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ABSTRACT OF DISSERTATION

INVESTIGATING THERAPEUTIC OPTIONS FOR LAFORA DISEASE USING
STRUCTURAL BIOLOGY AND TRANSLATIONAL METHODS

Lafora disease (LD) is a rare yet invariably fatal form of epilepsy
characterized by progressive degeneration of the central nervous and motor
systems and accumulation of insoluble glucans within cells. LD results from
mutation of either the phosphatase laforin, an enzyme that dephosphorylates
cellular glycogen, or the E3 ubiquitin ligase malin, the binding partner of laforin.
Currently, there are no therapeutic options for LD, or reported methods by which
the specific activity of glucan phosphatases such as laforin can be easily measured.
To facilitate our translational studies, we developed an assay with which the glucan
phosphatase activity of laforin as well as emerging members of the glucan
phosphatase family can be characterized. We then adapted this assay for the
detection of endogenous laforin activity from human and mouse tissue. This laforin
bioassay will prove useful in the detection of functional laforin in LD patient tissue
following the application of therapies to LD patients. We subsequently developed an
in vitro readthrough reporter system in order to assess the efficacy of
aminoglycosides in the readthrough of laforin and malin nonsense mutations. We
found that although several laforin and malin nonsense mutations exhibited
significant drug-induced readthrough, the location of the epitope tag used to detect
readthrough products dramatically affected our readthrough results. Cell lines
established from LD patients with nonsense mutations are thus required to
accurately assess the efficacy of aminoglycosides as a therapeutic option for LD.
Using hydrogen-deuterium exchange mass spectrometry (DXMS), we then gained
insight into the molecular etiology of several point mutations in laforin that cause
LD. We identified a novel motif in the phosphatase domain of laforin that shares
homology with glycosyl hydrolases (GH) and appears to play a role in the
interaction of laforin with glucans. We studied the impact of the Y294N and P301L
LD mutations within this GH motif on glucan binding. Surprisingly, these mutations
did not reduce glucan binding as expected, rather enhancing the binding of laforin to
glucans. These findings elucidate the mechanism by which laforin interacts with and
acts upon glucan substrates, providing a target for the development of therapeutic
compounds.
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CHAPTER 1: BACKGROUND AND INTRODUCTION

Lafora disease: an overview.

Lafora disease (LD; OMIM #254780) is a fatal autosomal recessive disorder
characterized by myoclonic, tonic-clonic, and focal-occipital seizures accompanied
by progressive degeneration of the central nervous and motor systems (1.3, 68).
Other symptoms include dementia, visual hallucinations, ataxia, absence and grand
mal seizures along with epilepsy triggered by stimulus (105). Patients with LD
develop normally until they present with a tonic-clonic seizure during adolescence.
Subsequently, patients exhibit the described seizure types that increase in
frequency and severity with age (105). The initial seizure is also followed by rapid
concurrent neurodegeneration, and patient death occurs overwhelmingly within ten
years of disease onset due to complications such as status epilepticus, aspiration
pneumonia, or respiratory failure (105). There is significant neuronal loss across the
CNS upon death with no signs of inflammation (52). The progressive escalation of
epileptic symptoms places LD within the progressive myoclonus epilepsy (PME)
family, which is comprised of five major disorders (14, 62, 83). Together, the PMEs
constitute =1% of all epilepsies (105).

Due to the progressive nature of neurodegeneration, the frequency of
myoclonic seizures, and the variety of seizure types that can present, PMEs are often
difficult to diagnose at onset (105). However, a distinguishing characteristic of LD is
the presence of hyperphosphorylated and poorly branched glycogen-like
accumulations called Lafora bodies (LBs) in the cytoplasm of cells in all tissues. The
spherical and insoluble LB inclusions are 3-40 um in size, and can grow large
enough to occupy the entire cytoplasm. Despite the presence of LBs in a variety of
tissues throughout the body, non-neurological symptoms are uncommon (105),
likely because CNS neurons are unable to undergo cell division to replace lost cells.
Due to their size, LBs may act as a physical block preventing crucial cellular
trafficking events in neurons, which transport intracellular cargos over larger

distances than other cells. Alternatively, LBs may act as an unusable energy sink,



reducing the availability of free glucose to neurons, which are highly energy
dependent and thus sensitive to perturbations in energy availability (54). Although
the etiology of LD has yet to be fully elucidated, the presence of LBs in neurons is
hypothesized to be responsible for the non-apoptotic neural cell death and seizures
observed in patients (27, 129, 176).

LD results from recessive mutations in the autosomal EPMZ2A (epilepsy,
progressive myoclonus type 2A) and EPMZB (epilepsy, progressive myoclonus type 2B)
genes encoding the dual-specificity phosphatase laforin and the E3 ubiquitin ligase
malin, respectively (29, 55, 107). Defects in laforin account for 70% of LD cases and
defects in malin 27% of cases, with mutations found across both proteins (134, 141)
(Figure 1.1A and B). Mutations in laforin and malin have been demonstrated to
disrupt activity, substrate binding, interaction partner binding, and localization (29,
42, 141).

The accumulation of LBs within cells and the absence of normal cellular
glycogen indicate defects in glycogen metabolism, linking epilepsy and
neurodegeneration to the disruption of metabolism. LD is a rare disease (105),
however, there is a strong connection between metabolic defects and many other
types of epilepsies (119), with epilepsy affecting almost 3 million Americans at an
estimated annual cost of $15.5 billion (7). Insight into the molecular etiology of LD
and the disruption of glycogen metabolism may reveal a metabolic link shared with
other forms of epilepsy.

There are currently no available therapies for LD outside of palliative
therapeutics that allow the symptoms of LD to be managed for a short period (105,
107). Permanent therapeutic options for LD including EMP2A/EPMZ2B gene
replacement or treatment with Trojan horse liposomes (also called PEGylated
immunoliposomes) containing the gene for laforin or malin are both being explored
(115). As LD is an invariably fatal disorder, we assessed additional therapeutic
options for LD. We explored the efficacy of aminoglycosides, compounds that have
been shown to produce readthrough of disease-causing nonsense mutations (94), in

rescuing nonsense mutations in laforin and malin. We also explored the impact of



LD point mutations on laforin structure and activity for the development of LD

mutation-specific therapies.

The role of laforin in glycogen metabolism.

Two groups searching for genes mutated in LD patients simultaneously
discovered the EPM2A gene that encodes the protein laforin (106, 132). This gene
was later discovered to be conserved in all vertebrates as well as a subset of protists
and invertebrates (55). Laforin is expressed in all human tissues, although higher
expression is observed in brain, skeletal muscle, heart, and liver (133). Laforin is a
bimodular protein, containing an N-terminal carbohydrate-binding module (CBM)
representative of the CBM20 family (18, 25, 166) and a C-terminal dual-specificity
phosphatase (DSP) domain featuring the canonical DSP active site motif
Dx30HCxxGxxRS/T (CXsR) (106) (Figure 1.1A).

Dual-specificity phosphatases (DSPs) are a class of phosphatases whose
members dephosphorylate a diverse array of substrates including phosphoserine,
threonine, and tyrosine residues, phosphatidylinositols, ribo/deoxyribonucleotide
5’-triphosphates, pyrophosphate/triphosphate, or phosphorylated glucans (2, 109,
154). DSPs are members of the larger protein tyrosine phosphatase (PTP) family
that all utilize a cysteine-dependent mechanism to hydrolyze phosphoester bonds.
This mechanism is dependent on the conserved CXsR active site motif common to all
PTP phosphatases (2). Consistent with its designation as a DSP, laforin exhibits in
vitro phosphatase activity against phosphoserine, threonine, and tyrosine residues
of various exogenous substrates (52). In addition to this activity, laforin can utilize
the artificial substrates 3-0-methylflourescein phosphate (OMFP) and para-
nitrophenylphosphate (pNPP) (42, 55).

Laforin is the founding member of a small group of DSPs called the glucan
phosphatases. Of the 128 human phosphatases, laforin is the only phosphatase with
a CBM, and the only phosphatase possessing activity against phosphorylated
carbohydrates (55, 172). CBMs are noncatalytic domains divided into 67 families
based on evolutionary relationships, polypeptide folds, and substrate preferences

according to the Carbohydrate-Active Enzymes (CAZY) database (18, 25). The



CBM20 family constitutes one of the most characterized CBM families, featuring
glycosylhydrolases and glucotransferases from bacteria, fungi, and plants (18, 81,
82). The CBM20 domain that it possesses allows laforin to bind glycogen both in vivo
and in vitro and to dephosphorylate this glucose polymer (55, 152, 166).

Glucans are complex carbohydrates featuring glucose moieties linked by
glycosidic bonds. Glycogen is a water-soluble glucan produced in the cytoplasm of
most archaebacteria, bacteria, fungi, and animal species functioning as an energy
storage molecule. Glycogen features glucose residues joined by a-1,4-glycosidic
linkages formed by glycogen synthase, and also possesses a-1,6-glycosidic linkages
at regular branch points formed by branching enzyme (121) (Figure 1.2A). These
regular a-1,6 branch points are crucial for the water solubility of glycogen (54). It
has been observed that glycogen naturally contains low levels of phosphate, but the
role of this phosphate in glycogen in addition to the enzymes responsible for its
introduction has not been determined (54, 96).

Interestingly, when laforin is mutated, cells begin to accumulate LBs,
insoluble glucan deposits that possess higher amounts of phosphate than glycogen
and exhibit irregular branching like that seen in other insoluble glucose polymers
such as amylopectin, a component of plant starch (54, 124, 149) (Figure 1.2B and C).
Following this discovery, subsequent work established that laforin
dephosphorylates glucans such as glycogen and amylopectin in vitro (152, 172). LD
mutations in laforin abolish in vitro and in vivo glucan binding as well as in vitro
glucan phosphatase activity (55, 141). Recently, it has been demonstrated that as
phosphate levels increase in glycogen, glycogen becomes insoluble (149, 152). As
other human phosphatases lack the ability to dephosphorylate glucans (172), these
findings indicate that laforin’s role in cells is to remove phosphate from cellular
glycogen to prevent the formation of LBs (54).

Additional in vivo work supports the role of laforin in binding cellular
glycogen to prevent LB formation. As it possesses a CBM, laforin co-localizes with
glycogen granules, with mutations in the CBM disrupting this co-localization (166).

In addition to laforin interaction with phosphorylated glucans in vitro (55), a study



employing mice overexpressing catalytically inactive laforin showed that laforin
preferentially binds LBs over glycogen (28). These studies utilized overexpressed
laforin to examine subcellular localization, and currently no study has described the
localization of endogenous laforin in a vertebrate. However, endogenous laforin
localization was reported for the red algae Cyanidioschyzon merolae. In C. merolae,
laforin co-localized with the outer surface of the starch granules present within C.
merolae as demonstrated by immunogold electron microscopy (55). Thus, the
binding of laforin to glycogen in vertebrates is supported by data from both in vivo
and in vitro systems.

It is currently not understood if LB formation is the result of an overactive
polyglucosan biosynthetic pathway or a disrupted degradative metabolic pathway.
Recent work reported that phosphate is incorporated into glycogen by glycogen
synthase at a rate of *1 phosphate per 10,000 glucose residues during glycogen
synthesis (151). However, a subsequent report questioned the role of glycogen
synthase in glycogen phosphorylation (113). Regardless of the mechanism by which
phosphate is introduced into glycogen, it is likely that laforin is responsible for
removing this phosphate to maintain glycogen solubility (54, 151). It has been
observed that tissues with the highest laforin expression in the body are also the
tissues that exhibit the highest proportion of LBs in LD (49). These tissues, including
neurons, cardiac muscle, and liver, also display increased laforin expression in
normal individuals (52). In addition, the phosphate content of LBs isolated from
muscle and hepatic tissue of EPM2A knockout mice is higher than the phosphate
content of glycogen from wild-type mice (50, 150, 152). Most importantly, laforin
can remove phosphate from LBs observed to form in a laforin knockout mouse
model (50, 149, 152). The failure of laforin to remove phosphate covalently attached
to glucose moieties may disrupt packing within glycogen, thus altering its solubility.
Alternatively, increased glycogen phosphate may block the action of glycogen
branching enzyme during glycogen synthesis that is necessary for glycogen
solubility (55, 136) (Figure 1.2D).

Laforin protein levels are regulated by the ubiquitin-proteasome system

(58), and a direct correlation has also been described between laforin protein levels



and cellular glycogen content. Investigation into mouse models that accumulate
higher or lower levels of glycogen revealed that laforin protein expression is
upregulated as muscle glycogen stores increase (167). This result suggests that
glycogen and laforin levels are closely linked. In addition, laforin levels in the brains
of adult mice have also been seen to increase with age, indicating that laforin may
have a vital role in the maturation of the CNS. While these links have been
described, exact mechanisms regulating these fluctuations in laforin protein levels
are unknown.

Impaired protein clearance may also be involved in the neuronal cell death
observed in LD patients. Cells overexpressing mutant laforin exhibit impaired
clearance of misfolded proteins with the appearance of ubiquitin-positive
perinuclear aggresomes (51). These aggregates of proteins marked for proteasomal
degradation are also present in the neurons of both LD patients and laforin-deficient
mice (161). Furthermore, disruption of exon 4 of the EPM2A gene in mice often leads
to cell death prior to the formation of LBs, and those neurons that do develop LBs in
these mice often do not deteriorate (50). Upregulation of the unfolded protein
response due to endoplasmic reticulum stress is seen when laforin is mutated or
missing (95, 161), indicating that laforin or a possible binding partner play a role in
cellular protein clearance. The fact that malin, an E3 ubiquitin ligase, is mutated in
LD also provides support that LD is a disease of impaired protein clearance as the
ubiquitination pathway is involved in protein turnover by the proteasome.
Therefore, neuronal cell death in LD might be driven by a combination of LBs and

impaired protein clearance.

Malin and the regulation of enzymes involved in glycogen metabolism.

Malin consists of a single subunit featuring an N-terminal consensus RING-
finger domain, which is characteristic of a distinct class of E3 ubiquitin ligases (19,
71, 158), followed by 6 NHL (NCL-1, HT2A, and LIN-41 proteins) repeats (Figure
1.1B). NHL domains typically form a six-bladed p-propeller that is involved in



protein-protein interactions, much like WD40 repeats (143). Like laforin, malin is
conserved in all vertebrates (122).

Malin has been shown to act as an E3 ubiquitin ligase in cell culture, binding
directly to and polyubiquitinating laforin to trigger the degradation of laforin by the
proteasome (58). The NHL domain of malin was required for the interaction of
malin with laforin in this study (58). The ubiquitination of laforin by malin was also
recapitulated in vitro using purified components (58). In addition, it has been
observed that the inhibition of proteasome activity by MG-132 results in increased
laforin levels, indicating that laforin levels are regulated by the proteasome. In
agreement with these findings, mutations in malin lead to increased levels of laforin
in both LD patients and mice (40, 157, 159, 163). Currently, it is unknown what
triggers malin ubiquitination of laforin, but in vitro biochemical and in vivo LD
patient data both support this ubiquitination event.

Through binding to laforin, malin has also been shown to ubiquitinate
several proteins involved in glycogen metabolism to trigger their degradation.
Among these proteins are the muscle isoform of glycogen synthase (GS) (163) and
protein targeting to glycogen (PTG), the glycogen targeting subunit of protein
phosphatase type 1 (147, 174). Ubiquitination of glycogen synthase and PTG by the
laforin-malin complex led to a decrease in protein levels as well as a decrease in
cellular glycogen levels. The laforin-malin complex has also been demonstrated to
ubiquitinate glycogen debranching enzyme (GDE/AGL) and AMP-activated kinase
(AMPK) (30, 111, 147). Interestingly, AMPK, a cellular energy sensor,
phosphorylates laforin to increase the formation of the laforin-malin complex (147).
Recent work indicates that the laforin-malin complex also interacts with and
ubiquitinates neuronatin, a protein that stimulates glycogenesis, thus promoting the
proteasomal degradation of the protein. These results suggest that in the presence
of an inactive laforin-malin complex, neuronatin accumulates and overstimulates
glycogen synthesis (135). The function of laforin as a scaffold is independent of its
function as a glucan phosphatase, as inactive C266S laforin is still able to interact
with malin and allow ubiquitination of GS and PTG (147, 174). These findings

indicate that in addition to its role in dephosphorylating glycogen, laforin acts as a



scaffold to allow malin to regulate protein levels of enzymes involved in glycogen
metabolism (Figure 1.3).

The work examining the ubiquitination of GS, PTG, GDE, and AMPK by laforin
and malin involved overexpression of the enzymes studied. Despite complementary
work from multiple labs, the levels of GS, PTG, and GDE in tissues did not change
between 3-month old malin knockout mice and wild-type mice (40, 157). In
addition, 3-6 month old mice lacking laforin did not exhibit increased levels of GS or
PTG in muscle or brain (149). However, one study found dramatically higher levels
of GS in the brains of 11-month old malin-deficient mice (159). The age of the mice
studied may thus be playing a role in these conflicting results. Additionally, PTG
levels were found to be increased in primary fibroblasts from LD patients (162).
These results indicate that the functional significance of laforin-malin mediated
ubiquitination of enzymes involved in glycogen metabolism is not completely
elucidated.

The downregulation of laforin by malin is puzzling with regard to LD
pathogenesis, as LD occurs due to the loss of function of either malin or laforin. Why
one protein that inhibits LD (i.e. malin) triggers the degradation of the second
protein (i.e. laforin) is still unresolved, but malin-directed ubiquitination of laforin is
supported by in vitro biochemical data, in vivo mouse models, and LD patient data
(29, 40, 58). While it has been demonstrated that laforin and malin play a role in
glycogen metabolism, controversial findings and missing links make it difficult to
determine the relationship between the disruption of proper glycogen metabolism

and the neuronal damage leading to the devastating symptoms of LD.
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Figure 1.1. Laforin and malin. A. Schematic of laforin. Laforin possesses an N-
terminal carbohydrate binding module family 20 (CBM20) domain and a C-terminal
dual-specificity phosphatase (DSP) domain featuring the canonical DSP
Dx30HCxxGxxRS/T (CXsR) active site motif, indicated by a black bar. The Asp, Cys,
and Arg residues of this motif are all required for dephosphorylation. The Arg
residue interacts with the phosphate of the substrate while the Asp residue
functions as a general acid to promote expulsion of the phosphate leaving group.
The Cys residue generates a nucleophilic attack on the phospho-substrate, forming a
phospho-enzyme intermediate (38). The Gly residue contributes to active site
architecture, and the His and Ser/Thr residues decrease the pKa of the active site
Cys (2). Known LD point mutations are equally distributed across the domains of
laforin (78). B. Schematic of malin. Malin consists of an N-terminal consensus RING
domain followed by six NHL repeats. Known LD point mutations are equally

distributed across the domains of the protein (78).
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Figure 1.2. Glucans and the role of laforin in Lafora disease. The three-
dimensional structure of glycogen and amylopectin cannot be determined
experimentally due to their heterogeneity. The depicted models of glycogen and
amylopectin structure are widely accepted (24, 61). In each model, unbroken lines
indicate glucan chains. A. Glycogen consists of chains of glucose moieties linked by
a-1,4-glycosidic bonds, with regular branch points formed by a-1,6-glycosidic
linkages. These a-1,6 branch points generate sequential tiers in glycogen, five of
which are shown. These tiers are organized in a continuous manner that allows
glycogen to remain water soluble. B. Amylopectin also consists of glucose residues
linked by a-1,4-glycosidic bonds, but branch points formed by a-1,6-glycosidic
linkages are discontinuous. Adjacent glucan chains can then interact and form
double helices, causing amylopectin to become crystalline and thus insoluble in
water. C. Chart comparing the biochemical and physical properties of glycogen,
amylopectin, and Lafora bodies. D. Model of Lafora body formation caused by the
loss of laforin activity. Glycogen synthesis involves the concerted efforts of glycogen
synthase and branching enzyme covalently linking glucose moieties (hexagons).
Glycogen normally contains a small amount of covalently linked phosphate (red
circles) that is present as both phosphomonoester (adjacent to glucose hexagons)
and phosphodiester (between glucose hexagons) linkages. This phosphate may be
introduced in error by glycogen synthase during glycogen synthesis, subsequently
blocking the action of branching enzyme. Laforin then dephosphorylates glycogen,
likely allowing branching enzyme to form the branches in glycogen necessary for
water solubility. In the absence of laforin, phosphate accumulates and glycogen
becomes less branched, eventually forming a Lafora body (adapted from Gentry et.

al) (54).
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Figure 1.3. Model depicting the proposed role of the laforin-malin complex
and its interactions in glycogen metabolism. In phase 1, the heterotrimeric AMP-
activated protein kinase (AMPK), protein targeting to glycogen (PTG), glycogen
synthase (GS), and glycogen debranching enzyme (GDE) bind to glycogen. Laforin
binds glycogen via its CBM in phase 2 and dephosphorylates glycogen. In addition,
APMK phosphorylates laforin, which has been shown to increase formation of the
laforin-malin complex (147). In phase 3, malin binds to laforin and laforin acts as a
targeting subunit to direct malin ubiquitination of PTG, GS, and AMPK. Laforin is
also ubiquitinated by malin. In addition, malin ubiquitinates GDE, but the role of
laforin in this event is unknown. These ubiquitination events lead to the
degradation of laforin, AMPK, GS, GDE, and PTG in phase 4 to regulate glycogen
metabolism. Work from multiple labs has demonstrated a discrepancy in the
alteration of PTG, GS, and GDE levels in LD mouse models. Therefore the validity of
this model is currently in question. For simplicity purposes, the spatial-temporal

nature of protein interactions is not depicted and many of them are unknown.
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CHAPTER 2: MATERIALS AND METHODS

Recombinant protein expression and purification.
Wild-type laforin, C266S laforin, VHR, and Dullard were cloned previously

into the pET21a vector featuring a C-terminal HIS¢ tag (EMD Chemicals, Darmstadt,
Germany) (39, 89, 166). Proteins were expressed in Escherichia coli BL21 (DE3)
CodonPlus RIL cells (Stratagene, Santa Clara, CA). The transformed cells were grown
in a laboratory shaker at 37°C in 2xYT medium until they reached an OD of 0.8 at
600 nm. Following induction with 0.4 M isopropyl 3-D-1-thiogalactopyranoside for
12 hours at 22°C, proteins were affinity-purified from bacterial extracts using Ni2*-
agarose (Qiagen, Hilden, Germany) affinity chromatography (58) for
enzymatic/binding assays. Further purification of monomeric laforin to near
homogeneity for DXMS studies was then performed using gel filtration
chromatography with an AKTA Fast Protein Liquid Chromatography (FPLC) system
(GE Healthcare, Little Chalfont, UK) using a HiLoad 16/60 Superdex 200 size
exclusion column (GE Healthcare). The FPLC-purified laforin was then concentrated
to 4 mg/mL using an Amicon 30k concentrator (Millipore, Billerica, MA) and
subjected to DXMS. All purifications were performed in HIS buffer (300 mM Nacl, 50
mM Tris-HCl, 15% glycerol, 3 mM tris(2-carboxyethyl)phosphine (TCEP), pH 8),
using HIS buffer containing 0.5% Triton X-100 for initial cell lysis. Bacterial cells
were lysed under pressure and lysates centrifuged (20,0009, 45 min, 4°C) to remove
insoluble matter. Following incubation with Ni2+-agarose (2 hours, 4°C), detergent
was removed by repeated washes with HIS buffer and proteins eluted using HIS

buffer containing 300 mM imidazole (30 min, 4°C).

pPNPP assay (abbreviated; see Appendix 1 for full protocol).

This assay measures general phosphatase activity against the small molecule
para-nitrophenylphosphate (pNPP). Each 50 ul reaction replicate consisted of 1X
phosphatase buffer (0.1 M sodium acetate, 0.05 M Bis-Tris, 0.05 M Tris-HCl, 2 mM
dithiothreitol (DTT), pH 5), 50 mM pNPP, and 50-1000 ng of recombinant enzyme.
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Reactions were incubated at 37°C for 10 min prior to the addition of 200 ul of 0.25 N
NaOH to terminate the reactions. The absorbance of each reaction at 410 nm was

read and enzyme activity calculated using Beer’s Law (138).

Malachite green assay (abbreviated; see Appendix 1 for full protocol).

This assay utilizes the phosphorylated glucan polymer amylopectin in
conjunction with malachite green reagent to specifically measure glucan
phosphatase activity. Each 20 ul reaction replicate consisted of 1X phosphatase
buffer (pH 7), 45 ug amylopectin, and 50-1000 ng of recombinant enzyme. Reactions
were incubated at 37°C for 10 min prior to the addition of 20 ul of 0.1 M N-
ethylmaleimide (NEM) to terminate the reactions. 80 ul of malachite green reagent
was added and each reaction incubated at room temperature for 40 min before the
absorbance at 620 nm was read (138). Enzyme activity was calculated by

comparison of free phosphate to a standard curve.

Laforin antibody production.
We collaborated with the NIH NeuroMab Facility (Davis, CA) to generate and

characterize mouse monoclonal IgG1 antibodies raised against full-length wild-type
human laforin-HISs. We also generated rabbit IgG polyclonal antibodies (Cocalico
Biologicals Inc, Reamstown, PA) against full-length wild-type human laforin-HISe.
Laforin was expressed in Escherichia coli BL21 (DE3) CodonPlus RIL cells
(Stratagene) and then purified from soluble bacterial extracts using Ni2*-agarose
(Qiagen) affinity chromatography. Eluted laforin (1.2 mg/mL) was supplemented
with 20% glycerol and used for antibody production.

Mouse monoclonal antibodies against laforin (NeuroMab N84/1 and
N84/37.1; 30 ug/mL) were purified from tissue culture supernatant collected from
cultured mouse hybridomas. The supernatant was filtered through a 0.22 um filter
(Millipore) and then affinity purified using either a HiTrap Protein A HP or HiTrap
Protein G HP column in conjunction with an antibody purification kit (GE

Healthcare). Rabbit polyclonal antibodies against laforin (rabbits #113 and #139;
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0.6 mg/mL) were obtained from exsanguination serum filtered through a 0.22um
filter and affinity purified with protein A using the Montage Antibody Purification
Kit with PROSEP-A Media (Millipore). We also created a rabbit polyclonal antibody
against a laforin peptide (amino acids 18-32; 215t Century Biochemicals Inc,

Marlboro, MA) and obtained peptide affinity-purified a-laforin antibody (#4860; 50
ug/mL).

Cell culture and transfections.

Human embryonic kidney 293 (HEK293) and HepG2 cells were maintained
in high glucose Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Grand Island,
NY) supplemented with 2 mM L-glutamine (Gibco), 5% fetal bovine serum (Gibco),
and 100 units/mL penicillin/streptomycin (Gibco). Cells were incubated at 37°C in
an atmosphere of 5% CO;. Twenty-four hours before transfection, HEK293 cells
were splitinto 10 cm dishes. The following day, at approximately 80% confluence,
HEK293 cells were transiently transfected with 10 ug of laforin or malin plasmids
using 30 ul of PEI-MAX (Polysciences Inc., Warrington, PA). For readthrough
experiments, HEK293 cells were then incubated for 4 hours at 37°C to allow for
recovery, after which the cells were cultured for 18 hours in the presence of
gentamicin (Sigma-Aldrich, St. Louis, MO), amikacin (Sigma-Aldrich), PTC124
(Selleck Chemicals, Houston, TX), or DMSO (Sigma-Aldrich) at the indicated
concentrations. As PTC124 exhibits the greatest level of solubility in DMSO, the
effects of both PTC124 and the DMSO vehicle were studied. The amount of DMSO
used to deliver the largest concentration of PTC124 in each experiment was then

used as a matched control.

Cell lysate preparation and immunoprecipitation.

For readthrough experiments, cells were washed twice with ice-cold Tris-
buffered saline (TBS) and then lysed in 500 ul ice-cold modified RIPA (mRIPA)
buffer (150 mM NacCl, 50 mM Tris-HCI (pH 8), 0.4 mM EDTA, 10 mM NaF, 1%
Nonidet P-40 (NP-40), 10% glycerol) supplemented with protease inhibitors (58).
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Lysates were centrifuged (10,000g, 10 min, 4°C) to remove insoluble matter. The
protein concentration of supernatant samples was determined using the Bradford
protein assay (Bio-Rad, Hercules, CA). N-terminally FLAG-tagged proteins were
immunoprecipitated (2 hours, 4°C) using 35 ul M2 a-FLAG agarose (Sigma-Aldrich).
Lysate and immunoprecipitation samples were then heated (15 min, 95°C) in
sample buffer (50 mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, 1% {-
mercaptoethanol, and 0.02% bromophenol blue). Immunoprecipitation (IP) and
whole cell lysate (WCL) samples were subjected to Western analysis using mouse a.-
FLAG peroxidase-conjugated antibody (1:3000 M2 a-FLAG HRP; Sigma-Aldrich).
Blots were developed with SuperSignal West Pico Chemiluminescent Substrate

(Thermo Scientific, Waltham, MA).

Assessment of antibodies for the immunoprecipitation of overexpressed

laforin.

Full-length human wild-type laforin cloned into a modified pcDNA3.1 vector
(Invitrogen, Carlsbad, CA) featuring an N-terminal FLAG tag (pcDNA3.1 FLAG) (166)
was first expressed in HEK293 cells grown to 80% confluence. 24 hours post-
transfection, cells were rinsed twice with 5 mL TBS and lysates collected in 300 ul
ice-cold modified mRIPA supplemented with protease inhibitors (58, 160). After
centrifugation to clear the lysates (10,000g, 10 min, 4°C), 10 ul of each laforin
antibody was then incubated while rocking with supernatants (1 hour, 4°C) prior to
the addition of 35 ul Protein A Sepharose slurry (Sigma-Aldrich). Supernatants were
then incubated while rocking (1 hour, 4°C) prior to centrifugation (5,000g, 2 min,
4°C) to collect the Sepharose beads.

After removing the supernatant by vacuum, the Sepharose was washed twice
by the addition of 1 mL of mRIPA buffer followed by centrifugation (5,000g, 2 min,
4°(C), with the supernatant removed after each step. The supernatant from the final
wash was removed and the Sepharose resuspended in 50 ul protein sample dye.

After boiling the samples (10 min, 95°C) and collecting the supernatant from the
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Sepharose, 40 ul of Sepharose supernatant (IP) and 2.7 ug cell lysate (WCL) was
analyzed by Western blot using 1:3000 M2 a-FLAG HRP.

Assessment of antibodies for the immunoprecipitation of endogenous laforin.
For each antibody tested, HepG2 cells grown to 90% confluence in three 100

mm plates were collected in 500 ul mRIPA buffer supplemented with protease
inhibitors. 10 ul of each laforin antibody was then incubated with the lysates (2
hours, 4°C) followed by rocking with 35 ul Protein A Sepharose (2 hours, 4°C). 40 ul
of IPs and 50 ug of WCL samples were analyzed by Western blot using 1:1000 of
either a-laforin antibody N84 /37.1 or #113 (137) to avoid same species cross-
reactivity of the secondary antibody. Either 1:3000 goat a-mouse HRP (Invitrogen)
or 1:3000 goat a-rabbit HRP (Calbiochem, Billerica, MA) secondary was used.

Antigen competition to confirm laforin antibody specificity.
To confirm the specificity of a-laforin antibody N84 /37.1, 200 ng of

recombinant laforin, 60 ug of HepG2 cell lysate, and 40 ul of pcDNA3.1 FLAG laforin
immunoprecipitated with rabbit a-laforin antibody #139 were loaded twice onto a
denaturing gel and then subjected to electrophoresis. Following Western transfer,
the membrane was divided into identical halves. One half was probed with 1 ul a-
laforin antibody N84/37.1 (1:10,000 dilution), while the other was probed with 1 ul
a-laforin antibody N84/37.1 (1:10,000) that had been incubated with 400 ug of
recombinant laforin (2 hours, 4°C). To confirm a-laforin antibody #113 specificity, a
separate gel was loaded twice with 200 ng recombinant laforin, 25 ug of lysate from
HEK293 cells transfected with pcDNA3.1 FLAG laforin, and 40 ug of HepG2 lysate.
Each membrane half was immunoblotted with either 1 ul a-laforin antibody #113
(1:10,000) or 1 wl a-laforin antibody #113 (1:10,000) incubated first with 3.5 mg
recombinant laforin (2 hours, 4°C). Either 1:3000 goat a-mouse HRP or 1:3000 goat

a-rabbit HRP secondary was used.
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Assessment of antibody impact on recombinant laforin activity.

For pNPP assays, 100 ng of recombinant wild-type laforin was first incubated
with 2 ul a-laforin antibody #113 (30 min, 4°C) followed by the addition of 10 ul
Protein A Sepharose (30 min, 4°C). For malachite green assays, 100 ng of
recombinant laforin was incubated with 1 ul a-laforin antibody #113 (30 min, 4°C)
followed by 3 ul of Protein A Sepharose (30 min, 4°C). Reaction components were
then added to the immunoprecipitated laforin and reactions incubated at 37°C for
10 minutes prior to termination. 100 ng of inactive C266S laforin was used as a
control. As commercial preparations of Protein A Sepharose can contain
contaminating phosphate, malachite green assays were performed with 3 ul of

Protein A Sepharose in the absence of laforin.

Immunoprecipitation of overexpressed laforin for activity assay.

Two 100 mm plates of HEK293 cells grown to 80% confluence were
transfected with pcDNA3.1 FLAG wild-type laforin, inactive C266S laforin, or empty
vector (166). After 24 hours, lysates were collected in 500 ul mRIPA supplemented
with protease inhibitors for each construct. Lysates were then incubated with 10 ul
of a-laforin antibody #113 (1 hour, 4°C) prior to the addition of 35 ul of Protein A
Sepharose (1 hour, 4°C). 50 ul of mRIPA buffer was then added to resuspend the
Protein A Sepharose, giving a final volume of 80 uL. 10 ul and 5 ul of
immunoprecipitated laforin was used for pNPP and malachite green assays (2 hours,
37°C), respectively. 20 ul of the Protein A Sepharose was also boiled (15 min, 95°C)
and analyzed by Western blot with 1:1000 a-laforin antibody N84/37.1. 15 ug of
WCL was probed with 1:5000 mouse a-f actin (Sigma-Aldrich). Primary antibodies
were probed with 1:3000 goat a-mouse HRP secondary antibody.

For FLAG peptide elution assays, HEK293 cells were transfected with
pcDNA3.1 FLAG human wild-type laforin, inactive C266S laforin, or wild-type VHR
(58). After 24 hours, cells were lysed in 500 ul mRIPA buffer supplemented with
protease inhibitors and the lysates incubated with 35 ul M2 a-FLAG agarose (Sigma-
Aldrich; 2 hours, 4°C). After washing the agarose beads twice with mRIPA buffer,
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half of the collected agarose beads was subjected to incubation with 100 ug/mL
FLAG peptide (Sigma-Aldrich; 12 hours, 4°C). Laforin eluate was then obtained by
centrifugation of the a-FLAG agarose (5,000g, 3 min, 4°C) and collection of the
supernatant. Immunoprecipitated laforin bound to a-FLAG agarose or FLAG-peptide

eluate was then subjected to pNPP and glucan phosphatase assays.

Immunoprecipitation and activity assay of endogenous laforin from HepG2

cells.

1.4 x 106 HepG?2 liver cells/plate were plated in four 150 mm plates and
grown to 90% confluence. The lysate of two plates was immunoprecipitated with
either a-laforin antibody #113 in conjunction with Protein A Sepharose or only
Protein A Sepharose as a control. HepG2 lysates were first collected in 2 mL HIS
buffer supplemented with protease inhibitors. Lysates were cleared by
centrifugation (5,000g, 10 min, 4°C), filtered through a 0.22 um filter, and 60 ul of a-
laforin antibody #113 was then added to the supernatant (1 hour, 4°C). 150 ul of
Protein A Sepharose was then added (1 hour, 4°C) and the beads washed three
times with 1 mL of 1X phosphatase buffer (pH 7) to remove contaminating cellular
phosphate.

From the final volume of 80 uL of immunoprecipitated laforin, pNPP and
malachite green assays were then performed in quadruplicate with 10 ul and 5 ul of
immunoprecipitated laforin as described previously, with reactions incubated for
1.5 and 18 hours at 37°C, respectively. 20 ul of the Protein A Sepharose was boiled
(15 min, 95°C) and analyzed by Western blot with 1:1000 a-laforin antibody
N84/37.1 (137). 80 ug of WCL was probed with 1:5000 mouse a-f3 actin. Primary

antibodies were probed with 1:3000 goat a.-mouse HRP secondary antibody.

Immunoprecipitation and activity assay of endogenous laforin from mouse

skeletal muscle and human skin tissue.
For the mouse tissue experiments, 0.1 g of skeletal muscle collected from a

wild-type C57BL/6 mouse was homogenized in 4 mL of HIS buffer supplemented

20



with protease inhibitors. The mouse muscle lysate was then cleared by
centrifugation (5,000g, 10 min, 4°C), filtered through a 0.22 um filter, and the
supernatant collected. This process resulted in 4 mL of 3.8 mg/mL of soluble mouse
skeletal muscle lysate. Similarly, soluble human skin tissue lysate from a normal
adult (Novus Biologicals, Littleton, CO) was diluted in HIS buffer supplemented with
protease inhibitors. Then, 0.02 - 1.0 mg of mouse skeletal muscle lysate and 0.1 -
0.75 mg of human skin tissue lysate was immunoprecipitated with 20 ul of a-laforin
antibody #113 (1 hour, 4°C) in conjunction with 60 ul of Protein A Sepharose (1
hour, 4°C) in a final volume of 500 uL. As a negative control, mouse lysate
supernatant and human lysate was immunoprecipitated with only Protein A
Sepharose. The Protein A Sepharose was then washed three times with 1 mL of 1X
phosphatase buffer (pH 7).

The final volume of 60 uL of immunoprecipitated mouse or human laforin
was divided into three 20 uL aliquots, with one aliquot utilized in malachite green
assays, a second utilized in immunoblotting experiments, and a third aliquot
reserved for any necessary subsequent experiments. Malachite green assays were
performed in quadruplicate with 5 ul of the immunoprecipitated laforin for each
replicate, with reactions incubated for 12 hours at 37°C. As a control, muscle tissue
from a laforin deficient mouse was prepared as above and malachite green assays
were performed following the same protocol. The laforin-deficient samples were
utilized to define the amount of contaminating phosphate from the
immunoprecipitation protocol. The immunoblotting aliquot was generated by
boiling 20 ul of a-laforin-Protein A Sepharose from the immunoprecipitation. The
mouse tissue aliquot was then analyzed by Western blot with 1:1000 a-laforin
antibody M01 (Abnova, Walnut, CA), which is specific for an epitope in both mouse
and human laforin (amino acids 101-199, which share 99% identity). The human
skin cell lysate was processed in the same manner and was analyzed by Western
blot with 1:1000 a-laforin antibody N84 /37.1 (137). Primary antibodies were
probed with 1:3000 goat a-mouse HRP secondary antibody.
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Creation of laforin and malin nonsense mutant constructs.

Human wild-type laforin and malin cDNAs were cloned previously into a
modified pcDNA3.1 vector (Invitrogen) featuring either an N-terminal or C-terminal
FLAG epitope tag (58). Each of the four most commonly occurring nonsense
mutations in laforin or malin were introduced into the corresponding template
using QuikChange PCR-based site-directed mutagenesis (Stratagene). Laforin
nonsense mutants were generated using the following primer pairs: Y86X (C-G
substitution) forward primer 5’-CGCGTGGACACGTTCTGGTAGAAGTTCCTTA-
AGCGGGAGCC-3’, Y86X reverse primer 5’-GGCTCCCGCTTAAGGAACTTCTACCAGA-
ACGTGTCCACGCG-3’; S158X (C-G substitution) forward primer 5’-GCAGGCCACCA-
AGCCATGCATTATTGAAGAATTCTACCAAATATCTGGCTG-3’, S158X reverse primer
5’-CAGCCAGATATTTGGTAGAATTCTTCAATAATGCATGGCTTGGTGGCCTGC-3’;
R241X (C-T substitution) forward primer 5’-CCAGATATGAGCACCGAAGGCTGA-
GTACAGATGCTGCCCCAG-3’, R241X reverse primer 5’-CTGGGGCAGCATCTGTAC-
TCAGCCTTCGGTGCTCATATCTGG-3’; C278X (C-A substitution) forward primer 5’-
CGCTCCACCGCGGCTGTCTGAGGCTGGCTCCAGTATGTG-3’, C278X reverse primer 5'-
CACATACTGGAGCCAGCCTCAGACAGCCGCGGTGGAGCG-3'. Malin nonsense mutants
were generated using the following primer pairs: E67X (G-T substitution) forward
primer 5’-CGCGCACTCTGGCCCTCTAGTGCCCATTCTGCAGG-3’, E67X reverse primer
5’-CCTGCAGAATGGGCACTAGAGGGCCAGAGTGCGCG-3’; G131X (G-T substitution)
forward primer 5’-CCCTGGTCAACCCCACCTGACTGGCGCTTTGTCCCAAG-3’, G131X
reverse primer 5’-CTTGGGACAAAGCGCCAGTCAGGTGGGGTTGACCAGGG-3’; W219X
(G-A substitution) forward primer 5-GGAGGCCAATTCTCCTTACCTTAGGGTGTGG-
AGACCACCCCTCAG-3’,W219X reverse primer 5-CTGAGGGGTGGTCTCCACACCCTA-
AGGTAAGGAGAATTGGCCTCC-3’; R265X (C-T substitution) forward primer 5’-
GCTCATCTGTGCAATCCCTGAGGGGTGGCAGTGTCTTGG-3’, R265X reverse primer 5’-
CCAAGACACTGCCACCCCTCAGGGATTGCACAGATGAGC-3’. The nucleotide depicted

in bold indicates the mutation site.
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Laforin half-life determination.

8.9 x 106 HEK293 cells/plate and 6.5 x 10° HepG2 cells/plate were seeded
onto 150 mm plates containing DMEM and incubated for 24 hours at 37°C. Fresh
media was then added to each plate and the cells incubated for 30 min at 37°C. 200
ug/mL cycloheximide (Acros Organics, Lafayette, CO) was then added to the cells,
after which 0 hour time point replicates were immediately collected. Cells incubated
with cycloheximide for 0, 1, 4, 8, 12, or 24 hours were washed twice with TBS and
then lysed in 1 mL of HIS buffer supplemented with protease inhibitors. Lysates
were then centrifuged (10,000g, 10 min, 4°C) and the supernatants filtered through
a 0.22 uwm syringe filter. The filtered supernatants were frozen at -20°C until all time
points were collected. After thawing at 0°C, the protein concentration of the
supernatants was determined via Bradford assay, sample dye added, and the
samples heated (15 min, 95°C). Following Western transfer of samples, membranes
were incubated with N84/37.1 a-laforin antibody used at a 1:1000 dilution (137).
Samples were also probed with 1:5000 a-cyclin D1 (Cell Signaling Technology,
Danvers, MA) or 1:5000 a-f actin. Following incubation with primary antibodies,
blots were then probed with 1:3000 goat a-mouse HRP or goat a-rabbit HRP

secondary antibodies.

Immunofluorescence cell staining.
HEK?293 cells were seeded onto 18 mm glass coverslips in DMEM and

incubated at 37°C overnight. The next day, the media was removed and the cells
rinsed with TBS. Coverslips were then incubated in 4% paraformaldehyde in TBS
(15 min, 22°C) and rinsed three times with TBS. Cells were then permeabilized
using 1% Triton X-100 in TBS (15 min, 4°C) and rinsed three times with TBS. The
coverslips were then moved to a humidified chamber (22°C) and blocked with 1%
fetal bovine serum in TBS (30 min, 22°C). Used at a concentration of 1:200 in
blocking solution, either a-laforin antibody N84 /37.1 or rabbit polyclonal a-laforin
antibody #139 (137) was added to the coverslips (1 hour, 22°C). Rabbit #139 pre-

immune serum was also tested to assess non-specific antibody binding. Coverslips

23



were then washed five times with 0.05% Tween-20 in TBS prior to the addition of
1:200 fluorescein-conjugated goat a-mouse or goat a-rabbit antibody (Invitrogen;
45 min, 22°C) in blocking solution. Coverslips were then washed five times with
0.05% Tween-20 in TBS and any remaining liquid removed prior to mounting of the
coverslips in Vectashield mounting media with DAPI (Vector Laboratories, Inc.,
Burlingame, CA). The coverslip edges were then sealed with nail polish. Cells were
imaged on a Zeiss Axiovert 200M inverted fluorescence microscope using a 100x oil
objective (Carl Zeiss Microimaging, Thornwood, NY) and an Orca ER camera

(Hamamatsu Corp. Bridgewater, NJ).

Statistical analysis.

The percent readthrough of nonsense mutations was calculated by dividing
the mean signal of full-length laforin or malin following treatment by the mean
signal of full-length laforin or malin prior to treatment using densitometry. Signal
intensities were quantified using Image] software. Data are expressed as the percent
change in means + SEM. One-way ANOVA analysis was applied to determine
statistical significance using sample-matched f actin signals as a covariate.

Statistical significance was accepted at p < 0.05.

Generation of laforin mutants for DXMS.

Wild-type human laforin cloned into the pET21a vector (166) was used as a
template for QuikChange PCR-based site-directed mutagenesis (Stratagene) in order
to generate the following LD point mutants for study: W32G, G240S, Y294N, and
P301L. C266S laforin cloned into the pET21a vector had been generated previously
(166). The primers pairs used for mutagenesis were as follows: W32G (T-G
substitution) forward 5’- CGAGCTGGGGCGTGGGGAGCCGCGCGGTG-3’, W32G reverse
5’- CACCGCGCGGCTCCCCACGCCCCAGCTCG-3’; G240S (G-A substitution) forward 5'-
CCAGATATGAGCACCGAAAGCCGAGTACAGATG-3’, G240S reverse 5’- CATCTGTAC-
TCGGCTTTCGGTGCTCATATCTGG-3’; Y294N (T-A substitution) forward 5’- GAGGA-
AGGTGCAGAATTTCCTCATGGCC-3’, Y294N reverse 5’- GGCCATGAGGAAATTCTGC-

24



ACCTTCCTC-3’; P301L (C-T substitution) forward 5’-CTCATGGCCAAGAGGCTGGC-
TGTCTACATTGAC-3’, P301L reverse 5’- GTCAATGTAGACAGCCAGCCTCTTGGCCA-
TGAG-3'.

Carbohydrate binding assays.

Following incubation of 30 uL of amylose resin (New England Biolabs,
Ipswich, MA) with 1% w/v BSA in HIS buffer, 2 ug of wild-type laforin or laforin
mutants in 200 uL HIS buffer were added, rocked for 1 hr at 4°C, and then the resin
pelleted by centrifugation (5000g, 2 min). The same amount of protein used for
assay was used to create input samples. Protein in the supernatant of samples was
precipitated (12 hours, -20°C) with 800 uL acetone, centrifuged (50009, 2 min), and
then the acetone evaporated. The protein pellet was then resuspended in mRIPA
and sample dye added. The amylose was centrifuged (5000g, 2 min), resuspended in
mRIPA, and sample dye added. The input (I), supernatant (S), and pellet (P)
fractions were analyzed by Western blot using 1:2000 mouse monoclonal a-HISe
primary antibody (Neuromab, Davis, CA) and 1:3000 goat a-mouse HRP

(Invitrogen) secondary antibody.

Native glycogen gel electrophoresis.
Wild-type laforin and mutants were analyzed for glycogen binding affinity by

native gel affinity electrophoresis (110). 5-10 ug of proteins were prepared in 1X
phosphatase buffer (pH 7) and NativePage sample buffer (Invitrogen) and then
loaded onto 10% acrylamide native gels (pH 8.8) or the same gels with 0.03% w/v
glycogen from rabbit liver (Type III; Sigma-Aldrich) added. The rabbit glycogen (15
mg) was first dissolved in 5 mL of ddH20 to create a 3 mg/mlL (0.3% w/v) stock, and
1 mL of this stock was used in the preparation of a 10 mL gel. Native electrophoresis
was then performed (3 hours, 150 V, 4°C) in a Bio-Rad Mini PROTEAN Tetra gel
system using Tris-Borate running buffer (0.25 M Tris base, 0.12 M boric acid, pH
8.8) with 2 mM DTT added. NativeMark (Invitrogen) protein standard was used to

provide reference proteins. Samples ran on a native gel without polysaccharide in

25



the same gel tank served as a control. Proteins were visualized by coommassie blue

staining.

Optimization of pepsin digestion of laforin.

Prior to performing on-exchange for DXMS, the digestion conditions for a
protein must be optimized to yield full peptide coverage across the protein (23).
This process involves testing different concentrations of denaturant in the
“exchange quench” solution, different concentrations of reducing agent used to
eliminate disulfide bonds, and determining the type of protease column needed as
well as the flow rate over the protease column. To begin, the concentrations of
protein per sample, the reducing agent TCEP, and the denaturant guanidine
hydrochloride (GuHCIl) present during digestion of laforin were varied. Full
coverage of wild-type laforin required 10 ug of protein per sample with a ratio of
5.3ul:10.6ul:4ul of protein:buffer:exchange quench solution (5.3% v/v formic acid,
15% v/v glycerol, 0.8 M GuHCl, 39 mM TCEP, pH 2.4) while also using a 30 mg/mL
porcine pepsin-immobilized protease column (16 ul bed volume) (Sigma-Aldrich;
immobilized on Poros 20 AL medium from PerSeptive Biosystems) with a flow rate
of 20 uL/min. Procedures detailing the subsequent pepsin proteolysis of a protein
for DXMS have been described previously (63, 114).

For each digestion test, protein was diluted in purification buffer on ice to
mock dilution in D20-based buffers during deuterium exchange, after which ice-cold
quench solution was added (final sample concentration of 0.5M GuHCl and 10 mM
TCEP) in order to denature the protein for proteolysis and mock quench of
exchange. Quenching exchange involves a low temperature and pH, as amide
hydrogen-solvent exchange is dependent on these variables (53). Lowering solution
pH to 2.2-2.5 and temperature to 0°C thus reduces back-exchange of a deuterium
label during sample processing. Quenching of the samples was allowed to proceed
on ice for 30 s, after which samples were immediately frozen on dry ice and stored

at -80°C until analysis.
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Prior to digestion and MS analysis, the denatured protein samples were
placed into the sample basin of the cryogenic autosampler module of the DXMS
apparatus containing dry ice. Once thawed at 0°C, individual samples (20 uL) were
immediately injected and pumped through the pepsin column (48 s exposure to
protease). The subsequent peptides were collected on a C18 trap (Michrom MAGIC,
Auburn, CA) and then separated using a C18 reversed phase HPLC column (Michrom
MAGIC) to minimize overlap. Following separation, the peptides were eluted using a
linear acetonitrile gradient of 0.05% v/v trifluoroacetic acid/ 8% v/v acetonitrile to
0.01% v/v trifluoroacetic acid/ 48% v/v acetonitrile performed over 30 minutes.
Eluted peptides were then electrosprayed directly into an OrbiTrap Elite Mass
Spectrometer (Thermo Fisher) in either MS1 profile mode or data-dependent
MS/MS mode.

In order to identify pepsin-generated peptides, a data-dependent data
acquisition proceeds as a primary MS1 profile scan for parent peptide ion mass
identification, and data-dependent MS/MS scans for fragment peptide ion sequence
identification are then acquired. Proteome Discoverer software (Thermo Scientific)
was used to determine the sequence of the parent peptide ions and their
chromatographic retention times from the acquired MS/MS data. The conditions
described above yielded the highest number of overlapping peptides with the most
complete primary acid sequence coverage and were subsequently used for DXMS

sample preparation.

Hydrogen-deuterium exchange of laforin.

DXMS experiments, measuring the location and rate of deuterium uptake via
the difference in peptide mass between pre- and post-incubation in D;0 buffer, were
performed as previously described (63, 77, 114). Initially, wild-type laforin without
substrate was prepared in three states of deuteration: nondeuterated (ND),
deuterated, and fully deuterated (FD). The ND samples were prepared exactly as
those used for digestion optimization (see previous section), and provide a baseline

for each peptide prior to deuterium exposure. The FD samples provide the
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“maximum” level of deuteration for each peptide at equilibrium, allowing for
correction of any back exchange of a deuterium label with hydrogen prior to sample
analysis. Back exchange correction for each peptide was determined using the

methods of Zhang and Smith (178):

deuteration level (%)= m(P) - m(N) x 100
m(F) - m(N)
where m(P), m(N), and m(F) are the centroid value of the partially deuterated,
nondeuterated, and fully deuterated peptide spectras, respectively. FD samples
were obtained by incubating protein (24 hours, 0°C) in D20 containing 0.8% v/v
formic acid, which denatures the protein to allow all amide hydrogens to exchange
with deuterium.

The deuterated laforin samples were incubated in D20 buffer at 0°C for 10,
30,100,300, 1000, 3000, and 10000 s (166.67 min) prior to quenching exchange.
This was done in order to reveal areas of the protein that are exposed to solvent
versus those buried within the interior, as well as to determine the rate of uptake
and thus the degree of solvent accessibility /secondary structure. Samples incubated
with glucan substrate at matching time points then provide insight into laforin
structural dynamics or protection from deuteration due to substrate binding. Each
deuterated sample contained 10 ug laforin protein diluted into ice-cold D0 buffer
(300 mM NaCl, 50 mM Tris-HCl, 3 mM TCEP, pD (read) 7.1) with or without glucan
present, the final ratio being 5.3ul:10.6ul:4ul for protein:D20 buffer:exchange
quench solution (5.3% v/v/ formic acid, 15% v/v glycerol, 2.5M GuHCl, 39 mM
TCEP, pH 2.4).

In initial wild-type laforin substrate-binding studies, several structurally
distinct glucans were utilized, including amylopectin from potato starch (Sigma-
Aldrich; 5 mg/mL), glycogen from rabbit liver (Type III, Sigma-Aldrich; 5 mg/mL),
and B-cyclodextrin (Sigma-Aldrich, 5 mM). Prior to exchange experiments, wild-type
laforin was incubated (1 hour, 4°C) with amylopectin, glycogen, or 3-cyclodextrin in
protein buffer. Laforin was then incubated in D20 buffer or D20 buffer containing

the same glucans to generate deuterated samples, which were incubated at 0°C for
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the same time points as detailed above prior to the addition of quench solution. All
samples for each condition were prepared on the same day. Pepsin digestion,
peptide separation by chromatography, and mass spectral acquisition was
performed as described in the previous section. As this process is fully automated,
the time between protein loading onto the pepsin column and mass spectral
acquisition remained constant (~30 min) for all samples. For the initial wild-type
substrate-binding studies, an LCQ Classic (Thermo Fisher) electrospray ion trap-
type mass spectrometer and an electrospray Q-TOF mass spectrometer (Waters
Corp, Milford, MA) were used. Data from all sample sets were acquired from a single
automated run of 8 hours. Mass spectrometry data were acquired in both MS1
profile mode and data-dependent MS1:MS2 mode. Exchange of laforin with and
without glucan was performed twice, with all samples prepared in triplicate. As the
glycogen results were the strongest and also most physiologically relevant, the
binding of all laforin mutants was subsequently analyzed using only glycogen.

Wild-type laforin and mutant DXMS samples were run on an OrbiTrap Elite
Mass Spec (Thermo Fisher). These samples were prepared as above, with the
exception that the total protein per sample was 10-fold more dilute than for the LCQ
to yield optimal peptide detection by the OrbiTrap Elite. The instrument was
operated in the positive ESI with a sheath gas flow of 8 units, a voltage of 4.5kV, a
capillary temperature of 200°C, and an S-lens RF of 67%. The resolution of the
survey scan was set at 60,000, at m/z 400 with a target value of 1x10° ions and 3
microscans. The maximum injection time for MS/MS was varied between 25 and
200 ms. Dynamic exclusion was 30 s and early expiration was disabled. The
isolation window for MS/MS fragmentation was set to 2, and the five most abundant
ions were selected for product ion analysis.

In order to identify the potential sequences of parent peptide ions from the
collected MS/MS data, the program SEQUEST (Thermo Fisher) was utilized for LCQ
data and Proteome Discoverer for the OrbiTrap Elite data. DXMS Explorer (Sierra
Analytics, Modesto, CA) (65, 77) data reduction software was used to confirm

peptide identifications for the correct comparison of undeuterated and deuterated
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peptides. All selected peptides first passed the quality control threshold established
by the software and then were manually checked for the mass envelope fitting with
the calculated mass envelope for data reduction. The highest signal /noise ion was
picked if multiple ionization charges (1,2, or 3) of a peptide were detected.
Normally, the peptide with the lowest charge state gave the best signal. Percent
deuteration was calculated as the number of deuterium ions incorporated into a
given peptide at a fixed time, divided by the maximum level incorporated at
equilibrium of FD samples. Ribbon maps were created from individual peptide
graphs depicting regional levels of deuterium incorporation and represent the
average percent change in deuteration at each time point with a standard deviation

of <2% between experiments.

Homology modeling of laforin.
A BLASTDp search of the nonredundant GenBank human database with the

CBM of laforin (residues 1-112) identified the CBM of Geobacillus
stearothermophilus cyclodextrin glycosyltransferase (Protein Data Bank ID: 1CYG)
(92) as the closest match (5 x 10-26). A BLASTp search of the DSP of laforin (residues
152-331) identified Arabidopsis thaliana Starch Excess 4 (SEX4; Protein Data Bank
ID: 3NME) (160) as the closest match (9 x 10-5). We confirmed the identification of
these structural templates with HHpred (145, 146), which queries alignment and
structural databases such as Pfam, SMART, PDB, CDD, and HMMTigr. HHpred
identified cyclodextrin glycosyltransferase (1CYG) in the top three hits (2 x 10-22)
for the CBM of laforin and SEX4 as the highest hit (5.1 x 10-38) for the DSP of laforin.
The sequences of the top five HHpred hits for both the CBM and DSP of laforin were
then aligned with laforin using PROfile Multiple Alignment with predicted Local
Structure 3D (PROMALS3D) (118). The resulting alignments were manually
inspected for positional matching of residues known to be critical for CBM and DSP
function. SWISS-MODEL was then used to generate homology models of the CBM
and DSP domains of laforin, and the models were assessed using Anolea, Gromos,
QMEANS6, DFire, and Verify3D (5, 31, 97). Multiple models were generated and each

model was analyzed to determine which HHpred hits generated the best models. For
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the CBM and DSP of laforin, cyclodextrin glucanotransferase and SEX4 yielded the
best homology models, respectively. Images were generated using PyMol (DeLano

Scientific, San Francisco, CA; http://pymol.sourceforge.net).

Copyright © Amanda Renee Sherwood 2013
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CHAPTER 3: A MALACHITE GREEN-BASED ASSAY TO ASSESS GLUCAN
PHOSPHATASE ACTIVITY

Introduction.

Lafora disease (LD), a fatal neurodegenerative disorder, results from
mutation of the glucan phosphatase laforin (55, 105, 106). Currently, various
therapies for LD such as gene replacement and gene delivery using PEGylated
immunoliposomes are being explored (57). We test the efficacy of aminoglycosides,
compounds shown to promote the readthrough of nonsense mutations (94), in
rescuing nonsense mutations in laforin (see Chapter 5: Effects of Aminoglycosides
on Nonsense Mutations in Laforin and Malin as a Therapeutic Option for Lafora
Disease). Detecting the activity of functional laforin following the application of
these various treatments will aid in the evaluation of their efficacy. However, a
means by which the phosphatase activity of laforin can be separated from the
activity of other cellular phosphatases has yet to be established. As laforin is the
only known phosphatase possessing a carbohydrate binding module (CBM) (55), we
hypothesize that we can separate the activity of laforin from other cellular
phosphatases using a phosphatase assay specifically utilizing a glucan substrate.

The human genome encodes for 13 phosphoprotein phosphatases (PPP
family), 10 phosphoprotein metallo-dependent phosphatases (PPM family), 28
aspartate-dependent phosphatases (HAD family), and 105 protein tyrosine
phosphatases (PTP family) (153). These enzymes dephosphorylate phosphoserine
and threonine residues of protein substrates, while the PTPs can also act upon
phosphotyrosine residues (153). Laforin is a member of the dual-specificity
phosphatases (DSPs) (55, 106, 133), a class of phosphatases within the larger PTP
family. The DSPs include phosphatases with a heterogeneous array of substrates,
including phosphoserine, threonine, and tyrosine residues of proteins as well as
phosphatidylinositols, glycerophospholipids, mRNA, and glucans (3, 109, 116, 154).
As there are several families of cellular phosphatases, we chose several enzymes
representative of each phosphatase family and the DSP class to test alongside laforin

with the glucan phosphatase assay that we developed.
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Laforin is the founding member of a group within the DSPs known as the
glucan phosphatases (55, 173). Laforin is the only glucan phosphatase found in the
genomes of all mammals, some invertebrates, and some protists, while additional
glucan phosphatases exist in plants (55, 56, 109, 126, 152, 173). In addition to
laforin, we included two glucan phosphatases recently discovered in plants in our
study, Arabidopsis thaliana Starch Excess4 (SEX4), and Arabidopsis thaliana Like Sex
Four 2 (LSF2). These enzymes were included in order to test the applicability of the
glucan phosphatase assay we developed in characterizing emerging glucan
phosphatases.

Prior to testing laforin and the other phosphatases that we selected for
glucan phosphatase activity, we confirmed that these enzymes were active utilizing
an in vitro assay with an artificial substrate. Many DSPs possess in vitro phosphatase
activity towards phosphate esters of serine, threonine, and tyrosine residues of
synthetic peptides (2, 103, 108), as well as towards synthetic small molecule
substrates such as para-nitrophenylphosphate (pNPP), 3-0O-methylfluorescein
phosphate (OMFP), fluorescein diphosphate (FDP), and 6,8-difluoro-4-
methylumbellyferyl phosphate (DiFMUP) (103, 108). We chose the pNPP assay to
assess the general activity of the phosphatases in our study due to its simplicity and
wide applicability. Hydrolysis of the aryl phosphate moiety from the small molecule
pNPP converts this colorless substrate into para-nitrophenol, which reacts with a
strong base to form the bright yellow phenolate ion that can be observed by reading
the absorbance at 410 nm (Figure 3.1A).

Using a synthetic small molecule such as pNPP, one can determine the
dephosphorylation kinetics and specificity constants/catalytic efficiencies of a
phosphatase, and then compare these values to other phosphatases. This type of
analysis can also provide valuable insights into the substrate of the phosphatase. A
prime example of this methodology was work on the DSP tumor suppressor
phosphatase and tensin homolog (PTEN). In vitro experiments using recombinant
PTEN revealed it to be ~1000-fold less active against the phosphotyrosine analog
para-nitrophenyl phosphate (pNPP) than typical tyrosine-specific PTPs. These
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results prompted the search for other substrates that ultimately led to the
important discovery that PTEN is a phosphoinositide lipid phosphatase (100).

In addition to utilizing the pNPP assay to measure generic phosphatase
activity, we developed an in vitro assay to measure the specific glucan phosphatase
activity of the enzymes included in our study. While most in vitro phosphatase
assays utilize artificial substrates, assays that assess phosphatase activity against
biologically relevant substrates have been reported (67, 101, 103, 173). Malachite
green is a useful reagent in this regard, allowing the colorimetric detection of
picomolar amounts of phosphate liberated from substrates due to the formation of a
phosphomolybdate malachite green complex that can be measured at 620 nm (67,
93, 103) (Figure 3.1B). In addition to the advantages of simplicity and sensitivity,
malachite green assays have been utilized to detect phosphate released from an
array of endogenous substrates such as proteins and lipids (101, 103).

Herein, we describe a glucan phosphatase assay that utilizes malachite green
in conjunction with the phosphorylated glucose polymer amylopectin. We
demonstrate that this glucan phosphatase assay allows for the comparison of
activity between glucan phosphatases, and will likely be useful in the
characterization of emerging glucan phosphatases. This assay also effectively
separates enzymes with glucan phosphatase activity from those that lack the

activity.

Results.

We included several glucan phosphatases in our study. We purified human
wild-type laforin and a catalytically inactive mutant as an experimental control
(C2665), A. thaliana SEX4, and A. thaliana LSF2 as described previously (55, 126).
We also purified or purchased phosphatases from a variety of different organisms
and phosphatase families (17, 123, 140, 164). We utilized the PPP family member
Oryctolagus cuniculus protein phosphatase 1 (PP1) (109), the human HAD family
member Dullard (89, 109), and the Escherichia coli PPM family member alkaline
phosphatase (33) (Figure 3.1C). We also employed enzymes from within the PTP
family: classical PTPs such as human T-cell PTP (TCPTP) (6, 109) and Yersinia pestis
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YopH (60, 179), and DSPs such as vaccinia virus VH1-related DSP (VHR) (55) and
murine PTP localized to mitochondrion 1 (PTPMT1) (175) (Figure 3.1C). The
phosphatases above have previously been shown to possess phosphatase activity
against substrates such as pNPP, phosphorylated peptides, phosphorylated glucans,
or phospholipids (6, 33, 55, 60, 89, 126, 173, 175).

To ensure that each phosphatase we included in our work was active, we
first performed phosphatase assays with each using the small molecule pNPP (see
Appendix 1: Supplementary Protocols, pNPP assay). Aliquots of 5X assay buffer
(100 mM sodium acetate, 50 mM Bis-Tris, 50 mM Tris) were prepared for each pH
to be tested, and enzymes were diluted with 1X assay buffer of the optimal pH
containing 1 mM dithiothreitol (DTT) to a final enzyme concentration ranging from
50 to 1000 ng/ul. Each reaction replicate (at least 3) was performed in a final
volume of 50 pl, and consisted of 33 pl H20, 10 pl 5X assay buffer at the optimal
enzyme pH, 1 ul 100 mM DTT, and 5 pl 0.5 M pNPP. We added 1 pl of diluted
enzyme to each replicate tube, began timing the reaction, vortexed the tube, and
then placed it at 37°C.

We repeated this methodology every 15 seconds until enzyme was added to
each replicate. After a reaction time of 10 minutes at 37°C, we added 200 ul of 0.25
N NaOH and vortexed the tubes to quench the reactions, and read the absorbance
(A) of each replicate at 410 nm. We then utilized Beer’s Law (A=&lc, where the path
length I = 1 cm) and the molar absorption coefficient (€) of the phenolate ion under
our reaction conditions (17,800 M-? cm1) to determine the concentration in moles
per liter (c) of phenolate ion generated per reaction. We calculated the activity of
each enzyme, expressed as pumol phosphate released/ min/ umol protein. Although
it is common to report phosphatase activity in terms of total protein, a true
comparison of activities must be made using moles of protein (Figure 3.2A).
However, we have also provided our results in terms of total protein (Figure 3.3A)
for comparison with previously published activity data (Figure 3.1C). All of the
phosphatases tested exhibited activity against pNPP (Figure 3.2A) that closely

35



reflected previously published data at the optimal pH for each enzyme (Figure 3.1C
and 3.3A).

Next, we employed a malachite green assay to assess specific glucan
phosphatase activity of the above enzymes at optimal pH using the phosphorylated
glucan amylopectin as the substrate (see Appendix 1: Supplementary Protocols,
Malachite green standard curve and assay). First, we prepared the malachite green
reagent. We began with 1 volume of 4.2% ammonium molybdate tetrahydrate in 4
N HC], added 3 volumes of 0.045% malachite green carbinol hydrochloride, stirred
the solution for 30 minutes, filtered the solution with grade 5 Whatman filter paper,
and then sterile-filtered the reagent. Prior to performing experiments with this
reagent, a standard curve should be generated (see Appendix 1). Next, we prepared
the amylopectin to be used as the phosphoglucan substrate. Amylopectin is largely
water insoluble, and therefore it must be solubilized via heating or ethanol. We
prepared a suspension of 5 mg/mL of amylopectin in H20, heated the suspension at
70°C for 30 minutes (the suspension will go from opaque to clear; vortexing aids
solubility), and stored this solution at room temperature.

Before beginning the malachite green assay, we first added 0.01% v/v Tween
20 from a 10% stock to an aliquot of malachite green reagent. Tween 20 stabilizes
the formation of the malachite green phosphomolybdate complex and prevents
sedimentation of the complex for up to 48 hours (80). We then prepared 5X assay
buffer (100 mM sodium acetate, 50 mM Bis-Tris, 50 mM Tris) for each pH to be
tested and diluted enzymes with 1X assay buffer of the optimal pH with 1 mM
dithiothreitol (DTT) added to a final enzyme concentration ranging from 50 to 1000
ng/ul. Each reaction (at least 3 replicates) was then performed in a final volume of
20 pl consisting of 4 pl H20, 4 ul 5X assay buffer at the optimal enzyme pH, 2 pl 100
mM of DTT, and 9 pl of 5 mg/mL amylopectin. We added 1 pl of diluted enzyme to
each reaction tube, began timing the reaction, vortexed the tube, and then placed the
tube at 37°C.

This methodology was repeated every 15 seconds until enzyme was added to
each replicate. The reactions were incubated at 37°C for 10 minutes before 20 pl

0.1M N-ethylmaleimide (NEM) was added to terminate all PTP reactions. NEM is a

36



thiol-modifying reagent that irreversibly inhibits PTPs without affecting malachite
green phosphomolybdate color formation (101). For non-PTPs, addition of
malachite green reagent was used to terminate the reaction (67). Following NEM
addition to the PTP reaction tubes, 80 pl of the malachite green reagent containing
Tween20 was then added. After malachite green reagent was added to every
reaction tube, the tubes were vortexed and placed at room temperature. All
reactions were incubated for 40 minutes before measuring the absorbance at 620
nm (80) and calculating the pmoles of phosphate released/min/nmol protein using
the standard curve.

Using the above methodology, we found that only wild-type laforin, SEX4,
and LSF2 exhibited glucan phosphatase activity, while all other phosphatases that
we tested possessed very little to no activity (Figure 3.2B). We also reported our
results in terms of total protein (Figure 3.3B). To assess the relative activity of the
phosphatases tested towards amylopectin, we compared phosphate liberation from
amylopectin to pNPP activity and found that only the glucan phosphatases were
effective at dephosphorylating amylopectin, with laforin being the most efficient
(Figure 3.2B and 3.3B, numbers above the bars). Thus, only the glucan phosphatases
possess the ability to release phosphate from amylopectin. The glucan phosphatase
assay described is a simple method to characterize emerging members of the unique
and growing family of glucan phosphatases, as has been done with the recently

characterized glucan phosphatase LSF2 (127).

Discussion.

With the recent discovery of a unique class of dual-specificity phosphatases
that dephosphorylate glucans, we report an in vitro assay tailored for the detection
of phosphatase activity against phosphorylated glucans. We demonstrate that in
contrast to a general phosphatase assay utilizing a synthetic substrate, only
phosphatases that possess glucan phosphatase activity liberate phosphate from the
phosphorylated glucan amylopectin using the described assay. This assay is simple

and cost-effective, providing reproducible results that clearly establish the presence
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or absence of glucan phosphatase activity. The assay described will be a useful tool
in characterizing emerging members of the glucan phosphatase family.

Our glucan phosphatase assay also reveals that of representative
phosphatases from every cellular phosphatase family, only glucan phosphatases are
able to dephosphorylate amylopectin. This assay will prove useful in the detection of
functional laforin activity in patient cells following application of future therapies
for Lafora disease if a means to enrich laforin protein levels for assay can be
established. In the following chapter, we explore an immunoprecipitation-based

method for the detection of endogenous laforin protein levels and activity.

Copyright © Amanda Renee Sherwood 2013
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Figure 3.1. Experimental design of assays and phosphatases chosen for study.
A. The pNPP assay. Hydrolysis of the aryl phosphate moiety from the small
molecule para-nitrophenylphosphate (pNPP) converts this colorless substrate into
para-nitrophenol, which forms the bright yellow phenolate ion under alkaline
conditions (pKa of 7.2). The presence of the soluble phenolate ion can be observed
by reading the absorbance at 410 nm. When performing this colorimetric assay
under saturation conditions of substrate as we have done, it is possible to calculate
the rate of dephosphorylation as well as kinetic constants such as kca: and Kv (103,
108). While pNPP is an artificial substrate, the small size of this molecule restricts
interaction to a low number of residues, allowing resolution of active site
conformation changes due to mutation (108). Phosphatase assays involving this
substrate can also be performed in a continuous or discontinuous fashion.
Continuous enzyme assays, allowing hydrolysis products to be quantified without
disturbing the reaction, are superior to discontinuous assays in the efficiency of
determining kinetic constants (103). However, for the purpose of this work,
discontinuous assay under saturated conditions was sufficient (10 times the K,
(108), providing the initial (linear) rate of the reaction for phosphatase activity
comparison. B. The malachite green assay utilizing amylopectin as a substrate. As
phosphate monoesters in amylopectin are hydrolyzed, the free phosphate forms a
complex with the ammonium molybdate in the malachite green reagent. At low pH,
the basic malachite green dye forms a complex with phosphomolybdate and shifts to
its absorption maximum. This complex is stabilized for up to 48 hours by
detergents such as Tween 20 (80), allowing for easy colorimetric detection that is
linear with as little as 50 to 1000 pmol of P; following measurement of the
absorbance at 620 nm (67). While it is not possible to calculate enzyme kinetics
using the heterogeneous amylopectin polymer, use of amylopectin as a substrate
allows for the detection of glucan phosphatase activity. For both the malachite green
and pNPP assay, dithiothreitol (DTT) was used as the reducing agent to maintain
enzyme activity as malachite green is sensitive to 2-mercaptoethanol (101). C. List
of phosphatases used in the pNPP and malachite green assays. Phosphatases across

families and within families were chosen to obtain a representative and diverse
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collection of cellular enzymes for study. Included in the list is the family and
organism of origin, the known substrates, and the reported specific activity against

pNPP (umol/min/mg) for each enzyme.
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Figure 3.2. The pNPP and malachite green assays reveal specific glucan
phosphatase activity only in glucan phosphatases. A. pNPP activity. The activity
of each phosphatase utilized in our study against the synthetic substrate pNPP in
umol phosphate released per minute per umol protein. Each assay was
independently repeated with four replicates. Error bars; S.E. B. Glucan phosphatase
activity. The specific activity of the same phosphatases against phosphorylated
amylopectin in pmol phosphate released per minute per nmol protein. Each assay
was independently repeated with four replicates. The numbers above the bars are
the ratio of phosphate release (malachite green assay) to the phosphatase activity

(pNPP assay) for each enzyme. Error bars; S.E.
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Figure 3.3. pNPP and malachite green assay results reported using total
protein. A. pNPP activity. The activity of each phosphatase utilized in our study
against the synthetic substrate pNPP in umol phosphate released per minute per mg
protein. B. Glucan phosphatase activity. The specific activity of the same
phosphatases against phosphorylated amylopectin in pmol phosphate released per

minute per ug protein.
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CHAPTER 4: A BIOASSAY FOR LAFORA DISEASE AND LAFORIN GLUCAN
PHOSPHATASE ACTIVITY

Introduction.

To date, Lafora disease (LD) can only be managed for a short period using
palliative therapeutics designed to limit the severity and frequency of epileptic
episodes (37, 107). More permanent therapeutic options for the alleviation of the LD
phenotype, including EPM2A or EPMZ2B gene replacement using neutral PEGylated
immunoliposomes (139) and readthrough of nonsense mutations using
aminoglycosides and functionally-related compounds (see Chapter 5: Effects of
Aminoglycosides on Nonsense Mutations in Laforin and Malin as a Therapeutic
Option for Lafora Disease), are currently being explored. Additionally, results from
LD mouse models suggest that downregulation of glycogen metabolism to inhibit
the formation of Lafora bodies (LBs) is an additional treatment option (156, 159).

As therapeutic options for LD become available and enter clinical trials, it will
be necessary to assess the efficacy of these therapies. Currently, the quantitated
neurological and electrophysiological states of LD patients are the only means by
which therapeutics may be assessed for efficacy, and these methods are subject to
varied response and must be assessed long-term (14, 105, 107). Building upon our
previous work developing an assay by which laforin activity can be separated from
that of other cellular phosphatases (see Chapter 3: A Malachite Green-Based Assay
to Assess Glucan Phosphatase Activity), we developed a simple and sensitive
bioassay for endogenous laforin activity as a biochemical means of assessing the
efficacy of future LD therapies.

We demonstrate that this bioassay can measure the activity of endogenous
laforin from either human or mouse tissue, providing rapid results. This bioassay
can therefore be utilized with tissue from LD mouse models or LD patients following
the application of LD therapies. This assay can also be utilized at any time after
treatment administration, and is suitable for both the detection of endogenous
laforin protein concentrations and, more importantly, the assessment of enzymatic

activity. Furthermore, we demonstrate that this bioassay is specific for laforin, the
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only human enzyme known to possess glucan phosphatase activity (55, 138)
(Chapter 3). As this bioassay utilizes the glucan amylopectin, which possesses
similar biophysical characteristics to LBs (Figure 1.2C), this assay also potentially

measures the activity of functional laforin against LBs.

Results.

In order to generate a bioassay for endogenous laforin activity, we first
optimized assay conditions using overexpressed human laforin. The basis of this
bioassay is to immunoprecipitate laforin and then assess its glucan phosphatase
activity. Therefore, it was crucial to determine if the activity of laforin bound to an
a-laforin antibody-agarose complex is inhibited. Our experimental design was to
first express FLAG-tagged wild-type laforin, immunoprecipitate laforin using .-
FLAG agarose, and then perform activity assays of laforin both bound to and eluted
from the immunoprecipitation complex (Figure 4.1A).

We employed two assays to assess laforin function following
immunoprecipitation. First, we used the pNPP assay, which utilizes the exogenous
phosphatase substrate para-nitrophenylphosphate (pNPP), to assess general
phosphatase activity. We also used a malachite green assay utilizing the
phosphorylated glucan polymer amylopectin to determine biologically relevant
glucan phosphatase activity (138, 173) (see Chapter 3). As a control for these assays,
we used a DSP that dephosphorylates proteinaceous substrates, vaccinia virus VH1-
related DSP (VHR) (39, 55, 138). VHR possesses pNPP activity, but cannot liberate
phosphate from amylopectin (138, 173) (Figure 3.2A and B). We also utilized an
enzymatically inactive laforin mutant in which the catalytic cysteine residue is
mutated to serine (C266S), abolishing enzymatic activity against pNPP and
amylopectin (55, 138) (Figure 3.2A and B). We found that following
immunoprecipitation with FLAG-agarose, FLAG-laforin both bound to and eluted
from FLAG-agarose exhibited pNPP and malachite green activity (Figure 4.1B and

C). Therefore, the activity of laforin is not impacted by immunoprecipitation.

47



Conversely, C266S laforin did not demonstrate pNPP or malachite green activity and
VHR demonstrated only pNPP activity, each as expected.

We then analyzed seven monoclonal and polyclonal a-laforin antibodies for
the ability to immunoprecipitate overexpressed human laforin. Following
immunoprecipitation of FLAG-laforin with each a-laforin antibody, we separated
the immunoprecipitated proteins by SDS-PAGE and immunoblotted using a.-FLAG.
We found that the best antibodies for the immunoprecipitation of overexpressed
laforin were the Protein A purified a-laforin antibodies N84 /37.1, #113, and #139
(Figure 4.2A).

Next, we sought to assess the detection limit of each a-laforin antibody using
serial dilutions of recombinant human laforin. A range of recombinant laforin
protein from 20 ug to 0.02 ng per lane was loaded onto identical gels and then
subjected to SDS-PAGE. Following Western transfer, each blot was then incubated
with one of the seven a-laforin antibodies. The a-laforin antibodies #113 and
N84/37.1 were among the best antibodies for blotting, easily detecting as little as
200 ng of recombinant laforin (Figure 4.2B). While equally efficient at
immunoprecipitating overexpressed laforin as a-laforin antibody #113 (Figure
4.2A), a-laforin antibody #139 was less efficient at detecting recombinant laforin
(Figure 4.2B).

Laforin antibodies were then tested for the ability to immunoprecipitate
endogenous laforin from HepG2 liver cells, as laforin is present in many tissues of
the human body, including brain, heart, skeletal muscle, liver, and kidney (106, 133).
HepG2 cell lysates were incubated with each a-laforin antibody followed by
incubation with Protein A Sepharose. The amount of laforin immunoprecipitated by
each a-laforin antibody was then assessed following SDS-PAGE and immunoblot
using either a-laforin antibody #113 or N84/37.1. We found that only the polyclonal
a-laforin antibodies (#113 and #139) were able to efficiently immunoprecipitate
endogenous laforin (Figure 4.2C). Based on our findings, a-laforin antibody
N84 /37.1 was selected for blotting and a-laforin antibody #113 for

immunoprecipitation purposes.
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We confirmed that the N84/37.1 and #113 a-laforin antibodies were indeed
specific to laforin using antigen competition. We incubated both of the antibodies
with recombinant laforin prior to performing a Western blot of recombinant,
overexpressed, and endogenous laforin (Figure 4.2D). Both N84/37.1 and #113 a-
laforin antibodies exhibited a drastic reduction in blotting signal when these
antibodies were incubated first with recombinant laforin (Figure 4.2D).
Additionally, preimmune serum from rabbits #113 and #139 was analyzed to
confirm that a-laforin antibody production was due to immunization with the
laforin antigen (data not shown).

As a-laforin antibody #113 is polyclonal, one concern of our design was that
polyclonal antibody binding to laforin could inhibit enzymatic activity. Therefore,
we tested if laforin bound by polyclonal a-laforin antibodies displays reduced
phosphatase activity. We incubated recombinant laforin with a-laforin antibody
#113 followed by Protein A Sepharose and then performed both pNPP and
malachite green assays. We compared the activity of Sepharose-bound laforin with
laforin lacking antibody and Sepharose, and found that the immunoprecipitation of
recombinant laforin with polyclonal a-laforin antibody #113 did not inhibit pNPP or
glucan phosphatase activity (Figure 4.3A, left and middle panels). It should be noted
that the malachite green assay detects phosphate released from amylopectin as well
as any free phosphate present in assay reagents. Therefore, we performed malachite
green assays with only Protein A Sepharose in the absence of laforin to confirm that
the Protein A Sepharose was not a source of phosphate contamination (Figure 4.3A,
right panel). These results demonstrate that laforin is active both bound and free
from the polyclonal antibody-Sepharose complex.

We then attempted to assess the activity of laforin overexpressed in cell
culture and immunoprecipitated with a-laforin antibody #113. We first expressed
wild-type and inactive C266S FLAG-laforin in HEK293 cells, immunoprecipitated
laforin with a-laforin antibody #113 in conjunction with Protein A Sepharose, and
then assessed the activity of the immunoprecipitated laforin. pNPP and malachite

green assays were performed with 10 ul and 5 ul of immunoprecipitated laforin,
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respectively. We found that only wild-type FLAG-laforin exhibited pNPP activity
(Figure 4.3B, left panel) and glucan phosphatase activity (Figure 4.3B, right panel),
with very low background from C266S FLAG-laforin (Figure 4.3B, right panel).
These data indicate that our experimental design can function when using cell lysate
and can also differentiate between active and inactive laforin.

Next, we determined if we could immunoprecipitate endogenous laforin from
HepG?2 liver cells and detect its phosphatase activity. We grew HepG2 cells to 90%
confluence and lysed them in the same buffer used to purify recombinant laforin for
antibody production, as this buffer provided us with higher yields of
immunoprecipitated endogenous laforin than other buffers (data not shown). We
found that we could immunoprecipitate at least ~20 ng of laforin from HepG2 cells
using a-laforin antibody #113 in conjunction with Protein A Sepharose (Figure
4.447).

After immunoprecipitating endogenous laforin, we performed pNPP and
malachite green assays with the Sepharose-bound laforin. We found that the Protein
A Sepharose control exhibited a similar pNPP absorbance as Protein A Sepharose
with bound laforin (Figure 4.4B). We then pre-cleared the HepG2 cell lysates with
Protein A Sepharose in addition to immunoprecipitating with Protein A Sepharose
incubated first with BSA, but control pNPP activity was not diminished (data not
shown). These results indicate that the pNPP assay is not suitable for use as a
bioassay, likely due to the interaction of Protein A Sepharose with other cellular
phosphatases. In contrast to these results, the Protein A Sepharose control exhibited
very little background when the malachite green assay was utilized, with only
immunoprecipitated laforin exhibiting robust glucan phosphatase activity (Figure
4.4C). Thus, the malachite green assay with amylopectin substrate, when used in
conjunction with the a-laforin antibody #113, is specific for the quantification of
endogenous laforin activity.

Finally, we tested our bioassay for the detection of endogenous laforin
activity in both mouse and human tissue lysate. We generated and obtained lysates

from C57BL/6 mouse skeletal muscle and human skin tissue, respectively. Next, we
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immunoprecipitated laforin from different amounts of lysate based on total protein,
ranging from 0.02 mg - 1.0 mg of mouse skeletal muscle lysate and from 0.1 mg -
0.75 mg of human skin tissue lysate. We divided the immunoprecipitated laforin
into three 20 ul aliquots to use the material for Western analysis, malachite green
assays, and a third aliquot to repeat both assays. We detected ~4 ng of laforin in the
1.0 mg lane of mouse skeletal muscle lysate (Figure 4.5A). Since we divided the
immunoprecipitation from the 1.0 mg sample into three aliquots, we
immunoprecipitated ~12 ng total from 1.0 mg of the lysate. Similarly, we detected
~10 ng of laforin from the 0.75 mg sample of human skin lysate (Figure 4.5B). Thus,
we immunoprecipitated ~30 ng in total from the 0.75 mg sample. We then tested
the immunoprecipitated laforin for glucan phosphatase activity using the assay
established above. Laforin immunoprecipitated from at least 0.5 mg of total protein
from mouse skeletal muscle lysate and from at least 0.3 mg of total protein from
human skin lysate demonstrated robust glucan phosphatase activity above the
Protein A Sepharose control (Figure 4.5C and D). Therefore, we successfully
immunoprecipitated endogenous laforin from both mouse and human tissue and

measured its glucan phosphatase activity.

Discussion.

We sought to characterize a-laforin antibodies capable of detecting and
immunoprecipitating endogenous laforin in order to generate a bioassay for laforin
activity. First, we explored the conditions for the immunoprecipitation and assay of
overexpressed laforin while also determining if antibody binding to laforin could
inhibit laforin activity. We began by testing the activity of overexpressed FLAG-
laforin immunoprecipitated using a-FLAG agarose, and found that overexpressed
laforin did demonstrate pNPP and glucan phosphatase activity. This activity was not
impacted by whether laforin was bound to or eluted from the FLAG-agarose.

We then identified two a-laforin antibodies, N84/37.1 and #113, that were
capable of detecting and immunoprecipitating endogenous laforin, respectively.

Following immunoprecipitation of overexpressed laforin with a-laforin antibody
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#113, we found that binding of this polyclonal antibody to laforin did not negatively
impact activity. These results reflected those obtained with recombinant laforin,
where o-laforin antibody #113 and Protein A Sepharose binding did not impact
either pNPP or malachite green activity. Following immunoprecipitation of
endogenous laforin using a-laforin antibody #113, we found that the pNPP assay
gave significant background, likely due to the interaction of another cellular
phosphatase with the Protein A Sepharose. However, using the malachite green
assay with amylopectin substrate, we showed that glucan phosphatase activity was
specific to successful immunoprecipitation of endogenous laforin. Finally, we
demonstrated that this methodology can be successfully employed using mouse or
human tissue lysate. Therefore, this assay is can be utilized with tissue from both LD
mouse models and LD patients.

It is important to note that Western analysis alone is likely not sufficient to
accurately assess if a given treatment is yielding functional laforin. Western analysis
is unable to discriminate between wild type and mutant laforin, unless the antibody
epitope is itself mutated. Therefore, one needs an enzymatic assay to quantify the
activity of functional laforin rather than just total protein. The assay that we have
developed faithfully reports the activity of functional endogenous laforin.

While we utilized finite supplies of a polyclonal a-laforin antibody in our
study, we found that rabbit polyclonal antibodies created in different animals were
as successful in the immunoprecipitation of endogenous laforin as a-laforin
antibody #113. Thus, after a brief assessment for quality, stocks of polyclonal
antibodies against laforin could be continuously maintained. The bioassay we have
developed in this work will no doubt prove useful in the assessment of future
therapeutic interventions for LD.

Laforin is widely expressed in tissues throughout the human body (106, 133).
Prior to PCR analysis, LD was diagnosed using light microscopy of a skin biopsy in
conjunction with hematoxylin eosin or periodic acid Schiff (PAS) staining (37, 105).
A similar skin biopsy of LD patients following therapeutic intervention in

conjunction with the immunoprecipitation method we have identified would allow
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for detection of endogenous laforin activity. Alternatively, this bioassay could be
utilized on cerebrospinal fluid (CSF) collected from patients, as seizures disrupt the

blood-brain barrier.

Copyright © Amanda Renee Sherwood 2013
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Figure 4.1. Laforin exhibits phosphatase activity both bound to and free of the
antibody-agarose complex. A. Schematic of experimental design. Before
attempting to test endogenous laforin, we first optimized our experimental
conditions using overexpressed laforin. We immunoprecipitated FLAG-laforin and
assessed its pNPP and glucan phosphatase activity both bound to and free of the
FLAG antibody-agarose complex (“on beads” and “off beads”) in order to determine
if antibody binding to laforin inhibits activity. B. pNPP assay of immunoprecipitated
FLAG-laforin. FLAG-tagged human wild-type laforin, catalytically inactive C266S
laforin, and wild-type VHR were expressed in HEK293 cells and
immunoprecipitated with a-FLAG agarose. VHR, a DSP that acts upon protein
substrates and not glucan substrates, was included as a control.
Immunoprecipitated proteins were either left bound to the antibody-agarose
complex (“on beads”) or eluted from the complex using FLAG peptide (“off beads”).
The absorbance of reactions at 410 nm was measured. Error bars indicate + SEM. C.
Glucan phosphatase assay of immunoprecipitated FLAG-laforin. The absorbance of
reactions at 620 nm was measured. Error bars indicate + SEM. Proteins are as
indicated as in Figure 4.1B. The experiments above were performed a minimum of

three times, with reactions performed in quadruplicate.
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Figure 4.2. Laforin antibody selection. A. Inmunoprecipitation of overexpressed
laforin using available antibodies. FLAG-laforin was immunoprecipitated using a
variety of a-laforin antibodies in conjunction with Protein A Sepharose. We tested
protein A-purified rabbit polyclonal a-laforin antibodies #113, #139, #4860,
protein A- and G-purified mouse monoclonal a-laforin antibodies N84 /1 and
N84/37.1 from NeuroMabs, and several commercially available mouse monoclonal
a-laforin antibodies (M01 and M02, Abnova). “(A)” or “(G)” indicates affinity
purification of an antibody with either protein A or protein G, respectively. “Sup”
indicates unpurified tissue culture supernatant. Cells containing empty vector were
immunoprecipitated with a-FLAG agarose. The depicted image is a representation.
The dotted line indicates where an image portion is a composite of the same image
due to the presence of molecular weight marker in between the lanes. B. Detection
limit of laforin antibodies. Serial dilutions of recombinant laforin (20 pg to 0.2 ng)
were probed with the a-laforin antibodies. Only a-laforin antibodies #113,
N84/37.1, and #139 are shown, as they displayed the most sensitive detection of
recombinant laforin. The depicted images are representations. C.
Immunoprecipitation of endogenous laforin from HepG2 cultures. Only the
polyclonal a-laforin antibodies #113 and #139 were able to immunoprecipitate
endogenous laforin. While the other antibodies did not immunoprecipitate laforin,
laforin was detected in their WCL samples. Only the result from a-laforin antibody
N84 /37.1 is shown to depict this negative result. The depicted images are a
representation. The dotted line indicates where an image portion is a composite of
the same image due to the presence of molecular weight marker in between lanes.
D. The specificity of the N84/37.1 and #113 a-laforin antibodies were confirmed
using antigen competition. Each antibody was incubated with recombinant laforin
prior to immunoblotting recombinant (Hs-laforin-HISe), overexpressed (FLAG-
laforin), and endogenous (HepG2 WCL) laforin. Representative images of matched
blots are portions of the same exposure. Endogenous laforin was not visible at the
exposures depicted. The above experiments were performed a minimum of three

times.
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Figure 4.3. Inmunoprecipitation and activity assay of recombinant and
overexpressed laforin. A. Recombinant laforin was incubated with a-laforin
antibody #113 and Protein A Sepharose to determine the impact of antibody
binding on activity. The phosphatase activity of non-incubated and incubated
recombinant laforin was assayed using pNPP and malachite green assays. Identical
malachite green reactions were carried out containing only Protein A Sepharose to
test for the presence of phosphate contamination. Protein A Sepharose (Sigma-
Aldrich) was utilized, as free phosphate was present in other commercial
preparations (data not shown). Reactions containing inactive C266S recombinant
laforin were utilized as a negative control. Error bars indicate + SEM. B.
Immunoprecipitated overexpressed laforin exhibits pNPP and glucan phosphatase
activity. Human wild-type and inactive C266S FLAG-laforin was expressed in
HEK293 cells and then immunoprecipitated using a-laforin antibody #113. In order
to determine protein amounts, immunoprecipitated laforin was analyzed by SDS-
PAGE and Western blotted alongside known amounts of recombinant human laforin.
pNPP and glucan phosphatase activity of immunoprecipitated laforin was then
determined using the amount of immunoprecipitated laforin calculated by
comparison to the known recombinant protein amounts. Error bars indicate + SEM.
The experiments above were repeated a minimum of three times, with reactions

performed in quadruplicate.
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Figure 4.4. Inmunoprecipitated endogenous laforin exhibits specific glucan
phosphatase activity. Laforin was immunoprecipitated from HepG2 cells using a.-
laforin antibody #113 and Protein A Sepharose or Protein A Sepharose alone as a
control. A. Western analysis of immunoprecipitated endogenous laforin from HepG2
cells. The laforin immunoprecipitate sample was divided into three equal aliquots
and one aliquot was separated via SDS-PAGE, Western transferred, and
immunoblotted with a-laforin antibody N84 /37.1. Known amounts of recombinant
laforin were ran alongside the immunoprecipitated laforin to allow for
quantification of the immunoprecipitated laforin. The depicted image is a
representation. B. pNPP assay of immunoprecipitated endogenous laforin from
HepG2 cells. Error bars indicate + SEM. C. Glucan phosphatase assay of
immunoprecipitated endogenous laforin from HepG2 cells. Error bars indicate +
SEM. The experiments above were repeated a minimum of three times, with
reactions performed in quadruplicate. A double asterisk indicates p < 0.01 following

an independent-samples t-test.
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Figure 4.5. Endogenous laforin activity from mouse and human tissue lysate.
Laforin was immunoprecipitated from increasing amounts of mouse skeletal muscle
lysate and human skin lysate using a-laforin antibody #113 in conjunction with
Protein A Sepharose and tested for glucan phosphatase activity. A. Western analysis
of immunoprecipitated laforin from mouse skeletal muscle. Increasing amounts of
mouse skeletal muscle lysate from 0.02 mg - 1.0 mg of total protein was used to
immunoprecipitate laforin. The immunoprecipitate sample was divided into three
equal aliquots and one aliquot was separated via SDS-PAGE, Western transferred,
and immunoblotted with a-laforin antibody M01. Known amounts of recombinant
laforin were ran alongside the immunoprecipitated laforin to allow for
quantification of the immunoprecipitated laforin. As a negative control, antibody
was excluded from a 1.0 mg sample (lane: (-) Ab#113). The depicted image is a
representation. B. Western analysis of immunoprecipitated laforin from human skin
lysate. Increasing amounts of human skin lysate from 0.1 mg - 0.75 mg of total
protein was used to immunoprecipitate laforin. The immunoprecipitate sample was
divided into three equal aliquots and one aliquot was separated via SDS-PAGE,
Western transferred, and immunoblotted with a-laforin antibody N84/37.1. Known
amounts of recombinant laforin were ran alongside the immunoprecipitated laforin
to allow for quantification of the immunoprecipitated laforin. As a negative control,
antibody was excluded from a 0.75 mg sample (lane: (-) Ab#113). The depicted
image is a representation. C. Glucan phosphatase assay of laforin
immunoprecipitated from mouse skeletal muscle. Increasing amounts of mouse
skeletal muscle lysate from 0.02 mg - 1.0 mg of total protein was used to
immunoprecipitate laforin. The immunoprecipitated sample was divided into three
equal aliquots and one aliquot was used to perform glucan phosphatase assays in
quadruplicate. Error bars indicate + SEM. D. Glucan phosphatase assay of laforin
immunoprecipitated from human skin. Increasing amounts of human skin lysate
from 0.1 mg - 0.75 mg of total protein was used to immunoprecipitate laforin. The

immunoprecipitated sample was divided into three equal aliquots and one aliquot
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was used to perform glucan phosphatase assays in quadruplicate. Error bars
indicate + SEM. The experiments above were repeated a minimum of three times. A

double asterisk indicates p < 0.01 following an independent-samples t-test.
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CHAPTER 5: EFFECTS OF AMINOGLYCOSIDES ON NONSENSE MUTATIONS IN
LAFORIN AND MALIN AS A THERAPEUTIC OPTION FOR LAFORA DISEASE

Introduction.

Lafora disease (LD) results from recessive mutations in the autosomal genes
encoding either the glucan phosphatase laforin or the ubiquitin ligase malin (EPM2A
and EPMZ2B, respectively) (29, 55, 106, 107, 152), with mutations in laforin
accounting for 70% of LD cases and mutations in malin 27% of LD cases (134).
Disease-causing mutations are distributed across the domains of each protein (52).
Nonsense mutations are found in ~16% of LD patients with laforin defects and
~15% with malin defects, leading to truncated and nonfunctional protein products
(52, 141). Currently, there is no long-term treatment option for LD outside of
palliative therapeutics (37, 107). For the subset of LD patients with nonsense
mutations in laforin or malin, aminoglycosides and their functional equivalents may
lead to the production of functional protein that can inhibit the formation of LBs or
possibly lead to their breakdown.

Aminoglycoside antibiotics, due to their availability and low cost, have been
used since their discovery in the 1940s to treat a variety of serious bacterial
infections such as tuberculosis (48). Aminoglycosides are known to function by
binding to the prokaryotic ribosome and inhibiting protein synthesis. However,
aminoglycosides can also bind weakly to the mammalian 40S ribosomal subunit,
decreasing translation fidelity by causing the ribosome to “read through” nonsense
mutations. This occurs due to the insertion of either the correct amino acid or one
associated with a near-cognate aminoacyl tRNA (94). This translational readthrough
process is regulated by several factors such as the stop codon itself and the
sequence surrounding it (86, 102). Although aminoglycosides are unable to cross the
blood-brain barrier (148), this barrier is often ruptured during seizures as occur in
LD.

The aminoglycoside gentamicin, because of its well-characterized safety
profile in humans, has been frequently assessed for the ability to read through

nonsense mutations causing disease (94). Studies have evaluated the use of
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gentamicin in cystic fibrosis (CF) cell lines containing nonsense mutations and in
cells transfected with cystic fibrosis transmembrane conductance regulator (CFTR)
constructs containing CF-causing nonsense mutations. In both cell models,
gentamicin treatment promoted full-length, functional CFTR production of up to 20-
35% of wild-type protein levels depending on the nonsense mutation sequence (11,
73). The results from these cell-based assays translated favorably into clinical trials
involving CF patients, where intravenous gentamicin administration promoted
functional CFTR production in vivo (32, 171).

Subsequent studies demonstrated that the aminoglycoside amikacin
promotes greater production of functional CFTR than gentamicin in a CF mouse
model at clinically relevant doses of both compounds (41). Although variability in
nonsense mutation readthrough is seen with aminoglycosides depending on CF
nonsense mutation sequence, as little as 5% of normal CFTR protein levels appears
to be adequate for the alleviation of CF symptoms (120), which may prove similar
with laforin and malin protein levels and LD. Given the predictive power of in vitro
models for nonsense readthrough in CF patients, we hypothesized that gentamicin
or amikacin-induced readthrough of LD-causing nonsense mutations in vitro may be
a likely indicator of successful readthrough in LD patients.

While efficacious in terms of nonsense readthrough, aminoglycosides require
parenteral administration, and severe side effects such as ototoxicity and
nephrotoxicity limit their long-term application (48). Only 3 mg/kg of gentamicin
and 15 mg/kg of amikacin can cause =20% nephrotoxicity in patients (10). In search
of a safer alternative to aminoglycosides, recent work identified PTC124, a
compound that also promotes nonsense readthrough but exhibits minimal side
effects in humans at single doses of up to 100 mg/kg (72, 169). In clinical trials
evaluating PTC124 efficacy in CF patients with nonsense mutations, PTC124 led to
improvements in CFTR activity as well as phenotypic characteristics such as lung
function and bodyweight (87, 170). PTC124 has even been shown to be safe and
effective in promoting functional CFTR production in children with CF-causing

nonsense mutations, with no adverse drug reactions after a 2-year follow-up (130).
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Therefore, PTC124 is also a promising therapeutic candidate for LD patients, most of
whom are children or adolescents.

We explored the efficacy of the aminoglycosides gentamicin and amikacin
and the functional analog PTC124 in promoting readthrough of nonsense mutations
in laforin and malin that cause LD. We utilized transient transfection of FLAG-tagged
laforin and malin constructs containing nonsense mutations followed by analysis of
full-length protein levels in order to generate an in vitro readthrough model. This
readthrough model was based on previous work utilizing epitope tag-based in vitro
readthrough systems (21, 22). Aminoglycoside and PTC124 treatment did lead to
significant readthrough of several of the laforin and malin nonsense mutants
studied. Surprisingly however, the location of the epitope tag impacted both the
basal expression and drug-induced readthrough response of the laforin and malin
constructs utilized. Therefore, cell lines established from LD patients with nonsense
mutations will likely be required in order to assess the full efficacy of these

compounds.

Results.

In order to assess the efficacy of aminoglycoside and PTC124-mediated
readthrough of LD-causing nonsense mutations, we designed a cell culture model
utilizing transient transfection of C-terminally FLAG-tagged (C-FLAG) laforin and
malin constructs. Using these constructs, FLAG-tagged proteins will only be
observed if readthrough of a nonsense mutation occurs. Four of the most common
LD-causing nonsense mutations in both laforin and malin were selected from the LD
mutation database (79) for study (Figure 5.1A and B).

The eight C-FLAG mutants were first expressed in HEK293 cells in order to
assess basal readthrough levels. Western blot analysis of cell lysates was then
performed using a monoclonal a-FLAG antibody. Although little to no basal
readthrough was expected, most of the mutant constructs exhibited a variable level

of basal readthrough between 20-100% of wild-type protein levels (Figure 5.1C).
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Only R241X laforin, E67X malin, and R265X malin exhibited undetectable levels of
basal readthrough.

Next, we evaluated the drug-induced readthrough of the four laforin and four
malin C-FLAG nonsense mutants following gentamicin, amikacin, and PTC124
treatment. The concentrations of the three compounds utilized were those used in
previous studies that were found to be therapeutic without causing significant
toxicity (41, 169). However, to confirm that these concentrations were nontoxic and
to assess if the drugs impacted wild-type laforin expression, wild-type laforin was
expressed in HEK293 cells prior to treatment of the cells with gentamicin, amikacin,
or PTC124 for 18 hours. Wild-type laforin protein levels remained constant before
and after treatment, and thus there was no toxicity-induced decrease in laforin
expression (Figure 5.2A). Additionally, there was no shift in the molecular weight of
laforin that would have been indicative of readthrough of the true termination
codon (Figure 5.2A). Since these drug concentrations were not toxic to cells, nor did
they cause readthrough of the true termination codon, they were used in
subsequent studies.

We then examined the level of drug-induced readthrough for the C-FLAG
Y86X, S158X, R241X, and C278X laforin mutants. Each C-FLAG laforin nonsense
mutant displayed varying levels of readthrough following treatment with a range of
concentrations of gentamicin, amikacin, and PTC124 (Figure 5.2B-D). No full-length
laforin was detected following R241X laforin expression in cells and application of
any of the three readthrough-promoting compounds (data not shown). Similarly,
Y86X laforin did not exhibit a significant readthrough response after application of
any of the three readthrough-promoting compounds. Readthrough levels were
<10% with 150-600 uM of gentamicin or amikacin treatment, with increasing
concentrations of PTC124 from 15-45 uM leading to a decreasing trend in full-
length laforin compared to untreated cells (Figure 5.2B).

C278X laforin displayed trending increases in readthrough of up to 50%
above untreated C278X laforin levels with 150-600 uM gentamicin and 15-45 uM

PTC124 treatment, although these results were not statistically significant (Figure
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5.2C). Meanwhile, S158X laforin responded more favorably following gentamicin
and amikacin treatment, with up to a 40% increase in readthrough observed with
150-600 uM gentamicin treatment and a significant increase in readthrough of 50%
above untreated S158X laforin levels seen with 600 uM amikacin treatment (Figure
5.2D). Conversely, no significant increase in S158X readthrough was observed when
cells were treated with PTC124.

As seen with C-FLAG wild-type laforin (Figure 5.2A), full-length C-FLAG wild-
type malin protein levels were not negatively impacted by gentamicin, amikacin, or
PTC124 treatment, nor did the drugs cause readthrough of the natural termination
codon (Figure 5.3A). The C-FLAG malin nonsense mutants G131X and W219X
demonstrated varying amounts of readthrough in response to gentamicin, amikacin,
and PTC124 treatment (Figure 5.3B and C). Despite drug treatment, no full-length
protein was detected for the C-FLAG E67X or R265X malin nonsense mutants (data
not shown).

Conversely, C-FLAG G131X malin exhibited up to a 17% increase in
readthrough with 150-600 uM gentamicin treatment and up to a 30% increase in
readthrough above untreated G131X malin levels with increasing concentrations of
PTC124 from 15-45 uM, although these results were not significant (Figure 5.3B).
Similarly, W219X malin demonstrated levels of readthrough up to 40-65% above
untreated W219X malin levels following treatment with 150-600 uM gentamicin
and amikacin, although again, statistical significance was not achieved (Figure 5.3C).

Because prior work utilized epitope tags at either the N- or C-terminus of
nonsense mutant constructs (21, 22), N-terminally FLAG-tagged (N-FLAG)
constructs of the same laforin and malin nonsense mutants previously studied were
constructed in order to determine if the location of the epitope tag impacts basal
and/or drug-induced readthrough. Unlike the C-FLAG wild-type and nonsense
mutant laforin and malin constructs whose protein products were observable in cell
lysate, the N-FLAG proteins required enrichment via immunoprecipitation with a-

FLAG agarose in order to detect N-FLAG wild-type and mutant laforin and malin.
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Even using this immunoprecipitation strategy, the only truncated N-FLAG
laforin mutant that was detectable following Western analysis was N-FLAG C278X
laforin (Figure 5.4A). The level of the truncated mutant was only 4 + 2% that of N-
FLAG wild-type laforin levels. The truncated N-FLAG malin nonsense mutants
exhibited 10-40% of N-FLAG wild-type malin expression levels (Figure 5.4A). Unlike
the C-FLAG mutant constructs, no basal readthrough was observed for any of the N-
FLAG laforin or malin nonsense mutants (Figure 5.4A).

Next, the N-FLAG laforin and malin nonsense mutants were treated with the
same concentrations of gentamicin, amikacin, or PTC124 used previously to treat
the C-FLAG mutants in order to assess drug-induced readthrough. Although the N-
FLAG C278X laforin mutant and E67X and W219X malin mutant truncations were
expressed (Figure 5.4A), no readthrough was observed following treatment with
any of the three readthrough-promoting compounds (data not shown). Additionally,
no drug-induced readthrough was observed for N-FLAG S158X laforin or R241X
laforin (data not shown).

In contrast, the N-FLAG G131X malin mutant exhibited a 100% increase in
readthrough above untreated G131X malin levels with 600 uM gentamicin
treatment (Figure 5.4B), although this result was not statistically significant.
Statistically insignificant readthrough of up to 24% was also observed with 15-45
uM PTC124 treatment, however, DMSO alone gave 18% readthrough (Figure 5.4B).

The N-FLAG R265X malin mutant demonstrated a significant increase in
readthrough of 87% above untreated R265X malin levels with 600 uM gentamicin
treatment. While amikacin treatment increased readthrough of R265X malin up to
67%, this readthrough was not statistically significant. Additionally, 45 uM PTC124
promoted a significant increase in readthrough of 80% in R265X malin (Figure
5.4C). However, this amount of PTC124 required a final volume of 0.06% v/v DMSO
vehicle, and this amount of DMSO alone promoted readthrough of R265X of 60%
although this result was not statistically significant (Figure 5.4C). Therefore, only
20% of the readthrough observed after 45 uM PTC124 treatment can be attributed
to PTC124.
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If full-length laforin or malin is produced in LD patients following
readthrough-promoting therapy, treatments must occur at a frequency that allows
the levels of these proteins to remain constant in cells for the alleviation of the LD
phenotype. Therefore, we examined the half-life of endogenous laforin and malin
protein. For this work, an antibody capable of detecting endogenous laforin in cell
lysate (Neuromab mouse monoclonal a-laforin antibody N84 /37.1) (137) was
utilized. We assessed the levels of endogenous laforin in both HEK293 and HepG2
liver cells. Cells were treated for 0, 1, 4, 8, 12, and 24 hours with 200 ug/mL
cycloheximide to inhibit protein synthesis and cell lysates then subjected to Western
analysis.

Surprisingly, endogenous laforin levels remained stable over 24 hours of
cycloheximide treatment (Figure 5.5). As cell death was observed at 24 hours, no
longer time points were taken. As expected, the cyclin D1 control exhibited a half-
life under 4 hours (45). After testing several commercially available monoclonal and
polyclonal malin antibodies as well as malin polyclonal antibodies generated by our
lab, endogenous malin could not be detected in cell lysate (data not shown).

Finally, immunofluorescence experiments were performed with a rabbit polyclonal
a-laforin antibody generated by our lab (#139) and the Neuromab a-laforin
antibody N84/37.1 (137) to determine the applicability of these antibodies to detect
endogenous laforin localization in human cell lines. The a-laforin antibody
N84/37.1 was not able to detect endogenous laforin in HEK293 cells, while the
rabbit polyclonal a-laforin antibody #139 demonstrated nonspecific binding (data
not shown). Therefore, better antibodies are needed in order to detect the presence

of laforin within patient cells.

Discussion.

Aminoglycosides and the functional analog PTC124 can cause the
readthrough of nonsense mutations responsible for genetic diseases such as cystic
fibrosis and Duchenne’s muscular dystrophy, generating full-length, functional

proteins with the promise of alleviating disease phenotypes (94, 169). In the hope of

70



facilitating a clinical trial involving readthrough therapy in LD patients, the efficacy
of PTC124 and the aminoglycosides gentamicin and amikacin were tested in the
readthrough of LD nonsense mutations in the genes encoding laforin and malin.
Based on the dose-dependent response in full-length protein production seen both
in vitro with gentamicin treatment of CFTR nonsense mutations (73) and in vivo
with CF patients (171), a range of concentrations of gentamicin, amikacin, and
PTC124 was tested in order to determine the presence of a dose-dependent
readthrough response in full-length laforin and malin production.

An in vitro readthrough reporter system was created utilizing expression and
treatment of FLAG-tagged laforin and malin LD nonsense mutants in HEK293 cells.
Eight of the most common LD-causing nonsense mutations, four in laforin and four
in malin, were chosen for study. These nonsense mutants represent two of the three
mammalian translation termination codons (UGA and UAG). Previous work has
demonstrated that the termination codon generated due to a nonsense mutation
impacts the relative efficiency of termination in the order of UAA>UAG>UGA, which
is reflected in the readthrough efficiency of UGA>UAG>UAA (102). Therefore, UGA
laforin nonsense mutants (S158X, R241X, and C278X) and UGA malin nonsense
mutants (G131X and R264X) were expected to exhibit greater readthrough than the
UAG laforin nonsense mutant (Y86X) and UAG malin nonsense mutants (E67X and
W219X).

Prior work utilizing in vitro readthrough reporter systems examined
readthrough of nonsense-containing constructs possessing an epitope tag at either
the N- or C-terminus (21, 22). These studies utilized epitope tags at only one
location and did not assess how the epitope tag may affect readthrough. We
investigated the impact of the FLAG epitope tag location on readthrough by creating
N-terminally FLAG-tagged (N-FLAG) and C-terminally FLAG-tagged (C-FLAG) laforin
and malin nonsense mutant constructs. We found that while the readthrough of the
LD nonsense mutations in laforin and malin studied was dose-dependent and
followed the UGA>UAG readthrough pattern, the location of the FLAG tag at either

the N- or C-terminus of the proteins greatly impacted readthrough.
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The readthrough of one nonsense mutant could not be studied using the
readthrough reporter system that we developed. The N-FLAG R241X laforin mutant
(nonsense sequence UGA) did not exhibit detectable expression, and both the N-
FLAG and C-FLAG constructs did not demonstrate basal readthrough or induced
readthrough following treatment with the three readthrough-promoting
compounds (see Table 1 for a summary of all experimental results). A premature
termination codon at least 50-55 nucleotides upstream of an exon-exon junction can
trigger nonsense-mediated decay (NMD) of an mRNA (88). However, the R241X
mutation is located a few nucleotides downstream of the final exon-exon junction in
laforin (106, 133). Therefore, NMD likely cannot account for the lack of expression of
the R241X laforin mutant, indicating that another mechanism may be acting to
prevent expression.

Despite successful expression, several laforin and malin nonsense mutations
failed to respond to treatment with gentamicin, amikacin, or PTC124. No basal or
drug-induced readthrough was observed for the C-FLAG and N-FLAG E67X malin
mutant (nonsense sequence UAG) (Table 1). While the C-FLAG Y86X laforin mutant
(nonsense sequence UAG) exhibited low basal readthrough, it also did not
demonstrate a significant readthrough response (Table 1). LD patients possessing
these mutations may thus not be candidates for readthrough therapy.

Three of the laforin and malin nonsense mutants studied demonstrated
promising trends in drug-induced readthrough response that were not statistically
significant. The C-FLAG C278X laforin (nonsense sequence UGA), G131X malin
(nonsense sequence UGA), and W219X malin (nonsense sequence UAG) mutants all
exhibited increasing readthrough with increasing concentrations of gentamicin. Low
concentrations of amikacin also led to an increase in readthrough with these
mutants, while increasing amikacin concentrations diminished this response. The
C278X laforin mutant alone demonstrated increasing readthrough with increasing
PTC124 concentrations. In contrast to the C-FLAG constructs, the N-FLAG C278X
laforin and W219X malin mutants did not exhibit basal or drug-induced
readthrough (Table 1), indicating that the location of the FLAG tag is impacting
mutant readthrough. However, C-FLAG and N-FLAG G131X malin constructs both
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exhibited readthrough with gentamicin, indicating that this mutant may
demonstrate a readthrough response in LD patients treated with gentamicin.

Two nonsense mutants demonstrated statistically significant drug-induced
readthrough. The C-FLAG S158X laforin mutant (nonsense sequence UGA)
demonstrated a statistically significant increase in readthrough of 50% following
treatment with 600 uM amikacin (Table 1). N-FLAG R265X malin (nonsense
sequence UGA) exhibited significant increases in readthrough of up to 87% with 600
uM gentamicin and 20% with 45 uM PTC124 (Table 1). However, the N-FLAG S158X
laforin and C-FLAG R265X malin mutant constructs did not demonstrate basal or
induced-drug readthrough. Therefore, the location of the FLAG tag is impacting the
expression and readthrough of these mutants. However, the readthrough response
of the S158X laforin and R265X malin nonsense mutants indicates that LD patients
possessing these mutations may benefit from readthrough therapy.

While this work has established that the location of the FLAG tag is
influencing readthrough response, the sequence of the nonsense mutation alone has
been demonstrated to influence readthrough efficiency in the order of
UGA>UAG>UAA (74, 75, 102). The basal and induced readthrough of the C-FLAG
laforin and malin nonsense mutants generally followed this established pattern. We
observed basal readthrough of C278X laforin (UGA) > S158X laforin (UGA) > Y86X
laforin (UAG) and G131X malin (UGA) > W219X malin (UAG). This pattern was also
reflected in the greater readthrough response of C278X laforin (UGA) = S158X
laforin (UGA) > Y86X laforin (UAG) observed with the three readthrough-promoting
compounds utilized. However, W219X malin (UAG) exhibited a greater readthrough
response than G131X malin (UGA). This may be due to sequences upstream and
downstream of the nonsense codon, which can impact readthrough (15). The N-
FLAG malin nonsense mutant truncations also exhibited expression levels of G131X
(UGA) > R265X (UGA) > E67X (UAG) > W219X (UAG). In addition, only N-FLAG
G131X and R265X malin exhibited a readthrough response. Although the majority of
these results were not statistically significant, it is important to note that these

results did follow the general readthrough pattern established in prior work.
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Although the basal and induced readthrough of the laforin and malin LD
nonsense mutants followed these established readthrough patterns, the C-FLAG
laforin and malin mutants that were expressed showed basal readthrough of 20-
100% (Table 1) where translation termination is found to have an estimated error
rate of 0.01 to 0.1% (47). In addition, the expression, basal readthrough, and drug-
induced readthrough results observed with the N-FLAG nonsense mutant constructs
are in direct conflict with those obtained with the C-FLAG constructs (Table 1).
These conflicting results indicate that the in vitro readthrough reporter system
utilized here, although modeled after previous work, likely does not faithfully assess
readthrough of LD-causing nonsense mutations.

As LD is a fatal disorder, the use of compounds that exhibit toxicity such as
aminoglycosides can be justified for compassionate use in a clinical trial. Prior to the
administration of these compounds to LD patients with nonsense mutations, such as
those possessing the S158X laforin or R265X malin mutations, cell lines from these
patients should be used first to assess drug efficacy and develop individualized
therapies, as the readthrough of nonsense mutations has been found to be similar in
vitro and in vivo (15, 131).

In the hope of facilitating such a clinical trial, the half-life of endogenous
laforin protein was examined. By determining the half-life of this protein, the
required frequency of readthrough-promoting treatment administration to LD
patients in order to maintain laforin levels may be determined. We found that over a
period of 24 hours of cycloheximide treatment, despite significant cell death, laforin
levels remained stable. These results indicate that any full-length laforin generated
as a result of treatment with readthrough-promoting compounds will likely remain
stable over a period of days, allowing for less frequent dosing with compounds such

as aminoglycosides, which possess the potential for toxic effects.

Copyright © Amanda Renee Sherwood 2013
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Figure 5.1. Laforin and malin nonsense mutations chosen for study. A. Laforin
schematic with nonsense mutations. Laforin possesses an N-terminal carbohydrate-
binding module (CBM) family 20 domain and a C-terminal dual-specificity
phosphatase (DSP) domain encoded by exons 1-2 and exons 3-4 of the EPM2A gene
respectively (106, 133). LD-causing nonsense mutations in laforin that were utilized
in this study are depicted. B. Malin schematic with nonsense mutations. Malin
possesses an N-terminal RING-finger domain followed by six NHL repeats. The
protein is encoded by a single exon (29). LD-causing nonsense mutations in malin
that were utilized in this study are depicted. C. Basal readthrough of C-terminally
FLAG-tagged laforin and malin nonsense mutants. Mutants were expressed for 24
hours in HEK293 cells and cell lysates immunoblotted for FLAG. The depicted image
is a representation, showing an exposure at which the readthrough products of all
expressed mutants are visible. Readthrough levels were quantitated by
densitometric western blot analysis and presented as percent of wild-type + SEM

(n=3).

76



A B

° -]
2 2
§ v < 8 § Gentamicin  Amikacin PTC 124 8
E 8 8 o = ER 28823 8 8 S =
=) m m a 5 2 A 6 = =L a

i DS - |

C-FLAG Wild-type Laforin 40- C-FLAG Y86X Laforin

120

304

100
80 20+
10

40
20 07
0 -10+

3006 300A 30P DMSO
,20_
Treatment (U M)

_30_
-40

=97 150 300 600 150 300 600 15 30 45 DMSO
Gentamicin Amikacin PTC124
Treatment (uM)

% of Untreated

Readthrough %

Gentamicin Amikacin PTC 124

o
© o ©9 o 9 9 g
n (=] © © 1n © u1n
- 8 8 2 me &2m <0

Gentamicin Amikacin PTC 124

© © © o ©
goomocmog

- M O = m © - m

FLAG [ o i s e e —— a e ] FLAG [ e - W — — |
B actin [ e - - > @] i [ - - - -]

Untreated
DMSO

Untreated

C-FLAG C278X Laforin C-FLAG S158X Laforin
60 601 *k
501 501
40+ 40+
30 30-

20+

101

Readthrough %

150 300 600 150 300 600 15 30 45 DMSO

Readthrough %

Gentamicin Amikacin  PTC 124 101
Treatment (pM) -201
-30 ¥

150 300 600 150 300 600 15 30 45 DMSO
Gentamicin Amikacin PTC124
Treatment (uM)

77



Figure 5.2. Response of C-terminally FLAG-tagged laforin nonsense mutants to
readthrough-promoting compounds. A. Impact of readthrough-promoting
compounds on wild-type laforin protein levels. C-terminally FLAG-tagged wild-type
laforin was transiently transfected into HEK293 cells 4 hours prior to incubation of
the cells with 300 uM gentamicin (G), 300 uM amikacin (A), 30 uM PTC124 (P), or
0.03% v/v DMSO vehicle for 18 hours. Cell lysates were immunoblotted for FLAG
and expression levels quantitated using densitometric western blot analysis. Data
are presented as percent of untreated laforin + SEM (n=3). The depicted image is a
representation. As a loading control, 3 actin was detected in all samples. B-D.
Response of laforin nonsense mutants to readthrough-promoting compounds. C-
terminally FLAG-tagged Y86X laforin (B), C278X laforin (C), and S158X laforin (D)
were transiently transfected into HEK293 cells 4 hours prior to treatment with 150-
600 uM gentamicin (G) or amikacin (A), 15-45 uM PTC124 (P), or 0.06% v/v DMSO
vehicle for 18 hours. Cell lysates were immunoblotted for FLAG and readthrough
levels quantitated using densitometric western blot analysis. Data are presented as
the percent change in full-length laforin in treated samples compared to untreated
(readthrough percent) + SEM. Experiments were repeated at least three times and
the depicted images are a representation. The white dotted line indicates where an
image is a composite of portions of the same exposure. Statistical significance

(indicated by an asterisk) was set at p < 0.05.
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Figure 5.3. Response of C-terminally FLAG-tagged malin nonsense mutants to
readthrough-promoting compounds. A. Impact of readthrough-promoting
compounds on wild-type malin protein levels. C-terminally FLAG-tagged wild-type
malin was transiently transfected into HEK293 cells 4 hours prior to incubation of
the cells with 300 uM gentamicin (G), 300 uM amikacin (A), 30 uM PTC124 (P), or
0.03% v/v DMSO vehicle for 18 hours. Cell lysates were immunoblotted for FLAG
and expression levels quantitated using densitometric western blot analysis. Data
are presented as percent of untreated malin + SEM (n=3). The depicted image is a
representation. B-C. Response of malin nonsense mutants to readthrough-
promoting compounds. C-terminally FLAG-tagged G131X malin (B) or W129X malin
(C) were transiently transfected into HEK293 cells 4 hours prior to treatment with
150-600 uM gentamicin (G) or amikacin (A), 15-45 uM PTC124 (P), or 0.06% v/v
DMSO vehicle for 18 hours. Cell lysates were immunoblotted for FLAG and
readthrough levels quantitated using densitometric western blot analysis. Data are
presented as the percent change in full-length malin in treated samples compared to
untreated (readthrough percent) + SEM. Experiments were repeated at least three
times and the depicted images are a representation. The white dotted line indicates
where an image is a composite of portions of the same exposure. Statistical

significance (indicated by an asterisk) was set at p < 0.05.
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Figure 5.4. Response of N-terminally FLAG-tagged laforin and malin nonsense
mutants to readthrough-promoting compounds. A. Expression test of N-
terminally FLAG-tagged laforin and malin nonsense mutants. Mutants were
expressed for 24 hours in HEK293 cells and cell lysates immunoprecipitated with a-
FLAG agarose. The depicted images are a representation and asterisks indicate
nonspecific bands. Expression levels were quantitated by densitometric western
blot analysis and presented as percent of wild-type + SEM (n=3). Y86X was not
included in the N-FLAG set of mutants. B-C. Response of malin nonsense mutants to
readthrough-promoting compounds. N-terminally FLAG-tagged G131X malin (B) or
W129X malin (C) were transiently transfected into HEK293 cells 4 hours prior to
treatment with 150-600 uM gentamicin (G) or amikacin (A), 15-45 uM PTC124 (P),
or 0.06% v/v DMSO vehicle for 18 hours. Cell lysates were immunoprecipitated with
a-FLAG agarose and readthrough levels quantitated using densitometric western
blot analysis. Data are presented as the percent change in full-length malin in
treated samples compared to untreated (readthrough percent) + SEM. Experiments
were repeated at least three times and the depicted images are a representation.
The white dotted line indicates where an image is composed of portions of the same

exposure. Statistical significance (indicated by an asterisk) was set at p < 0.05.
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Figure 5.5. Determination of endogenous laforin half-life. HEK293 and HepG2
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laforin levels quantitated using densitometric western blot analysis. Data are
presented as the percent change in laforin levels from 0 hours of treatment + SEM
(n=3). As a loading control, § actin was detected in all samples, while cyclin D1 was

detected as an experimental control.
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Table 5.1. Summary of laforin and malin nonsense mutant expression and
readthrough results. For each laforin or malin nonsense mutant, the sequence of
the nonsense mutation is indicated. For the N-terminally FLAG-tagged (N-FLAG) and
C-terminally FLAG-tagged (C-FLAG) construct of each mutant, the expression level,
basal readthrough level, and highest level of readthrough for any concentration of
gentamicin, amikacin, and PTC124 is indicated. The maximum PTC124 response is
the final value after subtraction of the readthrough observed with DMSO vehicle.
N/A indicates where a value could not be measured, while a dash indicates where a

value could not be determined due to the lack of observable data.
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CHAPTER 6: HYDROGEN-DEUTERIUM EXCHANGE MASS SPECTROMETRY
PROVIDES INSIGHT INTO THE IMPACT OF LAFORA DISEASE MUTATIONS ON
THE STRUCTURE AND MECHANISM OF LAFORIN

Introduction.

There are currently no therapeutic options for LD outside of palliative
therapeutics designed to limit the frequency and severity of epileptic episodes (105,
107). Understanding the underlying biochemistry resulting from a specific LD point
mutation in the development of the disease has been a major roadblock in devising
strategies for the treatment of LD. While nonsense mutations in laforin may respond
to readthrough-promoting compounds as explored in the previous chapter, future
work is required using patient fibroblasts to assess the efficacy of these compounds
for patient treatment. In regards to many of the point mutations in laforin, previous
work has demonstrated loss of substrate binding and phosphatase activity (52, 141).
However, these studies did not determine the structural or mechanistic alterations
in laforin responsible for the loss of function. Thus, we explored the possible
alteration of the structure and binding behavior of laforin as a result of several LD-
causing point mutations. Insights into the disrupted structure and mechanism of
laforin will likely aid in the development of future therapies that stabilize the
protein.

To date, there have been no structural or mechanistic studies of laforin, and
the mechanism by which laforin interacts with and acts upon glucose polymers
remains unknown. However, some insight into the possible structure and
mechanism of laforin is provided by the recent crystal structure of another glucan
phosphatase from Arabidopsis called Starch Excess 4 (SEX4) whose substrate is the
plant carbohydrate starch (55, 160). Disruption of SEX4 leads to starch accumulation
in plants reminiscent of LD in humans at the cellular level (55, 112). While laforin
consists of only a CBM and DSP domain, SEX4 possesses these domains in addition
to a chloroplast targeting peptide (cTP) and a C-terminal domain (CT) required for
the interaction of the CBM and DSP (112, 160). While SEX4 and laforin share similar

domains, their DSP and CBM domains are in opposite orientations (54). Thus, these
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two proteins likely utilize different mechanisms to dephosphorylate thier
substrates. In addition to information about the structure of glucan phosphatases
provided by the crystal structure of SEX4, a technique known as hydrogen-
deuterium exchange mass spectrometry (DXMS) has been used to analyze the
structural dynamics (i.e., how the domains of the protein behave during substrate
binding) and thus the mechanism of SEX4 (77).

DXMS measures the exchange of the backbone amide hydrogens of a protein
with deuterium atoms in a D20-based aqueous environment. There are several
groups of potentially exchangeable hydrogens in a protein, such as those found on
the functional groups of amino acid side chains (-OH, -SH, NHz, -COOH) which
exchange too rapidly to be measured and do not retain deuterons during processing.
Hydrogens attached directly to the a-carbon and side chains are covalent and do not
exchange. However, the single amide hydrogen of an amino acid residue can
undergo exchange at a measurable rate from hundreds of milliseconds to years
under physiological conditions (Figure 6.1A), thus increasing the mass of the amino
acid by one mass unit (65, 90). This increase in mass can then be detected using
mass spectrometry.

The exchange of free amide hydrogens is governed by pH, temperature, and
exposure to solvent (142). In a folded protein, free amide hydrogens present in
unstructured regions and thus not involved in hydrogen bonding exhibit an
exchange rate on the order of seconds, while those buried within the hydrophobic
protein interior or involved in hydrogen bonding networks contributing to
secondary structure will take days to months to fully exchange (44). Amide
hydrogen exchange rates can thus provide information on the conformation of a
folded protein. When DXMS is then performed with the endogenous substrate of a
protein present, the binding dynamics of a protein can be assessed, which may
indicate either structural changes occurring because of substrate binding or areas of
the protein being protected from deuteration due to steric hindrance by the

substrate (23, 77).
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DXMS has been used extensively to study local and global protein dynamics
as well as the site of protein-substrate interaction (23, 43, 66, 168). Use of DXMS
allows the study of a protein’s structure and substrate interactions (12, 77) in a
more natural environment than that provided by the conditions necessary for x-ray
crystallography-based structural studies, with which protein binding dynamics
cannot be studied. In addition, DXMS allows the use of the endogenous substrate of
a protein. Depending on the fragmentation pattern of a protein, DXMS provides a
medium resolution of 5-10 amino acids. However, the technique can accommodate
proteins of all sizes as well as complex interacting partners, unlike x-ray
crystallography and NMR (90, 155). Following exposure of a protein to deuterated
solvent, the pH of the solution is lowered to 2.5 and the temperature to 0°C, the pH
and temperature minimum of acid (H*) and base (OH-) catalyzed hydrogen exchange
(9, 34, 155). The protein is then fragmented by pepsin proteolysis and subjected to
LC-MS/MS to detect resulting mass changes in peptides as a result of deuterium
uptake (90) (Figure 6.1B).

The DXMS work involving SEX4 revealed that in addition to CBM interaction
with the glucan substrate, specific regions in the DSP of SEX4 also interacted with
the substrate (77, 160). This work provided the first evidence that the DSP domain
of a glucan phosphatase contains residues that interact with glucans. These findings
were confirmed upon the determination of the structure of a glucan phosphatase
bound to glucans (104). The glucan-bound structure identified an aromatic channel
in the DSP active site that was necessary for binding and dephosphorylating starch.
Aromatic regions within carbohydrate binding modules are a common theme, as
these domains allow a protein to bind a carbohydrate and then another domain to
enzymatically modify the carbohydrate (18, 35, 98) An example of this domain
architecture is seen in a-amylase (59). a-amylase contains an N-terminal hydrolase
domain that cleaves glycosidic bonds and a C-terminal CBM. The CBM binds
carbohydrates and the hydrolase domain then cleaves nearby glycosidic bonds.
These aromatic residues allow carbohydrate binding proteins to engage their

substrates and then release from the substrates. In fact, the Kq of most carbohydrate
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binding proteins is in the millimolar range (59). This “poor” binding affinity is key to
enzymatic activity because proteins that bind more tightly have decreased efficiency
in cleaving carbohydrates. However, it is rare to observe an aromatic channel
necessary for glucan binding within the active site of the enzymatic domain of a
glucan binding enzyme, as is seen with glucan phosphatases (104).

The regions of the SEX4 DSP interacting with glucans following DXMS include
the recognition domain, variable loop, the CXsR motif (also called the PTP loop), and
the D loop, all sequence motifs specific to DSPs (2). The recognition domain in DSPs
contributes to the depth of the active site as well as substrate binding (84, 177). The
variable loop also contributes to active site depth while helping to orient the CXsR
motif Arg residue in coordinating two of the phosphoryl oxygen atoms as required
for proper phosphate removal, thus demonstrating close proximity to the substrate
(2, 177). The D loop contains an Asp residue that functions as a general acid-base
catalyst to allow the catalytic Cys residue in the CXsR motif of the PTP loop to
perform nucleophilic attack of the phosphorus atom of the phosphate moiety and
dephosphorylate the substrate (2). This Asp residue makes direct contact with the
substrate (177). While this region did not interact with glucans in SEX4 (77), the R
motif is another sequence motif characteristic of DSPs that contains a highly
conserved Arg residue (2). The above regions are all associated with the active site
of SEX4 (160) (Figure 6.2). Unpublished work from our lab demonstrates that SEX4
possesses an aromatic platform within its DSP that is integral for binding and
dephosphorylating starch. This work therefore suggests that glucan phosphatases
are similar to other carbohydrate binding enzymes and likely undergo a very
dynamic on/off interaction with carbohydrates. These results suggest that glucan
phosphatases possess a Kqin the millimolar range to allow the enzyme to “scan” for
phosphate within glycogen or starch.

Although crystallography and DXMS studies of SEX4 have provided insight
into both the structure of a glucan phosphatase and a mechanism for substrate
interaction, laforin has distinct architectural differences and unique binding
dynamics from SEX4. The DSP and CBM domains of SEX4 and laforin lie in

completely opposite orientations (Figure 6.3A and B) due to the convergent
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evolution of these proteins (56), and laforin contains a predicted flexible linker
between the DSP and CBM. Laforin also lacks structural elements such as the C-
terminal domain of SEX4 critical for the folding of SEX4 (Figure 6.3A and B), as well
as conserved residues in SEX4 necessary for CBM and DSP domain interaction (160).
Finally, laforin possesses higher in vitro glucan phosphatase activity than SEX4 (55).
As a crystal structure of laforin is not available, we utilized DXMS to determine the
structural elements and binding dynamics of wild-type laforin. In addition, as DXMS
has been used to study the conformational changes of proteins mutated in disease
(26, 36), we explored the possible disruption of substrate binding and activity
resulting from LD-causing point mutations within laforin. To facilitate these DXMS
studies, we optimized a method to purify large quantities of nearly homogenous

recombinant laforin.

Results.

The glycosyl hydrolase motifs of laforin and choice of Lafora disease mutants
to study using DXMS.

We performed bioinformatics on the glucan phosphatases using multiple
iterations of PSI-BLASTp and uncovered two regions within the DSP domains of
glucan phosphatases that share remote homology to glycosyl hydrolase domains.
Glycosyl hydrolases (GH) are enzymes that bind to and cleave glycosidic bonds, and
are grouped into 115 families based on protein sequence and catalytic mechanism
(25, 69, 70). GHs are more commonly found in bacterial, fungal, and plant genomes
(18, 25, 82). The regions of the glucan phosphatase DSP domain that resemble GH
domains are within the variable loop and R motif. Therefore, we investigated these
regions further. The variable loop motif resembles a glycosyl hydrolase family 10
(GH10)-like active site sequence and the R motif resembles a glycosyl hydrolase
family 1 (GH1)-like active site sequence.

Next we analyzed laforin orthologs from vertebrates to protists and found
that these GH-like motifs are highly conserved from humans to red algae (Figure

6.3C), although human and red algal laforin share only 25% overall identity (55).
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After establishing that these sequences are highly conserved in glucan
phosphatases, Dr. Gentry tested the glucan phosphatases for glycosyl hydrolase
activity against glucan substrates by quantifying glucose release and did not detect
glycosyl hydrolase activity (data not shown). This result is not surprising given the
remote homology of the SEX4 and laforin DSP domain with glycosyl hydrolases and
the lack of conservation of the GH active site catalytic residues. However, it is
surprising to identify a glucan binding motif within the DSP domain that is
conserved from red algae to plants to humans.

Laforin and SEX4 are merely analogous in function given their different
domain arrangement, possibly sharing function through convergent evolution (56).
The fact that laforin and SEX4 share conservation of GH active site sequences in
their DSP domains despite their evolutionary distance provides further evidence for
an integral role of the GH-like regions in glucan interaction. The variable loop and R
motif are highly conserved among proteinaceous DSPs (2) but feature little
sequence homology between non-proteinaceous DSPs (2, 160). However, the
variable loop and R motif are known to be closely associated with the active site in
both proteinaceous and non-proteinaceous DSPs (2, 177). The variable loop and R
motif are also adjacent to the active site in the crystal structure of SEX4 (160),
indicating the importance of these regions in glucan phosphatase function.
Interestingly, while the variable loop of proteinaceous DSPs such as VHR consists of
aloop (177), the variable loop of SEX4 possesses a-helical structure (160) (Figure
6.3D) that may prove a general feature of glucan phosphatases. Cumulatively, our
data indicate that the GH-like regions in the variable loop and R motif of laforin
likely play an integral role in substrate presentation to the active site.

Interestingly, there are a number of LD missense mutations in the R motif of
laforin. The discovery of the GH1-like region in the R motif of laforin prompted us to
study LD-causing missense point mutants found in the R motif in order to determine
the importance of these residues in glucan binding. We chose the Y294N and P301L
disease mutations found within the R motif for study using in vitro activity and

binding assays and DXMS. To validate our experimental approach, we also analyzed
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well-characterized disease-causing mutations outside of the R motif: W32G and
G240S. The W32G mutation in the CBM has been demonstrated to dramatically
decrease glucan binding and activity. We included the G240S DSP mutation due to
reports that G240S laforin retains phosphatase activity and glucan binding (141).
The G240S mutation is a unique LD mutation in that laforin maintains both
functionalities, but is no longer able to interact with protein targeting to glycogen
(PTG), a protein involved in glycogen metabolism (141). It is thought that the loss of
interaction between PTG and laforin leads to LD in these patients. In addition to
W32G and G240S, we mutated the catalytic cysteine of laforin to serine in order to
generate a catalytically inactive C266S mutant (55) as a control for biochemical

assays and comparison for DXMS.

Biochemical characterization of wild-type laforin and laforin mutants.

We first assayed the general phosphatase activity of wild-type laforin and
each laforin mutant utilizing the exogenous substrate para-nitrophenylphosphate
(bNPP), which due to its small size can diffuse into the active site and thus measures
only the functionality of the DSP (see Chapter 3, Figure 3.1A). pNPP assays have
been used to define phosphatase activity in a variety of proteinaceous and non-
proteinaceous phosphatases (138, 173). We also determined the specific activity of
the same mutant laforin proteins against phosphorylated glucans using the
malachite green assay with amylopectin as the substrate (see Chapter 3, Figure
3.1B). This modified malachite green assay requires binding of the glucan by the
CBM to facilitate glucan dephosphorylation, thus measuring both glucan binding and
the functionality of the CBM and DSP together. This assay has demonstrated loss of
glucan phosphatase activity in both SEX4 and laforin when residues in their CBMs
critical for substrate binding are mutated (55).

The pNPP and glucan phosphatase activity of wild-type laforin and the
inactive C266S mutant (Figure 6.4A and B, respectively) are in agreement with
previously determined values (55, 138). As previously reported, the Y294N and
P301L mutations almost completely impaired pNPP activity while the G240S mutant
still exhibited substantial activity (46, 141) (Figure 6.4A). As we predicted due to the
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location of the W32G mutation in the CBM, we found that the W32G mutant also
retained some pNPP activity (Figure 6.4A). These results indicate that the Y294N
and P301L mutations may be disrupting DSP domain structure, thus generating an
inactive enzyme.

Each of the laforin mutants displayed decreased glucan phosphatase activity
(Figure 6.4B), although not entirely as predicted based on our previous
understanding. Trp32 is a highly conserved CBM20 residue proposed to be crucial
for binding (166) and disrupted glucan binding of the W32G mutation has been
reported (141). The impaired W32G glucan phosphatase activity that we observed
(Figure 6.4B) is in agreement with this previous work, and demonstrates the
importance of CBM binding for glucan phosphatase activity. The G240S mutant has
been reported to not disrupt glucan binding (141), and we found that this mutant
exhibited 60% of wild-type glucan phosphatase activity (Figure 6.4B). The Y294N
and P301L mutations are both reported to disrupt glucan binding through an
unexplained mechanism (141), and we found that these mutants both exhibited
decreased glucan phosphatase activity (Figure 6.4B). While we are able to explain
some of these results with our current understanding of laforin, other aspects
remain an enigma. Why do Y294N and P301L have no pNPP activity yet still possess
reasonable glucan phosphatase activity? And how does the W32G mutant still
dephosphorylate glucans when others have reported that this mutant does not bind
glucans?

As the Y294N and P301L mutants did not exhibit pNPP activity, it is possible
that glucan binding by the CBM is aiding in the binding of the DSP to glucan to allow
limited glucan phosphatase activity. The glucan phosphatase activity of Y294N is
similar to G240S while the activity of P301L is similar to W32G, indicating that
Pro301 may play a more critical role in glucan phosphatase activity than Tyr294.
Altogether, the agreement of our pNPP and glucan phosphatase assay results with
previously reported results lends support to the above conclusions.

To specifically examine the relative binding affinity for glucans of wild-type
laforin and the laforin mutants, we utilized two assays. First, we assessed if these

proteins could bind the glucan amylose using an amylose resin pull-down assay.
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Proteins with the ability to bind amylose will pellet with the amylose, while those
unable to bind will remain in the supernatant. The W32G mutation abolished
amylose binding (Figure 6.4C), indicating that the CBM is essential for glucan
binding. The G240S mutation, which does not impact glucan binding, led to similar
binding characteristics as wild-type laforin (Figure 6.4C). However, the Y294N and
P301L mutations residing in the GH region of the R motif did not impact amylose
binding (Figure 6.4C). These results were surprising, as previous work reported that
Y294N and P301L are unable to bind glucans (46). With our amylose pull-down
assay, wild-type laforin is found exclusively in the amylose pellet, while previous
glycogen pull-down assays show that wild-type laforin is also found in the
supernatant. This discrepancy may be due to the fact that glycogen is water soluble
while amylose is water insoluble. Amylose therefore pellets more efficiently,
demonstrating that our assay is superior for assessing glucan binding.

We examined the glucan binding affinity of these proteins further by
assessing the degree of migration of each protein through a native glycogen gel.
Proteins with the ability to interact with glycogen will exhibit impaired migration
through a gel containing glycogen compared to a gel without glycogen present.
Consistent with the results from the amylose pull-down assay, the W32G mutant
migrated to the same degree in both a glycogen-free gel and a gel containing
glycogen (Figure 6.4D), indicating a loss of glucan binding. The catalytically inactive
C266S mutant, with a functional CBM, exhibits the same degree of impaired
migration through a glycogen gel as wild-type laforin (Figure 6.4D). This result
indicates that C266S laforin possesses the same binding affinity for glucans as wild-
type laforin.

Surprisingly, the Y294N and P301L mutants displayed severely impaired
migration through a glycogen gel compared to wild-type laforin (Figure 6.4D),
indicating a much stronger interaction with glycogen than seen with wild-type
laforin. The reduced glucan phosphatase activity of the Y294N and P301L mutants
indicates that the Tyr294 and Pro301 residues are crucial for glucan phosphatase

activity. However, while it was expected that these mutations would abolish glucan
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binding, it appears that they actually cause a strengthened interaction with glycogen

and thus may impair activity. These results were further explored using DXMS.

Optimization of laforin digestion for DXMS.

Before examining the binding dynamics of the Y294N and P301L mutants in
the GH1-like domain of laforin, we utilized DXMS to assess wild-type laforin
structural features and binding dynamics with various glucans. For this work, we
tested the physiological substrate of laforin, glycogen, as well as amylopectin, as this
glucan resembles LBs in regards to phosphate content and branching pattern (54)
(Figure 1.2C). As glycogen and amylopectin are heterogeneous polymers, we also
utilized P-cyclodextrin, a homogeneous, seven-ring, cyclic oligosaccharide in order
to utilize a well-defined glucan substrate.

The initial wild-type laforin DXMS studies required purification of large
yields (~20 mg) of monomeric wild-type laforin to >95% homogeneity (Figure
6.5A). In order to obtain 20-30 mg of laforin from a liter culture of E. coli, we found
that the purification of laforin required the presence of glycerol and a detergent in
the protein buffer (see Chapter 2 for detailed methods on laforin purification).
Following purification of laforin from soluble bacterial extracts, we utilized fast
protein liquid chromatography (FPLC) using a size-exclusion column to obtain
>95% pure laforin monomer (Figure 6.5B).

The ability to obtain detailed exchange behavior of an entire protein using
DXMS is largely determined by the protein sequence coverage and the density of the
peptide fragments produced following proteolysis. DXMS analysis of laforin
therefore required optimization of the digestion conditions of laforin by pepsin to
yield full coverage of the protein (see Chapter 2 for detailed methods of the
optimization of laforin digestion). The conditions we identified providing the
greatest coverage of laforin gave 134 high-quality peptides with 100% laforin
sequence coverage. We analyzed 27 laforin fragments of the optimal size in the

subsequent DXMS experiments. These 27 peptides gave complete distribution
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across laforin in order to provide suitable experimental resolution and full protein

coverage for DXMS experiments (Figure 6.5C, solid black lines).

DXMS experiments and structural insights of wild-type laforin.

Prior to substrate binding experiments, wild-type laforin without substrate
(APO) was analyzed using DXMS in order to determine regions of the protein that
exhibit secondary structure and/or are buried and thus protected from exchange.
The exchange rate of peptides across laforin following 10-10,000 s of D20 exposure
was studied in order to distinguish exchange of free amide hydrogens resulting from
solvent exposure of unstructured regions, which occurs on the order of seconds,
from regions of slower exchange that indicate secondary structure. We monitored
each peptide following laforin incubation in D20 buffer. We obtained a mass spectra
for each time point that shifted to a higher m/z ratio than seen with undeuterated
peptide when exchange occurred (Figure 6.6). The average centroid values for each
time point spectra were then used to determine exchange over time for each peptide
across the entire laforin protein. Combination of this information with the predicted
secondary structure of laforin (Figure 6.7A) was then used to confirm the presence
of secondary structural elements in laforin.

Both the CBM and DSP of APO wild-type laforin exhibited regions of high
exchange (=50% deuteration after 300 s) between areas of predicted secondary
structure (Figure 6.7A). This high degree of exchange between predicted secondary
structure at early time points indicates that these regions are highly solvent
accessible in addition to being free from hydrogen bonding, supporting structural
predictions.

The CBM domains of the members of the CBM20 family that laforin belongs
to are highly heterogeneous at the amino acid level and lack invariant residues, but
contain moderately well-conserved aromatic residues that coordinate ligand
binding (99). Within the CBM, three of the aromatic residues predicted to be integral
for glucan binding (55, 166) (Trp32, Trp60, and Trp99; indicated by asterisks in

Figure 6.7A) were found within unstructured regions that were highly solvent
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accessible (peptides 21-52, 60-65, and 98-111, respectively). Similarly, residues in
the CBM of SEX4 involved in glucan binding are also found in highly solvent
accessible regions (77) (Figure 6.7B). These results indicate that these three
tryptophan residues in the CBM of laforin are in solvent-exposed loops that likely
prime these residues for interaction with substrate.

Areas within the DSP of laforin featuring predicted secondary structure
exhibited low exchange, supporting the involvement of the amide hydrogens of the
residues in these areas in hydrogen bonding as part of secondary structure.
Meanwhile, areas between predicted structure exhibited high exchange at early time
points and thus a lack of hydrogen bonding as well as solvent accessibility (Figure
6.7A). The DSP of laforin exhibited less deuteration overall than what is seen in the
DSP of SEX4 (77) (Figure 6.7B). However, regions predicted to interact with
substrate, such as the recognition domain (residues 139-152), the variable loop
(residues 193-227), the D loop (residues 231-240), and the PTP loop (residues 265-
272) of laforin are in mostly unstructured regions that are highly solvent accessible
(Figure 6.7A). The R motif (residues 299-313) of laforin is highly solvent accessible
(Figure 6.7A), while the R motif of SEX4 is highly protected (77) (Figure 6.7B).

The recognition domain, variable loop, D loop, PTP loop, and R motif are all
associated with the active site of SEX4 and other DSPs (2, 160). In addition, these
areas are known to be in loops and turns in both the crystal structure of SEX4 and
the structures of other phosphatases that reside within the protein tyrosine
phosphatase family (4, 38, 154, 160). Thus, the solvent-accessibility of these regions
in SEX4 (Figure 6.7B), found to be crucial in substrate interaction (77), supports a
similar role for these solvent-accessible regions in the DSP of laforin. However, the
unique solvent accessibility of the R motif of laforin where the GH1-like region
resides indicates a role for this region in substrate binding and a different binding

mechanism from SEX4.

The substrate preference of laforin.
In order to determine the substrate preference of wild-type laforin prior to

assessing binding dynamics, we performed DXMS of laforin with the structurally
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distinct glucans amylopectin, glycogen, and -cyclodextrin. For each peptide across
laforin, we determined the maximum changes in average deuteration at any time
point between the APO and glucan condition. Based on previous work utilizing
DXMS to study substrate binding, we defined a >10% change in deuteration
between the APO and glucan conditions as significant (64, 128) (Figure 6.8). In
comparing the DXMS results of laforin with the three glucans, we sought regions of
laforin that exhibited decreases in deuteration. A significant decrease in deuteration
in laforin peptides in the presence of glucan most likely results from the protection
of the amino acids in the peptide from deuteration due to interaction with the
glucan. More importantly, we sought to define which glucan substrate providing the
greatest amount of protection, which would indicate the preferred substrate of
laforin. This substrate would then be utilized in subsequent experiments with
laforin mutants.

Within the CBM of laforin, incubation with glycogen yielded the most
significant decreases in deuteration in peptides encompassing three of the four
residues proposed to be crucial for substrate binding (Trp32, Trp60, and Trp99)
(Figure 6.8B). Only the peptides encompassing the Lys87 and Trp99 residues in the
CBM exhibited significant protection from deuteration when amylopectin (Figure
6.8A) or B-cyclodextrin (Figure 6.8C) were utilized. Binding of laforin to glycogen
also gave the greatest decreases in deuteration across most regions of the DSP
(Figure 6.8B) compared to amylopectin (Figure 6.8A), indicating more extensive
interaction with glycogen. Binding to $-cyclodextrin did not lead to any significant
changes in deuteration in the DSP (Figure 6.8C), indicating that the DSP of laforin
cannot interact with this substrate. Altogether, these results demonstrate that the
CBM and DSP of laforin make the greatest degree of contact with glycogen, the
physiological substrate of laforin. Thus, glycogen was utilized in all subsequent wild-
type and mutant laforin binding experiments. In addition, the binding dynamics of
wild-type laforin with glycogen were more closely examined in comparison to the
dynamics of SEX4 with its physiological substrate amylopectin, the major

component of starch (77, 91), in order to assess differences in binding mechanism.
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The binding dynamics of laforin with glycogen.

In order to gain insight into the mechanism by which laforin acts upon
carbohydrates, we examined the deuteration changes in laforin over time following
interaction of laforin with its physiological substrate, glycogen. In the CBM, three
peptides demonstrated a >10% change in deuteration for at least one time point
following laforin incubation with glycogen (Figure 6.9). These peptides
demonstrated only decreases in deuteration, and encompass the conserved Trp32
(Figure 6.9A), Trp60 (Figure 6.9B), and Trp99 (Figure 6.9C) residues, CBM20
residues predicted to be crucial for substrate binding (55, 166). These results
suggest that these residues are indeed important for laforin interaction with glucan,
which protects these peptides from deuteration.

In the DSP, peptides encompassing the recognition domain (Figure 6.10A and
B), the variable loop (Figure 6.10C), the D loop (Figure 6.10D and E), the PTP loop
(Figure 6.10F), and the R motif (Figure 6.10I and ]) all exhibit a >10% change in
deuteration for at least one time point following incubation of laforin with glycogen.
As with the CBM, only decreases in deuteration were observed when glycogen was
present, indicating protection of the indicated regions of the DSP from deuteration
due to substrate binding. Interestingly, the peptide encompassing residues 282-289
adjacent to the R motif exhibited the largest decrease in deuteration of the entire
laforin protein (Figure 6.10G), indicating that this region may play a role in
substrate binding and presentation to the active site. This peptide contains the final
residue of the AYLM motif (Figure 6.7A), a conserved sequence motif that is a
signature of DSPs (2) and has been demonstrated to play a role in interdomain
interaction in SEX4 (160). This motif lies between predicted secondary structure
and is highly solvent accessible (Figure 6.7A), and thus may consist of a solvent-
exposed loop that is primed for substrate interaction. To confirm this finding, we
examined a peptide encompassing the entire AYLM motif in laforin and found that
this peptide also demonstrates a large decrease in deuteration when glycogen is
present (Figure 6.10H). Altogether, the protection from deuteration observed in
these regions of the DSP indicates a role for these regions in substrate presentation

to the active site.
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The above changes in deuteration across laforin upon glycogen binding are
more easily visualized when the maximum percent deuteration changes at any time
point are graphed for each peptide across the protein. Any increases in deuteration
when substrate is present then reflect a positive change, while decreases in
deuteration are indicated by a negative change. If there are major conformational
changes in a protein’s structure upon substrate binding, then one observes both
positive and negative changes in protein deuteration. We previously demonstrated
that SEX4 exhibits only decreases in deuteration when its physiological substrate,
amylopectin, is present (77) (Figure 6.11A). This result indicates that SEX4 does not
undergo major structural rearrangements upon binding, a finding confirmed by the
lack of flexibility of SEX4 seen in the crystal structure (160). Surprisingly, there are
only significant decreases in deuteration in laforin when glycogen is present (Figure
6.11B). Therefore, laforin also undergoes no major structural rearrangement upon
binding to its physiological substrate, glycogen. This result is somewhat surprising
given the fact that laforin contains a predicted flexible linker between its CBM and
DSP. Our results suggest that the linker is not as flexible as predicted and may be
integrated into the tertiary structure of the individual domains.

In the CBM of SEX4, all areas containing residues necessary for binding show
significant protection upon amylopectin binding (77) (Figure 6.11A). Thus, the
Trp32, Trp60, and Trp99 residues in the CBM of laforin are likely critical for binding
to glycogen. In support of this hypothesis, the W32G mutation abolishes binding of
laforin to glucans (Figure 6.4C and D). In the DSP of laforin, regions found previously
to be highly solvent-exposed (the recognition domain, variable loop, D loop, PTP
loop, AYLM motif, and R motif) (Figure 6.7A) all show decreases in deuteration
when glycogen is present (Figure 6.10 and 6.11B). These same regions in the DSP of
SEX4, with the exception of the AYLM and R motifs, show significant protection from
deuteration when amylopectin is present (77) (Figure 6.11A), indicating the
importance of these regions in the function of glucan phosphatases as well as other
DSPs (2).

Wild-type laforin exhibits a lesser degree of protection from deuteration

overall with its endogenous substrate (Figure 6.11B) than does SEX4 with its
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endogenous substrate (77) (Figure 6.11A). In addition, laforin exhibits a lesser
degree of protection from deuteration upon binding to amylopectin (Figure 6.8A)
than does SEX4 (77) (Figure 6.11A). These results indicate that laforin may possess
decreased binding affinity and/or increased release from substrate, or faster
dynamics, than SEX4. These biophysical properties would result in decreased
protection from deuteration by a substrate and may yield an enzyme with a high
specific activity. In support of this finding, laforin exhibits a 3 to 10-fold higher rate
of glucan dephosphorylation over SEX4 (55, 138). The AYLM motif and the R motif of
laforin may thus play a role in the faster dynamics of laforin, with the differences in
protection from deuteration between laforin and SEX4 indicating a unique

mechanism of substrate interaction for the DSP of laforin.

The DXMS method elucidates the pathogenesis of LD mutations in laforin.

To confirm the validity of our experimental design and verify that DXMS was
capable of providing data in agreement with established biochemical analyses, the
binding of the W32G and G240S LD mutants to glycogen was examined using DXMS.
The W32G mutation is reported to abolish glucan binding while the G240S laforin
mutant retains this ability (141) (Figure 6.4C and D). Therefore, it was expected that
the W32G mutant would show minimal changes in deuteration when glycogen is
present, while the G240S mutant would exhibit protection from deuteration
indicative of glucan binding in a pattern similar to wild-type laforin. For these DXMS
experiments, an upgraded DXMS system was utilized that featured an Orbitrap Elite
mass spectrometer with enhanced peptide sensitivity in order to better analyze
wild-type and mutant laforin. Although wild-type laforin exhibited a lesser degree of
overall protection upon glycogen binding following analysis with the Elite (Figure
6.12A) than seen previously using an LCQ Classic mass spectrophotometer (Figure
6.11B), the patterns of protection from deuteration were similar and allowed for
comparison with subsequently analyzed mutants.

DXMS analysis of the W32G mutant in the presence of glycogen revealed that
both the DSP and the CBM did not interact with glycogen to any substantial degree.

There were no significant changes in deuteration when glycogen was present other
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than a slightly significant decrease in deuteration of 11% in the peptide
encompassing residues 21-52 that may be due to additional undetermined glucan
binding residues in this region (Figure 6.12B). Strikingly, the W32G mutant
exhibited loss of protection to both the CBM and DSP even though the mutation is
within the CBM. These results corroborate the lack of ability of W32G to bind
glucans as previously observed (Figure 6.4C and D) and suggest an integrated
binding of glucan between the CBM and DSP. These results also provide insight into
the pathogenesis of this mutant.

In contrast to W32G, the binding dynamics of the G240S mutant following
glycogen binding (Figure 6.12C) were very similar to wild-type (Figure 6.12A). We
observed significant protection from deuteration in all regions of laforin confirmed
previously (Figure 6.11B). Interestingly, the protection from deuteration seen in the
D loop where the G240S mutation resides was not diminished (Figure 6.12C),
indicating that the D loop is still able to interact with substrate. Overall, these DXMS
results support the biochemical data that the G240S mutation does not dramatically
impact substrate binding or activity (Figure 6.4). As the binding of the CBM and DSP
of laforin to glycogen are minimally impacted by the G240S mutation, it is likely that
another mechanism such as the disruption of protein-protein interactions is
responsible for the pathogenesis of this mutant (141). The DXMS results pertaining
to W32G and G240S are thus supported by our biochemical assays and prior
biochemical characterization, indicating the validity of our DXMS experimental

approach.

Insights into the binding mechanism of laforin.

Next, we explored the binding dynamics of the inactive C266S laforin mutant
in order to assess the deuteration changes of a mutation that we predicted would
strengthen binding to glycogen. As the catalytic cysteine residue has been replaced
with another small, polar residue in this mutant, we hypothesized that the structure
of the active site of laforin would not be disrupted and laforin would retain the
ability to bind glycogen. However, because the enzyme would be unable to perform

catalysis, we expected that C266S laforin would remain bound to glycogen and
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would therefore exhibit increased protection from deuteration across the protein
than observed in wild-type laforin upon substrate binding.

Surprisingly, we found that although the CBM of C266S laforin showed
significant protection of the Trp32 and Trp99 residues as seen in wild-type laforin
when glycogen was present (Figure 6.13A and B), the DSP of the C266S mutant did
not exhibit significant protection from deuteration (Figure 6.13B). These results
indicate that while the CBM of C266S laforin is able to bind glycogen, the DSP
domain has impaired glucan binding ability. It is likely that the C266S mutation
alters the structure of the active site and prevents the binding of glycogen by the
DSP. However, the C266S mutant is still able to bind glucan to a similar degree as
wild-type laforin using glucan-binding assays (Figure 6.4C and D), indicating that
the CBM domain alone is sufficient for the interaction of laforin with glucan.

Although contrary to our hypothesis, these results for C266S laforin, together
with our findings that the W32G mutation completely abolished glucan binding,
provide insight into the overall mechanism of laforin. The W32G mutation in the
CBM disrupts glucan binding in both the CBM and DSP domains, while the C266S
mutation in the DSP only disrupts binding of the DSP. This suggests that the CBM of
laforin is necessary for initial glucan interaction in order bring the DSP into position
for binding, indicating synergy between the two domains. The evidence that these
domains can interact with glucan independently also supports the presence of a

flexible linker between the two domains (Figure 6.7A).

Effects of LD mutations in the GH1-like region on laforin binding dynamics.
We assessed the binding dynamics of the Y294N and P301L LD mutations
within the GH1-like region of the R motif of laforin (Figure 6.7A) in order to
determine the impact of these mutations on glucan binding. Due to the conservation
of the GH1-like region of laforin with the active site of family 1 glycosyl hydrolases,
enzymes that bind to and act on carbohydrates, we hypothesized that the GH1-like
region in the DSP of laforin is involved in glucan binding. We therefore predicted

that the Y294N and P301L mutations would disrupt the binding of the R motif to

glycogen.
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The Y294N and P301L mutants both exhibited similar patterns of protection
from deuteration in the CBM as wild-type laforin when glycogen was present
(Figure 6.14), with significant protection of the Trp32, Trp60, and Trp99 residues
observed as seen in wild-type laforin (Figure 6.11B). However, the region of the
CBM encompassing the Trp99 residue in both Y294N and P301L exhibited a 10-25%
greater decrease in deuteration than wild-type laforin (Figure 6.14). Both mutants
demonstrated significant protection of the recognition domain, variable loop, and D
loop (Figure 6.14B and C) as seen previously in wild-type laforin (Figure 6.11B).

Contrary to our expectations, the Y294N and P301L mutants both exhibited a
dramatic 40-55% greater decrease in deuteration in the R motif when glycogen was
present compared to wild-type (Figure 6.14). These results indicate that the R motif
in Y294N and P301L is interacting much more strongly with glycogen, as the
dissociation of this region from substrate to allow deuterium uptake occurs at a
slower rate than seen in wild-type. The stronger interaction of the DSP with
glycogen may also be prolonging binding by the CBM, leading to the increased
protection of the W99 residue observed in both mutants. This result provides
additional evidence that the CBM and DSP are working in a synergistic fashion.

We compared the peptides spanning the GH1-like region in the R motif in
wild-type laforin that showed a >10% decrease in deuteration with glycogen
present (Figure 6.15A) to the peptides in the same region in Y294N (Figure 6.15B)
and P301L (Figure 6.15C). This comparison revealed that the peptides
encompassing the Y294N and P301L mutations (peptide 290-296 in Figure 6.15B
and peptide 295-303 in Figure 6.15C) exhibited the slowest rate of deuterium
uptake and thus the strongest association with glycogen. The Y294N and P301L
mutants also demonstrated stronger binding to glycogen than wild-type laforin
using our glucan-binding assays (Figure 6.4C and D). Altogether, these results
indicate that the Tyr294 and Pro301 residues within the GH1-like region of the R
motif are optimal for the DSP to interact with glycogen, but in more of a transient
manner rather than tight binding. Interestingly, each of these mutants exhibited

nearly abolished pNPP activity yet both mutants still exhibit some glucan
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phosphatase activity (Figure 6.4B). Proposed mechanisms to explain these results

are detailed below.

Homology model of laforin reveals spatial binding dynamics.

To better interpret the deuteration changes in the CBM and DSP of wild-type
laforin due to glycogen binding, we determined the spatial orientation of the
important regions in each of the domains and mapped the corresponding changes in
deuteration onto them. As no crystal structure of laforin or a laforin-like protein is
yet available, we generated a homology model of the CBM (residues 1-112) and DSP
(residues 152-331) of laforin using the best available structures for each domain.
First, we performed BLASTp searches to identify the proteins that were most similar
to the laforin CBM and DSP. A BLASTp search of the CBM of laforin identified the
CBM of Geobacillus stearothermophilus cyclodextrin glycosyltransferase (Protein
Data Bank ID: 1CYG) (92) as the closest match (5 x 10-26) with a determined
structure, sharing 36% similarity and 20% identity with laforin. Like laforin, this
enzyme also belongs to the CBM20 family (25).

Meanwhile, the DSP of SEX4 (Protein Data Bank ID: 3NME) (160) was the
closest match (9 x 10-°) to the DSP of laforin, sharing 39% similarity and 24%
identity with laforin (55). Next, we analyzed the sequences of the CBM and DSP of
laforin individually using HHpred to identify the most appropriate crystal structures
to utilize in our modeling efforts (145, 146). HHpred queries alignment and
structural databases such as Pfam, SMART, PDB, CDD, and HMMTigr using hidden
Markov models to identify the closest determined structure. HHpred identified G.
stearothermophilus cyclodextrin glycosyltransferase (1CYG) in the top three hits (2 x
10-22) for the CBM of laforin and SEX4 as the highest hit (5.1 x 10-38) for the DSP of
laforin.

In generating a homology model, one usually performs a sequence alignment
between the protein domains of the solved structure and that of the modeled
domains. However, because CBM20 domains are very heterogeneous in sequence
(99) we did not generate an alignment of G. stearothermophilus cyclodextrin

glucanotransferase and the CBM of laforin. We utilized G. stearothermophilus
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cyclodextrin glucanotransferase to generate a homology model of the CBM of laforin
(Figure 6.16) using the SWISS-MODEL function in Swiss PDB viewer (5). Before
generating a homology model of the laforin DSP, we first analyzed SEX4 as a DSP
template by performing a sequence alignment of the DSP domain of laforin and
SEX4 using PROfile Multiple Alignment with predicted Local Structure 3D
(PROMALS3D), which utilizes primary, predicted secondary, and available tertiary
information to align sequences (118). Based on the match of the predicted
secondary structure of laforin with the structure of SEX4 (Figure 6.17A), we utilized
the crystal structure of SEX4 to generate a homology model of the DSP of laforin
(Figure 6.17).

CBM20 domains typically consist of seven 3-strands that form an open-sided
distorted B-barrel, with aromatic residues interacting with glucan chains rather
than crystalline glucans as seen in other CBM families (99). The homology model of
the CBM of laforin (Figure 6.16A) suggests that the CBM consists of 6 3-sheets that
fold into the characteristic compact $-sandwich composed of anti-parallel -sheets,
with the N-terminus and C-terminus pointing towards opposite ends of the longest
axis of the molecule (98). The conserved Trp32 and Trp99 residues form a compact,
rigid, and surface-exposed hydrophobic site containing inter-ring spacing
appropriate for binding to a-1,4-linked glucoses like those found in glycogen. This
hydrophobic site forms a shallow pocket on the surface of the CBM that is highly
accessible and thus primed for substrate interaction (Figure 6.16B).

To visualize the spatial arrangement of the DXMS results in the CBM of wild-
type laforin, the percent decreases in deuteration observed in the CBM following
glycogen binding (Figure 6.11B) were overlaid onto the structural model (Figure
6.16). The regions of the hydrophobic binding site encompassing the Trp32 and
Trp99 residues exhibited the highest degree of protection observed in the CBM,
indicating that the Trp32 and Trp99 residues are crucially positioned for glucan
binding. Interestingly, the face of the CBM opposite to the hydrophobic binding site
where the Trp60 residue resides also exhibits protection from deuteration upon

glycogen binding (Figure 6.16B, inset). As this residue is located far from the
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proposed hydrophobic binding site, it is possible that the Trp60 residue is involved
in interaction of the CBM with the DSP upon substrate binding, thus leading to its
protection.

The structural elements in the homology model of the DSP of laforin that we
generated exhibited a match with the predicted secondary structure of laforin
(Figure 6.17A and B), indicating that the predicted secondary structure of laforin
was correctly interpreted in the model. Members of the DSP family exhibit a
characteristic affo. DSP domain fold with the catalytic cysteine of the PTP loop at the
base of the active site cleft (2). Our in silico approach suggests that the laforin DSP
domain folds into the a.fa fold characteristic of DSPs, exhibiting a five-stranded f3-
sheet surrounded by seven a-helices (4) (Figure 6.17B). As seen in the structures of
other DSPs (160, 177), the variable loop, D loop, and R motif in the DSP model of
laforin are all positioned around the PTP loop, together forming the active site cleft.
The catalytic cysteine (Cys266) and the conserved aspartic acid (Asp235) of the D
loop both point toward the catalytic groove. Interestingly, the homology model
indicates that the variable loop of laforin possesses two unique a-helices that are
uncommon to DSPs, but are found in SEX4 (160). As the variable loop of other DSPs
lacks secondary structure and is in fact a loop (175, 177), the a-helical structure of
the variable loop in glucan phosphatases may confer the specificity of these
enzymes toward glucans and is possibly a defining characteristic of this class of
phosphatases.

The regions in the DSP of laforin that demonstrated decreases in deuteration
following glycogen binding include the variable loop, D loop, PTP loop, and the R
motif (Figure 6.11B). As these regions are integrally associated with the active site
in the DSP model (Figure 6.17B), the DXMS results indicate that these regions are
likely involved in presentation of the glucan substrate to the active site of laforin.
The surface view of the laforin DSP model illustrates the topology of the active site
cleft and the concentration of these regions around the active site (Figure 6.17C).
Interestingly, the AYLM motif was also protected from deuteration upon glycogen

binding (Figure 6.11B), demonstrating the largest decrease in deuteration observed

107



in the DSP of laforin although it lies on the opposite face of the DSP domain from the
active site (Figure 6.17C, inset). This region may be interacting with the Trp60
residue in the CBM domain in order to facilitate the interaction between the CBM
and DSP necessary for dephosphorylation of the glucan substrate to occur,
indicating synergy between the domains.

Finally, we assessed the spatial impacts of LD mutations in the GH1-like
region of the R motif on the binding dynamics of laforin. We mapped the differences
in the maximal percent decreases in deuteration following glycogen binding
between corresponding regions of wild-type laforin (Figure 6.14A) and P301L
(Figure 6.14C) onto the DSP homology model (Figure 6.18). In our DSP model, the
Pro301 residue is oriented towards the active site and is thus primed for substrate
interaction. The R motif where the P301L mutation resides demonstrated the
greatest decrease in deuteration compared to wild-type (Figure 6.18), indicating
that the P301L mutation causes increased interaction between the R motif and
glycogen. The Y294N mutation also demonstrated similar decreases in deuteration
in the same regions as P301L (Figure 6.14B and C), indicating a similar impact for
this mutation.

The association of the R motif with the active site of laforin in the DSP model
and the increased protection of this region from deuteration following mutation
provides further evidence that the Tyr294 and Pro301 residues within the GH1-like
region play a crucial role in substrate interaction. Mutation of these residues is thus
impacting substrate presentation by the R motif to the active site of laforin,
providing insight into the molecular etiology of the Y294N and P301L disease

mutations.

Discussion.

Insights into the structure and mechanism of laforin.
Lafora disease is a fatal neurodegenerative disorder resulting from mutation
of the glucan phosphatase laforin, the only known vertebrate phosphatase with the

ability to bind and dephosphorylate glucans. Although the crystal structure of a
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glucan phosphatase in plants known as SEX4 has been solved, this enzyme shares
few structural aspects with laforin. We utilized DXMS in conjunction with homology
modeling to gain insight into both the structure and mechanism of laforin, as the
enzyme likely possesses distinct architecture and unique binding dynamics from
SEX4. Our results provide insight into how the CBM and DSP domains of laforin
function synergistically in the binding and dephosphorylation of glycogen.

Using DXMS, we found that like SEX4, laforin does not undergo structural
rearrangements upon glycogen binding. We also discovered several regions in the
both the CBM and DSP of laforin that exhibited significant solvent accessibility.
These regions lay between areas of predicted secondary structure, supporting
structural predictions as well as indicating areas of the protein that, solvent-
exposed and free from structure, likely consist of loops that are primed for substrate
interaction. In the laforin CBM, these areas included the peptides encompassing the
Trp32, Trp60, and Trp99 residues, conserved CBM20 family residues that are
important for glucan binding. Upon glycogen binding, the regions encompassing
these residues demonstrated significant protection from deuteration, supporting
the role of these residues in glycogen binding. In a homology model of the CBM of
laforin, the Trp32 and Trp99 residues form a surface-exposed hydrophobic binding
site, with these residues appropriately spaced for the accommodation of glucan
chains. We observed that the W32G mutation largely abolished the ability of laforin
to bind to glucans, providing evidence that both tryptophan residues within the
hydrophobic binding site of the CBM are crucial for glucan binding.

In the DSP of laforin, the recognition domain, variable loop, D loop, PTP loop,
AYLM motif, and R motif all exhibited solvent accessibility and lay between regions
of predicted secondary structure. The D loop contains the Asp235 residue that
makes direct contact with the substrate, acting as the general acid-base catalyst in
the dephosphorylation reaction. The recognition domain and the variable loop are
both involved in substrate interaction and contribute to the depth of the active site,
while the variable loop also assists in orienting the active site arginine to interact
with the phosphate of the substrate. The PTP loop possesses the cysteine residue
that catalyzes the dephosphorylation reaction, while the AYLM motif, a sequence
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motif specific to DSPs, has been demonstrated to play a role in domain interaction in
the glucan phosphatase SEX4. Lastly, the R motif possesses a conserved Arg residue
specific to DSPs.

These regions in the DSP of laforin all demonstrated significant decreases in
deuteration when glycogen was present, indicating that interaction of these regions
with substrate is protecting them from deuterium uptake. These regions in SEX4,
with the exception of the AYLM motif and R motif, also exhibit protection from
deuteration when substrate is present, indicating the importance of these regions in
substrate binding. A homology model of the DSP domain of laforin indicates that the
variable loop, D loop, PTP loop, and R motif are positioned directly around the active
site, together forming the active site cleft. While the recognition domain of laforin
could not be modeled in laforin, the recognition domain in addition to the variable
loop, D loop, and PTP loop are directly associated with the active site of SEX4,
indicating that these regions are crucial for substrate presentation to the active site.
Secondary structure predictions and the homology model of laforin indicate that the
variable loop of laforin consists of two a-helices as seen in SEX4. As this region is a
loop in other DSPs, the a-helices within the variable loop may confer the preference
of laforin and SEX4 for glucan substrates.

The protection of the AYLM motif of laforin, which lies on the opposite face of
the DSP domain from the active site in the homology model, when glycogen is
present suggests that the AYLM motif may not interact with the glucan that is bound
at the active site. Interestingly, the Trp60 residue in the CBM of laforin also
demonstrates protection from deuteration when glycogen is present, although this
residue resides on the opposite face of the CBM from the hydrophobic binding site.
Together, these results indicate that Trp60 and the AYLM motif may constitute an
interaction site between the CBM and DSP. In support of this hypothesis, the AYLM
motif of SEX4 has demonstrated adaptation for interdomain interaction. We
observed that the W32G mutation within the CBM of laforin largely abolished glucan
binding by both the CBM and DSP domains while the C266S mutation in the DSP
affected only glucan binding by the DSP. Thus, the CBM likely makes initial contact
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with glucan substrates, bringing the DSP into position for binding and
dephosphorylation of the glucans. It is possible that the synergy of the CBM and DSP
domains upon glucan binding is mediated by the interaction of the Trp60 residue of
the CBM with the AYLM motif in the DSP. Additional biochemical analyses following
mutagenesis of the Trp60 residue and the AYLM motif are needed in order to
elucidate the role that these motifs play in interdomain interaction in laforin.

Our DXMS analyses indicate that like other CBM20 family members, laforin
prefers heterogeneous substrates possessing soluble glucan chains, such as
glycogen, rather than insoluble, crystalline glucose polymers such as amylopectin
and B-cyclodextrin. Interestingly, laforin exhibits a 3 to 10-fold greater rate in the
dephosphorylation of amylopectin than does SEX4. The results indicate that laforin
possesses faster binding dynamics, or binding to and release from substrate, than
SEX4. In addition, laforin also exhibits less protection from deuteration upon both
glycogen and amylopectin binding than observed in SEX4 following amylopectin
binding. We observed that the C266S mutation abolished binding of the DSP domain
to glucans while the CBM retained the ability, conferring similar binding affinity of
C266S to glucans as seen with wild-type laforin. Together these results support the
presence of a flexible linker between the CBM and DSP of laforin, which may
contribute to the faster dynamics of the protein.

Surprisingly, the R motif of laforin demonstrates protection from deuteration
upon glycogen binding while the R motif of SEX4 does not. However, the R motif of
SEX4 is positioned directly adjacent to the active site in the crystal structure of
SEX4. We discovered a sequence within the R motif shared between laforin, SEX4,
and the active site of family 1 glycosyl hydrolases. This glycosyl hydrolase family 1
(GH1)-like sequence was highly conserved among distantly related laforin
orthologs, indicating that this conserved sequence plays a role in the interaction of
the R motif with glucans in laforin. The Y294N and P301L mutations within the
GH1-like region led to an increased interaction of the DSP domain with glycogen,
demonstrating that these residues are involved in glucan interaction. The GH1-like

sequence within the R motif likely confers the ability of the R motif of laforin to
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interact with glucan. This involvement of the R motif of laforin in glucan binding, in
addition to the presence of a flexible linker between the CBM and DSP, may
contribute to the faster binding dynamics of laforin.

Like SEX4, we observed a role for the AYLM motif in interdomain interaction,
indicating that this may be a general feature of the glucan phosphatases. However,
the involvement of the R motif of laforin in glucan binding indicates unique binding
dynamics of the DSP from glucan phosphatases like SEX4. In addition, we have
gained insight into the previously uncharacterized binding mechanism of the
CBM20 domain of laforin. A crystal structure of laforin would support these
findings, and our DXMS results indicate that the higher substrate preference of
laforin for glycogen over other complex carbohydrates should be considered in

crystallization attempts.

Insight into the molecular etiology of LD mutations.

Currently, no therapeutic options exist for Lafora disease patients with
missense mutations in laforin. Although the impact of several missense mutations
on laforin binding and activity has been reported, the conformational changes or
mechanistic disruption responsible for these effects has not been studied. We
therefore assessed the structural dynamics of the W32G mutation in the CBM of
laforin and the G240S, Y294N, and P301L mutations in the DSP domain.

The W32G mutation largely abolished binding of both the CBM and DSP
domain to glycogen, indicating that the Trp32 residue, a conserved CBM20 family
residue, is absolutely critical for laforin association with glycogen. Our work
provides insight into the molecular etiology of this mutation. As this mutation
prevents laforin from interacting with glycogen, laforin is likely unable to
dephosphorylate glycogen and prevent the formation of LBs.

In contrast to the W32G mutant, the G240S mutation within the D loop did
not impact the structural dynamics of laforin. Our DXMS results are in agreement
with prior work demonstrating that this mutation impacts the interaction of laforin
with PTG, a protein involved in glycogen synthesis. Laforin acts as a scaffold to allow

its binding partner malin to ubiquitinate PTG in order to target the protein for
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proteasomal degradation. If laforin cannot bind to PTG, the regulation of PTG
protein levels and thus the rate of glycogen synthesis by malin is prevented. The
agreement of our biochemical and DXMS analyses of W32G and G240S with
previously published findings also lends validity to our experimental approach.

We then explored the impact of the Y294N and P301L mutations on the
structural dynamics of laforin. As these mutations reside within the GH1-like region
of the R motif, a region we propose to be important in glucan binding, we expected
that these mutations would disrupt glucan binding by the DSP domain. In support of
this hypothesis, previous work has indicated that these mutations completely
disrupt both glucan binding and phosphatase activity of laforin. Surprisingly, our
glucan binding assays and DXMS results revealed that both the Y294N and P301L
mutations cause a strengthened interaction of the R motif with glycogen compared
to wild-type laforin and that these proteins still possess some glucan phosphatase
activity. This increased interaction of the DSP with glycogen appears to also prolong
the interaction of the CBM of laforin, particularly the Trp99 residue, with glycogen.
The prolonged interaction of an enzyme with its substrate due to mutation is not a
unique phenomenon. Specific mutations in PTP1B lead to an increase in the
interaction with its substrate, the insulin receptor, effectively trapping the enzyme
with the substrate (20, 144)

Our data suggest that the Y294N and P301L mutations cause a breakdown in
the normal on/off ability of laforin that potentially disrupts the enzyme’s ability to
scan for phosphorylated glucans. We propose that the underlying biochemical
explanation for LD in these patients is increased and prolonged binding of glucans
by laforin. Additional work by our lab studying plant glucan phosphatases suggests
that Tyr294 is likely involved in aromatic stacking interactions with the glucose
moieties in glycogen. The increased interaction observed with Y294N could be due
to hydrogen bonding that occurs between the amide nitrogen of asparagine and the
hydroxyl groups present on the glycogen chain. Similarly, the Pro301 residue,
shown to be oriented towards the active site in our homology model, may be
involved in hydrophobic stacking interactions that are strengthened due to the

substitution of this residue with a hydrophobic leucine.
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The altered glucan interactions resulting from the Y294N and P301L
mutations likely eliminates the normal shuttling of the glucan chain through the
laforin active site that occurs via hydrophobic stacking between the chair
conformation of each glucose moiety and the aromatic ring. This increased
interaction would replace the normal movement of the glucan chain through the
laforin active site, causing what Dr. Gentry has defined as a “velcro effect” that
inhibits movement of glycogen chains through the DSP-glucan binding channel. As
the Y294N and P301L mutants still exhibit some glucan phosphatase activity, the
enzyme may be able to perform a few rounds of catalysis before becoming “trapped”
in the bound substrate.

Now that we have identified a method to purify large yields of laforin, we can
perform a greater range of studies assessing the mechanism of laforin and laforin
mutants. Further work using surface plasmon resonance and isothermal titration
calorimetry with homogeneous glucan substrates to assess binding affinities and
enzyme Kinetics will provide further insight into the impact of the Y294N and P301L
mutations on the rate of glucan dephosphorylation by laforin.

The insights gained from our work will likely aid in the development of
therapies for LD patients. If our hypothesis with Y294N is correct, then LD patients
with the Y249N or P301L mutation may be treated by a yet undiscovered laforin
inhibitor that could bind weakly to laforin and negate the increased laforin-glucan
interaction. This treatment would allow laforin to function more normally,
especially considering that much of its interaction is, presumably, based upon

binding by its CBM domain.

Copyright © Amanda Renee Sherwood 2013
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Figure 6.1. Amide hydrogen exchange and DXMS experimental layout.

A. Three main groups of potentially exchangeable hydrogens exist in a protein.
Hydrogens covalently attached to carbon atoms (green H) do not exchange.
Hydrogens that are part of side chain functional groups (blue H) exchange so rapidly
that incorporated deuterium is not retained during processing. The amide
hydrogens (red H) do exhibit exchange that can be measured by DXMS (adapted
from Hsu) (76). B. This diagram depicts the general workflow of a typical DXMS
experiment. A protein is initially incubated in D20 buffer for predetermined lengths
of time to determine areas of rapid or slow deuterium uptake, after which exchange
of deuterium (indicated by blue circles) is quenched using low temperature and pH.
Following pepsin proteolysis of the protein and separation of the generated
peptides using HPLC, automated sample processing using LC-MS/MS tandem mass
spectrometry generates the data used for peptide identification and DXMS analysis
to determine the deuteration over time of the generated peptides. Differences in the
mass of the pepsin-generated peptides indicates the amount of deuterons (or the

number of amino hydrogens that have exchanged) incorporated into the peptide.
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Recognition Domain

% R Motif

Variable Loop

Figure 6.2. The characteristic regions of the DSP domain. The crystal structure
of the DSP domain of SEX4 is shown. The important regions characteristic of all
DSPs are indicated in green, with the active site depicted in red. The regions

together compose the active site cleft.
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Figure 6.3. The glycosyl hydrolase family 1 active site pattern in the R motif of
laforin. A. Laforin possesses an N-terminal carbohydrate binding module family 20
domain (CBM20), an intermediate linker region, and a C-terminal dual-specificity
phosphatase (DSP) domain featuring the canonical DSP CXsR active site motif
(indicated by a black bar). Known LD point mutations are equally distributed across
the domains of the protein (78). B. The CBM and DSP domains of SEX4 lie in an
orientation opposite to that of laforin. Unlike laforin, SEX4 also contains a domain to
target it to the chloroplast (cTP; chloroplast targeting peptide) (112) as well as a C-
terminal domain (CT) critical for folding (160). Although in different families, the
CBMs of laforin and SEX4 belong to the same evolutionarily related CBM clan (25,
35). C. Following bioinformatics analyses of laforin and SEX4 using multiple
iterations of PSI-BLASTp and PFAM, we discovered regions within the variable loop
and the R motif of the DSP of these enzymes with remote homology to glycosyl
hydrolase family 10 (GH10) and family 1 (GH1) enzymes, respectively. Shown are
sequence alignments of the GH10-like region in the variable loop and the GH1-like
region in the R motif of laforin from a variety of organisms, illustrating the
remarkable conservation of these GH-like regions. Residues boxed in dark grey are
identical, while residues in light grey indicate conserved substitutions. The number
above the sequence indicates the amino acid number of laforin. D. The structure of
SEX4 (tan) overlaid onto the structure of VHR (teal) with an RMSD of 1.84A. The

inset depicts the differing structure of the variable loop.
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Figure 6.4. Biochemical characterization of Ni-NTA purified wild-type laforin
and mutants. pNPP assays, glucan phosphatase assays, and glucan binding assays
were performed using wild-type laforin and laforin mutants. The purity of the
proteins utilized in these studies was assessed via Western analysis of the HISes
epitope tag using a mouse monoclonal a HIS¢ antibody (Neuromab). Phosphatase
activity of mutants was then corrected following densitometric analysis based on
the amount of laforin present in equal amounts of total protein for the mutants
compared to wild-type laforin. WT, wild-type. A. Specific activity of laforin against
pNPP at pH 5 and 6, the most optimal for laforin activity (55). Inactive C266S laforin
was used as a control. At least 8 replicates were performed for each protein. Error
bars indicate means + SEM. B. Malachite green assay of laforin to measure inorganic
phosphate release from amylopectin at pH 7, the optimal pH for laforin (55). At least
8 replicates were performed for each protein. Error bars indicate means + SEM. C.
The binding of laforin to amylose resin was assessed. Wild-type laforin is able to
bind glucan and is pulled down in the amylose-resin pellet (P). Proteins unable to
bind glucan are recovered in the supernatant (S). This experiment was repeated
three times and the depicted image is a representation. D. Glycogen affinity native-
PAGE electrophoresis of wild-type laforin and mutants. The right gel contains 0.03%
glycogen, while the left gel contains no glycogen. Mutants unable to interact with
glycogen move more quickly through the glycogen gel than wild-type laforin, while
mutants with stronger binding migrate slower than wild-type. The black arrow
indicates the position of a non-laforin protein that co-purified with laforin and does
not demonstrate glucan binding. The experiment was repeated three times and the

depicted image is a representation.
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Figure 6.5. Purification of recombinant wild-type laforin for DXMS and peptide
coverage map. A. Following expression of laforin in E. coli cells and incubation of
Ni2+-agarose with cell lysate, the Ni2*-agarose eluate (“Input”) was purified to near
homogeneity via separation with an S200 gel filtration column (“Final”). B. Only the
S200 fractions beneath the sharp monomer peak at 80 mL of column eluate were
collected for DXMS analysis. C. Sequence coverage map of peptides resulting from
pepsin digestion of wild-type laforin identified during MS/MS experiments. A total
of 134 high-quality peptides were detected. Solid lines indicate the 27 peptides
utilized in my analysis, with dashed lines indicating peptides that were not used but
were examined for exchange behavior that resembled the selected peptides.

Numbers correspond to the amino acid position of laforin.
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Figure 6.6. Mass spectra of residues 98-111 of wild-type laforin. The mass
spectra of a single peptide encompassing residues 98-111 in the CBM of laforin that
exhibited a change in mass following incubation with deuterium alone or with
substrate. A. The spectra of peptide 98-111 prior to exposure to D20. ND;
nondeuterated. B. The spectra of peptide 98-111 following exposure to D20 for
10,000 s. The spectra exhibits a shift to the right to a higher m/z ratio as well as an
increased complexity of peaks, indicating uptake of deuterium. +D,0; deuterium
present. C. The spectra of peptide 98-111 following exposure to D20 for 10,000 s in
the presence of glycogen. +GLY; glycogen present. The spectra demonstrates a shift
to the left to a lower m/z charge ratio compared to panel B when substrate is
present, indicating that this region of laforin is likely interacting with substrate and
is thus protected from deuterium uptake. D. The spectra of peptide 98-111 at
deuterium exchange equilibrium, indicating the highest possible level of deuteration

for this peptide. FD; fully deuterated.
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Figure 6.7. DXMS results of wild-type laforin and SEX4 without substrate. A.
The deuteration level of wild-type laforin from 10-10,000s (see left inset) in the
absence of substrate (APO) is shown, with the lowest deuteration level indicated in
blue and the highest in red (see right inset). Each block represents one of the 27
peptides chosen for analysis from Figure 6.4B, with each bar within that block
representing the average spectra centroid value for an increasing time point with
<2% standard deviation. Therefore, >10% changes in deuteration can be deemed
statistically significant. The CBM of laforin extends from residues 1-112, with the
conserved Trp32, Trp60, Lys87, and Trp99 CBM20 residues predicted to be critical
for glucan binding denoted by asterisks (141, 166). A predicted linker extends from
residues 112-126, and the DSP, with important regions labeled (54), extends from
residues 127-331. The predicted secondary structure of laforin is indicated above
the amino acid sequence, with the a-helices of the DSP domain labeled as per
standard nomenclature (177). PSIPRED (85) was used due to its accuracy in SEX4
structure prediction. The first two amino acids of each peptide lack exchange data,
as the first amino acid does not possess an amide hydrogen and the second
exchanges too rapidly to retain deuterons (8), and so are not included in the figure.
The LD-causing missense mutations utilized in this study are circled in blue, with
the catalytically inactive artificial C266S mutant circled in red. B. The deuteration
level of APO SEX4 (the first 80 amino acids encompassing the cTP are missing) from
10-10,000 s is shown. Residues critical for glucan binding in the CBM are denoted by
asterisks. The secondary structure of SEX4 is indicated above the amino acid

sequence (160) and the important DSP regions are labeled.
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Figure 6.8. DXMS results of wild-type laforin with structurally varied glucan
substrates. Wild-type laforin was incubated with amylopectin, glycogen, or f3-
cyclodextrin during DXMS experiments. Maximal percent changes in deuteration at
any time point between the substrate-free condition and upon binding to
amylopectin (A), glycogen (B), and B-cyclodextrin (C) were calculated for each
peptide of laforin. Individual peptides are indicated by single black bars. The
different regions of the DSP domain are noted at the top of the graphs and the
asterisks indicate the positions of residues within the CBM likely required for glucan
binding. In all panels, a positive value for change indicates increased deuteration
while a negative value signifies a decrease in deuteration after glucan binding.
Changes greater than 10% (dashed lines) are considered to be significant as <2%

standard deviation was observed between experimental replicates.
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Figure 6.9. Peptides within the CBM of laforin that exhibit deuteration changes
after glycogen binding. The percent deuteration of peptides in the CBM of wild-
type laforin between the APO and glycogen-bound conditions was examined over
time. Each point indicates the centroid value of the mass spectra for the peptide at
the indicated time with <2% standard deviation. Black diamonds indicate the APO
condition while gray squares indicate the glycogen condition. The x-axis has a log
scale. Only the peptides covering residues (A) 21-52, (B) 60-65, and (C) 98-111

exhibited a >10% change in deuteration between the APO and glycogen conditions.

130



% Deuteration >

% Deuteration ‘ ‘

m

% Deuteration

\

()

% Deuteration

% Deuteration

Peptide 130-145

100%
90%
80%

|

30%
20%
10%

0%

e
70% o
60% ®
50% s
40% 5
" @
i 9
J
10% a\
-
10 30 100 300 1000 3000 10000
Time (s)
Peptide 193-217 D
100%
90%
80% { =
70% g
60% ud
50% 2
40% g
30% [a]
20% =
10%
10 30 100 300 1000 3000 10000
Time (s)
o Peptide 237-251 F
90%
80% c
70% o
60% ®
1
50% ]
o 5
40% )
(=]
2

10 30 100 300 1000 3000 10000
Time (s)
Peptide 282-289 H

100%

90%

80% c
70% o
60% ®
50% o
40% s
30% [a]
20% X
10%

0%
10 30 100 300 1000 3000 10000
Time (s)
Peptide 297-307 J

100%

90%

80% -

70% o

60% E

50% 9

40% 2

30% o

20% X

10%

0% T . T

30 100 300 1000 3000 10000

Time (s)

131

Peptide 146-155

100%
90%
80%
70%
60%

50%
40%
30%
20%
10%

10 30 100 300 1000 3000 10000
Time (s)
Peptide 228-236
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
10 30 100 300 1000 3000 10000
Time (s)
oo Peptide 267-281
90%
80%
70%
60%
50%
40%
30%
20%
10%
"0 30 100 300 1000 3000 10000
Time (s)
Peptide 276-282
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
10 30 100 300 1000 3000 10000
Time (s)
Peptide 308-317
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0% T T T T T T
10 30 100 300 1000 3000 10000
Time (s)



Figure 6.10. Peptides within the DSP of laforin that exhibit deuteration
changes after glycogen binding. The percent deuteration of peptides in the DSP of
wild-type laforin between the APO and glycogen-bound conditions was examined
over time. Each point indicates the centroid value of the mass spectra for the
peptide at the indicated time with <2% standard deviation. Black diamonds indicate
the APO condition while gray squares indicate the glycogen condition. The x-axis has
a log scale. Peptides covering residues (A) 130-145 and (B) 146-155in the
recognition domain, (C) 193-217 in the variable loop, (D) 228-236 and (E) 237-251
in the D loop, (F) 267-281 in the PTP loop, (G) 282-289 and (H) 276-282 in the
AYLM motif, and (I) 297-307 and (J) 308-317 of the R motif exhibited a >10%

change in deuteration between the APO and glycogen conditions.
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Figure 6.11. Maximal percent decreases in deuteration of SEX4 and laforin
upon substrate binding. For each peptide across the proteins, the maximum
percent changes in deuteration for any time point was determined following SEX4
incubation with amylopectin (A) and laforin incubation with glycogen (B).
Individual peptides are indicated by single black bars. Asterisks indicate the location
of CBM residues necessary for substrate binding, with the important regions of the
DSP domain labeled. In both panels, a positive value for change indicates increased
deuteration while a negative value signifies a decrease in deuteration after glucan
binding. Changes greater than 10% (dashed lines) are considered to be significant as

<2% standard deviation was observed between experimental replicates.
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Figure 6.12. The laforin W32G CBM mutant and DSP mutant G240S validate
the DXMS method. For each peptide across the proteins, the maximum percent
changes in deuteration for any time point was determined following incubation of
wild-type laforin (A), W32G laforin (B), and G240S laforin (C) with glycogen.
Individual peptides are indicated by single black bars. Black asterisks indicate the
location of CBM residues necessary for substrate binding, with the important
regions of the DSP domain labeled. In both panels, a positive value for change
indicates increased deuteration while a negative value signifies a decrease in
deuteration after glucan binding. Changes greater than 10% (dashed lines) are
considered to be significant as <2% standard deviation was observed between
experimental replicates. The red asterisk in panels B and C indicates the location of

the respective mutation.
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Figure 6.13. The DSP of C266S laforin exhibits disrupted glycogen binding. For
each peptide across the proteins, the maximum percent changes in deuteration for
any time point was determined following incubation of wild-type laforin (A) or
inactive C266S laforin (B) with glycogen. Individual peptides are indicated by single
black bars. Black asterisks indicate the location of CBM residues necessary for
substrate binding, with the important regions of the DSP domain labeled. In both
panels, a positive value for change indicates increased deuteration while a negative
value signifies a decrease in deuteration after glucan binding. Changes greater than
10% (dashed lines) are considered to be significant as <2% standard deviation was
observed between experimental replicates. The location of the C266S mutation is

denoted by a red asterisk in panel B.
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Figure 6.14. The Y294N and P301L mutants exhibit strengthened glycogen
binding. For each peptide across the proteins, the maximum percent changes in
deuteration for any time point was determined following incubation of wild-type
laforin (A), Y294N laforin (B), and P301L laforin (C) with glycogen. Individual
peptides are indicated by single black bars. Black asterisks indicate the location of
CBM residues necessary for substrate binding, with the important regions of the
DSP domain labeled. In both panels, a positive value for change indicates increased
deuteration while a negative value signifies a decrease in deuteration after glucan
binding. Changes greater than 10% (dashed lines) are considered to be significant as
<2% standard deviation was observed between experimental replicates. The red

asterisk in panels B and C indicates the location of the respective mutation.
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Figure 6.15. Peptides within the R motif of the Y294N and P301L mutants that
exhibit decreases in deuteration after glycogen binding. The peptides in the R
motif of wild-type laforin (A), Y294N laforin (B), and P301L laforin (C) that
exhibited a >10% change in deuteration between the APO and glycogen conditions.
Each point indicates the centroid value of the mass spectra for the peptide at the
indicated time with <2% standard deviation. Black diamonds indicate the APO
condition while gray squares indicate the glycogen condition. The x-axis has a log
scale. A. Peptides covering residues 298-307 and 308-317 of wild-type laforin. B.
Peptides covering residues 290-296, 297-307, and 308-317 of Y294N laforin. C.
Peptides covering residues 281-294, 295-303, 304-307, 308-317 of P301L laforin.
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Figure 6.16. Homology model of the CBM of wild-type laforin with binding
dynamics. A. Ribbon structure of the laforin CBM homology model with the percent
decreases in deuteration from Figure 6.10B mapped onto it. The percent change
corresponds to the inset. The Trp32, Trp60, and Trp99 residues are indicated in
blue. B. Surface view of the laforin CBM model with the percent decreases in
deuteration mapped onto it. Percent change colors are as in panel A. The inset is a

view of the surface after the model has been rotated 180° on the x-axis.
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Figure 6.17. Homology model of the DSP of wild-type laforin with binding
dynamics. A. Alignment of the DSP domain of laforin and SEX4. Above the amino
acids is the comparison between the predicted secondary structure of laforin
(shown in black) and the known structure of SEX4 (shown in red). The a-helices and
[-sheets are numbered per accepted DSP domain nomenclature (2). The residues
boxed in blue are invariant DSP residues (55). B. Ribbon structure of the laforin DSP
homology model with the percent decreases in deuteration from Figure 6.10B
mapped onto it. The percent change in deuteration corresponds to the inset. The
DSP regions of interest are labeled and the active site highlighted in red. The
recognition domain is not included in the model due to low sequence similarity with
SEX4. The residues in the active site also exhibit a 10-20% decrease in deuteration
as shown in green. The position of the catalytic Cys266 residue in the PTP loop and
the invariant Asp235 residue in the D loop are indicated. C. Surface view of the
laforin DSP model with the percent decreases in deuteration mapped onto it.
Percent change colors are as in panel B. The inset is a view of the surface after the

model has been rotated 180° on the x-axis.
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Figure 6.18. Alteration of the binding dynamics of laforin resulting from the
P301L mutation. The difference in the maximal percent change in deuteration
between corresponding regions of wild-type laforin and the P301L mutant from
Figure 6.13 was calculated and mapped onto the laforin DSP model. The difference
in maximal deuteration is indicated by the inset. The DSP regions of interest are
labeled and the location of the catalytic Cys266, invariant Asp235, and mutated
Pro301 indicated. The active site is highlighted in red.
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

Application of the laforin bioassay with Lafora disease patients.

Currently, experimental therapies for Lafora disease (LD) patients are still in
the early stages of development. Putative therapies include the downregulation of
protein targeting to glycogen (PTG), the glycogen-targeting subunit of PP1, a protein
directly involved in the regulation of glycogen metabolism. Depletion of PTG in a
mouse model lacking laforin resulted in the downregulation of glycogen synthesis
concurrent with an almost complete disappearance of LBs. These mice also
exhibited decreased neuronal cell death and myoclonus (156). Similar decreases in
epilepsy and the formation of LBs, and more importantly, a lack of
neurodegeneration, is observed in laforin-deficient mice in which glycogen synthase
is also lacking (117). The compound sirolimus is known to partially inhibit glycogen
synthase, and is currently in clinical use for another neurological disease known as
tuberous sclerosis (7). Sirolimus may thus prove applicable in preventing the
progression of LD.

Additionally, the use of gene therapy to express the EPM2A and EPMZB genes
and the delivery of these genes using Trojan horse liposomes (also called PEGylated
immunoliposomes) are currently being explored (115). Dr. Eain Cornford of the
Brentwood Biomedical Research Institute is currently exploring the efficacy of
EPMZ2A gene delivery to the brains of mice lacking laforin using intravenous

administration of immunoliposomes (http://projectreporter.nih.gov). If this non-

viral delivery system is successful in animal models in terms of alleviation of the LD
phenotype, an immunoliposome-based cure for LD could be developed for clinical
use. The laforin bioassay that we developed could be used to monitor expression of
the EPM2A gene and/or delivery of protein via immunoliposomes. One could collect
tissue from the brains of mice receiving viral-based therapies and/or
immunoliposome-based therapy to determine the successful delivery of the EPM2A
gene to the brain.

In Chapter 5: Effects of Aminoglycosides on Nonsense Mutations in Laforin

and Malin as a Therapeutic Option for Lafora Disease, we assessed the efficacy of
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aminoglycosides for the readthrough of nonsense mutations in laforin and malin
that cause LD. As our in vitro readthrough model was not optimal for the assessment
of gentamicin, amikacin, or PTC124-mediated readthrough, fibroblasts collected
from LD patients possessing nonsense mutations will be required to fully assess the
efficacy of these compounds. We are currently collaborating with Dr. Antonio
Delgado-Escueta at the University of California Los Angeles School of Medicine in
initiating a clinical trial involving the application of intravenous gentamicin to LD
patients possessing nonsense mutations.

This phase I clinical study will evaluate both the safety and efficacy of a dose-
escalation protocol of gentamicin application. Over the course of a year, six LD
patients possessing several different nonsense mutations in EPM2A will be treated
with intravenous gentamicin for ten day blocks every three months. Each patient
would receive 7 mg/kg gentamicin in 100 mL 5% dextrose for 30 minutes every 24
hours. The pharmacokinetic response of each patient will be used to adjust the
applied dose in order to achieve the peak serum concentration of 30 ug/mL found to
be effective in other trials (131, 165). This protocol will define the dose response
relationship for short-term safety as well as preliminary efficacy effects.

Prior to gentamicin application in patients, the response of individual
patients to the drug will be assessed following collection and treatment of
fibroblasts. Our bioassay for laforin activity can then be applied to measure an
increase in functional laforin protein levels following treatment. If in vitro work in
LD patient fibroblasts demonstrates a response to gentamicin treatment, is it likely
that gentamicin will cause readthrough in the patient, as in vitro and in vivo
readthrough of specific nonsense mutations causing cystic fibrosis and Duchenne
muscular dystrophy has been found to correlate (15, 131). In addition to assessing
the efficacy of intravenous gentamicin application in LD patients based on the
electroclinical and neurologic state of each patient, a biopsy of skin fibroblasts will
be obtained following each dosing regimen in order to determine an increase in

laforin glucan phosphatase activity using the laforin bioassay.
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Structural aspects of laforin and the impact of disease mutations.

Our work examining the structure and binding aspects of the glucan
phosphatase laforin revealed that while this human protein exhibits some
mechanistic similarities with the well-characterized plant glucan phosphatase SEX4,
laforin also exhibits critical structural and mechanistic idiosyncrasies. The crystal
structure of SEX4 reveals that the AYLM motif in the DSP of SEX4 has been adapted
for interdomain interaction (160). Similarly, the AYLM motif of laforin may interact
with the Trp60 residue of the CBM in order to facilitate the association of the CBM
and DSP domains of laforin. Likewise, additional conserved domains within the DSP
domains of laforin and SEX4 are necessary for the binding of the DSP domain to
glucans and presentation of these glucans to the active site.

However, laforin exhibits distinct mechanistic differences with SEX4 in the
DSP domain. Using DXMS, we found that the R motif in the DSP of laforin is involved
in substrate interaction, while the R motif does not play such a role in SEX4 (77). In
addition, laforin possesses a CBM20 domain while SEX4 possesses a CBM48 domain.
While these CBM domains are within the same evolutionarily related clan (25, 35),
SEX4 possesses residues in the CBM involved in glucan binding (160) that laforin
does not. Our DXMS results and homology model of laforin provide insight into the
uncharacterized binding mechanism of the CBM domain of laforin and the
importance of the Trp32 and Trp99 residues in forming a hydrophobic glucan
binding site. We found that laforin prefers soluble glucan chains such as those found
in glycogen over insoluble, crystalline glucans, similar to other enzymes featuring
CBM20 domains (99). We also observed that the Tyr294 and Pro301 residues in the
DSP domain of laforin appear to be crucial for shuttling of these chains through the
active site. The hydrophobic binding site in the CBM of laforin may therefore form a
contiguous glucan-binding channel with the DSP domain as seen in SEX4 (160).

The biochemical and DXMS analyses of the W32G mutation within the CBM of
laforin and the C266S mutation within the DSP of laforin provide evidence that the
two domains can function independently, but may perform synergistic action via
interaction between Trp60 and the AYLM motif. The fact that these domains can

function independently supports the presence of a flexible linker between the CBM
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and DSP domain of laforin, a structural feature not present in SEX4 (160). This
flexible linker in addition to the unique involvement of the R motif of laforin in
substrate interaction may contribute to the faster on/off substrate binding
dynamics that laforin exhibits over SEX4. However, in order to confirm the above
hypotheses, a crystal structure of laforin is required.

Our DXMS analyses of wild-type laforin reveal that the C-terminal end of the
protein encompassing residues 318-331 of laforin and the HIS¢ epitope tag utilized
to purify the protein is >70% deuterated at the earliest time point studied. This
finding indicates that residues 318-331 of laforin in addition to those of the C-
terminal HISs tag are unstructured and highly exposed to solvent, and likely exhibit
significant thermodynamic fluctuations in solution. We hypothesized that this highly
mobile segment of laforin would likely obstruct the packing of proteins required for
crystal formation. In addition, we recently demonstrated that the Cys329 residue
plays a role in laforin dimerization (125). It is possible that laforin does not
crystallize because of its dimerization. Therefore, we generated a C329X mutant of
laforin featuring an adjacent protease site to remove the C-terminal HIS¢ tag utilized
for purification. We found that this construct yields crystals for which we have
obtained data at a resolution of 2.3A. However, we have not yet been unable to
determine the structure of laforin. Laforin is different enough from other
phosphatases (including SEX4) that molecular replacement is not useful.
Additionally, we have been unable to generate crystals from protein with selenium
incorporated. Therefore, we will attempt to soak laforin crystals in heavy atoms in
order to obtain a dataset that will allow us to solve the phase problem.

Upon obtaining the crystal structure of laforin, we can assess the presence of
a flexible linker as well as the interaction of the Trp60 residue of the CBM with the
AYLM motif of the DSP. The role of the AYLM motif in interdomain interaction in
laforin as well as SEX4 may then prove a general feature of glucan phosphatases.
The crystal structure of SEX4 illustrates that the variable loop of the protein
possesses a-helical structure, while this region is an unstructured loop in other

protein DSPs such as VHR (160, 177). Our homology model of the DSP of laforin
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indicates that the variable loop of laforin also possesses a-helical structure. A crystal
structure of laforin would confirm this observation, and support our hypothesis that
the a-helical structure of the variable loop is a feature specific to the glucan
phosphatases and may confer specificity for glucan substrates.

Our study of the W32G and C266S mutations in laforin also suggests that the
CBM of laforin makes initial contact with glucan substrates, bringing the DSP into
proximity to the glucan to allow binding by the DSP to occur. We propose
mutagenesis and DXMS studies of the AYLM motif of laforin in order to determine if
the disruption of this motif prevents the synergy of the CBM and DSP domain
necessary for interaction of the DSP with glucan. If we also observe that mutation of
Trp60 in the CBM does not impact binding of the CBM while disrupting binding of
the DSP, we can confirm the importance of the AYLM motif of laforin in interdomain
interaction.

Our bioinformatics analyses of laforin and SEX4 indicate that the R motif and
variable loop within the DSP domains of these enzymes share sequence homology
with the active sites of glycosyl hydrolases. To examine the role these sequences
play in substrate interaction by the DSP, we determined the impact of the Y294N
and P301L LD mutations within the GH-like region in the R motif of laforin on
glucan binding. Our biochemical and DXMS analyses indicate that these mutations
drastically alter the interaction of laforin with glycogen, supporting a role of this GH-
like sequences in glucan binding. In utilizing a crystal structure of laforin, we could
determine if the GH-like residues in the R motif are indeed positioned to interact
with substrate as our DXMS work and homology model suggest.

Our lab has also worked to characterize the GH-like domain in the variable
loop. This GH domain is shared between laforin and SEX4 and now a recently
discovered glucan phosphatase found in Arabidopsis, Like SEX4 2 (LSF2). LSF2
features all of the domains found in SEX4 with the notable exception of the CBM
domain (Figure 7.1A). How this protein is this able to bind glucans (Figure 7.1B) in
the absence of a CBM domain is curious. Our lab discovered that aromatic residues

within the variable loop make direct contact with a glucan substrate in the LSF2
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crystal structure (104). Additional work by David Meekins in our lab has
demonstrated that aromatic residues within the variable loop are required for
glucan phosphatase activity (Figure 7.1C). These results support a role of the GH-
like sequences in glucan binding in the glucan phosphatases. These GH-like regions
may also prove to be a general feature of glucan phosphatases.

Our studies of the Y294N and P301L mutations in laforin indicate that these
mutations cause laforin to become trapped in glycogen. Now that we have generated
a method to purify large yields of laforin, we can perform additional experiments
with wild-type laforin and the Y294N and P301L mutants in order to determine the
impact of the strengthened glucan binding observed in these mutants. We will
determine the glucan-binding constants and kinetics of these LD mutations using
Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC) with
our collaborator and expert in determining the binding constants and kinetics of
glucan phosphatases, Dr. Birte Svensson. This work, in conjunction with a crystal
structure of laforin, will aid in the design of small molecules that could decrease the
affinity of laforin for glycogen and thus alleviate the LD phenotype.

We have designed and optimized methodologies to immobilize laforin on SPR
chips in order to perform binding experiments. We will utilize multiple
oligosaccharides in conjunction with a Biacore T100 (GE Healthcare), and
independently verify our results utilizing an ITC200 calorimeter (GE Healthcare).
These experiments, performed using structurally varied glucans such as p-
cyclodextrin, glycogen, and amylopectin, will determine the binding affinities and
kinetic constants of wild-type laforin for the various glucan substrates. This work
will also define the interaction of the Y294N and P301L mutants with multiple
glucans at a molecular resolution.

The biochemical and structural analyses that we have performed in this work
provide important insight into the molecular etiology behind several LD mutations
that impact a range of laforin functions, including CBM interaction with glucans,
shuttling of glucan chains through the DSP active site, and interaction with binding

partners. We have also identified potential therapeutics for a subset of LD patients,
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as well as a means to assess the efficacy of these treatments. While additional work
is required to lend support to our findings, our current work has provided
important initial analyses that will facilitate the development of crucial therapies for

a devastating disease.

Copyright © Amanda Renee Sherwood 2013
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Figure 7.1. The role of the GH-like motif in the variable loop of LSF2. A. SEX4
contains an N-terminal domain to target it to the chloroplast (cTP; chloroplast
targeting peptide) (112), a dual-specificity phosphatase (DSP) domain featuring the
canonical DSP CXsR active site motif (indicated by a black bar), a CBM48 domain,
and a C-terminal domain (CT) critical for folding (160). LSF2 contains the same
domains as SEX4 and in the same orientation, although the CBM48 domain is
missing (104). B. A glucan binding assay utilizing amylose resin was performed
using LSF2 and SEX4. VHR, which is unable to bind glucans, was used a control. Like
SEX4, LSF is pulled down in the amylose pellet, while VHR remains in the
supernatant as expected. P; pellet. S; supernatant. C. The crystal structure of LSF2
lacking the cTP is depicted, with tan coloring indicating the DSP domain and green
coloring indicating the CT domain. The active site is shown in red. The inset
highlights the variable loop of LSF2 possessing the GH-like motif. The aromatic
residues Tyr135 and Trp136 are indicated. The pNPP and specific glucan
phosphatase activity of LSF2 following mutation of these residues to alanine is
depicted. Wild-type and inactive C193S LSF2 were included in these assays as a
control. Specific glucan phosphatase activity is decreased when Tyr135 and Trp136
are mutated to alanine, while pNPP activity is not changed. These results indicate
that these residues are specifically involved in glucan binding and not catalysis. The

above work was performed by David Meekins.
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APPENDIX 1: SUPPLEMENTARY PROTOCOLS

PNPP Assay.

Reagents.

4-Nitrophenylphosphate di(tris) salt (Sigma, St. Louis, MO, USA)
DL-Dithiothreitol (Sigma, St. Louis, MO, USA)

Sodium Acetate (Sigma, St. Louis, MO, USA)

Trizma (Tris) Base (Sigma, St. Louis, MO, USA)

Bis-Tris (Sigma, St. Louis, MO, USA)

Sodium Hydroxide (Fisher Scientific, New Jersey, USA)
TrUView Cuvettes (Bio Rad, USA)

0.5 mL Eppendorf tubes (USA Scientific, Orlando, FL, USA)
0.2 u syringe filter (Millipore, Billerica, MD, USA)

10 mL syringes (BD, Franklin Lakes, NY, USA)

Procedure.

1) Thaw enzyme aliquots on wet ice.

2) Prepare 1X assay buffer for each pH to be tested, adding DTT to a final
concentration of 1 mM.

3) Dilute enzymes to 50 to 1000 ng/uL with appropriate 1X assay buffer(s). The
dilution of each enzyme is based upon its purity and rate of activity so that
product formation remains in the linear range of detection during the assay.

4) Each reaction replicate is performed in a final volume of 50 uL, with a set of
at least 3 replicates for each enzyme and pH to be analyzed. If 1 pl of diluted
enzyme is to be added, then each reaction consists of:

- 33 uLH20

- 10 uL 5X assay buffer of optimal enzyme pH

- 1uL100 mM DTT

- 5uL 0.5 M pNPP
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5)

6)

7)

8)

Add 1 uL of diluted enzyme to each reaction, vortex thoroughly to mix, and
place the tube at 37°C. Begin timing the reaction once enzyme is added to
the first tube, and be consistent with timing as enzyme is added to
subsequent reactions. Four replicates per enzyme/ pH with a time interval of
15 seconds for enzyme addition to each replicate is suggested.

Incubate the reactions at 37°C for 10 minutes. After 10 minutes, add 200 uL
of 0.25N NaOH to quench the reactions. Vortex the tubes on their sides to
mix any liquid that has evaporated to the lid. Be sure to add the base at
identical time intervals as the protein was added to the reactions and in the
same order.

Read the absorbance (4) of the reactions at 410 nm, using the appropriate
blank (such as a control reaction with an inactive phosphatase). Cuvettes can
be rinsed and reused.

The molar absorption coefficient (&) of the product phenolate ion is 17,800
M1 cm-1. Use Beer’s Law (A=¢lc) with a path length (/) of 1 cm to find the
concentration of phenolate ion in moles per liter (c) and finally the activity
(umol phosphate released/min per umol of protein) of each replicate, taking

the average.

Tips for success.

1)

2)

3)

While unessential, adding EDTA to 5X assay buffer will chelate iron, which
can react with thiols (DTT) to form free radicals that inactivate PTPs (108).
Although unessential, use of uncharged reaction tubes composed of uncoated
polypropylene or polystyrene and addition of Triton-X-100 (peroxide free)
or BSA (1 mg/mL) to an optimal concentration of 0.01% prevents binding of
a phosphatase to itself or to reaction tubes to preserve phosphatase activity
over time (108).

The pKa of buffer salts for the phosphatase assay buffer (common buffers
include HEPES, acetate, glycine, or Tris) for each phosphatase studied should
correlate with the optimal pH of that phosphatase +0.5 units. A mixture of
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4)

5)

6)

buffer salts is also desirable in pH studies to maintain buffering over a wide
pH range, using the lowest concentrations of these salts possible to maintain
pH during the dephosphorylation reaction (16, 103).

While unessential for phosphatase activity, adjustment of the ionic strength
of the assay buffer to 150 mM with sodium chloride to mimic conditions in
the cell can affect inhibitor potency or substrate affinity either positively or
negatively (108).

The absorption measurement of the terminated phosphatase reaction must
be within the linear range of the spectrophotometer (108). If the absorption
is too high, decrease the incubation time of the reaction and/or the amount
of protein used to ensure product formation is linear over the reaction time.

Tubes can be prewarmed to 37°C for shorter reaction times.

Recipes.

* All prepared in MilliQ H20 18.2 MQcm

* Be sure to allow pNPP to warm to room temp prior to opening, as the compound is
hydroscopic. pNPP stock solutions should be stored at -20°C to prevent non-
enzymatic hydrolysis (103), and should not be added to assay buffer until
experiments (108).

5X Stock Assay Buffer (Store 22°C).

0.5 M Sodium Acetate
0.25 M Bis-Tris

0.25 M Tris

pH to desired pH with HCI

0.5M pNPP and 100 mM DTT (Store -20°C).

Prepared by dissolving into MilliQ H20 18.2 MQcm. Sterile-filter prior to use.
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Troubleshooting.
1) Little to no phosphatase activity.

While most buffers are compatible with phosphatases (103), buffering
components should be tested for an effect on phosphatase activity. When assaying
activity of any enzyme, it is important to consider pH, ionic strength, and buffer
choice, as these attributes can affect the kinetic parameters of an enzyme.
Phosphatases are typically active in a wide pH range (pH 4 to 9), so buffer choice to
maintain desired pH during the phosphatase reaction is essential. The presence of a
reducing agent during PTP purification, storage, and analysis is also necessary to
prevent inactivation of the catalytic cysteine residue by oxidation (103, 109). Also,
be sure to vortex the reaction thoroughly prior to incubation at 37°C. Finally, use
varying amounts of enzyme to determine how much enzyme is required to obtain
detectable linear activity over time. Alternatively, reaction time can be varied while

the amount of enzyme is held constant.

Equipment.

Beckman Coulter DU370 UV /Vis Spectrophotometer (Beckman Coulter,
Indianapolis, IN, USA)

Temperature-controlled hotplate (Fisher Scientific, New Jersey, USA)
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Malachite Green Standard Curve and Assay.

Reagents.

Potassium Phosphate Monobasic (Fisher, Scientific, New Jersey, USA)
Sodium Hydroxide (Fisher Scientific, New Jersey, USA)

Ammonium Molybdate Tetrahydrate (Sigma, St. Louis, MO, USA)
Malachite Green Carbinol Hydrochloride (Sigma, St. Louis, MO, USA)
Tween 20 (Acros, New Jersey, USA)

Grade 5 Filter Paper (Whatman, Clifton, NJ, USA)

4N Hydrochloric Acid (Fisher Scientific, New Jersey, USA)

0.5 mL Eppendorf tubes (USA Scientific, Orlando, FL, USA)

0.2 um syringe filter (Millipore, Billerica, MD, USA)

10 mL syringes (BD, Franklin Lakes, NY, USA)

TrUView Cuvettes (Bio Rad, USA)

N-Ethylmaleimide (Fluka, St. Louis, Mo, USA)

DL-Dithiothreitol (Sigma, St. Louis, MO, USA)

Sodium Acetate (Sigma, St. Louis, MO, USA)

Trizma (Tris) Base (Sigma, St. Louis, MO, USA)

Bis-Tris (Sigma, St. Louis, MO, USA)

Amylopectin (from potato starch) (Fluka, St. Louis, MO, USA)

100% Ethanol (Decon Laboratories, King of Prussia, PA, USA)

Malachite green standard curve.

The phosphate released during a malachite green assay with an active or
potentially active enzyme is quantified by comparison to a standard curve. The
standard curve is a ten-point curve from 100 pmol to 1nmol in 100 pmol
increments.

1) Make a 100 mM stock solution of KH2PO4 in MilliQ H20 or enzyme reaction

buffer.
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2)

3)

4)

5)

6)

Make a 1:100 dilution in purified H20 to create a 1 mM working solution.
This solution will be used to make solutions from 100 pmol to 1nmol per

50 uL. A volume less than 50 uL is difficult to read in the

spectrophotometer.
Solutions (uM) pmol/50 uL
MilliQ H20 0
2 100
4 200
6 300
8 400
10 500
12 600
14 700
16 800
18 900
20 1000

The above table lists the required solutions for the standard curve and the
moles of phosphate present in 50 uL of that solution. Prepare each of the
solutions listed by first diluting a fraction of the 1 mM working solution to
1 mL with purified water. For example, to make a 2 uM solution from the
1mM stock solution, add 2 uL of the stock to 998 uL of QH20. Make and
vortex all ten solutions well before analyzing.

Add 0.01% v/v Tween 20 (from a 10% stock solution) to an aliquot of
malachite green reagent prior to use (10 uL per 10 mL). Keep on wet ice.
Put 50 uL of each solution into a 0.5 mL eppendorf tube, add 100 uL
malachite green reagent + Tween 20, vortex, and incubate at room
temperature for 30 minutes (these proportions are similar to the final
proportions of samples for assay). Reactions are typically performed in
triplicate.

Read all samples at 620nm at 30 minutes, and read again at 40 minutes.

Cuvettes can be rinsed to avoid staining and reused.
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7)

Make a plot of mean absorbance at 620 nm, using a 0 pmol standard as the
blank, (y axis), vs. pmol inorganic phosphate (x axis) for each dilution
sample, and find the best fit line using a computer generated four
parameter logistic (4-PL) curve fit. This can be done using most graphing
software (e.g., Microsoft Excel) to give the linear equation y= mx+b. Using
the standard curve values for the y-intercept (b) and the slope (m) of the
regression line, the concentration of phosphate released (x) can be

calculated using the experimental absorbance value (y).

Malachite green assay.

1) Add 0.01% v/v Tween 20 (from 10% stock solution) to an aliquot of

2)
3)

4)

5)

malachite green reagent prior to use (10 uL per 10 mL). Keep on wet ice.
Thaw enzyme aliquots on wet ice.

Prepare 1X assay buffer for each pH to be tested, adding DTT to a final
concentration of 1 mM.

Dilute enzymes to 50 to 1000 ng/uL with appropriate 1X assay buffer(s). The
dilution of each enzyme is based upon its purity and rate of activity so that
product formation remains in the linear range of detection during the assay.
Each reaction replicate is performed in a final volume of 20 uL, with a set of
at least 3 replicates for each enzyme/ pH to be analyzed. When adding 1 uL
of diluted enzyme, each reaction consists of:

4 uL H20

4 uL 5X assay buffer of optimal enzyme pH

2 uL 100 mM DTT

9 uL 5 mg/mL amylopectin

6) Add 1 uL of diluted enzyme to each reaction and vortex to mix thoroughly,

placing the tube at 37°C. Begin timing once enzyme is added to the first tube,

and be consistent with timing as enzyme is added to subsequent reactions.

Four replicates per enzyme/ pH with a time interval of 15 seconds for

enzyme addition to each replicate is suggested.
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7)

8)

9)

Incubate the reactions at 37°C for 10 minutes. After 10 minutes, add 20 uL of
0.1M NEM to quench PTP reactions or 80 uL malachite green reagent +
Tween 20 to quench non-PTP reactions. Vortex tubes thoroughly on their
sides to ensure any evaporated liquid is mixed. Add NEM or malachite green
reagent + Tween 20 at identical time intervals as enzyme was added to the
reactions and in the same order. As soon as malachite green reagent +
Tween 20 is added to the first non-PTP tube, begin timing.

Add 80 uL malachite green reagent + Tween 20 to the PTP reactions
quenched with NEM, vortex tubes on their sides, and begin timing
immediately.

Incubate the reactions at 22°C for 30 to 40 minutes to develop color. The
time of incubation is determined by the time of incubation utilized to

generate the standard curve.

10) Measure the absorbance of the reactions at 620 nm in similar time intervals

to the addition of malachite green reagent + Tween 20, using the appropriate
blank (such as a control reaction with an inactive phosphatase). Cuvettes can

be rinsed and reused to avoid staining.

11) Utilizing the values calculated from the standard curve, use the experimental

absorbance value to determine the pmoles of phosphate released /min per

nmol of protein.

Recipes.

* All prepared in MilliQ H20 18.2 MQcm

5X Stock Assay Buffer (Store 22°C)

0.5 M Sodium Acetate
0.25 M Bis-Tris

0.25 M Tris

pH to desired pH with HCI

163



5 mg/mL amylopectin in H20 (Store 22°C).

1) Resuspend 5 mg/mL of amylopectin in HO.

2) Heat the suspension at 65°C-95°C until amylopectin goes into solution
(previously opaque, the solution will become clear). Vortexing aids solubility.

3) Store at 22°C. If amylopectin precipitates over time (solution becomes

opaque), heat it again until the solution becomes clear.

5 mg/mlL amylopectin (Roach Method) (Store 22°C).

1) Combine 400 ul 100% ethanol, 1 mL H20, and 1 mL 2M NaOH.

2) Add 50 mg amylopectin.
3) Add 2 mL H20 and adjust the pH to 6.5 with approximately 800 ul 2M HCL.
4) Bring the volume up to 10 mL with H;O0.

0.1M NEM and 100 mM DTT (store -20°C).

Prepared by dissolving stock in MilliQ H20 18.2 MQcm. Sterile-filter prior to use.

Malachite green reagent (store 4°C for up to 12 months).

1) Begin with 1 volume 4.2% w/v ammonium molybdate tetrahydrate
((NH4)6M07024.4H20) in 4N HCL

2) Add 3 volumes 0.045% w/v malachite green carbinol hydrochloride.

3) Stir for 30 minutes and filter with Whatman grade 5 filter paper.

4) Sterile-filter reagent. Store at 4°C away from light. Malachite green solution is
stable for up to 12 months.

5) Add 0.01% v/v Tween20 to malachite green reagent right before use (stock
Tween20 should be 10% v/v).
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Troubleshooting.
1) Malachite green reagent is green or brown, and not yellow in color.

Malachite green reagent is light sensitive, and also precipitates over time. It
is essential to store the solution at 4°C away from light. Precipitation can be
removed by gentle heating, and reagent should be shaken well before use.

2) Blank OD value at 620 nm is 0.2 or higher.

Be sure to use double distilled water to prepare all reaction components and
ensure lab wares are thoroughly washed to prevent contamination of enzyme
preparations and assay buffers by free phosphate.

3) Standard or sample reactions precipitate upon incubation with malachite
green reagent.

At high concentrations of phosphate (>100 uM), formation of precipitates
may occur. Samples should be diluted and assays repeated. Divalent cations such
manganese, magnesium, and calcium can form insoluble phosphate salts, so the
lowest possible concentrations of these cations should be used in phosphatase

buffers.
Equipment.
Beckman Coulter DU370 UV /Vis Spectrophotometer (Beckman Coulter,

Indianapolis, IN, USA)
Temperature-controlled hotplate (Fisher Scientific, New Jersey, USA)

Copyright © Amanda Renee Sherwood 2013
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