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ABSTRACT OF DISSERTATION 

Muscle biopsies were taken at baseline, post eccentric exercise, post aerobic 
training, and after training followed by eccentric exercise from adults with 
different health status. In Cell Western analysis of pAkt/Akt ratio suggests that 
muscle cells isolated from baseline biopsies respond to insulin in a dose 
dependent manner that tracks with sensitivity to insulin of the host; however, this 
is uncoupled from glucose disposal in vitro.  Nitrotyrosine (NY), a marker of free 
radical damage, was employed to assess the efficacy of the exercise paradigm.  
NY immunohistochemistry on muscle cross-sections revealed that eccentric 
exercise significantly increased damage in older (>55 years of age), but not 
middle aged (<55 years  of age) subjects, and that training reversed  the post 
eccentric damage significantly in the younger, but not the older group, suggesting 
distinct adaptation to eccentric exercise. Assessment of total macrophage 
content by CD68 immunohistochemistry showed that macrophage abundance 
increased in response to training in the >55 years age group, but not in the <55 
years of age group.  Following training, macrophages increased in response to 
eccentric exercise in middle aged and decreased in older subjects, showing a 
disconnect from NY damage. Macrophage phenotypes were assessed in these 
groups via the M1 marker CD11b, and the M2 marker, CD206.  Two dominant 
populations of macrophages were identified, one of which co-expressed CD11b 
and CD206, and another which only expressed CD11b.  These two populations 
of macrophages showed the same trends in expression in response to exercise 
observed with CD68, but did not achieve statistical significance.  Bivariate 
analysis revealed that CD11b/CD206 macrophage densities were correlated with 
gene activities associated with fibrosis and angiogenesis, whereas CD11b 
macrophages correlated with gene activities associated with proteostasis and 
cellular turnover. Lastly, an in vitro model of skeletal muscle cell and macrophage 
integration was developed to study how macrophage phenotype influences 
insulin responsiveness. Data suggest that M1 macrophages inhibit  insulin 
stimulated glucose disposal, whereas M2 macrophages enhance this response. 
Taken together these results suggest a functional distinction between 
inflammatory (M1) and alternative macrophages (M2) in exercise and insulin 
resistance that is altered with age.  

KEYWORDS: Skeletal Muscle, Exercise, Insulin Resistance, Aging, In Cell 
Western 
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Chapter 1: An Introduction to Integrated Macrophage and Skeletal Muscle 

Biology. 

 

OVERVIEW 

 

 The overall goal of this study was to learn how macrophages and skeletal 

muscle interact together as an integrated organ.  We are specifically interested in 

this relationship because macrophages have been implicated in muscle in the 

context of exercise, insulin resistance, obesity and aging.  There are three 

studies included. The first focuses on insulin signaling and insulin stimulated 

glucose uptake in primary muscle cell cultures derived from donors that are 

clinically insulin sensitive or resistant (Chapter 2). The second focuses on the 

role of macrophages in the exercise response in skeletal muscle in vivo, in 

human subjects with a range of insulin sensitivity, obesity or age (Chapter 3). 

The third study focuses on the influence of macrophage subtypes on primary 

muscle cell cultures derived from donors that are clinically insulin sensitive or 

resistant on glucose uptake in vitro (Chapter 4).  Chapter 5 summarizes the 

findings of the study overall, concludes with some speculations and suggests 

further studies. The rationale for embarking on these studies is described below. 
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Rationale for Chapter 2 

 

 The need for an in vitro model system to study insulin resistance in human 

skeletal muscle is great, not only because of the human health factor, but also 

because mechanistic studies in humans are not possible. Human skeletal muscle 

can be studied in vitro by primary cell culture of myotubes (see below, Muscle 

Cell Culture). The consumption of dietary fatty acids, has been studied 

extensively as a determinant of insulin resistance(2, 14, 64, 71, 139, 193).  Our 

laboratory's previous work on macrophages and myotubes in co-culture with 

palmitic acid to mimic the obese environment(184), showed that macrophages 

and palmitic acid synergize to blunt Akt phosphorylation and induce myotubes to 

express a more inflammatory profile.  In another study of myotubes from Type 2 

Diabetes Mellitus (T2DM) donors, the investigators found blunting of 

phosphorylation distinctly on all three Akt isoforms, due to an upregulation in 

protein phosphatase PH domain rich in leucine repeat protein phosphatase 

1(PHLPP1)(39). Chapter 2 was designed to extend these studies to quantify 

effects on glucose uptake, a more functionally relevant measure of insulin action.  

 Only two published studies attempt to biologically validate human primary 

muscle cell culture for the retention of intrinsic properties of the donors in terms 

of  insulin stimulated glucose uptake.  Henry and colleagues (30, 73) reported 

nearly two decades ago that the insulin sensitivity status of the donor was 

passed on to the culture, and insulin signaling was retained; however, this was 

only demonstrated in acutely cultured muscle cells and has not been replicated 
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our knowledge.  There are several probable reasons for this. First, the cells must 

be cultured directly from the muscle biopsy.  Second, it is difficult to recruit 

enough human patients and biopsy them at once to do a statistically valid 

experiment. Third, human subjects have enormous genetic variability.  These 

problems can be circumvented if one is able to store the cells over time, 

gathering more patients for the study, and expanding the cells over several 

passages, so many experiments can be done at the same time.  One of the 

major findings in the 1995 publications by Henry et al. was the retention of the 

insulin response of the donor, providing evidence for a genetic basis for T2DM, 

but experiments needed to be repeated at later passages to confirm that finding. 

Our work presented in Chapter 2 is performed in cells of later passages. We also 

developed the use of In-Cell-Western to measure Akt phosphorylation in cultured 

human muscle cells from insulin resistant and sensitive donors.  The experiments 

are performed in 96 well microplates, and are especially suited for applying drugs 

as interventions. We predicted that Akt phosphorylation and insulin stimulated 

glucose uptake would be preserved in vitro, congruent with the insulin sensitivity 

of the host. 
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Rationale for Chapter 3 

 

 Chapter 3 focuses on the role of macrophages in exercised muscle in 

adult humans in the context of obesity, aging and insulin resistance, which was 

conceived for two obvious reasons.  First, a sedentary lifestyle has known 

morbidity, where exercise has been prescribed as an intervention medically 

known to improve overall health; however, cellular and molecular mechanisms in 

muscle responsible for this improvement are not well understood(8, 121).  

Second, although exercise is generally beneficial, the response to exercise is 

highly variable between individuals, which we hypothesize is influenced by the 

inflammatory state of the muscle prior to exercise and to the inflammatory 

response of the muscle to the exercise stimulus. In sedentary individuals, muscle 

macrophage abundance is associated with obesity and insulin resistance(184).  

Macrophages also infiltrate muscle in response to damage that occurs in certain 

types of exercise, such as downhill running and weight lifting, that emphasize 

eccentric contractions(89, 104-106, 123, 169). Our laboratory and others are 

exploring the role of macrophages in skeletal muscle in the context of exercise, 

insulin resistance, obesity and aging(23, 44, 80, 126).  Our study includes human 

subjects of variable health status, examining the types of macrophages that 

populate the muscles, how the gene messages in muscle tissue change with 

exercise, and whether or not the measures correlate with health status. We 

predicted that aerobic exercise training would produce beneficial adaptations, 

reflected in macrophage content in the muscle, which would alter the response of 

the muscle to a subsequent acute bout of eccentric exercise, potentially 
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minimizing inflammation and damage.  With damage, it is known that 

inflammatory macrophages increase; we predicted that anti-inflammatory 

macrophage content would dominate following aerobic exercise training, and an 

eccentric bout of exercise after aerobic training, would yield a diminished level of 

inflammatory macrophage infiltration. The last portion of our hypothesis was that 

adverse health status, such as obesity or insulin resistance would impair these 

adaptations. 

 

Rationale for Chapter 4 

 

 The third and last study was designed to determine the effects of 

secretory products from different macrophage subtypes on the ability of human 

skeletal muscle cells to clear glucose. Studies in adipose and muscle have 

determined that low grade inflammation is linked to obesity and insulin 

resistance(48, 178).  Our laboratory has reported that macrophage densities 

increase in muscle with insulin resistance and obesity in vivo(184), but the 

phenotype, or polarization state, of those macrophages is currently unknown.  

Chapter 3 will fill that knowledge gap.  We previously showed that inflammatory 

macrophages inhibit Akt phosphorylation in cocultured myotubes (184).  The Klip 

laboratory activated a mouse macrophage cell line with palmitate, the palmitate 

conditioned media was applied to rat  myoblasts, which inhibited Akt 

phosphorylation, Glut4 translocation and glucose uptake(139). In this chapter, 

our intent was to dissect the molecular events of insulin resistance and glucose 
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uptake on muscle cell cultures exposed to conditioned media from macrophages 

polarized into different phenotypes.  We quantified both the cytokine secretions 

from macrophages, as well as cytokines that were induced by macrophage 

products from the muscle cells. We measured glucose uptake at baseline and 

with insulin stimulation after exposure to macrophage conditioned media.   We 

hypothesized that secretory products from the different macrophage subtypes 

would influence glucose uptake in muscle cells in vitro consistent with insulin 

sensitivities and macrophage profiles in vivo.  We have touched upon aspects of 

macrophages, insulin signaling, muscle in vivo and in vitro and exercise.  Next 

we provide a brief summary of the basic biology of these processes pertinent to 

the study.  

MUSCLE CELL CULTURE 

 

 Adult skeletal muscle harbors stem cells, termed satellite cells(47), 

identified by expression of the transcription factor Pax7, that give rise to 

mononuclear progenitor cells or myoblasts, characterized by the expression of 

the transcription factor MyoD(11, 172).  Myoblasts are capable of regenerating 

multinucleate post-mitotic skeletal muscle myofibers (37, 38, 131). Through a 

skeletal muscle biopsy, myoblasts can be isolated by enzymatic dissociation and 

expanded in cell culture. Myoblast proliferation is governed by MyoD, which 

suppresses the differentiation program.  In vitro, myoblasts can be differentiated 

into multinucleated myotubes, mimicking myofiber formation in vivo, through 

serum restriction(43). Myoblast differentiation is governed by a drop in MyoD 
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expression and induction of myogenin, which signals for fusion of myoblasts into 

syncitial myotubes. Henry's group found a preservation of insulin signal and 

glucose uptake in human myotube cultures(30, 73). 

 

INSULIN AND SKELETAL MUSCLE  

 

 Insulin is a peptide hormone of energy utilization, storage and growth.  

Figure 1.1 is a schematic of insulin dependent energy homeostasis in muscle 

during the absorptive phase.  About 75% of the plasma glucose disposal is 

handled by skeletal muscle, consequently, 75% of the glucose derived energy 

expenditure occurs in muscle(138),  Impaired glucose uptake in response to 

insulin is one of the hallmarks of T2DM(17, 86). Skeletal muscle is also the major 

depot of glycogen storage in mammals; glycogen synthesis is also an insulin 

dependent process 
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Figure 1.1  Insulin and homeostasis in skeletal muscle. 
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(196). Insulin signaling also promotes protein synthesis(95), cell growth and 

survival(107),but inhibits protein degradation(168, 187). 

 Glut4 vesicles translocate (blue vesicle) and coalesce with the cellular 

membrane, thereby inserting Glut4, for glucose uptake (black line). Glucose 

uptake in muscle can occur through multiple mechanisms which impinge upon 

independent activation of AS160(137). For example, exercise depletes muscle 

cells of energy stores, which activates AMPK, thereby inducing glucose 

uptake(175, 197).  On the other hand, insulin stimulated glucose uptake depends 

upon the activation of Akt, and subsequent activation of AS160 for Glut4 

translocation to the cell membrane, which is why we chose to measure phospho-

Akt, in addition to glucose uptake, as our insulin signaling endpoints in Chapter 2.  

 

BASIC MACROPHAGE BIOLOGY 

 

 Macrophages are cells of the immune system, specifically myeloid in 

origin, and are resident in the peripheral tissues of most higher organisms.  

Macrophages distinctively originate from CD68-bearing monocytes, which are 

recruited into peripheral tissue, where they differentiate into tissue resident 

macrophages (Figure 1.2, green cells).  Macrophages were once thought to only 
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Figure 1.2 Basic macrophage biology 
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function as custodians, and present antigens to the T-cells, of which some have. 

cytotoxic effects (the classical view). We now know that macrophages are 

heterogeneous, exhibiting different activation states.  Basic nomenclature of 

macrophages is based upon the type of integrated T-cell response (Th1 or 

Th2)(155), related to the activation state known as polarization (M1 or M2, 

respectively).  One of the types of M2 macrophages, M2C integrates its response 

with T-regulatory cells (TREG) which are thought to be inhibitory to Th1 responses, 

and whose activities with macrophages are mediated through the anti-

inflammatory Th2 cytokine IL10(15, 67, 155). Activated by IFNγ and LPS, M1 

classically activated macrophages (Figure. 1.2, red cell) can be identified by the 

cellular marker CD11b, and secrete inflammatory cytokines (IL-1β, IL-6,TNFα), 

which induce inflammatory pathways(JNK1, NFκB, SOCS). Alternatively 

activated via IL4 or IL10, M2A and M2C macrophages (Figure. 1.2, yellow and 

blue cells, respectively) can be identified by surface expression of mannose 

receptor, CD206, and secrete anti-inflammatory cytokines such as IL-4, IL-10, IL-

13. Polarized macrophages can be produced in the laboratory, using the same 

cytokines which mediate their polarization in vivo; we treat THP1 (a human 

monocyte cell line) cells in vitro with these cytokines to specifically polarize 

macrophages (IFNγ/LPS for M1, IL-4 for M2A, and IL-10 for M2C)(179); we 

confirm the phenotype by measuring levels of cytokines they secrete. M1 

macrophages are IL1β hi, IL10lo; conversely M2 macrophages are IL1βlo and 

IL10hi.  However, macrophage functional variation is clearly a continuum(108, 

113).  Some harbor both M1 and M2 "mixed" characteristics, such as M2A 
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macrophages (yellow cell) which function in allergic response, isolation and 

killing of parasites, but secret IL-1β, as well as anti-inflammatory IL-10.  M2C 

macrophages serve similarly, but they also serve in matrix deposition and tissue 

remodeling, secreting IL-10 and TGFβ. How anti-inflammatory cytokines work is 

still not completely understood; however, they mostly function through the 

suppression of inflammatory pathways.  For example, IL-10 is known to inhibit 

the expression of the inflammatory TLR4/MyD88 signaling pathway(108). 

 

INSULIN RESISTANCE AND INFLAMMATION  

 

 There is a significant body of evidence suggesting that inflammation in 

adipose tissue contributes to the pathogenesis of insulin resistance (Figure 1.3, 

purple and red pathways) (5, 118, 138, 143-145, 198).  As we have pointed out in 

the previous section on macrophage biology, macrophages are a significant 

source of inflammatory cytokines. Macrophage content in adipose is elevated in 

obese and insulin resistant individuals compared to that of healthy patients(190, 

192) 
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                 Figure 1.3  Insulin resistance and inflammation 
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When insulin signaling is impaired by inflammatory cytokines, energy 

containing molecules are unavailable to insulin sensitive tissues for metabolism, 

leading to global hyperglycemia and hyperlipidemia. Hyperlipidemia and insulin 

resistance can lead to ectopic deposition of fat in peripheral tissues. 

Macrophages clear this lipid, and are of the inflammatory M1 type(68, 192). M1 

macrophages are known to secrete TNFα (Figure 1.3, purple pathway); when 

bound to its receptor, TNFα induces JNK1 dependent phosphorylation of serine 

307 of the insulin receptor substrate 1 (IRS1) that inhibits recruitment to the 

insulin receptor (IR)(5, 76, 118). M1 macrophages also secrete IL1β and IL6. 

Insulin signal transduction may also be impaired when IRS1 is degraded via 

ubiquitin mediated pathways after IL6/SOCS activation (189) (Figure 1.3, red 

pathway).  Activation of either of these inflammatory pathways (Figure 1.3, purple 

and red) concomitantly activates the  NF-κB, signaling which induces secretion of 

inflammatory cytokines in the target tissue, amplifying the initial inflammatory 

signal through a feed forward mechanism. 

Most of the data regarding  macrophage infiltration of adipose and the 

effects of obesity have been derived from  rodent studies(13, 138, 190). In mice, 

as diabetes progresses, adipose resident macrophages undergo what is known 

as the M2 to M1 transition (102).  In diet induced obesity, the M1 to M2 ratio was 

skewed towards an M1 phenotype in the epididymal fat of mice, and pioglitizone 

treatment reduced the M1 content of epididymal fat(62). In impaired glucose 

tolerance humans, our group determined that pioglitazone decreased the 

macrophage content in adipose tissue through apoptosis(16).  Further study by 
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our group indicated, insulin sensitivity (SI) was inversely correlated with CD68 

mRNA in subcutaneous adipose. CD68 mRNA was also directly correlated to 

plasma IL6 levels and to TNFα secreted from the adipose biopsies incubated for 

2 hours in culture medium. Ten weeks of pioglitazone treatment in these subjects 

improved insulin sensitivity and reduced both CD68 and MCP1 mRNAs.  Thus, 

the reduction in macrophages improved the inflammatory profile and SI(48).  

However, these studies did not discriminate between macrophages types, and 

what the interaction may be with adipocytes. One of the hallmarks of obesity in 

mouse adipose are crown like structures (CLS), which are conglomerations of 

multinucleate M1 macrophages and dying or dead adipocytes.  However, CLS in 

human subcutaneous adipose during obesity are also primarily composed of M1 

macrophages; however, these are much less abundant in human adipose than 

mouse.  Further, our group has shown that obesity and insulin resistance in 

humans is associated with fibrosis in adipose, largely comprised of Collagen VI, 

which is inversely correlated with insulin sensitivity, and directly correlated to 

macrophage number.  Macrophages that accumulate in fibrotic areas are 

primarily M2 anti-inflammatory macrophages; only a fraction of the macrophages 

in obese adipose tissue were of the M1 type, the majority of macrophages were 

of the M2 anti-inflammatory type. Overall, In healthy subject adipose, more 

M1/M2 mixed macrophages were counted, which was reduced in obese subjects  

Thus, this study suggested for the first time that in humans, M2, and M1/M2 

mixed  macrophages may play a significant role in insulin resistance and 

obesity(162). Further studies from our group indicated decreased elastin and 
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increased Collagen V was correlated with decreased in the capillarization in 

adipose tissue of obese human subjects. Coculture experiments with M2 

macrophages and adipocytes resulted in reduced elastin and collagen V mRNA 

in the macrophages, and the addition of Collagen V to endothelial cultured cells 

inhibited endothelial budding. Thus, with obesity in humans, M2 macrophages 

may contribute to defects in ECM and angiogenesis in adipose tissue(161).  

Compared to adipose, very little is known regarding the influence of 

muscle macrophage content on insulin responsiveness. Our laboratory was the 

first to  describe a greater accumulation of macrophages in the muscle of obese 

and insulin resistant humans(184).  The Klip laboratory used a chemokine ligand 

knockout mouse (CCL2) and wild type litter mates to study macrophage 

infiltration in muscle in response to a high fat diet.  The wild type mice showed 

increased accumulation of CD11C inflammatory macrophages, and glucose 

intolerance compared to CCL2KO littermates. In this same study they found in 

human skeletal muscle, CD68 and CD11C were associated with poor glucose 

disposal and adiposity(57). Furthermore, Klip found in the skeletal muscles of 

diabetic human subjects, that  CD11C were correlated with clinical measures of 

diabetes and obesity, an observation which was ameliorated after correction for 

age. In exercised obese subjects, they found transcripts of anti-inflammatory 

macrophage markers CD206 and CD163 correlated with a high glucose disposal 

rate(58). The present study endeavors to examine how both classically (M1) and 

alternatively activated (M2) macrophages change in response to different types 

of exercise in vivo (Chapter 3), and how their secretory products modulate 
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glucose uptake in human skeletal muscle-derived myotubes (Chapter 4). The 

characterization of skeletal muscle/ macrophage interactions may lead to novel 

approaches of preventing and/or treating the insulin impairment manifested by 

T2DM.  

 

MACROPHAGES IN MUSCLE RESPONSE TO EXERCISE 

 

 Studies in mice reveal that experimentally-induced damage to skeletal 

muscle increases macrophage content(49, 176, 177).  M1 macrophages 

participate in an inflammatory response to damage and phagocytize 

degenerating myofibers.  Subsequently, M2 macrophages are recruited that 

secrete anti-inflammatory cytokines and growth factors, aiding in repair and 

regeneration.  Many labs have demonstrated the absolute requirement for 

macrophages for muscle regeneration to proceed(6, 28, 29).  For example, 

MCP1 (macrophage chemokine protein 1) knockout and chemokine receptor 

knockout mice subjected to muscle damage are unable to regenerate or repair 

their muscles(109, 152, 153).  These are genetic strategies which cannot be 

used on humans.  However, we do know that certain types of exercise induce 

muscle damage, which can be studied in humans.  

 Some activities, such as downhill running and resistance exercise, are 

prone to injure skeletal muscle.  In general, resistance exercise (weight lifting) is 

composed of two motions (Figure 1.4).  Lifting the weight requires a contraction  
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Figure 1.4 Concentric and eccentric contractions. 
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of the muscle; muscle fibers contracting and shortening at the same time is 

known as concentric contraction.  Conversely, extending the limb to lower the 

weight, requires simultaneous lengthening of the fibers while contracting to 

maintain the load, referred to as an eccentric contraction.  Eccentric contractions 

cause muscle damage, allowing study of muscle repair in humans, a process 

which is mediated by macrophages.  

 Aerobic exercise, in general, does not cause damage to muscle.  Indeed, 

aerobic exercise, such as cycling, is beneficial to the muscle by increasing blood 

flow, conditioning the muscle for endurance, improving insulin sensitivity and 

decreasing obesity.  Through extended aerobic exercise, the increased demands 

for energy by the muscle induces increased vascularization (65, 66).  Another 

adaptation is that the oxidative capacity of the muscle is increased, through 

upregulating genes within the oxidative phosphorylation pathway(77), and/or by 

increasing mitochondrial content(63, 119, 195).  More efficient oxidative 

phosphorylation consumes more fatty acids and produces less reactive oxygen 

species(21, 55).  In response to aerobic exercise, muscle is also known to 

increase the content of its buffers to free radical stress(129).  

 Resistance and aerobic exercise induce different programs of remodeling 

of the muscle tissue and interstitium, and Chapter 3 was designed to determine if 

different subtypes of macrophages mediate these processes. Alternatively 

activated, tissue resident M2 macrophages are involved in angiogenesis, tissue 

remodeling, and wound repair in mice and humans(108).  The concerted 

infiltration of M1 and M2 macrophages into skeletal muscle is associated with the 
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proliferation and differentiation of myoblasts in the repair of damaged 

myofibers(177).  In vitro, macrophage products can promote the differentiation of 

satellite cells(36).  Studies in rodents suggests that there is phenotypic shifting 

from an M1 inflammatory to an M2 anti-inflammatory mode which promotes 

repair programs(6), protects against muscle atrophy(52), and supports muscle 

recovery in vivo and in vitro(23, 27, 52). Mechanistically, secretory products from 

M2 macrophages directly aid in growth and repair by stimulating the activity of 

muscle satellite cells(135). The different macrophage phenotypes we have 

described have distinct effects on myoblasts. Work by the Chazaud group 

suggests that inflammatory M1 macrophages promote myogenic cell 

proliferation, and that anti-inflammatory M2 macrophages promote 

differentiation(6). Further studies by Chazaud suggest that coinjected bone 

marrow derived macrophages and myogenic precursor cells improve survival in 

myogenic precursor cells after implantation in mdx mouse skeletal muscle(98), 

but they did not identify the phenotype of the macrophages. Results reported in 

Chapter 3 suggest coincident changes in macrophage populations congruent 

with changes in genes involved with fibrosis and angiogenesis, emphasizing that 

macrophages are important in interstitial tissue remodeling in muscle response to 

exercise. Although we have described distinct macrophage phenotypes in this 

review, investigators have probably not identified all the cellular markers and 

macrophage types involved skeletal muscle repair.  With the available tools  
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we can only conclude that M1s and mixed M1/M2 macrophages are important 

elements of the muscle repair program. 
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Chapter 2: Human skeletal muscle cell cultures from obese subjects retain insulin 

signaling through Akt, but are disconnected from insulin stimulated glucose 

transport. 

SUMMARY 

We determined the insulin stimulated Akt protein phosphorylation at serine 473 

and glucose disposal in vitro in differentiated myotubes derived from muscle 

biopsies from several human subjects with a spectrum of clinical insulin 

sensitivities (SI, 1.3 - 5.41 x 10-4 min-1∙(µU∙ml)-1 by FSIGT).  Using In-Cell-

Western, we found a dose response in insulin signaling through Akt 

phosphorylation that was, for the most part, congruent with the SI of the donor; 

those with the highest SI demonstrated the highest dose response.  Further, 

myotubes derived from more insulin sensitive individuals had a higher pAkt/Akt 

ratio at 5 nM insulin. However, glucose uptake in myotubes was minimal and not 

correlated to Akt phosphorylation. Individual comparisons of glucose uptake 

revealed that the myotubes from the most insulin resistant donor had a significant 

increase in 5 nM insulin stimulated glucose uptake compared to myotubes from 

more insulin sensitive individuals. We conclude that late passage myotubes 

activate insulin signaling pathways consistent with the clinical insulin sensitivity of 

the donor but have lost the ability to respond to insulin at the level of glucose 

disposal. 
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INTRODUCTION 

 

 Type 2 Diabetes Mellitus (T2DM) is a devastating and lethal disease if 

untreated, characterized chiefly by a person’s inability to respond to insulin, 

thereby restricting access and storage of available nutrients. The dominating 

feature is impaired insulin response (138, 198), in the beginning, known as 

insulin resistance, then later through pancreatic β cell exhaustion as a result of 

compensatory hyperinsulinemia, where insulin is no longer secreted.  Insulin is a 

peptide hormone of energy utilization, storage and growth.  When insulin 

signaling is impaired, energy containing molecules are unavailable to insulin 

sensitive tissues for metabolism, leading to global hyperglycemia and 

hyperlipidemia. T2DM is an important disease in developed societies leading to 

many billions of dollars in medical costs per annum (79). T2DM leads to a whole 

host of secondary diseases including diabetic neuropathy, nephropathy, 

retinopathy, obesity, stroke and cardiac disease, such that T2DM is among the 

highest ranking disease related to mortality beyond middle age (79). Treatment 

involves oral therapies including insulin sensitizers (ie.metformin), insulin 

secretion agonists (secretogogues, ie. glipizide), or by injection with recombinant 

insulins.  The mechanisms of insulin sensitizers are not well characterized in 

skeletal muscle, and have primarily been studied in liver and white adipose.   

 The crosstalk of other tissues and skeletal muscle related to T2DM is not 

well understood, therefore, skeletal muscle is a novel therapeutic target for 

insulin sensitizers. Dysfunctional insulin response is thought to be the cause of 
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this disease, but the molecular pathogenesis is not fully delineated. Impaired 

glucose uptake in skeletal muscle is one of the hallmarks of T2DM; about 75% of 

the plasma glucose disposal is handled by skeletal muscle. Consequently, 75% 

of the glucose derived energy expenditure occurs in muscle (138). It has been 

reported that muscle cells from diabetic subjects retain their phenotype in vitro, 

suggesting stable intrinsic alterations to cellular metabolism (30, 73). On the 

other hand, in white adipose, the development of inflammation is thought to be a 

major determinant in the etiology of insulin resistance (138, 198). Through 

hyperlipidemia and response to adipose derived inflammatory cytokines, the 

deposition of ectopic fat and impaired insulin signaling in skeletal muscle are also 

thought to be a player in the insulin impairment under diabetic conditions(128, 

160-162, 184).  

 Skeletal muscle harbors stem cells, termed satellite cells that give rise to 

daughter cells or myoblasts, that are capable of regenerating and replacing 

damaged post-mitotic skeletal muscle myofibers. Through a tissue biopsy, 

myoblasts can be isolated by cell culture, and grown in vitro. Skeletal muscle 

fibers can be emulated in the laboratory by growing myoblasts on special 

medium, inducing fusion and differentiation into multinucleate tube like syncitia, 

so-called myotubes. We use insulin-treated cultured myotubes to explore 

underlying, intrinsic mechanisms of insulin resistance in skeletal muscle. We 

have collected quantitative data and observations related to insulin signaling 

fluxes by infrared detection. We rely principally on a technique termed, In-Cell-

Western (ICW), which eliminates the need for manipulations such as cellular 
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disruption.  ICW utilizes a 96-well plate setup, coupled with the 10,000 fold 

detection range of infrared labeling technology, providing a novel system for 

studying insulin signaling in vitro.   

 We hypothesized that insulin response of the donor would be preserved in 

cultured myotubes.  We determined the insulin stimulated Akt protein 

phosphorylation and glucose disposal in vitro on differentiated myotubes of 

several donors with a spectrum of clinical insulin sensitivities.  We found that 

insulin signaling through Akt phosphorylation was, for the most part, congruent 

with the clinical sensitivity, but glucose disposal, a further downstream result of 

insulin signaling, was disconnected from both the degree of Akt phosphorylation 

and clinical sensitivity. Thus, we conclude that although skeletal muscle cells in 

vitro activate signaling pathways in response to insulin, this is disconnected from 

glucose disposal. 

 

MATERIALS AND METHODS 

 

    Subjects and Tissue Collection 

 

Human non-diabetic subjects were recruited through local advertising.  All 

subjects included in the study were recruited by informed consent approved by 

the institutional review board at the University of Arkansas for Medical Sciences  
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or the University of Kentucky. Muscle biopsies from six subjects were included in 

this study. Muscle biopsies were collected from vastus lateralis muscle under 

local anesthesia. Standard fasting blood lipids were measured at the time of 

biopsy. The clinical insulin sensitivity (SI) was measured by frequently sampled 

IV glucose tolerance test (FSIGT) with minimal model calculation (191). Subjects 

were considered insulin sensitive at SI > 2.5 and resistant at SI < 2.5 x 10-4 min-

1∙(µU∙ml)-1. See Table 2.1 for details.  

 

    Cell Culture 

 

 Myoblasts were isolated as previously described (184). Passage 4 

myoblasts were propagated on Primaria p100 plates (BD Biosciences, 353803, 

Franklin Lakes, NJ),  in growth medium composed of Hams/F10 medium 

(Cellgro/Mediatech, 10-070-CV, Manassas, VA) supplemented with 20% fetal 

bovine serum (FBS, Atlanta Biologicals, S12450, Lawrenceville, GA), 5 mg/ml 

basic Fibroblast Growth Factor (bFGF,Millipore, GF003) and 1% 

Penicillin/Streptomycin (Gibco/Life Technologies, 15140, Grand Island, NY), and 

maintained with 5% CO2 at 37°C. Cells were split at 50% confluence. At passage 

6 or 7 the myoblasts were released with 1%  trypsin  (Gibco/Life Technologies, 

15400-054) and  seeded at 150 cells/mm2 onto 96-well Primaria plates (BD 

Biosciences,353872 San Jose, CA) pre-coated with collagen I at 0.3 mg/ml 

(Gibco/Life Technologies, A1048301) in PBS overnight. All liquid handling at    
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Table 2.1  Clinical subject characteristics. 

 

Units for SI (insulin sensitivity):  value  x 10-4 min-1∙(µU∙ml)-1, BMI (body mass 
index): kg/m2.  Fasting lipids, cholesterol, triglycerides, LDL (low density 
lipoprotein), HDL (high density lipoprotein),  and glucose 0 hour (oral glucose 
tolerance test baseline), glucose 2 hour (oral glucose tolerance test 2 hour time 
point): mg/dl. 
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this point was performed with a 12-well multi-channel Research Pro© electronic 

pipette (Ependorf, Hauppauge, NY) set on the slowest speeds for both aspiration 

and application of media/washes to 96-well plates. The medium was changed to 

differentiation medium, αMEM (Gibco/Invitrogen, 12561-049) supplemented with 

2% FBS and 1% Pen/Strep, the next morning. The cells were observed and the 

medium changed every 48-72 hours.  Differentiated myotubes were studied 

following 12 days in differentiation medium.  

 

In-Cell-Western (ICW) 

 

 Differentiated myotubes were treated with increasing concentrations of 

insulin, 2.5, 5, 10, 20, 40 nM, (Novolin human recombinant insulin, Lilly,  

Indianapolis, IN) for 30 minutes with 3 replicates per concentration. Cells were 

fixed with 4% methanol-free formalin (Electron Microscopy Sciences, Hatfield, 

PA), washed with Cell Signaling Technologies (CST, Danvers, MA) immuno 

formulation PBS (CSTPBS) and levels of the insulin signal transduction pathway 

(pAkt/Akt) quantified by ICW. Cells were permeabilized in 5 washes of PBS with 

0.1 % Triton-X100 (PBSX), at room temperature and blocked with Odyssey 

Blocking Reagent (LI-COR, 927-40000, Lincoln, NE) for 1 hour at room 

temperature.  Primary antibody incubation solutions were prepared in 1:100 

Odyssey Block and CSTPBS and allowed to incubate overnight at 4°C.   
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Following incubation with mouse α phospho serine 473 Akt (MsαpAkt, CST 4051) 

and rabbit α total Akt (RbαAkt, CST 9272), cells were washed five times in 

CSTPBS containing 0.1 % Tween-20 (PBST)  at room temperature. Secondary 

antibodies, conjugated to different infrared (IR) tags were applied at 1:500 

dilution; donkey α rabbit IR700 (DkαRb700) and goat α mouse IR 

800(GtαMs800), LI-COR, 926-32223, 926-32210) for 1 hour at room 

temperature, followed by five washes in PBST at room temperature, and three 

final washes in CSTPBS containing no detergent. ICW signals from all wells were 

scanned at once, detected and quantified as raw integrated counts, in both the 

pseudocolored red 680 and the green 800 infrared detection channels via the LI-

COR Odyssey infrared imaging system using the default ICW settings. The 

integrated values of the 800 nm  pAkt channel divided by the 680 nm Akt channel 

x 100 are the values reported, mean % ±SE. 

 

Glucose Transport Assay 

 

 Glucose transport assays were performed on differentiated myotubes in 6-

well Primaria plates as follows.  Myotubes were washed in 37°C Hank's balanced 

salt solution with phenol red (HBSS, Gibco/Life Technologies, 24020-117), then 

serum starved by incubation in fresh HBSS for 30 minutes. Fresh warm HBSS or 

5 nM insulin in HBSS was then added for an additional 30 minutes. Cell plates 

were placed on a heated working surface composed of a top layer of  1 blue 
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chuck, then fiber glass dinner tray as the middle layer, then on a sunbeam 

heating pad as the bottom layer, prewarmed on the lowest setting.  Cells were 

then washed three times in warm 37°C, PBS supplemented with 100 μM Ca2+ 

and Mg2+ (PBSCaMg).  Wells were carefully aspirated, then 1ml of  0.33 μCi 2-

deoxy-d[1,2-3H]glucose (NEN Life Science Products, NEC495250UC, Waltham, 

MA) in HBSS was applied/well, and incubated for 30 minutes.  Cells were 

washed three times in 37°C HBSS. The cytoplasmic fraction was liberated with 

550 μl of 1% Triton X-100 in PBS by incubating for at least 5 minutes.  Four 

hundred microliters was transferred to scintillation vials, 4.5 ml of Scintiverse 

cocktail (ThermoFisher, SX18-4, Waltham, MA) added and vials counted for 10 

minutes each in a Beckman Coulter liquid scintillation counter. Counts per minute 

of the insulin treated samples were normalized to the baseline samples, and 

reported as relative units. 

 

Statistical Considerations   

 

 Repeated measures ANOVA was used to determine statistical 

significance within subjects among the curves generated in ICW in response to 

different insulin concentrations. Pair wise comparisons between subjects were 

analyzed for statistical significance by one way ANOVA followed by two tailed 

Student’s t-test.  JMP software (SAS Institute Inc. Cary, NC) or Excel (Microsoft 

Corporation, Seattle, WA), was used for all analyses.  There was one outlier 
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excluded from the measurements summarized in Table 2, which was 2 standard 

deviations outside of the mean, for the isolate 4.17 at 20 nM insulin, so only 2 

measurements were used to calculate the mean.  

 

RESULTS  

 

   We collected cells from muscle biopsies from individuals with a 

range of SI's to quantify pAkt/Akt ratio compared to glucose transport in response 

to insulin in vitro.  Table 2.1 shows clinical measures of  body mass index (BMI), 

fasting blood lipids, and the fasting glucose at baseline and 2 hour postprandial, 

and insulin sensitivity (SI) determined by frequently sampled IV glucose tolerance 

test (FSIGT) (191). The amount of variability is commonly observed in clinical 

data. We found a disconnect in the subjects between SI and BMI. These 

measures appear to be counter intuitive when compared with fasting baseline 

and the 2 hour postprandial glucose.  For example, the patient with an SI of 1.51 

x 10-4 min-1∙(µU∙ml)-1, considered insulin resistant, had both a fasting and a 2 

hour glucose disposal that were quite effective at 87 and 86 mg/dl, respectively.  

On the other hand, the patient with an SI of 3.09, considered insulin sensitive 

clinically, had baseline/postprandial values of 104 and 190, respectively, 

suggesting a less effective integrated glucose transport response.  This indicates 

that in the clinical setting there is a disconnect between glucose disposal and SI; 
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therefore, the integrated response is more complex. Our study of molecular 

events in vitro was designed to examine the relationship between insulin 

signaling and glucose uptake. 

 We utilized differentiated myotubes from six different individuals in 96-well 

plates (Figure 2.1A) to accurately measure the level of Akt phosphorylation via 

In-Cell-Western (ICW).  The ICW analysis showed an insulin dose response in 

phosphorylation of Akt (Figure 2.1B), relative to total Akt (Figure2.1C; pAkt/Akt 

overlayed in Figure 2.1D).  The ratio of pAkt/Akt with increasing doses of insulin, 

expressed as a percentage, is quantified in Figure 2.2.  Results indicate that the 

insulin induced phospho-Akt response in the cultured myotubes was related to SI 

of the cell donor. This observation suggests that heritable, intrinsic alterations in 

insulin sensitivity have been retained in myotubes through passage 7 in culture; 

even after our culture manipulations, the cells preserve an insulin-induced Akt 

response in vitro congruent with clinical insulin sensitivity measures.  The 

numerical means and standard errors of each myotube culture are reported in 

Table 2.2. The main goal of this experiment was to determine if myotubes from 

different donors differed in Akt phosphorylation consistent with clinical insulin 

sensitivities, therefore, we compared subject-to-subject within each insulin 

concentration.  In Table 2.3, the significant pairs of myotube cultures as indicated 

by SI are listed for each insulin concentration.  The dose response shows that 

most of the myotubes approached a mid-range in Akt phosphorylation at 5 nM 

insulin. The response approached an asymptote at 10, 20 and 40 nM. For this 

reason, 5 nM insulin was chosen for further experiments.  
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Figure 2.1  Representative images derived from a donor having a clinical insulin 
sensitivity of 3.09 x 10-4 min-1∙(µU∙ml)-1.   (A) The grayscale panel is the visible 
light image of myotubes from the 96 well plate after 15 days of differentiation. 
Scale bar = 200 µM. (B) The green wells represent the ICW phospho-Akt signal. 
(C) The red wells represent the total Akt signal from these cells. (D) The orange 
to yellow wells are the overlay of the Akt and pAkt signals, in response to 
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increasing doses of insulin (2.5nM to 40nM).  Far right column indicates cells with 
no insulin for baseline. 

 The pAkt/Akt percentage at 5nM insulin (Figure 2.3A) generally correlated 

with the SI of the donor.  There is some overlap between the donors of SI 1.52 

and 3.09 x 10-4 min-1∙(µU∙ml)-1, indicating that perhaps at mid range, our assay 

does not resolve the differences found by FSIGT.  The asterisks in Figure 2.3A 

indicate that myotubes from an insulin resistant donor with SI of 1.3 have a 

pAkt/Akt ratio expressed as a percentage (47.8±0.66), which was significantly 

different from myotubes from insulin sensitive donors, with SI's 3.09(59.0±1.62), 

4.17(63.7±1.69) and 5.41(67.5±2.04), and that myotubes from an insulin resistant 

donor with an SI of 1.51 (51.7±1.98) were also significantly different from these 

insulin sensitive donors.  However, myotubes from one insulin resistant donor (SI 

1.52) were not significantly different than the insulin sensitive donors. The pound 

sign indicates that cells from insulin resistant subjects with  SI 1.3 and 1.51 were 

significantly different from myotubes from a subject with an SI of 1.52  

(61.1±1.50,  p<0.05, all ratios were measured in triplicate).   
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Figure 2.2. The quantified ratios of pAkt/Akt determined by In-Cell-Western 
(ICW) shows that insulin signaling through Akt is retained in human myotubes. 
The phospho-Akt to Akt ratio of each isolate expressed as mean percentage. 
Open symbols, cells from insulin sensitive subjects; closed symbols, cells from 
insulin resistant subjects.  Insulin sensitivity of each subject (SI) is shown. 
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The phosphorylation of Akt triggers a signaling cascade leading to Glut4 vesicle 

translocation to the plasma membrane, promoting accelerated glucose transport 

(199). Classically, this has been measured by [H3]-2-deoxyglucose (2-DG) 

uptake at baseline and following insulin stimulation. We quantified 2-DG uptake 

at 5nM insulin, which is in the linear range of the pAkt/Akt ratios (see Figure 2.2). 

Figure 2.3B depicts insulin stimulated glucose uptake, normalized to basal 

glucose uptake, for each myotube culture.  Our observations indicate in general, 

that insulin stimulated glucose uptake is unchanged from basal, and that glucose 

uptake does not follow the pattern of Akt activation observed in Figure 2.3A or 

clinical SI shown in Table 2.1. Of note, myotubes from the subject with the lowest 

BMI had the highest insulin stimulated glucose uptake.  Individual comparisons 

reveal that cells from a subject with an SI of 1.3 (in RU: 1.25 ± 0.02 n=3) had a 

significant increase in insulin stimulated glucose uptake when compared with 

those with SI of  1.51, 1.52, 4.17 and 5.41 (0.97 ±0.10 n=2, 0. 97 ± 0.07 n=4, 

1.02 ± 0.06 n=6,  0.97 ± 0.08 n=5, respectively, p<0.05), but was not different 

from SI 3.09 (1.61 ± 0.39 n=6). An additional insulin dose response study on 

myotubes from the subject with SI 3.09 revealed peak glucose uptake at 5nM and 

that higher concentrations were inhibitory (data not shown). Thus, our study finds 

that in vitro, glucose disposal is disconnected from phosphorylation of Akt. 
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Table 2.2  Insulin dose response in myotubes from donors of different SI's. 

 
The numerical pAkt/Akt *100 values of the myotubes at different insulin doses as 
shown in Figure 2.2, mean ± SEM.  
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Table 2.3  Statistically significant pairs of donors by SI, for each insulin dose. 

 
Pairs are listed in ascending order by p value. Pairs with lowest p values are at 
the top of each column, at the bottom of each column are pairs with p values 
approaching 0.05. 
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Figure 2.3. Insulin stimulated Akt phosphorylation is congruent with clinical 
insulin sensitivity, whereas insulin stimulated glucose transport is disconnected 
from both the insulin signaling and clinical insulin sensitivity. (A) pAkt/Akt ratios of 
human myotubes  in response to 5nM insulin (from Figure 2.2 dose response) in 
ascending order of the insulin sensitivity of the donor.     *significant differences 
from 3.09, 4.17, and 5.41 x 10-4 min-1∙(µU∙ml)-1  (p<0.01);  #significant difference 
from 1.52 (p<0.01).  (B) 2-deoxy-glucose uptake of human myotubes derived 
from the same donors and stimulation protocol as in (A), recorded as relative 
units by fold change over baseline. BMI of each subject is also indicated. Assays 
were performed at least twice and reported as means ± SEM. *significant 
difference from 1.3 (p<0.05).   
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DISCUSSION  

 

  Henry and colleagues reported that human primary myotubes retain stable 

intrinsic metabolic alterations consistent with the clinical profile of the host (30, 

73), a result which has not been replicated since.  We have observed differential 

growth characteristics that track with the insulin sensitivity of the host 

(unpublished data).  Therefore, we posited that insulin response of the donor 

would be preserved in myotubes, consistent with the work of Henry et. al (30, 

73). We measured the insulin stimulated Akt protein phosphorylation at serine 

473 and glucose disposal in vitro on differentiated myotubes at late passage. The 

donor human subjects harbored a spectrum of clinical insulin responsiveness.  

This study revealed that insulin signaling through S473 pAkt/Akt percentage to 

be, for the most part, congruent with the clinical insulin sensitivity.  However, 

glucose disposal, a further downstream result of insulin signaling, was 

disconnected from both the degree of Akt phosphorylation and clinical insulin 

sensitivity. Consequently, we conclude that skeletal muscle cells following 

several passages in vitro have lost the ability to respond to insulin at the level of 

glucose uptake.   

 The retention of insulin stimulated glucose uptake, glycogen synthesis, 

and active glycolysis enzymes that Henry and colleagues found with acutely 

differentiated myotubes from normal and T2DM subjects is striking (30, 73).  

Because of this, one of the most important inferences of that study was that there 

is a genetic basis for T2DM, which should be stable in muscle cells even at later 
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passages in vitro.  The present work addresses that issue through the use of 

myotubes differentiated at passage 6 to 7 in culture (later passage), where we 

have found insulin signaling to be discontinuous from glucose disposal, and that 

partial retention exists only through S473 Akt phosphorylation.  This partial 

retention of the insulin signaling cascade might suggest that perhaps there is a 

heritable epigenetic mechanism, but downstream glucose uptake seems not 

likely to be related to epigenetics.  Further studies are required to confirm this 

hypothesis. 

 Our studies indicate that later passage myotubes in culture have become 

mostly insulin resistant at the level of glucose uptake, regardless of the clinical 

insulin responsiveness of the donor. One possible mechanism is that the distal 

events of glucose uptake may be inhibited by the removal of input from 

peripheral organs and tissues. There are experimental models to generate 

myotubes that are insulin resistant, besides simply harvesting them from insulin 

resistant donors.  Treating mice with Streptozotocin (STZ) to destroy the beta 

cells in the pancreas, thereby eliminating insulin secretion, results in insulin 

resistance in muscle (186).  Removal of the STZ-treated epitrochlear muscle 

followed by incubation in culture, resulted in loss of experimentally induced 

insulin resistance. The investigators utilizing this method cited another study that 

the lack of insulin over a long period of time, down regulates the glucose 

transport apparatus (88).    

 A second way to induce insulin resistance in vitro is to expose the 

myotubes to supra physiological concentrations of glucose (hyperglycemia) or 



   

42 

 

insulin (hyperinsulinemia), or both at the same time for a long duration (30).  It 

has been proposed that this treatment down-regulates proteins associated with 

the insulin signaling machinery through negative feedback loops.  One of these 

mechanisms could be playing a role in our study. To prevent differentiation, our 

laboratory maintains myoblasts at 20% FBS, which is likely to have a 10 fold 

higher endogenous bovine insulin than the 22 pM measured insulin in 2% FBS 

reported in Henry (30). The limiting factor in our study was producing enough 

cells for the glucose uptake assay, which required 2-3 weeks of propagation, and 

2-3 passages.   Endogenous insulin for humans between meals range from 57-

79 pM (81), and during meals are reported to oscillate between 100 and 800 pM 

for a duration of 3-6 minutes (70). The primary organ responsible for removal of 

insulin from the blood is the liver. In culture we have removed the effects of other 

organs so there is the possibility that having a continuous dose of 200 pM of 

bovine insulin every 48-72 hours may set up an insulin resistant state in the 

myoblasts, prior to differentiation in 2% FBS. Henry and colleagues required a 

much higher 30 μM insulin for a period of 4-6 weeks to set up an experimentally 

induced insulin resistance in myotubes from normal subjects. In our hands, 

myotubes require a period of 10-12 days to differentiate into myotubes, where 

they are exposed to the lower 22 pM insulin found in 2% FBS, which in this case 

did not restore glucose uptake in response to exogenous insulin.   

 Lastly, much of the literature on insulin resistance focuses on the 

presence of a chronic low state of inflammation in the peripheral tissues 

mediated by tissue resident macrophages (68, 118). These reports suggest that 
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most of these inflammatory cytokine related mechanisms impinge on aberrant 

activation of Akt, through a multitude of mechanisms which either block 

recruitment of IRS1 to the insulin receptor or cause an inhibitory phosphorylation 

of IRS1 (5, 76, 94, 118), thereby inhibiting downstream processes. We have 

removed the peripheral affects of macrophages and other tissues in the in vitro 

study which resulted in insulin stimulated Akt phosphorylation largely tracking 

with the insulin sensitivity of the donor.  Although 5 nM insulin was effective in 

eliciting a pAkt response, this dose did not elicit glucose uptake, which argues 

that while activation of Akt is functional, some component downstream in the 

signaling pathway leading to insulin stimulated glucose uptake is not responding 

properly.   

 While the data in this study indicate the distal glucose uptake response to 

be dysfunctional, insulin signaling seems to be preserved through Akt in the 

myotubes from donors with differing insulin sensitivities.  Other investigators 

have suggested the mechanisms of insulin resistance most strongly impinge 

upon the molecular events leading up to the phosphorylation of Akt (78, 94, 118, 

198 ). This suggests that there is utility in this in vitro model to study those 

events. The microplate format is especially convenient and economical for 

pharmacological studies of various molecular targets leading up to the 

phosphorylation of Akt.   

 

Copyright © Jason Sean Groshong 2013 
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Chapter 3: Adaptation to resistance or aerobic exercise with respect to age and 

obesity. 

SUMMARY 

The adaptation of skeletal muscle in response to exercise is not fully 

understood; evidence suggests macrophages are involved. Changes in muscle 

are important in the context of clinical obesity, insulin resistance, and aging, 

where exercise has been prescribed as an intervention. We have exercised 

human subjects harboring a wide range of clinical characteristics with eccentric 

(resistance) exercise, aerobic training or aerobic training followed by eccentric 

exercise.  After each intervention we measured changes in abundance of  distinct 

macrophage subtypes and gene transcripts in skeletal muscle biopsies. At 

baseline, inflammatory M1 macrophage density was correlated with obesity, but 

body mass index did not affect response to the exercise interventions.  Age 

influenced response to exercise, most strongly associated with changes in 

macrophages of a mixed M1/M2 phenotype.   These macrophages increased in 

the muscle of subjects >55 years of age when trained aerobically.  Moreover, 

eccentric exercise following training  increased these cells in subjects <55, but 

decreased cell abundance for subjects >55, a pattern appearing reciprocal.  

Overall, the relative abundance of M1 and M1/M2 macrophages was correlated 

to muscle gene expression related to specific functions.  M1 and M1/M2 
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macrophage densities were associated with transcripts related to extracellular 

matrix (ECM) accumulation and fibrosis.  Each type was associated with the 

expression of exclusive transcripts, with M1/M2 dominating this association, 

correlating most strongly with Secreted Protein Acidic and Rich in Cysteine 

(SPARC) mRNA expression. M1 and M1/M2 macrophages were also associated 

with messages related to angiogenesis, but there were some transcripts common 

to both, or exclusive to one type, with M1/M2 most highly correlated. Conversely, 

only M1 macrophage densities were associated with genes related to cellular 

homeostasis (protein turnover, autophagy, and apoptosis). Taken together these 

findings suggest that M1 and M1/M2 macrophages have distinct functions in 

ECM remodeling, angiogenesis, and homeostasis adaptations to exercise, that 

are altered with aging.  Further studies are needed to show cause and effect. 

 

INTRODUCTION 

 

 While there is a large body of evidence suggesting that macrophages are 

involved with muscle adaptation, the process is still not completely understood. 

Skeletal muscle is important in the context of clinical obesity, insulin resistance, 

and aging, where exercise is beneficial(133, 180, 185). In rodents, muscle injury 

and regeneration are well-studied processes, through manipulations such as 

genetic knock out and injection of caustic agents(36, 109, 117, 152, 171). But 

less is known in humans, where such interventions are not possible. Eccentric 
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contractions occur during the extension phase of weight training, a process of 

simultaneous elongation and contraction of the contractile filaments, causing 

damage to the muscle. Damage to the muscle is known to induce an influx of 

macrophages in humans(105) and in mice(177).  

 In the canonical view of macrophage biology(108), M1 inflammatory 

macrophages are phagocytic, secreting cytokines such as IL1β, TNFα, and 

pleotropic IL6, and express surface antigen CD11b. Inflammatory M1 

macrophages populate skeletal muscle in response to damaging exercise(177), 

resulting in increased production of inflammatory cytokines within the muscle(56, 

112, 126).  Eccentric, damaging exercise is also known to cause a hypertrophic 

response. M2 alternatively activated macrophages are involved with remodeling 

processes in the tissues they inhabit, expressing the cell surface marker CD206, 

and secreting anti-inflammatory cytokines such as IL10.  Certain phenotypes 

within the M2 class have distinct functions; M2A macrophages aid in allergic 

response, tissue remodeling and parasite containment via matrix deposition. 

M2C macrophages also serve in tissue remodeling and maintenance of the 

interstitium. There are a multitude of M1 and M2 phenotypes that cannot be 

described as either, but lie somewhere within a spectrum of function, mixing the 

M1 and M2 phenotypes(113). Less is known about M2 alternative macrophages 

and their involvement in muscle adaptation to exercise. This laboratory has 

reported in muscle the response to acute exercise for both M1 and M2 

macrophages is defective in the context of aging(126) and that overall, 

macrophages are increased in muscle with obesity(184) .  We have also reported 
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in adipose, in the context of obesity, that M2 macrophages are associated with 

fibrosis and decreased capillary density(162).  

 We have exercised adult human subjects harboring a wide range of 

clinical characteristics with eccentric (resistance) exercise, aerobic training or 

aerobic training followed by eccentric exercise; a regimen which we predict will 

reveal unique roles for macrophages in skeletal muscle adaptation within the 

context of obesity and aging. After each intervention we measured fluxes of 

distinct macrophage phenotypes, and gene transcripts in skeletal muscle 

biopsies. The beneficial effect of aerobic exercise is well accepted(55, 134). Our 

hypothesis is that the adverse health status of the subjects will be inhibitory to 

the beneficial adaptive process.  One such beneficial adaptation may be the 

processing of free radicals, a result of an unpaired electron, also called reactive 

species, which are produced as a result of metabolism. These free radicals 

create chemical modifications to biomolecules, which are considered damage, 

known as adducts. Other investigators have reported that altered production of 

reactive species and stress buffers might be deficient due to aging(129).  We 

posit that the different exercise interventions might yield different amounts of end 

point tissue damage as a result of differences in reactive species and their 

buffers, when comparing subjects of different ages.  Additionally our hypothesis 

also includes modification to the flux of macrophages in response to these 

exercise interventions that varies by health status.  As a result of beneficial 

muscle adaptation to aerobic training, we hypothesized that damage and the 

inflammatory macrophage response to a subsequent bout of eccentric exercise 
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would be reduced. We predict that the older, more obese or more insulin 

resistant subjects will not experience the decrease in inflammatory macrophages, 

compared to that observed in more healthy individuals.   

 

MATERIALS AND METHODS 

 

Subjects, Tissue Collection, and Clinical Measures. 

 

 Human non-diabetic subjects were recruited through local advertising.  All 

subjects included in the study were recruited by informed consent under 

protocols that were approved by the institutional review board at the University of 

Kentucky. Muscle biopsies from 14 subjects were included in this study. Muscle 

biopsies via needle were collected from vastus lateralis muscle under local 

anesthesia in the Clinical Services Core of the UK Center for Clinical and 

Translational Sciences (CCTS). Standard fasting blood lipids were measured at 

the time of biopsy. The clinical insulin sensitivity (SI) was measured by frequently 

sampled IV glucose tolerance test (FSIGT) with minimal model calculation (191), 

prior to and at the end of the study. See Table 3.1 for details. Metabolic 

measures were collected using a calibrated bicycle ergometer (Monarch 828E, 

Vansbro, Sweden) via indirect calorimetry and an integrated electrocardiogram 
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(12 lead ECG) using a SensorMedics Vmax29 metabolic cart (Carefusion, San 

Diego, CA) located in the Clinical Services Core of the CCTS.  

 

Exercise Interventions 

 

 Knee extension exercise was performed on Keiser pneumatic weight lifting 

equipment.  The eccentric exercise bout consisted of three sets of ten knee 

extensions at a load of 80% of 1-repetition max, followed by a fourth set to 

exhaustion. .  

 Aerobic exercise training employed cycling on a Monarch stationary 

ergometer.  A graded exercise stress test was used to determine subject 

suitability for aerobic training, as well as to determine the VO2 max for the 

aerobic exercise prescription. The 12 week training program was progressive 

with a stepwise increase in duration and intensity, for a maximum of 45 minutes, 

3 times/week at 65% of their peak VO2; 75-80% of maximum heart rate. 

 The study design, depicted in a timeline fashion is displayed in Figure 3.1. 

Biopsy 1, the baseline muscle biopsy, was taken before any intervention.  Then 

the knee extension eccentric protocol was performed. Following 3 days of 

recovery, a second muscle biopsy was taken (post eccentric biopsy, PostECC).  

Following this, subjects underwent a 12 week training program of aerobic  
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Table 3.1 Clinical subject characteristics

 
M=male, F=female, Measure (Units): Age (years), Weight (kg), Sensitivity to 
Insulin (SI) (value x 10-4 min-1∙(µU∙ml)-1), Body Mass Index, BMI (kg/m2), 
Maximum Oxygen Uptake, VO2 max ( ml/kg∙min ), Glucose(mg/dl), Glucose 
Post=2hr, for other measures Post=after the study was completed.  Groupings by 
BMI, Age, and SI, M/F= #of males/#females for the group. Means±SEM, *p<0.05 
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exercise, composed of stationary bicycle riding three times per week, followed by 

a three day recovery period, prior to biopsy 3, called Training. Lastly, the 

participants performed a second bout of eccentric exercise on the leg naive to 

the first bout of eccentric exercise, allowed to rest for three days, and the fourth 

and final biopsy was collected (post training post eccentric biopsy,PsTPsE).  

Each biopsy was assessed for macrophage content and copy number mRNA of 

selected genes.  

 

Immunohistochemistry 

 

 For macrophage assessment, 8 um cryosections were mounted on Fisher 

PLUS slides, for each patient and biopsy; at least 5 sections/biopsy were 

assessed for macrophage density. Sections were fixed for 3 min with ice cold 

acetone, then blocked with 2.5% Normal Horse Serum (Vector Labs, cat#S-2012 

Burlingame, CA) in PBS (NHS), for 1 hr at room temperature (RT).  Primary 

antibodies were applied overnight in NHS; the next day the appropriate biotin-

conjugated secondary antibody was applied at a dilution of 1:1000 in NHS for 1 

hr at RT. Except for CD206, all assessments underwent Tyramide Signal 

Amplifcation TSA amplification using Alexa 594 or 488 fluorophore at 1:200 

according to the manufactures instructions (Life Technologies, T20935, T20932, 

respectively, Grand Island, NY). Antibodies and dilutions used were as follows: 

as a marker of M1 inflammatory macrophages, Mouse α Human CD11b at 1:100 

(Cell Sciences, MON1019-1, Canton, MA), M2 alternatively active macrophages  
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Figure 3.1 Vastus Lateralis Biopsy Schedule and Exercise Regimen. Biopsy 1 
(Baseline) was taken before any intervention. Biopsy 2 (post-eccentric biopsy, 
PostECC) was taken 3 days after a bout of resistance exercise, emphasizing the 
eccentric component.  Biopsy 3, (Training) was taken  3 days after the last 
aerobic training session. A second eccentric exercise bout was then performed 
and Biopsy 4 (post-training, post-eccentric, PsTPsE) was taken after 3 days of 
recovery.  Each biopsy was assessed for macrophage content and mRNA copy 
number of selected genes. Bivariate analysis or pairwise comparisons were 
made using these measures or the groups described in Table 3.1, between 
Baseline and PostEcc, Baseline and Training, or Training and PsTPsE. 
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were determined via mannose receptor, CD206, and stained via Goat α Human 

CD206 at 1:200 (R&D Systems, AF2534, Minneapolis, MN), total macrophages 

were assessed via the pan-macrophage/monocyte marker, Mouse α Human 

CD68 at 1:100 (Dako, M0814, Carpinteria, CA). Secondary antibodies were Goat 

α Mouse biotin conjugate (Jackson Immunoresearch,115-065-205, West Grove, 

PA) and Rabbit α Goat biotin conjugate (Vector Labs, BA5000, Burlingame, CA). 

All sections were stained with DAPI to locate the nuclei (Life Technologies, 

D35471 Grand Island, NY) at 1:10,000 in PBS. Encoded slides were quantified 

by a blinded observer, where the total number of macrophage marker+/DAPI+ 

nuclei were counted and divided by the total number of fibers assessed, for each 

patient, at each biopsy point. Experiment to experiment variability due to staining 

and counting was minimal because corresponding counts from CD68, CD68.206, 

CD11bhi206lo or CD11bhi206hi when plotted against one another showed very 

good correlations (R2=0.24-0.68, p<0.01). 

 For reactive nitrogen species assessment via nitrotyrosine (NY) adducts, 

cryosections were rehydrated in PBS, then permeablized in 0.3% Triton (Sigma-

Aldrich, T8787,  St. Louis, MO) in PBS.  The sections were then blocked in 10% 

normal goat serum in PBS for 1 hr at RT.  Rabbit α NY antibody (Millipore, 06-

284, ) was applied at 1:100 in PBS for 2 hr at RT. Secondary antibody was Goat 

α Rabbit AlexFluor488 (Life Technologies, A11008 Grand Island, NY) at 1:500 in 

PBS for 1hr at RT. Sections were subsequently post-fixed in 4% 

paraformaldehide (Sigma-Aldrich, P6148,  St. Louis, MO) in PBS for 10 min at 

RT.  For each biopsy and patient, images were collected from at least 4 sections, 
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threshold was scaled considering sensitivity and saturation, then fixed prior to 

collection of measurements for all images for % area of NY stain using NIS-

Elements software (Nikon, Melville, NY). 

 

RNA isolation and nanoString Analysis 

 

 Muscle tissue samples were homogenized in Qiazol lysis reagent (Qiagen, 

79306, Germantown, MD); then RNA was extracted with the RNeasy Mini Kit 

(Qiagen, 74104). cDNA was generated with the iScript cDNA Synthesis Kit (Bio-

RAD 170-8890, Hercules, CA).  One hundred fifty ng of cDNA sample was 

hybridized and ligated with probe sets and loaded onto cartridges according to 

the manufacturer’s instructions for quantification with the nCounter instrument for 

each of 12 patients included in this analysis (NanoString Technologies Inc, 

Seattle, WA). Genes of interest were normalized to the geometric mean of ACTB 

(βActin), PP1A (cyclophilin A), PP1B (cyclophilin B), TBP (Tata binding protein), 

TUBB (βTubulin), UBC9 (Ubiquitin C) (See Table 3.2 for probe set accession 

numbers).  

 Figure 3.2 is a schematic diagram summarizing how nanoString (nS) 

technology works. Essentially nS technology combines affinity tagged, barcode 
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Figure 3.2 nanoString (nS) is a technology which combines affinity tagged 
capture probe, barcode tagged reporter probes that target a contiguous 
sequence in a transcript, hybridizes and ligates them in solution as a quantifiable 
northern blot.  Only capture probes which have ligated with the reporter probe 
are detected by the detector, and counted for each probe set.  In this way each 
count is analogous to one copy of mRNA. 

 

 

 

 

 

 



   

56 

 

tag probes and message templates and hybridizes them in solution as a 

quantifiable northern blot.  In summary, cDNA message templates were  

synthesized from RNA extracts derived from our biopsy samples.  These 

templates were then combined with two probes in solution.  One of the probes 

has a "capture" tag on it, which is an oligo which has an affinity tag on the 3' end.  

A second probe is an oligo which has a unique bar code tag (reporter) on the 5' 

end.  Both of these probes form a contiguous sequence, which in the presence of 

template complimentary to these two distinct probes, juxtaposes them in close 

proximity to enable covalent linking with ligase.  In this way, only probe sets 

which have been ligated were hybridized to their cognate message sequences. 

After hybridization in solution, the sample was run through a cartridge which 

captures the capture probe via the affinity tag, a cognate ligand  coated on the 

surface of the cartridge, and then washed extensively to remove non-ligated 

capture and reporter probes. Only capture probes which have ligated with the 

reporter bar code probe are detected by the detector, and counted for each 

probe set.  In this way each count is analogous to one copy of mRNA. 

 

Statistical Analysis 

 

 JMP software (SAS Institute Inc. Cary, NC) was used for two-way ANOVA 

for comparisons of absolute macrophage numbers among biopsies, and all 

bivariate regression analysis. Pairwise comparisons for mathematical differences 
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related to change in macrophage densities were performed with Student's t-test. 

Due to the heterogeneity (or non-constant variance) in the data across biopsies 

and the small sample size, a linear mixed model (LMM) in SAS was also used to 

 investigate the relationship of training and age on macrophage abundance(194). 

LMMs allowed for the comparison of mean outcome between age groups in the 

different biopsies; LMMs provide more flexibility in the assumptions associated 

with variability and independence than traditional ANOVA models. In our 

analyses, observations were correlated (not independent) because multiple 

biopsies were obtained from the same subject. Moreover, the variability 

increased as the experiment progressed.  Hence, a LMM was used to investigate 

the main effects of age group (>55 or not), biopsy and the interaction of age 

group and biopsy. The variance-covariance structure for this model was selected 

using corrected Aiake Information Criteria (AICC); the Huynh-Feldt (HF) was 

selected and allowed for the heterogeneity across biopsies.  

  

RESULTS 

 

 Table 3.1 summarizes the clinical characteristics of the 14 subjects 

included in this study.  To identify the influence of these characteristics on study 

outcome, subjects were grouped in different ways for comparison; by Body Mass 

Index (BMI, kg/m2), where 24-27 was considered healthy (mean = 25.3±0.60), 
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and 29-42 was considered obese (mean = 34.9±1.6); by age, which ranged from 

26 to 64,  grouped as <55 or >55 years of age, with mean group ages of 

41.5±3.0 and 60.0±1.3, respectively;  and in some cases, by insulin sensitivity.  

The insulin resistant cohort, had a sensitivity to insulin (SI x 10-4 min-1∙(µU∙ml)-1) 

as measured by FSIGT of less than 3.0 (mean SI = 1.75±0.27), whereas the 

insulin sensitive cohort had an SI of greater than 3.0 (mean = 4.83±0.69).   

 Some measures of health status are also included in Table 3.1. Post 

measures, including SI, BMI, maximal rate of oxygen consumption (VO2 Max 

ml∙kg-1∙min-1), and fasting blood glucose, showed no statistically significant 

change following 12 weeks of aerobic training across all subjects.  Grouping the 

subjects into categories did reveal some statistically significant differences in 

several clinical characteristics (Table 3.1, bottom).  When grouped by healthy or 

obese BMI, as expected, the subjects had a statistical difference in mass 

(76.5±3.2 vs.102±5.6 kg, p<0.05).  The BMI groupings did not yield a statistically 

significant difference in baseline SI; however, after the training regimen, the 

mean SI's diverged enough to yield a statistically significant difference between 

healthy and obese subjects (5.24±0.88 vs. 1.76±0.29, p<0.05).  When grouped 

by SI, characteristics such as weight, BMI, SI, revealed significant differences as 

expected, since it is known that BMI and SI have a good inverse correlation.  The 

metabolic measure of VO2 Max suggests a strong divergence in oxygen 

consumption related to the insulin sensitivity of the subjects. At baseline, insulin 

resistant subjects had a VO2 Max  of 25.04±1.7 ml∙kg-1∙min-1, whereas insulin 

sensitive subjects had a VO2 Max of 38.05±4.5 ml∙kg-1∙min-1, a statistically 
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significant difference that suggests impaired metabolism in insulin resistant 

subjects; post measurement revealed no effect of exercise.   

 Our previous work showed that muscle macrophage content was higher in 

obese compared to lean individuals(184).  In the current study, we wanted to 

determine the polarization state of muscle macrophages associated with specific 

muscle characteristics.  Using immunohistochemistry (IHC) on muscle cross-

sections, we identified all macrophages by the cell surface marker CD68, M1 

macrophages via the marker CD11b, and alternative M2 macrophages by the M2 

marker CD206. There was very good colocalization of CD68 with both CD11b 

and CD206 indicating that in muscle, the majority of cells expressing CD206 and 

CD11b are in fact macrophages. We illustrate our staining and counting 

methodology in Figure 3.3. In all cases, we identify markers only associated with 

nuclear DAPI staining, to ensure that our counts are cellular in nature.  In Figure 

3.3A, the two white arrows point out examples of cellular CD68 staining. In 

Figure 3.3B, the white arrow indicates a cell which has immunoreacted with the 

CD206 antibody.  This cell also reacts with the CD68 antibody, illustrated in 

Figure 3.3C of the merged images (yellow arrow). The cells coexpressing the 

surface markers CD68 and CD206 appear a golden color, and are counted as 

M2 macrophages. Thus, the white arrow in panel C is a macrophage type other 

than an M2 macrophage.  In this way, using various combinations of surface  
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Figure 3.3 Immunohistochemical detection of macrophages in human muscle. 
(A) CD68, the arrows indicate pan macrophage, CD68 antigen detection (green). 
(B) CD206, the arrow indicates detection of the pan M2 marker, mannose 
receptor, CD206 antigen (red).  (C) Merge. The detection indicated by the lower 
arrow in (A) and (B) reacts with both the CD68 and CD206 antibody, for double 
CD68.206 antigen detection (C, yellow arrow), when merged yields a golden 
color.  The white arrow (C) points out only CD68 antigen.  Antigens co-labeled 
with the nuclear stain DAPI (C, blue), are counted as cellular. Thus, DAPI stained 
CD68 (green) are counted as macrophages and CD68.206 double labeled 
(yellow) are counted as M2 macrophages. Macrophages counts are expressed 
by the number counted / number of muscle fibers in all sections counted for that 
patient's biopsy. Scale bar = 500μm. 
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markers we assessed the macrophage fluxes induced by each intervention in the 

context of obesity, aging or insulin resistance. 

 Figure 3.4 summarizes the baseline macrophage content from biopsy 1, 

within the context of BMI (Figures 3.4 A,C,E) or insulin resistance (Figure 3.4 

B,D,F), by bivariate regression analysis. The Y axis is the total number of 

marker-expressing cells, divided by the total number of muscle fibers counted in 

all the sections for that subject at baseline. The X axis is the numerical value of 

either the BMI or the SI of the subject counted at baseline. Figure 3.4A indicates 

a positive trend between CD68-expressing cells for each subject with available 

BMI, but was not significant (R2=0.26 p=0.11 n=11).  Figure 3.4B shows that 

when CD68+ cells were plotted against SI, no relationship was noted between 

CD68 and SI (R
2=0.02 p=0.72 n=10).  Figures 3.4C and D assess CD68 and 

inflammatory M1 marker CD11b costaining, when plotted against BMI and SI, 

respectively. CD68.CD11b coexpressing cells were positively correlated with BMI 

(Figure 3.4C, R2=0.47 p=0.02 n=12). No relationship was noted between 

CD68.CD11b expressing cells and SI (Figure 3.4D, R2=0.01 p=0.79 n=12). 

Figures 3.4E and F assess the CD68.CD206 coexpressing cells, to quantify M2 

macrophage densities in the baseline biopsies compared against BMI and SI, 

respectively. Regression analysis revealed that CD68.CD206 coexpressing cells 

were positively trending with BMI, but was not significant (Figure 3.4E, R2=0.22 
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 Figure 3.4 Characterization of muscle macrophages by subject BMI or SI at 
baseline suggests that M1 macrophages are correlated to BMI. Macrophage 
counts vs. BMI (A,C,E) or insulin resistance ( B,D,F), by bivariate regression 
analysis. (A) indicates a positive trend between the pan macrophage marker 
CD68 expressing cells for each subject with BMI, but was not significant 
(R2=0.26 p=0.11 n=11).  (B) No relationship was noted between CD68+ cells and 
SI (R

2=0.02 p=0.72 n=10).  (C) CD68 and inflammatory M1 marker, CD11b 
costaining was correlated with BMI (R2=0.47 p=0.02 n=12). (D) No relationship 
was noted between CD68 and CD11b costaining and SI (R

2=0.01 p=0.79 n=12). 
(E) CD68 and alternative M2 marker, CD206 costaining was positively trending 
with BMI, but was not significant (R2=0.22 p=0.12 n=12); (F) No relationship was 
found between CD68 and CD206 costaining and SI (Figure 3.4F R2=0.03 p=0.62 
n=11). Gray dots are patients stastically excluded from regression. 

 



63 

p=0.12 n=12); no relationship was found between CD68 and CD206 costaining 

and SI (Figure 3.4F R2=0.03 p=0.62 n=11). These analyses suggest that muscle

resident M1 macrophage abundance preferentially increases with obesity. 

We assessed CD68 pan macrophage marker expression following each 

exercise intervention to quantify the macrophage fluxes related to clinical 

characteristics.  The abundance of CD68+ cells following each exercise 

intervention was not correlated to either BMI or SI (data not shown). However, 

when CD68 was assessed following each intervention with subjects grouped by 

age, some interesting fluxes were observed (Figure 3.5).  Figure 3.5A is a 

representative image of CD68 (arrow) staining. Figure 3.5B is the DAPI stain 

which identifies nuclei (arrow) in the muscle section. Figure 3.5C is the overlay or 

merged image, that shows only CD68 staining (arrow) co-localized with a 

nucleus (Figure 3.5B, arrow), was counted as a cell.   Figure 3.5D is the absolute 

quantification of CD68+ cells in subjects less than 55 years of age (<55, black 

bars), or greater than 55 years of age (>55, white bars) at baseline and following 

each exercise intervention.  Surprisingly, the eccentric bout of exercise (biopsy 2, 

PostECC) had no effect on the overall number of CD68-expressing cells at any 

age.  However, macrophage density increased following training preferentially in 

subjects >55 years of age (Figure 3.5E, 0.01±0.06 vs. 0.33±0.12, p=0.054, n= 8 

vs.6).  The training regimen influenced the subsequent macrophage response to 

the eccentric exercise bout in an age-dependent manner (Figures 3.5D and F).  

Following training, in younger subjects, macrophage number tended to increase, 

whereas it decreased in older subjects.  This reciprocal relationship in the 
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Figure 3.5 CD68 assessment of total macrophages.  For older subjects, training 
increases macrophages, but eccentric exercise after training decreases them.  
For middle aged subjects, only eccentric exercise following training increases 
macrophages. (A) Representative image of CD68 (arrow) staining. (B) DAPI to 
visualize nuclei (arrow). (C) Merged image, CD68 stain (arrow) is counted when 

co-localized with a nucleus.  (D) Absolute quantification of CD68+ cells in 
subjects <55 years of age (black bars), or >55 years of age (white bars), at 
baseline and following each exercise intervention.  (E) The difference between 
training and baseline in macrophage density increased preferentially in subjects 
>55 (0.01±0.06 vs. 0.33±0.12, p=0.054, n= 8 vs.6). (F) The difference between  
change in macrophage number between PsTPsE (biopsy 4) and following 
training (biopsy 3) in subjects <55 compared to >55 years of age approached 
statistical significance (Figure 3.5F, 0.28±0.18 vs -0.20±0.18, p=0.08, n= 7 vs.6). 

 Scale bar = 500μm 
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 Due to the heterogeneity in the data across biopsies, a linear mixed 

model was also used to investigate the relationship of training and age on 

macrophage abundance. There was a significant interaction effect (p=0.0353), 

which verifies that macrophage content in the different age groups changed 

differently following training. Taken together these findings indicate that the initial 

eccentric bout of exercise was not sufficient to elicit a macrophage response in 

muscle of sedentary subjects; however, training resulted in an increase in 

macrophages in subjects >55 years of age.  Following training, eccentric exercise 

caused a decrease in macrophages in the older subjects, whereas they tended to 

increase in younger subjects.  Thus, a reciprocal relationship is observed for the 

<55 and >55  age groups when comparing post training post eccentric exercise 

macrophage response. 

We hypothesized that macrophages might be recruited to the muscle 

based upon differential damage or stress at different ages and in response to the 

exercise regimen.  We tested this hypothesis by assessing free radical damage. 

Using IHC, we assessed nitro-tyrosine (NY) damage, a marker of NO stress 

(Figure 3.6).  We show representative images of subjects ages 62 and 42, and 

the NY staining for each intervention (Figure 3.6A). Overall the staining appeared 

more intense for the subject age 62, when compared to the 42 year old for each 

intervention.  Interestingly, the strongest staining for the subject age 62 was in 

the PostECC bout.  However, the most intense staining for the subject age 42 

appeared to be in the Training bout.  Figure 3.6B is the absolute quantification for 

NY staining by % area for each intervention for 3 subjects in each age group.  

PsTPsE  and training in subjects <55 compared to >55 years of age approached 

statistical significance (0.28±0.18 vs -0.20±0.18, p=0.08, n= 7 vs.6).
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Figure 3.6 NO adducts, as assessed by nitro-tyrosine (NY) antibody 
immunohistochemistry, shows age-dependent differences in response to 
exercise. (A) Representative images of subjects ages 62 and 42, and the NY 
staining for each intervention. (B) Absolute quantification for NY staining by % 
area.   NY damage is greater for the >55 group (white bars), when compared to 
the <55 group (black bars) at all interventions. There was an effect of age in the 
PostECC (40.5±6 vs. 81.9±3.5) and the PsTPsE (30.7±4.8 vs.50.2±5.5) biopsies. 
For the >55 group, there was a significant increase in NY damage when 
comparing the baseline and PostECC values (55±4.6 vs. 81.9±3.5).  Conversely, 
subjects <55 showed an overall reduction in damage when comparing the 
Training to the PsTPsE interventions (52.5±4.5 vs. 30.7±4.8). *p<0.01, n=3. 
Scale bar = 500 μm. 
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 Overall the assessment suggests that NY damage was greater for the 

>55 group in all biopsies. There was an effect of age in the PostECC (40.5±6 vs. 

81.9±3.5, p<0.01) and the PsTPsE (30.7±4.8 vs.50.2±5.5, p<0.01) biopsies. 

Interestingly for the >55 group, there was a significant increase in NY damage 

when comparing the baseline and PostECC values (55±4.6 vs. 81.9±3.5, 

p<0.01).  Conversely, subjects <55 showed an overall reduction in damage when 

comparing the Training to the PsTPsE interventions (52.5±4.5 vs. 30.7±4.8, 

p<0.01). Thus, although NO damage, as assessed by nitro-tyrosine, shows age-

dependent differences in response to exercise, these differences did not 

correlate with total macrophage abundance. 

We next characterized changes in macrophage types in muscle in 

response to each exercise intervention, starting with M2 macrophages, through 

CD68, CD206 double IHC (Figure 3.7). Figure 3.7A is the absolute quantification 

of CD68.CD206 double positive cells in subjects <55 (black bars) or >55 (white 

bars) years of age.  As with CD68, the first bout of eccentric exercise (PostECC) 

had no effect on CD68.206 coexpressing cells.  However, as with CD68, there 

was a trend for M2 macrophages to increase their density following training in 

subjects >55, but not for those <55 years of age, which approached statistical 

significance (Figure 3.7B, -0.01±0.04 vs. 0.16±0.08, p=0.08, n= 8 vs.6).  We 

found again that following the increase in M2 macrophages with training in 

subjects >55, they tended to decrease in density in response to the PsTPsE 

exercise bout.  Consistent with total macrophages identified with the CD68 

antibody alone, there was no change with training for subjects <55 years of age, 
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 Figure 3.7 CD68.206 assessment for the detection of alternative M2 
macrophages shows that training increases M2 abundance only in the older 
group. Eccentric exercise after training decreases the density of M2 
macrophages in the older subjects, whereas it increases abundance in  middle 
aged subjects.  (A) Absolute quantification of CD68.CD206 double positive cells 
in subjects <55 (black bars) or >55 (white bars) years of age.  As with CD68, the 
first bout of eccentric exercise (PostECC) had no effect on CD68.206 
coexpressing cells.  (B) M2 macrophages increase in abundance following 
training preferentially in subjects >55, which approached statistical significance (-
0.01±0.04 vs. 0.16±0.08, p=0.08, n= 8 vs.6).  (C) A significant reciprocal 
relationship was apparent when the difference between PsTPsE and training 
biopsies was compared between the age groups (0.14±0.08 vs -0.13±0.09, 
p=0.04, n= 7 vs.6).  Refer to Figure 3.3 for a representative image. 
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but after the PsTPsE bout, CD68.CD206 macrophages tended to increase.  A 

significant reciprocal relationship was apparent when the difference between 

PsTPsE and training biopsies was calculated and compared between the age 

groups (Figure 3.7C, 0.14±0.08 vs -0.13±0.09, p=0.04, n= 7 vs.6).  Thus, 

following training, M2 macrophages increase in abundance in the muscle of 

younger subjects in response to eccentric exercise.  By contrast, whereas M2 

macrophages increase in older subjects in response to training, abundance 

decreases back to baseline levels following a subsequent eccentric bout of 

exercise. 

  IHC analysis of CD68.CD11b double positive cells showed similar trends 

as the CD68.CD206 double positive cells (data not shown); however, the counts 

were not additive suggesting there was considerable overlap between CD11b 

and CD206 expression.  To explore this possibility, double IHC for CD11b, the 

M1 inflammatory macrophage marker, and CD206, the M2 alternatively activated 

marker, was performed. We classified the different levels of these markers as 

either high (hi),  low  (lo), or no expression (-) .  Figure 3.8A is a representative 

image of CD11b staining (green arrows) and CD206 staining (Figure 3.8B, red 

arrows) staining, the merged image (Figure 3.8C) shows examples of 

CD11bhi206- (green arrows) and CD11bhi206hi (yellow arrows) cells. This analysis 

yielded five distinct phenotypes: pure CD11b with no CD206 (CD11bhi206-); 

CD11bhi206lo; CD11bhi206hi; pure CD206 with no 11b (CD206hi11b-); and 

CD206hiCD11blo. After quantification, we found the majority of the skeletal  
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Figure 3.8 CD11b and CD206 double staining assessment for the detection of 
mixed M1/M2 CD11bhiCD206hi macrophages shows a reciprocal pattern of 
change in macrophage abundance in the different age groups. (A) 
Representative image of CD11b detection (green arrows) and (B) CD206 
detection (red arrows). (C) Merged panel illustrates examples of CD11bhi206- 
(green arrows) and CD11bhi206hi (yellow arrows) macrophages, co-localized with 
nuclear DAPI staining (blue). (D) Absolute quantification of CD11bhi206hi 
macrophages of subjects <55 years of age (black bars), or >55 years of age 
(white bars), at baseline and following each exercise intervention.  (E) The 
difference between training and baseline in subjects < or >55 years of age was 
not significant (0.06±0.05 vs. 0.32±0.26, p=0.27, n= 7 vs. 5).  (F) Cells 
expressing CD11bhi206hi showed a reciprocal pattern of expression in response 
to an eccentric exercise bout following aerobic training in <55 compared to >55 
subjects (0.09±0.08 vs -0.17±0.18, p=0.14, n= 8 vs. 6) but the changes were not 
significant. Scale bar = 500μm 
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muscle macrophages belonged to 3 phenotypes: CD11bhi206-, CD11bhi206lo, and 

mixed M1/M2 phenotype CD11bhi206hi. The pure CD206 and CD206hiCD11blo 

macrophages were very rare, present at a density of less than 1 per 100 muscle 

fibers, indicating that the majority of CD206 expressing macrophages also 

expressed M1 characteristics.  

 As we observed with CD68 and CD68.206 costaining, the same reciprocal 

trend existed in mixed M1/M2 (CD11bhi206hi) macrophage abundance following 

training and PsTPsE exercise (Figure 3.8). Figure 3.8D is the absolute 

quantification of CD11bhi206hi macrophages of subjects <55 years of age (black 

bars), or >55 years of age (white bars) at baseline and following each exercise 

intervention.  CD11bhi206hi macrophages tended to increase in density with 

training in subjects >55, but not in subjects <55, but was not statistically 

significant. The difference between macrophage density following training 

compared to baseline between subjects < or >55 years of age also was not 

significant (Figure 3.8E, 0.06±0.05 vs. 0.32±0.26, p=0.27, n= 7 vs. 5).  Similarly, 

the reciprocal pattern of change, increased density in younger subjects and 

decreased density in older subjects following PsTPsE exercise, was apparent but 

not significant (Figure 3.9F).  Thus, overall, cells expressing CD206 showed a 

reciprocal pattern of expression in response to an eccentric exercise bout 

following aerobic training in younger compared to older subjects and a significant 

proportion of those cells have a mixed phenotype, also expressing an M1 cell 

surface marker.  The same pattern of expression was observed for  
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 Figure 3.9 Inflammatory M1 (CD11bhiCD206lo) macrophages respond to 
exercise in a pattern similar to mixed M1/M2 macrophages (A) Absolute 
quantification of CD11bhi206lo macrophages of subjects <55 years of age (black 
bars), or >55 years of age (white bars), at baseline and following each exercise 
intervention.  (B) The difference between training and baseline between subjects 
< or >55 years of age was not significant (0.01±0.06 vs. 0.19±0.11, p=0.15, n= 7 
vs. 5).  (C) Cells expressing CD11bhi206lo showed a reciprocal pattern of 
expression in response to an eccentric exercise bout following aerobic training in 
<55 compared to >55 subjects (0.15±0.11 vs -0.06±0.12, p=0.23, n= 8 vs. 6) but 
the changes were not significant. Refer to Figure 3A-C for representative images.  
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predominantly CD11b expressing macrophages (CD11bhiCD206lo/-), but the 

trends were not significant (Figures 3.9 A-C).  

 To assess changes in the muscle environment associated with the 

changes in macrophage density, gene expression was quantified using 

nanoString (nS) technology. One of the concerns with using message data is 

whether or not it translates faithfully to the end product protein. We have 

extensively quantified surface protein marker CD68 for macrophages.  A 

bivariate analysis of CD68 mRNA expression via nS  compared to IHC CD68 

counts for all subjects and all biopsies showed a robust direct correlation (Figure 

3.10, R2=0.32,p<0.001, n=43), demonstrating consistency between the methods 

of analyses.  

 Probe sets for the nS analysis were designed to target specific genes and 

pathways of interest to our laboratory (Table 3.2).  These include genes involved 

in inflammation, fibrosis, angiogenesis, insulin resistance and tissue 

homeostasis.  nS analysis of the expression of 114 genes in the 4 biopsies from 

12 individuals revealed few statistically significant changes.  However, one gene, 

SPARC showed a pattern of expression consistent with the pattern of CD206+ 

macrophages. SPARC is involved in shuttling procollagen from the cytoplasm to 

the extracellular compartment and in collagen assembly in the extra cellular 

matrix (ECM). When SPARC malfunctions there is improper nucleation of 

collagen fibrils, resulting in fibrosis(20, 60). 
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Figure 3.10 CD68 transcript levels correlate well with CD68 

immunohistochemistry (IHC) demonstrating consistency between the methods of 

analyses. A bivariate analysis of CD68 mRNA expression via nS  compared to 

IHC CD68 counts for all subjects and all biopsies showed a robust direct 

correlation (R2=0.32, p<0.001, n=43).  
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Table 3.2 Genes analyzed by nanoString (nS) technology in muscle biopsies.  

  

Functional classes of genes are within the black rows, genes are in the grey 
columns, and accession numbers are in the white columns. Each probe set 
consists of a capture probe and a reporter probe. See Figure 3.2 for details about 
nanoString. 
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Figure 3.11 is a graph showing nS absolute quantities for SPARC mRNA in 

each biopsy with subjects grouped by age.  Although not statistically significant, 

we observed the age-dependent reciprocal pattern of expression following 

training and PsTPsE bouts. While both age groups tended to increase after 

training, this was most apparent for subjects >55 years of age. The level of 

SPARC mRNA was most elevated after PsTPsE exercise in younger subjects, 

whereas it decreased in older subjects in response to the PsTPsE exercise bout.  

The difference between SPARC mRNA following training compared to baseline 

in subjects < or >55 years of age did not reach statistical significance (265±197  

vs. 849±276, p=0.11, n= 6 vs. 6), but trended to  increase in subjects >55 

following training.  Similarly, the difference between PsTPsE and training showed 

a reciprocal trend between subjects < or >55 years of age (142±324 vs. -

584±249, p=0.11, n= 6 vs.6).  Taken together, these findings indicate that there 

is a mildly reciprocal behavior of SPARC mRNA in response to training and 

PsTPsE exercise based on age.   

We next compared the expression of SPARC mRNA to the density of the 

two distinct populations of macrophages most abundant in skeletal muscle. 

Bivariate correlation analysis revealed several significant relationships between 

SPARC mRNA and mixed M1/M2 (CD11bhi206hi) macrophages; no correlation 

was apparent between SPARC mRNA and M1 (CD11bhi206lo/-) macrophages.  

Figure 3.12 depicts the bivariate plots of SPARC message measured by nS  
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Figure 3.11 SPARC mRNA levels across interventions suggest a mildly 
reciprocal behavior in response to training and PsTPsE exercise based on age. 
SPARC mRNA is most abundant when comparing subjects <55 (black bars) to 
>55 at Baseline, PostECC and PsTPsE, but this trend reverses for training. 
SPARC mRNA was most elevated after PsTPsE exercise in subjects <55 years 
(black bars), whereas it decreased in subjects >55 (white bars) in response to the 
PsTPsE exercise bout. The trends described are not statistically significant.  
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versus the densities of CD11bhi206hi macrophages measured by IHC in muscle 

biopsies at baseline (Figure 3.12A), PostECC (Figure 3.12B), Training (Figure 

3.12C), PsTPsE (Figure 12D) and in all 4 of the biopsy samples collapsed on the 

same axis (Figure 3.12E).  The difference in the expression of SPARC message 

between PsTPsE and the training bout, plotted against age is also included 

(Figure 3.12F).  At baseline, there was no relationship between SPARC and 

CD11bhi206hi macrophages (Figure 3.12A, R2=0.001, p=0.93, n=10).  After 

PostECC, the measurement of SPARC mRNA suggested a trend towards a 

direct association with hybrid CD11bhi206hi macrophages, although not 

significant (Figure 3.12B, R2=0.10, p=0.31, n=12).  As previous macrophage data 

suggested, we found a robust direct correlation between the levels of 

CD11bhi206hi macrophages and SPARC message after the training bout (Figure 

3.12C, R2=0.53, p=0.01, n=11), suggesting that their regulation may be linked in 

response to training.   We also found a robust association between the levels of 

SPARC message and CD11bhi206hi macrophages in the PsTPsE biopsy (Figure 

3.12D, R2=0.48, p=0.02, n=11).  Despite complex changes in both CD11bhi206hi 

macrophages and SPARC mRNA levels by exercise intervention in the context of 

aging, analysis of  SPARC message compared to CD11bhi206hi macrophage 

density, when all biopsies are combined, still demonstrated a  significant 

association (Figure 3.12E, R2=0.30, p<0.001, n=44).   One of the most striking 

observations we have made between the age groups is the reciprocal response 

of macrophages following PsTPsE exercise (Figure 5F, 7F, 8F, and 9C); SPARC 

mRNA showed a similar pattern of behavior (Figure 3.11).  Comparing the  
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Figure 3.12 SPARC correlates with CD11bhi206hi macrophages after exercise 
and is inversely correlated with age. The graphs depict SPARC message 
measured by nS versus the densities of CD11bhi206hi macrophages measured 
by IHC in muscle biopsies at baseline (A), PostECC (B), Training (C), PsTPsE 
(D) and in all 4 of the biopsy samples collapsed on the same axis (E).  (F) The 
difference in the expression of SPARC message between PsTPsE and the 
training bout, plotted against age. (A) Baseline indicated no relationship between 
SPARC and  CD11bhi206hi  macrophages (R2=0.001, p=0.93, n=10).  (B) 
PostECC, SPARC mRNA suggested a trend towards a direct association with 
hybrid CD11bhi206hi macrophages ( R2=0.10, p=0.31, n=12).  (C) Training 
caused robust direct correlation between the levels of CD11bhi206hi 
macrophages and SPARC message (R2=0.53, p=0.01, n=11). (D) PsTPsE 
induced a direct correlation between SPARC message and CD11bhi206hi 
macrophages (R2=0.48, p=0.02, n=11).  (E) The overall correlation of 
CD11bhi206hi macrophages and SPARC mRNA levels by all interventions, when 
all biopsies are combined demonstrated a  significant association (R2=0.30, 
p<0.001, n=44).   (F) Comparing the difference between PsTPsE and Training for 
SPARC message measured by nS, plotted against age, showed an inverse 
correlation (Figure 3.12F, R2=0.32, p=0.05, n=12). 
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difference between PsTPsE and Training for SPARC message measured by nS, 

plotted against age, showed a significant inverse correlation (Figure 3.12F, 

R2=0.32, p=0.05, n=12), suggesting that there is a general drop in the level of 

SPARC message as a function of age.  

 The significant correlation observed between SPARC mRNA and 

CD11bhi206hi macrophages across all biopsies from all subjects (Figure 3.12E) 

prompted us to perform correlation analyses across the entire gene set on all 

biopsies for both mixed M1/M2 and M1 macrophage abundance, the two most 

abundant macrophage subtypes in the biopsies.  Although the expression of 

most genes was not correlated with macrophage abundance (data not shown), 

including those encoding cytokines and other inflammatory gene products, the 

expression of some genes related to distinct cellular functions were specifically 

correlated to abundance of the different macrophage populations (Tables 3.3-5). 

The nS output is in order of lowest to highest copy number; all R2 values shown 

are significant.  The correlations fell into three functional groups: fibrosis, 

angiogenesis and genes associated with tissue homeostasis, with the 2 types of 

macrophages differentially correlated to different processes, suggesting that 

M1/M2 mixed phenotype and M1 macrophages have discrete effects on muscle 

physiology.  

 Table 3.3 summarizes R2 values for the association of mRNA copy 

numbers related to ECM and fibrosis and M1/M2 and M1 macrophages, where 

p<0.01 is in bold, and p<0.05 is in normal font, as the legend on the bottom of  
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Table 3.3 Transcripts involved with fibrosis are exclusively correlated to M1 or 
M1/M2 macrophage densities.  

 

 

 

 

 

 

 

 

 

 

R2 values for the relationship of fibrosis related genes and M1/M2 or M1 
macrophages, where p<0.01 is in bold, and p<0.05 is in normal font; blanks 
indicate no association. 
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the table indicates.  M1/M2 and M1 macrophages were correlated with distinct 

sets of genes related to fibrosis, suggesting M1/M2  and M1 macrophages 

differentially contribute to that process.  mRNAs which increased as M1 

macrophage densities increased are TSP1, CTGF, PAI1, and TIMP1.  Messages 

correlated with M1/M2 macrophage densities are TGFβ, SPARC (for absolute 

data at each biopsy point refer to Figure 3.12), MMP-1, MMP14, TIMP2, Elastin, 

COL5A1, and COL6A1. 

 Table 3.4 summarizes R2 values for the relationship of angiogenic gene 

expression correlated to M1/M2 or M1 macrophages.  In this angiogenesis gene 

set, VEGF A message decreased (R2 values were multiplied by -1 if the slope of 

the regression line was negative) as M1 macrophages increased in density.  For 

IGF1 and TF, both M1/M2 and M1 macrophage densities were associated and 

both increased with the activities of these genes; however, M1/M2 macrophages 

were associated with more robust increases.  Lastly for Table 3.4, CD31, TIE1, 

and TIE2 mRNAs were specifically associated with M1/M2 macrophage 

densities.  Table 3.5 lists the R2 values for the correlation among mRNAs 

associated with cellular homeostasis, and M1/M2 or M1 macrophages. These 

genes are  specifically related to protein turnover (MAFbx), autophagy (beclin), 

and apoptosis (Fn14, Bcl2, and Bax).  The most striking observation was that 

only M1 macrophages were associated with expression of these genes; no 

correlations were apparent between these genes and M1/M2 macrophage 
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Table 3.4 Transcripts involved with angiogenesis are related to M1 and M1/M2 
macrophage densities. 

 

R2 values for the correlation among mRNAs associated with cellular homeostasis 
and M1/M2 or M1 macrophages. p<0.01 is in bold, and p<0.05 is in normal font; 
blanks indicate no association 
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abundance.        MAFbx, beclin, and Bcl2 were inversely correlated, whereas 

Fn14 and Bax were directly correlated with M1 macrophages.  This inverse 

association suggests that as M1 macrophage densities increase in the muscle, 

the mRNA from MAFbx, beclin, and Bcl2 decrease from baseline copy numbers.   

 

DISCUSSION 

 

 Figure 3.13 is a schematic diagram laying out the study design, in a 

timeline fashion of the biopsy schedule and exercise intervention regimen (white 

box). Using the clinical groupings we previously discussed, we attempted to 

analyze muscle adaptations induced by exercise in the context of aging, obesity, 

or insulin sensitivity. The remainder of the diagram summarizes our hypotheses 

regarding the muscle response (light gray) and macrophage response (dark 

gray) to exercise.  We expected the eccentric exercise to damage the muscle 

(Chapter 1, Figure 1.4), causing an increase in macrophages.  The beneficial 

effect of aerobic exercise is well accepted(55, 134). Aerobic exercise training 

increases oxidative capacity, by either increasing mitochondrial content, or 

augmenting the expression of genes involved with oxidative phosphorylation, or 

both.  As oxidative capacity increases, the muscle naturally will increase the 

buffers to absorb the consequential free radical production from oxidative  
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Table 3.5 Transcripts involved with cellular and protein turnover are related 
exclusively to M1 macrophage density.  

 

R2 values for the correlation among mRNAs associated with cellular homeostasis 
and M1/M2 or M1 macrophages. p<0.01 is in bold, and p<0.05 is in normal font; 
blanks indicate no association.   
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Figure 3.13 Timeline of the biopsy schedule, exercise intervention regimen and 
predicted adaptations by the muscle and the resident macrophages. Study 
design (white box). The predicted muscle response to exercise interventions 
(gray box). We predicted damage from eccentric exercise would induce 
inflammation, whereas beneficial aerobic exercise might change the muscle to 
have more efficient oxidative metabolism, and increase the free radical buffering 
capacity, thereby reducing radical stress, and that health factors such as aging 
might inhibit this process. Predicted macrophage response in muscle to the 
exercise interventions (dark gray box). We predicted  the macrophages would 
infiltrate according to the adaptations incurred to the muscle by exercise, 
distinctly by macrophage phenotype. Sequentially, M1 macrophages infiltrate 
where there is more damage, M2 macrophages being recruited into the muscle 
during the aerobic training to modify the tissues in a beneficial way, and that after 
the training, additional eccentric  damage would be reduced, which would 
subsequently recruit less M1 macrophages than in the initial bout of damage.  
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phosphorylation. Our original hypothesis was that the array of macrophages 

present in muscle would be altered with obesity  and insulin resistance, 

influencing response to a bout of eccentric exercise.  We further hypothesized 

that aerobic training would normalize the response to a subsequent bout of 

eccentric exercise.  Of the clinical factors we explored, we found that age had the 

largest impact on the flux of macrophages in skeletal muscle in response to 

aerobic training, and aerobic training followed by eccentric exercise.   

 Our laboratory has reported a difference in human skeletal muscle 

between baseline and post eccentric exercise for CD11b+ inflammatory M1, and 

CD163+ alternative M2 macrophages for  17 male subjects with a mean age of 

31.9 years(126). Despite using a similar resistance exercise protocol and tissue 

processing, in this report, we detected no differences in any of the macrophages 

post eccentric exercise (PostECC) for our <55 age group, of 2 males and 4 

females, mean age of 41.5. Additionally, we found the density of the M1 type 

macrophages to be roughly 10-fold higher at baseline compared to the Pryzbyla 

study.  These discrepancies could be due to a roughly 10 year gap for the mean 

age for the younger groups, sex related differences in skeletal muscle adaptation 

to damaging exercise, sample size, and/or the different antibody for the detection 

of CD11b and the chemistry of detection between the two studies. 

 Studies suggest that positive muscle adaptation becomes much more 

difficult as we age (44, 56, 122, 126). The current study and the Pryzbyla study 

reported no change in the older age group in response to eccentric exercise 

(60±1.3 and 71.4±4.6 years, respectively). Subjects were younger in the present 
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study but functional mobility decline begins in the fifth decade of life(159).  The 

increase in macrophages after aerobic training in the >55 group is interesting. 

The effects of aging, such as arthritis, overall energy reserves, and frailty,  may 

promote a more sedentary lifestyle(84, 159), where subjects might be less 

conditioned, so that even the aerobic activity used in the exercise protocol may 

induce damage. The younger subject group is presumably more active at 

baseline. Indeed, subjects of the >55 age group had baseline VO2 max values of 

25±1.9 compared to that of the <55 age group at 33±4.5 ml/kg∙min.  Although this 

was only a trend, there is a variation of nearly 24%, between the two age groups. 

Macrophages enter muscle in response to damage(56, 112, 120, 123, 126, 176), 

but they can also inflitrate muscle due to the expression of chemokines and other 

similar chemotactic agents(142, 146, 147). Our age groups could have 

differential storage of glycogen(24) and production of ADP; glycogen depletion 

and elevated ADP readily activates AMPK, which can lead to the secretion of 

chemokines. 

 We detected very low levels of pure M2 macrophages in the skeletal 

muscle of subjects included in this study. To our knowledge, this is the first report 

describing mixed M1/M2 macrophages in skeletal muscle.  Our group and others 

have also found a mixed phenotype in adipose(162, 192). A large amount of 

research activity in rodents suggests that there is phenotypic shifting from an M1 

inflammatory to an M2 anti-inflammatory mode which promotes repair 

programs(6), protects against muscle atrophy(52), and supports muscle recovery 

in vivo and in vitro(23, 27, 52). Secretory products derived from M2 macrophages 
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directly aid in growth and repair by stimulating the activity of muscle stem cells, 

called satellite cells(135). Characterization of the mixed M1/M2 macrophages 

resident in muscle and those that respond to aerobic training in the older subjects 

and to eccentric exercise following training in younger subjects is required to 

determine their role in muscle adaptation.  

 Macrophages expressing only the M1 marker were significantly correlated 

to BMI in skeletal muscle. Obesity can be linked to high blood triglycerides, 

clinically termed hyperlipidemia, and can lead to ectopic deposition of fat in 

muscle(53). Presumably, macrophages scavenge this lipid, and are of the 

inflammatory M1 type(68, 192). Elevated M1 macrophages may contribute to low 

grade inflammation in muscle associated with obesity; however, M1 

macrophages but do not appear elevated with age (45), even though aging is 

also associated with muscle inflammation(122). It is possible that with age, 

inflammatory cytokines are derived from muscle fibers themselves (see Chapter 

4).   

 We hypothesized there would be differential effects on free radical 

damage dependent on age in skeletal muscle in response to exercise, and 

macrophage recruitment could be correlated to the damage. There is a 

significant body of evidence suggesting that free radical damage increases with 

age(33, 42, 59, 130, 140, 164, 174).  Furthermore, free radical damage is an 

important adaptation to exercise(32, 82, 83).  We measured free radical damage 

associated with NO production, assessed as % area of nitrotyrosine (NY) 

adducts in the skeletal muscle of our subjects grouped by age. Although we 
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found very robust age related differences in NY adducts in response to the 

exercise interventions, macrophage density based upon age, could not be 

attributed to the level of NY adducts. 

 Downhill running mice were shown to have increased hydrogen peroxide 

content, a marker of reactive oxygen species (ROS), and concomitant increase in 

transcripts for chemokines MCP1, CCLX14, and the macrophage marker F4/80 

in the muscle(89). Mice pretreated with circumin, a radical scavenger, attenuated 

these changes, suggesting that ROS leads to the recruitment of macrophages. 

Perhaps if we had measured H2O2, or a different adduct, such as 4-hydroxy-2-

nonenal (HNE) carbonyl or peroxynitrite, correlations to macrophage fluxes may 

have been observed in our study. 

 Another interesting possibility is that age-associated alterations in energy 

storage and utilization during exercise (24), may be differentially affecting 

macrophage recruitment via an AMPK/IL6 based mechanism.  Aging decreases 

mitochondrial function in muscle in humans(3, 34, 35, 50, 96),in rats(12, 170), in 

mice(9, 154) and dogs (170), exacerbating glycogen depletion, activation of 

AMPK and subsequent IL6 secretion(51, 91).  IL6 is induced by contracting 

muscle in humans(166). Aged men maintain IL6 secretion during 3 hours of 

dynamic knee extension exercise compared to young men(125). IL6 is also 

elevated in aged humans(188) and mice(41). IL6 may also act as a chemokine, 

attracting macrophages(31). In situations of IL6 resistance, such as that found in 

obesity and T2DM(141), more IL6 is secreted as well, which may lead to more 
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macrophage recruitment. Further experimentation is needed to support this 

hypothesis. 

 One of the most striking observations in this study is the reciprocal 

response of macrophages to eccentric exercise following training based on age.  

Following training, macrophages tended to decrease in response to a 

subsequent bout of eccentric exercise in the >55 age group, whereas in the <55 

age group, macrophages increased. The decreasing trend in macrophage 

densities in the older age group suggests that the macrophages may be 

apoptosing(150, 163), but they may also be egressing.  We observed that overall 

NY adducts decreased in <55 age group across exercise interventions, while in 

the >55 age group, these adducts were elevated throughout the exercise 

interventions, suggesting a beneficial effect of exercise in the younger 

individuals. The fact that following training, eccentric exercise elicited an increase 

primarily in M1/M2 macrophages in those <55 years of age implies a reparative 

role for the cells, which is blunted in the older individuals.   

 We characterized gene transcripts from human skeletal muscle in 

response to exercise and found that only a minority of transcripts correlated with 

age, or to the densities of macrophages of the M1 inflammatory and M1/M2 

mixed phenotype. SPARC mRNA was robustly expressed, showing a change in 

expression pattern similar to macrophages.  The significance of this observation 

remains to be determined.  However, the function of SPARC is quite wide 

ranging(18).  SPARC is involved in the shuttling of procollagen from the 

cytoplasm to the interstitium, and in collagen nucleation in the ECM(19). SPARC 
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has been proposed as a powerful anti-oxidant, and important in prescription of 

exercise in bladder cancer resolution. Furthermore, the loss of SPARC in a 

murine bladder cancer model was associated with an inflammatory phenotype of 

tumor-associated macrophages(136). 

 The correlation of M1 and M1/M2 macrophages to exclusive gene 

transcripts involved with fibrosis is striking, but also is congruent with what we 

know of M2 macrophage biology.  Most notably, we found that SPARC 

transcripts were directly correlated to M1/M2 macrophage fluxes across our 

study. But the change in SPARC transcript in response to eccentric exercise post 

training was inversely correlated with age, suggesting that the normal SPARC 

response was inhibited in that bout in the older subjects.  We have shown in 

adipose that M2 macrophages are associated with fibrosis and obesity(161, 162). 

M2 macrophages are described as wound healers and important in containing 

helminth parasites via matrix deposition(108).  The fact that M1 and M1/M2 

macrophage abundance showed similar trends in response to the different 

interventions and correlated with different fibrosis genes, suggest that there is 

some cooperation in ECM remodeling in response to exercise between these two 

macrophage types. Our research group has shown that strength outcomes were 

directly correlated with TIMP1 transcript at baseline and inversely correlated to 

the change in TIMP1 transcript in response to exercise(46). The current study 

correlated M1 but not M1/M2 density to TIMP1 transcript levels in response to 

exercise. This suggests that M1 inflammatory macrophages are important in 

modulating TIMP1 gene transcripts in ECM remodeling in response to exercise. 
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 ECM must also be remodeled for adaptations to exercise in the 

vasculature, promoting angiogenesis to increase oxygen and nutrient delivery to 

the muscle(4).  Our laboratory has reported that M2 macrophages in adipose 

have increased Collagen V deposition, which inhibits endothelial sprouting(161). 

In this study we found that macrophages and angiogenesis transcripts were also 

correlated in response to exercise, with the majority of transcripts within this 

functional group correlated with M1/M2 macrophages. Interestingly, we find that 

both M1 and M1/M2 macrophages correlate with expression of transcripts 

encoding insulin like growth factor 1 (IGF1), and tissue factor (TF) in response to 

exercise, suggesting an additive or potentiating effect.  Studies in chemokine 

receptor null (CCR2-/-) mice show decreased VEGF production, suggesting the 

importance for macrophages in the angiogenic program(117). We observe an 

inverse correlation for M1 macrophages and VEGF A mRNA fluxes in response 

to exercise.  Studies in a rat model of exercise show that VEGF receptor 

antagonism blocked arteriogenesis but only partially blocked angiogenesis as a 

whole(100). Taken together these observations suggest that M1 macrophages 

may be inhibitory to portions of the angiogenic program.  

  Macrophages have been shown to be important in the preservation of 

myogenic cells by promoting cell survival pathways(157). The different 

macrophage phenotypes we have described have distinct effects on myoblasts. 

Work by the Chazaud group suggests that inflammatory M1 macrophages 

promote myogenic cell proliferation and that anti-inflammatory M2 macrophages 

promote differentiation(6). Further studies by Chazaud suggest that coinjected 
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bone marrow derived macrophages and myogenic precursor cells improve 

survival in myogenic precursor cells after implantation in mdx mouse skeletal 

muscle(98), but they did not identify the phenotype of the macrophages. The 

process of programmed cell death (apoptosis) is complex(54); we have 

measured genes transcripts related to the mitochondrial-mediated apoptosis. 

Functionally, Bcl2 and Bax are coupled, as they dimerize with one another; when 

present in an equal ratio, they suppress the formation of the permeability 

transition pore(97).  When Bcl2 is suppressed, or if Bax levels increase, this 

promotes the formation of the permeability transition pore by Bax dimers in the 

mitochondrial envelope, releasing cytochrome C, promoting apoptosis. The fact 

that M1 macrophage densities were inversely correlated to Bcl2 mRNA copy 

numbers, while Bax mRNA copies were increased, supports the idea that M1 

macrophages and apoptosis may be linked in muscle, but further 

experimentation is needed to confirm this hypothesis.  

 Studies on human subjects are limited on multiple levels. The major 

limitation of this study is in the ability to recruit and retain enough subjects.  

Additionally, human subjects have enormous genetic variation, which makes 

these types of studies statistically challenging. Although we have proposed many 

mechanisms for the correlations we have observed in this study, correlation does 

not prove cause and effect.  Some of our observations may be coincidental, even 

though we have made efforts to validate our observations with the literature.   

Further studies are needed with physiological interventions which target 
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important components, such as macrophages, or molecular targets such as 

SPARC, to show cause and effect. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Jason Sean Groshong 2013 



96 

Chapter 4: Inflammatory and Alternatively Activated Macrophage Products Effect 

Myotube Glucose Uptake and Myokine Secretion Distinctly 

SUMMARY 

We have developed an in vitro model in which cultured myotubes from 

human muscle biopsies are exposed to activated macrophage products in 

conditioned media (CM), and compared for insulin induced glucose uptake and 

myokine profile. Untreated myotubes were extremely resistant to insulin 

stimulated glucose uptake. We unexpectedly observed that baseline myotube 

glucose uptake was approximately 2-fold higher following exposure to M1 or 

M2C macrophage CM.  Insulin-stimulated glucose uptake trended inhibitory and 

enhancing for M1 and M2 CM, respectively, but did not reach statistical 

significance. The response may be influenced by the insulin sensitivity of the cell 

donor. Both M1 and M2C macrophage CM induced myotubes to secrete copious 

amounts of IL6 into the media when compared to untreated myotubes, which 

may be the primary factor affecting both baseline and insulin stimulated glucose 

uptake. 
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INTRODUCTION 

 

 The American Diabetes Association reports that mortality in persons with 

type 2 Diabetes Mellitus (T2DM) is due primarily to heart disease and stroke.  

Insulin resistance is a major determinant of T2DM that leads to two major 

symptoms, high serum fatty acids and high blood glucose. Skeletal muscle 

consumes the most glucose of any tissue in the body, yet there are no 

pharmacotherapies which specifically target muscle. In adipose tissue, 

macrophage mediated inflammation is a causal factor of insulin resistance(5, 

118, 138, 198). Our lab reported total macrophage infiltration is also elevated in 

human muscle with obesity and insulin resistance(184). Depending on the 

stimulus, macrophages can differentiate into several subtypes, each having a 

distinctive cytokine signature.  The current view suggests that M1 macrophages 

are classically pro-inflammatory and inhibitory to insulin signaling. Consistent 

with this idea, data presented in Chapter 3 showed that in muscle, M1 

macrophage abundance is specifically associated with obesity.  Conversely, M2 

or alternatively activated macrophages are anti-inflammatory, and in muscle, play 

a crucial role within the context of muscle repair and exercise induced 

hypertrophy(177).  The role of alternatively activated (M2) macrophages in insulin 

resistance is less clear. M2 macrophages have distinct functional variation, which 

are further classified into subtypes M2A and M2C(108).  M2A macrophages 

function in allergic response, and isolation and killing of parasites, and secrete 

anti-inflammatory interleukin 10 (IL10) and pleiotropic IL6. M2C macrophages 
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serve similarly, and also serve in matrix deposition and tissue remodeling, 

secreting IL10.  Contrary to reports in mice, our lab has shown that obesity and 

insulin resistance are associated with increased abundance of M2, particularly 

M2C, macrophages in human adipose, suggesting a negative role (162). 

Furthermore, our data presented in Chapter 3 suggest that M1/M2 "mixed" 

macrophages are present in muscle, but their contribution to peripheral insulin 

resistance is unknown.  

 This investigation utilizes a human cell culture model to dissect the role of 

M1 pro-inflammatory and M2 anti-inflammatory macrophages on insulin signaling 

in muscle cells derived from insulin sensitive and resistant subjects.  We 

hypothesize that the insulin response in cultured human muscle cells will be 

modified distinctly as a result of activation of signaling pathways following 

exposure to secretory products from different macrophage subtypes.  As 

presented in Chapter 2, myotubes were extremely resistant to glucose uptake.  

At baseline, myotube glucose uptake was approximately 2-fold higher following 

exposure to M1 or M2C macrophage conditioned media (CM); however, CM had 

only modest effects on insulin-stimulated glucose uptake, which differed based 

on the insulin sensitivity of the muscle cell donor. M1 and M2C CM induced 

myotubes to secrete copious amounts of IL6. The characterization of interactions 

between skeletal muscle cells and macrophages may lead to novel approaches 

for preventing and/or treating insulin impairment manifested by T2DM.  
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MATERIALS AND METHODS 

Subjects and Tissue Collection 

Human non-diabetic subjects were recruited through local advertising.  All 

subjects included in the study were recruited by informed consent approved by 

the institutional review board at the University of Arkansas for Medical Sciences 

or the University of Kentucky.  Myoblasts harvested from muscle biopsies taken 

from six subjects were included in this study. Muscle biopsies were collected 

from vastus lateralis muscle under local anesthesia. Standard fasting blood lipids 

were measured at the time of biopsy. The clinical insulin sensitivity (SI) was 

measured by frequently sampled IV glucose tolerance test with minimal model 

calculation(191). Subjects were considered insulin sensitive at SI > 3.0 and 

resistant subjects at SI < 3.0 x 10-4 min-1∙(µU∙ml)-1. See Table 2.1 for details. 
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Muscle Cell Culture  

 

 Myoblasts were isolated as previously described (184) and in Chapter 2. 

Briefly, myoblasts were propagated in growth medium composed of Hams/F10 

medium (Cellgro/Mediatech, 10-070-CV, Manassas, VA) supplemented with 20% 

fetal bovine serum (FBS, Atlanta Biologicals, S12450, Lawrenceville, GA), 5 

mg/ml basic Fibroblast Growth Factor (bFGF Millipore, GF003) and 1% 

Pen/Strep, maintained with 5% CO2 at 37°C.  At passage 6 or 7, myoblasts were 

seeded onto 6-well Primaria plates at 72 cells/mm2 in growth medium.  The next 

morning the wells were washed once with PBS (Gibco/Life Technologies, 10010-

023, Grand Island, NY) and the medium was changed to differentiation medium 

composed of αMEM, supplemented with 2% FBS and 1% Penicillin/Streptomycin 

(Gibco/Life Technologies, 15140).  The cells were observed and the medium 

changed every 48-72 hours.  When fully formed myotubes were present 

(approximately 12 days) the cells were treated as described below. 
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Macrophage Polarization  

 

 We have optimized protocols based upon the literature(25, 114, 179) to 

activate the human monocyte cell line, THP-1, into M1, M2A or M2C phenotypes. 

2x106 THP-1 cells were activated in macrophage serum free medium (MSFM) by 

treatment with 100 ng/ml lipopolysaccharide (LPS) and 20 ng/ml interferon 

gamma (INFγ) for M1. For M2A or M2C, 2x106 cells were treated first with 5 nM 

phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) for 5 minutes, then 

with 20 ng/ml IL4 for M2A or IL10 for M2C. Undifferentiated THP-1 cells treated 

with vehicle served as control.  Following 24 hours of treatment, differentiated 

cells were washed once with MSFM and allowed to grow in myotube 

differentiation medium for 48 hours, at which time, conditioned media (CM) were 

collected and stored at -80˚C.  Myotubes were pretreated (PreTx) with 1/2 

strength CM (diluted with an equal volume of αMEM, supplemented with 2% FBS 

and 1% Pen/Strep) for 10-12 hours prior to insulin or vehicle treatment. The 

activation of the different macrophage types was confirmed by quantifying IL1β, 

IL10 and IL6 secreted into the medium prior to experimentation.  Preliminary 

experiments confirmed that 1% Pen/Strep had no effect on the final results.  
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ELISA 

  

ELISA kits for IL10 and IL6 were purchased from R&D Systems 

(Minneapolis, MN), and IL1β kit was from (Pearce/Thermo FIsher Scientific, 

EH2IL1B, Rockford, IL ).  Manufacturer’s instructions were followed for the 

assays.   

 

Glucose Transport Assay 

 

 As in Chapter 2, myotubes were washed once in 37°C Hank's balanced 

salt solution with phenol red (HBSS, Gibco/Life Technologies, 24020-117), then 

serum starved by another replacement of HBSS for 30 minutes. Subsequently, 

HBSS was replaced with either fresh warm HBSS or with 5 nM insulin in HBSS, 

and incubated at 37°C for 30 minutes. Cell plates were placed on a heated 

working surface composed of a top layer of 1 blue chuck, a fiber glass dinner tray 

as the middle layer, and a Sunbeam© heating pad as the bottom layer, 

prewarmed on the lowest setting.  Cells were then washed three times in 37°C 

PBS supplemented with 100 μM Ca2+ and Mg2+ (PBSCaMg).  Wells were 

carefully aspirated; 1ml of 0.33 μCi. 2-deoxy-d[1,2-3H]glucose (NEN Life Science 

Products, NEC495250UC, Waltham, MA) in HBSS was applied/well, and 

incubated for 30 minutes.  Cells were washed three times in 37°C HBSS. The 

cytoplasmic fraction was liberated with 550 μl of 1% Triton X-100 (Sigma-Aldrich, 
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X100-100ML St. Louis, MO) in PBS by incubating for at least 5 minutes.  Four 

hundred μl was transferred to scintillation vials, then 4.5 ml of Scintiverse cocktail 

(ThermoFisher, SX18-4, Waltham, MA) was added and the vials counted for 10 

minutes each in a Beckman Coulter liquid scintillation counter. Counts per minute 

of the insulin treated samples were normalized to the baseline samples, and 

reported as relative units. 

 

Statistics 

 

 Differences between treatments were analyzed for statistical significance 

by two way ANOVA followed by two tailed Student’s t-test for pairwise 

comparison. Cytokines were compared via one-way ANOVA, followed by two 

tailed Student's t-test.  JMP software (SAS Institute Inc. Cary, NC) or Excel 

(Microsoft Corporation, Seattle, WA), was used for all analyses. 
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RESULTS 

 

 The human monocyte cell line, THP-1, was differentiated into M1, M2A 

and M2C polarized macrophage-like cells for preparation of conditioned medium 

(CM) to determine the effect of macrophage secretory products on myotube 

response to insulin. To confirm the macrophage phenotype following activation, 

selected inflammatory and anti-inflammatory cytokines secreted into the medium 

were measured by ELISA, including IL1β (Figure 4.1A, black bars), IL6 (Figure 

4.1B, gray bars), and IL10 (Figure 4.1C, white bars). The amount of IL1β 

secreted into the medium differed significantly between the macrophages types 

(Figure 4.1A).  As expected, M1 macrophages secreted the most IL1β 

(Figure4.1A, M1, 440±28 pg/ml); an intermediate IL1β level was characteristic of 

M2A CM, which contained approximately half the IL1β as M1 CM (Figure 4.1A, 

M2A, 214±23 pg/ml).  M2C CM had an unexpectedly high level of IL1β (Figure 

4.1A, M2C, 354±20 pg/ml), but also contained by far the largest amount of IL10 

(Figure 4.1C, M2C, 5121±106 pg/ml). A high IL10:IL1β ratio is characteristic of 

M2C macrophages, whereas a high IL1β:IL10 ratio is characteristic of M1 

macrophages, suggesting that these cells in vitro are mimicking the desired 

phenotypes. Since we used IL10 to activate THP1 cells into the M2C phenotype, 

we measured the IL10 content directly after the activation medium was removed 

and the cells were washed (data not shown); the residual IL10 detected did not   
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Figure 4.1  The human monocyte cell line, THP-1, was differentiated into M1, 
M2A and M2C polarized macrophage-like cells. Cytokines in conditioned media 
(CM) were measured by ELISA. (A) IL1β (black bars), (B) IL6 (gray bars), and 
(C) IL10 (white bars).  A high IL10:IL1β ratio is characteristic of M2C 
macrophages, whereas a high IL1β:IL10 ratio is characteristic of M1 
macrophages. Mean ± SEM 
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account for the IL10 measured in Figure 4.1C.  Finally, M1 CM contained 

significantly higher levels of IL6 compared with the other cell types (Figure 4.1B, 

M1, 1.85x104±300 pg/ml; M2A, none detected; M2C, 4.0±1.5 pg/ml). In summary, 

CM from THP1 cells activated as M1 inflammatory macrophages contained the 

highest levels of IL1β and IL6, and M2C CM had the highest level of IL10; 

however, the M2C macrophages may display a somewhat  "mixed" M1/M2 hybrid 

macrophage type, with relatively high IL1β secretion. M2A CM was intermediate 

between M1 and M2C in terms of IL1β content, and distinct from M1 CM because 

it contained no IL6. In light of the findings of the "mixed" macrophage phenotype 

we found in vivo in Chapter 3, this result may suggest that we are mimicking the 

"mixed" M1/M2 macrophage in vitro. 

 Myotubes themselves are induced to express extremely high levels of 

cytokine mRNAs in response to coculture with inflammatory macrophages (184). 

We determined the effect of secretory products from the 3 different  macrophage 

subtypes on myotube cytokine secretion using ELISA.   Myotubes alone secrete 

very little IL-1β or IL10 after 10 hours of cell culture. When M1, 2A or 2C 

macrophage CM was applied to the myotubes, IL-1β and IL10 were not secreted 

at statistically different levels than were already present in the applied CM (data 

not shown). By contrast, M1, M2A and M2C CM induced myotubes to secrete IL6 

(Figure 4.2, CM, black bars; post myotube CM, white bars).  After 10 hours of cell 

culture, myotubes themselves, secreted IL6 (U.Tx 1727±46 pg/ml), which was 

suppressed following treatment with undifferentiated THP1 CM (THP1, 1000±20 

pg/ml, p<0.01).  Following culture of myotubes in M1 CM, IL6 content in the  
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Figure 4.2 M1, 2A and 2C macrophage CM induce human myotubes to secrete 
IL6 after 10 hours of cell culture. Baseline CM (black bars); content of 
macrophage CM post myotube culture(white bars); untreated myotube media 
after 10 hours of culture without macrophage CM treatment (U.Tx).Mean ± SEM 
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medium increased nearly 6 fold (Figure 4.2, 1.85x104±300 vs.1.47x105±4825 

pg/ml, p<0.01).  M2C CM contained very little IL6; however, when this medium 

was applied to myotubes, large quantities of IL6 were secreted (Figure 4.2, 

4.0±1.5 vs. 1.26x105±5564 pg/ml, p<0.01).  No IL6 was detected in M2A CM; 

however, M2A CM also stimulated myotubes to secrete a modest but significant 

quantity of IL6 into the medium (8116±72 pg/ml).  Thus, M1, 2A and M2C CM 

induce myotubes to secrete IL6, with M1 and M2C CM having the greatest effect. 

 We predicted that the different macrophage CMs would differentially affect 

myotube glucose uptake consistent with the cytokine content of the medium, 

quantified above.  Results from myotubes from 4 different individuals, 2 insulin 

sensitive (SI 3.09 and 4.17) and 2 insulin resistant (SI 1.51 and 1.52), were 

pooled and the average glucose uptake following treatment, divided by glucose 

uptake of each untreated myotube culture, are shown in Figure 4.3. All donors 

were quite resistant to 5nM insulin (Figure 4.3, negative control undifferentiated 

THP1 CM 1.06±0.15 vs.1.29±0.20, p=0.12, n=4); higher doses of insulin were 

also ineffective (data not shown). Overall, M1 macrophage CM enhanced 

baseline glucose uptake (Figure 4.3, 1.06±0.15 vs. 2.02 ±0.25, p<0.05, n=4); in 

the presence of insulin, glucose uptake trended down, but was not significant 

(2.02±0.25 vs. 1.60±0.31, p=0.23, n=4).  M2C macrophage CM also enhanced 

baseline glucose uptake (Figure 4.3, 1.06±0.15 vs. 2.10 ±0.30, p<0.05, n=4).  In 

the presence of insulin, glucose uptake trended up, but this change was not 

statistically significant (2.10±0.30 vs. 2.30 ±0.31, p=0.43, n=4).  M2A  
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Figure 4.3 Macrophage CM after 10-12 hours of culture stimulates baseline 
glucose uptake (black bars).  Glucose uptake with 5 nM insulin treatment (white 
bars) trended down for M1 CM and trended up for M2C CM. Units are the ratio of 
glucose uptake of the treatment over the glucose uptake of the non-treated 
myotube culture. Mean ± SEM, n=4 
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macrophage CM had no effect on basal or insulin stimulated glucose uptake 

(Figure 4.3).  

Data for each individual are shown in Figure 4.4, to explore the possibility 

that the insulin sensitivity of the muscle cell donor influenced insulin-stimulated 

glucose uptake in response to macrophage secretory products.  Insulin resistant 

myotubes followed our initial hypothesis; M1 CM inhibited (Figure 4.4B, dashed 

and dotted lines) and M2C CM enhanced (Figure 4.4D, dashed and dotted lines) 

insulin stimulated glucose uptake. M2A CM had a very slight positive effect 

(Figure 4.4C, dashed and dotted lines). By contrast, insulin sensitive myotubes 

either responded oppositely or did not respond to macrophage CM (Figures 

4.4B-D, thin or bold solid lines).  Thus, differences in sensitivity to macrophage 

secretory products between myotubes from different individuals may be stable in 

vitro, but appear counter to the clinical features of the cell donor.  

 

DISCUSSION 

 

 This study examined how both classically (M1) and alternatively activated 

(M2A and M2C) macrophages modulate glucose uptake in human skeletal 

muscle-derived myotubes. In vivo, nearly all tissues contain resident 

macrophages. The results presented show that in vitro there is cross talk 

between muscle and specific macrophage subtypes, suggesting that in vivo,  
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Figure 4.4 Myotubes respond differentially to macrophage CM based upon 
clinical features of the donor. We have designated donors by their sensitivity to 
insulin (SI) value. Insulin sensitive (solid gray lines) 4.17 (bold), 3.09 (fine). 
Insulin resistant (broken black lines), 1.51 (dashed), 1.52 (dotted).  Donor 3.09 
had a BMI of 27, the other donors were clinically obese 
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macrophages and skeletal muscle integrate as an organ, contributing to whole 

body homeostasis.   

 Macrophages are functionally heterogeneous, with a continuum of 

phenotypes(108, 113).  Some harbor both M1 and M2 "mixed" characteristics, 

similar to what we observe in our activated "M2C" macrophages in vitro; both 

inflammatory IL1β and anti-inflammatory IL10 were secreted. We found that our 

activation to M1 resulted in secretion of both IL1β and pleiotropic IL6.  Studies 

have shown that IL6 secretion is induced by IL1β in epithelial cells(110, 116), and 

mast cells(87), or by autocrine response(92). We found IL1β to be a significant 

constituent in all of our activated macrophage conditioned media, so may be 

responsible for the induction of the IL6 secreted from the myotube cultures. 

Although IL10 is inhibitory to IL6 secretion(40), M2C macrophage CM contained 

a large amount of IL10, yet still activated IL6 production by myotubes.  

Due to the overwhelming secretion of IL6 and IL10, we argue that the majority of 

our observations are mediated via these two cytokines.  

 IL6 is important in glucose homeostasis, but is pleiotropic, likely due to 

distinct effects of IL6 on glucose uptake in different tissues in vivo, which are 

sometimes opposite to the actions of insulin.  IL6 is elevated in the blood of 

insulin resistant compared to healthy subjects(173, 183), suggesting a 

compensation for IL6 resistance in adults(167) and in type 1 diabetic 

children(101). Studies of recombinant human IL6 infusion in healthy humans 

show robust whole body glucose disposal(22) and glucose uptake by muscle 
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tissue(69), which were blunted in diabetic subjects. IL6 is secreted from muscle 

with exercise(69, 158, 165, 181) and overall appears to shunt energy stores and 

production throughout the body to the muscle in times of activity(90). IL6 

mediated glucose uptake in vivo relies on intact components of the IL6 signaling 

cascade, including STAT3 and SOCS3, leading to robust AMPK activation and 

glucose uptake in skeletal muscle(93, 124).  These activities are distinct from 

insulin; IL6 induces glucose uptake via an AMPK mediated mechanism, whereas 

insulin relies on the PI3K pathway to stimulate glucose transport (Chapter 1, 

Figure 1.1).   High IL6 secreted from myotubes in response to CM may be 

responsible for the increase in baseline glucose uptake. 

Although IL6 is normally stimulatory to glucose uptake in muscle, in 

adipose, it is inhibitory to glucose uptake(10) and stimulatory to lipolysis(103).  

Opposite to the activity of IL6 in adipose, insulin inhibits lipolysis via hormone 

sensitive lipase(7) and stimulates glucose uptake in adipose. Insulin's integrated 

activity in terms of overall homeostasis, is primarily storage of energy such as 

lipid and glucose and growth. Insulin secretion occurs when nutrients such as 

glucose rise in concentration in the blood, which induces glucose uptake in both 

muscle and adipose by a PI3K mediated mechanism (Chapter 1, Figure 1.1). 

These processes may differ in rodents compared to humans, complicating 

interpretation of in vivo studies.  For instance, IL6 infusion in rodents, induces a 

robust hepatic insulin resistance, which does not occur in humans(148, 149, 

189). Furthermore, studies from primary cells taken out of the organism are 

further complicated because of the absence of inputs from other organs and 
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peripheral tissues, which we suggest alters outcomes that were demonstrated in 

vivo, as discuss below(85).  

 IL6 resistance, with attenuated AMPK activation, results in inhibition of 

insulin stimulated glucose uptake in muscle(85). There is some evidence that IL6 

dysfunction may be influenced by the activation p38 MAPK via cellular stress(26, 

72, 99). Not only is IL6 sensitivity a requirement for robust induction of AMPK, 

promoting overall glucose uptake, but resistance to IL6 leads to aberrant 

downstream signaling of STAT3 and SOCS3(141). SOCS3 suppresses 

expression of inflammatory genes; SOCS3 deficiency or suppression promotes 

an M1 phenotype in human monocytes(127). There is some evidence that NO 

stress can damage anti-inflammatory cytokines(61), thereby de-repressing 

inflammatory genes. The expression of inflammatory genes is directly inhibitory 

to the insulin signal cascade and insulin stimulated glucose uptake. IL1β, 

preferentially secreted by M1 macrophages, has insulin desensitizing activity, 

eliciting STAT1/SOCS2-dependent ubiquitinylation of the insulin receptor 

substrate 1 (IRS1) and subsequent IRS1 degradation (Figure 1.3, red pathway), 

and concomitant activation of NF-κB and JNK inflammatory pathways(189). 

 There are few studies in human myotubes in vitro which address the role 

of pleotropic IL6 in insulin resistance and obesity. The IL6 gene is induced in 

muscle cells in response to macrophage coculture(184). Like insulin, IL6 can 

induce both glucose uptake and glycogen synthesis(85). The Zierath group at 

Karolinska, found that myotubes secreted more IL6 from T2DM donors, and had 

blunted glycogen synthesis and glucose uptake when stimulated with either 
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insulin or IL6, or both. Glycogen synthesis and glucose uptake in healthy 

myotubes was specifically induced two fold over baseline by the synergistic effect 

of both insulin and IL6, which had no effect on myotubes from T2DM donors. 

They went on to suggest that these observations were mechanistically due to 

resistance of IL6 signaling in T2DM myotubes; however, the components of 

insulin or IL6 signaling were only modestly stimulated, and could not explain the 

glucose uptake and glycogen synthesis measured in response to insulin or 

IL6(85). A second study by the same group showed that STAT3, a component 

downstream of IL6, was constitutively active in the skeletal muscle of T2DM 

patients(111). The Pedersen group found that distinct portions of the IL6 cascade 

were modified in myocytes of obese donors, and obese donors with T2DM when 

compared to healthy controls. The authors concluded that obese donors were IL6 

receptor deficient, but in T2DM donors, the IL6 cascade was dysfunctional at 

downstream components STAT3 and SOCS3(141). In our myotube cultures, 

those from clinically insulin resistant donors appeared more sensitive to the 

insulin stimulated effects of CM than those from insulin sensitive subjects, 

arguing against IL6 mediated insulin resistance consistent with clinical features of 

the cell donor.  We attempted to measure activation of IL6 signaling molecules in 

our studies of myotubes exposed to macrophage CM, but were not successful 

(data not shown). Clearly, this pathway must be studied in more detail in a larger 

number of samples to enable conclusions regarding sensitivity to IL6.  

 IL10 (present at significant levels only in M2C CM) induces glucose 

uptake in cultured rat myotubes(139). The classical view of IL10, however, is that 
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it is an anti-inflammatory cytokine that reverses the effects of inflammatory 

cytokines.  IL10 inhibits TNFα gene activity(156) and IL1β secretion in human 

primary macrophages(61).  Data on the interaction of IL6 and IL10 are sparse.  In 

human monocyte-derived macrophages, IL6 and IL10 activate STAT3(115, 132) 

via a gp130 mediated mechanism(182). In classical IL6 signaling, STAT3 

activates SOCS3, which is a feedback inhibitor of IL6 signaling. SOCS3 inhibits 

IL6 signaling by docking at a cognate pY motif on the IL6R.  Constitutive SOCS3 

activation results in insulin resistance(151). However, IL10 is not susceptible to 

SOCS3 inhibition, because SOCS3 does not interact with pY residues on the 

IL10R(1). It has been reported that pretreatment of macrophages with IL10 

inhibited IL6 mediated STAT3 activation, but preincubation of IL6 had no effect 

on IL10 activation of STAT3(139). Although myotube secretion of IL6 after 

exposure to M2C CM was significant, we speculate that IL6-mediated STAT3 

signaling should be suppressed by the SOCS3 activation afforded through IL10. 

The mechanism by which IL6-mediated SOCS3 is suppressed in the context of 

insulin resistance is not known, nor if IL10-mediated activation of SOCS3 is 

preserved. IL6R is down regulated in the context of obesity which may be via 

feedback inhibition due to greater pSTAT3 activity(141). However, if IL10- and 

IL6-mediated glucose uptake share the same mechanism, then IL10 mediated 

STAT3/SOCS signaling and subsequent glucose uptake should be preserved 

even in IL6 resistant myotubes.  This may be the case in myotubes from insulin 

resistant donors that showed a trend to increase insulin stimulated glucose 

uptake in response to M2C macrophage CM. Myotubes from the insulin sensitive 
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donors in terms of insulin stimulated glucose uptake, did not respond appreciably 

to any CM, suggesting an overall impairment of IL6, IL10 and insulin signaling in 

vitro.   

 Elevated circulating free fatty acids associated with obesity may alter 

muscle macrophage function, which has been modeled in vitro.  Our lab showed 

previously that  inflammatory macrophages cocultured with myotubes inhibited 

myotube activation of Akt (pAkt), an important molecule in the insulin signaling 

cascade. Cocultures with macrophages and palmitate, a nonesterified fatty acid, 

potentiated the inhibition of pAkt, suggesting that macrophages and free fatty 

acids in combination exacerbate insulin resistance(184). A different study by the 

Klip lab at The Hospital for Sick Children in Toronto, also found interesting effects 

of lipids and macrophages on rat muscle cells(139).  The model utilized L6-

GLUT4myc myoblasts exposed to CM from RAW 264.7 macrophages pretreated 

with palmitate (CM-P) or LPS (CM-LPS). CM-P inhibited Akt phosphorylation, 

GLUT4 translocation, insulin-stimulated glucose uptake, and elevated 

inflammation markers. Conversely, CM-LPS potentiated Akt phosphorylation, 

GLUT4 translocation, insulin-stimulated glucose uptake, but showed no markers 

of inflammation. The CM-LPS had elevated IL10 levels, and IL10, potentiated 

insulin action in myoblasts; IL10 neutralizing antibodies partially blunted the 

positive influence of CM-LPS. LPS is used in our work as part of the activation 

regimen for inducing the M1 phenotype (see Methods), but does not result in 

IL10 activation and instead generates an inflammatory macrophage phenotype.  

The fact that Samokhvalov et al. detected IL10 from LPS treated RAW 264.7 
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macrophages suggests a mixed phenotype, similar to the "M2C" phenotype in 

our study.  In conclusion, we posit that macrophage-derived cytokines in muscle, 

such as IL6, IL1β and IL10, interact to alter signaling in muscle fibers in different 

ways dependent on health status of the individual, to  uniquely influence baseline 

or insulin stimulated glucose uptake.  Future studies will be designed to dissect 

the signaling pathways in human myotubes leading to inflammation and insulin 

resistance, potentially identifying new targets for early intervention and 

prevention of progression to T2DM. 
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Chapter 5: Conclusions and possible future directions 

 

 Macrophages are important in skeletal muscle physiology and we 

attempted to study the human muscle cell-macrophage interaction both in vivo 

and in vitro.   In vivo, we focused on the macrophage response to both aerobic 

and resistance exercise.  We found that changes in M1 and M1/M2 macrophages 

abundance in response to exercise is altered by age, and that macrophage 

densities are uniquely correlated to expression of specific genes involved in ECM 

remodeling, angiogenesis, and homeostasis adaptations to exercise. 

In vitro, we show that late passage myotubes activate insulin signaling 

pathways consistent with the clinical insulin sensitivity of the donor, but that did 

not extend to insulin stimulated glucose disposal. We applied different 

macrophage conditioned media (CM) to myotubes from donors of varied insulin 

sensitivity and found that myotube glucose uptake was approximately 2-fold 

higher following exposure to M1 or M2C macrophage CM.  The M2C-activated 

macrophages secreted significant quantities of IL1β and IL10, suggesting a 

mixed M1/M2 phenotype, consistent with in vivo results. Insulin-stimulated 

glucose uptake trended inhibitory and enhancing for M1 and M2C macrophage 

CM, respectively, which also appeared to be influenced by the insulin sensitivity 

of the cell donor. Both M1 and M2C macrophage CM induced myotubes to 

secrete copious amounts of IL6 into the media, which may be the primary factor 

affecting both baseline and insulin-stimulated glucose uptake. Taken together 

these results suggest a functional distinction between inflammatory (M1) and 
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alternative macrophages (M2) in insulin resistance and exercise that is altered 

with age. Aging may be the primary factor in skeletal muscle health. 

 To our knowledge this is the first report describing a mixed phenotype of 

M1/M2 macrophages in human skeletal muscle.  Furthermore we found an 

association of macrophage phenotype with expression of genes in muscle 

involved in ECM remodeling and angiogenesis in the context of aging, that may 

impact overall health status.  Over the years, the view on the physiology of ECM 

has evolved. The old view was ECM was solely structural; however, relatively 

recent discoveries have uncovered that ECM is also a powerful signaling arena, 

that communicates with surrounding cells and to other peripheral organs and 

tissues. Moreover, the interactions with healthy or aged ECM may influence the 

phenotype of tissue resident macrophages, and affect the insulin signaling or 

exercise response of the muscle. These discoveries suggest ECM is a novel 

target for pharmacotherapeutics that may influence aging and insulin resistance 

in muscle.  Lastly, exercise effects on the older subjects were blunted; perhaps 

some kind of cotherapy, such as massage, with exercise may allow older 

subjects to better gain the beneficial effect of exercise.  

 Our laboratory specifically studies muscle aging and insulin resistance.  

Although inflammatory macrophages were elevated with obesity in muscle, the 

macrophage response to exercise was not correlated to BMI or insulin sensitivity.  

On the other hand, when grouped by age, exercise response differed, suggesting 

that aging has more impact on muscle-macrophage interplay than obesity.  There 

is some evidence that macrophages themselves age. Additionally the substrates 
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macrophages process in the aged environment may be damaged, due to reactive 

species elevation and decrease in buffering capacity that has been reported in 

the aged(122). This theory may explain the elevation in macrophages we 

reported for the older age group in response to aerobic exercise training.  In this 

theory, a greater number of macrophages infiltrate the muscle in older individuals 

in response to exercise, because they are less effective and increase their 

population as a compensatory mechanism. To address these ideas experiments 

could be designed to collect human monocytes from aged or young people, and 

apply these monocytes in equal densities across experiments to control collagen, 

and collagen which has been exposed to H202 which will cause adducts by 

superoxide radicals. The cells can be collected, lysed and enzyme assays for 

matrix metalloproteinase and westerns for collagen cleavage products, 

normalized to total proteins, can be performed.  Additionally, the phenotype of 

adhering monocytes can be assessed at the mRNA level and cytokine secretion 

into the media quantified, normalized to total protein from the plate. Careful 

attention should be given to  genes such as SPARC. Chemotaxis on adducted 

collagen could be measured for old and young macrophages. In this way we can 

test the efficacy of old and young macrophages on control and adducted 

substrates, verifying the aged macrophage and/or damaged substrate 

hypothesis. 

 In myotubes in vitro, loss of input from other organs and tissues (liver, 

adipose, nerves, pancreas, bone marrow), limits the cues  that contribute to 

normal muscle glucose uptake in vivo. Possibly epigenetic silencing of muscle 
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genes occurs progressively over time, which is derepressed by those inputs.  

Among those missing inputs is the vasculature, specifically endothelial cells.  Our 

analysis of gene expression suggested that angiogenesis and macrophage 

function are linked. Further, endothelial cells are a robust source of NO in 

muscle.  NO is an important acute signaling molecule which modifies the 

dilatation of smooth muscle, an important adaptation to exercise, but has also 

been suggested to affect glucose uptake. It has been reported that sodium 

nitroprusside (an NO agonist) administration in skeletal muscle cell cultures in 

vitro (74) and in vivo (75) induces glucose uptake.  Taken together these findings 

suggest that NO may be an important signaling molecule that induces exercise 

stimulated glucose uptake. Additionally we have shown in this report that 

nitrotyrosine (NY), an adduct resulting from the production of NO radicals, differs 

in subjects by age in response to exercise.  It is not known how NO radicals 

affect exercise-stimulated glucose uptake during muscle aging and should be 

explored. Lastly, macrophages are important mediators of muscle adaptation in 

the response to exercise. It is not known what role NO or NY adducts have on 

the macrophage and myofiber/satellite cell interactions.  Impaired signaling or NY 

adducts themselves may be inhibitory to macrophages or muscle cells when 

trying to mount the hypertrophic response. Future studies should explore the 

possibility that addition of sodium nitroprusside may restore normal glucose 

uptake response in myotubes.  

Copyright © Jason Sean Groshong 2013 
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