could not be differentiated. The uptake of DOX from 12-5 micelles was 

not analyzed due to low drug loading. A 100 µM DOX-equivalent concentration was 

required for internalization studies and this was not attainable with 12-5 micelles. 12-35 

ABZ and 12-35 GLY micelles had similar physicochemical properties and released DOX 

at similar rates; thus only the 12-35 GLY formulation was studied. As described earlier, 

micelle treatment was expected to have two modes of DOX internalization: diffusion as a 
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small molecule and endocytosis of micelles. Extracellular release of DOX followed by 

diffusion was less likely due to the pH-dependent DOX release from micelles.  

High intracellular DOX concentrations were observed very quickly after free 

DOX treatment. Directly available as a small molecule, DOX was readily internalized. 

As early as the 30 minute time point DOX was detected intracellularly at high levels. At 

each subsequent time point, measured DOX concentrations increased equating to greater 

free DOX uptake. DOX related uptake was significantly slower in the case of micelles. 

However, intracellular DOX concentrations steadily increased through the first 72 hours 

in each case. The lower DOX uptake from micellar treatments was related not only to the 

slower uptake of micelles, but also to slow DOX release from micelles.  

DOX release from micelles was compared to the cellular internalization of DOX 

after micellar treatment (Figure 10). DOX release as a percentage at either pH 5.0 or pH 

7.4 was plotted on the left y-axis, while percent dose internalized was plotted on the right 

y-axis. The drug release profile from 12-15 GLY micelles at pH 5.0 was in line with 

cellular internalization of DOX. This correlation was replicated with the 12-15 ABZ but 

was not observed with 12-35 GLY micelles. In block copolymers with shorter 

hydrophobic chain length, the rate of release appears to directly influence cellular 

internalization.  

3.5 Conclusions 

Experimental results demonstrated that modified PEG-p(Asp) block copolymers readily 

formed micelles regardless of chain length. Previously, short block copolymers have been 

shown to form unstable micelles or to be incapable of self-assembling. The insertion of 

spacers seemed to stabilize micelles by retaining sufficient hydrophobicity for self-  
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Figure 10. Comparative Analysis of DOX Release from Micelles at pH 5.0 (Closed Bars) 
and pH 7.4 (Open Bars) Versus Cellular Uptake of DOX (Closed Circles) 
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assembly. Moreover, the results of this study elucidated the effects of chain length and 

core modifications on drug release. The use of a hydrazone linkage led to pH-dependent 

release of DOX, as the DOX release rate was faster in pH 5.0 than in pH 7.4 for all 

micellar formulations.  

Results from drug release studies indicated that block copolymers with longer 

chain lengths (35 repeating units) have slower drug release rates compared to those with 

shorter chain lengths (5 and 15 repeating units). Micelle cores composed of longer chain 

length polymers seemed to more efficiently protect drug binding linkers (GLY-HYD or 

ABZ-HYD) from hydrolysis. Intriguingly, the effect of drug binding linkers was not 

evident in terms of drug release rates. However, total drug release from GLY micelles 

was significantly different from ABZ micelles. The drug release model used apparent 

drug release rates, which oversimplified the drug release process. This oversimplification 

caused high variability in determined release rates, and therefore only very large 

differences in release rates could be differentiated. As total drug release results indicated, 

the use of spacers may still lead to fine-tuned drug release.  

Effects of differential drug release rates were observed in vitro through 

cytotoxicity experiments. Treatment with micelles that released DOX slowly was found 

to be equipotent to a single large dose of free DOX. However, treatment with 12-35 GLY 

micelles showed that there was a limit to the benefits of slow drug release. Cellular 

uptake studies revealed that DOX was internalized after micellar treatments, but to a low 

degree. The combined results of cytotoxicity and cellular internalization experiments 

indicated that delivering smaller amounts of DOX at a slow rate is equivalent to 

administering a single high dose of DOX. Focusing on dosing schedule rather than 
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delivering drugs at the maximum tolerated dose could pave the way to more efficient 

chemotherapeutic treatments. 
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  CHAPTER FOUR 

4 BLOCK COPOLYMER MICELLE PREPARATION AND CHARACTERIZATION: DEVELOPING 

A MICELLAR SYSTEM CONTAINING DIFFERENTIAL DRUG BINDING LINKERS 

4.1 Introduction 

Initial micelle development laid the foundation for the remainder of the study, guiding 

subsequent block copolymer synthesis and micelle preparation. PEG-p(Asp-X-HYD-

DOX) (X = ABZ or GLY) block copolymers were previously synthesized and used to 

prepare micelles. Findings regarding drug loading, drug release, and in vitro efficacy 

revealed the effects of hydrophobic repeating units (5, 15, or 35) and type of drug binding 

linker (GLY-HYD or ABZ-HYD).  

Drug loading analysis showed that extending the hydrophobic chain length led to 

higher drug loading. Specifically, block copolymers containing 35 hydrophobic repeating 

units had the greatest drug loading. Furthermore, drug release analysis revealed that 12-

35 micelles released DOX at slower rates than 12-5 and 12-15 micelles. Though release 

rates decreased by extending the chain length, these rates could not be fine-tuned. There 

appeared to be a breaking point within the range of hydrophobic chain length beyond 

which release rates decreased with little room for adjustment. Drug release studies also 

showed that total DOX released varied depending on the micelle formulation. The type of 

spacer used impacted total drug release. ABZ micelles released more DOX than GLY 

micelles. Similarly, release rates of ABZ micelles were faster than those of GLY 

micelles, though these were not statistically different. The lack of a more complete drug 

release model led to large variability in release rates. Of the two methods (chain length 

versus drug binding linker) to control release rates, modifying drug binding linkers 

remained the most promising. Furthermore, in vitro studies revealed that micellar 
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treatments were equipotent to free DOX treatment as long as micelles were composed of 

block copolymers containing fewer than 35 hydrophobic repeating units. 

Block copolymer synthesis was repeated with a fixed scaffold and targeted 15 

hydrophobic repeating units, leveraging the benefits of increased drug loading capacity 

with high therapeutic efficacy. Block copolymers herein were still modified with drug 

binding linkers to control drug release.  

4.2 Materials and Methods 

4.2.1 Materials 

L-aspartic acid β-benzyl ester, methanol, DMSO-d6, dry ethyl ether, anhydrous hexane, 

hydrochloric acid, anhydrous THF, triphosgene, NaOH, anhydrous hydrazine, benzene, 

dry DMF, anhydrous DMSO, DMSO, methyl 4-aminobenzoate, and HBTU were 

purchased from Sigma-Aldrich (USA). Glycine-OMe was purchased from Novabiochem 

(SUI). DOX was purchased from LC Laboratories (USA). PEG-NH2 was purchased from 

NOF Corporation (Japan). Regenerated cellulose dialysis bags (6,000-8,000 MWCO), 

Sephadex LH-20 gels, and sterile filters (0.22 µm) were purchased from Fisher Scientific 

(USA).  

4.2.2 Monomer and Block Copolymer Scaffold Synthesis  

A PEG-p(BLA) scaffold was synthesized in two steps: monomer synthesis and ring-

opening polymerization (Figure 11, yellow). BLA-NCA monomers were prepared first. 

L-aspartic acid β-benzyl-ester (21.0 g, 223 mmol) and triphosgene (12.1 g, 40.8 mmol) 

were dissolved with dry THF in Schlenk and round bottom flasks, respectively. Dissolved 

triphosgene was added to L-aspartic acid β-benzyl-ester. The reaction was carried out 

with constant stirring at 45°C under N2. The solution turned clear after one hour, 
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signifying a completed reaction. Anhydrous hexanes were then added to the reaction 

solution, which was subsequently stored overnight at -20°C for BLA-NCA monomer 

recrystallization. The supernatant was discarded, and BLA-NCA crystals were washed 

three times with anhydrous hexanes to ensure a pure product.  

Amine-activated poly(ethylene glycol) (PEG-NH2) was used as a macroinitiator 

for BLA-NCA ring-opening polymerization. Freeze-dried PEG-NH2 (4.3 g, 0.36 mmol) 

and BLA-NCA monomers (2.14 g, 8.59 mmol) were dissolved in dry DMSO in separate 

flasks. BLA-NCA monomers were added to PEG, with the final reaction concentration 

reaching ~50 mg/mL. The reaction proceeded for two days with constant stirring at 45°C 

under N2. The amount of BLA-NCA used in the reaction was calculated to produce 15 

BLA repeating units, with a slight excess (10%). Final products were purified by repeated 

ether precipitation and collected after freeze-drying. 1H-NMR confirmed successful 

synthesis (Figure 12). 

4.2.3 Drug Binding Linker Insertion and DOX Conjugation 

The PEG-p(BLA) scaffold was modified with one of two drug binding linkers: ABZ-

HYD or GLY-HYD. PEG-p(BLA) was dissolved in 0.1 N NaOH (50-100 mg/mL) to 

remove the benzyl groups. Dissolved PEG-p(BLA) was transferred into a dialysis bag 

(6,000-8,000 MWCO) which was subsequently placed in a vessel containing deionized 

water (1 L). The outer solution was replaced with fresh deionized water at least eight 

times at time intervals exceeding one hour. Afterward, the outer solution was replaced 

with deionized water containing hydrochloric acid in equimolar proportions to NaOH. 

The outer solution was replaced twice more with deionized water, completing dialysis. 
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Figure 11. 12-16 Block Copolymer Synthesis Scheme 
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Figure 12. 1H-NMR of Block Copolymer Scaffold (A) and Subsequent Block Copolymers 
Confirming Drug Binding Linker Insertion (B-F) 
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The solution within the dialysis membrane was collected and freeze-dried, yielding a 

fluffy, white PEG-p(Asp) polymer.  

A coupling reaction was used to insert ABZ-OMe or GLY-OMe spacers into the 

PEG-p(Asp) backbone. Freeze-dried PEG-p(Asp) (1.0 g, 71.8 µmol) was dissolved in 

DMSO. Either ABZ-OMe (378 mg, 151 µmol) or GLY-OMe (301 mg, 125.6 µmol) was 

added to the PEG-p(Asp) solution. The amount of spacers used in the reaction reflected 

the number of aspartate binding sites on PEG-p(Asp). HBTU was used as the coupling 

agent. The reaction progressed overnight with constant stirring at 40°C. Pure PEG-p(Asp-

ABZ-OMe) and PEG-p(Asp-GLY-OMe) block copolymers were collected after ether 

precipitation, dialysis, and freeze-drying. Successful reactions were confirmed with 1H-

NMR.  

Methyl esters of block copolymers were replaced with hydrazide after an 

aminolysis reaction. Freeze-dried PEG-p(Asp-GLY-OMe) (938 mg, 62 µmol) was 

dissolved in dry DMF. Excess anhydrous hydrazine (650 mg, 20 mmol) with respect to 

Asp-GLY-OMe repeating units was added to the PEG-p(Asp-GLY-OMe) solution. The 

reaction proceeded for one hour with constant stirring at 40°C under N2. PEG-p(Asp-

ABZ-OMe) (860 mg, 54 mmol) was reacted with excess hydrazine (543 mg, 17 mmol) 

under identical conditions. The resulting material was collected after ether precipitation 

and freeze-drying. PEG-p(Asp-ABZ-HYD) and PEG-p(Asp-GLY-HYD) syntheses were 

confirmed with 1H-NMR. 

A third block copolymer [PEG-p(Asp-HYD)] was synthesized as a control. The 

hydrazide group was inserted into the block copolymer backbone, but a spacer was not 

used. PEG-p(Asp-HYD) synthesis was carried out in a one-pot reaction. PEG-p(BLA) 
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(849.5 mg, 56.42 µmol) was freeze-dried and dissolved in dry DMF. Anhydrous 

hydrazine (289.1 mg, 9034 µmol) was added to PEG-p(BLA). The reaction proceeded for 

one hour with constant stirring at 40°C under N2. Block copolymers were collected after 

ether precipitation and freeze-drying. PEG-p(Asp-HYD) synthesis was confirmed with 

1H-NMR. 

DOX was conjugated to each of the three block copolymers. DOX was reacted 

with PEG-p(Asp-GLY-HYD) (899 mg, 59 µmol), PEG-p(Asp-ABZ-HYD) (824 mg, 50 

µmol), or PEG-p(Asp-HYD) (750 mg, 53 µmol) in DMSO for two days while gently 

shaking at 40°C. Physically-entrapped DOX was first removed by ether precipitation. For 

further purification, block copolymers were dissolved in methanol and eluted through a 

Sephadex LH-20 column. Final products were dissolved in deionized water and filtered 

using a 0.22 µm filter. A red powder was collected after freeze-drying. Final block 

copolymers were stored as solids at -20°C.  

4.2.4 Polymer Micelle Preparation and Characterization 

Irrespective of drug binding linker, block copolymers were simply dissolved in aqueous 

solution to prepare micelles. PEG-p(Asp-HYD-DOX), PEG-p(Asp-ABZ-HYD-DOX), 

and PEG-p(Asp-GLY-HYD-DOX) block copolymers formed HYD, ABZ, and GLY 

micelles, respectively.  

Prepared micelles were thoroughly characterized. Particle size and ζ-potential 

were determined using a Zetasizer Nano-ZS (Malvern, UK) equipped with a He-Ne laser 

(4 mW, 633 nm) light source and 173° angle scattered light collection configuration. 

Block copolymers were dissolved in deionized water at 2.0 mg/mL concentrations for 
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both experiments. Three separate samples were prepared for both particle size and ζ-

potential determination. Each sample was analyzed separately.  

A SpectraMax M5 (Molecular Devices, USA) equipped with variable spectrum 

filters and SoftMax Pro Software was used to determine drug loading. A calibration curve 

based on free DOX in deionized water was prepared with standard samples ranging from 

0.98 to 250 µM. Drug loading was determined based on the calibration curve. The DOX 

peak at 480 nm was used as the fingerprint peak for detection. Block copolymer 

absorbance spectra confirmed that the DOX conjugation did not alter the DOX spectra 

(Figure 13).  

4.3 Results  

4.3.1 Denotation 

Block copolymer modifications are denoted by a corresponding abbreviation within the 

parenthesis of the hydrophobic block. For example, PEG-p(Asp-GLY-OMe) block 

copolymers describe PEG-p(Asp) modified with GLY-OMe. Final block copolymers are 

denoted by: PEG-p(Asp-HYD-DOX), PEG-p(Asp-ABZ-HYD-DOX), and PEG-p(Asp-

GLY-HYD-DOX). The respective block copolymer micelles are HYD, ABZ, GLY or 

micelles. 

4.3.2 Monomer and Block Copolymer Scaffold Synthesis  

A PEG-p(BLA) scaffold composed of 12,000 MW PEG and 16 BLA repeating units was 

synthesized in a two-part reaction (Figure 11, yellow). Pure BLA-NCA monomers were 

prepared by adding triphosgene to L-aspartic acid β-benzyl-ester. Needle-like white 

crystals were collected after recrystallization in hexanes. The addition of BLA-NCA to 

amine-activated PEG yielded PEG-p(BLA) block copolymers. Ether precipitation  
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Figure 13. Absorbance Spectra of Free DOX and DOX Conjugated to Block Copolymers. 
Observed Absorptivity at 480 nm for DOX, HYD, ABZ, GLY was 3.30, 3.31, 3.33, 3.31, 

Respectively  
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removed monomers and homopolymers. 1H-NMR confirmed successful synthesis. A 

prominent peak at 3.5 ppm was attributed to PEG (Figure 12A, letter x). Benzyl groups of 

BLA appeared as a peak at 7.3 ppm (Figure 12A, letter y). The number of BLA units was 

determined ratiometrically by integrating the areas of the two peaks. The PEG:BLA 

integration ratio was 1091:80, equating to 16 BLA repeating units.  

4.3.3 Drug Binding Linker Insertion and DOX Conjugation 

HYD, ABZ-HYD, and GLY-HYD drug binding linkers were inserted into the block 

copolymer scaffold. For ABZ-HYD and GLY-HYD insertion, PEG-p(BLA) was first 

deprotected, generating PEG-p(Asp) (Figure 11, green). Deprotection removed the benzyl 

ring from PEG-p(BLA) and produced a carboxylic acid moiety. ABZ-OMe or GLY-OMe 

spacers were then inserted into PEG-p(Asp) backbone through a coupling reaction using 

HBTU. Resulting block copolymers were further modified with hydrazide using an 

aminolysis reaction.  

PEG-p(BLA) deprotection and drug binding linker insertion were both confirmed 

with 1H-NMR. Successful conversion of PEG-p(BLA) to PEG-(Asp) resulted in the BLA 

peak disappearance at 7.3 ppm. 1H-NMR spectra of both PEG-p(Asp-ABZ-OMe) and 

PEG-p(Asp-GLY-OMe) block copolymers showed this absence, confirming deprotection 

(Figure 12B and 12D, black arrows). Following deprotection, spacers containing methyl 

ester protecting groups were introduced into PEG-p(Asp) block copolymers. 1H-NMR 

spectra of PEG-p(Asp-ABZ-OMe) and PEG-p(Asp-GLY-OMe) revealed methyl ester 

peaks at 3.8 ppm (Figure 12C and 12E, gray arrows). Additionally, the presence of the 

ABZ-OMe benzyl group led to the appearance of a peak at 7.8 ppm, signifying successful 

spacer insertion. Methyl esters were subsequently replaced with hydrazide groups, 
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resulting in PEG-p(Asp-ABZ-HYD) and PEG-p(Asp-GLY-HYD) block copolymers. 

After hydrazide insertion, 1H-NMR spectra showed the disappearance of methyl ester 

peaks (Figure 12C and 12E). Furthermore, small, broad peaks related to hydrazide were 

observed at approximately 9.0 ppm (Figure 12B and 12D). 1H-NMR spectra differences 

between before and after hydrazide insertion confirmed a successful reaction.  

PEG-p(Asp-HYD) block copolymers were synthesized separately. A one-pot 

reaction was used by directly adding hydrazine to PEG-p(BLA) (Figure 11, purple). The 

reaction was confirmed with 1H-NMR. The PEG-p(BLA) benzyl peak at 7.3 ppm 

completely disappeared (Figure 12F, black arrows). Additionally, a smaller broad peak at 

9.0 ppm from hydrazide appeared after the reaction (Figure 12F). 

DOX was covalently attached to PEG-p(Asp-HYD), PEG-p(Asp-ABZ-HYD), 

and PEG-p(Asp-GLY-HYD) block copolymers, forming PEG-p(Asp-HYD-DOX), PEG-

p(Asp-ABZ-HYD-DOX), and PEG-p(Asp-GLY-HYD-DOX) block copolymers, 

respectively. Final block copolymers were purified thoroughly. Ether precipitation 

removed DMSO and the majority of physically-entrapped DOX, while a Sephadex LH-

20 column eluted with methanol removed any remaining free DOX. For the last step of 

purification, block copolymers were dissolved in deionized water and filtered with a 0.22 

µm filter. Immediately afterward, dissolved block copolymers were placed on dry ice. 

Block copolymers were lyophilized, and the resulting red powder was collected. Final 

block copolymer powders were stored at -20°C.  

4.3.4 Polymer Micelle Preparation and Characterization 

Irrespective of drug binding linker, block copolymers were simply dissolved in aqueous 

solution to prepare micelles. Micelles were characterized by determining particle size, ζ-  
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Table 5. 12-16 Micelle Characterization 

Compound Drug Loading 
(wt/wt%) 

Particle Size 
(nm) 

PDI ζ-Potential 
(mV) 

GLY 26 ± 1.1% 54 ± 12 0.27 ± 0.02 + 0.5 ± 1.5 
ABZ 17 ± 1.5% 58 ± 11 0.22 ± 0.01 - 4.0 ± 0.6 
HYD 26 ± 1.6% 117 ± 37 0.20 ± 0.02 + 13 ± 0.2 

Data were obtained by triplicate measurements and are show as average ± standard 
deviation. 
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potential, polydispersity index, and drug loading (Table 5). DLS analysis indicated that 

all micelles were <125 nm in diameter. ABZ and GLY micelles were almost identical in 

diameter (58 and 54 nm, respectively). HYD micelles were larger, having a 117 nm 

diameter. The polydispersity index for each micelle was approximately 0.2. The micelle 

ζ-potential was also determined. ABZ and GLY micelles had a neutral surface charge, 

both with ζ-potentials within 5 mV of zero, while the ζ-potential of HYD micelles was 

slightly positive (+13 mV). Drug loading was determined spectrometrically. Results 

indicated that GLY and HYD micelles had nearly identical drug loading by 

weight/weight percent (26%). Drug loading of ABZ micelles was slightly less (17%).  

4.4 Discussion 

4.4.1 Block Copolymer Synthesis  

Block copolymer synthesis was carried out in three major steps: scaffold synthesis, drug 

binding linker insertion, and DOX conjugation. A PEG-p(BLA) scaffold with 16 BLA 

units was successfully synthesized, as confirmed by 1H-NMR. The synthesis process 

aimed to produce 15 BLA repeating units, controlled by the amount of BLA-NCA added 

to the reaction. A slight excess (10%) of BLA-NCA was used in the reaction to account 

for partially inactive BLA-NCA. This extra BLA-NCA yielded an additional repeating 

unit. One of three drug binding linkers was inserted into the PEG-p(BLA) scaffold: HYD, 

ABZ-HYD, or GLY-HYD. A three-step reaction process was used for ABZ-HYD and 

GLY-HYD insertion. PEG-p(BLA) was deprotected, replacing BLA with aspartate 

moieties. A coupling reaction was then used to insert spacers (ABZ-OMe or GLY-OMe), 

as direct spacer insertion into the PEG-p(BLA) scaffold proved unsuccessful. Once 

inserted, the methyl esters of spacers were replaced with hydrazide. 1H-NMR confirmed 
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each step of the reaction. HYD drug binding linker insertion used a one-pot reaction, 

since hydrazide can readily replace PEG-p(BLA) benzyl groups. DOX was covalently 

attached to each block copolymer, resulting in PEG-p(Asp-HYD-DOX), PEG-p(Asp-

ABZ-HYD-DOX), and PEG-p(Asp-GLY-HYD-DOX). Ether precipitation followed by 

Sephadex LH-20 column purification removed any physically-entrapped DOX. 

4.4.2 Polymer Micelle Preparation and Characterization  

PEG-p(Asp-HYD-DOX), PEG-p(Asp-ABZ-HYD-DOX), and PEG-p(Asp-GLY-HYD-

DOX) block copolymers were used to prepare HYD, ABZ, and GLY micelles, 

respectively. Micellar properties including particle size, ζ-potential, and drug loading 

were determined. The insertion of drug binding linkers minimally affected micellar 

particle size or surface charge. ABZ and GLY micelles were approximately 50 nm in 

diameter, while HYD micelles were just over 100 nm in diameter. The discrepancy in 

size was attributed to the difference in block copolymer structure. In the absence of an 

ABZ or GLY spacer, block copolymers used to form HYD micelles were less 

hydrophobic. It was therefore proposed that the HYD micelle core was less compact and 

that HYD micelles were less thermodynamically stable.  

The surface charge of micelles was determined, as it plays a key role in vitro and 

in vivo. Particles with ζ-potentials within 10 mV of zero are minimally taken up by the 

mononuclear phagocyte system (10). ABZ and GLY micelles had a relatively neutral ζ-

potential. However, the ζ-potential of HYD micelles was slightly positive. The PEG shell 

of micelles was previously shown to shield charge, creating a neutral barrier (128). The 

slightly positive surface charge of HYD micelles further indicated that they may be 
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thermodynamically less stable. Overall, each micellar formulation was near the ζ-

potential range where uptake by the mononuclear phagocyte system is reduced.  

Drug loading was approximately 25% (weight/weight) for both HYD and GLY 

micelles, while drug loading of ABZ micelles was 17%. Lower drug loading with ABZ 

micelles was also observed in the initial synthesis. 12-35 ABZ micelles had lower drug 

loading than 12-35 GLY micelles. The additional presence of benzyl rings may have 

interfered with DOX conjugation. Even with lower drug loading, ABZ micelles contained 

a pharmaceutically relevant amount of DOX. 

4.5 Conclusions 

A block copolymer scaffold with 16 hydrophobic repeating units was synthesized. Block 

copolymers were modified with one of three drug binding linkers (HYD, ABZ-HYD, or 

GLY-HYD). DOX was successfully attached to block copolymers using a hydrazone 

bond. Drug loading was at least 15% (weight/weight) in all formulations. Block 

copolymers formed micelles with comparable characteristics. Furthermore, ABZ and 

GLY micelles were nearly identical in size and surface charge.  
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CHAPTER FIVE 

5 DOXORUBICIN DRUG RELEASE FROM MICELLES: MODELING AND ANALYSIS 

5.1 Introduction 

Drug release rates in vitro and in vivo play key roles in drug efficacy (129). NDDS 

varying in drug release rates must be developed to illuminate these effects. Block 

copolymer micelles have been used as NDDS with success in preclinical and clinical 

trials. Through the use of a hydrazone bond, DOX can be chemically conjugated to block 

copolymers. Hydrazone bonds have been shown to be pH-sensitive, thereby minimizing 

DOX release in physiological conditions (130). Spacers prior to the hydrazone moiety 

have been shown to affect drug release.  

In initial studies with 12-5, 12-15, and 12-35 block copolymers, the hydrazone 

bond was shown to be pH-sensitive. However, modeling results indicated that spacer 

insertion (ABZ or GLY) did not alter release rates. The initial studies used a model which 

combined multiple factors into a single apparent release rate. The oversimplification of 

drug release hindered in-depth analysis of DOX release rates. However, comparing the 

degree of DOX release over 48 hours yielded intriguing results. A change in total DOX 

release was observed as ABZ micelles released more DOX than GLY micelles. In order 

to better understand how drug release is affected by block copolymer composition, 

additional studies were required. 

In this work, the block copolymer scaffold (12-16) was fixed, eliminating a 

variable which could affect drug release. Block copolymers modified with drug binding 

linkers (HYD, ABZ-HYD, or GLY-HYD) and conjugated DOX were used to prepare 
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respective polymer micelles. Though HYD, ABZ, and GLY micelles were characterized, 

drug release parameters had yet to be determined.  

DOX release from prepared micelles involves multiple processes, such as DOX 

hydrolysis from the block copolymers and DOX partitioning within the micelle. 

Furthermore, dynamic dialysis creates an additional barrier for release, as the drug must 

diffuse through a membrane to reach a reservoir. Each of these parameters must be 

determined to understand which factors are key in drug release. Accordingly, multiple 

drug release studies at pH 5.0 and pH 7.4 were performed, and drug release parameters 

were determined using a comprehensive mathematical model. With a more complete 

understanding of drug release, not only will in vitro and in vivo analysis be more 

thorough, but future micelle preparation can also be guided by these results.  

5.2 Materials and Methods 

5.2.1 Materials 

Slide-A-Lyzer® dialysis cassettes (10,000 MWCO), Sephadex LH-20 gels, potassium 

biphthalate sodium hydroxide buffer solution, potassium phosphate monobasic buffer 

solution, and 96-well plates were purchased from Fisher Scientific (USA). Amicon® 

Ultra centrifugal filters (10,000 MWCO) were purchased from Millipore (USA). DOX 

was purchased from LC Laboratories (USA). 

5.2.2 Dynamic Dialysis  

DOX release from micelles was observed in acidic and neutral conditions at 37°C. 

Potassium biphthalate sodium hydroxide buffer solution (pH 5.0, 0.01 M ionic strength) 

and potassium phosphate monobasic buffer solution (pH 7.4, 0.02 M ionic strength) were 

used for all drug release studies, unless otherwise specified. Temperature and pH of 
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buffer solutions were monitored throughout the study, verifying no drift from initial 

conditions.  

All drug release experiments were performed using the same method, only 

altering buffer pH or block copolymer concentration. DOX release from micelles at three 

block copolymer concentrations was observed (0.1, 0.5, or 1.0 mg/mL). Block 

copolymers were weighed and dissolved in 10 mM buffer solutions (pH 5.0 or pH 7.4). 

Block copolymer solutions (3 mL) were subsequently transferred into dialysis cassettes 

(10,000 MWCO). Each individual drug release experiment was performed using three 

dialysis cassettes, totaling three samples. Dialysis cassettes were placed into a 5.0 L 

reservoir. One hundred microliters of solution were removed from dialysis cassettes at 

the following time points: 0, 0.5, 1, 3, 6, 24, 48, and 72 hours. Drug release experiments 

performed at 0.1 and 0.5 mg/mL block copolymer concentrations had the following 

additional sampling times: 1.5, 2.0, 4.5, and 9.0 hours. A total of six drug release studies 

were performed at two pHs (5.0 and 7.4) and at three block copolymer concentrations 

(0.1, 0.5, and 1.0 mg/mL).  

Buffer concentration effects were observed with dynamic dialysis. HYD, ABZ, 

and GLY block copolymers (0.5 mg/mL) were dissolved in buffer solutions. As 

previously, block copolymer solutions were transferred into dialysis cassettes which were 

subsequently placed in either 5 or 20 mM buffer solutions (pH 5.0, 0.005 and 0.02 M 

ionic strength, respectively). Temperature was held constant at 37°C and pH was 

monitored throughout the experiment. At predetermined time points (0, 0.5, 1, 1.5, 3, 4.5, 

6, 9, 24, 48, and 72 hours), 100 µL of solution were removed for analysis. 
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The rate of free DOX transport through dialysis cassettes was monitored at both 

pH 5.0 and pH 7.4. DOX was dissolved in buffer solution (0.12 mg/mL) and transferred 

to dialysis cassettes. The dialysis cassettes were subsequently placed in a 5.0 L vessel 

containing either pH 5.0 or pH 7.4 buffer solutions (10 mM). One hundred microliter 

samples were taken during the first five hours for analysis. In order to monitor DOX 

binding to the dialysis membrane, a follow-up experiment was performed using the same 

dialysis cassettes from the free DOX transport experiments. Previously-used dialysis 

cassettes were emptied and filled with free DOX solutions (0.12 mg/mL). Dialysis 

cassettes were then placed into buffer solutions (5.0 L). Samples were taken for the first 

five hours and analyzed.  

An additional control experiment was performed to observe the effect of block 

copolymers on free DOX disappearance from the dialysis cassettes. When the drug 

release study at 0.5 mg/mL block copolymer concentration was completed, the block 

copolymer solution was removed from dialysis cassettes and then spiked with free DOX. 

The samples were thoroughly mixed and placed back into dialysis cassettes, which in turn 

were placed into 5.0 L buffer solutions. DOX disappearance was then observed over a 72 

hour period. This was done for each micellar formulation.  

5.2.3 Non-Sink Conditions Drug Release 

A secondary drug release experiment was performed using a non-sink condition drug 

release method developed by Kyle Fugit from Dr. Anderson’s laboratory (University of 

Kentucky, Pharmaceutical Sciences). Block copolymers were weighed and dissolved in 

buffer solution (pH 5.0 or 7.4) at a 0.5 mg/mL concentration. Block copolymer solutions 

(3 mL) were transferred into a scintillation vial, which was subsequently placed in an 
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incubator. The incubator maintained a constant temperature of 37°C while the 

scintillation vials were gently shaken. At specific intervals, 250 µL of solution were 

removed and diluted with methanol to 500 µL. The samples were ultrafiltered using an 

Amicon® Ultra 0.5 mL centrifugal filter (10,000 MWCO). Ultrafiltration containers were 

centrifuged at 14,000 revolutions per minute (rpm) for 10 minutes. Afterwards, 

supernatants were collected and diluted to 500 µL. Ultrafiltration was repeated twice 

more. The final supernatant was collected and analyzed spectroscopically. Block 

copolymers (MW >13,000) were not expected to be removed during this process. 

Therefore, the supernatant was expected to contain only DOX conjugated to block 

copolymers or DOX partitioned into the micelle, as free DOX (580 MW) was not 

retained by the filter. Drug release was repeated twice, totaling three experiments. 

Free DOX removal using ultrafiltration was validated two ways. Free DOX was 

dissolved in a 50% methanol:water mixture and ultrafiltered. After three ultrafiltration 

cycles, spectrometric analysis determined that no DOX was present in the concentrate. 

An additional confirmation was performed using two identical block copolymer 

solutions. One sample was spiked with free DOX and vortexed vigorously. Both samples 

underwent three ultrafiltration cycles. At the end of three cycles, there was no statistical 

difference between the DOX concentrations in the two samples, confirming free DOX 

removal.  

Recovery percentages of block copolymers were calculated for HYD, ABZ, and 

GLY micelles to confirm reproducibility. Block copolymers were dissolved in buffer 

solution and immediately ultrafiltered according to protocol. Micellar DOX 
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concentrations were determined before and after ultrafiltration. The percent recovered 

was calculated and reported. This experiment was performed in triplicate.  

5.3 Results 

5.3.1 Drug Release (1.0 mg/mL) by Dynamic Dialysis 

Drug release studies were performed under sink conditions at physiological pH (7.4) and 

intralysosomal pH (5.0) at a 1.0 mg/mL concentration for each micelle composition 

(HYD, ABZ, and GLY). DOX release from micelles was observed over 72 hours. 

Multiple samples were taken during that time and drug release results were plotted as 

percent drug remaining versus time. Drug release profiles indicated a two phase release 

of DOX, with an initial quick release followed by a slower, prolonged release. As a 

preliminary analysis, micellar drug release was fitted to a simple biphasic model 

consisting of two separate first order release processes (Figure 14). The model fit the 

drug release profile well, suggesting that DOX release from micelles occurs at two 

separate rates. A more thorough model was later employed. 

Irrespective of micelle composition, more DOX was released at pH 5.0 than at pH 

7.4. After 72 hours, DOX release from HYD micelles was 77% at pH 5.0 and 52% at pH 

7.4. At this same time point, ABZ micelles released 52% and 35% of DOX at pH 5.0 and 

pH 7.4, respectively. Similarly, GLY micelles exhibited 45% and 28% DOX release at 

pH 5.0 and pH 7.4, respectively. It was apparent that total drug release followed a pattern 

of HYD micelles releasing the largest percentage of DOX followed by ABZ and GLY 

micelles, irrespective of pH. This trend (HYD>ABZ>GLY) persisted for the 24 and 48 

hour time points. 

For additional analysis, the AUC for drug concentration remaining between zero  
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Figure 14. DOX Release from HYD, ABZ, and GLY Micelles at a 1.0 mg/mL 
Concentration by Dynamic Dialysis. Drug Release was Fitted to a Biphasic Model  
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and 72 hours was calculated. Comparing DOX release from the same micellar system in 

different conditions showed that the pH 5.0 AUC was lower than the pH 7.4 AUC in each 

case. The most drastic change was observed for HYD micelles, with a decrease of almost 

50% in AUC from pH 7.4 to pH 5.0 (4650 versus 2600 hours*remaining %). AUCs of 

ABZ and GLY micelles also differed, but the differences were less substantial (5340 

versus 4150 hours*remaining % and 5900 versus 4910 hours*remaining %, respectively). 

HYD micelles exhibited the lowest AUC in both pHs. The ABZ micelle AUC followed, 

while GLY micelles exhibited the highest AUC. Relative AUC was calculated using the 

following formula: AUC/AUCHYD. Results clearly showed the large difference between 

HYD micelles and both ABZ and GLY micelles. At pH 5.0, the relative AUC of ABZ 

micelles was 1.60, while GLY micelles had a relative AUC of 1.89. At pH 7.4 differences 

were smaller but still present. The relative AUC of ABZ and GLY micelles was 1.14 and 

1.27, respectively.  

5.3.2 Dynamic Dialysis Drug Release (Additional Studies) 

Additional drug release studies were performed at different block copolymer 

concentrations (0.1 and 0.5 mg/mL) (Figure 15). Decreasing the block copolymer 

concentrations from 1.0 to 0.5 mg/mL resulted in greater DOX release from all micellar 

systems irrespective of pH. For example, total DOX release from HYD micelles at pH 

5.0 increased from 52% to 72%. Furthermore, total DOX release from micelles at the 0.5 

mg/mL concentration followed the trend: HYD>ABZ>GLY. Drug release studies at 0.1 

mg/mL in pH 7.4 buffer led to a further increase in total drug release for all micellar 

formulations. Conversely, no change in drug release profiles was observed in pH 5.0 

when lowering block copolymer concentration to 0.1 mg/mL. Consistent with previous  
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Figure 15. Simultaneous Fitting of Drug Release Data at pH 5.0 and 7.4. Diamonds 
Represent Non-Sink Drug Release. Triangles, Crosses, and Light Circles Represent 
Dynamic Dialysis Drug Release at 1.0, 0.5, and 0.1 mg/mL, Respectively. Squares 

Represent Spiked DOX Release. Dark Circles Represent Free DOX Release 
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Table 6. 72 hour Drug Release AUC Analysis (1.0 mg/mL Concentration) 

 
 
 
 
 
 
 

Determined values are shown as means ± standard deviations. 

  

Micelle 
72 hour AUC  

(hours*remaining %) 
Relative AUC 

(AUC/AUCHYD) 
pH 5.0 pH 7.4 pH 5.0 pH 7.4 

HYD 2600 ± 250 4650 ± 190 1.00 ± 0.13 1.00 ± 0.06 
ABZ 4150 ± 70 5340 ± 230 1.60 ± 0.10 1.14 ± 0.06 
GLY 4910 ± 50 5900 ± 100 1.89 ± 0.10 1.27 ± 0.04 
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results, total DOX release was greater at pH 5.0 than at pH 7.4. 

Drug release studies were conducted at pH 5.0 at two different buffer 

concentrations: 5 and 20 mM (Figure 16). The different buffer concentrations did not 

affect drug release. Drug release profiles from 5 and 20 mM buffer concentrations 

overlapped. Additionally, previous works have shown that ionic strength does not affect 

drug release in similar systems (114). 

The disappearance of free DOX (0.12 mg/mL) from dialysis cassettes was 

observed at both pH 5.0 and pH 7.4. As a small molecule, DOX readily diffused through 

the dialysis membrane. After five hours, negligible amounts of DOX remained in both 

pH conditions. An additional study was performed to observe potential binding to the 

dialysis membrane. The dialysis cassettes from the initial free DOX disappearance 

studies were reused. Cassettes were reloaded with free DOX (0.12 mg/mL), and the 

disappearance of free DOX was monitored again. Results were identical to the initial 

study, as the disappearance rate of DOX was identical in both experiments (data not 

shown).  

The final dynamic dialysis drug release study was a spike experiment. Polymer 

solutions were spiked with free DOX, and DOX elimination from cassettes was observed. 

Prior to free DOX spike, 29% and 18% DOX remained in HYD micelles at pH 7.4 and 

pH 5.0, respectively. Spiking the HYD micellar solution with free DOX increased DOX 

concentration within the dialysis membrane. However, within six hours DOX returned to 

previous levels (31% and 17% remaining at pH 7.4 and 5.0, respectively). This signified 

that free DOX escaped the dialysis membrane while DOX associated with block 

copolymers remained. Furthermore, release from HYD micelles continued with the same  
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Figure 16. Drug Release from Micellar Systems at pH 5.0 in Different Buffer Conditions 
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overall trend. Similar results were observed with the free DOX spike experiments using 

ABZ and GLY micelles. Percent DOX remaining in ABZ micelles prior to free DOX 

spiking was 27% and 42% at pH 5.0 and pH 7.4, respectively. After six hours, the DOX 

levels returned to 42% at pH 7.4. For GLY micelles, initial percent DOX remaining was 

37% and 45% at pH 5.0 and pH 7.4, respectively. Six hours afterward, percent DOX 

remaining returned to 31% at pH 5.0 and 44% at pH 7.4. Spike experiment results 

indicated that free DOX in the presence of block copolymer escapes quickly, mimicking 

the rate of free DOX escape.  

5.3.3 Non-Sink Conditions Drug Release 

DOX release from HYD, ABZ, and GLY micelles was first observed under non-sink 

conditions at pH 5.0 (0.5 mg/mL) (Figure 15). At predetermined time points, samples 

were taken and prepared for analysis. Each sample underwent ultrafiltration to separate 

free DOX from conjugated and partitioned DOX. DOX concentration in the concentrate 

was measured spectroscopically. Drug release studies were carried out up to one week. 

DOX release was not observed from GLY or ABZ micelles after the first 24 hours. At 

every point, DOX concentrations were statistically equivalent to the initial 

concentrations. Therefore, GLY drug release studies were discontinued. The drug release 

experiment with ABZ micelles was continued for an additional day, but even then there 

was no change in DOX concentration. Significant DOX release (15%) was observed from 

HYD micelles within the first hour. DOX release continued up to the nine hour mark, 

reaching 52%. After this point, DOX release remained unchanged throughout the 

remainder of the study.  

Drug release experiments were only performed with HYD micelles at pH 7.4. 
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Drug release studies were planned for ABZ and GLY micelles at pH 7.4 but were not 

performed due to lack of DOX release at pH 5.0. After the first hour, no drug release was 

observed from HYD micelles. A slight decrease (5%) in DOX concentration was 

observed at the three hour mark. DOX release continued for the first 72 hours, reaching a 

maximum of 14%, and remaining constant beyond this point. Overall, more DOX was 

released at pH 5.0 (52%) than at pH 7.4 (15%). 

5.3.4 Mathematical Model Description 

A mathematical model was developed for data fitting and simulations in collaboration 

with Kyle Fugit. Kyle wrote the code for the model, producing drug release parameters. 

An initially proposed model considered three major factors: release of DOX from the 

micelle (𝑘1), DOX partitioning (𝐾𝑝), and DOX transport through the dialysis membrane 

(𝑘𝑑) (Figure 17). The remaining variables in the initial model were: conjugated DOX 

(𝐶1𝑚), free DOX partitioned in the micelle (𝐶𝑈𝑚), free DOX in the aqueous phase (𝐶𝑈𝑤), 

free DOX in the reservoir (𝐶𝑅), and the percent of DOX initially conjugated to block 

copolymers (𝑃𝐶). This initial model assumed DOX release from micelles (𝑘1) followed 

first order release. A secondary assumption was that all DOX molecules within the 

micelle behaved similarly. However, drug release studies clearly showed biphasic DOX 

release from micelles (Figures 14-16). In order to account for the two phases of release, 

the initially proposed model was modified by introducing two release rate constants 

(𝑘𝑓 ,𝑘𝑠) (Figure 18). Based on this scheme, a mathematical model was developed as 

described below.  

Total DOX mass (𝑀𝑇) present in dialysis cassettes can be divided into two main 

species: unconjugated DOX (𝑀𝑈) and conjugated DOX (𝑀𝐶): 
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Figure 17. Initially Proposed Drug Release Mode of Covalently Attached DOX 
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Figure 18. Final Drug Release Model of Covalently Attached DOX 
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𝑀𝑇 = 𝑀𝑈 + 𝑀𝐶  

Furthermore, unconjugated DOX can either be partitioned within the micelles (𝑀𝑈𝑚) or 

within the aqueous phase (𝑀𝑈𝑤). The two populations of conjugated DOX (𝑀𝐶𝑓 & 𝑀𝐶𝑠) 

represent DOX undergoing fast and slow release.  

𝑀𝑈 = 𝑀𝑈𝑤 + 𝑀𝑈𝑚 

𝑀𝐶 = 𝑀𝐶𝑓 +  𝑀𝐶𝑠 

The total mass balance of DOX can then be rewritten as: 

𝑀𝑇 = 𝑀𝑈𝑤 + 𝑀𝑈𝑚 + 𝑀𝐶𝑓 + 𝑀𝐶𝑠   

The masses can then be converted into concentrations using volume ratios of the aqueous 

(𝑤) and micellar (𝑚) environments: 

𝑎 =
𝑉𝑤

𝑉𝑇
; 𝑏 =

𝑉𝑚

𝑉𝑇
 

where 𝑉𝑤 is the volume of the aqueous phase; 𝑉𝑚 is the micellar volume; and 𝑉𝑇 is the 

total volume. Volume fractions herein are calculated based on the mass. Combining the 

volume ratio with the mass balance yields the following equation: 

𝐶𝑇 = 𝑎𝐶𝑈𝑤 + 𝑏𝐶𝑈𝑚 + 𝑏𝐶𝑓𝑚 + 𝑏𝐶𝑠𝑚 

As described above, micellar DOX release in dynamic dialysis experiments 

depends on DOX escape from micelles and DOX transport through the dialysis 

membrane. The differential equations below describe this process. 

𝑑𝐶𝑓𝑚

𝑑𝑡
= −𝑘𝑓𝐶𝑓𝑚  

𝑑𝐶𝑠𝑚

𝑑𝑡
= −𝑘𝑠𝐶𝑠𝑚 

𝑑𝐶𝑈
𝑑𝑡

= 𝑏�𝑘𝑓𝐶𝑓𝑚 + 𝑘𝑠𝐶𝑠𝑚� − 𝑘𝑑(𝐶𝑈𝑤 − 𝐶𝑅) 
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𝑑𝐶𝑅
𝑑𝑡

= 0.018𝑘𝑑(𝐶𝑈𝑚 − 𝐶𝑅) 

Where 
𝑑𝐶𝑓

𝑚

𝑑𝑡
 and 𝑑𝐶𝑠

𝑚

𝑑𝑡
 represent the change in concentration of covalently attached DOX; 

𝑑𝐶𝑈
𝑑𝑡

 describes the change in free DOX concentration within the dialysis membrane; and 

𝑑𝐶𝑅
𝑑𝑡

 describes the change in free DOX concentration within the reservoir. The volume 

ratio of the dialysis cassette to the reservoir is 0.018. The rates guiding drug release 

include DOX escape from micelles (𝑘𝑓& 𝑘𝑠), and DOX transport through the dialysis 

membrane (𝑘𝑑). Furthermore, DOX can partition within the micelle or the aqueous phase 

(𝐾𝑝).  

𝐾𝑝 = 𝐶𝑈
𝑚

𝐶𝑈
𝑤  

Using this information, 𝐶𝑈𝑤 can be rewritten in terms of total unconjugated DOX: 

𝐶𝑈𝑤 =
𝐶𝑈

𝑎 + 𝑏𝐾𝑝
 

This term can then be substituted in the differential equations: 

𝑑𝐶𝑈
𝑑𝑡

= 𝑏�𝑘𝑓𝐶𝑓𝑚 + 𝑘𝑠𝐶𝑠𝑚� − 𝑘𝑑(
𝐶𝑈

𝑎 + 𝑏𝐾𝑝
− 𝐶𝑅) 

𝑑𝐶𝑅
𝑑𝑡

= 𝑘𝑑𝑓𝑅(
𝐶𝑈

𝑎 + 𝑏𝐾𝑝
− 𝐶𝑅) 

It is important to note that at time zero DOX can be present either in the conjugated 

(𝐶𝑓𝑚,𝐶𝑠𝑚) or free form (𝐶𝑈). Percent conjugated DOX (𝑃𝑐) is used to distinguish between 

the two forms of DOX. Additionally, 𝐹𝑘𝑓 describes the fraction of DOX undergoing fast 

release. These terms are incorporated into the model as initial conditions: 

𝐶𝑓𝑚(0) =
𝑃𝑐

100
𝐹𝑘𝑓
𝑏 𝐶𝑇,0 

89 
   



𝐶𝑠𝑚(0) =
𝑃𝑐

100
(1−𝐹𝑘𝑓)

𝑏 𝐶𝑇,0 

𝐶𝑈(0) = �1 −
𝑃𝑐

100
� 𝐶𝑇,0 

𝐶𝑅(0) = 0 

The same model with minor adjustments is used to describe drug release under 

non-sink conditions. The equation describing total drug concentration is altered due to the 

analysis method. For non-sink drug release studies, free DOX is separated from 

conjugated DOX and DOX partitioned within the micelle. After separation, only 

conjugated and partitioned DOX concentrations are measured; therefore, the total 

measured DOX concentration becomes:  

𝐶𝑇 = 𝑏(𝐶𝑓𝑚 + 𝐶𝑠𝑚 + 𝐶𝑈𝑚) 

Using the partition coefficient, total concentration can be rewritten in terms of total 

unconjugated DOX.  

𝐶𝑈𝑚 =
𝐾𝑝𝐶𝑈
𝑎 + 𝑏𝐾𝑝

 

𝐶𝑇 = 𝑏(𝐶𝑓𝑚 + 𝐶𝑠𝑚 +
𝐾𝑝𝐶𝑈
𝑎 + 𝑏𝐾𝑝

) 

Differential equations related to micellar DOX concentrations remain the same, but 𝑑𝐶𝑅
𝑑𝑡

 

may be disregarded as there is no reservoir present. DOX transport through the dialysis 

membrane does not occur in non-sink conditions. Therefore, the change in unconjugated 

DOX concentration over time can be simplified. Differential equations for non-sink drug 

release are shown below.  

𝑑𝐶𝑓𝑚

𝑑𝑡
= −𝑘𝑓𝐶𝑓𝑚  
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𝑑𝐶𝑠𝑚

𝑑𝑡
= −𝑘𝑠𝐶𝑠𝑚 

𝑑𝐶𝑈
𝑑𝑡

= 𝑏�𝑘𝑓𝐶𝑓𝑚 + 𝑘𝑠𝐶𝑠𝑚� 

In dynamic dialysis the model required the term 𝑃𝑐 to account for any unconjugated 

DOX. Initial conditions in non-sink drug release are changed due to removal of free DOX 

by ultrafiltration. 

𝐶𝑓𝑚(0) = 𝐹𝑘𝑓
𝑏 𝐶𝑇,0 

𝐶𝑠𝑚(0) = (1−𝐹𝑘𝑓)
𝑏 𝐶𝑇,0 

𝐶𝑈(0) = 0 

Using this mathematical model, drug release data from each individual micelle were 

fitted simultaneously.  

5.3.5 Mathematical Modeling Results  

Drug release studies were performed at pH 5.0 and pH 7.4. At least eight separate drug 

release experiments were performed for each micelle formulation under varying 

conditions. Additionally, each individual drug release experiment was repeated three 

times. Drug release from ABZ and GLY micelles was observed at three different block 

copolymer concentrations (0.1 mg/mL, 0.5 mg/mL, and 1.0 mg/mL). An additional 

experiment was performed for observing the release of free DOX in the presence of block 

copolymers. The same experiments were performed using HYD micelles with an 

additional experiment under non-sink conditions. Free DOX transport studies were 

incorporated into the model to more accurately determine the rate of free DOX escape 

from dialysis cassettes.  
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Utilizing the models described in the previous section, drug release studies were 

fitted to determine the following drug release parameters: 𝑘𝑓 ,𝑘𝑠,𝑘𝑑 ,𝐾𝑝,𝐹𝑘𝑓 ,𝑃𝑐 (Table 7). 

The fitting determined 𝑘𝑑 using the spiked experiment. Intriguingly, depending on the 

micellar concentration, percent of initially conjugated DOX (𝑃𝑐) varied. Modeling results 

indicated that DOX was completely conjugated in drug release studies performed at 1.0 

mg/mL concentrations, while 35-50% unconjugated DOX was present in studies 

performed at lower concentrations. Block copolymers used in all drug release 

experiments were identical in every aspect. As described in the previous methods section, 

all block copolymers were synthesized and subsequently stored in conical tubes as solids 

at -20°C. Samples were removed and used as needed for experiments. The sole difference 

between block copolymers used for drug release at lower concentrations and drug release 

at 1.0 mg/mL was the time frame over which the experiments were performed. The drug 

release study at the 1.0 mg/mL concentration was completed approximately 14 months 

prior to other experiments.  

Due to differences in percent DOX conjugated, it was proposed that the 

hydrazone bond underwent hydrolysis during storage releasing DOX from block 

copolymer. This hypothesis was tested in three ways: modeling, ultrafiltration, and 

Sephadex LH-20 purification (Table 8). All three methods determined the percent DOX 

conjugated 14 months after initial storage. Modeling drug release at 0.1 and 0.5 mg/mL 

block copolymer concentrations determined that between 35% and 50% of the DOX was 

unconjugated. The presence of unconjugated DOX was equated to degradation of the 

hydrazone bond. A secondary method of degradation analysis used the centrifugal 

ultrafiltration validation study; typically greater than 90% recovery is expected after   
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Table 7. Modeled Drug Release Parameters  

Micelle pH 𝑘𝑓  (hr
-1

) 𝑘𝑠  (hr
-1

)x10-2 𝑘𝑑  (hr
-1

) 𝐾𝑝x103 𝐹𝑘𝑓 𝑃𝑐  (1.0) 𝑃𝑐  (0.1,0.5) 
HYD 7.4 0.24 ± 0.1 0.55 ± 0.1 1.0 ± 0.6 30 ± 5.9 0.35 ± 0.04 100 59 
ABZ  0.27 ± 0.2 0.36 ± 0.5 0.91 ± 0.1 11 ± 8.3 0.24 ± 0.27 100 59 
GLY  0.10 ± 0.1 0.42 ± 0.1 1.0 ± 0.6 46 ± 44 0.18 ± 0.08 100 59 
HYD 5.0 0.27 ± 0.0 0.39 ± 0.4 0.93 ± 0.1 8.6 ± 1.2 0.66 ± 0.01 100 64 
ABZ  0.10 ± 0.1 0.31 ± 0.5 0.72 ± 0.0 0 0.27 ± 0.18 80 50 
GLY  0.52 ± 0.4 0.80 ± 0.4 0.74 ± 0.1 0 0.15 ± 0.03 100 66 

Data reported as fitted value ± standard error.  
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Table 8. Percent of Conjugated DOX Determined by Different Methods 

Method HYD ABZ GLY 
Ultrafiltration 62 ± 4 65 ± 2 65 ± 3 
Modeling 66 ± 1 50 ± 5 64 ± 3 
Sephadex LH-20 67 ± 2 68 ± 1 69 ± 2 

Data reported as fitted or determined value ± standard error.   
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ultrafiltration purification. In the case of block copolymers, the recovery percentage was 

between 62% and 65%. The poor degree of recovery, in close agreement with modeling 

results, was attributed to presence of free DOX. A third confirmation was performed 

using Sephadex LH-20 purification. Fifteen month old material was purified, removing 

any free DOX formed during storage. Drug loading was measured before (BDL) and after 

purification (ADL). The difference in drug loading was used to calculate the percent 

conjugated DOX (𝐴𝐷𝐿/𝐵𝐷𝐿 ∗ 100). According to this experiment, between 31% and 33% 

of conjugated DOX was lost to hydrazone degradation, depending on the micelle 

formulation. These values matched the percent unconjugated as determined by modeling. 

The three separate methods were in agreement, all pointing to hydrazone bond 

degradation after prolonged storage.  

Using the information regarding degradation, the model was run again, but this 

time the percent DOX conjugated was set as determined by Sephadex LH-20 purification 

(Table 8). At a 1.0 mg/mL concentration, the percent conjugated was set at 100% for all 

micelles, while at 0.1 and 0.5 mg/mL concentrations the percent conjugated was set to 

67%, 68%, and 69% for HYD, ABZ, and GLY micelles, respectively. By eliminating a 

parameter, the model was able to more precisely describe drug release (Table 9).  

The initial fast DOX release rate constant (𝑘𝑓) at pH 7.4 was comparable from 

one micelle to the next, as 𝑘𝑓 of HYD, ABZ, and GLY micelles was 0.24, 0.27, and 0.30 

hour-1, respectively. The slow release rate constant (𝑘𝑠) was substantially slower than the 

fast release rate constant. In this case, the half-life was more than 80 hours, irrespective 

of micelle formulation. The DOX fraction undergoing fast release (𝐹𝑘𝑓) was also similar 

in all micelles. These results were consistent with drug release studies performed with 
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Table 9. Drug Release Parameter Determined Through Mathematical Modeling 

Micelle pH 𝑘𝑓  (hr
-1

) 𝑘𝑠  (hr
-1

) 𝑘𝑑  (hr
-1

) 𝐾𝑝 𝐹𝑘𝑓 
HYD 7.4 0.24 ± 0.12 0.0055 ± 0.001 0.81 ± 0.03 3000 ± 590 0.38 ± 0.06 
ABZ  0.27 ± 0.20 0.0036 ± 0.001 0.79 ± 0.03 1100 ± 830 0.34 ± 0.06 
GLY  0.30 ± 0.11 0.0046 ± 0.001 0.80 ± 0.03 2200 ± 1000 0.25 ± 0.04 
HYD 5.0 0.29 ± 0.05 0.0045 ± 0.001 0.80 ± 0.03 620 ± 170 0.68 ± 0.03 
ABZ  1.15 ± 0.97 0.0059 ± 0.002 0.78 ± 0.03 0 0.36 ± 0.05 
GLY  0.64 ± 0.5 0.0082 ± 0.001 0.77 ± 0.02 0 0.20 ± 0.05 

Data reported as fitted value ± standard error. 
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12-5, 12-15, and 12-35 micelles. Spacers seemed to have little to no effect in neutral 

conditions. 

Micellar drug release parameters determined at pH 5.0 were compared to those at 

pH 7.4. Focusing on ABZ and GLY micelles first, it was evident that the fraction of DOX 

undergoing fast release was equivalent across both conditions. At pH 5.0, 𝐹𝑘𝑓 for ABZ 

micelles was 0.36, and at pH 7.4 it was 0.34. For GLY micelles 𝐹𝑘𝑓  was slightly lower. 

Furthermore, determined initial fast release rate constants at pH 5.0 and pH 7.4 were also 

similar. However, the fast release rate constant (𝑘𝑓) had a very wide standard deviation, 

so quantitative analysis could not be performed. The ability to precisely determine 𝑘𝑓 was 

lost due to degradation during storage. The sole differences between drug release at pH 

5.0 and pH 7.4 were the slow release rate constant (𝑘𝑠) and the partition coefficient (𝐾𝑝). 

For both ABZ and GLY micelles, 𝑘𝑠 was consistently, and statistically greater in acidic 

conditions. Furthermore, 𝐾𝑝 was larger at pH 7.4 than at pH 5.0. 

For HYD micelles, 𝑘𝑓 was not statistically different from one pH condition to the 

next. However, 𝐹𝑘𝑓 differed greatly; at pH 5.0 and pH 7.4, 𝐹𝑘𝑓 was 0.68 and 0.38, 

respectively. This nearly twofold difference was not observed for the other micelles. 

Unlike ABZ and GLY, there was no difference in 𝑘𝑠 between pH 5.0 and pH 7.4. A 

larger partition coefficient was observed again at pH 7.4.  

Comparing release rate differences between micelles at pH 5.0 yielded 

inconclusive results. Though 𝑘𝑓 for HYD was 0.29 hour-1, this was not statistically 

different than any other 𝑘𝑓. The secondary phase for DOX release was very slow, 

irrespective of block copolymer. The primary difference between the determined drug 
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release parameters was in 𝐹𝑘𝑓. HYD 𝐹𝑘𝑓 was 0.68, while ABZ and GLY micelles had a 

0.36 and 0.20 𝐹𝑘𝑓, respectively.  

5.4 Discussion 

Block copolymers based on 12-16 PEG-p(BLA) with HYD, ABZ-HYD, or GLY-HYD 

drug binding linkers were synthesized. DOX was covalently attached to block 

copolymers with a hydrazone linker. Each block copolymer was used to prepare a 

respective micelle (HYD, ABZ, or GLY). Micellar physicochemical properties were 

determined previously, while experiments herein were used to observe effects of drug 

binding linker on drug release.  

The first set of drug release studies was performed in pH 5.0 and pH 7.4 buffers at 

a 1.0 mg/mL block copolymer concentration. At each time point past the three hour mark, 

more DOX was released at pH 5.0 than at pH 7.4, regardless of drug binding linker. AUC 

analysis reaffirmed this notion, as pH 7.4 AUC was always greater than pH 5.0 AUC, 

signifying less drug release at pH 7.4. The combination of these results indicated that 

there was a pH effect on drug release, with more DOX released in acidic conditions. 

Comparing pH 5.0 DOX release at specific time points revealed the differences between 

HYD, ABZ, and GLY micelles. HYD micelles released the most DOX from the third 

hour onward, followed by ABZ micelles. Specifically, ABZ micelles released more DOX 

than GLY micelles at the following time points: 1.0, 3.0, 24, and 48 hours. AUC analysis 

reinforced these results, as the AUC for drug remaining was lowest for HYD micelles, 

followed by ABZ micelles, and then GLY micelles. It appeared that the introduction of 

spacers led to lower overall drug release. Furthermore, the GLY modification resulted in 

the lowest overall drug release over 72 hours.  
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An important takeaway from the drug release study at 1.0 mg/mL concentration 

was not only that drug release was pH-dependent and drug binding linkers affected total 

drug release, but also that drug release was biphasic. Biphasic drug release has been 

observed in multiple systems, but a consensus has not been reached on the cause of the 

two phases (13, 76, 131-133). The exact reason behind the biphasic release herein has not 

been confirmed, but multiple hypotheses are presented, the first of which is that the 

hydrolysis of DOX from block copolymers occurs at different rates depending on the 

location of DOX in the micelle core. DOX closest to the core/shell interface can be 

hydrolyzed more readily due to facile penetration of hydronium ions. The deeper DOX is 

in the core of the micelle, the more difficult it is for hydrolysis to occur. Overall, this 

leads to spatial variation in rates of hydrolysis. DOX closest to the core/shell interface 

would be hydrolyzed the fastest and each DOX molecule further in the core would have a 

gradually slower hydrolysis rate. Another hypothesis is that differences in core 

heterogeneity in terms of hydrophobic and polar environments could account for the two 

hydrolysis rates. Alternatively, the fast rate of release could represent DOX hydrolysis 

from single block copolymers, while the slow release rate could represent DOX 

hydrolysis from a micellar system. This last hypothesis seems unlikely, as drug release 

studies performed in dialysis cassettes maintained high block copolymer concentrations, 

especially in drug release studies performed at 1.0 mg/mL concentrations. At these high 

concentrations, block copolymers are expected to exist primarily as micelles. Though the 

exact reason behind biphasic drug release was not confirmed, the mathematical model 

employed took into account two differential release rates.  
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A thorough mathematical model of drug release from micelles had yet to be 

developed. Previously, apparent release rates were calculated using zero and first order 

release models, leaving open a number of possibilities as to what affected drug release. 

The apparent release rate combined DOX hydrolysis, DOX partitioning, and DOX 

diffusion into a single rate. Furthermore, only the pH effect was observed, without taking 

into account effects of block copolymer and buffer concentrations. For this reason, 

multiple release studies were performed with 12-16 micelles and a more detailed 

mathematical model was developed to elucidate factors impacting drug release.  

A key factor in drug release is DOX partitioning into the micelle. The degree of 

partitioning can greatly change DOX release and must thus be taken into account (134, 

135). Following the release study at 1.0 mg/mL, drug release studies at two lower block 

copolymer concentrations were performed and analyzed to probe the effect of drug 

partitioning. As block copolymer concentration decreases, DOX partitioning decreases. 

When two drug release studies performed at two different block copolymer 

concentrations have overlapping drug release profiles, partitioning is assumed to be 

minimized (136). This phenomenon was observed at pH 5.0, as drug release profiles from 

HYD, ABZ, and GLY micelles at 0.1 and 0.5 mg/mL block copolymer concentrations 

overlapped in all three cases. However, at pH 7.4 drug release profiles did not overlap 

completely, signifying that partitioning was still having an impact on the rate of release. 

The model showed this, as DOX partitioning was a factor at pH 7.4 for all micelles. 

Partitioning was minimized at pH 5.0, and in the case of ABZ and GLY micelles 

modeling determined that partitioning effects were insignificant. Across all micelle 

formulations, DOX partitioning in acidic conditions was significantly lower than in 
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neutral conditions. This was assumed to be because DOX is in its protonated state at pH 

5.0, but at pH 7.4 is a mixture of protonated and neutral species. 

Drug release studies were also performed with free DOX since the dialysis 

membrane acts as a barrier to drug diffusion and can impact release rates if not taken into 

account (137, 138). Irrespective of pH or micelle formulation the rate constants for DOX 

disappearance from dialysis cassette was approximately 0.80 hour-1. Two additional 

studies were performed to confirm that DOX binding to the dialysis membrane was not a 

factor. The first study monitored DOX release from a pre-used dialysis cassette. The rate 

of DOX disappearance determined from this study matched previous studies. An 

additional study monitored DOX release in the presence of block copolymers. Again, the 

presence of polymers essentially had no effect on free DOX disappearance from the 

dialysis cassette. It was therefore surmised that DOX binding to the dialysis membrane 

played little to no role in these drug release studies. It is important to note that drug 

release studies were performed at relatively high DOX concentrations and monitored 

until <5% DOX remained in dialysis cassettes. In terms of modeling, DOX binding to the 

dialysis membrane was not relevant at these high concentrations. This did not exclude the 

possibility of DOX binding; it only validated that the rate of free DOX escape at high 

concentrations was not impacted by binding to the membrane.  

Drug release data from each micellar system were fitted to the mathematical 

model described previously (Figure 15). Fitted curves matched experimental data. 

However, determined drug release parameters had large variability minimizing the ability 

to distinguish effects of different formulations and pH conditions. The fast release rate 

constant (𝑘𝑓) was not statistically different in any formulation, regardless of pH. The drug 
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release at a 1.0 mg/mL block copolymer concentration was influenced by partitioning and 

could not alone produce the fast release rate constant. Remaining drug release studies 

were performed after hydrolysis of the hydrazone bond during storage. The fast release 

rate constant was masked by free DOX escape due to this loss. Determined slow release 

rate constants (𝑘𝑠) yielded similar issues. Statistically, the release rates were not different 

from each other. The sole exception was the GLY formulation 𝑘𝑠, which was marginally 

higher than the HYD formulation 𝑘𝑠, but even with this difference both micelles 

exhibited a half-life greater than 80 hours. The DOX fraction undergoing fast release 

(𝐹𝑘𝑓) was also determined by modeling. At pH 7.4, 𝐹𝑘𝑓 was similar (~0.30) when 

comparing release from HYD, ABZ, and GLY micelles, but at pH 5.0 𝐹𝑘𝑓 differed 

depending on formulation. HYD micelles had the largest 𝐹𝑘𝑓 (0.68). The thermodynamic 

stability of HYD micelles could explain this difference. HYD micelle particle size 

suggested stability issues as well. ABZ and GLY micelles were roughly 50 nm in size 

with a narrow size distribution, while HYD micelles were 100 nm in diameter with a 

much wider size distribution. The larger, more variable size was possibly due to a more 

porous micelle. This was observed in pH 7.4, as HYD micelles again had a high 𝐹𝑘𝑓 

(0.38). Not only was the HYD 𝐹𝑘𝑓 large in both pH conditions, but it was significantly 

higher than the ABZ and GLY 𝐹𝑘𝑓 at pH 5.0. This difference may be due to pH-

dependent swelling of micelles, but this avenue was not further explored. More 

experiments are required for a more complete understanding of HYD micellar stability. 

In the case of ABZ and GLY micelles, the 𝐹𝑘𝑓 remained unchanged irrespective of pH 

condition.  
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To summarize, drug release from HYD, ABZ, and GLY micelles was observed 

and modeled. Analysis of total drug release indicated a pH-dependence. Furthermore, 

comparing total release at individual time points (i.e. 3 hours) revealed the same trend. 

More DOX was consistently released in acidic conditions, regardless of micelle type. 

AUC analysis was in agreement, showing that over the time course of the experiments, 

more DOX was released at pH 5.0. Intriguingly, differences in total release were also 

observed between HYD, ABZ, and GLY micelles at pH 5.0, suggesting that linkers 

played a role in drug release. 

Hydrazone bond degradation under the specified storage conditions was 

unprecedented. Multiple possible modes of degradation were proposed. First, the 

hydrazide linkage could have been hydrolyzed during the freeze-drying process prior to 

storage. This was unlikely for a number of reasons. Before any analysis was performed, 

all material was freeze-dried, including the material used for drug release studies at a 1.0 

mg/mL block copolymer concentration. According to modeling, the percent of DOX 

conjugated to block copolymers in this study was 100% (Table 7). If hydrolysis occurred 

during freeze-drying, the percent DOX conjugated would have shown a ~30% loss. 

Furthermore, mice treated with block copolymer in Chapter 7 showed no adverse 

toxicity, even when exposed to micelles at high DOX-equivalent concentrations. This 

again would not be possible if degradation occurred during freeze-drying. Another 

possibility was degradation during storage at -20°C. Storage under inert conditions was 

overlooked, thus block copolymers were exposed to the atmosphere prior to being placed 

in -20°C. In the presence of air, moisture uptake may have caused hydrolysis of the 

hydrazone bond. This was surmised to be the most likely scenario but additional studies 

103 
   



are required to elucidate degradation. If the hydrazone bond was hydrolyzed as a solid 

and linear degradation occurred, roughly 2% of free DOX formation would occur in 30 

days. The experimental schedule is reported to better understand how degradation may 

have impacted each individual experiment (Table 10). Micellar characterization was not 

affected by the degradation, as experiments were performed directly after synthesis. 

While degradation was taken into account in the modeling, the need to include extra 

parameters to account for degradation probably contributed to the large uncertainty in 

some parameter values. The remaining possible effects of degradation are discussed in 

each of the following chapters. 

5.5 Conclusions 

DOX release from HYD, ABZ, and GLY micelles was analyzed in both acidic and 

neutral conditions. Irrespective of drug release conditions and formulation, micelles 

exhibited biphasic DOX release. A drug release model accounting for biphasic release 

was developed and parameters were estimated through mathematical modeling. Overall, 

modeling results were inconclusive with regard to spacer effects, as determined 

parameters were largely statistically equivalent. However, analyzing DOX release at 

selected time intervals revealed a pH-sensitive response, with more DOX released at pH 

5.0 than at pH 7.4. AUC analysis confirmed this phenomenon. Furthermore, total DOX 

release at pH 5.0 varied depending on micellar formulation (HYD>ABZ>GLY). Though 

modeling led to inconclusive results, spacer insertion produced different drug release 

profiles. On a separate note, the hydrazone bond connecting DOX to block copolymers 

was found to degrade under current storage conditions. This degradation was a concern 

and is addressed in each subsequent chapter.  
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Table 10. Estimated Free DOX Formation Due to Hydrazone Hydrolysis During Storage 

 

 

 

 

 

 

 

  

Experimental Description  Months After Synthesis % Hydrolyzed 
12-16 Scaffold Synthesis 0 0 
12-16 Drug Loading 0 0 
12-16 Characterization  0 0 
Dynamic Dialysis (1.0 mg/mL) 0 0 
IC50 A549 (72 hours) 1 2 
Cellular Internalization A549 (FL) 1 2 
Biodistribution Studies 3 6 
Antitumor Study (HT29) 4 8 
IC50 HT29 (72 hours) 6 12 
Cellular Internalization HT29 (FL) 6 12 
Antitumor Study (A549) 6 12 
IC50 Reduced Block Copolymers  8 16 
IC50 A549 and HT29 (48 hours) 9 18 
Cellular Internalization (Microscopy) 11 22 
Drug Release (Non-Sink Conditions) 13 26 
Dynamic Dialysis (0.1/0.5 mg/mL)  14 28 
Sephadex LH-20 Confirmation 16 32 
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CHAPTER SIX 

6 EFFECTS OF TUNABLE DRUG RELEASE: IN VITRO ANALYSIS 

6.1 Introduction 

Biocompatible block copolymer micelles were used to delineate effects of differential 

drug release in vitro (Figure 19). Micelles were prepared from block copolymers with 

covalently attached DOX. Though DOX conjugation was the same in the three block 

copolymers synthesized, each had a different drug binding linker: HYD, ABZ-HYD, or 

GLY-HYD. Depending on the linker used, a different drug release profile was observed. 

Over a 72 hour time period, total DOX released from micelles followed a trend of 

HYD>ABZ>GLY. Additionally, the amount of drug released at specific time points 

differed depending on micellar formulation. The micelles herein provided three 

differential drug release profiles, with free DOX representing instantaneous exposure. 

The effects of differential drug release in vitro were assessed based on this understanding. 

This study was therefore expected to provide critical information on the potential benefits 

of differential drug release. 

The efficacy of micellar treatments was compared to free DOX treatment in an in 

vitro cell culture system using human colon (HT29) and lung (A549) cancer cell lines. By 

dosing cells with DOX-equivalent concentrations, effects of differential drug release 

were elucidated. Additionally, the internalization of DOX from micelles (either free DOX 

or conjugated DOX) was observed and compared to free DOX. Further in vitro analyses 

were performed with block copolymers incapable of releasing DOX. Internalization and 

cytotoxicity studies provided insight into internalization of block copolymers and block 

copolymer biocompatibility, respectively.   
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Figure 19. In Vitro Effect of Differential Drug Release  
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6.2 Materials and Methods 

6.2.1 Materials 

DMSO, DMF, dry ethyl ether, methanol, Hoechst dye, and sodium borohydride were 

purchased from Sigma-Aldrich (USA). DOX was purchased from LC Laboratories 

(USA). Phosphate buffer saline, Sephadex LH-20 gels, and other cell culture supplies 

(e.g. 96-well culture plates, pipettes, and flasks) were purchased from Fisher Scientific 

(USA). Kaighn's modification of Ham's F-12 medium (F12-K), McCoy’s 5A medium, 

fetal bovine serum (FBS), trypsin-EDTA (0.25% trypsin and 2.21 mM EDTA), and the 

A549 cell line were purchased from ATCC (USA). 

6.2.2 Free DOX and Micellar Treatment Cytotoxicity   

The cytotoxicity of block copolymer micelles was observed in the A549 and HT29 

cancer cell lines. HT29 cells were cultured regularly in McCoy’s 5A media containing 

10% FBS. Cell culturing conditions were maintained at 37°C in a humidified atmosphere 

with 5% CO2. Culturing conditions for A549 cells were identical, save for the use of F-

12K media instead of McCoy’s 5A. Cells (5,000 cells/well) undergoing exponential 

growth were pre-incubated for 24 hours in 96-well plates. At this point, cell-culture 

media was removed and replaced with drug containing media. Cells were treated with 

increasing concentrations of free DOX (10-5 to 100 µM) or micellar DOX-equivalent 

concentrations. After 48 hours of exposure, cell viability was determined using a 

Resazurin assay. The cytotoxicity experiment was repeated a minimum of three times. 

IC50 was calculated using Prism. A secondary study was done under identical conditions, 

but cells were exposed to treatment for 72 hours instead of 48 hours. 
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6.2.3 DOX Intracellular Uptake 

The uptake of DOX from either micelles or free DOX treatment was observed in both 

HT29 and A549 cells using two methods: microplate fluorescent analysis and 

microscopy. Cell culturing conditions were unchanged from cytotoxicity experimental 

conditions. Intracellular uptake experiments were carried out identically in both cell lines.  

Internalization studies with a microplate reader were performed using 96-well 

plates. Ten thousand cells were pre-incubated for 24 hours in cell culture media, which 

was removed and replaced with drug-containing media. Cells were treated with 100 µM 

DOX-equivalent concentrations. At predetermined time points, media was removed and 

cells were washed with PBS. After the final PBS wash, cells were lysed with 100 µL of 

DMSO. DOX fluorescence was measured spectrometrically with an excitation at 490 nm 

and emission at 590 nm. This procedure was performed at the following time intervals: 

0.5, 1, 3, 6, 24, 48, and 72 hours.  

Fluorescent microscopy was the secondary method used to analyze DOX uptake. 

Twenty thousand cells were placed into chamber slides with cell culture media. After 24 

hours, media was removed and replaced with drug containing media. Cells were treated 

with free DOX or micelle formulations at a 100 µM DOX-equivalent dose. Additionally, 

a separate experiment was performed in which cells were treated with PBS alone. At 

specific time points (0.5, 1, 3, 6, 24, 48, and 72 hours), chamber slides were removed 

from the incubator, and cells were washed with PBS three times. After the final wash, 

PBS containing Hoechst dye was added to each chamber. Ten minutes later, PBS 

containing dye was removed to prepare chamber slides for imaging. Images were taken 
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through the bright field channel, the GFP channel, and the DAPI channel. Microscope 

settings were fixed. Overlaid images were analyzed using ImageJ (139). 

6.2.4 Hydrazone Bond Reduction 

The hydrazone bonds connecting DOX to block copolymers were reduced, rendering 

block copolymers incapable of releasing DOX. PEG-p(Asp-HYD-DOX) (43.26 mg), 

PEG-p(Asp-ABZ-HYD-DOX) (41.35 mg), and PEG-p(Asp-GLY-HYD-DOX) (42.22 

mg) were dissolved in DMF with excess sodium borohydride. The reaction proceeded 

overnight at room temperature. DMF was removed with ether precipitation, while sodium 

borohydride was removed through dialysis against deionized water. Block copolymers 

were collected after freeze-drying. Sephadex purification was used as an additional step 

to ensure product purity. Block copolymers were collected and stored at -20°C. Final 

block copolymers maintained a red color, closely resembling initial material. Additional 

drug release studies were not performed due to sample shortage. Block copolymers with 

reduced hydrazone bonds are referred to as HYD-Red, ABZ-Red, and GLY-Red. 

6.2.5 Cytotoxicity and Intracellular Uptake of Reduced Block Copolymers 

The cytotoxicity and cellular internalization of block copolymers with reduced hydrazone 

bonds was observed in A549 and HT29 cells. Cell culturing conditions were described 

previously. For cytotoxicity studies, 5,000 cells were pre-incubated in 96-well plates for 

24 hours. Cells were subsequently treated with increasing concentrations of HYD-Red, 

ABZ-Red, and GLY-Red block copolymers (2.5 x 10-5 to 2.5 x 102 µg/mL). Cell viability 

was determined using a Resazurin assay after 72 hours, and results were analyzed using 

Prism. Intracellular uptake of HYD-Red, ABZ-Red, and GLY-Red block copolymers was 
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observed after 0.5, 3, 24, and 72 hour exposure using the microscopy method. 

Experiments were carried as previously stated.  

6.3 Results 

6.3.1 Free DOX and Micellar Treatment Cytotoxicity   

Cytotoxicity of block copolymers was determined in HT29 and A549 cells after 48 and 

72 hour exposure to treatment. The IC50 of each micellar formulation was compared to 

free DOX (Figures 20 and 21, Table 11). Determining the cytotoxicity over two different 

time periods gave insights regarding the effects of differential release rates.  

The 48 hour treatment cycle produced similar results in both cell lines. In HT29 

cells, the IC50 of micelle treatments was comparable to IC50 with free DOX treatment. 

In this case IC50 values from HYD, ABZ, and GLY micellar treatments were 0.58, 0.37, 

and 0.42 µM respectively. Free DOX treatment resulted in a 0.18 µM IC50. This same 

trend was observed in the A549 cell line. Treatment with HYD, ABZ, and GLY micelles 

yielded IC50s of 7.49, 2.99, and 3.38 µM, respectively. Under the same conditions, the 

IC50 of free DOX was 5.77 µM. The free DOX IC50 was not statistically different than 

the IC50 after micellar treatments. The 7.24 HYD µM IC50 after micellar treatment was 

considered reliable even though the curve was elevated. The raised curve was a sign of an 

issue with the control for that particular experiment, while remaining measurements 

appeared to be unaffected. Additionally, highest and lowest cell viability after specific 

treatments were used in calculating IC50. Since the entire HYD curve was elevated, the 

IC50 determination was not impacted. 

When exposure time was increased to 72 hours, studies with HT29 cells yielded 

similar results. The IC50 of free DOX remained 0.18 µM. When cells were exposed to   
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Figure 20. IC50 Determination after 48 hour Treatment Exposure 
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Figure 21. IC50 Determination after 72 hour Treatment Exposure 
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Table 11. Treatment Cytotoxicity in HT29 and A549 Cells with Varying Exposure Times 

Cell 
Line 

Time 
(hours) Cytotoxicity DOX HYD ABZ GLY 

HT29  48 log (IC50) -0.75 ± 0.19 -0.30 ± 0.37 -0.44 ± 0.10 -0.39 ± 0.09 
  IC50 (µM) 0.18 0.50  0.36 0.41 
 72 log (IC50) -0.74 ± 0.17 -0.50 ± 0.07 -0.31 ± 0.28 -0.27 ± 0.10 
  IC50 (µM) 0.18 0.32 0.48 0.53 
A549  48 log (IC50) 0.78 ± 0.05 0.86 ± 0.01 0.58 ± 0.22 0.52 ± 0.35 
   IC50 (µM) 5.89 7.24 3.80 3.31 
 72 log (IC50) 0.43 ± 0.10 1.23 ± 0.25 0.60 ± 0.14 0.57 ± 0.11 
  IC50 (µM) 2.95 16.9*** 3.98 3.71 

IC50 values are described in two ways: as log (IC50 concentration) ± the standard 
deviation; and as the corresponding IC50 concentration in µM. Statistical significance is 
indicated by *** (p < 0.001). 
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HYD, ABZ, and GLY micelles, the IC50 decreased to approximately 0.30 µM. Though 

the free DOX IC50 was lower than the IC50 from micellar formulations, there was no 

statistical difference between the two. In A549 cells, ABZ and GLY micellar treatments 

had similar IC50s to free DOX treatment. The only outlier was the HYD formulation, 

which resulted in a higher IC50. 

6.3.2 DOX Intracellular Uptake 

The intracellular uptake of free DOX and DOX from micellar treatment was observed in 

A549 and HT29 cells over a 72 hour period. DOX internalization from micelles was 

related to the presence of either free DOX or conjugated DOX. Because it was not 

possible to distinguish the two, DOX internalization studies of micellar treatments refer 

to free and conjugated DOX in combination.  

Two methods were used to monitor DOX internalization: microplate fluorescent 

analysis and microscopy. Microplate fluorescent analysis consisted of exposing cells to 

treatment for a predetermined amount of time and lysing cells with DMSO. The resulting 

fluorescent signal was measured, accounting for the DOX entrapped in cells. The 

fluorescent signal was converted to % dose. With this method, very similar trends were 

seen between A549 and HT29 cells (Figure 22). Free DOX was internalized quickly and 

to a greater extent in both cell lines. DOX from HYD micelles was also internalized 

relatively quickly, though less-so than free DOX. Compared to DOX from ABZ and 

GLY micelles, DOX from HYD micelles was taken up by cells to a greater extent at each 

time point in both cell lines. Intriguingly, DOX from GLY micelles was internalized 

slightly more than DOX from ABZ micelles even though GLY micelles exhibited lower 

drug release in previous experiments. This was especially evident in A549 cells. Overall,  
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Figure 22. HT29 and A549 Cellular Internalization Using Microplate Fluorescence 
Analysis 
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the uptake study showed that DOX was internalized to some degree, irrespective of 

micelle type.  

As a secondary confirmation of intracellular uptake, a microscopy method was 

used. Experimental conditions were the same as with microplate fluorescent analysis, 

with the exception of data collection. Cells were cultured in chamber slides and treated 

either with free DOX or with micelles containing a DOX-equivalent concentration. At 

predetermined time points (0.08, 0.5, 1.0, 3.0, 6.0, 24, 48, and 72 hours), cells were 

washed with PBS, stained, and imaged. The 48 and 72 hour time points were similar to 

the 24 hour images and were therefore not shown. Three images were taken with a 

fluorescent microscope. A bright field image was taken to observe cell outlines, including 

the cell membranes. A DAPI filter was used to observe stained nuclei (blue), and a GFP 

filter was used to observe DOX fluorescence (red). The three images were overlaid for 

qualitative analysis (Figures 23 and 24). As a control, cells were also treated with PBS. In 

both cell lines, there was no fluorescent signal observed from PBS treatment in images 

taken with the GFP channel. This supported the notion that fluorescence in the GFP 

channel was related to DOX alone.  

At as early as 30 minutes, signs of free DOX uptake were seen in HT29 cells. 

This uptake from free DOX treatment continued to increase steadily through the first 24 

hours, with cells turning almost completely red by that point. For micellar treatments, 

signs of DOX uptake did not appear until the one hour time point. At the subsequent time 

points, DOX signal increased. DOX uptake from HYD micelles was greatest, followed 

by GLY and then ABZ micelles. The same trend was seen with A549 cells. Free DOX 

was internalized most quickly, while DOX internalization from micelles followed the   
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Figure 23. Cellular Uptake of DOX after Micellar or Free DOX Treatment in HT29 
Cells. Scale Bars are 20 µm 
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Figure 24. Cellular Uptake of DOX after Micellar or Free DOX Treatment in A549 Cells. 
Scale Bars are 20 µm 
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same order (HYD>GLY>ABZ).  

DOX fluorescence was analyzed quantitatively using ImageJ (Figure 25). For 

each time point, the fluorescent intensity per cell from the GFP channel was measured. 

Since uptake trends were similar in both cell lines, analysis was performed 

simultaneously. PBS treatment did not produce a fluorescent signal in the GFP channel at 

any time point. Treatment with free DOX resulted in the quickest internalization to the 

greatest extent through the first 24 hours. At the 72 hour time point, the peak uptake of 

free DOX was reached. Interestingly, the difference between 24 and 72 hour exposure 

was minimal. HYD micelle treatment followed a similar trend as the signal from DOX 

increased through the first 24 hours at which point the uptake appeared to stagnate. DOX 

signal was the smallest from ABZ and GLY micelles over the time period of the study.  

For both methods, AUC analysis was performed over the 72 hours of the 

internalization study (Table 12). AUC confirmed that DOX internalization followed the 

trend of DOX>HYD>GLY>ABZ. Relative AUC (AUC/AUCDOX) was also calculated. 

Comparing relative AUC determined from both methods showed that results were 

comparable. Relative AUC of GLY treatment was almost identical; 0.43 versus 0.45 in 

HT29 cells and 0.43 versus 0.48 in A549 cells. Similar relative AUC values were also 

observed for HYD and ABZ treatments in the HT29 cell line. Overall the two methods 

show the same general trends in cellular internalization.   

6.3.3 Hydrazone Bond Reduction 

Hydrazone bonds of block copolymers were reduced to prevent the release of DOX. After 

undergoing reduction, block copolymers were purified to ensure no free DOX was 

remained. Ether precipitation was the first line of purification, followed by dialysis.   
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Figure 25. Quantitative Cellular Internalization Analysis 
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Table 12. Cellular Internalization Analysis Using Fluorescent and Microscopy Methods 

    72 hours AUC (‡X*hours) 

 
Method PBS DOX HYD ABZ GLY 

HT29 Microplate - 300 ± 10 232 ± 17 71 ± 4 129 ± 16 
A549 Microplate - 391 ± 25 339 ± 22 28 ± 3 169 ± 20 
HT29 Microscopy 0.03 ± 0.01 4.45 ± 0.6 2.73 ± 0.4 1.49 ± 0.2 2.00 ± 0.7 
A549 Microscopy 0.21 ± 0.06 7.33 ± 1.2 3.77 ± 0.7 1.75 ± 0.4 3.55 ± 0.6 
    Relative AUC (AUC/AUCDOX) 

 
Method PBS DOX HYD ABZ GLY 

HT29 Microplate - 1.00 ± 0.05 0.77 ± 0.05 0.24 ± 0.06 0.43 ± 0.13 
A549 Microplate - 1.00 ± 0.09 0.87 ± 0.09 0.07 ± 0.11 0.43 ± 0.13 
HT29 Microscopy - 1.00 ± 0.21 0.61 ± 0.21 0.33 ±0.21  0.45 ± 0.41 
A549 Microscopy - 1.00 ± 0.21 0.51 ± 0.21 0.24 ± 0.31 0.48 ± 0.21 
‡X units are in % of initial dose for the fluorescent detection method, and in relative 
fluorescent units x 107 for the microscopy method. Determined values are expressed as 
mean ± standard deviation.   
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Sodium borohydride was not soluble in ether, but soluble in water. Dialysis against 

deionized water removed sodium borohydride. For the last purification step, block 

copolymers were eluted through a Sephadex LH-20 column. The presence of conjugated 

DOX was evident as all block copolymers retained a red color. Additionally, there was a 

strong signal from microscopy imaging of reduced block copolymers in the GFP channel 

which confirms DOX presence. However, DOX drug loading was undetermined after 

reduction. Reduced polymers are referred to by the drug binding linker, followed by the 

abbreviation Red (i.e. HYD-Red).  

6.3.4 Cytotoxicity and Intracellular Uptake of Reduced Block Copolymers 

The cytotoxicity of reduced block copolymers was observed in both HT29 and A549 cell 

lines (Figure 26). Cells were treated with a 250 µg/mL maximum concentration of 

reduced block copolymers (gray bars). This dose was the approximate equivalent of 100 

µM DOX-equivalent treatment (black bars). Comparing the two treatments, it was clearly 

evident that reduced block copolymers were significantly less toxic. In fact, HT29 

cellular viability remained almost identical to the control after reduced block copolymer 

exposure. Similar results were seen in A549 cells. The sole exception was treatment at 

the highest dose. There appeared to be polymer toxicity at the 250 µg/mL dose.  

In addition to cytotoxicity studies, the cellular internalization of reduced block 

copolymers was observed (Figures 27 and 28). After 30 minutes, uptake of block 

copolymers was minimal. In HT29 cells, slight uptake of ABZ and GLY block 

copolymers was observed at the three hour time point. A large increase in the 

internalization of ABZ and GLY block copolymers was observed after 24 hour exposure. 

This increase continued through the 72 hour time point. For A549 cells, uptake from  
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Figure 26. Cytotoxicity of Block Copolymer Micelles with a Reduced Hydrazone Bond 
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Figure 27. Cellular Uptake of Reduced Micelles in A549 and HT29 Cells. Scale Bars are 
20 µm 
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Figure 28.Quantification of Cellular Internalization of Reduced Micelles Using 
Microscopy 
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ABZ and GLY block copolymers was not evident until the 24 hour mark. Afterwards, 

uptake continued to increase until the 72 hour time point. Intriguingly, HYD block 

copolymers were not internalized to a great extent in either cell line. The overall lower 

uptake of block copolymers pointed to successful hydrazone reduction, as internalization 

after free DOX treatment was much greater. 

6.4 Discussion 

Multiple in vitro studies were performed to analyze efficacy of micellar treatments and 

also to determine DOX internalization. Prior to discussing specific results, it is important 

to note when the experiments were performed. Hydrazone bond hydrolysis during storage 

was observed and this degradation could have played a role in experiments. Cytotoxicity 

and internalization studies with A549 cells were done immediately after block copolymer 

synthesis. These experiments were not expected to be influenced by solid state 

hydrolysis. Experiments with HT29 cells were performed within six months of block 

copolymer synthesis. A maximum of 12% free DOX formation was expected after six 

months. Therefore, results from HT29 experiments were expected to be minimally 

affected. Experiments with reduced block copolymers were unaffected by degradation, as 

these micelles were purified prior to use. The last experiments performed were the 48 

hour cytotoxicity studies and all cellular uptake studies using the microscopy method. By 

the time these experiments were performed up to 22% free DOX was predicted to be 

formed. Though experiments were performed with partially free DOX, the trends never 

changed. The overall message is unaffec7ted by hydrazone hydrolysis during storage.  

128 
   



6.4.1 In Vitro Analysis of Block Copolymers with Reduced Hydrazone Bonds 

Three micelles were prepared for testing in vitro: HYD, ABZ, and GLY micelles. Each of 

these micelles was composed of block copolymer with covalently attached DOX. It was 

previously shown that PEG-poly(aspartate) block copolymers were non-toxic, but block 

copolymers with attached DOX have yet to be analyzed (78). It was hypothesized that the 

only active pharmaceutical ingredient present in micellar formulations was DOX released 

from block copolymers. To test this hypothesis the bond between block copolymers and 

DOX was reduced (Figure 29). 

The hydrazone bond connecting DOX to block copolymers is pH-sensitive. This 

bond is cleaved in the presence of hydronium ions. As the hydrazone bond undergoes 

hydrolysis, DOX is released. By reducing this imine bond to an amine, pH-sensitive 

release is prevented. Successful reduction of the hydrazone bond produced HYD-Red, 

ABZ-Red, and GLY-Red block copolymers. The cytotoxicity and cellular internalization 

of these block copolymers was tested in vitro. Results gave insight not only to the 

biocompatibility of the block copolymers, but also to the uptake of block copolymers.  

A pitfall of this study was that the drug loading after hydrazone reduction was not 

determined. The degree of conjugated DOX could thus change after reduction. 

Internalization of reduced block copolymers may have been impacted as the amount of 

conjugated DOX could vary from one block copolymer to the next. However, all block 

copolymers retained a red color and exhibited fluorescence in vitro, signifying DOX 

presence. Drug loading before and after hydrazone reduction was assumed to be similar.  

HT29 cells treated with reduced block copolymers showed minimal toxicity. In 

comparison to treatment with non-reduced formulations there was essentially no 
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Figure 29. Reduction of Hydrazone Bond 
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cytotoxic effect. Even at the highest dose, cell viability approached 100% with all 

reduced block copolymer treatments. It was therefore deduced that for micellar treatment 

to have an effect, DOX must first be cleaved from the block copolymers. Studies with 

A549 cells produced similar results. After treating cells with reduced block copolymers, 

no toxicity was observed up to 2.5 mg/mL. Even at the highest dose, a significantly 

smaller effect was observed after reduced block copolymer treatment. There was a slight 

discrepancy with HYD-Red block copolymers at the highest dose, as this treatment 

resulted in minor toxicity. However, this toxic effect was not expected to be relevant in 

vivo. Concentrations this high were not expected at the tumor site. Overall, reduced block 

copolymers exhibited minimal toxicity. It was surmised that the active pharmaceutical 

ingredient in micellar treatments was released DOX.  

In addition to cytotoxicity studies, the internalization of reduced block 

copolymers was observed. It was postulated that the main method of intracellular 

delivery of DOX after micellar treatment occurs through endocytosis, as described in 

previous works (18, 140). Therefore it was important to understand the internalization of 

micelles. In this experiment, cells were treated with block copolymers containing 

irreversibly attached DOX. These block copolymers readily formed micelles, but 

internalization studies could not distinguish the difference between a single block 

copolymer and block copolymers as parts of a micellar system. It was still expected that 

the primary species internalized were micelles. 

After half an hour, internalization of reduced block copolymers was minimal, but 

within three hours a fluorescent signal was observed in both HT29 and A549 cells. Block 

copolymer internalization continually increased after the three hour mark, with the peak 
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internalization observed at 72 hours. Intriguingly, uptake of HYD-Red block copolymers 

was significantly lower than ABZ-Red and GLY-Red block copolymers in both cell lines. 

Decreased uptake of HYD-Red block copolymers could have been hindered by micellar 

stability issues. Higher particle size and positive surface charge may have also affected 

HYD-Red block copolymer internalization. As previously shown, spacer insertion led to 

block copolymers which formed micelles with a narrow size distribution and a neutral 

surface charge. Consequently, it was observed that ABZ-Red and GLY-Red block 

copolymers were internalized to a greater extent. These results indicated that micellar 

characteristics can affect intracellular uptake. Even though the internalization of HYD-

Red block copolymers was low, all reduced block copolymers were taken up by cells; 

thereby creating the opportunity to deliver drugs intracellularly. 

6.4.2 Free DOX and Micellar Treatment Cytotoxicity   

Efficacy of micellar treatments was determined in A549 and HT29 cell lines to elucidate 

the effect of drug release in vitro. It was earlier shown that DOX irreversibly conjugated 

to block copolymers generates minimal response, whereas DOX released from block 

copolymers produces a strong therapeutic effect. DOX cleavage and release from block 

copolymers can occur extracellularly or intracellularly. DOX released extracellullarly can 

be taken up as a small molecule. During treatment, block copolymers are assumed to 

exist as micelles. Micelle can be internalized through endocytosis. During this process, 

intracelllular DOX release was believed to occur. In vitro, both modes of DOX release 

were expected to occur concurrently.  

Intracellular DOX release was expected to play a greater role than extracellular 

release due to the lower pH associated with endocytosis. A pH-dependent release of DOX 
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was observed in drug release studies with all micelles. After 72 hours, only ~30% of 

DOX was released from both ABZ and GLY micelles whereas up to 55% of DOX was 

released at pH 5.0. An even greater difference in total drug release was observed with 

HYD micelles. During the time frame of cytotoxicity experiments, drug release studies 

showed that HYD micelles released the largest amount of DOX, followed by ABZ 

micelles. GLY micelles released the least amount of DOX in this same time frame. With 

three distinct release profiles, cells were exposed to different degrees of free DOX after 

micellar treatment. Treatment with free DOX was another reference point, as treated cells 

were directly exposed to a large amount of free DOX. 

Cells were treated at DOX-equivalent doses for either 48 or 72 hours. Drug 

release studies showed that this time frame was not long enough to complete DOX 

release from micelles. After 48 hours, at least 19%, 30%, and 42% of DOX remained in 

HYD, ABZ, and GLY micelles respectively. After 72 hours, a maximum of 82% of DOX 

was released from HYD micelles. ABZ and GLY micelles released at most 72% and 63% 

of DOX in the same time frame. 

After 72 hour exposure, micellar treatments were equipotent to DOX treatment in 

HT29 cells. With A549 cells, IC50s of micellar treatments were slightly elevated, while 

only HYD micelles produced a statistically different IC50. The elevated IC50 of HYD 

treatment was unexpected as drug release studies revealed HYD micelles released DOX 

to the greatest extent compared to ABZ and GLY micelles. The initial larger DOX 

release from HYD micelles appeared not to have a beneficial effect. The uptake of the 

polymer itself may have played a role in the efficacy of HYD micelle treatment.  Even 

though the amount of free DOX available to cells differed, similar efficacy was observed 

133 
   



after ABZ and GLY treatment. This was consistent with results from 12-5 and 12-15 

micelles. This phenomenon has also been observed in literature as micellar systems were 

proven as effective as free drugs (141, 142). But the efficacy from micellar treatment was 

system dependent, as other works showed micellar treatments produced lower efficacy 

then free drugs (143, 144).  

A second set of experiments was performed with shorter exposure time (48 

hours). Changing the exposure time could alter the cytotoxicity due to micellar treatment, 

since total drug release changed with time. However, results were consistent with the 72 

hour exposure experiments. The 48 hour treatment showed no statistical difference 

between cells treated with micelles and free DOX. Though the IC50 from HYD micelle 

treatment was slightly elevated, it was not significantly different. Treatment with HYD 

micelles resulted in higher IC50s. The internalization of HYD micelles was thought to 

play a role, as uptake of HYD-Red block copolymers was low.  

By comparing treatment efficacy, the effects of drug release were observed. 

Reduced block copolymer experiments proved that block copolymers by themselves were 

essentially not toxic. Surprisingly, micellar treatments were equipotent to free DOX in 

almost all cases. All micelles delivered drugs at a slow rate but showed equipotency. 

Overall results indicated that controlling rate of release can be as important as the dose 

delivered. 

6.4.3 DOX Intracellular Uptake 

The uptake of DOX after treatment with HYD, ABZ, GLY micelles or free DOX was 

observed in both HT29 and A549 cells. Two methods were used: microplate fluorescent 

analysis and microscopy. The difference between the two methods was the analysis 
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process. Treatment and cell culturing conditions were the same for both methods; thus 

straightforward comparisons of the two methods were possible. For the microplate 

fluorescent method, DOX content in cells was measured spectroscopically. Conversely, 

the microscopy method looked at the cellular internalization using a fluorescent 

microscope. Images produced from microscopy were analyzed using ImageJ. The two 

separate methods were in agreement, showing similar internalization trends.  

With the fluorescence detection method, quick free DOX uptake was observed in 

both A549 and HT29 cells. By the half hour mark both cell lines had taken up a 

significant amount of DOX. After this initial fast uptake, high intracellular DOX levels 

were maintained over the remainder of the experiment. Extracellular DOX binding could 

explain high levels of early internalization, but this was probably not the case. Repeated 

PBS washing was performed to remove any extracellular bound DOX. Additionally, no 

extracellular DOX appeared in images from microscopy where the same PBS wash was 

used.  

At early time points, DOX from micellar treatment was present in small amounts. 

This was unsurprising as micelles were expected be internalized through endocytosis, 

whereas free DOX could readily be uptaken by cells. Uptake of reduced block copolymer 

was also low in this same time frame. In both HT29 and A549 cells, the uptake of DOX 

from micellar treatment gradually increased through the first six hours. Though DOX 

from micelles was internalized at a slower rate than free DOX, uptake levels from 

micelles was maintained through 72 hours.  

The overall trends were the same using the microscopy method. In addition to the 

quantitative value of microscopy studies, the location of DOX can be assessed. Free 
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DOX not only entered the cell quickly, but it appeared to collect near the nucleus. After 

six hours, the stain of the nuclease was overtaken by the DOX fluorescent signal. This 

continued in later time points. Micelle treatment yielded similar results, but at slower 

rates. DOX fluorescence closed in on the nucleus as the experiment progressed. This 

suggests that both micelle and free DOX treatments affect the nucleus. These results were 

unsurprising, as a primary mechanism of action of DOX is DNA intercalation.  

Regarding degradation of the hydrazone bond during storage, experiments 

performed with microplate fluorescent analysis should not be affected. However, 

microscopy experiments were performed at a later date and up to 22% free DOX may 

have been present. Even though this could have occurred, results from the microscopy 

method mirrored fluorescent results, maintaining the same trend.  

6.5 Conclusions 

The efficacy and internalization of three micellar formulations were tested in two cell 

lines: A549 and HT29. Micellar formulations maintained DOX activity in vitro, while the 

block copolymers themselves exhibited minimal toxicity. This was key in demonstrating 

that DOX can be released in its original form and maintain its activity. Additionally, 

results indicated that free DOX was the sole active ingredient in micellar treatment.  

Preparing block copolymers with irreversibly attached DOX showed that cells are 

able to internalize block copolymers. Cytotoxicity results indicated that treatment with 

ABZ and GLY micelles was equipotent to DOX. Both formulations released DOX at a 

slow rate, revealing the impact of release rates. Moreover, cell internalization studies 

confirmed that micelles deliver DOX to cells. With this information, treatment methods 
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could be optimized. By preparing formulations which deliver drugs continuously, the 

overall dose could be reduced while maintaining the same level of efficacy.  
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CHAPTER SEVEN 

7 IN VIVO EFFICACY OF BLOCK COPOLYMER MICELLES 

7.1 Introduction 

Three block copolymers were synthesized previously, each with a unique drug binding 

linker (HYD, ABZ-HYD, or GLY-HYD). Micelles prepared from these block 

copolymers produced three distinct DOX release profiles. Over 72 hours, HYD micelles 

released the largest amount of DOX, followed by ABZ micelles and then GLY micelles. 

Additionally, drug release modeling revealed that DOX release was biphasic from all 

micelles. Importantly, it was observed that after an initial fast DOX release, a secondary 

slow DOX release phase occurred. This was consistent across all three formulations. 

Furthermore, these micelles shared similar characteristics. Beyond drug release profiles, 

ABZ and GLY micelles were nearly identical. By maintaining these overall 

characteristics, micelles were expected to behave similarly in vivo, allowing for drug 

release effects to be explored. 

In this work, the effects of tunable drug release are studied primarily in two ways: 

biodistribution and antitumor activity. First, the biodistribution of micelles is established. 

Previous works show that block copolymer micelles have low critical micelle 

concentrations, and therefore remain intact after IV administration. Furthermore, NDDSs 

within a specified size range minimize non-specific accumulation of cytotoxic agents, 

thereby lowering toxicity (145, 146). Micelles herein are expected to exhibit similar 

properties. The degree of tumoral accumulation of micelles also plays a key role and 

must therefore be identified. The secondary method of observing effects of modulated 

drug release is through antitumor studies. Micelle treatments are compared to free DOX 
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treatment to confirm the rationale of using the NDDSs developed herein. An additional 

comparison between micelles is also performed, comparing the three different drug 

release profiles to one another, providing guidance for future treatment regimens. 

7.2 Materials and Methods 

7.2.1 Materials 

D-luciferin was purchased from Sigma-Aldrich (USA). DOX was purchased from LC 

Laboratories (USA). Sterile filters (0.22 µm), plastic blood collection tubes, and other 

cell culture supplies (e.g. 96-well culture plates, pipettes, and flasks) were purchased 

from Fisher Scientific (USA). Kaighn's modification of Ham's F-12 medium (F12-K), 

McCoy’s 5A medium, fetal bovine serum (FBS), trypsin-EDTA (0.25% trypsin and 2.21 

mM EDTA), and the A549 cell line were purchased from ATCC (USA). 

7.2.2 Biodistribution Studies 

Six-week old female SCID mice were purchased from Taconic (USA) and acclimated for 

one week. Mice were randomly divided into four groups of sixteen, each group 

representing a treatment (DOX, HYD, ABZ, or GLY). For each treatment, mice were 

further split into groups of four, as tissue was collected at four time points: 0.5, 3, 24, and 

48 hours. Mice were injected with 3 x 106 A549 cells subcutaneously in the right flank. 

When tumor volume reached 100 mm3, mice were injected intravenously (IV) through 

the tail vein with 10 mg/kg DOX-equivalent solutions. Prior to treatment, micelles were 

sterilized through filtration using a 0.22 µM filter.  

After each treatment, blood (>100 µL) was withdrawn from mice through cardiac 

puncture at two time points. Blood samples were placed in blood collection tubes. Serum 

was collected after centrifugation at 10,000 rpm. For analysis, serum (20 µL) was added 
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to DMSO (80 µL) resulting in an 80% DMSO solution. Sample DOX concentration was 

determined using fluorescent spectroscopy (excitation 485 nm, emission 603 nm). A 

calibration curve was prepared as described in previous sections. Pharmacokinetic 

parameters were determined using Phoenix WinNonlin Software (Version 6.2.1, 

Pharsight). Mice were euthanized immediately after the second blood withdrawal. Major 

organs (heart, liver, lungs, kidneys, and spleen) and tumors were excised and stored at -

20°C. Tissue was weighed in preparation for analysis. An 80% DMSO solution was 

added to tissue samples, which were subsequently homogenized and centrifuged at 

14,000 rpm. The supernatant was collected, and DOX concentration present in tissue was 

determined with fluorescent spectroscopy (excitation 485 nm, emission 603 nm). It is 

important to note that DOX concentrations measured in biodistribution studies represent 

the combined total of free DOX and conjugated DOX as their fluorescent signals could 

not be separated. In summary, blood samples were collected at: 0.03, 0.5, 1, 3, 6, 24, and 

48 hours and tissue samples were collected at 0.5, 3, 24, and 48 hours.  

7.2.3 Antitumor Activity 

Two antitumor studies were performed. In the first antitumor study, tumor-bearing mice 

were treated with a single, high DOX dose. In the second antitumor study, tumor-bearing 

mice were dosed twice at considerably smaller DOX doses. Mouse body weight, tumor 

length (𝐿) and width (𝑊) were monitored in both studies. Tumor measurements were 

used to calculate volume using the formula: 

𝑉 =
𝜋
6
𝐿𝑊2 

The length of the tumor was considered the larger of the two measurements.  

For the first study, six-week old SCID mice were purchased from Taconic (USA). 
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After one week of acclimation, murine xenograft tumor models were prepared by 

injecting 3 x 106 A549 cells into the back of mice. When tumor volume reached 100 

mm3, mice (n=4) were injected via the tail vein with of one of five treatments: PBS, 

DOX, HYD, GLY or ABZ. The treatments represented a negative control (PBS), and 

four treatments at 50 mg/kg DOX-equivalent concentrations. To prepare the samples for 

injection, DOX was dissolved in PBS with a small amount of DMSO at a 10 mg/mL 

concentration. HYD, ABZ, and GLY block copolymers were dissolved in PBS at a 10 

mg/mL DOX-equivalent concentration. Tumor size and mouse body weight were 

measured every two days until day 10, and every four days thereafter. 

The same protocol with minor adjustments was used in the second antitumor 

study. Six-week old SCID mice were obtained from Taconic (USA). Mice were 

acclimated for one week, after which time they were injected with 3 x 106 HT29 cells. 

When tumors reached 100 mm3, mice (n=6) were injected via the tail vein with one of 

five treatments: PBS, DOX, HYD, GLY or ABZ. After four days, mice were dosed again. 

Both doses were at 10 mg/kg DOX-equivalent concentrations. Pilot studies showed that 

these animal models tolerated this treatment well. Tumor size and mouse body weight 

were measured every two days until day 10, and at least once per week thereafter. For 

sample preparation, DOX was dissolved in PBS (2 mg/mL) with minimal DMSO. 

Similarly, block copolymers were dissolved in PBS to achieve a 2 mg/mL DOX-

equivalent concentration.  

7.2.4 In Vivo and Ex Vivo Imaging 

At the end of the A549 antitumor study, mice were imaged in vivo, and mouse tissue was 

imaged ex vivo. On day 28, one mouse was chosen at random from each group (PBS, 
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ABZ, or GLY) for tumor imaging. Mice were anesthetized and injected in the peritoneal 

cavity with a 100 µL D-luciferin solution (15 mg/mL). Non-invasive mouse images were 

taken 10 minutes post-injection using an in vivo imaging system (IVIS) (Advanced 

Molecular Vision, Xenogen IVIS, USA). Afterward, mice were euthanized for ex vivo 

imaging. Heart, liver, lungs, kidneys, spleen, and tumor tissue were collected. Fluorescent  

(excitation 500 nm, emission 600 nm) images were taken with IVIS to observe DOX 

presence. Furthermore, tumor tissue analyzed following the previous protocol.  

All animal experiments were conducted in accordance with the Institutional 

Animal Care and Use Committee (IACUC) guidelines. 

7.3 Results 

7.3.1 Biodistribution Studies 

Mice were treated with a 10 mg/kg DOX equivalent dose. DOX biodistribution from 

different treatments (DOX, HYD, ABZ, or GLY) was observed over 48 hours (Figure 

30).  

Tumor, liver, kidney, spleen, heart, and lung tissue was collected at 0.5, 3, 24, and 

48 hours. DOX content was measured spectrometrically using a microplate reader 

method as established by Cao et. al (147). Free DOX treatment revealed that DOX was 

distributed to peripheral tissue very quickly, and without specificity. Within half an hour 

free DOX treatment yielded a 49 µg/g DOX concentration in the heart, and DOX 

concentrations of 120, 140, 28, and 58 µg/g in the kidneys, lungs, spleen, and liver, 

respectively. Intriguingly, tumor DOX concentration was only 1.9 µg/g. After 30 

minutes, all micellar treatments resulted in significantly lower DOX accumulation in the 

liver, kidneys, heart, and lungs. Furthermore, DOX accumulation in the spleen post-ABZ 
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Figure 30. DOX Distribution after HYD, ABZ, GLY, or Free DOX Treatment in Tumor, 
Liver, Kidneys, Spleen, Heart, and Lung Tissue. Y-Axis Represents DOX Concentration 

[(µg DOX)/(g Tissue)] 
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and GLY treatment was significantly lower than after free DOX treatment. However, 

HYD and free DOX treatments resulted in equivalent DOX accumulation in the spleen. 

For the remainder of the study, DOX concentration decreased in the liver, kidneys, lung, 

and heart after treatment with free DOX. However, spleen and tumor DOX 

concentrations remained relatively unchanged through the 48 hour time point.  

Comparable trends were observed with all micellar treatments. The overall 

decline in DOX concentration was observed in kidney, liver, and lung tissue. 

Specifically, DOX concentration in the lungs continuously decreased. Liver and kidney 

DOX concentrations dropped significantly in the first 24 hours, followed by a minor 

decrease. DOX levels in the spleen remained at nearly the same level over the course of 

the experiment. In sharp contrast to the free DOX treatment, heart DOX concentrations 

post-micellar treatments were miniscule across all time points. A significant amount of 

DOX in tumor tissue was observed after 48 hours with all micellar treatments.  

AUC calculations were performed to further evaluate DOX distribution (Figure 31, Table 

13). DOX accumulation in the spleen, kidneys, and lungs was significantly less from the 

micellar formulations than the free drug (p <0.01). Additionally, AUC in the heart was 

430 (µg DOX/g tissue)*hours from free DOX, while AUC after HYD, ABZ, and GLY 

dosing was 30, 100, and 40 (µg DOX/g tissue)*hours, respectively. Tumor and liver 

tissue AUC did not vary greatly, irrespective of treatment. Intriguingly, no statistical 

difference was observed among treatments regarding tumor tissue AUC. Comparing 

micellar treatments alone revealed no discernible difference of AUCs in liver, spleen, 

kidney, heart, and lung tissue.  

In addition to AUC determination, AUC ratio (AUCmicelle/AUCDOX) was  
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Figure 31. 48 Hour Biodistribution AUC Determination 

  

145 
   



Table 13. Analysis of Biodistribution Studies Through AUC Analysis 

  AUC [(µg DOX/g tissue)*hours] 
 DOX HYD ABZ GLY 
Tumor 280 ± 40 320 ± 140 160 ± 30 210 ± 25 
Liver 990 ± 150 810 ± 60 410 ± 80 630 ± 79 
Spleen 1150 ± 140 570 ± 80 460 ± 70 490 ± 100 
Kidney 1170 ± 180 670 ± 50 160 ± 50 240± 50 
Heart 430 ± 60 30 ± 7 100 ± 20 40 ± 10 
Lungs 790 ± 200 310 ± 30 80 ± 20 130 ± 20 
  AUC Ratio (AUCmicelle/AUCDOX) 
 DOX HYD ABZ GLY 
Tumor 1.0 ± 0.2 1.2 ± 0.5 0.6 ± 0.2 0.8 ± 0.2 
Liver 1.0 ± 0.2 0.8 ± 0.2 0.4 ± 0.2 0.6 ± 0.2 
Spleen 1.0 ± 0.1 0.4 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 
Kidney 1.0 ± 0.2 0.6 ± 0.2 0.1 ± 0.3 0.2 ± 0.3 
Heart 1.0 ± 0.2 0.1 ± 0.3 0.2 ± 0.3 0.1 ± 0.3 
Lungs 1.0 ± 0.3 0.4 ± 0.3 0.1 ± 0.3 0.2 ± 0.3 

Determined values are shown as mean ± standard deviation. 
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calculated. An AUC ratio >1 corresponds to increased DOX accumulation relative to free 

DOX treatment, while AUC ratios <1 are equated to lower DOX accumulation.  

All AUC ratios were less than one for spleen, kidney, heart, liver, and lung tissue. 

Though the HYD micelle treatment yielded a 1.2 tumor AUC ratio, this was statistically 

equivalent to other treatments.  

With each treatment, DOX concentration in the serum was determined. Free DOX 

was quickly eliminated, with DOX levels reaching 0.5 µg/mL within three hours. 

Intriguingly, DOX from HYD treatment was also quickly eliminated. DOX concentration 

in the serum was only 1.2 µg/mL after three hours. In contrast, DOX levels after ABZ 

and GLY treatments were 28.9 and 19.0 µg/mL over the same time frame. Even after 48 

hours, DOX concentrations after ABZ and GLY treatments were significant (0.8 and 1.2 

µg/mL, respectively).  

Pharmacokinetic parameters were estimated (Figure 32, Table 14). Data from all 

treatments produced a biphasic profile and were thus fitted with a two compartment 

model. AUC, AUC ratio, clearance, volume of distribution (Vss), initial fast half-life 

(t1/2f), and slower secondary half-life (t1/2s) were determined based on this model. 

Estimated clearance confirmed quick DOX elimination after free DOX and HYD 

treatments, as modeling revealed a clearance of 7.5 and 4.9 ml/hour, respectively. On the 

other hand, DOX clearance after ABZ and GLY treatments was 0.4 and 0.6 ml/hour, 

respectively. Similarly, determined t1/2f and t1/2s after free DOX and HYD treatment were 

much faster than t1/2f and t1/2s determined after ABZ and GLY treatments. AUC ratios 

revealed an 18-fold difference between ABZ and free DOX treatments. The AUC ratios 

of GLY and HYD treatments were 12 and 1.5, respectively.   
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Figure 32. Pharmacokinetic Analysis of Micellar and Free DOX Treatments 

  

148 
   



Table 14. Pharmacokinetic Parameters of DOX and Micellar Treatments 

Paramaters are shown ± the standard error.  

  

Micelle AUC 
(hrs*µg/mL) 

AUC 
Ratio 

Clearance 
(mL/hour) 

t1/2f 
(hours) 

t1/2s 
(hours) 

Vss 
(mL) 

CMax 
(µg/mL) 

DOX 27 ± 11 1.0 ± 0.6 7.5 ± 3.1 0.11 ± 0.01 19 ± 12 166 ± 55 32 ± 2.3 
HYD 40 ± 4.2 1.5 ± 0.4 4.9 ± 0.5 0.18 ± 0.03 14 ± 2.0 64 ± 12 54 ± 13 
ABZ 487 ± 33 18 ± 0.4 0.35 ± 0.4 0.35 ± 0.09 9.4 ± 0.9 5.4 ± 0.30 68 ± 3.3 
GLY 338 ± 18 12 ± 0.4 0.59 ± 0.0 0.86 ± 0.51 9.7 ± 0.5 7.8 ± 0.52 41 ± 4.3 
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7.3.2 Antitumor Activity 

Antitumor efficacy of micellar treatments was compared to two controls: free DOX and 

PBS treatments. Two antitumor studies were performed. One monitored the effects of a 

single high DOX equivalent dose in mice with A549 xenografts. The secondary study 

observed the efficacy of treatments after two lower DOX equivalent doses in mice with 

HT29 xenografts. 

For the high dose study, mice were injected on day zero with micellar solutions or 

free DOX at a 50 mg/kg DOX equivalent dose. Mice injected with free DOX did not 

survive due to high toxicity. Similarly, HYD micelle treatment was toxic and mice were 

euthanized shortly after dosing. PBS, ABZ, and GLY treated mice were weighed 

throughout the experiment to observe toxicity (Figure 33). Mice treated with PBS gained 

weight steadily. GLY treated mice not only did not lose weight, but actually steadily 

gained weight. A small degree of weight loss was observed with ABZ treated mice up to 

day six, but this loss was not statistically different than the initial weight (p >0.05). After 

day six, mice treated with ABZ gained weight. Therapy with ABZ and GLY micelles 

showed promise, as tumor growth was retarded over a 28 day period (Figure 33). Relative 

tumor volume (𝑉𝑥/𝑉0) was calculated, where 𝑉𝑥 represents tumor volume on a specific 

day, and 𝑉0 is the initial tumor volume. PBS treated mice experienced rapid tumor growth 

with tumor volume reaching 750 mm3. ABZ treatment resulted in significant antitumor 

activity, as mice tumors reached a maximum of 2.5 relative tumor volume. Compared to 

the ABZ treated mice, GLY treated mice experienced an improved antitumor effect (p 

<0.05). In terms of relative tumor volume, the maximum tumor size of mice treated with 

GLY was 1.3. This tumor volume was not significantly different than the initial tumor   
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Figure 33. High Dose Antitumor Study with A549 Xenografts 
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volume (p >0.05). Interestingly, tumor size initially decreased after GLY treatment. 

Overall, both GLY and ABZ treatments hindered tumor growth compared to the control 

(p <0.0001).  

Mice were dosed twice at 10 mg/kg DOX equivalent doses in the second 

antitumor study. An additional group of mice was treated with PBS as a control. Tumor 

volume and mouse body weight were monitored throughout the study (Figure 34). Six 

days after the initial injection, micelle treated mice experienced minimal tumor growth. 

However, tumors of both DOX and PBS treated mice doubled in volume. An additional 

week was required for tumors of ABZ and GLY treated mice to reach the same size. 

After 21 days, a trend in tumor volume was established [PBS>DOX>HYD> (ABZ and 

GLY)].  

Mice were euthanized when tumors reached a relative tumor volume of 30. Under 

these guidelines, PBS treated mice were sacrificed first, followed by free DOX treated 

mice. Mice treated with free DOX survived only an additional week compared to PBS 

treated mice. Eleven days after the DOX group was euthanized, the HYD group reached 

the tumor volume cut-off. Mice treated with ABZ or GLY micelles survived 21 days 

longer than DOX treated mice, extending their lifespan by 40%. ABZ and GLY treated 

mice were sacrificed on day 74.  

In addition to superior antitumor activity, mice treated with micelles did not exhibit 

weight loss over the course of study. In fact, HYD, ABZ, and GLY treated mice 

mimicked the weight change of the PBS group. On the other hand, DOX treated mice 

saw a sudden weight loss of almost three grams after the second dose. This weight loss 

equates to approximately 10% change in body weight. As the experiment progressed, the  
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Figure 34. HT29 Xenograft Antitumor Study 
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DOX treated group slowly gained weight. 

7.3.3 In Vivo and Ex Vivo Imaging 

In vivo and ex vivo imaging was performed at the end of the high dose (50 mg/kg) 

antitumor study. For in vivo imaging, an IVIS instrument was used to explore the 

possibility of monitoring tumor growth through luminescence measurements. A549 cells 

used to establish xenografts were transfected with luciferase. For imaging, mice were 

injected in the peritoneal cavity with D-luciferin. The resulting tumor luminescence 

signal was observed (Figure 35). Tumors were subsequently excised and photographed 

for size comparison. Additionally, tumor length and width were measured with calipers to 

determine volume.  

Results indicated that IVIS images were consistent with caliper measurements. 

The PBS treated mouse had the largest tumor (Figure 36A). The second and third largest 

tumors were from ABZ and GLY treated mice, respectively (Figures 36B and 36C, 

respectively). The luminescence region of interest (ROI) as derived from IVIS 

corresponded well with manual tumor size measurements. According to IVIS 

measurements, the tumor from the mouse treated with GLY was 2.7 times smaller than 

the ABZ treated one, while caliper measurements showed that the difference was 

twofold. Comparing ABZ to PBS treatment, the tumor volume difference was 2.7 greater 

according to IVIS and twofold according to caliper measurements. 

Mice were euthanized and tissue was harvested for fluorescence ex vivo imaging. 

Tissue from mice treated with PBS showed no fluorescence (Figure 36). Similarly, there 

was no fluorescence signal present in the heart, lungs, liver, kidneys, or spleen in mice 

treated with ABZ or GLY. Intriguingly, a small signal was present from tumor tissue of   
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Figure 35. Determining Tumor Size Utilizing in Vivo Imaging 
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Figure 36. DOX Detection 28 Days after Initial Treatment 
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ABZ and GLY treated mice. In order to confirm the signal as the presence of DOX, the 

three tumors were analyzed as was done with the biodistribution study. Results from this 

method showed that tumor DOX concentration in the PBS treated mouse was zero; but a 

concentration of 2.5 µg/kg of DOX was observed in ABZ treated mouse. A slightly 

higher DOX concentration (3.4 µg/kg) was found in the GLY treated mouse tumor. 

7.4 Discussion 

Multiple in vivo studies were performed to determine DOX efficacy and biodistribution 

after treatments with free DOX or micellar formulations. It is important to note the time 

frame of these experiments due to possible hydrazone bond hydrolysis during storage. 

Biodistribution studies were performed within three months of block copolymer 

synthesis. The A549 antitumor study was performed less than four months after initial 

synthesis. In both cases, free DOX formation is expected to be less than 8%. Degradation 

should not affect overall results of these experiments. The antitumor studies with HT29 

xenografts were performed five months after synthesis. For these experiments, up to 12% 

of DOX may have been cleaved from the polymer. This loss may have minimally 

impacted results.  

7.4.1 Biodistribution Studies 

Mice were treated with HYD, ABZ, GLY micelles, or free DOX at 10 mg/kg DOX 

equivalent doses to determine DOX biodistribution (Figures 30 and 31). A microplate 

reader method was used to determine DOX concentration. This analysis method was as 

effective as liquid chromatography-mass spectrometry (LC-MS) (147).  

DOX concentrations present in tissue and serum were monitored over 48 hours. 

Free DOX was rapidly distributed throughout the body, as high DOX concentrations 

157 
   



were observed in all tissue within 30 minutes. Furthermore, AUC analysis confirmed 

high DOX distribution into peripheral tissue after free DOX treatment. Due to the larger 

particle size, micelles cannot readily diffuse through healthy vasculature to reach 

peripheral tissue (148, 149). In this study, micellar treatments greatly reduced non-

specific delivery of DOX. Compared to free DOX treatment, only a fraction of DOX was 

found in the spleen, kidneys, and lungs after micellar treatments. Even in the liver, the 

total DOX concentration from ABZ and GLY micelles was less than that of free DOX. 

However, similar DOX concentrations were found in the liver after free DOX and HYD 

micelle treatments. It is important to note that cardiac toxicity is one of the main 

drawbacks of DOX in the clinic, and lowering DOX concentration in the heart may help 

lower this risk (150, 151). After micellar treatment, DOX concentration in the heart was 

less than 43% of that after free DOX treatment, suggesting that micellar treatment could 

reduce cardiac toxicity. Overall, micelles minimized DOX concentration in peripheral 

tissue.  

DOX concentration from each treatment was also observed in tumor tissue. DOX 

from micellar treatment was initially present in tumors to a greater extent than that from 

free DOX treatment. Over the time frame of the experiment, DOX concentration in tissue 

varied depending on treatment with no trend arising. No significant difference in DOX 

tumor accumulation was observed, irrespective of treatment.  

Pharmacokinetic parameters were estimated using a two compartment model 

(Figure 32). Each treatment followed a similar pattern of initial distribution in peripheral 

tissue, followed by an elimination phase. Free DOX was removed from the blood stream 

quickly. However, polymer micelle treatment showed a prolonged DOX circulation time. 

158 
   



This was believed to be due to the physicochemical properties of micelles. The micellar 

particle size may have prevented diffusion through healthy vasculature, as shown in 

similar studies (152). Additionally, the PEG shell could have shielded micelles from 

phagocytosis (153-155). Estimated pharmacokinetic parameters supported this notion. 

The quickest DOX clearance was observed after free DOX treatment. Furthermore, there 

was an order of magnitude difference in DOX clearance when comparing free DOX to 

GLY and ABZ treatments. Clearance after HYD treatment was slower than clearance of 

free DOX treatment, but this difference was smaller than the ABZ or GLY treatments. 

Drug release studies showed greater DOX release from HYD micelles then both ABZ 

and GLY micelles. The quicker DOX elimination could be explained by the greater DOX 

release. Furthermore, particle size analysis suggested a less compact HYD micelle core 

which could contribute to quicker elimination. Overall, DOX circulation time was greatly 

increased with micellar formulations. 

7.4.2 Antitumor Activity 

The antitumor effects of micellar treatment were observed in mice with either A549 or 

HT29 xenografts. Micelles developed herein had similar physicochemical properties. 

HYD, ABZ, and GLY micelles had a ζ-potential <+13; with a particle diameter <125 nm. 

In terms of total DOX release over 72 hours, micelles followed the pattern: 

HYD>ABZ>GLY. Two dosing schedules were tested: an elevated single dose, and a 

smaller dose over two injections.  

For the single dose study, antitumor effects of each treatment were observed over 

28 days. A single 50 mg/kg DOX equivalent injection was administered to mice. This 

further minimized extraneous factors in antitumor activity. Two controls were used in the 
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antitumor study: free DOX and PBS. A tumor growth base line was established by 

monitoring tumor growth of PBS treated mice. Mice were treated with free DOX to 

compare and contrast effects of micellar treatments. Unfortunately, free DOX treatment 

led to high toxicity and mice were euthanized the same day. It was suspected that quick 

DOX distribution in peripheral tissue caused adverse toxicity and eventual death. Mice 

treated with HYD micelles suffered a similar fate. Though they initially survived, adverse 

side effects were soon observed and mice were sacrificed. HYD micelles released the 

largest amount of DOX in pH 7.4, and it was believed that this fast release led to the high 

toxicity. Mice treated with GLY and ABZ micelles survived this high dose. Importantly, 

no adverse toxicity was observed in either GLY or ABZ treated mice. DOX release from 

both of these micelles was low at pH 7.4. Additionally, DOX from ABZ and GLY 

micelles was minimally distributed in peripheral tissue. The combination of lower DOX 

release and decreased distribution in peripheral tissue presumably led to the absence of 

observed toxicity.  

The antitumor effects of micellar treatment supported in vitro results. Mice 

exposed to DOX released at slower rates showed enhanced antitumor activity. GLY and 

ABZ treated mice experienced significant antitumor activity. At the same time, tumors of 

PBS treated mice quintupled in volume. Tumors of ABZ treated mice only doubled in 

volume after 28 days, while tumors of GLY treated mice remained unchanged after 28 

days. The primary difference between the two micelles was the drug release profiles, as 

ABZ micelles released more DOX than GLY micelles. However, the secondary slow 

release rate of DOX may have played a key role. As the study was performed over a 28 

day period, this slow release would be most applicable. The secondary, slow release rate 
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of DOX from ABZ micelles was slightly slower than the DOX release rate from GLY 

micelles. The slow and prolonged release of DOX was assumed to contribute to the 

greater antitumor activity from micellar treatments, as tumors would be exposed to DOX 

for extended time period. Controlling the release rate can therefore be used to improve 

cancer chemotherapy treatments.  

The secondary antitumor study compared the effectiveness of micellar treatment 

to free DOX in mice with HT29 xenografts. Mice survival was ensured by lowering the 

dose and spreading the treatment over two injections. Out of the mice treated with 

micelles, none had apparent adverse toxicity. Monitoring body weight confirmed this 

assessment. With the free DOX treatment, mouse body weight decreased after the second 

injection, suggesting toxicity. Nevertheless, mice survived all treatments allowing 

comparisons between micelles and free DOX treatments to be made.  

Mice treated with PBS fared the worst as they reached the tumor size limit 

quickest and were thus euthanized. The immediate impact of free DOX treatment was 

observed within the first week of the second injection. At this point relative tumor size 

started to differentiate from PBS treated mice. However, the antitumor effect did not last 

long, as only a week later tumor growth increased drastically. It appeared that the 

therapeutic effect from free DOX treatment was short lived. On the other hand, micellar 

treatments showed a much longer lasting effect. Through the first 18 days, HYD, ABZ, 

and GLY treatments were similar to free DOX treatment. Thereafter micellar treatments 

continued tumor growth suppression whereas free DOX treatment began to fail. After 35 

days micelle treated mice had a maximum relative tumor size of eight, while DOX 

treated mice had tumors 16 times the initial volume. Releasing DOX at slow, prolonged 
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rates, micelles improved on the antitumor effect of free DOX. Intriguingly, both ABZ and 

GLY micelles performed substantially better than HYD micelles. Tumors of mice treated 

with either GLY or ABZ micelles took almost 20% longer to reach the relative tumor 

volume of their HYD treated counterparts. 

The combination of the larger percent of DOX undergoing fast release, with the 

quick elimination of HYD micelles in vivo probably contributed to the lower efficacy. 

Another factor minimizing efficacy of HYD treatment could be attributed to the large 

release of DOX in pH 7.4 with the HYD micelles. Overall, the results of this antitumor 

study are consistent with the high dose antitumor study. Micelles releasing DOX at slow 

rates improved tumor growth suppression the most.  

7.4.3 In Vivo and Ex Vivo Imaging 

Two sets of imaging studies were performed: whole body and tissue analysis. Studies 

were independent of one another. The first set out to observe the capability of using 

bioluminescence as a way to monitor tumor growth. The second was performed to 

monitor DOX in tissue.  

Tumor xenografts were established using A549 cells for antitumor studies. These 

A549 cells were transfected with a luciferase gene. Cells expressing luciferase are 

bioluminescent and their bioluminescence can be detected after exposure to D-luciferin 

(156). At the end of the single dose antitumor study, whole body images of mice were 

taken. Mice were dosed with D-luciferin through an intraperitoneal injection. IVIS 

images were then taken to detect cancerous tissue (Figure 35). Measured bioluminescent 

signal was translated to relative tumor volume. The relative tumor volume from IVIS 

imaging and caliper measurements were then compared. The two methods showed good 
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correlation, as results from IVIS were consistent with caliper measurements. It was 

concluded that IVIS imaging was a good alternative to caliper measurements.  

IVIS was used to fluorescently (excitation 500 nm, emission 600 nm) observe 

DOX presence in tissue. The DOX peak absorbance is at 485 nm, however measurements 

using 500 nm as the excitation can still detect DOX. There was no DOX detected in the 

heart, lungs, liver, kidneys, or spleen. This was unsurprising as ex vivo imaging was 

performed 28 days post treatment. Intriguingly, minute amounts of DOX were observed 

in tumor tissue of ABZ and GLY treated mice. DOX was not detected in the tumor of the 

PBS treated mouse.  

An additional experiment was performed to confirm DOX presence in tumors. 

Tissue was analyzed in the same fashion as the biodistribution studies. Results showed 

the presence of small amounts of DOX in tumor tissue from ABZ and GLY treated mice. 

The tumor of the PBS treated mouse confirmed no DOX presence. These results were 

consistent with IVIS imaging. It appeared that DOX from micellar treatment remained 

present in tumor tissue for a prolonged period. Previous works have shown that due to 

poor lymphatic drainage, micelles can remain in the tumor tissue for an extended time. 

By remaining in the tumors, micelles can deliver DOX over extended time periods and 

possibly improve antitumor activity.  

7.5 Conclusions 

Block copolymer with three drug binding linkers (HYD, ABZ-HYD, or GLY-HYD) and 

covalently attached DOX were prepared for in vivo studies. Block copolymers formed 

micelles (HYD, ABZ, or GLY, respectively) which released DOX with distinct patterns 

as shown by drug release studies. Differences in drug release were most prominently 
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observed when analyzing total drug release. The effects of differential drug release were 

observed in vivo through biodistribution and antitumor studies.  

Biodistribution studies compared and contrasted DOX treatment as a free drug 

and within a micellar system. Free DOX treatment resulted in quick DOX elimination 

and high accumulation in peripheral tissue. Conversely, the uptake of DOX after micelle 

treatment was minimized in the spleen, kidneys, heart, and lungs. This stark contrast 

could explain the miniscule toxicity observed with micellar treatments.  

Two subsequent repetitions of the antitumor study yielded similar results. In both 

antitumor studies, treatments with micelles proved beneficial. At high doses, micelles 

suppressed tumor growth, while at lower doses micelles significantly retarded tumor 

growth. Specifically, mice treated with GLY at a high dose experienced complete tumor 

growth suppression. Maintaining this trend, lower doses of both ABZ and GLY micelles 

hindered tumor growth most effectively. It is important to note that micelles had a similar 

slow DOX release phase. By continuously exposing tumor tissue to DOX, micellar 

treatments were able to hinder tumor growth regardless of xenograft model. These studies 

showed that delivering DOX at slower rates for an extended period can enhance 

antitumor efficacy, rendering it apparent that modulating release is a key factor in 

efficacy.  
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CHAPTER EIGHT 

8 CONCLUSIONS AND FUTURE DIRECTIONS 

Despite the fact that it may play a key role in the improvement of chemotherapeutic 

efficacy, the effects of differential drug release have not yet been fully examined. To 

further explore the subject, a modifiable polymeric micelle NDDS based on PED-p(BLA) 

block copolymers was developed and detailed herein.  

Multiple PEG-p(BLA) scaffolds with a varying number of BLA repeating units 

were synthesized and modified. Drug binding linkers (HYD, ABZ-HYD, or GLY-HYD) 

were inserted to the scaffolds. DOX was then covalently attached through a hydrazone 

bond. Regardless of block copolymer synthesis, a therapeutically significant amount of 

DOX was conjugated onto block copolymers. Final block copolymers formed micelles 

with similar characteristics to each other. All particles were less than 125 nm in diameter. 

The micellar surface charge of ABZ and GLY was neutral, while HYD modified micelles 

had a slightly positive ζ-potential.  

The drug release characteristics of micelles were analyzed in both acidic 

(intracellular) and neutral (physiological) conditions through multiple drug release 

studies. Irrespective of drug release conditions and formulation, micelles exhibited 

biphasic DOX release. A mathematical model was developed to estimate drug release 

parameters, establishing a method to analyze DOX release from micellar systems. 

Modeling results proved inconclusive overall, as none of the determined parameters were 

statistically significant. However, drug release analysis at individual points showed that a 

pH effect was present; micelles released more DOX at pH 5.0 than at pH 7.4, a 

phenomenon further supported by AUC analysis. 
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Drug binding linker insertion led to differential drug release in pH 5.0 based on 

total drug released and AUC analysis. HYD micelles had the highest AUC of all the 

formulations, followed by ABZ and then GLY micelles. These results indicated that 

HYD micelles released the most DOX over a given time period. Though release rates 

determined through modeling yielded inconclusive results, it was evident that drug 

release profiles were dependent on micellar composition, and more specifically on the 

drug binding linker used.  

The effect of modulated release was observed in vitro with three different release 

profiles (HYD>ABZ>GLY). Micellar formulation maintained DOX activity in vitro, 

while the NDDS itself exhibited minimal toxicity. Cellular uptake studies confirmed that 

both DOX and block copolymers were readily internalized. The cytotoxicity of micelles 

was analyzed and compared to that of free DOX across multiple cell lines. DOX 

delivered at a steady rate via micelles was equipotent to free DOX treatment 

underscoring the benefits of prolonged release versus a single bolus dose.  

HYD, ABZ, and GLY micelles were analyzed in vivo to determine biodistribution 

and antitumor activity of DOX after micellar treatments. Micellar treatment minimized 

non-specific distribution of drugs in the body, reducing adverse toxicity. Even at very 

high DOX equivalent concentrations, ABZ and GLY micelles were not toxic. Perhaps 

most importantly, DOX concentration in the heart was drastically decreased with micellar 

treatments. Antitumor results further supported the finding that slow, prolonged release 

was more effective than a single large dose. ABZ and GLY micelles both hindered tumor 

growth in HT29 and A549 tumor xenograft models. It is evident that modulating release 

rate is a key factor in antitumor efficacy. 
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This research outlines a modifiable drug delivery platform which allows the 

effects of differential drug release to be observed, opening multiple avenues for future 

research. The modification of block copolymers with differential drug binding linkers has 

provided three drug release profiles for analysis. Though this is highly informative, it 

represents a narrow window in terms of drug release profiles. Further insight could be 

gained by synthesizing additional block copolymers to complete the drug release 

spectrum. By testing these formulations across multiple cell lines, a tailored treatment 

could then be developed.  

Beyond the scope of drug release, the hydrazone bond was determined to be 

unstable when stored long-term. It will be important to identify the factors contributing to 

this breakdown. Defining optimal storage conditions is critical if this NDDS is expected 

to reach clinical trials. This does not apply exclusively to the polymeric micelle system 

developed herein, as hydrazone linkages are used extensively.  
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