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RESEARCH ARTICLE Open Access

Wolbachia infections that reduce immature insect
survival: Predicted impacts on population
replacement
Philip R Crain1, James W Mains1, Eunho Suh1, Yunxin Huang2, Philip H Crowley2 and Stephen L Dobson1*

Abstract

Background: The evolutionary success of Wolbachia bacteria, infections of which are widespread in invertebrates,
is largely attributed to an ability to manipulate host reproduction without imposing substantial fitness costs. Here,
we describe a stage-structured model with deterministic immature lifestages and a stochastic adult female
lifestage. Simulations were conducted to better understand Wolbachia invasions into uninfected host populations.
The model includes conventional Wolbachia parameters (the level of cytoplasmic incompatibility, maternal
inheritance, the relative fecundity of infected females, and the initial Wolbachia infection frequency) and a new
parameter termed relative larval viability (RLV), which is the survival of infected larvae relative to uninfected larvae.

Results: The results predict the RLV parameter to be the most important determinant for Wolbachia invasion and
establishment. Specifically, the fitness of infected immature hosts must be close to equal to that of uninfected
hosts before population replacement can occur. Furthermore, minute decreases in RLV inhibit the invasion of
Wolbachia despite high levels of cytoplasmic incompatibility, maternal inheritance, and low adult fitness costs.

Conclusions: The model described here takes a novel approach to understanding the spread of Wolbachia
through a population with explicit dynamics. By combining a stochastic female adult lifestage and deterministic
immature/adult male lifestages, the model predicts that even those Wolbachia infections that cause minor
decreases in immature survival are unlikely to invade and spread within the host population. The results are
discussed in relation to recent theoretical and empirical studies of natural population replacement events and
proposed applied research, which would use Wolbachia as a tool to manipulate insect populations.

Background
The success of obligate endosymbiotic organisms
depends on their ability to invade, establish and persist
in their host. Wolbachia pipientis, a well-studied endo-
symbiont, is a species of maternally inherited bacteria in
the order Rickettsiales, and infections are estimated to
occur in more than half of all insect species [1]. Prior
studies have demonstrated the ability of Wolbachia to
manipulate the reproduction of its host [2,3]; several
phenotypes have been described, including male-killing
[4,5], feminization [6,7], parthenogenesis [8-10], and
cytoplasmic incompatibility (CI) [11-13]. CI affects a
broad range of insect taxa and causes a reduction in egg

hatch when Wolbachia-uninfected females and Wolba-
chia-infected males mate (Figure 1).
Prior models highlight three Wolbachia-specific para-

meters that affect the probability of Wolbachia invasion
and establishment: the maternal inheritance rate, which
is the proportion of infected offspring produced by an
infected female; the level of CI, which is the proportion
of embryos that fail to develop as a result of incompati-
ble crosses [14]; and the fitness cost to females for car-
rying a Wolbachia infection, defined as a decrease in
overall fecundity [15-20].
Previous studies predict that the successful invasion of

Wolbachia into an uninfected host population requires
low fecundity costs, high maternal inheritance rates, and
high levels of CI [21,22]. Wolbachia infections that
impose a 10% relative fecundity cost to adult females
experience reductions in their invasion success [21].
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Similarly, low maternal inheritance reduces the probabil-
ity of Wolbachia invasion [22]. Higher initial Wolbachia
infection frequencies are predicted to increase the prob-
ability of population replacement, which can offset the
above costs [14]. Models have also addressed population
structure at the adult stage, impacts on adult survival,
stochastic effects, and overlapping generations
[14,21-25].
The relative importance of Wolbachia effects on

immature life stages has not been assessed theoretically.
This is despite multiple examples demonstrating an
effect of Wolbachia on immature hosts. In the stored
product pest Liposcelis tricolor (Psocoptera: Liposceli-
dae), Wolbachia infections can decrease development
periods and increase survivorship in some immature life
stages [26]. Other studies demonstrate negative impacts
of Wolbachia infections on larval survival and develop-
ment time [27,28]. Recent studies have determined that
when intraspecific competition is intense, Wolbachia-
infected mosquito larvae experience reduced survival
[29,30].
To better understand population replacement by CI-

inducing Wolbachia, we have evaluated both Wolbachia
infection dynamics and host population dynamics using
a model that includes deterministic immature and adult

male lifestages and a stochastic adult female lifestage.
Since Wolbachia are transmitted maternally, the sex and
infection status of hosts are explicit, and adult females
are tracked individually. The focus of this modeling
approach was to investigate changes in the probability
of population replacement resulting from varying the
relative larval viability (RLV), expressed as relative survi-
val of infected to uninfected larvae. The results are pre-
sented in context with traditional parameters: the rate of
CI, maternal inheritance (MI), the relative fecundity of
infected females (RF), and the initial Wolbachia infec-
tion frequency (IF), on the probability of population
replacement.

Methods
The model simulates a panmictic population that is
closed to immigrants and emigrants. Consistent with
previous studies, the model assumes mating is random
and that Wolbachia infection has no effect on mating
success. Females in the model mate once immediately
upon reaching maturity. Adult survival is density-inde-
pendent, but larval survival is density-dependent. The
model presented here combines a stochastic adult
female stage with deterministic adult male and imma-
ture stages. By implementing a deterministic immature
stage, additional information regarding population
dynamics is incorporated without developing a comple-
tely stochastic model, which would be considerably
more computationally-intensive. The model incorporates
overlapping generations [24] while tracking major life
stages and considers females and males separately.
Development time and survival during immature stages
are addressed explicitly by the model. The model was
designed assuming the host is a holometabolous insect,
and the model was parameterized based upon estimates
of mosquitoes in the genus Aedes as a case study.

Brief Description of Equations
The following is a brief overview of all equations and
parameters implemented in the model presented here.
Additional development details, initial parameter values,
and sensitivity analysis are provided in Additional File 1.

R =
(j − h)�te−qB + h�t

s
(1)

Larval development rate R (developmental stage units):
j is the maximum development rate (developmental
stage units), h is the asymptotic minimum development
rate (developmental stage units), Δt is the time step
(units of time), q is the density-dependent development
coefficient (units of (mass)-1), B is the total larval bio-
mass (units of mass) and s is the total number of devel-
opmental stages. Derived from Gavotte et al. [30] and

♀ x ♂ → ♀ ♂

♀ x ♂ →  

♀ x ♂ → ♀ ♂

♀ x ♂ → ♀ ♂
Figure 1 Unidirectional cytoplasmic incompatibility crossing
pattern. White circles represent uninfected individuals and black
circles represent Wolbachia infected individuals. Crosses between
the same infection type produces viable offspring. Cytoplasmic
incompatibility occurs when uninfected females mate with
Wolbachia infected males, resulting in reduced numbers of viable
offspring. As a result, infected females have an effective mating
advantage over uninfected females.
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comparable to previously published data [31,32].

SL = e−(μ+αBβ +γ d−ε )�t (2)

Larval survival, SL: μ is the baseline mortality rate of
mosquito larvae in the absence of competition (units of
(time)-1). a is the coefficient controlling density depen-
dent mortality (units of (time)-1). B is the total larval
biomass (dimensionless), b is the exponent controlling
density dependent mortality (dimensionless), g is the
coefficient that decreases mortality as development stage
increases (units of (time)-1), d is the developmental
stage index, ε is the exponent that decreases mortality
as development stage increases (dimensionless), and Δt
which is the time step (units of time). Based on Dye
[33] and similar to previously published studies [34-36].

M =
mxek(d−1)

1 +
1 − c

c

To − T
TO

(3)

Mosquito body mass, M (units of mass): mx (units of
mass) is the theoretical maximum mass of a given mos-
quito at time T. mx is linked to c (dimensionless), which
is the percent of mx that is attainable. k (dimensionless)
is the growth coefficient; T0 (dimensionless) is the devel-
opment time at which mass at pupation is mx/2 days,
and T (dimensionless) is development time. d (dimen-
sionless) represents the total number of development
stages completed by the larval cohort. Derived from pre-
viously published data [30].

Fs = e−gA (4)

Female survivorship, Fs: g is the per capita mortality
rate of adult females (units of (time)-1) and A is the cur-
rent age of the female (units of time). Taken from Trpis
and Hausermann [37].

E = u�tev(Mf +w)z (5)

Egg production, E: u is the egg production rate; Δt is
the time step (units of time); v is the female mass coeffi-
cient (units of (mass)-1); Mf is the body mass of the ovi-
positing female (units of mass); w is the female mass
intercept (units of mass), and z is the female mass expo-
nent (dimensionless). Derived by combining two pre-
viously published functions [38,39].

Immature Life Stages
To simulate variation in egg hatch, the model assumes
that some eggs (proportion equal to H3, Table S1 in
Additional file 1) hatch on day three while the remain-
ing eggs (1-H3) hatch on day four (Figure 2a) [40,41].
Eggs are separated into two cohorts based on infection

status. Larvae are distributed into four categories for
each of the possible combinations of sex and infection
status.
Larvae develop through discrete developmental stages,

where the development rate is affected by density
dependence, and larval survival is subject to both stage-
dependent mortality and density-dependence (Figure
2b). The term “stage” is defined here as a measure of
progress through larval development. The number of
these discrete developmental stages is chosen to allow
for variation in development time and is otherwise arbi-
trary (i.e., not linked to age or developmental instar
explicitly). The number of larval developmental stages, s,
can be varied, but was set to s = 30 for this study. Larval

a)  Egg Development, Mortality, and Hatching  
 

b)  Larval Development, Mortality, and Pupation  
 

c)  Pupal Development, Mortality, and Emergence  

1 – SE 

SE 

hatch L1 … Ln pupation

mortality 

SL 

1 – SL 

pupation P P
SP SP 

1 – SP 1 – SP 

emergence 

mortality 

H3 
hatch 

oviposition E1 E2 E3 E4 hatch 

mortality 

SE SE 

SE – H3 

1 – SE 1 – SE 1 – SE 

Figure 2 Immature population structure. a) Eggs develop
through four discrete stages and each stage is one day. There are
two cohorts of eggs, Wolbachia uninfected and infected. During
development, eggs move through each stage consecutively, and
the number of eggs advancing to the next stage reflects the
product of the number of eggs present and SE, daily egg
survivorship (Table S1). All eggs hatch after four days except a
proportion of eggs hatch at day three (H3, Table S1). b) Larvae
develop through s discrete stages, where s is an arbitrary number of
developmental stages (s = 30). Larvae are divided into four
categories: Wolbachia infected/uninfected and male/female. Larvae
move R developmental stages in each time step, where R is the
number of developmental stages a larval cohort will progress
(Equation 1). The number of larvae progressing from their current
development stage, e.g. L2, to their next developmental stage, L2+R,
is equal to the product of the number of larvae in a developmental
stage and larval survival (Equation 2). Larval survival and
development are density dependent. If larvae are Wolbachia
infected, they are subject also to the parameter RLV (Table 1), which
can reduce the number of surviving larvae. Larvae that reach the
last developmental stage become pupae. c) Pupae progress
through two discrete development stages and are tracked similar to
eggs. Each pupal developmental stage is one day and pupae are
subject to SP, daily pupal survivorship (Table S1).
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development rate, R, is the number of developmental
stages through which a cohort of larvae will pass within
24 hours (Equation 1). The number of larvae surviving
to the next day is the product of the number of larvae
in the preceding time period and the larval survival rate
(Equation 2). When the number of developmental stages
within a day is not an integer, the larval cohort is dis-
tributed into two adjacent developmental stages in pro-
portions that preserve the average development rate.
The latter also introduces variation into the develop-
ment rates of larval cohorts (Figure 2b). Density-depen-
dence is based on the total mass of larvae (Equation 3).
Male and female cohorts are considered separately to
observe sex-specific patterns during development. For
example, female mosquitoes require longer development
time to become adults relative to males, and studies
demonstrate that males and females respond to compe-
tition intensities differently [30].
Uninfected larval cohorts progress through develop-

ment subject to stage-dependent mortality and density
dependent effects only. Infected larval cohorts are sub-
ject also to a reduction in viability associated with Wol-
bachia infection. The relative larval viability (RLV, Table
1) for infected larvae is a proportion that indicates the
relative survival of infected to uninfected larvae.
Following the completion of larval development stages,

individuals become non-feeding pupae, which have a
daily survival that is independent of population density
(Sp, Table S1; Figure 2c). After completing pupal devel-
opment, emerging male adults are tracked separately as
either infected or uninfected cohorts. Emerging female
adults are tracked as individuals.

Adult Life Stages
Six variables are tracked over time and determine the
state of individual females: the blood meal state (time
since last feeding), age (days since emerging), Wolbachia
infection status (infected or uninfected), the Wolbachia
infection status of her mate (determined randomly
based on the proportion of infected males in the popula-
tion at the time she mates), size (body mass), and repro-
ductive state (the number of gonotrophic cycles
completed).

The probability that a female obtains a blood meal is
determined by the frequency of potential blood meals
per unit area, and each blood meal is associated with an
additional mortality risk, regardless of mosquito age
(Table S1). In the panmictic population simulated here,
the availability of potential blood meals is assumed to be
constant, but the model will allow downstream popula-
tion structuring and geographic variation of bloodmeal
availability.
Adult female daily survivorship Fs is age-dependent

and probabilistic (Equation 4) [37]. A female that is
Wolbachia uninfected and mated with an infected male
will lay eggs, but a proportion of the eggs will not
hatch, depending on the level of CI (Table 1). Infected
females produce viable offspring regardless of their
mate’s infection status but are subject to a decrease in
relative fecundity (RF, Table 1). The number of eggs laid
by an individual female is determined by her mass
(Equation 5), and larval development influences female
body mass. Specifically, intense competition delays
development and reduces the mass of adult females.
Adult males, which are dead end hosts for Wolbachia,

are not tracked individually but are tracked as infected
and uninfected cohorts. The male mortality rate is
assumed to be age-independent and constant (SM, Table
S1). The proportion of Wolbachia infected males in the
population determines the probability of an incompati-
ble mating for uninfected females.

Simulations
The model was written in MATLAB 7 (The MathWorks
Inc., Natick, MA). A single simulation of the model pro-
duced population dynamics that are tracked over time
(Figure 3). A series of simulations (n = 1000) were used
to assess the impact of incremental parameter changes
on the probability of population replacement. The para-
meters emphasized were cytoplasmic incompatibility
(CI); maternal inheritance (MI); the relative fecundity of
adult females (RF); the initial Wolbachia infection fre-
quency, expressed as a proportion of the total number
of adults (IF), and the relative larval viability (RLV). A
population replacement event is defined as having
occurred when the proportion of infected adults

Table 1 Glossary of notation, including the initial values for each key parameter

symbol definition initial value

CI proportion of embryos not hatching in incompatible CI crosses 0.999

MI proportion of offspring receiving infection (maternal inheritance) 0.999

RF relative fecundity of infected females to uninfected females 0.999

RLV relative larval viability of infected larvae to uninfected larvae 0.999

IF initial frequency of gravid infected females to the total adult population 0.500

In all subsequent model runs, each value remains constant while one key parameter is varied. (For a list of all population dynamic parameters, see Table S1 in
Additional file 1.)
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stabilizes above or equal to the MI value. During each
series of simulations, individual parameters were varied
singly, while the remaining parameter values were held
constant as defined in Table 1. Each parameter was uni-
formly varied at one one-hundredth intervals from zero
to one. At each interval, 1000 simulations were con-
ducted, and the number of successful invasions was
recorded to determine the probability of population
replacement at that specific parameter value. The uni-
form sensitivity analysis was implemented for direct
comparisons between all parameters across all intervals.
Furthermore, previous analyses have not established
minimum values for the spread of Wolbachia. Addi-
tional simulations tested two-way interactions between
each of the emphasized parameters by varying two para-
meters simultaneously and evaluating the probability of
population replacement. In the aforementioned simula-
tions, parameters were varied uniformly. One parameter
would be held constant while the other parameter varied
as described above. The first parameter would then be
incremented and the process above would be repeated.
The probabilities resulting from two-way interactions
were approximately the product of the two parameters
and are not discussed further.

Results
Figure 3 provides an example of the typical population
dynamics resulting from model simulations of a Wolba-
chia population replacement event. In the illustrated

example, the population begins as cohort of uninfected
eggs and stabilizes after approximately 150 days, with
variation around a consistent population size and life-
stage distribution (Figure 3a). In the example simulation,
the introduction of Wolbachia occurs at day 800 by
introducing blood-fed, gravid adult females at an initial
Wolbachia infection frequency (IF) of 0.5 (Table 1). IF
is the frequency of Wolbachia-infected females relative
to the total number of adults such that an IF = 1 is
synonymous with a 1:1 (infected to uninfected) ratio.
Figure 3b illustrates the resulting variation in Wolbachia
infection frequency in the host population versus time.
Due to the stochastic nature of the model, the number

of individuals within each lifestage fluctuates consider-
ably over time (Figure 3a). To examine for temporal pat-
terns in the fluctuations that might correspond to
periodic signals such as stage durations or generation
time, we performed a spectral analysis on the time series
data for both total adult and larval populations via Fast
Fourier Transformation [42,43]. The analysis can iden-
tify temporal patterns that exist in what appear to be
chaotic time series. No pattern was detected by the
spectral analysis. Since no period was found, stochasti-
city appears to be the sole driver of population
fluctuations.
Five parameters associated with Wolbachia infection

were evaluated for their affect on the probability of
population replacement. The value of each parameter
was varied at one one-hundredth increments, from zero
to one, while additional parameters were held constant
as defined in Table 1. For each parameter value, the
probability of population replacement was determined
by the number of successful replacement events occur-
ring in 1000 simulations, for a total of 101,000 simula-
tions per parameter.
Maternal inheritance (MI), the relative fecundity of

adult females (RF), and relative larval viability (RLV),
exhibit strong threshold behavior with population repla-
cement occurring only at parameter values exceeding
0.7 (Figure 4). Specifically, realistic probabilities of popu-
lation replacement (i.e., > 50% probability of population
replacement) require the magnitude of MI to be greater
than 0.9. Similarly, RF must exceed 0.9 before realistic
probabilities of population replacement are attained.
The probability of population replacement is most sensi-
tive to RLV, which requires a value of greater than 0.95
before population replacement can occur. Furthermore,
realistic probabilities of population replacement only
occur at high RLV (≥0.99), despite high maternal inheri-
tance and CI (i.e., all other parameters held at values
defined in Table 1).
A different functional relationship is observed with the

level of incompatibility (CI) and initial Wolbachia infec-
tion frequency (IF), each of which results in response
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Figure 3 Example of typical population dynamics produced by
a simulation of the model. a) Populations begin with an
uninfected cohort of eggs. The population is allowed to persist and
self-regulate for 800 days, at which time Wolbachia is introduced to
the population as gravid, bloodfed females at the rate defined in
Table 1. The population is then allowed to self-regulate and persist
until 1800 days have elapsed. b) The proportion of the female
population that is infected with Wolbachia over time (i.e., infection
frequency), demonstrating a population replacement event.
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curves that increase asymptotically (Figure 4). Assuming
the parameters within Table 1, the model predicts that
CI is not necessary for Wolbachia to spread (i.e.,
approximately 7% of simulations resulted in population
replacement when CI = 0). Realistic probabilities of
population replacement occur when CI approaches 0.3.
Despite perfect CI (i.e., no egg hatch in incompatible

crosses), population replacement did not occur in 10%
of simulations (Figure 4). Additional simulations con-
firmed that a 90% probability of population replacement
is an absolute maximum given the conditions defined
here (Table 1). However, as the magnitude of IF
increases, the probability of population replacement
rapidly approaches one, with realistic probabilities of
population replacement occurring when the frequency
of infected females approaches 20% (Figure 4).
The results obtained from the model here were com-

pared to a previously published stochastic model [22].
Table 2 compares the fixation probabilities calculated by
the model presented here and those from Jansen et al.
[22] using the conditions defined in the prior report,
which includes the introduction of a single infected
female into a population size of 100 and perfect CI. To
allow direct comparison, the relative larval viability in
our model was set to one. 50,000 simulations were per-
formed for each combination of parameter values used
in the prior publication. Both models predict the prob-
ability of population replacement decreases when MI
and RF values are less than one (Table 2). Generally,
our model predicted lower probabilities of population
replacement than the previously published model. How-
ever, when either MI or RF was 80%, the model pre-
sented here reported higher probabilities (Table 2).
Jansen et al. [22] predicted that Wolbachia infections
with imperfect maternal inheritance and low adult fit-
ness costs (MI = RF = 0.9) will still invade and establish
in a population, but our model predicted no population
replacement events (Table 2). The predictions of our
model were also compared to those of Jansen et al. [22]
assuming larger initial frequencies of Wolbachia infected
individuals (Figure 5). Both models predict an asympto-
tic increase in the probability of population replacement
with increasing magnitude of IF, but our model predicts
lower probabilities of population replacement (Figure 5).

Discussion
The model presented here examines the probabilities of
Wolbachia invasion into an isolated uninfected popula-
tion. The model is unique in its individual-based repre-
sentation of variation in key traits among adult females
and in the resolution of larval dynamics within the host
population. The model presented here predicts, as in
previous modeling studies, that maternal inheritance
(MI) and the relative fecundity of adult females (RF) are
key parameters that determine the potential for popula-
tion replacement. Specifically, population replacement
occurs only at high MI or RF. In contrast, population
replacement can occur at low CI or low IF. The simula-
tion of adult females as individuals demonstrates that
MI requires higher parameter values than RF for suc-
cessful population replacement. The new parameter,
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Wolbachia specific parameters. CI is the level of cytoplasmic
incompatibility, MI is the level of maternal inheritance, IF is the
initial frequency of Wolbachia infection, RF is the relative fecundity
of Wolbachia-infected adult females, and RLV is the relative larval
viability. Each line was generated by calculating the probability of a
population replacement event at one one-hundredth increments for
parameter values between zero and one (n = 1000 simulations/
increment). IF and CI show similar responses to parameter value
increases. The probability of population replacement increases, but
then asymptotically approaches one. The response curves for RF, MI,
and RLV behave similarly, each parameter requiring values to be
greater than approximately 0.7. The curves then quickly increase
toward one. RLV is the most sensitive parameter requiring values
approaching 0.95 before a population replacement event can occur.
Realistic probabilities of population replacement (i.e., population
replacement occurs in greater than 50% of simulations) does not
occur until RLV is greater than or equal to 0.99.

Table 2 The probability of population replacement for
given parameter values

MI RF

1.0 0.9 0.8

1.0 0.1023/0.0359 0.0224/0.0089 0.0004/0.0007

0.9 0.0158/0.0060 0.0004/0.0000 /

0.8 0.0001/0.0004 / /

Jansen et al. [22]/model presented here

The probability of population replacement for given parameter values,
assuming perfect CI and the release of a single infected adult female into an
uninfected population with a size of 100. The fixation probabilities from our
model are generally lower than the values predicted by Jansen et al.[22],
except when maternal inheritance and the relative fecundity of infected
adults is 0.8. The model presented here predicted population replacement
would not occur when both maternal inheritance and the relative fecundity of
infected adult females were 0.9. All probabilities generated from the model
presented here reflect the proportion of population replacement events that
occurred per 50,000 simulations of the model. Comparable values were
estimated from Figure 2 in Jansen et al. [22].
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relative larval viability (RLV), like MI and RF, requires
high parameter values before population replacement
can occur.
The relative larval viability between Wolbachia

infected and uninfected individuals (RLV) is the most
important determinant of population replacement,
requiring the highest parameter values for invasion. The
model predicts that reductions in infected larval survival
can substantially reduce the probability of population
replacement (Figure 4). While a majority of prior studies
have examined for an effect in adults, recent studies
have determined that, at high levels of intraspecific com-
petition, Wolbachia infected larvae experience reduced
survival [29]. However, few theoretical studies have
examined the impact of immature lifestages on the inva-
sion of Wolbachia. Here, we demonstrate that reduc-
tions in RLV will inhibit Wolbachia invasion into an
uninfected host population.
Recent work has highlighted the prevalence of Wolba-

chia, and its ability to invade populations [1,20]. Studies
have suggested that Wolbachia infection affects larval
survival and development only when intraspecific com-
petition is high [29,44]. Given the predictions from our
model, Wolbachia can only invade a population when
RLV is very high. Therefore, the density of conspecifics
in larval habitats is predicted to have significant impacts

on the probability of population replacement. Similarly,
the abundance and variety of larval habitats may have
significant impact on the invasion of Wolbachia. The
distribution, utilization and variety of larval habitats is
well known for some insects, particularly mosquitoes
[45-48]. Theoretical studies considering the effect of
metapopulation structure and larval rearing conditions
may elucidate the mechanism by which Wolbachia can
invade natural populations given low initial infection
frequencies.
The level of CI in insects varies widely [44,49-51]. Our

model shows that the intensity of CI has relatively little
effect on the probability of population replacement
when the rate of CI exceeds 60%. Furthermore, when CI
= 0, the model presented here predicts population repla-
cement can occur at low probabilities (Figure 4). Some
Wolbachia infections do not cause CI, but are found at
high frequencies in natural populations [44,50,52]. Pre-
vious theoretical studies indicate that CI or a sex-ratio
distorter is not required for population replacement
when endosymbionts can alter female traits [44,53].
However, results presented here suggest that non-CI
inducing Wolbachia infections can establish and persist
in a population without increasing or altering host fit-
ness, given high MI, RF, and RLV. Since the population
considered by the model presented here is relatively
small (N ≈ 110 adults), genetic drift could perhaps influ-
ence the probability of population replacement [54]. To
investigate the importance of genetic drift, the popula-
tion size in the model was increased. In model simula-
tions where the total adult population size is greater
than approximately 200, population replacement does
not occur when there is no effect of CI (i.e. CI = 0).
However, when population size is increased, the general
response patterns in Figure 4 are not altered.
High maternal inheritance rates have been observed

consistently in natural populations [55-57]. Furthermore,
theoretical studies predict the probability of population
replacement declines as maternal inheritance decreases
[12,21,22]. Similar to previous studies, results presented
here suggest that maternal inheritance (MI) must be
high for a Wolbachia infection to invade an uninfected
population and persist. Specifically, MI must be higher
than 90% to attain a realistic probability of population
replacement.
The effect of Wolbachia infections on adult female fit-

ness has been well documented empirically and theoreti-
cally [11,15,16,22,24,58,59]. Here, as in previous
theoretical studies, the model predicts that the relative
fecundity of adult females (RF) must be high to facilitate
population replacement.
For all parameters, the probability of population repla-

cement approached an absolute maximum of 90% given
the conditions defined in Table 1. Here, the initially
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Figure 5 The probability of population replacement by
Wolbachia given different initial infection frequencies. This
figure assumes that the relative fecundity of infected females is 0.95,
with perfect CI and maternal inheritance. The dashed line indicates
the probability of population replacement as calculated by Jansen
et al [22], and the solid line represents the predictions of this
model. Our model predicts lower probabilities at all initial Wolbachia
infection frequencies, but generates a similar functional response.
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examined IF value is relatively high (0.5), analogous to
artificial introductions examined in prior theoretical
work [25]. Subsequently, lower IF values have been
simulated (Figure 4), including the introduction of a sin-
gle, infected female (Table 2). The model predicts that
Wolbachia invasion can occur at the lowest IF values
and demonstrates an increasing probability of invasion
with the higher introduction levels, with the probability
of population replacement approaching 100%. Addi-
tional simulations determined that when IF is held con-
stant and the total adult population size is increased, the
probability of population replacement approaches one
given the conditions defined in Table 1. This result sug-
gests genetic drift can affect the probability of popula-
tion replacement in small populations and may facilitate
or hinder the spread of Wolbachia from low initial fre-
quencies [54].
The model presented here predicted lower population

replacement probabilities than those predicted by pre-
vious stochastic models (Table 2 and Figure 5) [22].
Rasgon and Scott [25] noted a similar behavior where
implementing population age-structure and overlapping
generations increased deterministic thresholds. The
inclusion of additional life stages and stage-structure in
this stochastic model may explain the reduced probabil-
ities of population replacement. However, the model
presented here predicted marginally higher probabilities
of population replacement when either maternal inheri-
tance or the relative fecundity of infected females had a
magnitude of 0.8. The increased probability of popula-
tion replacement predicted by the model presented here
is likely a result of the individual-based representation
of the adult female life stage that includes stochastic
survival.
The model here addresses a single, panmictic, isolated

population but could be expanded to include metapopu-
lation structure. If introduction events can be assumed
to occur randomly, then the surrounding subpopulations
should generally tend to inhibit population replacement,
because migration between subpopulations would dilute
the proportion of infected individuals. However, as
demonstrated here, genetic drift may influence the inva-
sion of Wolbachia in smaller subpopulations. The spa-
tial spread of Wolbachia has been assessed analytically
by others and defines the conditions needed for Wolba-
chia to spread through space [20,24].
The majority of models that address the invasion of

Wolbachia into uninfected populations have examined
populations without lifestage subdivisions, suggesting
that additional empirical studies focused on understand-
ing larval dynamics are needed [34]. Many of the para-
meters defined here may be difficult to determine in
natural populations [25], but our results demonstrate
the importance of understanding the role of life history

parameters and their interactions, despite the difficulties.
Furthermore, the sensitivity analysis of the model pre-
sented here demonstrates that the magnitudes of parti-
cular parameters strongly influence the potential for
spread and establishment of Wolbachia; these (e.g., Wol-
bachia effects on immature fitness) should be the focus
of future empirical and theoretical studies. Future theo-
retical studies could further address parameter sensitiv-
ity by hyper-cube sampling, but this would require
information about the distribution of parameters to
investigated [60].

Conclusions
Wolbachia is currently being utilized as the basis for a
gene drive strategy in open field releases of Aedes
aegypti [61,62]; however, the predictions of the model
presented here suggest that minute reductions in RLV
can inhibit population replacement. Research needs to
focus on understanding the effects of novel Wolbachia
infections on immature lifestages. Xi et al. [63] demon-
strated that novel Wolbachia infections can establish in
a new host species and replace an uninfected popula-
tion, but the initial frequency of Wolbachia infected
individuals needed to replace the population was higher
than predicted. The authors suggested that differences
in survival of immature lifestages could explain their
results. Results presented here indicate that even reduc-
tions in RLV that are difficult to detect empirically will
substantially reduce the probability of population
replacement.
The rapid decline in the probability of population

replacement associated with reduced larval viability indi-
cates that empirical studies directed toward quantifying
the effects of endosymbionts on immature insects are
important for understanding and predicting Wolbachia
invasion events. Recent empirical studies also suggest
that a more complete understanding of the effects of
Wolbachia on the immature life stages is generally
needed through additional empirical and theoretical stu-
dies [28-30].

Additional material

Additional file 1: Model parameters, detailed equation appendix
and sensitivity analysis. Portable Document File (pdf) containing all
parameters, initial parameter values, and equations utilized by the model.
Model development is discussed, and includes references from which
each equation was developed/parameterized. Also includes the
sensitivity analysis of all population dynamic parameters and discussion
about the robustness of model predictions
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