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ABSTRACT OF DISSERTATION

APPLICATION OF PYROLYSIS-GC/MS TO THE STUDY OF

BIOMASS AND BIOMASS CONSTITUENTS

Fast pyrolysis, the rapid thermal decomposition of organic material in the absence of oxygen, is a
process that can be used to convert biomass into liquid fuels and chemicals. When performed at
the micro-scale, pyrolysis is useful for characterizing biomass structure, as well as determining
the pyrolysis products that can be generated from specific biomass feedstocks. Indeed, microscale
pyrolysis coupled with on-line analysis of the pyrolysis vapors by GC/MS, so-called pyrolysis-
GC/MS (Py-GC/MS), is a technique that can be used to characterize the structure and
composition of the various components of lignocellulosic and microalgal biomass based on their
pyrolysate distributions. Pyrolysates produced also provide insight into the range of products that
can be expected when biomass feedstocks are subjected to thermal decomposition processes.

This dissertation focuses on the Py-GC/MS analysis of lignocellulosic biomass such as sorghum
and Scenedesmus sp. microalgae, in addition to high-lignin feedstocks such as walnut shells,
coconut shells, olive pits and peach pits. The differences in the pyrolysate distributions among
these biomass types are correlated with differences in the structure and composition of the
biopolymers, mainly cellulose, hemicellulose and lignin, present in the biomass. Py-GC/MS
analysis of lignin extracted from endocarp feedstocks is also emphasized. In addition to biomass
and extracted lignin, sinapyl (S) and coniferyl (G) alcohol have been analyzed by Py-GC/MS in
order to understand the relationship between the corresponding pyrolysates and sinapyl/coniferyl
ratios of lignin present in lignocellulosic biomass.

KEYWORDS: Pyrolysis-GC/MS, lignin, biomass, endocarp, microalgae
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Chapter 1. General Introduction

The long-term availability of fossil fuels and the environmental concerns associated with their use
have provided an impetus for research directed towards the production of fuels and chemicals
from biomass. Specific issues contributing to these concerns include increases in world
population and energy consumption as well as the production of greenhouse gases and pollutants
from the combustion of fossil fuels. According to the U.S. Census Bureau, the world population
currently exceeds 7 billion and the U.S. Energy Information Administration (EIA) reported a total
primary energy consumption worldwide of over 510 quadrillion Btu in 2010, showing an increase
of over 100 quadrillion Btu since 2000." Fuels are consumed for transportation, generation of
electricity, heating, materials production and many other reasons. Fossil fuels, including
petroleum, natural gas and coal, provide a large proportion of the energy supplied, particularly to
industrialized nations. However, reliance on fossil-based resources is not restricted to energy
production. The EIA reported that 191 million barrels of liquid petroleum gas and natural gas
liquids were used as feedstock to produce plastic materials and resins in 2010 in the U.S. alone.?
Utilization of alternative and renewable sources of energy and materials will be necessary to meet
the high demands for the latter from an increasing population. It is also imperative that renewable
sources of fuels and chemicals be utilized in order to alleviate the depletion of fossil fuel reserves

and reduce our dependency on them as a source of both fuels and chemicals.

Renewable biomass and plant-derived materials can be used to produce energy in the form of heat
and electricity and can also be used as feedstocks to produce chemicals and other materials.
Because plants consume carbon dioxide during photosynthesis, plant-derived materials and
biomass are considered to be carbon neutral with respect to combustion or utilization as an energy
feedstock.*® Lignocellulosic biomass, being composed primarily of lignin, cellulose and
hemicellulose, includes trees, grasses and many other terrestrial plants. This type of biomass has
been used for energy and heat production by combustion throughout the entirety of human
history.> Non-lignocellulosic biomass, such as microalgae, are typically composed of lipids,
proteins and carbohydrates. This type of biomass has been the subject of recent investigations
regarding its utilization as a source of energy and chemicals.”® The composition and structure of
various types of biomass, and how these characteristics determine the products generated from

thermal decomposition of the biomass, are discussed in the subsequent chapter.



While biomass can be used as fuel directly, it can also be converted to liquid fuels and chemicals
by thermochemical processing. Converting biomass to liquid products is advantageous because
the liquids have higher volumetric energy density and are more versatile, cheaper and easier to
process, ship and distribute than the dried, ground biomass feedstock.>”* The liquid products may
also be used directly as fuel in boilers and engines to generate electricity.”” Many
thermochemical methods used to convert biomass and its constituents into other products,
particularly liquids, are being investigated and optimized. Potentially useful methods for
converting biomass and its components into fuels and other materials include gasification,
hydrothermal liquefaction, pyrolysis and catalytic upgrading.'® The objectives of the research
described in this dissertation focus on the pyrolysis of biomass. Pyrolysis processes can be used
to convert biomass into a wide variety of useful chemicals and fuels. Fast pyrolysis processes,
which are particularly suited to the production of liquids from biomass, are discussed in this
chapter. The subsequent chapter focuses on the micro-scale pyrolysis of biomass coupled to

GC/MS for analysis of the condensable vapors generated.

1.1 Fast Pyrolysis Processes Used to Convert Biomass into Other Products

Fast pyrolysis is the rapid thermal decomposition of an organic material in an oxygen-deficient
atmosphere. Fast pyrolysis of biomass generates a solid, liquid and a “non-condensable” gas
fraction. The gas fraction includes compounds such as carbon monoxide, carbon dioxide and
methane and can account for approximately 10-25 wt% of products from biomass pyrolysis.®
These gases can be used as fuel gases or recycled into pyrolysis reactors.® The solid fraction,
known as “biochar,” contains amorphous carbon (char) and nonvolatile compounds such as
partially decomposed biopolymers, large polycyclic aromatic hydrocarbons (PAHs) and ash. Bio-
char may also account for 10-25 wt% of converted biomass. Char from the solid fraction can be

811 Mineral nutrients from

combusted for heat or energy production or used for soil amendment.
the biomass can also be recovered from the biochar.'"'? The liquid fraction, constituting up to
approximately 70 wt% of pyrolysis products from biomass, is known as “bio-0il” or “pyrolysis
o0il” and it contains a diverse range of compounds that collectively have a heating value about half

that of conventional fuel oil.”®

The liquid fraction may be used as a precursor for fuel or chemical
production or it can be combusted for the production of energy in the form of electricity.*’ The
types and distribution of the products generated from the pyrolysis of biomass are dependent on

the feedstock and the operating parameters of the pyrolysis process.®'



Many types of reactors and parameters can be employed to pyrolyze biomass at rapid rates and
each technique is capable of producing different liquid components and yields.® Fast pyrolysis
processes with high heating rates and vapor residence times of approximately 2 s are typically
used in an effort to maximize the amount of liquid produced. In order to achieve high liquid yield,
high temperatures and rapid heat transfer rates must be combined with short vapor residence and

cooling times.®!

Fast pyrolysis reactor configurations include fluidized bed, entrained flow, ablative and vacuum
systems, as well as many other approaches.®'*> Fluidized bed reactors are a well-understood
technology and are simple to construct and operate.” These reactor configurations utilize dried,
small particle-sized (< 3 mm) biomass feedstocks and sometimes a fluid medium such as sand
that allow for efficient heat transfer. Biomass is fed into the reactor where it is heated
(temperatures typically range from 400 °C to 600 °C) and fluidizing gas (typically N) is used to
carry products through the reactor. Condensation units can be used to condense aerosols into
liquids, filters (typically cyclones) are used to collect bio-char, and gaseous products can be
collected and/or recycled back to the reactor. Fluidized bed and other pyrolysis reactors vary in
size and operational principles and careful design of hydrodynamics is important in order to
produce a consistent and optimal range of products.”® Waste heat from the surplus gas in most
reactors can be used to dry feedstocks and burning of char products can produce some of the
energy required to heat the reactor. Hence, careful design and operation of pyrolysis systems can
provide energy efficient processes that yield potentially useful products from biomass. Figure 1.1

shows a simplified schematic of a fluidized bed pyrolysis unit.



Vapor

Biomass
feedstock Gas products
products | Condenser
T > Cyclone
Hopper \ 7

| | Pyrolysis I:I Char Bio-oil
reactor

Fluidizing gas (N,)

Figure 1.1 Schematic of a fluidized bed fast pyrolysis unit. Biomass enters the heated
reactor with the aid of a hopper where it contacts heated fluid media (e.g., sand) that is
fluidized using an inert gas, which is often heated. Gas products leave the reactor and can
be returned to the reactor or combusted as fuel to supply heat energy for the pyrolysis
process. Char and ash can be separated using a cyclone filter and vapors are condensed in a
condenser. Condensed vapors (bio-oil) can then be combusted to supply energy to drive the

pyrolysis process, shipped and/or or upgraded to generate other products.
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Fast pyrolysis systems vary in size ranging from Dynamotive’s 200 ton/day plant
microscale Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) pyroprobes,
discussed in Section 1.4, that use sample sizes of less than 1 mg. The size and operation
parameters are chosen depending on the types of products desired and their intended uses. Large
scale pyrolysis reactors are used to produce bio-oil, food flavorings, charcoal and producer gases

and smaller units are used for research purposes and for characterizing biomass and polymers.*’

1.2 Properties of Pyrolysis Oil and Dependence on Feedstock

The liquid produced from the fast pyrolysis of biomass has been characterized by a vast amount
of research that has been reviewed by Bridgwater and Mohan; the following provides a summary
of their reviews.””!"* Bio-oil is typically brown, has a smoky odor and contains hundreds of
compounds ranging in size and abundance that result from decomposition of the biopolymers
present in biomass.*!* Table 1.1 summarizes some of the properties of bio-oil obtained from

typical lignocellulosic feedstocks.® Bio-oil typically has a water content of approximately 20
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wt%, a pH of approximately 3, a higher heating value (HHV) of around 18 MJ/kg and it is
miscible with methanol and acetone but it is not miscible with hydrocarbon fuels.*!* Bio-oil is
chemically unstable because it contains a diverse range of compounds that can react together to
produce water, tars and other organic compounds over a wide range of temperatures and
conditions. Hence, distillation is not practiced and storage and transportation of bio-oil must be
carefully controlled.® Despite these characteristics, bio-oil shows potential for use as a fuel’ or as
a feedstock for the production of fuel by means of catalytic upgrading processes, as reviewed by
Huber et al." It may also be used in catalytic processes to produce other valuable compounds.
Because bio-oil is a liquid with a volumetric energy density greater than the dried biomass
feedstock from which it came, costs and complications associated with transportation and
processing (such as stirring and pumping) are minimized in comparison to ground biomass

feedstocks.>’

Table 1.1 Typical properties of lignocellulosic-derived bio-oil. Values reported are obtained

from reviews by Bridgwater, Mohan and Huber >%1315

Property Value
Elemental Analysis

C 56 wt%

H 6 wt%

o 38 wt%

N <0.1 wt%
Higher heating value (HHV) 16-20 Ml/kg
pH 2-3
Moisture content 20 wt%
Density 1.1 g/lem®

Compounds produced from pyrolysis, particularly those present in bio-oil, are commonly referred
to as “pyrolysates.” The types and the relative abundance of these compounds influence the
properties of pyrolysis oil and they vary depending on the reactor type, the pyrolysis conditions
used and the biomass feedstock. The pyrolysates originate from decomposition of compounds
present in biomass. Lignocellulosic biomass, such as wood and grasses, is primarily composed of
hemicellulose, cellulose and lignin. Hemicellulose is an amorphous polysaccharide composed of

various sugar units and cellulose is a polysaccharide of f(1—4) linked D-glucose units. Lignin is



an amorphous polymer composed of phenylpropanoid monomers, monolignols, derived from
coniferyl, sinapyl and coumaryl alcohol. The structure and composition of lignin is discussed in
the subsequent chapter. Upon pyrolysis, hemicellulose and cellulose generate anhydrosugars,
furans, and small oxygenated compounds such as hydroxypropanone and acetic acid that are
present in bio-0il.'®'7 The lignin fraction of biomass produces phenols and other aromatic

compounds during pyrolysis.'®"

Common compounds generated from pyrolysis of
lignocellulosic biomass and their sources and potential applications are shown in Table 1.2.
Potential applications include flavors or reagents that can be used for a wide variety of
applications, including production of polymers, resins and other synthetic materials. However,
few commercial processes exist for the development of materials from bio-oil components
outside of the flavor industry. The relative abundance of the pyrolysates present in bio-oil
depends on the relative abundance and structures of the biopolymers present in biomass as well as
the pyrolysis conditions. For example, biomass that contains more lignin may produce more
lignin-based pyrolysates. The structure and abundance of the biopolymers present in biomass
varies according to species, age, growing conditions, the part of the plant, nutrient supplies and
other factors.??! Obviously, fractionation of biomass and subsequent pyrolysis of the constituents
will yield compounds associated with the fraction pyrolyzed.'” Hence, fractionation of biomass

can be used to produce certain compounds from pyrolysis of its separate components.



Table 1.2. Common compounds present in lignocellulosic-derived bio-oil. Potential

applications have been reviewed by Czernik and others.*’

Compound Source Potential Application
hydroxyacetaldehyde Holocellulose Flavor industry
acetic acid Holocellulose Reagent

furfural Holocellulose Reagent
levoglucosan Holocellulose Reagent
1,4:3,6-dianhydro-o/B-d- Holocellulose

glucopyranose

eugenol Lignin Flavors/Fragrances
syringol Lignin

vanillin Lignin Flavors/Fragrances
syringaldehyde Lignin

phenol Lignin Reagent, plastics
2-methoxy-4-methylphenol Lignin Flavors

2,6-dimethoxy-4-methylphenol Lignin

Non-lignocellulosic biomass, such as microalgae, can also be used as a pyrolysis feedstock.?*
Microalgae are primarily composed of lipids, proteins and some carbohydrates.”” Lipids present
in microalgae can constitute up to 50 wt% (dry) of the biomass with the remainder being
carbohydrates, proteins and ash.® Free fatty acids, triglycerides, phospholipids, steroids and other
terpene-derived compounds (such as phytol in chlorophyll) are the main types of lipids found in
many microalgal species, as well as lignocellulosic biomass. Carbohydrates, including glucose,
mannose and other sugars, are present in the form of oligomers, polymers and monosaccharides
in microalgae.’”* Like lignocellulosic biomass, pyrolysis of microalgae produces compounds
associated with the various components present in the biomass. The relative abundance of each of
the components depends on the species of microalgae as well as growing conditions and nutrient

supplies.*?’

Pyrolysis of the lipids produces long-chain (fatty) acids, aldehydes and alcohols as well as
saturated and unsaturated linear hydrocarbons.**** Aromatic compounds can also be produced
from Diels-Alder cyclization of unsaturated lipids.*' Lipids present in microalgae and their

resulting pyrolysates have higher heating values® and these compounds are more amenable to the



production of fuel and fuel-like precursors by upgrading processes than lignocellulosic
components and their pyrolysates. Pyrolysis of the proteins present in microalgae generates a
wide variety of nitrogenous species such as indoles, pyrrolidones, amines and amides that result
from cracking and cyclization mechanisms that occur during pyrolysis.***® Like lignocellulosic
biomass, algae can also be fractionated in order to obtain separate extracts, such as lipids, which

can be further processed for production of specific chemicals.’

Overall, pyrolysis of biomass generates products characteristic of the starting feedstocks. This is
not only important to consider when selecting a feedstock for the production of pyrolysis oil or
gases with certain properties or chemical components, but can also be useful for characterizing
biomass constituents.'®*? The relative abundance of lignin in lignocellulosic biomass and its
individual monomer types can be reflected in the composition and distribution of pyrolysates
present in bio-0il.*”*® Microalgae feedstocks of varying lipid and protein composition can be
screened for high heating value potential according to the pyrolysates generated.’> Moreover,
mutations resulting in lignification or other biopolymer alterations may also be reflected in
products obtained from biomass pyrolysis. Hence, the simultaneous characterization of biomass
structure and determination of its potential for conversion into other products makes pyrolysis a

valuable analytical tool.

1.3 Chemical and Physical Mechanisms Leading to Pyrolysis Products

Pyrolysis of biomass is an endothermic process that involves physical and chemical
transformations. The physical transformations have been described in reviews by Mohan'* and
Sinha using simple heat transfer explanations.’’ Haas et al. have used microscopy techniques to
analyze the physical changes in biomass that occur during pyrolysis.*’ Figure 1.2 shows a
schematic of the physical processes that occur during pyrolysis of a single particle. The process
begins with the transfer of heat from a source to the outside of the biomass particle causing the
temperature of the particle to increase. Next, primary pyrolysis reactions such as dehydration and
thermolysis (homolytic cleavage) occur, producing gases, liquids, volatiles and char. Heat is
transferred from the outside of the particle to the inside of the particle through the hot liquids,
volatile compounds and gases. Simultaneously, the cooler portions of the biomass may cool some
volatiles, causing them to condense back into liquids. The condensed compounds may then
undergo secondary pyrolysis reactions. The heating of the inside of the biomass particle is
followed by primary pyrolysis reactions that produce more gases, volatiles and char. Again,

secondary reactions and condensation can occur and may be controlled by heat transfer within the



particle, the residence time of the volatiles and the ability of the particle to expand as gases and

volatiles are released.

1.) <200 °C 2.) 200 °C —300 °C  3.) 300 °C — 500 °C 4.) 500 °C
CoO, CO,, CH,, .
condensble - Condomale - (LEL e
vapors > &
vapors still produced at high
temperatures

H,0
Heat _>‘

Figure 1.2. Schematic of physical processes of pyrolysis.>*° Biomass is grey, gases/voids are
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white, chars and liquids are black. 1. The particle is heated and moisture is removed. 2. As
the temperature of the particle increases, the particle expands, releasing gases and
condensable vapors, and begins forming char. 3. The temperature increases and some
vapors condense on the particle as the size of the particle decreases; more vapors, gases and
chars are generated. 4. Solids and liquid products of thermally decomposed biomass remain
at the final temperature. Gases will continue to be produced and liquids will react further if

the particle maintains the higher temperature or if the temperature increases.

Specific reactions associated with pyrolysis processes include homolytic cleavage (homolysis or
thermolysis), dehydration and rearrangement mechanisms that result in depolymerization,
cracking, repolymerization and general decomposition of biopolymers in biomass.'®!741-43
Collectively, these reactions are commonly referred to as “thermochemical processes” and many
can occur simultaneously over a period of less than 2 s in fast pyrolysis systems. Condensed bio-
oil may also undergo additional reactions over extended periods of time leading to increases in
viscosity and average molecular weight.*** Many reactions have been used to explain the changes
that occur in bio-oil during aging processes and are reviewed by Diebold.* For example, alcohols
may react with organic acids during aging to form esters and water. Aldehydes may also react
together to produce polyacetals. However, the formation of many compounds is still not

understood given the complexity of bio-oil and the many possible mechanisms that can produce

various compounds. Many factors, such as inorganic and char content and storage temperature



and container materials may also play roles in the kinds and amounts of compounds generated

during bio-oil aging.*’

Mechanisms and kinetics associated with pyrolysis of the carbohydrate or saccharide fractions in

1746 in order to elucidate the

biomass have been investigated by Patwardhan et al.'®* and others
origin and formation of carbohydrate-based pyrolysates. Pyrolysis of carbohydrates involves the
depolymerization of polysaccharides by cleavage of the glycosidic bonds and these processes are
accompanied by dehydrations, ring opening mechanisms and cracking reactions. Figure 1.3
shows the formation of several pyrolysates that originate from the carbohydrate, particularly

cellulose, fraction in biomass.
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Figure 1.3. Formation of certain pyrolysates from cellulose and carbohydrates.

Pyrolysis of the lignin fraction in lignocellulosic biomass has been researched as a means of
converting lignin into useful products and as a way to characterize the structure and composition
of the lignin being investigated. Lignin, being an amorphous, irregular polymer made from three
types of monomers, has many types of bonds capable of undergoing homolytic cleavage,
dehydrations and isomerizations during pyrolysis.****">* The bonds connecting the aromatic
monomers have lower bond dissociation energies than the bonds present in the aromatic

framework.”' Hence, homolytic cleavage and other reactions involving the bonds connecting the
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monomers are the dominant reactions driving the decomposition of lignin during pyrolysis.
Therefore, pyrolysates in the liquid fraction usually contain some distribution of aromatic
compounds with identities reflecting the distribution of monomers and the types of bonds linking
them. The monomers, coumaryl, coniferyl and sinapyl alcohol, have zero, one, and two methoxy
substitutions, respectively. Depending on the pyrolysis conditions, the methoxy groups may be
largely unaffected and the distribution of pyrolysates from each of the monomers in the liquid
fraction may reflect the relative abundance of the monomers in the starting feedstock.™
Therefore, it is possible to measure the sinapyl/coniferyl (S/G or S:G) ratio in lignin polymers
based on pyrolysate distributions.*®*>* However, demethoxylation processes can occur and
different monomers may be more or less likely to form char or nonvolatile products associated
with the solid fraction of the pyrolysis products.’>** Additionally, the presence of inorganic
components in biomass may influence pyrolysate distributions.’® The coexistence of the various
polymers within biomass may also influence pyrolysis mechanisms and product distributions
relative to those obtained from separated components.’’>® Therefore, structural characterization of
lignin based on pyrolysate distribution in the condensable vapor fraction should be undertaken
with caution or supplemented with other analyses such as NMR spectroscopy or oxidative
techniques. Figure 1.4 shows the formation of representative pyrolysates from the lignin fraction
of biomass.*'”® Further discussion on the formation and types of pyrolysates generated from

lignocellulosic biomass in relation to its structure and composition is provided in Chapter 2.
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Figure 1.4. Several radical mechanisms that can occur to form lignin-based pyrolysates.
When a lignin dimer of coniferyl monomers linked by a p-O-4 bond undergoes pyrolysis the
bonds with the lowest bond dissociation energies undergo homolysis to produce free
radicals. The mechanisms shown have been hypothesized to generate the products indicated
but many other reactions may occur to produce the same products. During pyrolysis, many
other reactions also occur simultaneously to produce a diverse range of aromatic

compounds from the lignin polymer.

Like other organic feedstocks, the pyrolysis of lipids present in high lipid feedstocks such as
microalgae involves the homolytic cleavage of bonds as well as dehydrations, isomerizations and
many other reactions.’**' Generally speaking, lipid pyrolysis is straightforward because of the
linear structure of many of the lipids and has been thoroughly investigated. Figure 1.5 shows the

identities and formation of many types of pyrolysates obtained from pyrolysis of lipids such as
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fatty acids and triglycerides. The formation of these products has been reviewed by Maher et al.*!

These products are important because they are similar in composition to hydrocarbon fuels and/or
consist of high heating value products that can be used as or converted into fuels. If the lipids
have not been fractionated from the whole biomass then they may also react with proteins to form

fatty amides and other compounds.

Protein pyrolysis also involves homolytic cleavage of bonds, dehydrations and isomerizations as
well as inter and intra-molecular cyclization reactions of the amino acids.***° The types of
pyrolysates formed depend on the amino acids present in the proteins and the pyrolysis
conditions. Particular amino acid residues have not been reported in algal bio-oil, but the
occurrence of certain pyrolysates indicates the presence of certain residues, e.g. imidazole, in bio-
oil may have originated from histidine. Proteins also react with sugars through a complex set of
Maillard reactions that can also occur during thermal processes.” These reactions are also known
as “non-enzymatic browning reactions” and are responsible for many compounds that lead to the
brown color and the smells associated with pyrolysis oil. Pyrazines, for example, are believed to

originate from Maillard reactions that occur during pyrolysis.
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Figure 1.5 Example pyrolysates formed from triglycerides, proteins, saccharides and fatty
acids. Cracking reactions involve homolysis of bonds and may include rearrangements such
as hydride shifts. *Fatty acids and aldehydes formed from triglyceride decomposition

shown may be radicals. Dotted double bonds indicate the possible presence of olefins.

Other compounds in biomass, particularly in microalgae, such as chlorophylls, carotenes and
steroids, produce characteristic compounds upon pyrolysis.*** Chlorophyll (a, b and d) produces
phytol and terpenoid compounds and each type of chlorophyll can produce pyrroles.®! Vitamin E
and carotenes may be present in biomass and can also produce terpenes and phytol-related
compounds upon pyrolysis. Sterols have also been detected in pyrolysates from microalgae.*
Depending on the plant, its age and environment, other compounds may be present that may
appear in pyrolysis products. These compounds may include alkaloids and anthocyanins, many of

which can be removed by pretreatment processes.
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Many other factors play roles in the distribution of pyrolysates and products from biomass
pyrolysis. Pyrolysis of whole biomass and separate fractions may yield differences in pyrolysate
distributions due to changes induced in the biopolymers during extraction processes.'***% As
discussed with microalgae pyrolysis, separate biomass components may react together to produce
compounds that may not be produced during pyrolysis of separated fractions. In addition, the
presence of metals such as potassium and sodium may influence the occurrence of certain
reactions leading to differences in product distributions.***> The particle size and the moisture
content of the biomass will also influence the type and amount of pyrolysates generated.®
However, if particle size, moisture content, heating rates and other operating and pretreatment

parameters are consistent, pyrolysis can be used as a tool for comparing biomass structure,

composition and potential for producing certain chemicals.

1.4 Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS)

Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) is a technique that uses a
microscale pyrolysis unit to pyrolyze organic material on a micro- to milligram scale. Various
forms of Py-GC/MS exist and the reactor configurations and parameters for analysis can be
optimized for the types of samples and the information sought. While reactors are sometimes
constructed by researchers, commercial models are available from companies such as CDS
Analytical and Frontier Laboratories. Biomass is typically analyzed by Py-GC/MS by subjecting
it to pyrolysis in a quartz tube or boat cell inside a heated chamber or a metal coil (such as
platinum), the latter offering maximum heating rates and heat transfer to the biomass particles.
The product vapors then pass through heated filters or sorbent media or go directly to the GC
through a heated transfer line to prevent condensation of vapors. The pyrolysis units are purged
with an inert gas, He, which is also the carrier gas for the GC/MS. Carrier gas flow rates are
typically on the order of 50 mL/min, allowing for rapid transfer of pyrolysates from source to GC.
Combined with the use of sorbent media or short transfer lines, Py-GC/MS in the presence of GC
carrier gas can allow for analysis of the primary pyrolysates formed. However, some
condensation and secondary reactions are difficult to avoid, although good reproducibility is

usually achievable providing there are no cold spots or leaks within the unit.

Figure 1.6 shows CDS Analytical’s 5200 Pyrolysis-GC/MS Pyroprobe that utilizes a Pt coil to
heat samples at rates of up to 1000 °C/s. Samples (less than 1 mg) are placed in a quartz cell

packed with quartz wool and inserted into the Pt coil probe. The probe is then inserted into a
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chamber that is purged with He and heated during pyrolysis to prevent condensation. During
pyrolysis, the Pt coil heats the sample to the desired temperature and carrier gas transports the
vapors to the GC inlet. GC column selection is based on the type of analytes expected from a
given source. DB-5 columns are useful for most applications and more polar DB1701 columns
can be particularly useful for biomass pyrolysis.® The mass spectrometer typically uses an
electron impact (EI-MS) source and is equipped with a quadrupole that is capable of performing

selective ion monitoring.

Figure 1.6 CDS Analytical 5200 Pyroprobe unit and Pt coil.

Py-GC/MS has been used to analyze the composition and structure of biomass and its separated
constituents.'***267 The distribution of pyrolysates generated reflects the relative amount of the
constituents from which they originate in the starting feedstock. For example, lignocellulosic
biomass that contains more sinapyl monomers than coniferyl monomers in the lignin may
produce more sinapyl-based pyrolysates than coniferyl-based pyrolysates. Extracted lignin can be
analyzed by Py-GC/MS to determine the presence of carbohydrates remaining in the lignin. Py-
GC/MS can also be used to evaluate differences in structure and composition between lignin in
biomass and extracted lignin."*"® Lignin model compounds have been analyzed in order to
understand the origin of certain pyrolysates and mechanisms associated with their formation.®®
The pyrolysates produced also provide information about the types of compounds that would

appear in bio-oil from a given feedstock. Since Py-GC/MS uses small sample sizes, requires
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minimal sample preparation and provides rapid analysis of a feedstock, it is a useful technique for

screening biomass intended for use as a pyrolysis feedstock on larger scales.

In summary, Py-GC/MS is capable of rapidly analyzing biomass and its constituents in order to
understand their structure, composition and resulting pyrolysates. It is useful for understanding
starting materials and the fundamental thermochemical conversion processes associated with
transforming renewable feedstocks into other chemicals. Further discussion of Py-GC/MS

analysis of biomass and its constituents is provided in Chapter 2.

1.5 Scope of Dissertation

The main objective of the research described in this dissertation is to gain an understanding of the
structure and composition of biomass from different sources using pyrolysis-GC/MS. Biomass
constituents, such as extracted lignin, as well as lignin monomers were studied using pyrolysis
techniques in order to understand the origin of various pyrolysates and obtain quantitative
information from Py-GC/MS analysis of biomass and its components. Other techniques, such as
thermogravimetric analysis and FTIR were also used to understand biomass composition and to

provide a fuller understanding of the Py-GC/MS data.

The second chapter of this dissertation describes the general structure and composition of
lignocellulosic and microalgal biomass. The relationship between the composition of biomass and

its resulting pyrolysates as analyzed by Py-GC/MS is discussed.

The pyrolysis of coniferyl alcohol and sinapyl alcohol as well as mixtures of the two compounds
is discussed in the third chapter. The Py-GC/MS analysis of these two lignin monomers provided
a means to calibrate the instrument to measure sinapyl/coniferyl ratios in lignin as well as provide

an understanding of the types of pyrolysates expected from lignin and lignocellulosic biomass.

In the fourth chapter, characterization of high-lignin feedstocks (i.e., walnut shells and coconut
shells) and lignin extracts using Py-GC/MS and other techniques is discussed. Emphasis is placed
on the differences in pyrolysate distributions seen between different endocarp species and the

lignins extracted using different extraction procedures.
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The fifth chapter describes the use of Py-GC/MS to analyze the differences in pyrolysate
distributions seen between wild type and mutated sorghum plants. The differences in pyrolysate

distributions from different parts of sorghum plants are also discussed.

The sixth chapter focuses on the pyrolysis of Scenedesmus sp. microalgae. Py-GC/MS analysis of
the microalgae is discussed as well as the characterization of products obtained from pyrolysis in
a larger-scale, fluidized bed reactor.

Concluding remarks are included in the seventh chapter.

The most common abbreviations used throughout this dissertation can be found in Appendix 1.

Supplementary tables can be found in Appendix 2 and Appendix 3 contains supplementary

figures.

Copyright © Anne Elizabeth Ware
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Chapter 2. Biomass Structure and Composition

Biomass is organic material of recent biological origin. In this context, biomass refers to plants
and microalgae as well as materials derived from these feedstocks. Both plants and microalgae
consume water and CO; in the presence of light to produce O, and chemical energy in the form of
carbohydrates through the process of photosynthesis. A wide variety of other compounds, such as
lipids, lignin and proteins are also synthesized by plants to serve various purposes.
Lignocellulosic biomass such as trees and herbaceous plants consist of mostly cellulose and
lignin whereas biomass such as microalgae are composed primarily of lipids, sugars and proteins.
Biomass and its constituents are a renewable source of carbon and can be used directly as fuel or
processed to generate other fuels and chemicals. Utilization of biomass and its components as
fuel is considered to be carbon neutral because biomass fixes atmospheric CO; in the form of
sugars as it grows."” Hence, there is no net production of CO, when biomass is combusted as a

fuel.

The types of fuels and chemicals that can be generated and the necessary processing associated
with a given biomass source are dependent on the type of biomass. The structure and composition
of biomass varies according to species, genetic traits, age, environmental conditions and the part
of the plant. Fractionation processes, such as pulping of lignocellulosic biomass, may also have
an effect on the structure and composition, and hence application, of the processed biomass
components.” These factors influence the potential of a given biomass source to generate
particular materials and fuels as well as the economics associated with cultivation and
processing."** For example, certain types of lignocellulosic biomass, discussed below and in
Chapter 1, can be used as a source of cellulose for paper, as a source of sugars for the production
of ethanol and butanol® and for many other chemicals and materials. High-lipid biomass
feedstocks, such as microalgae, can be used to generate biofuels from lipid components present in
the biomass.”® All forms of biomass can also be gasified, pyrolyzed and combusted to create

other useful chemicals and to produce energy.

The purpose of this chapter is to provide fundamental information regarding the structure and
composition of several types of biomass. It is important to properly characterize the structure and
composition of biomass in order to understand how they relate to the conversion of biomass to
particular materials and to ensure efficient utilization of biomass for specific applications.

Emphasis is placed on lignin, its structural changes induced by extraction processes and lignin-
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based pyrolysates. Techniques used to analyze lignocellulosic biomass and lignin structure are

discussed with emphasis on Pyrolysis-GC/MS.

2.1 Lignocellulosic Biomass Structure and Composition

Lignocellulosic biomass is biomass with cell walls that are composed primarily of lignin,
cellulose and hemicellulose.'*'° Lignocellulosic biomass also contains smaller quantities of lipids
in the forms of fatty acids, triglycerides and terpenes. Proteins, lecithins, alkaloids, pectin,
starches and other compounds are also present in various types of lignocellulosic biomass. Most
terrestrial plants, including trees, grasses and other vegetation are lignocellulosic in nature. The
amount of lignin, cellulose and hemicellulose in lignocellulosic biomass varies according to plant
species, the age and the particular part of the plant, the environment and growing conditions.""!
Typically, lignocellulosic biomass is composed of approximately 40% cellulose, 20%
hemicellulose and 20% lignin, the remainder being proteins, lipids, inorganic ash and other

compounds.' Figure 2.1 depicts the main components of lignocellulosic biomass.

Copyright © Anne Elizabeth Ware
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Figure 2.1. Common components present in lignocellulosic biomass.

Lignin is one of the most abundant natural polymers on earth.'>"® It is an irregular, aromatic
polymer synthesized from three monomers, sinapyl (S), coniferyl (G) and coumaryl (H)
alcohols.'? Figure 2.2 shows the structures of the monomers and several of the most abundant
linkages found in lignin structures. The relative amount of the different monomers (S:G ratios)
and linkages depends on the type of plant, the part of the plant, its age, growing conditions,
etc.'"!* For example, lignin from hardwood trees is composed of approximately equal parts
sinapyl and coniferyl alcohol with trace amounts of coumaryl alcohol.”*"* Softwood trees are
typically about 90 % coniferyl monomers with approximately 10% sinapyl units and trace
amounts of coumaryl alcohol.'” Herbaceous or grassy plants usually contain larger quantities of

the coumaryl alcohol monomer, often in the form of coumarate.'®"'®
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Figure 2.2. Lignin monomers and common linkages. a) -O-4 bond, b) 5-5 bond, ¢) a-O-4

or -5 bond, d) p-p bond.

The most abundant linkage in lignin is the B-O-4 bond, which may constitute up to 60% of the
linkages present (Figure 2.2a).'*!” Other common linkages in lignin shown in Figure 2.2 include
a-O-4/B-5, B-p and 5-5 bonds. The relative abundance of the linkages is dependent on biomass
type and monomeric abundances. For example, sinapyl-rich lignin (high S:G) is less cross-linked
or branched because the presence of the additional methoxy group at the 5 position prevents the
formation of 5-5 bonds.'? Depending on the relative abundance of lignin and of the various
linkages and the S:G monomer ratios, biomass displays different degradability and conversion

452021 For example, maize cell wall residues showed different degradability

properties.
efficiencies by cellulase/amyloglucosidase that correlated with differing B-O-4 bond and
monomer abundances within the lignin polymer.* Lignin also has a higher heating value than the
carbohydrate fraction of the biomass and hence biomass with more lignin typically possesses
higher heating values.”**® Hence, understanding the relative distribution of monomers and

linkages may help in the screening of biomass for particular properties and applications.

Lignin helps provide a defensive barrier and structural rigidity to the plant and is covalently

bound to the saccharides present in biomass cell walls.*** Lignin-carbohydrate complexes
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(LCCs), the structures in which lignin is bound to saccharides, are not well understood or
characterized. It is believed that lignin is bound to mostly hemicelluloses through phenyl
glycoside bonds, esters and benzyl ethers.”® Figure 2.3 shows several proposed lignin-
carbohydrate complex structures; a) and b) have been suggested to be present in poplar wood, as

determined by heteronuclear single quantum coherence (HSQC) NMR spectroscopy.?’
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Figure 2.3. Proposed lignin-carbohydrate complex structures.??’

2.2 Techniques for Determining Lignocellulosic Biomass Structure and Composition

There are many techniques used to determine the structure and composition of biomass.
Determination of cellulose content, crystallinity and degree of polymerization, as well as analysis
of the total saccharide profile, including hemicellulose sugars, can be performed using a variety
of techniques and is well understood.”**3° While holocellulose structure, composition and
analysis play important roles in understanding biomass fractionation and utilization, in-depth
discussion of this part of lignocellulosic biomass is beyond the scope of this dissertation.
Attention is focused on lignin composition, structure and analysis for the purposes of the research

discussed herein.

Techniques used to determine lignin composition and structure include chemical degradations as
well as spectroscopic and thermal methods. The accepted method for determination of the total
lignin content in biomass yields lignin referred to as “Klason lignin.”***! Klason lignin is the
insoluble material remaining after biomass has been treated with H,SO4 under certain conditions.
The residue is also known as “acid insoluble lignin” and the liquor contains a small fraction of
acid soluble lignin. Klason lignin techniques have shown that herbaceous biomass typically

contains between 7 and 15 wt% lignin whereas woody biomass can contain up to 25 and 30 wt%
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Klason lignin content.*” The structure of the isolated Klason lignin is undoubtedly changed during
the extraction process but is still dependent on the biomass from which it originated.**** Klason
lignin is virtually insoluble in most solvents and the properties and structures of this lignin from
various biomass sources have been analyzed using a variety of techniques (discussed in Section

2.4), including thermogravimetric analysis (TGA) and Pyrolysis-GC/MS.****

The characterization of the monomers present in lignin has been achieved by oxidative techniques
including nitrobenzene and permanganate oxidation, as reviewed by Catherine in Lignin and
Lignans." Nitrobenzene oxidation (NBO) procedures are performed using biomass or extracted
lignin dissolved in alkaline solutions (2M NaOH) heated to temperatures in excess of 160 °C.
Benzaldehydes and benzoic acids from corresponding sinapyl, coniferyl and coumaryl monomers
are theoretically produced in distributions relative to their monomeric abundance in the lignin
structure. The yield of products and their relative distributions should be characteristic of the
lignin present in biomass, however NBO techniques suffer from several disadvantages. Variations
in reaction time and temperature, as well as interferences from nitrobenzene derivatives,
analytical difficulties and incomplete reactions lead to discrepancies in quantitative analysis of
the products generated.'**> Also, different types of lignin have different reactivities due to the fact
that S-rich lignins have less crosslinking (or condensed) bond structures relative to G rich
lignins.*® This can lead to an overestimation of the S:G ratios determined for a given biomass
sample. Incomplete extraction and subsequent analysis of isolated lignin may yield results that do
not reflect the actual monomeric distribution within the original biomass. This can occur because
not all bonds (particularly condensed or C-C bonds) linking lignin together and to the
holocellulosic fraction may be broken during the extraction process and the extracted lignin may
not contain a representative distribution of linkage and monomer types.

% are also

Permanganate oxidation techniques, reviewed by Catherine in Lignin and Lignans,'
performed in high pH solutions and utilize isolated lignin that has undergone peralkylation of the
phenolic hydroxyl groups. Permanganate and hydrogen peroxide are used to oxidize the alkylated
lignin to produce mono-, di- and tri-carboxylic acids, which can be analyzed by capillary
electrophoresis,”’ high performance liquid chromatography (HPLC) or GC (after derivatization or
esterification). KMnOs techniques have played important roles in lignin monomer analysis and
determination of free phenolic groups but also suffer from several limitations. This oxidation

technique is an intensive, multistep process that has low throughput and can also suffer from

similar reproducibility issues as NBO.'*
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Thioacidolysis is a very important and heavily utilized technique for determination of the relative
bond distributions and monomeric abundance in lignin.*!*>* Ethanethiol and boron trifluoride
etherate are used to cleave the B-O-4 bonds in lignin to yield thioethylated monomers and dimers.
Product yields are related to the amount of arylglycerol units involved in B-O-4 bonds, whereas
the remaining lignin mass is attributed to monomers connected by carbon-carbon bonds, or

E3]

“condensed units.” The “degree of condensation” of lignin polymers is important for
characterizing how lignin structure varies across biomass sources and how processing conditions
can change the structure of lignin present in or derived from biomass. Thioacidolysis can also
provide information about the identity of the free phenolic units in lignin. Figure 2.4 shows the
structures of different monomers generated from various thioacidolysis processing techniques of

lignin."

a) OH b) OH c)
OH HO

Figure 2.4. Thioacidolysis techniques are capable of generating monomers that reflect the
structure of lignin and are reviewed in Catherine’s section in Lignin and Lignans."” General
thioacidolysis produces thioethylated monomers such as a) that have varying methoxyl
substitutions indicated by the dashed lines. Diazomethane-methylated lignin thioacidolysis
can show the presence of b) ferulic acid in lignin. Thioacidolysis followed by Raney nickel
desulfurization of lignin can be used to isolate lignin dimers such as c¢) to help determine the

degree of condensation in lignin.

Derivatization followed by reductive cleavage (DFRC) is another technique that produces lignin
monomers by cleavage of B-O-4 bonds.'” This technique uses acetyl bromide, zinc dust and an
acetylation step to produce acetylated monomers in the form of hydroxycinnamyl alcohols with
methoxy substitutions corresponding to the H, G and S monomers. DFRC has been used to reveal

that p-coumarates are attached to y positions on lignin side chains. This method is not as widely
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used as thioacidolysis because it does not necessarily cleave all B-O-4 bonds and quantitative

analysis of the products formed is difficult.

Spectroscopic methods are also important for determination of lignin content as well as
identifying and characterizing lignin monomers and their linkages. Fourier transform infrared
spectroscopy (FTIR) in the mid-IR region provides information about the functional groups in
lignin. Spectra are commonly collected by transmittance of radiation through a KBr pellet
containing lignin or by reflectance techniques such as attenuated total reflection (ATR). FTIR has
been used to quantify the presence of lignin in biomass and pulps and to characterize its structure
and composition.''*** For example, the S/G ratio in lignin samples can be determined by
comparing the bands corresponding to ring breathing of the S and G monomers.'*¥¢!
Specifically, FTIR has shown that hardwoods such as white oak typically have higher S content
than softwoods such as loblolly pine.'"* This technique is also useful for characterizing the
changes in lignin structure that occur during processing and isolation.” For example, FTIR
analysis of lignin obtained from formic acid pulping of corn cob showed an increase in the
intensity of bands at 1718 and 1604 cm™ in comparison to milled lignin, indicating the lignin
linkages had been esterified during the pulping process. Table 2.1 shows common vibrational

39,40

frequencies in FTIR spectra of lignin samples™ ™ and their functional group assignments.
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Table 2.1. Common bands present in FTIR spectra of lignin and their assignments.

Wavenumber (cm™)? Assignment

3440 vs O-H stretch

2880-2940 m C-H methyl stretch

2850 w (O-CH3) C-H stretch

1715-1735 vs C=0 stretch, unconjugated ketone,
carboxylic acid and ester

1670 w C=0 ring conjugated

1645 w C=C ring

1600, 1510 vs Aryl ring stretch

1465 vs C-H deformation

1425, 1458, 1375, 1367 m (O-CH3) C-H deformation

1330 m C-O with aryl ring breathing

1252, 1270 vs C=0 with aryl ring breathing

1140, 1130, 1035, 1050 s C-H aromatic deformation

* Intensities: w = weak, m = medium, s = strong, vs = very strong.

Nuclear magnetic resonance (NMR) is another important spectroscopic technique that can be
used to quantitatively and qualitatively analyze the composition and structure of native lignin in
biomass and isolated lignin.** NMR spectra contain signals that correspond to atoms in unique
chemical environments. *C and '"H NMR are used to understand the functionalities of these
atoms and their neighbors based on the chemical shift (measured in ppm) of the peaks present in
the spectra. Chemical structures of unknown compounds can be interpreted using 2-dimensional
NMR techniques. For example, heteronuclear single quantum coherence spectroscopy (HSQC)
shows carbon-hydrogen connectivity on a 2-D spectrum containing a proton spectrum on one axis
and a carbon spectrum on the other axis. Since each “distinct” proton and carbon within a
molecule will produce a peak at a characteristic ppm shift, a structural map of an unknown
molecule can be constructed from 'H, *C and HSQC spectra. Table 2.2 shows generalized
chemical shifts that correspond to particular protons and carbons that can be found in lignin
structures as reported in the literature (for example, see the review by Wen et al.**). The values
reported are approximate and depend on the degree of acylation of the lignin structure as well as

the solvent used to dissolve the lignin.**
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Table 2.2. Chemical shift assignments of peaks in NMR spectra of lignin (in DMSO-dg).

'H chemical shift (ppm) 13C chemical shift (ppm) Structure assignment
0-2.5 20-40 Aliphatic, side chains

3.5 55 Methoxy groups (-O-CH3)
4.5 80 B-C, H (B-0-4)

4.5-6 75 a-C, H (B-O-4)

6.5-8 100-140 Aromatic C, H

6.7 104 Ar-C,6-Hz6 S monomer
7.0 110 Ar-C,-H, G monomer

7.6 153 a-C, H cinnamyl aldehyde

NMR has been used to characterize the structure of lignin both isolated and within biomass in its
native form.***’ Various bond types in lignin and biomass have been identified and their relative
abundances have also been measured semi-quantitatively.”’ Lignin-carbohydrate complex
structures have also been analyzed by NMR techniques as shown in Figure 2.3.*” Monomer
distributions (S:G ratios) can be analyzed as well as lignin acylation and condensation degrees by
NMR analysis.” Perturbation of lignin biosynthetic pathways has also been traced by comparison
of NMR analysis of wild type and genetically modified biomass.*® For example, in a study by Pu
et al.,*® genetically engineered alfalfa lignins displayed increased signals corresponding to H
monomers. NMR can also be utilized to measure changes in the structure of lignin and model
compounds after application of chemical degradation or oxidative techniques.*” Overall, NMR
has proven to be an informative technique but, due to the diverse, irregular nature of the lignin
polymer, is limited by resolution. Solution-state NMR is limited by the solubility of biomass and

lignin in appropriate solvents.

Pyrolysis-GC/MS is a thermochemical technique that provides structural and compositional
information based on biomass pyrolysate distributions and is discussed in Section 2.5. Fast
pyrolysis of lignocellulosic biomass, as discussed in the preceding chapter, produces condensable
vapors (bio-oil) consisting of products that are indicative of the composition and structure of
biomass and lignin. The relative abundance of lignin-based pyrolysates in lignocellulosic bio-oil
is related to the amount of lignin in the biomass. The distribution of pyrolysates is related to the
monomer composition and bond type occurrence present in the lignin polymer. Holocellulosic-

based pyrolysates may also reflect the relative abundance and types of saccharides in biomass.
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Many other techniques are used to understand the structure, composition and reactivity of lignin
and biomass. Size-exclusion chromatography, thermogravimetric analysis and differential
scanning calorimetry are other techniques commonly used to analyze the molecular weight
distribution and thermal decomposition processes associated with biomass and its constituents,
respectively.”>*%' Overall, biomass and lignin characterization is essential for understanding the
differences between biomass types and the consequences of cultivation, pretreatment and
conversion processes on biomass and its constituents. Obviously, biomass structure and
composition can vary drastically. These differences may influence the degradability of biomass or
influence its conversion into sugars and ethanol.*>*' From this it follows that in order to properly
utilize biomass as a feedstock for fuels and chemicals, it is important to properly characterize the

composition and structure of its constituents.

2.3 Lignin Extraction and Isolation

Cleavage and hydrolysis of the bonds connecting lignin to saccharides are important for
fractionation of biomass into its individual components. Lignin can be isolated using acidic or
alkaline methods by cleaving and hydrolyzing bonds in polysaccharides and lignin carbohydrate
complexes. The Klason method, discussed in Section 2.1, isolates lignin by hydrolyzing the
holocellulosic fraction of biomass. Extraction and isolation methods also include pulping
processes that use a variety of organic and inorganic chemicals. Lignin extraction and pulping
processes induce changes in the lignin structure such that it may not resemble its native form; i.e.,
isolated lignins may not always be representative of the whole.>*’? Table 2.3 lists various
methods used to extract or isolate lignin and the parameters and reagents associated with each of
the techniques.'”*® Figure 2.5 shows representative reactions that may occur, resulting in changes

to the lignin structure during extraction processes such as ethanol Organosolv processes.

29



Table 2.3. Processes used to extract or isolate lignin.

Technique Reagents Time/Temperatures Commercial
Process or Purpose
Klason H>SO4 <5h, 120 °C Total lignin content
Kraft pulping NaOH, Na,S 2 h, 150-180 °C Pulp production
Sulfite pulping (Mg**/Ca*")(SOs* 130-160 °C Pulp production
/HSO3)
Organosolv C;-Cs4alcohol <3 h, 180 °C Fractionation/pulping
Organic acid Formic/acetic 3h, 90 °C Fractionation
Milling (Bjorkman)  Dioxane, water varies Protolignin research

Copyright © Anne Elizabeth Ware
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on an Organosolv extraction using ethanol in the presence of acid. Reactions involve both
cleavage of bonds and condensation reactions to form new bonds within the lignin

structure.>>*
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The Kraft process, which is used to produce pulp from lignocellulosic biomass to create paper
and other products, generates lignin as a byproduct. This process uses high pHs and moderate
temperatures and utilizes the lignin byproduct as fuel to generate heat to drive the process. Chakar

et al.>®

have reviewed the reactions that occur during the Kraft pulping process and the effects on
lignin structure. Another pulping process, sulfite pulping, is conducted over various pH regimes
using sulfite or bisulfite with either magnesium or calcium as the counterion.'” The final lignin

product contains benzylic sulfonate groups and is known as lignosulfonate.

Organosolv processes utilize organic solvents such as ethanol or butanol mixed with water to
fractionate biomass into its individual cellulose, hemicellulose and lignin components. Some
Organosolv processes incorporate the use of formic acid, acetic acid, inorganic acids and/or
hydrogen peroxide.***”*%> These processes have important ramifications for the utilization of
biomass components because they generate sulfur-free lignin and separate streams of

hemicellulose and cellulose and can change the structure of the lignin®*¢47->*

as shown in Figure
2.5. Reactions that occur during Organosolv extractions include hydrolysis, dehydration,
isomerization, condensation as well as many other reactions. The final lignin products, while

different from their original structure, are dependent on the biomass feedstock.>**

Milling processes in the presence of chemicals such as dioxane (Bjorkman method) can also be
used to rupture lignocellulosic bonds to produce lignin products. Milling produces milled wood
lignin (MWL or ML) that is believed to retain the most resemblance to the native lignin structure
within the original biomass.” However, this technique does not yield pure lignin as it still has
many carbohydrates incorporated in its structure. Also, the lignin composition and structure first
depend on the biomass but are also influenced by the processes employed to isolate it.*
Depending on the biomass and processing conditions, some lignins may have more potential for
conversion into certain products; hence, extracted lignins must be properly characterized in order

to efficiently utilize them for the production of other materials.
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2.4 Microalgal Biomass Structure and Composition

Microalgae are another form of photosynthetic biomass but are not lignocellulosic in
composition. Microalgae have received attention in the context of biofuels and renewable
materials processes because these organisms can be used to mitigate CO,, have high areal
productivity and do not require agricultural land for cultivation.*® In addition to these
advantages, microalgae composition is also conducive for the production of high heating value
products®’ and fuel-like hydrocarbons because of its potential for having high lipid content. Like
lignocellulosic biomass, pyrolysis and other thermochemical conversion processes can be used to
convert microalgae to liquid fuels and chemicals. However, engineering and cultivation
challenges need to be overcome before microalgae can be efficiently utilized for fuels and other
materials. Specifically, correlations between growing conditions and strain selections to produce
algae with particular compositions need to be understood and developed.®®*® For example, it has
been found that heterotrophic Chlorella protethecoides produced bio-oil of greater value in

comparison to that which was grown autotrophically.®®

Microalgal biomass is composed of microscopic algae cells (typically about 10 um) that primarily
consist of lipids, proteins and saccharides.”” Figure 2.6 shows images of Scenedesmus sp.
microalgae grown at the University of Kentucky Center for Applied Energy Research. The
relative abundance of the constituents in microalgal biomass is dependent on the species, nutrient
supplies as well as age and environmental factors.®®’! Many microalgae genera have been the
focus of renewable energy and nutritional research. However, the characterization of the
components in microalgae cells and the factors that influence the abundance of and the types of
components in microalgae is limited. This dissertation emphasizes primarily Scenedesmus,
Chlorella, and Nannochloropsis genera because of the suitability of these types of microalgae for
the production of renewable materials and the information available pertaining to their

composition. The composition of several other types of microalgae is also briefly addressed.
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Figure 2.6. Scenedesmus sp. microalgae.

Lipids in microalgae exist mostly as triglycerides, fatty acids and phospholipids containing fatty
acid moieties ranging from 10 to 20 carbons with 1 to 3 double bonds.”>”® The lipid content of
microalgae can be determined by extracting lipids from the biomass using a technique such as the
Bligh and Dyer method.”* In this process, dried microalgae cells are ground and lipids are
extracted into an organic solvent layer using a chloroform/methanol/water solvent system. The
lipids that are extracted contain a mixture of free fatty acids and triglycerides. The lipids can then
be converted to fatty acid methyl esters by esterification followed by transesterification processes
to convert the fatty acids and then triglycerides, respectively. The products can then be analyzed
by GC/MS to determine the fatty acid profiles. Terpenes, lipopolysaccharides, hydrocarbons and
steroids may also be present in microalgae species.”” The abundance of lipids in microalgae is
dependent on the species of the organism but is also influenced by the nutrient supply and
culturing conditions, which can be optimized to produce algae displaying high lipid content.*®”!
For example, microalgae that have been starved of nitrogen nutrients have shown increased
cellular lipid content.”" Microalgae may contain between 10 and 40 wt% lipids that have the
potential to be converted into fuels and which help to improve the yield and heating value of bio-

oil obtained from the thermochemical processing of microalgae.®>"

Microalgae species may also contain large amounts (30 wt% or more) of proteins.”’ The amount
of proteins present can be determined using standard techniques such as the Bradford” or
Lowry’™ methods. The types of amino acids in the proteins can also be analyzed by standard
techniques such as the method developed by Moore and Stein.”” One study showed that the most
abundant amino acids in both Chlorella vulgaris and Nannochloropsis oculata microalgae are
glutamic acid, alanine and leucine.”’” In another study, glutamatic acid and aspartic acid were

found to be the most abundant amino acids in 16 microalgae species.”’ The presence of proteins
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in microalgae poses challenges for upgrading processes intended to convert microalgae and its
constituents into fuels. However, the high protein and nitrogen content may also be beneficial if

the algae are intended for use in nutritional or fertilizer applications.

Saccharides and amino sugars are also present in microalgae, constituting 10-30 wt% of the
biomass.”®”® Saccharides may occur as oligomers such as pectin and can be quantified and
classified using standard techniques such as the Dubois method” or ASTM E1758.%
Scenedesmus species are composed primarily of glucose, mannose and galactose saccharides,
whereas Chlorella species contain mostly glucosamine, glucose and mannose.”’” Other
components of microalgae include pigments such as chlorophyll and carotenoids. For example,
Scenedesmus species have been found to contain the antioxidant carotenoid, lutein.*” Despite the
developed techniques for determining the composition of algal biomass, more research is still
needed to understand the factors that influence the composition of many microalgal species. Like
lignocellulosic biomass, microalgal biomass may vary in its potential to generate valuable
products based on its structure and composition. Hence, characterization of microalgal biomass
components and their potential for conversion into other products is imperative for efficient

utilization of microalgae as a renewable source of fuels and/or chemicals.

2.5 Pyrolysis-Gas Chromatography/Mass Spectrometry as a Means to FElucidate Biomass
Structure and Composition

Pyrolysis of biomass generates solids, gases and condensable compounds composed of
pyrolysates that are associated with particular components of the biomass. The relative abundance
of the pyrolysates is indicative of the relative amount of components present in the biomass.
Pyrolysis-GC/MS is a rapid, microscale pyrolysis technique that can be used to monitor the
relative abundance of condensable pyrolysates formed from pyrolysis of biomass and its
constituents. The relative abundance of these pyrolysates may also influence the properties of the
bio-oil obtained and hence influence its application for particular uses. Therefore, Py-GC/MS can
be used to infer information about the composition of a feedstock as well as the potential products
it can generate upon thermochemical processing. Table 2.4 lists many biomass pyrolysates

analyzed by Py-GC/MS
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Table 2.4. Common pyrolysates analyzed in biomass by Py-GC/MS.

Compound Origin
phenol lignin
2-methoxyphenol G-lignin
2-methoxy-4-methylphenol G-lignin
2-methoxy-5-(1-propenyl) phenol (trans) G-lignin
vanillin G-lignin
2-methoxy-4-propylphenol G-lignin
3-(4-hydroxy-3-methoxyphenyl)-2-propenal ~ G-lignin
coniferyl alcohol G-lignin
4-methylsyringol S-lignin
4-ethylsyringol S-lignin
4-vinylsyringol S-lignin
2,6-dimethoxy-4-(2-propenyl)phenol S-lignin
2,6-dimethoxy-4-(1-propenyl)phenol S-lignin
4-hydroxy-3,5-dimethoxybenzaldehyde S-lignin
4-propylsyringol S-lignin
2,6-dimethoxyphenol (syringol) S-lignin
furfural holocellulose
2-methyl-2-cyclopenten-1-one holocellulose
acetic acid holocellulose
1-hydroxy-2-propanone holocellulose
furfural holocellulose
1,2-cyclopentanedione holocellulose
5-methyl-2-furancarboxaldehyde holocellulose
palmitic acid lipid

stearic acid lipid
hexadecanamide lipid
pentadecene lipid

indoles protein
pyrroles protein/chlorophyll
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Py-GC/MS has been widely used to study the structure and composition of lignocellulosic
biomass and its separated components. It has also been used to understand the mechanisms and
kinetics associated with the thermal decomposition of biomass. Whole biomass, separated
components and various model compounds of biomass components have all been analyzed by Py-
GC/MS to explain the origin and formation of pyrolysates. Most studies have focused on
lignocellulosic biomass and its components whereas few studies have focused on Py-GC/MS
analysis of microalgae species. Py-GC/MS studies have been supported by other techniques used
to study biomass structure and composition. Chemical degradation techniques, spectroscopic
analysis and thermogravimetric analysis have all shown that Py-GC/MS analysis can give

consistent information about biomass composition.

Py-GC/MS techniques may be used to analyze primary pyrolysates from biomass, which can be
compared to products from large-scale pyrolysis reactors. Py-GC/MS configurations, discussed in
Chapter 1, vary according to the structure of the unit and the type of heating source. The
configuration of the pyrolysis reactor may influence the general pyrolysis of the feedstocks. For
example, Pt heating coils may provide better heat transfer to samples inside quartz cells and
minimize secondary pyrolysis reactions. Pyrolysates can also be rapidly transferred to and
trapped/filtered through sorbent media as they are formed prior to GC/MS analysis in order to
analyze primary pyrolysates. Heating coils with sorbent tube configurations usually have longer
transfer line lengths from the pyrolysis unit to the GC/MS, which may hinder analysis of primary
products. Heated chambers with shorter transfer lines mounted directly to GC/MS inlets can also
be used to analyze pyrolysates from biomass. These configurations may not have efficient heat
transfer in comparison to coils but are usually constructed with shorter transfer lines. However,
the actual differences between Py-GC/MS techniques based on unit configurations have not been

reported in the literature.

Py-GC/MS analysis of biomass in this context is reviewed on a case-by-case basis because
configurations for analysis as well as temperatures and pyrolysis times vary. Gases, volatile and
semi-volatile pyrolysates analyzed are considered to be primary products. Primary pyrolysates
generated provide information about the structure of biomass and potential components found in
bio-oil but may not necessarily reflect the final composition of bio-oil. Secondary pyrolysis
reactions that occur upon condensation of bio-oil may lead to differences in the pyrolysates
observed from Py-GC/MS analysis of biomass and the components present in bio-oil. However,

some units with longer transfer lines may allow secondary reactions to occur and cold spots in
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any unit may cause products to condense during transfer to the GC/MS. Additionally, non-
volatile and solid or char products that are not capable of GC/MS analysis are not analyzable by
Py-GC/MS methods.?' Hence, Py-GC/MS techniques are limited by analysis of the transferrable

vapor products.

Py-GC/MS of whole biomass has been used to analyze thermal decomposition products from
many types of biomass such as sugar cane bagasse, wheat straw, switchgrass, Miscanthus, pine,
eucalyptus and Nannochloropsis microalgae.***!*” Pyrolysates monitored were indicative of the
presence of the various components present in each of the biomass species. Miscanthus, for
example, produces furfural, hydroxy-propanone and other small oxygenates that are generated by
pyrolysis of the holocellulosic fraction of the biomass. Lignin-based pyrolysates from
lignocellulosic biomass include guaiacol and syringol with various substitutions at the aromatic 4-
position. Herbaceous lignocellulosic biomass (such Miscanthus and kenaf) pyrolysis also
produces large amounts of 4-vinylphenol, originating from coumarate in the lignin polymer,'®
which is not as abundant in woody lignocellulosic biomass types. Figure 2.7 shows a comparison
of select pyrolysates from several whole biomass sources as analyzed by Py-GC/MS and reported

in Greenhalf et al.>?
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Figure 2.7. Relative peak area comparison of key pyrolysis products from wheat straw,
switch grass, miscanthus, willow SRC and beech wood. (15) 3-Methyl-benzaldehyde; (16) 3-
methoxycatechol; (17) 4-ethyl-2-methyl-phenol; (18) 2-methoxy-4-vinylphenol; (19) 2,6-
dimethoxy-phenol; (20) vanillin; (21) 1,2,4-trimethoxybenzene; (22) 1,4:3,6-dianhydro-a-d-
glucopyranose; (23) 2-methoxy-6-(2-propenyl)-phenol; (24) levoglucosan; (25) 3'5'-
dimethoxyacetophenone; (26) syringaldehyde; and (27) 2,6-dimethoxy-4-(2-propenyl)-
phenol. Reprinted from:* Greenhalf, C. E.; Nowakowski, D. J.; Harms, A. B.; Titiloye, J.
O.; Bridgwater, A. V., A comparative study of straw, perennial grasses and hardwoods in

terms of fast pyrolysis products. Fuel 2013, 108, 216-230 with permission from Elsevier.

Analysis of the non-condensable gases, CO, CO,, and C;-C; hydrocarbons is also possible using
Py-GC/MS and has been performed by Boateng et al. using switchgrass and Bermudagrass as
feedstocks.**®® Switchgrass physiological maturity influenced gas yields when pyrolysis was
conducted under 900 °C; results indicated that more mature plants produced a higher yield of
non-condensable products.®® Different Bermudagrass genotypes were found to produce no
significant differences in the non-condensable fraction.®® However, different genotypes of
Miscanthus have been shown to generate different pyrolysate distributions in the condensable
fraction due to variations in the structure and composition of the biomass types.® Miscanthus
biomass of different genotypes harvested at the same time showed significant differences in the
pyrolysates originating from the holocellulose within the biomass.®® Wheat straw whole biomass

and its corresponding milled wood lignin (MWL) has been analyzed by Py-GC/MS and results
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were compared to NMR analysis.?” Data from the Py-GC/MS analysis showed similar S:G ratios
(being 0.5) of the lignin in the whole wheat straw biomass as in the MWL, which also agreed
with S:G ratios determined by NMR techniques.®’

Py-GC/MS has also been supported by studies comparing pyrolysis products from biomass in
larger scale reactors. Pyrolysates from spruce and beech pyrolyzed in a larger scale reactor were
similar to those analyzed by Py-GC/MS analysis of various biomass feedstocks in a study by

Azeez et al.¥’

Figure 2.8 shows an overlay of a pyrogram obtained from Py-GC/MS analysis of
beech with a chromatogram of the corresponding bio-oil from a fluidized bed pyrolysis unit. Py-
GC/MS has also been utilized to screen for catalyst activities intended for bio-oil upgrading
processes using feedstocks such as sawdust.”””' The influence of inorganic compounds on the
pyrolysis of switchgrass and poplar has also been studied using Py-GC/MS.”*** Inorganic

compounds have shown to decrease yields of levoglucosan and condensable vapor yields.
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Figure 2.8. Overlay of GC/MS chromatograms obtained from bio-oil (below) and Py-
GC/MS of beech: 1, hydroxyacetaldehyde; 2, acetic acid; 3, acetol (hydroxypropanone); 3-
hydroxy 4- propionaldehyde; 5, prob. oxopropanoic acid methylester; 6, butanedial; 7, 2-

furaldehyde; 8, 2-hydroxy-2-cyclopentene-1-one; 9, 2(SH)furanone; 10, 3-hydroxy-5,6-
dihydro-(4H)-pyran-4-one; 11, 2-hydroxy-3-methyl-2- cyclopenten-1-one; 12, guaiacol; 13,
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(S)-(+)-2',3'-dideoxyribonolactone; 14, 4-methylguaiacol; 15, dihydro-4-hydroxy-2(3H)-
furanone; 16, 1,4:3,6-dianhydro-mannopyranose; 17, 4-vinylguaiacol; 18, syringol; 19, 4-
methylsyringol; 20, 4-vinylsyringol; 21, anhydro-ss-d-glucopyranose (levoglucosan); 22, 4-
(1-propenyl)-transsyringol; 23, syringaldehyde. Figure reprinted with permission from
Azeez, A. M.; Meier, D.; Odermatt, J. r.; Willner, T., Fast Pyrolysis of African and
European Lignocellulosic Biomasses Using Py-GC/MS and Fluidized Bed Reactor. Energy
& Fuels 2010, 24, 2078-2085. Copyright © 2010, American Chemical Society.®

Several types of lignocellulosic biomass have also been analyzed by Py-GC/MS for determination
of the abundance of sinapyl and coniferyl monomers present within the lignin polymers.
Eucalyptus has been found to generate more sinapyl-based pyrolysates than coniferyl-based
pyrolysates, indicating this type of biomass has a high S:G ratio, being about 2.7.3384%
Nitrobenzene oxidation of eucalyptus samples and forages have yielded similar S:G values to
those obtained by comparing the relative distributions of certain pyrolysates generated by Py-
GC/MS.*B#*9 Spruce (Picea abies L.) was found to produce very few sinapyl-based pyrolysates
and a high amount of coniferyl-based pyrolysates.* Kenaf, jute, sisal and abaca were found to

have S:G ratios of 5.4, 2.0, 4.3 and 4.7, respectively, by Py-GC/MS analysis.'® These plants were
also found to contain acetylated lignin units using Py-GC/MS.

Separate components of lignocellulosic biomass have also been studied using Pyrolysis-GC/MS.
Py-GC/MS studies of cellulose and dextran have been performed in order to elucidate the
mechanisms and kinetics (discussed in Chapter 1.3) associated with the thermolysis of these
polysaccharides in biomass.”®”® Lignin extracted from various types of biomass has also been
studied using Py-GC/MS in order to understand its thermolysis, structure, monomeric
composition and the differences in these characteristics between the native and extracted
lignin.®"¥'% Lignin extracted using various techniques from different biomass sources was
subjected to Py-GC/MS and thermogravimetric analysis in a study by Brebu et al.** Py-GC/MS
data suggested that lignins from hardwood biomass types generated similar pyrolysates even if
the lignin extraction techniques were different. Kim et al. extracted lignin from poplar wood
using assorted techniques and Py-GC/MS analysis indicated some differences in the pyrolysate
distributions of the lignins examined.”> Lignin extracted using an ionic liquid generated
pyrolysates originating from the ionic liquid, indicating the ionic liquid was not completely
removed or it was chemically associated with the lignin. Milled lignin generated more acetic acid

upon pyrolysis, indicating there were more acetyl groups, possibly from the hemicellulose or the
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lignin side chains. Klason, ionic liquid and organosolv lignins also showed fewer pyrolysates
with oxygenated side chains in comparison to milled wood lignins. This may be the result of
structural changes induced during lignin isolation or changes in how the lignin decomposes to

produce volatile, condensable pyrolysates.

Lignin isolated from industrial black liquor was analyzed by Py-GC/MS and bond dissociation
energies were used to explain the formation of radicals that lead to the pyrolysates observed.'®
Lignin model compounds have also been studied using Py-GC/MS and other microscale pyrolysis
techniques in effort to elucidate the mechanisms of lignin pyrolysis (discussed in Chapter 1.3)
and explain the origin of various pyrolysates. Lignin model monomers, dimers with -O-4
linkages and various other synthesized lignin models have been analyzed by Py-GC/MS and other
microscale pyrolysis-mass spectrometry techniques.'”'®*-'% Figure 2.9 shows the initiation
mechanisms associated with the homolysis of the weakest bonds in the lignin linkages as studied
by Hu et al. using industrial black liquor lignin.'"”® Similar mechanisms can be used to explain

thermolysis of lignin, model polymers and lignin present in whole biomass.
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Figure 2.9. Cleavage mechanism for p—O—4, p—5, 0—O—4, and p—f bonds in lignin. Reprinted
with permission from Hu, J.; Shen, D.; Xiao, R.; Wu, S.; Zhang, H., Free-Radical Analysis
on Thermochemical Transformation of Lignin to Phenolic Compounds. Energy & Fuels

2013, 27, 285-293. Copyright © 2010, American Chemical Society.'”

Py-GC/MS has also provided useful information about the composition of components in
microalgae. For example, Chlamydomonas reinhardtii and Botryococcus braunii were
phenotypically compared based on their hydrocarbon pyrolysate distributions.” Chlamydomonas
produced more palmitic acid and less stearic acid than Botryococcus, which provided
information about the biosynthetic pathways of lipids in the microalgae and the potential for the
algae to produce certain lipid-based products. Other algae pyrolysis products analyzed in this
study included fatty acid esters, sterols and other hydrocarbons. These products are important
because they give the microalgae greater potential as a biofuel feedstock in comparison to

lignocellulosic feedstock, particularly for producing hydrocarbon fuels such as diesel or biodiesel.
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Nannochloropsis microalgae have also been analyzed using Py-GC/MS in order to obtain the
relative protein, carbohydrate and lipid content of the biomass.* The Py-GC/MS analysis of the
components in Nannochloropsis correlated strongly with standard protein, carbohydrate and lipid
content determination. While the relative content of the biomass components correlated with
other techniques and could be calculated using regression lines, raw values obtained from Py-
GC/MS did not yield accurate values of protein, carbohydrate and lipid content. This may have
been the result of preferential formation of certain pyrolysates in the vapor phase. Hence,
comparison to other techniques was necessary to determine accurate values of biopolymers in

biomass using Py-GC/MS.

Py-GC/MS analysis of Schizochytrium limacinum was performed at various temperatures in order
to determine the optimal parameters for maximum production of certain pyrolysates.'” Alkenes,
alkanes and aromatic hydrocarbons were produced from lipids, whereas furans were produced
from carbohydrates. Nitrogenous species formed from proteins were also detected in the pyrolysis
products of Schizochytrium limacinum.'® Maximum volatile pyrolysis product yields (67.7 wt%)
occurred at 700 °C but lower temperatures were suggested to be more suitable for larger

applications to avoid the formation of polycyclic aromatic hydrocarbons (PAHs).

Py-GC/MS has provided a wealth of information about the structure and composition of whole
biomass as well as isolated biomass components. Catalyzed and uncatalyzed thermal
decomposition of biomass and its components has been monitored by Py-GC/MS, providing
valuable insight into the types of products generated by thermochemical processing of biomass.
Mechanisms and kinetics associated with the pyrolysis of biomass have also been revealed using
Py-GC/MS. In conclusion, Pyrolysis-GC/MS can simultaneously analyze the structure of the
starting biomass feedstock and the potential products it can generate upon thermochemical

processing.

Copyright © Anne Elizabeth Ware
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Chapter 3. Pyrolysis-GC/MS of Sinapyl and Coniferyl Alcohol
Note — This chapter was reprinted from:

Harman-Ware, A. E.; Crocker, M.; Kaur, A. P.; Meier, M. S.; Kato, D.; Lynn, B.,
Pyrolysis—GC/MS of sinapyl and coniferyl alcohol. Journal of Analytical and Applied
Pyrolysis 2013, 99, 161-169.1

The article appears in this dissertation with permission from Elsevier.

Section 3.2.4 Determination of S:G Ratios of Lignin by Capillary Electrophoresis references the
aforementioned journal article. The content in this section was not performed by the author and is
beyond the scope of this dissertation.

3.1 Introduction

Lignin is a complex, irregular polymer that provides structural integrity in plants and accounts for
up to 40% weight (dry) in softwoods, hardwoods, and herbaceous plants.?® The three-dimensional
lignin structure is made in plants by free radical polymerization of three monomeric subunits: p-
coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. These lignols are incorporated into
lignin in the form of the phenylpropanoids p-hydroxyphenyl (H), guaiacyl (G), and syringy! (S),
respectively.*® Depending on the part of the plant, the type of plant and its environment, the
lignin structure may vary in the amounts of the different monomeric subunits present.>® For
example, hardwood lignin contains roughly 1:1 sinapyl:coniferyl (S:G) monomeric units whereas
softwood lignin contains these units in an approximate 1:9 (S:G) ratio.? The S:G ratio and the
abundance of lignin within biomass are important values in the pulping industry because of their
influence on sugar recovery from biomass.”® The relative abundance of the lignin and these two
monomers may also influence the products formed during pyrolysis of biomass which can

influence the potential production of fuel and other chemicals from pyrolysis oil.>°

The S:G ratio in lignin can be determined using techniques that involve oxidative
depolymerization of lignin or the whole biomass using nitrobenzene or potassium
permanganate.***** However, these techniques require intensive sample preparation prior to
chromatographic analysis, the results are not always considered reliable® and relative product
formation is dependent on the reaction time, temperature and reagent concentration.'
Alternatively, pyrolysis-GC/MS (Py-GC/MS) provides a high throughput technique for analysis
of polymers and biomass that utilizes small sample sizes and requires little to no sample

preparation. Several studies have focused on the use of Py-GC/MS as a technique to analyze
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lignin composition and structure in biomass.*?!%1® The pyrolysis of lignin model compounds, as
well as lignin extracted from biomass, has also been studied using Py-GC/MS and other
analytical techniques such as FTIR.%>?20 Additionally, determination of the S:G ratios of lignin in
biomass using Py-GC/MS has been compared to nitrobenzene oxidation techniques.*****® Nunes
and co-workers'? pyrolyzed eucalyptus wood and measured the relative formation of certain
pyrolysates in order to establish S:G ratios of the lignin in the starting biomass. They found that
the S:G ratios obtained using certain marker compounds formed during pyrolysis agreed with
S:G ratios obtained by nitrobenzene oxidation of the biomass. Lima et al.*® conducted a similar
study using different marker pyrolysates that also correlated to nitrobenzene oxidation S:G ratios.
Mann et al. studied the variation in the S:G ratio of lignin in switchgrass grown in different
conditions by comparing pyrolysis product mass intensities of certain sinapyl marker compounds
to coniferyl markers.> Izumi and Kuroda used Py-MS spectra of lignin model polymers to
correlate marker ion mass intensity S:G ratios to the molar S:G ratios in the synthesized
polymers.®*  Recently, Asmadi and co-workers® pyrolyzed mixtures of syringol and guaiacol in

order to understand the reactivities of the aromatic nuclei in hardwood lignins.

Despite recent research, Py-GC/MS has not been utilized to pyrolyze the sinapyl alcohol and
coniferyl alcohol monomers alone or in simple mixtures together in order to understand the origin
of certain pyrolysates and examine S:G ratios using monomers as standards. For example, sinapyl
alcohol and its marker compounds may undergo demethoxylation during pyrolysis.®? Hence, the
area % contributed by certain sinapyl and coniferyl alcohol marker pyrolysates may or may not
be demonstrative of, or provide a linear correlation with, the molar S:G ratio. The goal of this
investigation was to use Py-GC/MS to pyrolyze sinapyl and coniferyl alcohols as well as various
mixtures of the two in order to find which, if any, pyrolysate combinations exhibit a linear
correlation between molar S:G ratios and sum area % S:G ratios from marker pyrolysates.
Consequently, the extent of the demethoxylation of sinapyl alcohol and its markers was
monitored and the analysis was able to explain the origin of certain pyrolysates, as well as
calibrate for S:G ratios in biomass using sinapyl and coniferyl alcohol mixtures as standards. The
S:G ratio of peach pit lignin was also determined using unique marker pyrolysates from Py-
GC/MS. The S:G ratio from Py-GC/MS analysis was compared to the S:G ratio obtained from

capillary electrophoresis of products from KMnQ, oxidation of the peach pit lignin.
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3.2 Materials and Methods

3.2.1 Reagents

Sinapyl alcohol (technical grade, Sigma Aldrich) was dissolved 1:10 in methanol and analyzed
for purity using the same GC/MS method as described in the pyrolysis experiment. Toluene was
the only impurity detected and was removed via purification of the sinapyl alcohol in a
methanol/hexane solvent system. The sinapyl alcohol was dissolved in methanol, this mixture
was washed with hexane and the hexane layer was removed. The sinapyl alcohol in methanol was
then analyzed via GC/MS and found to contain no impurities. The methanol was removed from
the sinapyl alcohol via rotary evaporation leaving behind the purified sinapyl alcohol which was
used in the pyrolysis experiments. Coniferyl alcohol (98%, Sigma Aldrich) was also analyzed for
purity via GC/MS prior to pyrolysis experiments and found to contain no impurities. Lignin

extracted from peach pits was also pyrolyzed for use as a reference.

3.2.2 Pyrolysis-GC/MS

Experiments were performed using a Pyroprobe Model 5200 (CDS Analytical, Inc.) connected to
an Agilent 7890 GC with an Agilent 5975C MS detector. The pyroprobe was operated in trap
mode under He atmosphere. Pyrolysis was conducted at 650 °C (1000 °C/s heating rate) for 20 s.
The valve oven and transfer lines were maintained at 325 °C. The column used in the GC was a
DB1701 (60 m x 0.25 mm x 0.25 um) and the temperature program was as follows: 45 °C for 3
min, ramp to 280 °C at 4 °C/min and hold for 10 min. The flow rate was set to 1 mL/min using
He as the carrier gas. The inlet and auxiliary lines were both maintained at 300 °C and the MS
source was set at 70 eV. The GC-MS was calibrated for a number of phenolic compounds
including phenol, 2-methoxyphenol, 2-methoxy-4-methylphenol, 2,6-dimethoxyphenol, vanillin,
syringaldehyde and 2-methoxy-4-vinylphenol. Pyrolysis products were analyzed according to

retention time and mass spectra data obtained from a NIST library.

1 mg of coniferyl and sinapyl alcohol were each separately pyrolyzed in triplicate in order to
monitor each monomer’s pyrolysate profile. Next, 0.1, 0.4, 0.9 and 1.7 molar ratios of
sinapyl:coniferyl alcohol were prepared and 1 mg of each sample was pyrolyzed in triplicate.
Marker compounds for each monomer were chosen according to those compounds produced in
highest abundance and compared to marker compounds chosen in previous studies*?, as well as

marker compounds selected based on pyrolysis of 1 mg of lignin extracted from peach pits. S:G
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ratios were calculated by summing the area % of the selected sinapyl marker compounds and

dividing by the sum of the area % of the coniferyl marker compounds.

3.2.3 Extraction of Lignin from Peach Pits

Ground peach pits were degummed via overnight Soxhlet extraction using acetone. Lignin was
extracted by stirring 10 g of degummed biomass with 200 ml of 85% formic acid containing 0.2%
HCI in a shaker bath for 24 h at 65 °C. The solution was then filtered and the liquid filtrate
containing lignin and hemicellulose was removed on a rotary evaporator to recover formic acid.
Next, water was added to dissolve the hemicellulose present, which also caused the lignin to
precipitate. The mixture was then centrifuged, decanted, and filtered to collect lignin, which was
dried overnight in an oven at 80 °C. The dried lignin was pyrolyzed using the same method as

described for the monomer pyrolysis.

3.2.4 Determination of S:G Ratios of Lignin by Capillary Electrophoresis
The procedure for KMnO, oxidation of lignin was performed according to the method described
by Gellerstedt.*® The procedure is beyond the scope of this dissertation but is detailed in Harman-

Ware et al.!

3.3 Results and Discussion

3.3.1 Individual Monomer Pyrolysis

Pyrolysis of sinapyl and coniferyl alcohols was conducted at 650 °C in order to maximize the
transfer of volatiles to the GC inlet. Lower temperatures resulted in condensation and carry over
effects within the instrument and higher temperatures result in further cracking, hence 650 °C
provided a reasonable balance for the current study. Also, due to carryover complications, area %,
as opposed to absolute area, was utilized as the dependent variable. This helps to eliminate
inconsistent areas due to variable sample sizes and product carryover, and it was found that the
contribution of the area for a given peak was similar between experiments. Several structures of
positively identified pyrolysates formed from coniferyl alcohol are displayed in Figure 3.1. Table

3.1 provides a list of positively identified pyrolysates from coniferyl alcohol.

Copyright © Anne Elizabeth Ware
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Figure 3.1. Selected pyrolysates formed from the pyrolysis of coniferyl alcohol at 650°C.

The most abundant compounds produced are 3-(4-hydroxy-3-methoxyphenyl)-2-propenal, trans-
isoeugenol, vanillin, 2-methoxy-4-propylphenol, and homovanillic acid. As shown in Table 3.1,
several other compounds containing the guaiacol structure are produced. 3-Methoxy-2-
naphthalenol and dehydrodiconiferyl alcohol, larger compounds than the coniferyl alcohol
starting material, were observed in the pyrograms in very small quantities. The presence of other
compounds, such as 2-methoxy-3-methylphenol, indicates the occurrence of isomerization
reactions. The formation of these products has been explained on the basis of radical, cleavage,
dehydration and various other reaction pathways that may occur during pyrolysis.?*?>%"3? Exact
mechanisms of formation are beyond the scope of this work, but may be important when
considering mechanisms of polymer vs. monomer pyrolysis. However, products formed are

similar to those observed in previous studies of lignin and lignin model compound

pyrolysis.

9,12,13,15-29
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Table 3.1. Pyrolysates formed from coniferyl alcohol pyrolysis at 650 °C.

Compound  Retention  Compound Average Standard
Number Time Chromatogram  Deviation
(min) Area % (absolute)

1 104 toluene 0.15 0.05
2 25.5 phenol 0.04 0.04
3 26.2 2-methoxyphenol 1.32 0.27
4 27.2 2-methylphenol 0.12 0.01
5 28.5 4-methylphenol 0.06 0.01
6 28.8 2-methoxy-3-methylphenol  0.07 0.02
7 30.0 2-methoxy-4-methylphenol  2.61 0.49
8 30.2 2,4-dimethylphenol 0.26 0.03
9 32.8 4-ethyl-2-methoxyphenol 0.43 0.06
10 34.7 2-methoxy-4-vinylphenol 3.08 0.34
11 35.5 eugenol 1.97 0.23
12 35.9 2-allylphenol 0.07 0.02
13 36.0 1,2-benzenediol 0.71 0.11
14 37.0 2-methoxy-5-(1-trans- 0.08 0.01

propenyl)phenol
15 37.3 cis-isoeugenol 1.26 0.13
16 38.5 4-methyl-1,2-benzenediol 1.38 0.79
17 39.0 trans-isoeugenol 6.58 0.70
18 39.8 vanillin 8.14 1.12
19 41.5 2-methoxy-4-propylphenol  6.08 0.94
20 41.7 2-methoxy-1,4-benzenediol 1.13 0.63
21 42.1 1-(4-hydroxy-3- 0.68 0.03

methoxyphenyl)ethanone
22 43.8 homovanillyl alcohol 0.31 0.06
23 44.8 dehydrodiconiferyl alcohol  1.33 0.18
24 46.4 3-methoxy-2-naphthalenol  0.40 0.13
25 47.0 homovanillinic acid 5.27 0.71
26 50.7 3-(4-hydroxy-3- 11.61 0.95

methoxyphenyl)-2-propenal

50.1 coniferyl alcohol 29.62 2.86
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Several pyrolysates formed from sinapyl alcohol pyrolysis are shown in Figure 3.2. Table 3.2
provides a list of pyrolysates generated from sinapyl alcohol. The most abundant compounds
produced include 2,6-dimethoxy-4-vinylphenol, 4-hydroxy-3,5-dimethoxybenzaldehyde, 2,6-
dimethoxy-4-(1-propenyl)phenol, 4-propylsyringol and 4-methylsyringol.
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Figure 3.2. Selected pyrolysates formed from sinapyl alcohol pyrolysis at 650 °C.

The Py-GC/MS results indicated that in our system, demethoxylation of sinapyl alcohol does
occur at 650 °C, but not to a statistically significant extent. The sum of the area percent of
demethoxylated products was approximately 0.6%. The formation of these pyrolysates could be
accounted for when calculating the S:G ratio using the sum of the area % of the marker
compounds in order to obtain area percent S:G ratios that more closely resemble the molar S:G
ratio. However, provided the ratios of the sum area percent of the marker compounds chosen
exhibit a linear response with respect to the molar S:G ratio, the demethoxylation adjustment

would also follow a linear correlation.
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Table 3.2. Pyrolysates formed from pyrolysis of sinapyl alcohol at 650 °C.

Compound  Retention  Compound Chromatogram Standard
Number Time Area % Deviation
(min)
2 25.4 phenol 0.07 0.02
26.2 2-methoxyphenol 0.09 0.01

4 27.2 2-methylphenol 0.04 0.01

27 27.8 2,6-dimethylphenol 0.04 0.01

28 28.6 3-methylphenol 0.03 0.01

6 28.8 2-methoxy-3-methylphenol 0.12 0.01

7 29.9 2-methoxy-4-methylphenol 0.06 0.00

8 30.1 2,4-dimethylphenol 0.04 0.01

29 31.0 2,4,6-trimethylphenol 0.05 0.01

30 34.6 3-methoxy-1,2-benzenediol 0.84 0.09

31 36.5 2,6-dimethoxyphenol 4.83 0.33

32 37.2 4-methyl-1,2-benzenediol 0.11 0.05

33 375 3,4-dimethoxyphenol 0.75 0.12

17 38.8 trans-isoeugenol 0.02 0.01

34 39.3 4-methylsyringol 5.50 0.37

35 41.4 4-ethylsyringol 0.79 0.11

36 43.2 4-vinylsyringol 9.16 0.15

37 43.8 2,6-dimethoxy-4-(2- 5.46 0.42
propenyl)phenol

38 44.3 3,4,5- 0.02 0.03
trimethoxybenzaldehyde

39 45.2 2,6-dimethoxy-4-(1- 4.33 0.33
propenyl)phenol (2)

40 46.9 2,6-dimethoxy-4-(1- 19.84 0.58
propenyl)phenol (E)

41 47.8 4-hydroxy-3,5- 19.75 1.94
dimethoxybenzaldehyde

42 48.9 4-propylsyringol 9.03 147

43 49.0 3,5-dimethoxycinnamic acid 1.56 0.16

44 49.4 1-(4-hydroxy-3,5- 1.03 0.09
dimethoxyphenyl)ethanone

44 51.4 3,5-dimethoxy-4- 0.29 0.10

hydroxycinnamic acid
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Table 3.2 (continued)

45 56.6 3,5-dimethoxy-4- 2.04 0.73
hydroxycinnamaldehyde
46 56.3 sinapyl alcohol 0.93 0.16

3.3.2 Monomer Mixtures

Pyrolysates formed from pyrolysis of the mixtures of the sinapyl and coniferyl alcohols are
shown in Table 3.3. The products formed from the mixtures appear to represent the sum of the
pyrolysates from the individual alcohols with practically no new products being formed from the
reactions between the individual alcohols and their corresponding pyrolysates. However, the
trends for the formation of some of the products indicate that the coexistence of the two alcohols
alters the product distribution during pyrolysis. For example, as the relative amount of coniferyl
alcohol decreases, the relative amounts of trans-isoeugenol and vanillin should also decrease;
however, the area percentages do not follow a linear regression. This may indicate that
coexistence of the two monomers has an influence on their reactivity and/or the reactivity of the
decomposition products. Previous studies have shown that coexistence of guaiacol and syringol
has an effect on the overall pyrolysis process, which may alter the product distributions.®? Hence,
the selection of particular marker compounds is important when establishing the S:G ratio via
pyrolysate area percent comparisons since particular compounds may be more or less abundant
given the starting S:G ratio. Therefore, it may prove to be more accurate to include as many

marker compounds for each monomer as possible.
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Table 3.3. Pyrolysates produced from the pyrolysis of mixtures of sinapyl and coniferyl alcohol at 650 °C. Values reported are obtained
from total ion chromatogram area %. Values in parenthesis are absolute standard deviations.

Compound Retention Compound Area % Area % Area % Area %
Number Time (min) (S:G=0.1) (S:G=0.4) (5:G=0.9) (S:G=1.7)
1 10.4 toluene 0.13 (0.02) 0.08 (0.01) 0.07 (0.02) 0.13 (0.04)
2 255 phenol 0.05 (0.01 0.05 (0.00) 0.05 (0.010) 0.12 (0.02)
3 26.2 2-methoxyphenol 1.36 (0.27) 0.99 (0.20) 0.86 (0.05) 1.09 (0.09)
4 27.2 2-methylphenol 0.10 (0.02) 0.08 (0.02) 0.06 (0.00) 0.10 (0.01)
5 28.5 4-methylphenol 0.05 (0.02) 0.03 (0.01) 0.02 (0.00) 0
6 28.8 2-methoxy-3-methylphenol 0.08 (0.02) 0.08 (0.01) 0.08 (0.01) 0.09 (0.05)
7 30.0 2-methoxy-4-methylphenol 2.18 (0.32) 1.55 (0.36) 1.13 (0.09) 1.69 (0.3)
8 30.2 2,4-dimethylphenol 0.21 (0.02) 0.14 (0.04) 0.09 (0.01) 0.16 (0.04)
30.5 3,5-dimethoxytoluene 0.04 (0.01) 0.03 (0.00) 0.03 (0.00) 0.04 (0.01)
29 31.0 2,4,6-trimethylphenol 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.05 (0.00)
9 32.8 4-ethyl-2-methoxyphenol  0.39 (0.07) 0.32 (0.07) 0.24 (0.03) 0.31 (0.04)
10 34.7 2-methoxy-4-vinylphenol  5.64 (0.81) 3.09 (0.26) 3.89 (0.27) 3.48 (0.32)
11 35.4 eugenol 2.19 (0.31) 1.24 (0.17) 1.34 (0.11) 1.40 (0.34)
12 35.9 2-allylphenol 0.19 (0.03) 0.08 (0.01) 0.05 (0.00) 0.11 (0.04)
31 36.4 2,6-dimethoxyphenol 0.53 (0.16) 1.12 (0.02) 1.67 (0.22) 4.38 (1.07)
15 37.2 cis-isoeugenol 1.67 (0.22) 1.04 (0.26) 1.10 (0.07) 1.19 (0.33)
33 37.4 3,4-dimethoxyphenol 0.06 (0.05) 0.20 (0.04) 0.25 (0.10) 0.69 (0.45)
17 38.9 trans-isoeugenol 8.79 (1.10) 5.71 (0.34) 6.35 (0.41) 8.18 (1/63)
34 39.2 4-methylsyringol 0.63 (0.17) 1.25 (0.09) 1.86 (0.41) 6.28 (1.11)
18 39.7 vanillin 3.43(1.21) 1.95(0.072) 1.37 (0.29) 4.28 (0.39)
40.7 1,2-dimethoxy-4-(2- 0.09 (0.02) 0 0 0

propenyl)benzene

54



Table 3.3 (continued)

19
20
21

36
37

22
39

40

25
41

42

26

43

41.3
41.6
42.1

43.1
43.5

43.7
45.0

46.7

47.0
47.5

48.7
50.0
50.5

56.1
56.5

2-methoxy-4-propylphenol
2-methoxy-1,4-benzenediol
1-(4-hydroxy-3-
methoxyphenyl)ethanone
4-vinylsyringol
2,6-dimethoxy-4-(2-
propenyl)phenol
homovanillyl alcohol
2,6-dimethoxy-4-(1-
propenyl)phenol (Z)
2,6-dimethoxy-4-(1-
propenyl)phenol (E)
homovanillinic acid
4-hydroxy-3,5-
dimethoxybenzaldehyde
4-propylsyringol

coniferyl alcohol
3-(4-hydroxy-3-
methoxyphenyl)-2-propenal
sinapyl alcohol
3,5-dimethoxy-4-
hydroxycinnamaldehyde

2.15 (0.52)
0.48 (0.13)
0.24 (0.07)

1.56 (0.48)
0.71 (0.30)

0.12 (0.03)
0.48 (0.17)

3.30 (1.02)

3.99 (0.31)
2.68 (0.86)

0.32 (0.13)
31.10 (7.30)
6.52 (2.71)

0.18 (0.08)
0.52 (0.15)

1.37 (0.62)
0
0.14 (0.05)

2.81 (0.03)
1.26 (0.16)

0.06 (0.02)
0.94 (0.12)

5.79 (0.26)

3.28 (0.26)
1.39 (0.47)

0.82 (0.86)
35.56 (4.97)
8.79 (0.16)

0.77 (0.44)
0.72 (0.35)

0
0.15 (0.11)
0.11 (0.01)

5.01 (0.72)
251 (0.52)

0.12 (0.08)
2.13 (0.76)

10.19 (1.09)

2.86 (0.07)
1.88 (0.64)

1.03 (0.28)
28.39 (7.97)
6.80 (0.81)

0.62 (0.30)
0.11 (0.01)

2.15 (0.47)
0
0.16 (0.00)

12.76 (2.16)
6.20 (0.38)

0
3.95 (0.55)

15.88 (1.19)

0.14 (0.14)
0.76 (0.42)

0.35 (0.17)
3.10 (0.94)
0.10 (0.09)

0.13 (0.01)
0.80 (0.53)
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S:G ratios were calculated by summing the area % of certain sinapyl alcohol pyrolysates and
dividing by the sum of the area percent of certain coniferyl alcohol pyrolysates. There are many
marker groups that can be constructed, hence, the reported marker pyrolysates were chosen as
examples according to abundance and standard deviation of area percent contributions. The first
set of marker compounds (M1) used the 13 most abundant coniferyl alcohol pyrolysates and the
10 most abundant uniquely sinapyl alcohol pyrolysates that had relatively low standard deviations
and did not include the starting products. Other marker compound groups were derived from M1
in order to try and minimize the number of products being considered. Table 3.4 shows the
marker compound groups chosen for comparison. For example, the marker compounds in M3

were selected based on the major pyrolysates created during peach pit lignin pyrolysis.

Table 3.4. Marker compound groups chosen for calibration of molar S:G ratio using sum
area % S:G ratios.

Marker Sinapyl (S) pyrolysates Coniferyl (G) pyrolysates

compound

group #

M1 2,6-dimethoxyphenol 2-methoxyphenol
4-methylsyringol 2-methoxy-4-methylphenol
4-vinylsyringol 4-ethyl-2-methoxyphenol
4-propylsyringol 2-methoxy-4-vinylphenol
2,6-dimethoxy-4-(2- eugenol
propenyl)phenol 2-methoxy-4-(1-propenyl)phenol (Z)
2,6-dimethoxy-4-(1- 2-methoxy-4-(1-propenyl)phenol (E)
propenyl)phenol (Z) vanillin
2,6-dimethoxy-4-(1- 2-methoxy-4-propylphenol
propenyl)phenol (E) 1-(4-hydroxy-3-methoxyphenyl)ethanone
4-hydroxy-3,5- homovanillic acid
dimethoxybenzaldehyde homovanillic alcohol
3,5-dimethoxycinnamic acid 3-(4-hydroxy-3-methoxyphenyl)-2-propenal

M2 4-vinylsyringol 2-methoxy-4-vinylphenol

vanillin

M3 (peach | 2,6-dimethoxyphenol 2-methoxyphenol

pit lignin) 4-methylsyringol 2-methoxy-4-methylphenol
4-vinylsyringol 2-methoxy-4-vinylphenol
2,6-dimethoxy-4-(2- 4-ethyl-2-methoxyphenol
propenyl)phenol 2-methoxy-4-propylphenol
2,6-dimethoxy-4-(1- eugenol
propenyl)phenol (2) 2-methoxy-4-(1-propenyl)phenol (Z)
2,6-dimethoxy-4-(1- 2-methoxy-4-(1-propenyl)phenol (E)
propenyl)phenol (E) vanillin
4-hydroxy-3,5- 4-hydroxy-3-methoxyacetophenone
dimethoxybenzaldehyde
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Table 3.4 (continued)

M4 2,6-dimethoxyphenol 2-methoxyphenol
4-methylsyringol 2-methoxy-4-methylphenol
4-propylsyringol 2-methoxy-4-vinylphenol
4-vinylsyringol 2-methoxy-4-(1-propenyl)phenol (Z)

2-methoxy-4-(1-propenyl)phenol (E)

M5 2,6-dimethoxyphenol 2-methoxy-4-vinylphenol

M6 4-hydroxy-3,5- 2-methoxy-4-vinylphenol
dimethoxybenzaldehyde

Figure 3.3 shows the plots constructed from the S:G sum area % of M1, M2 and M3 marker
compounds vs. molar S:G ratios. M1 provides a linear correlation between S:G sum area percent
and molar S:G. However, since the slope is not exactly one; the sum area % ratios do not
accurately reflect the actual molar S:G ratios. Additionally, the plot does not pass through the
origin, i.e., a S:G ratio greater than 0 would be obtained even if there were no sinapyl alcohol in
the sample. This would also be the case if accounting for the possible demethoxylation of sinapyl
markers during pyrolysis; i.e. some coniferyl marker area percent needs to be considered as
having developed from the demethoxylation of sinapyl alcohol. There would always be some G-
marker pyrolysate contribution towards sinapyl alcohol and hence a positive S:G ratio if the
demethoxylation reaction occurred to a significant extent. Our findings indicate that
demethoxylation does not occur in our pyrolysis system to an extent that would greatly affect the
measurement of the molar S:G ratio. Therefore, there is no need to adjust pyrolysate distribution
to account for demethoxylation. M1 is the marker group that contained the largest amount of
marker compounds for each monomer and was predicted to provide the most reasonable linear
correlation and accuracy. Of all of the marker groups, M1 provided a line with a slope close to 1,
a y-intercept close to 0, and a reasonable correlation coefficient. If the line is forced through the
origin, the equation for M1 becomes y= 1.2547x with R?= 0.9889.
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Figure 3.3. Sum area percent S:G ratio vs. molar S:G for marker compound groups M1,
M2 and M3.

The other marker compound groups contained fewer markers for each monomer. The plot for M2
shows a similar R? in comparison to M1 but the deviation of each data point is higher. In this
case, the slope of the calibration curve is also not exactly 1 and the intercept is still positive,
indicating a lower limit for the molar S:G ratio of 0.13. When this line is forced through the
origin, the slope of the line becomes 1.0118 and the R? is 0.9708. Hence, it is reasonable to say
that there is a direct linear correlation between molar S:G ratio and the sum area % S:G ratio for
the markers in M2. Notably, M2 contains only one marker compound representing sinapyl
alcohol and two marker compounds representing coniferyl alcohol. However, given the pyrolytic
profile of the particular sample being analyzed, it may be more accurate to use as many markers
for each monomer as possible. For example, lignin pyrolysates produced from switchgrass may
be different than those produced from coconut shells. Hence, markers for each monomer chosen
should be a fair representation of the pyrolytic profile of the biomass being analyzed. If
switchgrass produces insignificant quantities of a particular marker, its contribution may be
minimal. However, the same marker may be produced in higher abundance from coconut shells

and should be accounted for when determining S:G ratios. Utilizing as many markers for the
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given biomass helps to eliminate errors that may occur when accounting for a few pyrolysates for

each monomer.

M3, the marker group selected according to the results of peach pit lignin pyrolysis, has a slope
that is 0.005 greater than M1 and the R? is slightly smaller than for M1 but it still shows a
reasonable linear correlation. However, this line has a larger y-intercept of 0.3742; hence, it
would not be useful for deriving very small S:G ratios. Using this equation, the S:G ratio in peach
pit lignin was found to be 0.13. Results from the capillary electrophoresis of peach pit lignin
oxidation products gave an S:G of 0.16. Hence, the pyroprobe and capillary electrophoresis of
KMnO;, oxidation products yield similar S:G values. Overall, the marker compounds chosen for
M1, M2 and M4 provide the best linear fit and closer correlation for measuring molar S:G ratios
according to the sum area percent of the selected marker compounds than marker compound
groups M5 and M6. As noted above, the marker compound group M3 also exhibits a reasonable
linear correlation with molar S:G ratios due to its slope and R? being close to one; however, it

may not be appropriate for samples with small S:G ratios due to its large y-intercept.

M4, M5 and M6 plots of S:G area percent vs. molar S:G are shown in Figure 3.4. M4 is the most
accurate marker compound group in this figure and was selected based on marker compounds
used by Nunes et al; these marker compounds were shown to correlate to S:G ratios obtained by
nitrobenzene oxidation.*? This curve, while the slope is not exactly 1, still displays a reasonable
linear relationship between sum area percent S:G ratios and molar S:G ratios. After adjusting S:G
ratios using this calibration curve, molar S:G values obtained are very similar to sum area percent
S:G ratios. In contrast, M5 and M6 plots demonstrate how the area percent S:G ratio of some
compound groups do not accurately represent the molar S:G ratio or provide acceptable linear
relationships with respect to the relative production of the compounds in mixtures. This indicates
that competing pathways occur during pyrolysis that cause marker compounds to form other
pyrolysates, the formation of which needs to be accounted for when comparing one monomer to
another. Therefore it is important to account for as many marker pyrolysates as possible,

depending on their relative abundance.
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Figure 3.4. Sum area percent S:G ratio vs. molar S:G for marker compound groups M4,
M5 and M6.

Given the number of pyrolysates produced from each alcohol, a large amount of marker
compound groups can be assembled for calibration of molar S:G ratios. Hence, having the
pyrolysate profiles of the mixtures of sinapyl and coniferyl alcohols makes it possible to construct
unique calibration curves according to particular marker compounds that may appear during
pyrolysis of certain types of biomass. For example, marker compounds chosen to analyze S:G
ratios in switchgrass may not be suitable for application to alfalfa pyrolysis given the relative
abundances of the pyrolysates produced. Since different marker compound groups show different
calibration curves, it would be better to first analyze the biomass pyrolysate profile for the most

abundant pyrolysates and use an appropriate S:G calibration curve.

It should also be noted that factors such as biomass particle size and the presence of inorganic
species in biomass may influence the amount and types of products formed during pyrolysis.®**
The relative amounts of lignin-based pyrolysates may also be influenced by the types and
abundances of the various bonds within the lignin polymers.® The reactor and parameters used in

pyrolysis experiments will also influence different product distributions. Hence, caution should
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be taken when extrapolating conclusions based on calibrations of models. Calibrations should be

applied to unique systems as opposed to being adapted from other reported results.

3.4 Conclusions

To facilitate measurement of the S:G ratio of lignin in biomass, pyrolysis-GC/MS calibration
curves were obtained by plotting S:G sum area % ratios from certain marker pyrolysates
originating from sinapyl and coniferyl alcohol against the molar sinapyl:coniferyl alcohol ratio.
The equations describing the calibration curves changed depending on the pyrolysates chosen in
the marker compound groups, and some curves showed improved linearity over others,
particularly those groups containing a larger number of marker compounds. Demethoxylation of
sinapyl alcohol occurred, indicating that not all of the guaiacyl-related compounds originate from
the coniferyl monomer. However, demethoxylation only occurred to a very minor extent; hence,
correction of the S:G ratio is not necessary. Depending on the abundance of the various lignin
pyrolysates in different types of biomass, it may be necessary to construct calibration curves
using unique marker compound groups. Having the pyrolysate profiles of sinapyl alcohol,
coniferyl alcohol, and various mixtures of the two makes it possible to construct S:G ratio
calibration curves using a variety of marker compounds from each alcohol. To validate the
calibrations, the S:G ratio of peach pit lignin was determined using Py-GC/MS and found to agree
with the S:G ratio obtained from capillary electrophoresis of KMnO, oxidation products from the

peach pit lignin.

Copyright © Anne Elizabeth Ware

61



Chapter 4. Characterization of Endocarp Biomass and Lignin Extracted by Different
Techniques using Pyrolysis and Spectroscopic Methods

4.1 Introduction

The development of renewable sources of fuel and chemicals from biomass is being investigated
world-wide in order to alleviate our dependency on non-renewable fossil fuels. Thermochemical
methods, such as pyrolysis, offer a means of converting biomass into liquid products (pyrolysis
oil) which can be upgraded into valuable chemicals and fuels.'* The properties of pyrolysis oil,
otherwise known as bio-oil, are dependent on the composition of the starting feedstock and the
pyrolysis conditions applied.>® Pyrolysis of many types of biomass such as switchgrass,
eucalyptus and algae, as well as biomass components such as lignin extracted from
lignocellulosic feedstocks,”®'* has been investigated. Lignin, the second most abundant natural
polymer after cellulose, constitutes up to 40 wt% of lignocellulosic biomass and more than half of
its energy content."'* However, lignin has traditionally been regarded as a waste product from the
pulping industry and has been underutilized, despite its potential to produce valuable products
including aromatic hydrocarbons. Of late, there has been increased interest in the utilization of
lignin for the production of chemicals and other bio-products using thermochemical methods such
as pyrolysis. Indeed, lignin extracted in pulping plants, as well as high-lignin biomass such as
waste nut shells, shows great potential as a feedstock for biofuel production from thermochemical
processing. For example, a recent study by Mendu et al. elucidated the potential energy
contribution that high-lignin endocarp feedstocks (e.g., coconut shell) could provide to poverty-

stricken nations."

Effective pretreatment processes are required to efficiently utilize whole biomass intended for the
production of bio-products. Many methods are currently used to separate the biopolymer fractions
in biomass for specific applications, particularly in the pulping industry. For example, organosolv
and Kraft processes have been thoroughly researched and developed for delignification of
biomass.'®!” A promising alternative to these processes is formic acid pulping. Successful
separation of biomass, such as beech, corncob, eucalyptus and bagasse, into its separate
cellulosic, hemicellulosic and lignin fractions, with minimal hydrolysis of the remaining
cellulose, has been achieved by formic acid pulping under a variety of relatively mild
conditions.'®?* The formic acid can be recovered for reuse and the process generates sulfur-free
lignin that can be further processed. However, the lignin extracted from formic acid pulping has

received little attention in terms of characterization and utilization. Moreover, formic acid pulping
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of high-lignin biomass such as nut shells, particularly for the purpose of lignin extraction, has not

been adequately studied to date.

Of the analytical methods available to characterize biomass and its lignin extracts, Pyrolysis-
GC/MS (Py-GC/MS) has emerged as both a powerful and convenient technique.”'**** This
analysis quantifies the products formed from the thermal decomposition of biomass and hence
provides information about both the composition and structure of the biomass, as well as its
resulting bio-oil composition. Py-GC/MS has previously been used to analyze pyrolysates formed
from lignocellulosic biomass,? extracted lignin’ and high-lignin endocarp biomass as well as its
formic acid-extracted lignin,?* Other techniques, such as NMR and thioacidolysis have been used
to support Py-GC/MS analysis as a means to characterize milled wood lignin isolated from
coconut coir.”” However, endocarp lignin isolated using sulfuric acid has not been characterized
by Py-GC/MS, nor has the amount of lignin that can be extracted using formic acid been
quantified. Moreover, while high-lignin feedstocks such as the stones and shells of fruits and nuts
are important byproducts of the food industry, to date they have received little attention as a
source of fuel and chemicals.”® Although several studies concerning the pyrolysis of coconut
shells**® and various nut shells®' have been performed, thorough analysis and understanding of

the pyrolysis of these feedstocks is still lacking.

The goal of this investigation was to compare the pyrolysate distributions and TGA profiles of
biomass from four high-lignin drupe endocarp biomass types, black walnut shell (Juglans nigra),
olive pits (Olea europaea), peach pits (Prunus persica), and coconut shells (Cocos nucifera) with
that of lignin extracted using two techniques based on sulfuric acid and formic acid. Differences
in lignin yield, weight loss curves and pyrolysate distributions from the two extractions provide
insight into the abundance, structure and composition of the lignin within the biomass, as well as
changes induced by the extraction process. FTIR and heteronuclear single quantum coherence
(HSQC) NMR analysis of the extracted lignins also provide structural and compositional

information that supplement the Py-GC/MS results.

Copyright © Anne Elizabeth Ware
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4.2 Materials and Methods

4.2.1 Chemicals

All chemicals and reagents used were of analytical grade or higher. Authentic samples of organic
compounds were obtained as applicable from Sigma-Aldrich (St Louis, MO, USA), FMC
BioPolymer (Philadelphia, PA, USA), Fisher Scientific (Pittsburgh, PA, USA), Riedel-de Haén
(Seelze, Germany) and BDH Merck Ltd (Poole, UK).

4.2.2 Sulfuric Acid Technique for Determination of Klason Lignin Content

The biomass analyzed included black walnut shell (Juglans nigra), coconut shell (C. nucifera),
peach pit (P. persica) and olive pit (O. europaea). Fresh endocarp biomass from these sources
was isolated by physical removal from the remaining pericarp and mesocarp tissue prior to
aqueous washing. Pure endocarp biomass was ground to a particle size of < 1 mm using an
Arthur H Thomas Co. scientific grinder (Philadelphia, PA, USA). Samples were then degummed
using ethanol and acetone to remove extractives and dried overnight at 80 °C prior to extraction
and analysis.** Acid-soluble and acid-insoluble lignin content (Klason lignin) was determined
according to NREL laboratory analytical procedures (LAP).* Briefly, 300 mg of biomass was
hydrolyzed in 3 mL of 72% H,SO4 for 1 h at 30 °C. The H>SO4 concentration was diluted to 4%
in water and the mixture heated at 120 °C for 1 h. The acid-soluble lignin content was
spectrophotometrically determined at 320 nm. Acid-insoluble lignin was calculated based on dry
weight and ash content was determined using thermogravimetric analysis (TGA). Each sample
was analyzed for lignin content in triplicate. For comparison of the mass of extractable lignin,
walnut shell lignin was also extracted in 4% H>SO4 at 65 °C for 24 h instead of 120 °C for 1 h.
Walnut shell Klason lignin content was also determined using sulfuric acid according to ASTM

D1106.%

4.2.3 Lignin Extractions using 85% Formic Acid

Lignin was extracted from each sample by stirring 1 g of degummed biomass with 20 ml of 85%
formic acid containing 0.2% HCI (35% assay) in a sealed vessel for 24 h at 65 °C. The mixture
was then filtered, the solid residue was washed with formic acid and the liquid filtrate containing
lignin and hemicellulose was rotary evaporated to recover formic acid. Next, water was added to
the residue remaining after evaporation to dissolve hemicellulose present, leaving behind a lignin
precipitate. The water mixture was then centrifuged, decanted, and filtered to collect lignin which

was washed with water and dried overnight in an oven at 80 °C. The pulp residue remaining from
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the initial extraction step was also dried overnight in an oven at 80 °C. This procedure was
repeated three times for each biomass sample. For comparison of total lignin recovered, walnut
shell was also subjected to formic acid extractions for 3 h at 90 °C and 120 °C. These extraction
temperatures were chosen in effort to extract the maximum amount of lignin without hydrolyzing
cellulose. A 24 h, 65 °C extraction of walnut shell lignin was also monitored over time by taking
a 10 pL sample of the supernatant formic acid and diluting in 2 mL of formic acid/HCI. The
diluted sample was then analyzed by UV/Vis spectroscopy from 800 to 280 nm in a Cary-Varian
300 Bio UV/Vis spectrophotometer equipped with a temperature controlled Peltier sample block
(Varian).

4.2.4 Pyrolysis-GC/MS

Experiments were performed using a Pyroprobe Model 5200 (CDS Analytical, Inc.) connected to
an Agilent 7890 GC with an Agilent 5975C MS detector. The pyroprobe was run in trap mode
under He atmosphere. Pyrolysis was conducted at 650 °C (1000 °C/s heating rate) for 20 s. The
valve oven and transfer lines were maintained at 325 °C. The column used in the GC was a
DB1701 (60 m x 0.25 mm x 0.25 um) and the temperature program was as follows: 45 °C for 3
min, ramp to 280 °C at 4 °C/min and hold for 10 min. The flow rate was set to 1 mL/min using
He as the carrier gas. The inlet and auxiliary lines were both maintained at 300 °C and the MS
source was set at 70 eV. The GC-MS was calibrated for a number of phenolic compounds
including phenol, 2-methoxyphenol, 2-methoxy-4-methylphenol, 2,6-dimethoxyphenol, vanillin,
syringaldehyde and 2-methoxy-4-vinylphenol. Pyrolysis products were analyzed according to

retention times and mass spectra data obtained from a NIST library.

A 1 mg aliquot of the ground (45-150 um) biomass, pulp residue or lignin samples was analyzed
in a quartz cell packed with quartz wool. Samples were heated to 100 °C for 10 s in the probe
prior to analysis in order to remove any residual water. Prior to sample analysis, blank
experiments were performed in order to validate the cleanliness of the system. After sample
analysis, methanol was run as a sample to remove any condensed products inside the pyroprobe.

Methanol and blank experiments were repeated as necessary until the system was clean.
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4.2.5 Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) was performed under N, (50 mL/min) using a TA Discovery
TGA. Ground lignin extract (5-10 mg) was used, with the temperature being ramped from
ambient temperature at 10 °C/min to 1000 °C. Determination of ash content in biomass and
sulfuric acid lignin was performed using the same temperature ramp under air at 25 mL/min. Ash

content was taken to be the final weight percent remaining at 1000 °C.

4.2.6 FTIR and NMR Spectroscopy

FTIR spectra of ground, dried sulfuric and formic acid-extracted lignin samples were obtained
using a Nicolet 6700 spectrometer equipped with an attenuated total reflectance (ATR) accessory
containing a diamond crystal. Spectra were collected from 600 to 4000 cm™, 32 scans being taken

at a resolution of 4 cm™.

For heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy (HSQC
NMR) analysis of formic acid-extracted lignins, 100 mg of lignin was dissolved in 0.60 mL of
DMSO-de. Sulfuric acid-extracted lignins and whole biomass were not analyzed because of their
low solubility in DMSO-ds. NMR spectra were collected at 60 °C on a Varian Inova 600 MHz
equipped with a pulsed field gradient probe. The spectral widths were 6595 and 33195 Hz for the
'H and "C dimensions, respectively. Data sets of 120 transients and 208 increments were
recorded and processed using a Gaussian function corresponding to 35 ms in the 'H dimension
and 8.5 ms in the "*C dimension. DMSO (at 25 °C) was used as the chemical shift reference
(0c/0u, 39.51/2.50). It should be noted that analysis of each of these lignins is limited by the
solubility of the lignin in DMSO-ds. The samples were centrifuged and residual solids that were
trapped in the NMR cap were not analyzed by NMR.

4.3 Results and Discussion

4.3.1 Mass Recovery of Lignin Extracted from Endocarp using Sulfuric and Formic Acid

Acid-soluble and acid-insoluble lignin and ash content for each sample were determined
according to NREL LAP* (sulfuric acid) and are reported in Figure 4.1. The results agree with
previous analyses®® of the same endocarp materials and are considered to be the maximum
amount of extractable lignin. NREL sulfuric acid lignin content for walnut shell also agreed with

ASTM D1106 lignin determination, which is likewise based on the use of sulfuric acid.
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Figure 4.1. Wt% of lignin extracted from endocarp using different acid extraction
techniques. Bars represent standard deviations for 3 experiments.

In contrast, treatment of each of the biomass samples with 85% formic acid for 24 h at 65 °C
extracted only a fraction of the amount of lignin extracted by sulfuric acid. Moreover, the amount
of lignin extracted using formic acid did not correlate with the total lignin content determined
using sulfuric acid. Figure 4.2 shows the UV/Vis spectra of the supernatant formic acid sampled
from a walnut shell lignin extraction over a 24 h period. Absorbance at 320 nm was chosen as the
reference for lignin and appeared to reach a maximum in the time interval 18 -24 h. These results
suggest that the maximum amount of lignin extractable by formic acid occurred within 24 h under
these conditions. However, the absorbing chromophores (with unique molar absorptivities) may
have been changing in concentration over time; hence, quantitative analysis by UV/Vis may lack

precision.

The difference between the amount of lignin extracted using formic acid and sulfuric acid for
each biomass sample is likely due to the variation in the structure of lignin and its bonding
network with the holocellulosic fraction of the biomass. Lignin analysis of more than one type of
biomass was performed in order to see whether the lignin extracted from different sources using

the same techniques produced the same pyrolysate distribution, indicating similar lignin
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structures. Results discussed below (see Section 4.3.3) confirm that the formic and sulfuric acid

extraction techniques yield lignin that is unique to the biomass from which it is extracted.

The data also suggest that formic acid extraction parameters were not optimal for isolating lignin
from endocarp (Figures 4.1 and 4.2). For comparison, lignin was extracted from walnut shells in
formic acid at 90 °C and 120 °C for 3 h. Although the amount of lignin extracted slightly
increased with increasing temperature, the amount of remaining solid residue decreased by more
than expected due to hydrolysis of the carbohydrate fraction. Moreover, the amount of lignin

extracted using formic acid at 120 °C was only about half of the total lignin in the feedstock.
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Figure 4.2. UV/Vis spectra of the diluted supernatant formic acid sampled during lignin

extraction from walnut shell at 65 °C over 24 h. Inset: absorbance at 320 nm vs. time.

4.3.2 Whole Biomass Pyrolysis

Tables 4.1 — 4.4 show the amounts, based on relative total ion chromatogram peak areas, of select
pyrolysates produced from the pyrolysis of the whole biomass samples and their respective lignin
extracts and residues. Note that only the most abundant compounds are reported (standard
deviations being reported for the most abundant of these compounds). Other numerous

compounds were evident in the pyrograms that were excluded due to their small quantities and
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high standard deviations (see Supplementary Tables 4.1 —4.4 in Appendix 2 for further details)
although their area % contributions were included in the totals in Tables 4.1 -4.4. Pyrograms
obtained from pyrolysis of each biomass type and the corresponding lignins are shown in Figures
4.3 —4.6, while Table 4.5 shows the sum area percent S:G ratios based on pyrolysate distributions

that were determined for each of the biomass types and corresponding fractions.

Notable differences in the lignin-based pyrolysate distributions are seen between the different
types of whole biomass endocarp and their respective lignin and residue fractions. For example,
pyrolysis of walnut shells and peach pits (Tables 4.1 and 4.2, pyrograms in Figures 4.3 and 4.4)
produced mostly 2-methoxy-4-vinylphenol and 2-methoxy-4-(1-propenyl)phenol, both of which
originate from the coniferyl monomer. These findings indicate that walnut shells and peach pits
have low S:G ratios in the lignin polymer. On the other hand, the most abundant coconut shell
pyrolysates included 2-methoxy-4-vinylphenol and 2,6-dimethoxyphenol (Tables 4.3, pyrogram
in Figure 4.5), indicative of a higher S:G ratio based on pyrolysates than the walnut shells and

peach pits.

Copyright © Anne Elizabeth Ware
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Table 4.1. Walnut shell pyrolysates from whole biomass and extracted lignin.

Compound  Retention Compound Whole Biomass Formic Acid Lignin Sulfuric Acid

Number Time (min) Area % Area % Lignin Area %

1 8.63 acetic acid 4.85 (£ 0.47) 0.10 0.09
13.44 acetic acid ethenyl ester 1.48 (£ 0.09) 0.00 0.00

2 15.50 furfural 1.75 (= 0.06) 0.48 0.91
19.80 1,2-cyclopentanedione 1.62 (£ 0.08) 0.01 0.03

3 22.80 4-hydroxy-5,6-dihydro-2H-pyran-2- 1.92 (+ 0.11) 0.20 0.07

one
23.65 2-hydroxy-3-methyl-2-cyclopenten-1- 1.72 (£ 0.07) 0.00 0.00
one

4 24.71 phenol 0.96 3.25 (+ 1.37) 1.27 (+ 0.41)

5 25.35 2-methoxyphenol 5.06 (+ 0.21) 9.62 (+ 2.61) 4.58 (£ 0.95)
26.46 2-methylphenol 0.56 1.80 (= 1.05) 1.60 (= 0.65)
27.72 4-methylphenol 0.67 2.89 (1.02) 1.54 (+ 0.38)

6 29.01 2-methoxy-4-methylphenol 3.87 (£ 0.48) 10.51 (+ 2.57) 7.76 (+ 2.36)
29.37 2,4-dimethylphenol 0.47 2.00 (= 1.27) 2.27 (£ 0.90)
32.31 4-ethyl-2-methoxyphenol 1.56 (= 0.28) 3.05 (+ 0.65) 2.41 (£ 0.60)

7 33.76 2-methoxy-4-vinylphenol 12.61 (= 0.23) 10.59 (+ 1.39) 3.65 (+ 0.15)
34.55 eugenol 2.80 (£ 0.15) 1.80 (= 0.58) 0.34
35.39 1,2-benzenediol 0.00 0.52 1.50 (£ 0.70)

8 35.48 2,6-dimethoxyphenol 2.71 (£ 0.23) 3.82 (+ 0.54) 3.22 (+ 0.38)
36.31 2-methoxy-4-(1-propenyl)phenol (Z) 2.33 (£ 0.23) 2.03 (= 0.63) 1.41 (£ 0.46)
37.80 4-methyl-1,2-benzenediol 0.00 0.00 1.53 (£ 0.76)

9 37.90 2-methoxy-4-(1-propenyl)phenol (E) 12.50 (= 0.26) 6.73 (= 3.66) 4.35 (= 0.67)

10 38.30 4-methylsyringol 1.16 2.66 (£ 0.72) 2.58 (£ 0.50)
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Table 4.1 (continued)

11 38.65 vanillin 3.54 (+ 0.83) 3.47 (= 1.59) 4.25 (+ 1.50)
41.05 4-hydroxy-3-methoxyacetophenone 1.00 0.79 1.71 (£ 1.56)
12 42.15 4-vinylsyringol 1.57 (£ 0.41) 0.38 0.88

Sum identified compounds

Sum lignin-based pyrolysates
Sum sinapyl-based pyrolysates
Sum coniferyl-based pyrolysates

78.37 (+ 0.56)
61.61 (+ 1.12)
7.14 (+ 0.96)
47.61 (+ 0.54)

76.56 (+ 5.32)
75.70 (+ 4.94)
8.39 (+ 0.60)
50.73 (+ 2.74)

56.51 (+ 1.53)
55.07 (+ 2.13)
8.50 (+ 2.35)
32.05 (+ 1.51)
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fractions.
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Table 4.2. Peach pit pyrolysates from whole biomass and extracted lignin.

Compound  Retention Compound Whole Biomass Formic Acid Sulfuric Acid

Number Time (min) Area % Lignin Area % Lignin Area %

1 8.63 acetic acid 1.87 (= 0.66) 0.92 0.14
13.44 acetic acid ethenyl ester 1.90 (£ 0.06) 0.00 0.00

2 15.50 furfural 1.89 (+ 0.21) 1.35 1.20

3 22.80 4-hydroxy-5,6-dihydro-2H-pyran-2-one 4.23 (+ 0.34) 1.41 0.00
23.65 2-hydroxy-3-methyl-2-cyclopenten-1-one 2.16 (= 0.27) 0.00 0.12

4 24.71 phenol 0.74 0.77 2.00 (= 0.60)

5 25.35 2-methoxyphenol 3.08 (+ 0.38) 3.70 (= 0.05) 7.50 (+ 1.81)
26.46 2-methylphenol 0.49 0.59 2.67 (= 1.03)
27.72 4-methylphenol 1.20 0.67 1.52 (= 0.36)
27.90 2-methoxy-3-methylphenol 0.23 0.23 1.74 (£ 0.65)

6 29.01 2-methoxy-4-methylphenol 4.89 (£ 0.85) 5.63 (+ 0.86) 10.09 (+ 1.54)
29.37 2,4-dimethylphenol 0.87 0.90 3.63 (x 1.24)
32.20 3-methyl-2,4(3H,5H)-furandione 1.61 (x 0.16) 0.00 0.00
32.31 4-ethyl-2-methoxyphenol 1.67 (£ 0.04) 1.32 3.36 (x 0.87)

7 33.76 2-methoxy-4-vinylphenol 10.35 (+ 1.71) 4.67 (£ 1.08) 3.23 (£ 1.23)
34.55 eugenol 2.77 (£ 0.26) 2.01 (= 0.63) 0.33

8 35.48 2,6-dimethoxyphenol 2.51 (+ 0.61) 4.71 (£ 0.84) 3.60 (£ 0.91)
36.31 2-methoxy-4-(1-propenyl)phenol (Z) 2.12 (+ 0.04) 2.21 (+ 0.33) 0.77

9 37.90 2-methoxy-4-(1-propenyl)phenol (E) 9.21 (= 1.97) 7.38 (x 0.97) 2.71 (= 1.40)

10 38.30 4-methylsyringol 2.96 (x 0.76) 6.11 (+ 1.35) 2.69 (= 1.19)

11 38.65 vanillin 2.89 (+ 1.80) 6.55 (+ 2.23) 2.82 (+ 2.04)
41.05 4-hydroxy-3-methoxyacetophenone 0.00 1.56 (£ 0.95) 1.08
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Table 4.2 (continued)

12 42.15 4-vinylsyringol 0.60 1.70 (£ 0.94) 0.43
42.56 1-(4-hydroxy-3-methoxyphenyl)acetone 0.22 2.17 (£ 1.37) 0.41
42.68 2,6-dimethoxy-4-(2-propenyl)phenol 0.30 1.60 (£ 0.92) 0.17

Sum identified compounds 72.30 (= 2.94) 66.07 (+ 2.52) 58.69 (+ 2.89)

Sum lignin-based pyrolysates 52.19 (= 3.93) 61.82 (£ 6.03) 56.43(x 2.25)

Sum sinapyl-based pyrolysates 7.54 (+ 1.43) 17.43 (= 5.08) 7.54 (+ 2.57)

Sum coniferyl-based pyrolysates 38.43 (+ 3.77) 38.26 (+ 1.87) 32.93 (+ 1.01)
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Figure 4.4. Pyrograms obtained from pyrolysis of peach pit and corresponding lignin

fractions.

Coconut shell pyrolysis also produced more phenol than the other endocarp samples. According
to pyrolysis studies of sinapyl and coniferyl alcohol monomers,” phenol was not produced from
the pyrolysis of either of these monomers in any appreciable amount by demethoxylation. Hence,
it most likely originates from the coumaryl monomer in the lignin polymer, which may be
acylated or esterified or occur as p-hydroxybenzoate. Coumarate monomers, which are
commonly found in herbaceous biomass,’* may produce large amounts of 4-vinylphenol upon
pyrolysis. Coconut shell pyrolysis did not produce this compound in significant amounts, which
suggests that the source of the phenol was not from coumaryl monomers present as coumarate.
NMR spectra, discussed in section 4.3.7, indicate that the majority of the coumaryl monomer (H-
monomer) occurs as p-hydroxybenzoate. The presence of p-hydroxybenzoate in coconut coir has
been elucidated by NMR in other studies, where phenol was also generated in high abundance
according to Py-GC/MS analysis.?” Olive pit pyrolysates (shown in Table 4. 4 and pyrogram in

Figure 4.6) included large amounts of 2,6-dimethoxyphenol and 4-vinylsyringol, and like coconut
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shells, generated more sinapyl-based pyrolysates relative to peach pit and walnut shell

pyrolysates.

Consistent with the presence of hemicellulose and cellulose, the endocarp biomass produced
more low molecular weight oxygenates during pyrolysis than the lignin extracts. Carbohydrate-
based pyrolysates such as acetic acid, furfural, hydroxypropanone, dehydrated sugars and
cyclopentenones were identified, of which acetic acid was the most abundant (with the exception
of peach pit pyrolysis). In addition, carbohydrate-based pyrolysates such as methylfurans and
levoglucosan were observed for the various samples, although these proved difficult to quantify
due to peak coelutions and inconsistent production during pyrolysis. Inconsistencies could be due
to secondary cracking of these compounds, char formation or condensation in the unit prior to

analysis.*

76



Table 4.3. Coconut shell pyrolysates from whole biomass and extracted lignin.

Compound  Retention ~ Compound Whole Biomass Formic Acid Sulfuric Acid Lignin

Number Time (min) Area % Lignin Area % Area %

1 8.63 acetic acid 4.68 (£ 0.19) 1.36 (= 0.19) 0.00

2 15.50 furfural 1.64 (= 0.04) 1.49 (= 0.45) 1.24

3 22.80 4-hydroxy-5,6-dihydro-2H-pyran-2-one 2.70 (x 0.11) 1.15 0.02

4 24.71 phenol 6.43 (x 0.34) 9.42 (+ 2.69) 12.71 (x 3.09)

5 25.35 2-methoxyphenol 2.33 (+ 0.06) 4.26 (£ 0.91) 3.27 (£ 0.68)
26.46 2-methylphenol 0.47 1.33 5.98 (= 2.88)
27.72 4-methylphenol 0.36 0.58 1.53 (= 0.47)
27.90 2-methoxy-3-methylphenol 0.16 4.88 (+ 0.48) 0.87

6 29.01 2-methoxy-4-methylphenol 1.70 (£ 0.06) 0.95 3.83 (= 0.53)
29.37 2,4-dimethylphenol 0.24 0.35 1.72 (= 0.71)
32.31 4-ethyl-2-methoxyphenol 0.72 1.78 (£ 0.27) 1.40

7 33.76 2-methoxy-4-vinylphenol 7.23 (= 0.33) 5.67 (= 1.22) 3.14 (£ 0.63)

8 35.48 2,6-dimethoxyphenol 11.94 (+ 0.28) 11.93 (+ 1.45) 9.16 (£ 2.90)
36.31 2-methoxy-4-(1-propenyl)phenol (Z) 0.83 1.62 (£ 0.06) 0.77

9 37.90 2-methoxy-4-(1-propenyl)phenol (E) 5.44 (= 0.01) 4.38 (= 1.01) 1.98 (£ 0.71)

10 38.30 4-methylsyringol 5.62 (x 0.09) 8.14 (+ 1.28) 9.09 (= 3.17)

11 38.65 vanillin 1.49 (= 0.20) 2.12 (+ 1.42) 1.59 (= 0.95)
40.48 4-ethylsyringol 1.89 (£ 0.12) 1.40 2.07 (x 0.78)

12 42.15 4-vinylsyringol 6.46 (+ 0.34) 1.17 1.36
42.68 2,6-dimethoxy-4-(2-propenyl)phenol 2.35 (= 0.36) 0.92 0.44
45.71 2,6-dimethoxy-4-(1-propenyl)phenol (E) 3.89 (= 0.24) 0.44 0.19
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Table 4.3 (continued)

Sum identified compounds 81.11 (+ 0.57) 74.24 (£ 2.51) 67.56 (+ 2.60)
Sum lignin-based pyrolysates 66.03 (+ 0.411 69.68 (+ 3.06) 65.16 (+ 2.80)
Sum sinapyl-based pyrolysates 33.59 (+ 0.29) 24.46 (= 0.60) 22.54 (£ 8.03)
Sum coniferyl-based pyrolysates 23.03 (+ 0.31) 24.32 (x 3.34) 17.13 (= 2.99)
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Figure 4.5. Pyrograms obtained from pyrolysis of coconut shell and corresponding lignin

fractions.
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Table 4.4 Olive pit pyrolysates from whole biomass and extracted lignin.

Compound  Retention  Compound Whole Biomass Formic Acid Sulfuric Acid

Number Time Area % Lignin Area % Lignin Area %
(min)

1 8.63 acetic acid 4.66 (= 0.34) 0.17 0.08
9.84 1-hydroxy-2-propanone 1.54 (= 0.04) 0.06 0.00
13.44 acetic acid ethenyl ester 1.62 (x 0.20) 0.00 0.00

2 15.50 furfural 1.88 (+ 0.10) 1.36 0.88

3 22.80 4-hydroxy-5,6-dihydro-2H-pyran-2-one 2.84 (£ 0.13) 0.36 0.11

5 25.35 2-methoxyphenol 3.71 (x 0.46) 4.96 (£ 1.22) 4.13 (£ 0.78)

6 29.01 2-methoxy-4-methylphenol 2.19 (£ 0.09) 6.66 (£ 1.17) 5.76 (= 1.53)
29.37 2,4-dimethylphenol 0.32 0.85 1.68 (= 0.02)
32.31 4-ethyl-2-methoxyphenol 0.85 1.71 (£ 0.46) 1.98 (+ 0.46)

7 33.76 2-methoxy-4-vinylphenol 8.01 (+ 0.56) 481 (£ 0.79) 2.54 (£ 0.31)
34.55 eugenol 1.38 1.79 (£ 0.13) 0.99

8 35.48 2,6-dimethoxyphenol 10.58 (+ 0.42) 11.12 (£ 2.74) 9.86 (+ 1.26)
36.31 2-methoxy-4-(1-propenyl)phenol (2) 1.15 1.75 (= 0.29) 0.89

9 37.90 2-methoxy-4-(1-propenyl)phenol (E) 8.11 (+ 0.21) 6.06 (= 0.67) 2.79 (= 0.03)

10 38.30 4-methylsyringol 4.45 (= 0.33) 10.06 (£ 0.90) 8.64 (= 1.71)

11 38.65 vanillin 2.30 (x 0.41) 4.35 (£ 0.66) 2.64 (x 0.36)
40.48 4-ethylsyringol 2.08 (= 0.03) 1.62(x 0.55) 1.52 (£ 0.51)

12 42.15 4-vinylsyringol 9.28 (+ 0.67) 1.38 0.72
42.68 2,6-dimethoxy-4-(2-propenyl)phenol 2.18 (£ 0.10) 1.73 (x 1.10) 0.35
45.71 2,6-dimethoxy-4-(1-propenyl)phenol (E) 2.19 (x 0.10) 0.56 0.11
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Table 4.4 (continued)

Sum identified compounds

Sum lignin-based pyrolysates
Sum sinapyl-based pyrolysates
Sum coniferyl-based pyrolysates

57.53 (+ 1.58)
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Figure 4.6. Pyrograms obtained from pyrolysis of olive pit and corresponding lignin

fractions.

4.3.3 Pyrolysis of Lignin Isolated using Sulfuric Acid and Formic Acid

Figure 4.7 shows a generalized mechanism for the formation of products during formic acid
extraction of lignin and subsequent pyrolysis of the lignin fraction. Actual mechanisms for each
step have been researched and explained using both lignin and model compounds, although many
pathways remain unknown or are speculative.'®?*2%* In the first step of the extraction, lignin and
hemicellulose-based saccharides are separated (mostly by hydrolysis) from polysaccharides in
cellulose and unreacted/not solubilized lignin. After filtering the solid residue, formic acid is
evaporated from the filtrate, leaving behind lignin and some hemicellulose-derived compounds.
Water is used to wash water-soluble hemicellulose-based compounds from the extracted lignin.
The final lignin product is then pyrolyzed to produce phenolics and other volatile and semi-
volatile products that would appear in the bio-oil fraction. Solid and non-condensable gas
products are also generated. The formation of the pyrolysates from various monomers, dimers

and lignin compounds has been investigated,”***** while mechanisms and parameters
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influencing their formation and distribution from pyrolysis has also been reviewed by Amen-
Chen et al.*! Each step of the process is influenced by the native structures and composition of the
polymers in the biomass and is subject to secondary reactions. For example, 5-5 bonds between
coniferyl monomers may not be efficiently extracted using dilute acid techniques and may remain
in the cellulosic fraction. Furthermore, a representative distribution of the lignin monomers
(sinapyl, coniferyl and coumaryl alcohol) may not be reflected in the extracted lignin due to the
differences in the cleavage of certain bonds between the monomers. The resulting extracted
lignin, possibly only representing a portion of the total lignin, may then pyrolyze to produce a
different distribution of lignin-based products compared to the original lignin in the biomass. For
this reason, a comparison of the distribution of S- and G-based pyrolysates of whole biomass
lignin and extracted lignin is of interest (vide infra). Moreover, lignin may undergo condensation

16,44,45

reactions during the extraction process, which can further influence the structure of the

extracted lignin and its corresponding pyrolysate distributions.

Copyright © Anne Elizabeth Ware
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Figure 4.7. Generalized mechanism outlining examples of lignin-based products obtained

from the formic acid lignin extraction process and from pyrolysis of the derived lignin.

Klason lignin, on the other hand, is isolated using sulfuric acid, which facilitates hydrolysis of
cellulose and hemicellulose to leave behind insoluble lignin. Pyrolysates generated from the
lignin fractions obtained from each of the biomass types using the NREL (sulfuric acid) protocol
and the 65 °C, 24 h formic acid extraction method are shown in Tables 4.1 -4.4, the
corresponding pyrograms being shown in Figures 4.3 —4.6. Repeated analysis of samples from the
same extraction showed standard deviations for the pyrolysates to fall within the standard
deviations of those from different extractions. Fewer pyrolysates were successfully identified
from the sulfuric acid-derived lignins compared to the biomass and formic acid lignin fractions.
Unidentified compounds likely included lignin-based pyrolysates containing sulfur, lignin-based
dimers and small molecules resulting from decomposition of these compounds. The most
abundant pyrolysates from the sulfuric acid lignins differed among the different types of biomass,
indicating that sulfuric acid did not isolate or generate similar lignin from different species. This
indicates that the lignin differs among biomass samples, and that these differences are expressed

in the lignin extracts, even if the lignin has undergone changes during the sulfuric acid isolation
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process. A small amount of sulfur dioxide, originating from residual sulfate or generation of
lignosulfonate compounds, was also seen in the pyrograms of the sulfuric acid-extracted lignin
but was not quantified due to peak coelutions and inconsistent production. Formic acid lignin
pyrolysate distributions were also biomass-dependent and showed slight differences from the
whole biomass pyrolysates. Finally, it is worth noting that pyrolysis of the lignin fractions
typically yielded small quantities of furfural and acetic acid, indicating that the lignin fractions
contained carbohydrate contaminants albeit that lignin pyrolysis may also generate some acetic

acid.

4.3.3.1 Walnut Shell and Peach Pit Lignin Pyrolysates

As shown in Table 4.1 and Figure 4.3, walnut shell sulfuric acid lignin, like the biomass,
produced  mostly = 2-methoxy-4-vinylphenol,  2,6-dimethoxyphenol,  2-methoxy-4(1-
propenyl)phenol, vanillin and more 2-methoxyphenol and 2-methoxy-4-methylphenol. The
majority of the products originate from coniferyl alcohol monomers, most of which were likely
bound by B-O-4 linkages in the original biomass polymer. However, the isolation process likely
led to the breakage of many bonds and possibly reformation of other bonds within the
polymer.'®*** Hence, the relative distribution of these major pyrolysates differs between the
whole biomass and the sulfuric acid lignin. For example, whole biomass produced predominantly
2-methoxy-4-vinylphenol and 2-methoxy-4-(1-propenyl)phenol, whereas the sulfuric acid lignin
generated more 2-methoxyphenols with lighter groups at the 4-position. The same pattern was
observed for S-based pyrolysates and it was also apparent in the formic acid-extracted lignin.
This indicates that some breakage of the f-O-4 and 0-O-4 linkages, and possibly -5 and B-B
bonds, occurred during lignin extraction and pyrolysis causing cracking, dehydration, etc., of the
groups at the 4-position and leading to smaller molecules in the isolated lignin pyrolysis products.
On the other hand, 5-5 bonds, which only occur between coniferyl and/or coumaryl monomers,
are less likely to be broken during the extraction process and some may even still remain in the

bio-char after pyrolysis.**

Walnut shell sulfuric acid lignin pyrolysates showed a slightly higher apparent S:G ratio (0.27 +
0.06) than the biomass (0.15 = 0.02) and formic acid lignin (0.17 £ 0.02) S:G ratios. These small
differences are not statistically significant (p > 0.05) but could be explained based on the
possibility that G-monomers condensed during the extraction process with the subsequent
formation of char and non-volatile products during pyrolysis.*> Detector responses of the different

compounds may also vary slightly such that changes in relative abundance could reflect slight
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differences in area % S:G ratios. In other words, S:G ratios may be similar based on mass but the
shifts in pyrolysate distributions may cause a change in the measured area % S:G ratios.
However, differences in the distribution of pyrolysate abundances are still evident, suggesting
structural variations. It should also be noted that, unlike the sulfuric acid method, only a fraction
of the total lignin was extracted using formic acid. Consequently, the formic acid lignin may have

not been representative of the whole, even if the S:G ratio was similar.

Peach pit sulfuric acid lignin showed a similar apparent S:G ratio as the biomass (lignin: 0.23 +
0.07, biomass: 0.20 £ 0.05), where the formic acid lignin pyrolysates showed a slightly higher
apparent S:G ratio (0.46 = 0.12), although the S:G ratios determined for peach pits were
statistically similar (p > 0.05). As mentioned for walnut shells, this could be due to the lack of
bond breakage/hydrolysis between coniferyl monomers during the formic acid extraction, i.e.,
these monomers may have been joined by 5-5 bonds. The cleavage of B-O-4 and/or - bonds
linking the sinapyl monomers during the formic acid extraction process would then appear to
produce higher S-content in the lignin extract. Like the other samples, the lignin extracts showed
a larger production of monomer pyrolysates with smaller groups at the 4-position in comparison

with the whole biomass.

4.3.3.2 Coconut Shell and Olive Pit Lignin Pyrolysates

Coconut shell sulfuric acid lignin generated large amounts of 2-methoxyphenol, 2-methylphenol,
2-methoxy-4-vinylphenol, 4-methylsyringol and more phenol and 2,6-dimethoxyphenol. These
are similar to the most abundant pyrolysates generated from the biomass and formic acid lignin
but differ in their relative distributions. Phenol was produced in high abundance, especially from
the sulfuric acid lignin in comparison to the formic acid lignin and biomass. This characteristic
was unique to the coconut shell and its corresponding lignin, likely originating from coumaryl
monomers. Overall, similarities in pyrolysates generated from each extract provide a fair
representation of the biomass as a whole in the case of coconut shells. Minor differences in
relative pyrolysate distributions and abundance were evident though, indicating that the

composition of the resulting bio-oil may vary.

As shown in Table 4.5, the apparent S:G ratio of the coconut shell sulfuric acid lignin was similar
to that obtained from the whole biomass, while the sulfuric acid ratio was slightly higher than,
although not statistically different from, that observed from formic acid lignin. In contrast, the

formic acid lignin from coconut shells showed a slightly lower S:G ratio (1.01 £ 0.15) that was
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statistically different from the biomass S:G ratio (1.46 = 0.03). This observation suggests that
many of the linkages that connect sinapyl monomers were not broken during the formic
extraction process and remained in the biomass fraction, and/or the types of linkages connecting
the sinapyl monomers may have undergone condensation reactions more readily during extraction

or pyrolysis, which would be the opposite case from walnut shell and peach pit lignins.

Table 4.5. Apparent S:G ratios determined for each biomass and extraction fraction based
on sum area percent ratios of sinapyl and coniferyl alcohol-based pyrolysates.

Sample Type Walnut Shell Coconut Shell ~ Peach Pit Olive Pit

Whole Biomass 0.15 (= 0.02) 1.46 (+ 0.03) 0.20 (+ 0.05) 1.08 (= 0.04)
Formic Acid Lignin 0.17 (= 0.02) 1.01 (+ 0.15) 0.46 (+ 0.12) 0.80 (£ 0.12)
Sulfuric Acid Lignin 0.27 (£ 0.06) 1.32 (£ 0.33) 0.23 (= 0.07) 0.92 (= 0.16)

Residue after Formic 0.26 (£ 0.05) 1.47 (= 0.02) 0.38 (= 0.01) 0.65 (= 0.02)
Acid Extraction

Olive pit sulfuric acid lignin and formic acid lignin pyrolysates showed similarities with the
whole biomass pyrolysates as well. The biomass and corresponding lignin extracts produced
similar most-abundant pyrolysates and area % S:G ratios were similar (1.08 = 0.04, 0.80 = 0.12,
0.92 £ 0.16, respectively, p > 0.05), being higher than walnut shell and peach pit. Interestingly,
the formic acid process was also able to extract the most lignin from olive pits. Together, these
observations suggest the majority of both S and G monomers were bound by a higher abundance
of reactive linkages, such as -O-4 and a-O-4 bonds, making formic acid extraction more

efficient and resulting in similar pyrolysate distributions.
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4.3.4 Pyrolysis of Pulp Residues from Formic Acid Extractions

Pyrolysis-GC/MS analysis of the residues remaining after formic acid extraction was performed
in order to compare the distribution of pyrolysates and account for differences between the whole
biomass and formic acid-extracted lignins. Table 4.6 shows the most abundant, positively
identified pyrolysates generated from residues obtained from each biomass type. A more
comprehensive list of all pyrolysates observed from each residue is provided in Supplementary
Table 4.5 in Appendix 2. As expected, the residues showed a decrease in lignin-based pyrolysates
relative to carbohydrate-based products in comparison to the whole biomass. There were also
significant differences in the types of products generated, particularly from the holocellulosic
fraction, between the biomass and the formic acid residue. In general, residues generated more
2,3-anhydro-d-mannosan, 5-(hydroxymethyl)furfural, 1,6-anhydro-B-D-glucopyranose
(levoglucosan) and other sugar-related compounds. This implies that the formic acid treatment
resulted in the partial hydrolysis of the holocellulosic fraction, thereby rendering the sugars more
susceptible to decomposition into these pyrolysates. Presumably, many of these species are not
generated from the whole biomass due to the ordered structure of the polymers which upon
thermal decomposition, may generate nonvolatile products including char. There were also many
products that were not positively identified. Library search results suggest that most of the
unidentified compounds were structural isomers of cyclic alcohols and furans, likely derived from

carbohydrates and sugar moieties.
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Table 4.6. Pyrolysates obtained from the pyrolysis of endocarp pulp residues from formic acid extractions (extractions at 65 °C, 24h).

Retention = Compound Walnut shell Coconut shell Peach pit residue  Olive pit residue
Time residue residue
(min)
15.04 furfural 2.02 (= 0.16) 1.58 (= 0.22) 1.70 (= 0.65) 2.58 (= 0.61)
19.40 1,2-cyclopentanedione 0.81 0.76 0.54 1.72 (= 0.55)
22.40 4-hydroxy-5,6-dihydro-2H-pyran-2-one 2.84 (= 0.87) 1.84 (= 0.57) 1.40 (£ 0.86) 1.15
23.22 2-hydroxy-3-methyl-2-cyclopenten-1- 0.48 0.83 0.47 1.48 (£ 0.60)
one
24.42 phenol 0.51 4.12 (= 0.87) 0.34 0.67
25.00 2-methoxyphenol 2.39 (£ 0.19) 1.81 (£ 0.44) 2.58 (= 0.57) 3.09 (= 0.20)
29.01 2-methoxy-4-methylphenol 3.88 (£ 0.48) 2.04 (= 0.25) 4.29 (= 0.59) 1.50 (= 0.46)
29.39 3,5-dihydroxy-2-methyl-4H-pyran-4- 0.07 2.14 (£ 0.55) 0.37 0.90
one
32.20 2,3-anhydro-d-mannosan 0.86 0.65 0.95 1.73 (= 0.16)
32.73 1,4:3,6-dianhydro-a-d-glucopyranose 0.81 0.82 1.12 2.14 (= 0.20)
33.43 2-methoxy-4-vinylphenol 5.34 (= 1.34) 4.06 (= 0.87) 3.94 (= 1.22) 1.83 (= 0.23)
34.19 eugenol 1.41 (£ 0.09) 0.61 1.62 (= 0.81) 0.41
34.73 5-(hydroxymethyl)furfural 2.65 (= 1.27) 3.66 (£ 1.73) 1.30 (= 0.30) 7.53 (= 0.58)
35.11 2,6-dimethoxyphenol 1.17 4.74 (= 0.47) 1.49 (+ 0.28) 3.58 (+ 0.19)
35.95 2-methoxy-4-(1-propenyl)phenol (Z) 1.35 (= 0.09) 0.94 1.08 0.65
36.95 4-(2-propenyl)phenol 2.57 (£ 1.64) 0.00 0.00 0.00
37.56 2-methoxy-4-(1-propenyl)phenol (E) 5.64 (£ 1.21) 3.14 (£ 0.55) 4.75 (= 0.76) 2.19 (= 0.29)
37.94 4-methylsyringol 1.65 (= 0.42) 6.41 (= 0.92) 1.99 (£ 0.23) 1.99 (= 0.62)
38.30 vanillin 4.03 (= 0.28) 1.83 (+ 0.34) 3.58 (= 0.69) 1.48 (= 0.28)
40.00 4-ethylsyringol 1.55 (= 0.38) 0.78 1.19 0.60
40.67 4-hydroxy-3-methoxyacetophenone 1.31 (= 1.04) 0.68 2.01 (£ 0.32) 0.95
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Table 4.6 (continued)

41.80
42.13
42.33
43.39

43.77

44.80
45.04
45.37

45.98

4-vinylsyringol
1-(4-hydroxy-3-methoxyphenyl)acetone
2,6-dimethoxy-4-(2-propenyl)phenol
4-((1E)-3-hydroxy-1-propenyl)-2-
methoxyphenol T
2,6-dimethoxy-4-(1-propenyl)phenol
(2]

1,6-anhydro-p- d-glucopyranose
3-methoxy-2-naphthalenol
2,6-dimethoxy-4-(1-propenyl)phenol

(E)
4-hydroxy-3-methoxy-
phenylacetylformic acid

132 (+ 0.44)
3.65 (+ 0.69)
1.03
1.46 (£ 0.09)

0.50

2.47 (+ 2.00)
0.80
1.52 (£ 0.03)

0.73

4.68 (£ 0.13)

1.39 (= 0.21)

2.85 (+ 0.50)
0.53

1.36 (£ 0.16)

1.51 (£ 0.49)
0.00
5.25 (£ 0.99)

0.13

1.62 (= 0.21)
3.71 (= 1.05)
1.30 (£ 0.17)
1.91 (= 0.18)

1.12

3.62 (= 0.68)
1.01
277 (= 0.73)

1.58 (£ 0.51)

1.48 (£ 0.34)
2.10 (£ 0.71)
0.60
0.60

0.55

3.02 (= 1.61)
0.55
1.19

0.00

Sum identified compounds

Sum lignin-based pyrolysates
Sum sinapyl-based pyrolysates
Sum coniferyl-based pyrolysates

67.00 (+ 5.08)
48.69 (£ 1.19)
9.05 (= 1.90)
34.64 (+ 1.36)

68.38 (+ 1.68)
50.43 (£ 3.60)
26.47 (£ 2.11)
17.97 (+ 1.39)

63.65 (= 3.16)
49.39 (£ 0.27)
13.04 (£ 0.73)
34.29 (+ 0.74)

58.57 (£ 1.22)
28.36 (+ 4.97)
10.45 (£ 1.74)
16.10 (= 3.17)
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The most abundant lignin-based walnut shell residue pyrolysates were similar to those produced
from pyrolysis of the whole biomass and the apparent S:G ratio of the residue was not statistically
different (p > 0.05). The lignin extracted from the biomass using formic acid showed a similar
S:G ratio based on pyrolysate distributions, indicating that the bonds broken in the formic acid
extraction yielded a monomer distribution similar to that of biomass. Peach pit residue lignin-
based pyrolysis products show a slightly higher S:G ratio (Table 4.5) than the biomass (p < 0.05)
although it was not significantly different from the S:G ratio of the formic acid lignin (p > 0.05).
However, it would be expected that the residues from walnut shell and peach pits would create
pyrolysates reflecting a slightly lower S:G ratio than the biomass because the formic acid lignin
pyrolysates showed a higher apparent S:G ratio than the biomass. The fact that this is not the case

may be due to condensation of coniferyl-based monomers and corresponding pyrolysates.

Coconut shell residue pyrolysates generated in highest abundance were similar to those from the
whole biomass, but their relative distributions were significantly different. The lignin-based
pyrolysate distributions from the residue also differed from the other two lignin fractions and, like
the biomass, generally created heavier/large pyrolysates with larger groups at the 4-position in the
aromatic rings. Despite these differences, the apparent S:G ratio of the residue was similar to the
whole biomass based on the sum area % pyrolysates from each monomer. However, since the
formic acid lignin pyrolysates showed a lower S:G ratio than the whole biomass, it would be
expected that the residue would have a higher S:G ratio than the biomass. Coconut shell
holocellulose-based pyrolysates were similar in abundance and distribution to the other biomass
residue types, except for higher production of 3,5-dihydroxy-2-methyl-4H-pyran-4-one. Like the
other samples, an increase in holocellulose-based pyrolysates relative to the lignin-based
pyrolysates was seen for the residue and many more types of holocellulose-based pyrolysates

were seen from the residue.

Olive pit residue produced even fewer lignin-based pyrolysates than the other residue samples.
This agrees with the fact that the formic acid extracted more lignin from the olive pits than the
other biomass samples. The S:G ratios determined based on pyrolysate distributions (Table 4.5)
for the formic acid lignin, whole biomass and sulfuric acid lignin were all similar (p > 0.05) with
formic acid lignin being only slightly lower. Hence, it would be expected that the pyrolysates
from the formic acid residue would be similar or that the S:G ratio would be slightly higher than
the formic acid lignin S:G ratio. However, residue pyrolysates appear to produce S:G ratios

slightly lower than those from the biomass and formic acid lignin. This is a similar observation to
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that seen for the coconut shell (which also had higher S:G ratios) where the residues produced
fewer sinapyl-based products than expected. As for low S:G biomass (walnut shells and peach
pits), it may be the case that the remaining, non-extractable lignin oligomers favored
condensation of the most abundant monomers during pyrolysis, leading to more volatile products

from the less abundant monomer.

4.3.5 Thermogravimetric Analysis of Biomass and Lignin

Thermogravimetric analysis (TGA) of the endocarp biomass samples showed similar weight loss
curves and derivative-weight loss curves (DTGQG) for the samples with similar S:G ratios. Figure
4.8 shows the TGA and DTG plots for the walnut shell (low S:G) and coconut shell (high S:G)
and their respective lignin fractions. The TGA and DTG plots from peach pits (low S:G, not
shown) look similar to walnut shell whereas olive pits (high S:G, not shown) look similar to
coconut shells. The DTG plots indicate that there is a difference in the kinetics of the slow
pyrolysis between the two types of biomass. The DTG peak corresponding to hemicellulose*®
pyrolysis occurs at a lower temperature, 284 °C, for the high S:G biomass and decomposes at a
higher rate than that of the low S:G biomass, for which the maximum occurs at 294 °C. These
differences indicate structural and composition differences in the hemicellulosic fraction of the
biomass. It is also possible that linkages between the hemicellulosic fraction and the lignin lead to
differences in the thermal decomposition mechanisms. Distributed activation energy models have
been used to elucidate the activation energies, frequency factors and reaction orders associated
with the thermal decomposition of the components in biomass.**** While determination of these
values is beyond the scope of this work, the DTG data suggest that the thermal decomposition of
the different biomass types and lignin fractions proceeds with different activation energies,
reaction orders and/or frequency factors. The higher decomposition rate and lower temperature of
the hemicellulose peak for the high S:G ratio biomass may indicate a lower activation energy
and/or increase in frequency factor for decomposition of hemicellulose in this type of biomass.
The DTG peak observed at 353 °C from each biomass sample corresponds to cellulose
decomposition and the broad shoulder from approximately 200 °C to 700 °C corresponds to
lignin decomposition.*® Each of the biomass types also formed char that remained at 900 °C and

totaled approximately 20 wt% of the original mass.
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Figure 4.8. TGA and DTG profiles of a) walnut shell whole biomass, b) coconut shell whole
biomass, ¢) walnut shell formic acid lignin, d) coconut shell formic acid lignin, e) walnut
shell sulfuric acid (NREL or Klason) lignin, f) coconut shell sulfuric acid (NREL or Klason)

lignin.

TGA and DTG plots of the lignin extracts are different for each type of lignin from each biomass
type. These differences indicate that the lignin extracted by different techniques exhibits different
reaction kinetics during slow pyrolysis. The differences in decomposition kinetics may be the

result of compositional and structural variation between the lignin samples. Since the kinetics of
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thermal decomposition varies between lignin extracted by different techniques and biomass types,
different pyrolysate distributions would be expected. Residual char at 900 °C totaled between 33
and 43 wt% of the original mass of the lignin samples and was higher for three of the four NREL

extracted lignin samples in comparison to the formic acid lignin.

4.3.6 FTIR Analysis of Extracted Lignin

FTIR analyses of the lignins extracted from the biomass using the different extraction techniques
were compared in order to elucidate compositional differences between the high and low S:G
ratio lignin types. Vibrations corresponding to hydroxyl (O-H) stretching were observed at 3370
cm’ for all lignin samples. All lignin samples also had peaks at 1592 cm™ and 1508 cm’
corresponding to aromatic vibrations, as well as vibrational stretches for C-H between 2930 and
2940 cm™ and peaks at 1268 cm™ from C-O stretching. FTIR spectra (coconut shell lignins and
walnut shell lignins, shown in supplementary Figure 4.1 and 4.2 in Appendix 3) show differences
between the formic acid and sulfuric acid extracts. All formic acid lignin samples have stronger
peaks at 1713 cm™ than the corresponding sulfuric acid lignin. This peak may correspond to
carbonyls (C=0) in the lignin structure but may also include residual formic acid in the lignin.
Walnut shell, olive pit and peach pit sulfuric acid lignins showed higher intensity bands at 1029
cm’ than the formic acid lignin, possibly resulting from the presence of S=O in the lignin
samples, although this was not observed in the case of the coconut shell lignins. Both coconut
shell and olive pit lignin extracts showed stronger bands corresponding to syringyl absorbances®
at 1326 cm™ as well as stronger bands corresponding to O-CHj; deformations at 1430 and 1450
cm” when compared to the walnut shell and peach pit lignins. Hence, FTIR analysis of the lignins
agreed with Py-GC/MS analysis indicating the coconut shell lignins had higher S:G ratios than
the walnut shell lignins. Overall, the FTIR data are representative of lignin spectra reported in the

literature.*>4%°

Copyright © Anne Elizabeth Ware
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4.3.7 NMR of Formic Acid Extracted Lignins

HSQC NMR spectra of the four formic acid-extracted lignins are shown in Figure 4.9. Table 4.7
shows the shifts of the main signals present in the spectra and their structural assignments. Peak
assignments were made by comparison to spectra reported in the literature.”'>* Figures 4.9a and d
show spectra from the coconut shell and olive pit formic acid lignins, respectively. In comparison
to the walnut shell and peach pit lignins, these lignins produced a higher intensity of correlation
signals at approximately 104.0/6.7 ppm (d¢/0u), originating from the aromatic C-H at the 2- and
6- positions in syringyl-based units (S monomers), as well as 107.0/7.1 ppm from the C-H at the
2- and 6- positions in S monomers with carbonyls on the a position in the linkages. These results
agree with the relative magnitudes of S:G ratios determined from Py-GC/MS analyses of the
lignins. Table 4.8 shows the S:G ratios obtained from NMR signal intensity comparisons. The
intensities contributing from aromatic S monomers at the 2- and 6- positions and G monomers at
the 2- and 5- positions were summed and divided to obtain S:G ratios. NMR S:G ratios agreed
closely with those determined by Py-GC/MS for walnut shell, coconut shell and olive pit lignins,
and showed reasonable agreement for peach pit lignins. In agreement with the foregoing is the
higher intensity of signals at 87.0/5.5 ppm corresponding to the a C-H in B-5 linkages (green
circle in Figure 4.9) in the walnut shell and peach pit lignins. Since these lignins contain a lower
abundance of S-based monomers, they are more likely to contain more -5 linkages in than the

coconut shell and olive pit lignins.
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Figure 4.9. HSQC NMR spectra of formic acid extracted lignins, a) coconut shell, b) walnut

shell, ¢) peach pit, d) olive pit.

Coconut shell lignin showed signals at 131.0/7.8 ppm that can originate from the aromatic C-H at
the 2- and 6- positions of a p-hydroxybenzoate unit present in the polymer.”’ This signal was
unique to the coconut shell lignin and explains the large amount of phenol produced from the
pyrolysis of the coconut shell and its derived lignins. The coconut shell lignin also had peaks with
greater intensity at 118/6.8 ppm and 115/6.7 ppm that may originate from the aromatic 3- and 5-
positions on the benzoate and coumaryl/coumarate (H) monomers, respectively. The signal at
118/6.8 ppm likely overlaps with the signals from the aryl 6-position on G monomers and was
therefore not used to quantify the amount of G-monomers present in the lignin. Olive pit lignin
showed peaks in the 98-103/4.3-4.7 region that likely originate from the C-H in sugar moieties
(possibly at the 1-, 2- and 3- positions in pyranose sugars) connected to or not washed from the
lignin. The presence of residual sugars in the olive pit lignin (in higher abundance relative to the
other lignins) was also confirmed by Py-GC/MS analysis of the formic acid lignin. The presence
of saccharides and related compounds may also account for the apparently higher yield of lignin

from the formic acid extraction of olive pits.
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Table 4.7 Assignments of several of the main 3C-'H cross signals in the HSQC spectra of

the formic acid lignins. W= walnut shell, O= olive pit, P= peach pit, C= coconut shell.

Biomass Oc/On (ppm) Assignment

W.,0,P,C 55.0/3.5 C-H(B) in B-5

W.,0,P,C 55.6/3.1 C-H(B) in B- B

W.,0,P.C 55.6/3.8 C-H methoxy

W.,0,P,C 59.6/3.4-3.6 C-H(y) in B-O-4

W.,0,P,C 61.5/3.7 C-H(y) in B-5

W.,0,P,C 63.2/4.3-4.5 C-H(y) in y-acylated p-O-4
W.,0,P,C 72.0/3.8,4.2 C-H(y) in B- B

W.,0,P,C 71.3/4.8 C-H(a) in p-O-4

W.,0,P,C 83.0/4.4 C-H(B) in B-O-4, G, H units
W.,0,P,C 87.0/5.5 C-H(a) in B-5

W,0,P,C 104.0/6.7 C-Hy¢ in S units (ether linkage)
O,P.C 107.0/7.1,7.2 C-Hy6 in S units Ca => C=0
W,0,P,C 111.0/7.0 C-H; in G units

W.,0,P,C 112.0/7.5 C-Hg in G units Ca = C=0
W.P,C 114.6/6.7 C-Hs s H units

W,0,P,C 114.6/6.8 C-Hs G units

W.0,P, 118.2/6.8 C-Hs G units

P 122.4/7.6 C-H: G units Ca. = C=0
W.,0,P 127.2/7.2 C-H,6 H units

C 131.0/7.7,7.9 C-H, 6 p-hydroxybenzoate
W,0,P,C 98.6/4.7 C-H; in phenyl glycoside bond
0,P,C 101.6-102.8/4.3 C-Hj3 in phenyl glycoside bond

The likely origin of other correlation signals observed in the NMR spectra of the lignins is
outlined in Table 4.7. For example, the methoxyl C-H signals for the aromatic monomers occur at
55.6/3.7 ppm. C-H correlations for a, B, and y positions in the different linkages present in the
lignin polymers are also observed for of the formic acid-extracted lignins. There are also signals
indicating that the o positions in the linkages contain C=O for both S- and G-monomers in each
of the lignin fractions. Comparisons of the intensities of aromatic C-H correlation peaks indicate
that more C=0 groups occur at the a positions in the linkages amongst G-monomers than S-
monomers. Signals from cinnamaldehyde or hydroxycinnamyl alcohol endgroups and
spirodienone structures were absent from the spectra, although they have been observed in other
lignins. This does not mean these structures were not present in the native lignin given that their
absence could be the result of the extraction process (either they were not extracted or reacted to
give new structures). Nevertheless, the HSQC NMR spectra provided valuable information that
support the Py-GC/MS analysis and explain the origin of certain pyrolysates.
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Table 4.8 S:G ratios for formic acid lignins determined by NMR in comparison to S:G
ratios determined by Py-GC/MS.

Lignin Origin NMR S:G Py-GC/MS S:G
Walnut Shell 0.15 0.17
Coconut Shell 0.99 1.01
Peach Pit 0.69 0.46
Olive Pit 0.81 0.80

4.4 Conclusions

Pyrolysis-GC/MS was used to analyze pyrolysates obtained from peach pits, coconut shells, olive
pits and walnut shells and their respective formic and sulfuric acid-extracted lignin and formic
acid residue fractions. Results indicate that the formic acid treatment extracted only a fraction of
the lignin present and that acid extraction procedures, including that using sulfuric acid, induce
limited changes in the lignin structure. The pyrolysate distributions of lignins from different
biomass types, extracted using the same formic acid procedure, reveal that the extraction
technique does not only yield lignin of particular structure or composition. Indeed, different
monomers and distributions of bond linkages are represented in the extracted and isolated lignins
that lead to different pyrolysate distributions. TGA similarly showed that the lignin structures and
thermal decomposition kinetics are biomass dependent. Pyrolysates that originate from the
holocellulosic fraction are also present in the lignin fractions, indicating the extraction techniques
typically do not produce pure lignin. However, the likely occurrence of condensation reactions
during extraction and/or pyrolysis, leading to nonvolatile, tar and char products, greatly
complicates analysis of the changes in lignin composition and structure that occur upon acid

extraction from the whole biomass.

According to Py-GC/MS data, coconut shells, olive pits and their respective lignin fractions
produced pyrolysate distributions that indicate these feedstocks contained higher amounts of
sinapyl monomers relative to coniferyl monomers than peach pits and walnut shells. Coconut
shells and corresponding lignin extracts produced more phenol in comparison to the other
biomass samples. HSQC NMR spectra of the formic acid-extracted lignins supported the Py-
GC/MS analysis of the lignins showing coconut shells and olive pits to contain more S-monomers
and elucidated the presence of p-hydroxybenzoate structures in coconut shell lignin that can

pyrolyze to generate phenol. Overall, the extracted lignin fractions were, to a certain degree,
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representative of the corresponding biomass, although distributions of the various pyrolysates
provide evidence that the structures and thermal reactivity of the extracted lignins vary from that

which are present in the whole biomass.

Copyright © Anne Elizabeth Ware
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Chapter 5. Pyrolysis-GC/MS of Wild-Type and Mutant Sorghum
Note — Content included in this chapter was published as an article in the following journal:

Petti, C.; Harman-Ware, A. E.; Tateno, M.; Kushwaha, R.; Shearer, A.; Downie, A. B.; Crocker,
M.; DeBolt, S., Sorghum mutant RG displays antithetic leaf shoot lignin accumulation resulting

in improved stem saccharification properties Biotechnology for Biofuels 2013, 6.

Note — Biomass collection, preparation, chemical mutagenesis, saccharification efficiency and
sugar analysis were not performed by the author and these methods and techniques are beyond
the scope of this dissertation. Content in this chapter was included in the above open access
journal article and appears in this dissertation as excerpts, figures and tables with inclusion of
additional introductory information and expanded results and discussion with emphasis on

thermogravimetric analysis (TGA) and Pyrolysis-GC/MS (Py-GC/MS) data.

5.1 Introduction

The production of renewable fuels and chemicals from biomass has been heavily investigated due
to factors such as the depletion of petroleum resources.” The utilization of biomass as a source of
fuels or chemicals must be researched from many perspectives. Genetic, agricultural, and
thermochemical processes must be understood and optimized in order to efficiently utilize
biomass for production of chemicals. In particular, understanding the biosynthetic processes that
regulate the production, composition and distribution of biopolymers within biomass feedstocks
is fundamental towards the generation of crops that may be more amenable towards production of
fuels.>> These processes, along with plant maturity, growing conditions and various other factors,
may influence the ability to recover sugars, impact the total energy content, and/or have an effect

on the thermal decomposition pathways and the type of products obtainable from biomass.>*'°

Lignin content and lignin structure in particular have been shown to influence the saccharification
efficiency and energy content of biomass.'"""® For example, maize cell wall residues showed
different degradability efficiencies by cellulase/amyloglucosidase that correlated with differing p-
0-4 bond and monomer abundances within the lignin polymer.'" Also, biomass with higher lignin
content possesses higher heating values.'>"* Many investigations have focused on understanding
the genetic and metabolic processes associated with lignin production in order to optimize such

biomass properties. Mutations in genes associated with caffeic acid O-methyl transferase
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(COMT) and cinnamyl alcohol dehydrogenase (CAD) have been linked to changes in lignin
structure and content, which have also resulted in changes in the cellulose digestibility in biomass
feedstocks.'*'® These studies provide insight into the regulation of the phenylpropanoid pathway
that generates lignin and how biomass properties might be optimized by understanding the

genetic variables associated within.

Characterization of biomass structure and composition is necessary in order to understand the
links between genetic variations in biomass and its potential for conversion into fuels and
chemicals. Thermochemical decomposition processes such as pyrolysis can provide information
about the structure and composition of the original feedstock and is also an important technique
for conversion of biomass into fuels and chemicals.*®*!"?° Pyrolysis is simply the thermal
decomposition of organic material in an inert atmosphere. Pyrolysis-GC/MS (Py-GC/MS) is a
rapid, micro-scale pyrolysis technique that has been used to study the products formed from the
thermal decomposition of various biomass feedstocks and their separated components.®”183
Pyrolysates are generated from different biopolymers within the biomass and their abundance and
distribution provide information about the structure and composition of the starting feedstock. For
example, S:G ratios in eucalyptus have been determined using Py-GC/MS.?” Py-GC/MS has also
shown structural variations of lignin in mutant sorghum feedstocks.'* Thermogravimetric analysis
(TGA) can also be used to study the decomposition processes of biomass and its components.’*!"
233134 I this technique, thermal decomposition of biomass is monitored by measuring weight loss
over a temperature gradient in an inert atmosphere. Decomposition processes and reaction
kinetics vary for individual biomass components and differences in the structure and composition
of biomass are reflected in the weight-loss and derivative-weight loss curves. Hence, TGA can

provide information about structural variations between biomass types while simultaneously

monitoring thermal decomposition properties of biomass.

The goal of this study was to utilize Py-GC/MS and TGA in order to understand the differences
in biopolymer structure and composition and resulting decomposition products between wild-type
and mutated Sorghum bicolor (L.) of the Della variety. Here, the dominant REDforGREEN (RG)
mutant was generated through chemical mutagenesis (ethyl methanesulfonate, EMS) in the Della
variety. The RG mutant was identified through a phenotypic screen for enhanced red
pigmentation in plant tissues. It is demonstrated that the RG mutant displays an antithetic
abundance/reduction of lignin in a tissue-specific manner. The pyrolysates formed from

decomposition of the biomass provide both structural information about the biomass and
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information about the effect of mutations on the biomass thermal decomposition processes and
resulting product distributions. Additional studies and information pertaining to this research,
including saccharification efficiency of the sorghum, are reported in Petti et al.! but are beyond

the scope of this dissertation.

5.2 Materials and Methods

5.2.1 Biomass Collection and Preparation

Sorghum bicolor (L.) samples were obtained from the DeBolt research group at the University of
Kentucky Department of Horticulture. Biomass samples were cultivated as described in Petti et
al.' Briefly, plants were sown in soil-less media (MetroMix 360, SunGro Industries Bellevue,
WA) in a glasshouse at 24 °C and integrated with soil prior to transplantation to a field
maintained under plasticulture. Plants were grown for 3 months and collected for analysis. The
biomass was separated into stems and leaves from wild-type sorghum plants and two groups of
mutants. Mutations were induced by means of chemical mutagenesis using ethylmethanesulfonate
(EMS) as reported by Petti et al.! The mutant, referred to as RG, which stands for
“REDforGREEN", was identified through a phenotypic screen for enhanced red pigmentation in
plant tissues. The samples were dried (10% water according to TGA) and ground (< 1 mm) prior

to analysis.

5.2.2 Biomass Analysis

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to determine
metal content using the procedure reported in Petti et al.! Ultimate analysis (ASTM D3176) using
a LECO CHN-2000 analyzer was performed to determine C, H, N content of the biomass
samples. An ELTRA CS-500 instrument was used to determine S content and O was calculated
by difference. A LECO TGA 601 was used in order to determine the total ash and moisture
content according to ASTM D3172. A LECO AC500 was used to determine the calorific content
of the biomass. Acid-soluble lignin and acid-insoluble lignin were measured using the NREL

LAP.®

Each biomass sample was analyzed via Pyrolysis-GC/MS (Py-GC/MS) and thermogravimetric
analysis (TGA). Pyrolysis-GC/MS experiments were performed using a Pyroprobe Model 5200
(CDS Analytical, Inc.) connected to an Agilent 7890 GC with an Agilent 5975C MS detector.

The pyroprobe was operated in trap mode under He atmosphere. Pyrolysis was conducted at 650
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°C (1000 °C/s heating rate) for 20 s. The valve oven and transfer lines were maintained at 325 °C.
The column used in the GC was a DB1701 (60 m x 0.25 mm x 0.25 um) and the temperature
program was as follows: 45 °C for 3 min hold, ramp to 280 °C at 4 °C/min and hold for 10 min.
The flow rate was set to 1 mL/min using He as the carrier gas. The inlet and auxiliary lines were
both maintained at 300 °C and the MS source was set at 70 eV. The GC-MS was calibrated for a
number of phenolic compounds including phenol, 2-methoxyphenol, 2-methoxy-4-methylphenol,
2,6-dimethoxyphenol, vanillin, syringaldehyde and 2-methoxy-4-vinylphenol. Pyrolysis products
were analyzed according to retention time and mass spectra data obtained from a NIST library.
TGA was performed on a TA Discovery TGA under 25mL/min of N; at a ramp of 10 °C /min to
800 °C followed by a ramp of 20 °C /min to 1000 °C.

5.3 Results and Discussion

5.3.1 Biomass Composition

The elemental composition of the biomass samples are summarized in Tables 5.1 and 5.2. Table
5.1 shows the metal composition of several of the biomass samples. Metals occurring in highest
abundance included Ca, Mg, Mn, and Fe. In general, the leaves of the sorghum samples contained
a higher total metal content than the stems. It was found that the wild-type leaf tissue exhibited
greater metal abundance than observed in RG. The opposite trend was observed in RG stems,
where total metal composition was 27015 ppm compared to the WT stem total of 14437 ppm, i.e.,
the metal content of the WT stem was almost 50% less (Table 5.1). The primary macronutrient K
was more abundant in WT leaves than in the RG. The opposite K-trend was highlighted in the
stem composition where RG displayed more than the wild-type. Calcium was the most abundant
secondary macronutrient in all samples, the RG leaf and stem containing around 50% more Ca
than wild-type. Further, the secondary macronutrient Mg was also more prevalent in RG leaves
than in wild-type. The complete analysis for C, H, N and O displayed no significant (p > 0.05)
differences between the RG and wild-type (Table 5.2). The differences seen in the abundance of
ash relative to the sum of the metals are most likely due to the presence of Si, which was not
determined for the biomass samples. The presence of these metals is important because they
influence the potential of the biomass to be utilized as a source of nutrients and they influence the
thermal decomposition processes of the biomass.'>?* Calorific content was highest for the wild-

type leaves but was similar for the wild-type stems and the RG leaves and stems.
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Table 5.1. Metal composition (ppm) of biomass samples.

Bio- As Al B Ca Cu Fe Mg Mn Na Zn K Sum
mass
WTL* 2 77 8 8482 13 142 1423 103 53 25 22622 32950
WTS® 2 100 4 1099 3 189 952 27 44 10 12007 14437
RGL® 2 52 28 12459 8 129 3347 170 195 47 13269 29706
RGS! 3 51 6 2668 6 138 1036 213 61 20 22813 27015
“Wild-type leaves; > wild-type stems;  RG leaves; ¢ RG stems
Table 5.2. Ultimate analysis of biomass samples.
Bio- C(%) H(®%) N(®) O(%) S P Ash  Moisture  Calorific
mass (ppm) (ppm) (%) (%) Content
(MJ/kg)
WTL* 4372  6.19 2.89 3996 2141 3699 7.15 5.83 17.978
WTS®  42.01 6.59 048  48.24 475 1177  2.65 10.82 16.477
RGL® 43.58  6.07 1.04 43.74 1455 2837 546 9.97 16.784
RGSY 41.18 645 1.58  45.08 988 1247  5.63 8.60 16.240

= Wild-type leaves; > wild-type stems; ¢ RG leaves; ¢ RG stems

Acid soluble and acid insoluble lignin content in the wild-type and mutant sorghum samples is
shown in Figure 5.1. Both forms of lignin were increased significantly in the leaf tissue of RG
compared with wild-type. In contrast, acid insoluble lignin content decreased significantly in the
stem of RG compared with wild-type. Acid soluble lignin, which accounts for a small proportion
(2-3%) of the total lignin, was unchanged in the RG and wild-type stems. The acid insoluble
lignin content of the RG leaf was similar to that of the wild-type stem (p > 0.05). Taken together,
these results demonstrate that lignin accumulated in an antithetic pattern in the RG biomass.
Interestingly, the increase in lignin content did not correlate with the calorific content determined
for each of the biomass samples. This may be due to differences in the types of sugars and
extractives (not determined) present in the RG and wild-type sorghum. Additionally, the RG

stems showed increased saccharification efficiency in comparison to the WT, whereas the leaves
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showed a decrease in saccharification efficiency, consistent with changes in lignin content within
the biomass. These results may also be influenced by differences in the neutral sugar content of
the biomass; thorough discussion of sugar content and saccharification efficiency are beyond the

scope of this dissertation but are discussed in Petti et al.'
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Figure 5.1 Total insoluble lignin and total soluble lignin. Each bar comprises the mean of
four biological and four technical replicates. Error bars indicate the standard error from

the mean. Significance (p < 0.05) is indicated by a star (%).

As reported in Petti et al.,' the cellulose content of the biomass did not differ between wild-type
and mutant sorghum, but there were differences in the neutral sugars, which contribute towards
the hemicellulosic fraction, present in the biomass. Briefly, rhamnose was significantly greater in
the RG leaves than in the WT. Also, arabinose, galactose, and glucose were significantly more
abundant in RG than wild-type leaves. In contrast, leaf xylose decreased from 26% in wild-type
to 19% in RG. The stem composition also displayed differences from the wild-type. Here,
galactose decreased significantly and glucose increased in RG in comparison to the WT. Since
lignin is considered to be bound to the hemicellulosic fraction in biomass it is likely that these
differences are related to the differences seen in lignin abundance, saccharification efficiency and

biomass decomposition products.
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5.3.2 Thermogravimetric Analysis

Thermogravimetric analysis of each of the biomass samples was performed; selected weight loss
curves and corresponding derivative plots (DTG) being displayed in Figure 5.2. The figure shows
how pyrolysis of the leaves differs from the stems for each of the wild-type and mutant sorghum
samples. Generally, the leaves pyrolyze over a broader temperature regime than the stems. The
leaves display a first weight-loss peak in the DTG plots around 275 °C corresponding to
decomposition of hemicellulose, as well as a separate peak at a higher temperature (around 330
°C) corresponding to decomposition of cellulose.’’ However, the stems generally exhibit a higher
rate of weight loss around 330 °C, corresponding to the decomposition of the cellulose, than the
leaves. This may also be due to the hemicellulose decomposition overlapping with the cellulose
given that the hemicellulose does not decompose at the lower temperature in the stems as it does
in the leaves. Hence, the cellulose and associated hemicellulose decomposition peak appears
sharper and occurs over a narrower temperature regime for the stems. The broad peak of low
weight-loss rate occurring in all of the DTG plots from approximately 200 °C to 600 °C
corresponds to the decomposition of lignin in the biomass.*' Lignin in all of the leaf and stem
samples appears to decompose at similar rates and temperatures but slight differences in DTG

plot shapes are noticeable.
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Figure 5.2. Weight-loss curves (A and B, left) and corresponding DTG plots (C and D, right)

of the sorghum biomass. DTG values are reported as negative of mass-loss rates.

Thermogravimetric analysis plots of leaves are shown in A and C, top, and plots of the

stems are shown at the bottom in B and D.

On the basis of TG curves, it is evident that the RG stem pyrolyzed over a more narrow
temperature regime than the wild-type feedstock (Figure 5.2B, D). Furthermore, the RG stem
displayed approximately 10% less weight loss at 450 °C than the wild-type stem (Figure 5.2B).
This can be partially explained by the higher ash content present in the RG stems in comparison

to the wild-type. Neither stem nor leaf samples showed greater than 80% weight loss, which may
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reflect repolymerization of lignin residue forming "hard coke" *' in addition to the ash content of
the biomass. DTG analysis of leaves showed that RG biomass underwent decomposition at a
higher temperature (about 365 °C) compared to wild-type leaves (Figure 5.2C) and also
demonstrated a prominent shift in the main cellulosic decomposition peak from 355 to 365 °C.
Wild-type leaf tissue showed a single decomposition peak at 355 °C, which was consistent with a
cellulose peak. RG leaf decomposition took place at two different temperatures (290-300 °C, 365-
375 °C) corresponding to two distinct DTG peaks (Figure 5.2C). The wild-type leaves also
showed a higher decomposition rate of cellulose in comparison to the RG leaves. These results
suggest that modifying cell wall composition in the RG mutant modestly increased the pyrolysis
temperature of the leaf sample. Since lignin content in RG leaves was higher than the wild-type,
an increase in decomposition temperature from the holocellulosic fraction would be expected due
to possible increase in lignin-carbohydrate bonds and interaction between lignin and
holocellulosic biopolymers during decomposition. These results are also consistent with

decreased saccharification efficiency in the RG leaves than the wild-type.

In stem analyses, the DTG curves revealed a pronounced peak at 355 °C for both mutant and
wild-type (Figure 5.2D) corresponding to the pyrolysis of the cellulose in the plants. The
pyrolysis of the hemicellulosic sugars is likely masked within this peak. In contrast to the leaves,
the RG stem showed a higher decomposition rate corresponding to the cellulosic peak than the
wild-type stem. The higher cellulose decomposition rate in RG stems compared to wild-type
stems may result from changes in hemicellulosic sugars that do not show a separate DTG peak.
This higher decomposition rate is also consistent with the greater saccharification efficiency for
the RG stems in comparison to the wild-type. A decrease in lignin content and hence lignin-
carbohydrate bonds may have allowed for higher rates of decomposition seen for the
holocellulosic fraction, although a decrease in the pyrolysis temperature was not seen. The wild-
type stem also displayed a nominal, uncharacterized pyrolysis peak at 210 °C that was absent
from all other samples. Taken together, the RG leaves pyrolyzed over a broader temperature
regime than the stems. It is likely that a masked broad peak of low weight-loss rate occurring in
all of the DTG plots from approximately 200 °C to 600 °C corresponds to the decomposition of
the lignin in the biomass.’' The lignin in each of the samples (leaves and stems) appears to

decompose at similar rates despite differences in the DTG plots.
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Differences in the temperatures at which decomposition occurs indicate differences in the kinetics
of the decomposition reactions. For example, the higher the temperature at which the maximum
rate of weight loss occurs, the higher the expected activation energies associated with the thermal
decomposition process, as long as the heating rate is held constant.*’ Other kinetic parameters
such as the reaction order (n) and frequency factor (A) may also be the source of differences seen
in the decomposition kinetics of the biomass samples. The differences in decomposition profiles
results from variations in the composition and structure of components present in biomass. In
order to obtain precise activation energy, frequency factor and reaction order values for the
different decomposition processes and avoid errors from compensation effects, a thorough
analysis of the thermogravimetric behavior at different heating rates needs to be performed.
Obtaining these values is beyond the scope of this investigation but the results of
thermogravimetric analysis suggest that they will differ. However, differences in biomass
composition and structure are still reflected in the thermogravimetric analyses shown in Figure

5.2.

5.3.3 Pyrolysis-GC/MS

Pyrograms obtained from pyrolysis-GC/MS of the biomass samples provide information about
the amount and types of pyrolysates generated from the holocellulosic and lignin fractions of the
biomass. Peak area percentages from the total ion chromatogram for each compound created
during pyrolysis provide a reasonable estimate of the relative abundance of those compounds
within the pyrolysis product mixture. While not all compounds were positively identified in the
pyrograms, the area percent contribution of the unknown compounds toward the whole pyrogram
was still included so that area percent contribution of particular compounds generated during
pyrolysis could be monitored relative to the whole pyrolysate distribution as seen in the total ion

chromatogram.

Typically, under conditions employed in this work, pyrolysates originating from the
holocellulosic fraction of the biomass have shorter retention times (less than 24 min) than those
originating from the lignin fraction, although there are several exceptions. Holocellulosic
pyrolysates include anhydrosugars, furans, hydroxyacetaldehyde, acetic acid, furfural, 1-hydroxy-
2-propanone and other oxygenated hydrocarbons. Pyrolysates originating from the lignin fraction
of the biomass include phenol, guaiacol, syringol and related aromatic hydrocarbons. The relative
abundance of the lignin-based pyrolysates compared to holocellulose-based pyrolysates is

dependent on the relative abundance of each of these polymers within the biomass. The
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distribution of the lignin-based pyrolysates will also vary according to the relative abundance of
the different lignin monomers (sinapyl, coniferyl and coumaryl alcohols) within the polymer. The
relative abundance of different bond types within the lignin polymer may also influence the

distribution of lignin-based pyrolysates.

Wild-type sorghum leaves and stems generated pyrograms shown in Figure 5.3 and Py-GC/MS
analysis of the pyrolysates is summarized in Table 5.3. The total area percentage of pyrolysates
originating from the lignin fraction of the biomass is higher in the stems than in the leaves. The
stems also produced more pyrolysates originating from the sinapyl monomer within the lignin
polymer. Hence, the S:G ratio of the stems was higher than that of the leaves. Additionally,
pyrolysis of the stems produced larger amounts of 4-vinylphenol; most likely resulting from
higher coumaryl-lignin content in the stems. The pyrograms show that the relative heights and
areas of the peaks from the holocellulose (retention time < 24 min) are lower than those from the
lignin (retention time >24 min) for the stem materials in comparison with the leaves. Again, this

indicates that the stems have higher lignin content.

Copyright © Anne Elizabeth Ware
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Figure 5.3. Pyrograms of wild-type sorghum leaf and stem. Peak numbers correspond to

compounds listed in Table 5.3.

Table 5.3 Wild-type sorghum Py-GC/MS analysis. Area % and sum values reported are

averages between 3 samples.

Retention Compound WTL? Std.  WTSP Std.

Time Area% Dev. Area% Dev
1 6.14 2-methylfuran 0.30 0.02 0.27 0.07
2 6.72 2,3-butanedione 1.39 0.13 094 0.13
3 7.70 hydroxyacetaldehyde 0.73 0.12 0.74 0.05
4  8.66 acetic acid 2.47 047 287 0.46
5 9.85 1-hydroxy-2-propanone 3.09 025 322 0.29
6 10.14 toluene 0.98 0.08 0.33 0.08
7 13.44 acetic acid methyl ester 1.72 0.25 1.59 0.13
8 13.81 o-xylene 0.30 0.03 0.04 0.07
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Table 5.3 (continued)

9

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45

15.79
17.30
18.01
18.45
19.00
20.16
21.20
21.83
22.33
23.97

25.12
25.79
26.87
27.05
28.13
28.20
29.45
29.77
31.18
31.41
32.33
33.52
34.09
34.23
34.83
35.20

35.92
36.78
38.36
38.74
39.10
39.30
40.00
41.51
42.00
42.28
42.62

furfural

2-furanmethanol
2-methyl-2-cyclopenten-1-one
2-ethyl-5-methylfuran
2-cyclopentene-1,4-dione
1,2-cyclopentanedione
5-methyl-2-furancarboxaldehyde
3-methyl-2-cyclopenten-1-one
2(5H)-furanone
2-hydroxy-3-methyl-2-cyclopenten-1-
one

phenol

2-methoxyphenol

2-methylphenol
3-ethyl-2-hydroxy-2-cyclopenten-1-one
4-methylphenol

3-methylphenol
2-methoxy-4-methylphenol
2,4-dimethylphenol

4-ethylphenol

benzoic acid
4-ethyl-2-methoxyphenol
1,4:3,6-dianhydro-a-d-glucopyranose
4-vinylphenol
2-methoxy-4-vinylphenol

eugenol

5-hydroxymethyl-2-
furancarboxaldehyde
2,6-dimethoxyphenol

2-methoxy-4-(1-propenyl)phenol C
2-methoxy-4-(1-propenyl)phenol T
4-methylsyringol

vanillin

3-hydroxybenzaldehyde
3-phenyl-2-propenoic acid
4-hydroxy-3-methoxyacetophenone
4-hydroxybenzaldehyde
3,5-dimethoxyphenol
4-vinylsyringol

4.63
0.45
0.23
0.10
0.17
1.30
0.18
0.25
0.77
1.87

1.48
1.43
0.64
0.00
0.99
0.30
0.38
0.23
0.32
0.00
1.00
0.93
5.46
6.46
0.00
1.58

0.84
0.34
2.30
0.14
0.77
0.15
0.00
0.28
0.83
0.00
1.09

0.55
0.07
0.10
0.08
0.15
0.15
0.16
0.05
0.01
0.17

0.13
0.09
0.04
0.00
0.11
0.06
0.01
0.01
0.07
0.00
0.23
0.11
0.30
0.15
0.00
0.21

0.10
0.09
0.31
0.16
0.05
0.09
0.00
0.07
0.08
0.00
0.06

241
0.73
0.10
0.14
0.22
1.72
0.34
0.19
0.81
1.55

1.26
1.78
0.93
0.24
0.57
0.33
0.63
0.22
0.45
0.00
0.58
0.50
9.92
5.08
0.29
4.81

3.36
0.40
1.65
0.74
0.73
0.15
0.00
0.56
1.04
0.00
2.67

0.20
0.09
0.09
0.04
0.05
0.03
0.07
0.02
0.08
0.14

0.13
0.09
0.19
0.04
0.06
0.02
0.03
0.02
0.09
0.00
0.10
0.13
0.79
0.21
0.03
0.81

0.50
0.06
0.13
0.01
0.05
0.16
0.00
0.20
0.03
0.00
0.61
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Table 5.3 (continued)

46 42.96 1-(4-hydroxy-3- 0.36 0.03 0.55 0.11
methoxyphenyl)acetone

47 43.14 2,6-dimethoxy-4-(2-propenyl)phenol 0.12 0.02 0.84 0.13

48 43.80 1-(2-hydroxyphenylethanone) 0.00 0.00 0.00 0.00

49 44.56 2,6-dimethoxy-4-(1-propenyl)phenol 0.25 0.01  0.52 0.09

cis

50 46.19 2,6-)dimethoxy-4-( 1-propenyl)phenol 0.46 0.05 3.20 0.48
(trans)

51 47.06 4-hydroxy-3,5-dimethoxybenzaldehyde 0.06 0.10 0.75 0.16

52 48.64 4-hydroxy-3,5-dimethoxyacetophenone 0.36 0.12  0.71 0.29

53 49.07 4-((1E)-3-hydroxy-1-propenyl)-2- 0.00 0.00 0.62 0.43
methoxyphenol

54 49.63 4-hydroxy-2-methoxycinnamaldehyde  0.07 0.06 0.62 0.12

55 49.70 3-(4-hydroxy-3-methoxyphenyl)-2- 0.00 0.00 091 0.68
propenal

56 50.70 3-(4-hydroxy-3-methoxyphenyl)-2- 0.13 0.11  0.14 0.06
propenoic acid methyl ester
Sum Lignin 28.51 1.15 4258 2.46
S derivatives 3.32 0.15 12.79 1.62
G derivatives 13.17 0.58 14.16 1.21
S:G 0.25 0.02 091 0.16

= Wild-type leaves; ™ Wild-type stems.

Figure 5.4 shows the pyrograms from mutant sorghum leaves and stems and the Py-GC/MS
analysis in summarized in Table 5.4. The RG leaves produce more lignin-based pyrolysates than
the wild-type leaves, consistent with the lignin content determination. Moreover, RG-leaves
produced more sinapyl-derived pyrolysates relative to coniferyl-derived pyrolysates than the
wild-type leaves and hence are indicated to have a higher S:G ratio based on the distribution of
the pyrolysates. The RG stems also generated more lignin-based pyrolysates than the wild-type
stems. While this analysis contradicts the total lignin content determination, it may reflect the
differences between the RG and wild-type stems in the preferential formation of char from certain
biopolymers. For example, pyrolysis of the sorghum samples may generate varying degrees of
char and nonvolatile compounds from the lignin or holocellulosic fractions. Thermogravimetric
analysis, Figure 5.1, showed that the pyrolysis of the RG stems left approximately 10 wt% more
solid residue at high temperatures than the wild-type stems. This residue (char and nonvolatiles)
is likely the cause of the discrepancy seen between the area % contribution of the lignin-based

pyrolysates and the lignin content determination. As discussed below, the metal or ash content
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present in biomass may also influence the volatile pyrolysate distributions analyzed. In this case,

Py-GC/MS analysis may not always agree with lignin content determination.

Py-GC/MS, however, can provide some information about the composition of biomass and the
production of certain renewable bio-chemicals produced by thermal decomposition. For example,
the mutant stems produced significantly more phenol and 4-vinylphenol (P < 0.05) than the wild-
type stems. These pyrolysates are likely the result of increased coumaryl content, likely esterified,
in the lignin in the RG stems.'*!” Higher S:G ratios in stems than in the leaves shown in both
wild-type and mutant sorghum are also consistent with S:G analysis of other forms of biomass in
the literature.® The RG leaves also produced more vanillin, a product used in the flavor industry,
upon pyrolysis. Pyrolysates originating from the holocellulosic fractions also differed slightly
between the leaves and stems and the wild-type and mutant sorghum. For example, wild-type
sorghum leaves generated more acetic acid than the RG sorghum leaves. Generally, the leaves of
the sorghum generated higher amounts of furfural than then stems. Again, these pyrolysates may
also be influenced by the presence of metals in the biomass. Even if all pyrolysates were
influenced by the presence of inorganic metals/ash content, Py-GC/MS analysis is still capable of
differentiating biomass components and their subsequent decomposition products. Taken
together, these data indicate that the composition and structure of the lignin polymers differed

between the RG and wild-type.
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Figure 5.4. Pyrograms produced from RG sorghum stem and leaf. Peak numbers
correspond to compounds listed in Table 5.4.
Table 5.4. Mutant sorghum Py-GC/MS analysis. Area % and sum values reported are
averages between 3 samples.
Retention Compound RG Std. RG Std.
time Leaf* Dev. Stem” Dev.
Area % Area %
1 6.14 2-methylfuran 0.32 0.02 0.05 0.05
2 6.72 2,3-butanedione 0.76 0.02 1.16 0.12
3 7.70 hydroxyacetaldehyde 0.33 0.03 0.90 0.54
4 8.66 acetic acid 1.18 0.32 3.40 0.82
5 9.85 1-hydroxy-2-propanone 1.26 0.01 4.14 0.47
6 10.14 toluene 0.59 0.02 0.69 0.27
7 13.44 acetic acid methyl ester 0.86 0.01 1.47 0.22
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Table 5.4 (continued)

8

9

10
11
12
13
14
15
16
17
18

19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43

13.81
15.79
17.30
18.01
18.45
19.00
20.16
21.20
21.83
22.33
23.97

25.12
25.79
26.87
27.05

28.13
28.20
29.45
29.77
31.18
31.41
32.33
33.52
34.09
34.23
34.83
35.20

35.92
36.78
38.36
38.74
39.10
39.30
40.00
41.51
42.00

o-xylene

furfural

2-furanmethanol
2-methyl-2-cyclopenten-1-one
2-ethyl-5-methylfuran
2-cyclopentene-1,4-dione
1,2-cyclopentanedione
5-methyl-2-furancarboxaldehyde
3-methyl-2-cyclopenten-1-one
2(5H)-furanone
2-hydroxy-3-methyl-2-cyclopenten-1-
one

phenol

2-methoxyphenol

2-methylphenol
3-ethyl-2-hydroxy-2-cyclopenten-1-
one

4-methylphenol

3-methylphenol
2-methoxy-4-methylphenol
2,4-dimethylphenol
4-ethylphenol

benzoic acid
4-ethyl-2-methoxyphenol
1,4:3,6-dianhydro-a-d-glucopyranose
4-vinylphenol
2-methoxy-4-vinylphenol
eugenol
5-hydroxymethyl-2-
furancarboxaldehyde
2,6-dimethoxyphenol

2-methoxy-4-(1-propenyl)phenol C
2-methoxy-4-(1-propenyl)phenol T
4-methylsyringol

vanillin

3-hydroxybenzaldehyde
3-phenyl-2-propenoic acid
4-hydroxy-3-methoxyacetophenone
4-hydroxybenzaldehyde

0.22
2.97
0.00
0.14
0.00
0.00
1.08
0.27
0.09
0.52
1.56

2.19
2.08
0.59
0.00

1.12
0.38
0.59
0.27
0.29
0.37
1.09
1.02
3.44
5.51
0.14
1.98

1.38
0.30
1.98
0.58
2.62
0.25
0.44
2.29
1.87

0.01
0.20
0.00
0.01
0.00
0.00
0.04
0.02
0.08
0.03
0.02

0.10
0.10
0.04
0.00

0.05
0.02
0.03
0.02
0.03
0.04
0.08
0.00
0.18
0.09
0.12
0.23

0.11
0.05
0.47
0.04
0.14
0.23
0.08
0.17
0.21

0.00
2.65
0.66
0.11
0.02
0.07
1.39
0.02
0.33
1.01
2.02

2.10
1.76
0.74
0.22

0.62
0.41
0.27
0.11
0.83
0.00
1.07
0.28
18.59
6.18
0.10
0.18

3.51
0.13
2.52
0.82
0.67
0.22
0.00
0.27
0.64

0.00
0.40
0.13
0.08
0.03
0.13
0.08
0.03
0.02
0.13
0.24

0.27
0.23
0.06
0.04

0.12
0.11
0.23
0.10
0.15
0.00
0.69
0.25
2.24
0.73
0.18
0.13

0.31
0.13
1.17
0.01
0.08
0.10
0.00
0.26
0.44
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Table 5.4 (continued)

44 4228 3,5-dimethoxyphenol 0.58 0.04 0.00 0.00

45 4262 4-vinylsyringol 2.34 0.15 3.10 0.22

46  42.96 1-(4-hydroxy-3- 0.33 0.03 0.15 0.20
methoxyphenyl)acetone

47  43.14 2,6-dimethoxy-4-(2-propenyl)phenol  0.56 0.03 091 0.08

48  43.80 1-(2-hydroxyphenylethanone) 2.00 024 0.17 0.18

49  44.56 2,6-dimethoxy-4-(1-propenyl)phenol  0.59 0.12 0.63 0.11
(cis)

50 46.19 2,6-dimethoxy-4-(1-propenyl)phenol ~ 1.08 0.06 3.02 0.22
(trans)

51  47.06 4-hydroxy-3,5- 0.44 0.06 0.75 0.07
dimethoxybenzaldehyde

52 48.64 4-hydroxy-3,5- 0.57 0.07 0.75 0.06
dimethoxyacetophenone

53 49.07 4-((1E)-3-hydroxy-1-propenyl)-2- 0.00 0.00 0.04 0.08
methoxyphenol

54 49.63 4-hydroxy-2- 0.20 0.03 0.32 0.46
methoxycinnamaldehyde

55 49.70 3-(4-hydroxy-3-methoxyphenyl)-2- 0.00 0.00 0.13 0.22
propenal

56  50.70 3-(4-hydroxy-3-methoxyphenyl)-2- 0.27 0.03 0.03 0.05
propenoic acid methyl ester
Sum Lignin 41.54 0.56 53.25 2.05
S derivatives 7.54 0.29 1349 0.32
G derivatives 17.07 0.40 13.03 1.35
S:G 0.44 0.02 1.04 0.09

& RG leaves; > RG stems.

Differences in metal composition may influence pyrolysis product distribution.'>***® For
example, Fahmi et al.”> found that higher levels of potassium in switchgrass correlated to
decreased production of levoglucosan from pyrolysis of the biomass. They suggest that the
presence of metals has a catalytic effect that leads to further decomposition of the levoglucosan
into hydroxyacetaldehyde and other compounds. Moreover, they found that the metal content of
switchgrass had an inverse relationship with the amount of Klason lignin in the biomass. The
results presented here demonstrate that this is true for wild-type sorghum; the stems have higher
lignin content and lower metal (ash) content whereas the leaves have less lignin and more metals.
However, total ash content was similar in the leaves and stems in the RG biomass despite
differences in lignin content. The RG stems also contained more K than the RG leaves and the
wild-type stems, but was similar to the wild-type leaves. The presence of K may have increased

the cracking of holocelulosic products in the mutant stem to generate non-condensable gases
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causing an apparent decrease in the production of holocellulosic-based pyrolysates relative to the
lignin-based pyrolysates. While the metals were not leached from the biomass prior to pyrolysis
(in order to avoid hydrolyzing sugars and removing compounds providing structural information),
their presence most likely only shifted the abundance of the various holocellulose-based
pyrolysates but not their summed contribution to the pyrograms. The influence of metal content
on lignin pyrolysis product formation has been found to be minimal, possibly due to the aromatic
nature of the lignin polymer being unable to readily coordinate and/or react with the mineral
species.* However, thermogravimetric analysis (Figure 5.2) indicates that slow pyrolysis of the
mutant stems generates a higher percentage of remaining char/nonvolatiles than the wild-type
stems. Therefore it is possible that the variation in the pyrolysates between the wild-type and RG
sorghum are the result of a combination of differences in biopolymer structure, composition and

metal content, which can lead to differences in the decomposition processes that occur during

pyrolysis.

5.4 Conclusions

Chemical mutagenesis was used to induce mutations in Sorghum bicolor (L.) of the Della variety.
The wild-type plants stems and leaves were separated dried, ground and analyzed for chemical
composition and thermal decomposition products. The RG mutant stems have lower lignin
content than the wild-type stems and the mutant leaves contain more lignin than the wild-type
leaves. Pyrolysates generated from the RG mutants showed an increase in the amount of lignin-
based pyrolysates from both stems and leaves in comparison to the wild-type. Even though the
RG stems were found to have lower lignin content than the wild-type, the production of higher
amounts of lignin-based pyrolysates from the stems may be due to the presence of metals (ash) in
the biomass. Additionally, thermogravimetric analysis (TGA) showed that the pyrolysis of the
mutant stems left behind more nonvolatile residue than wild-type, which may also explain the
differences in the pyrolysate abundances. The mutant leaves and stems also produced higher
amounts of sinapyl-derived pyrolysates than the wild-type, suggesting that the mutant lignin has
higher S:G ratios. TGA also showed differences in the rate and temperatures at which the wild-
type and mutant biomass pyrolyzed. The main decomposition of the mutant leaves occurred at a
higher temperature than the wild-type, which may result from the increase in lignin content. The
RG stems main decomposition occurred at a higher rate than the decomposition of the wild-type
stems. All of these results are consistent with the finding that stems of the RG biomass exhibit

increased saccharification efficiency compared to the wild-type stems, with the opposite trend
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observed in the leaves. Overall, Py-GC/MS and thermogravimetric analysis of the wild-type and
mutant stems and leaves indicated differences in the structure and composition of the biomass, as

well as its thermal decomposition behavior.

Copyright © Anne Elizabeth Ware
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Chapter 6. Microalgae as a Renewable Fuel Source: Fast Pyrolysis of Scenedesmus sp.
Note — This chapter was reprinted from:

Harman-Ware, A. E.; Morgan, T.; Wilson, M.; Crocker, M.; Zhang, J.; Liu, K.; Stork, J.; DeBolt,
S., Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp. Renewable Energy
2013, 60, 625-632.!

The article appears in this dissertation with permission from Elsevier.

Note —The experimental content in Section 6.2.2 was not performed by the author and is beyond

the scope of this dissertation.

6.1 Introduction

The need for sustainable, renewable energy, as well as the aspiration to lower greenhouse gas
emissions and decrease our dependency on fossil fuels, has driven interest and research towards
the development of fuels derived from biomass resources. Agricultural crops and their waste,
such as soybeans, corn and corn stover, have been extensively researched for use in the
production of biofuels such as bioethanol and biodiesel.” Cassava, a non-grain feedstock, has also
been used as a starch source to produce bioethanol.** However, production, preparation,
transportation, and land supply concerns are associated with some of these resources.’ Increases
in world market food prices and disruption of soil nutrient cycles are also problems associated
with the use of food crops and associated wastes for biofuel production. Consequently, there is a
strong impetus to develop biofuels that are not based on agricultural food crops.® In this context,
microalgae species have shown potential as a feedstock for the production of several types of
renewable fuels including bioethanol, biodiesel and methane.”> Microalgae can also be used to
remove CO; from industrial flue gases and as wastewater treatment for removal of ammonium
salts and phosphates, and do not require the use of agricultural land for cultivation.”®
Additionally, microalgae have higher areal productivity than traditional, terrestrial biomass
sources, typically up to 20 g/m?*/day.” Hence, the use of microalgae as a feedstock for the
production of biofuels offers many opportunities if challenges in large-scale cultivation,

harvesting and conversion to fuels can be overcome.
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Fast pyrolysis, the rapid thermal decomposition of organic material in the absence of oxygen, has
been investigated as a practical route for the generation of renewable fuels and chemicals from
biomass.'’!? Traditionally, lignocellulosic biomass such as wood from poplar, eucalyptus and
other trees, as well as grasses (e.g., switchgrass), has been used as a pyrolysis feedstock. The bio-
oil produced from pyrolysis of lignocellulosic materials is complex, unstable and has high
viscosity, moisture and oxygen content.>'' These properties can be attributed to the non-specific
thermal degradation of the lignin and holocellulose in the biomass. The resulting pyrolysis liquid
contains hundreds of compounds including aldehydes, cresols and acids. Hence, catalytic

upgrading is typically required in order to facilitate utilization of the bio-oil as fuel.®

Microalgae have a very different chemical composition from wood and other lignocellulosic
feedstocks. Whereas wood is composed mostly of cellulose, hemicellulose and lignin, microalgae
can contain substantial amounts of lipids and proteins in addition to carbohydrates.” Hence, bio-
oil produced from pyrolysis of microalgae can contain different types and amounts of compounds
such as linear hydrocarbons and nitrogenous species resulting from pyrolysis of lipids and
proteins, respectively. In principle, these differences from lignocellulosic feedstocks may lead to
improved properties in the resulting bio-oil, such as higher heating values and reduced tar
formation. In addition, biochar obtained from algae pyrolysis may be useful for agricultural
purposes. The addition of biochar to soil can improve water-holding capacity, increase nutrient

content, and enhance microbial activity.'*!3

To date, there have been relatively few reports about the pyrolytic characteristics of microalgae.
Wu and co-workers'® studied the effect of temperature and residence time in the pyrolysis of
Chlorella protothecoides performed in a batch autoclave and found that a maximum oil yield of
52% was obtained after heating at 500 °C for 5 min. The same group also studied the yield and
composition of hydrocarbon gases produced during the slow pyrolysis of C. protothecoides.'”” A

more recent study by Miao and Wu'®"”

examined the production of bio-oil from C.
protothecoides and Microcystis aeruginosa using fast pyrolysis. Interestingly, the yield of bio-oil
from heterotrophic C. protothecoides was 3.4 times higher than the bio-oil yield obtained from
the same algae grown autotrophically, while the bio-oil obtained from the former had lower
oxygen content, higher heating value, lower density and lower viscosity than the latter. These
results could be attributed to the much higher lipid content of the heterotrophic algae (55.2%
versus 14.6%). Campanella et al.”° compared the slow pyrolysis of duckweed to Scenedesmus sp.

under CO; at 300 °C. The Scenedesmus sp. afforded a higher yield of pyrolysis oil than the
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duckweed, while the microalgae feedstock was also found to have a higher heating value (HHV)
of 19 MJ/kg, greater than the HHV of the duckweed (15 MJ/kg). Speciation of the pyrolysis oil
produced from the algal feedstock identified 300+ compounds, with similar amounts of
hydrocarbons and oxygenates, while acetic was the major product in the aqueous phase.

Babich et al.?! studied the pyrolysis of Chlorella algae in a fixed bed microreactor both with and
without Na;COs as a catalyst. Use of Na,COs resulted in bio-oil with lower acidity and higher
heating value than bio-oil produced without the catalyst. Microwave-assisted pyrolysis of
Chlorella sp. has also been reported.”? The product was an alkaline bio-oil possessing a relatively
low oxygen content (16.5%) and a comparatively high heating value (30.5 MJ/kg). Pan and co-
workers® pyrolyzed Nannochloropsis sp. without and with various amounts of HZSM-5 catalyst
at a variety of temperatures. They found the optimal temperature for the yield of bio-oil to be 400
°C. The bio-oil yield and the amount of oxygen in the product decreased with an increase in the
amount of catalyst used. Hence, the use of the catalyst caused an increase in the HHV of the bio-

oil from 24.6 MJ/kg to 32.7 MJ/kg.

The goal of the current study was to examine the fast pyrolysis of a dried microalgae feedstock,
Scenedesmus sp., using a bench-scale isothermal spouted bed pyrolysis unit. The bio-oil and
biochar produced were analyzed for total acidity, composition, and calorific content. Micro-scale
Pyrolysis-GC-MS was also performed in order to provide insights into the nature of the primary
products obtained from Scenedesmus sp. pyrolysis. A portion of this work has been previously

communicated.?*

6.2 Materials and Methods

6.2.1 Algae Feedstock

The algae feedstock was dried, ground Scenedesmus sp. which had been cultured autotrophically
in an open pond. 20 gallons of wet algae (11 -16% dry mass) was dried at 60 °C for 24 h. The
dried algae clusters (2.9% residual water) were then milled to produce 2 mm particles. The algae
feedstock was analyzed for total protein content using the Bradford method” and total glucose
content using a modified Updegraff method.*® The Bligh and Dyer method”” was used to
determine the total lipid content. Ultimate analysis was performed according to ASTM D3176; a
LECO CHN-2000 instrument was used to determine C, H, N content, an ELTRA CS-500 was

used to determine S content and O was calculated by difference. Proximate analysis was
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performed according to ASTM D3172 using a LECO TGA 601 in order to determine the total

ash, moisture, and volatile content of the algae feedstock.

6.2.2 Spouted Bed Pyrolysis

Pyrolysis was conducted in a bench-scale spouted (fluidized) bed fast pyrolysis reactor. A
schematic of the unit is shown in Figure 6.1. Pyrolysis was performed at 480 °C and 100 kPa with
a 2 s vapor residence time and total run time of 2 h. The pyrolysis temperature was chosen after
trial runs indicated maximum liquid product yields at 480 °C. A screw feeder (Acrison’s MD-II
Weight Feeder Controller) with an air-locked star rotary valve (Sunco Power Systems) was used
as the feeding system and was run at approximately 2.3 kg/h. The biomass was fed into the
pyrolysis chamber (draft tube) from the bottom through pneumatic transportation by nitrogen.
Prior to mixing with the biomass, the nitrogen (flow rate 8 m*/h) was heated to 170 °C. The
feedstock was introduced into the bottom of the draft tube where it contacted the bed material, 60
mesh sand, and was then heated immediately to 480 °C by the bed material for fast pyrolysis. The
spouting stream was redirected downward by the recirculating tube above the draft tube. Here, the
sand was separated from the vapors, recycled and heated. The draft tube had a 10 cm ID, the
recirculating tube had a 15 cm ID and the whole pyrolysis chamber was 1.8 m tall. The bed height

was 254 mm.

Copyright © Anne Elizabeth Ware
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Figure 6.1. Schematic of fast pyrolysis unit. 1. Screw feeder; 2. Rotary valve; 3,4. Tape
heater; 5. MFC; 6. Windbox; 7. Distributor; 8. Draft tube; 9. MFC; 10. Main body; 11.
Recirculating tube; 12. Cyclone; 13. Char bin; 14-16. Heat exchanger; 17. MFC; 18. Heat
exchanger with dry ice; 19-22. Oil container; 23. Filter; 24. Thermocouple; 25. Open

window for solids entrainment.

The pyrolysis stream flowing out of the reactor first passed through a high-temperature cyclone
(480 °C) where char and ash were separated from the gas. A tape heater was installed on the
outside surface to prevent the condensation of bio-oil in the cyclone. After passing the cyclone,
four condensers were installed in series to collect bio-oil. The first condenser (C1, corresponding
to items 14 for the heat exchanger and 19 for the collection bin in Figure 6.1) was cooled with
spouting gas (nitrogen) for heat recovery, the temperature of the gas inside the condenser being
measured at 365 °C and 67 °C at the outlet. The second and the third condensers were cooled
with tap water and the temperatures were 270 °C and 135 °C, respectively, at their inlets and
approximately 10 °C at their outlets. The fourth condenser (C4: heat exchanger 18 and bin 22 in
Figure 6.1) used dry ice as a coolant, the temperature at the inlet being approximately 20 °C.
After passing through the condensing units, residual gas and vapors were filtered with glass wool,
which was kept cool with dry ice at -15 °C. The non-condensable gases in the effluent were

compressed, reheated to 170 °C and recycled back into the reactor as fluidizing gas. Oil samples
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from the reactor walls and final filter were also collected for mass recovery calculations and
analysis. The weight of oil collected was determined by weighing the containers and the glass
wool before and after each run. Additionally, the oil condensed on the wall was determined by
weighing the parts. The oil captured by glass wool in the filters was extracted with acetone for
further analysis. All oil products were stored in a refrigerator. The char in the cyclone was also
collected and weighed. The coke deposited on the surface of sand particles collected from the
pyrolysis unit was determined by weighing the used sand before and after 3 hours of heating at

550 °C using a muffle furnace.

6.2.3 Pyrolysis-GC-MS

Pyrolysis-GC/MS (Py-GC/MS) was performed using a CDS Analytical Model 5200 Pyroprobe
connected to an Agilent 7890 GC with an Agilent 5975C MS detector. Pyrolysis was run in trap
mode without the use of a reactant gas and utilized a sorbent tube maintained at 325 °C
containing Tenax. Pyrolysis was conducted at 480 °C (1000 °C/s heating rate) for 2 s under He
using a 1 mg sample packed in a quartz cell and held in place using quartz wool. Each sample
was heated to 100 °C in the pyroprobe for 10 s prior to analysis. The valve oven and transfer lines
were each set at 325 °C. The column used in the GC was a DB1701 (60m % 0.25mm % 0.25 um)
and the temperature program was as follows: 45 °C for 3 min, followed by a ramp to 280 °C at 4
°C/min with a 10 min hold at the end. The flow rate was set to 1 mL/min using He as the carrier
gas and an inlet split ratio of 90:1. The inlet and auxiliary lines were both maintained at 300 °C
and the MS source was set to 69 eV. Py-GC/MS measurements were performed in triplicate for

statistical purposes.

6.2.4 Bio-oil and Biochar Analysis

Bio-oil products from the spouted bed reactor were analyzed via GC-MS using an HP-88 column
(30 m x 0.25 mm x 0.20 pm). This column, in comparison with DB-1 and DB-5 columns,
provided the best resolution between peaks in each of the samples. The samples (oil fractions)
were dissolved 1:100 in chloroform. The inlet was set at 325 °C and had a split ratio of 30:1, the
auxiliary line was set to 325 °C, He was used as the carrier gas at 1 mL/min and the MS source
was set to 69 eV. The temperature program was as follows: 50 °C for 1 min, ramp to 250 °C at 7
°C/min and hold for 5 min. Simulated distillation GC equipped with a DB-2887 column (ASTM
D2887) was used to determine approximate boiling point distributions for the oil fractions
(organic layer, not including water content). Given that hydrocarbon standards (C5-C44 linear

alkanes) were used for calibration of the GC, whereas the bio-oils analyzed were rich in polar (N-
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and O-containing) compounds, a series of heteroatom-containing compounds were also run,
including pyridine, stearamide, octadecylamine, myristic acid, palmitic acid, stearic acid, methyl
oleate and methyl stearate. In each case the boiling point determined by simulated distillation GC
analysis agreed to within 20 °C of the literature value. The results obtained for the bio-oils are
therefore considered to provide a fair indication of the actual boiling point ranges, although

cannot be considered precise.

Ultimate analysis (ASTM D3176) using a LECO CHN-2000 analyzer was performed to
determine C, H, N concentrations in both the oil and biochar (dry basis) fractions and an ELTRA
CS-500 was used to determine sulfur content, while oxygen was determined by difference.
Proximate analysis (particularly, ash composition) for oil and biochar was performed according to
ASTM D3172 using a LECO TGA 601. The calorific content of each oil fraction was determined
using a LECO AC500 according to ASTM D5865. The total acid number (ASTM D664) was also
determined for the different oil fractions collected. FT-IR spectra of the oil fractions were
collected over CaF, windows using a Nicolet 6700 FT-IR spectrometer. °C NMR spectra of
several oil fractions were also collected using a Varian 400 MHz NMR spectrometer. Samples
were dissolved in CDCls and signals were referenced internally to the solvent peaks. SEM
micrographs of the biochar were taken using a Hitachi S-4800 Scanning Electron Microscope
operating at 15 kV. ICP-OES was used to determine the composition of various metals in the

biochar.

6.3 Results and Discussion

6.3.1 Analysis of Feedstock

Ultimate and proximate analyses of the Scenedesmus sp. feedstock are summarized in Table 6.1.
The amount of volatile matter contained in the feedstock provides information about the potential
of liquid product formation. The amount of ash contained in this particular feedstock was found
to be extremely high (35.2%). This can be explained by the presence of frustules from Navicula
diatoms, which occur in the Scenedesmus as an invasive species (see section 6.3.2). The
maximum liquid yield and ash content are important factors contributing toward the efficiency in
the production of pyrolysis oil and in the types of compounds generated. The ash in the biomass
may also influence the distribution of compounds seen in the oil product. Hence, these factors
should be considered when selecting a feedstock for bio-oil production and in the use of the

products formed.
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Table 6.1. Ultimate and proximate analysis of Scenedesmus sp. feedstock.

Weight %
C H N O S Volatile Moisture Fixed C  Ash
32.1 4.8 5.3 22.1 0.5 59.7 2.9 2.1 35.2

This feedstock, like other algal species, also has a higher nitrogen content than typical
lignocellulosic feedstocks due to the large amount of protein present in the algae. Therefore, bio-
oil obtained from algae can be expected to contain higher concentrations of nitrogenous species
than bio-oil obtained from feedstocks such as wood or switchgrass. The protein, glucose and lipid
content of the algae are given in Table 6.2. These values are consistent with previously reported

values for Scenedesmus.?

Table 6.2. Total protein, glucose and lipid content of Scenedesmus sp. feedstock.

Weight %
Protein Glucose Lipids
27.8 7.8 11.5

6.3.2 Spouted Bed Pyrolysis Products

Fractions collected from the quenching coolers of the fast pyrolysis unit are defined such that C1
corresponds to the heaviest oil (highest condensing temperature) fraction collected and C4
corresponds to the lightest oil fraction (lowest condensing temperature not including the filter
oil), where C2 and C3 are intermediate fractions. The C2-C4 and filter oil fractions were obtained
as mobile, brown liquids and were analyzed as the primary bio-oil products from the pyrolysis
process. C1 was an extremely viscous tar, constituting only 2% of the total oil recovered and
hence was not analyzed. In addition, the reactor wall was scraped of oil and residual algae and
this mass totaled 23.2 % of the total mass recovered. This fraction was not analyzed in detail due
to the presence of unreacted algae and ash but was included as part of the calculation done to
determine the percent yields of the fractions. The total oil yield was estimated at approximately
55 wt%, based on the yield of bio-oil fractions collected and the approximate amount of oil
remaining on the reactor walls and piping. Note that this figure is based on the weight of

feedstock, excluding its ash content.
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Considering first the char product, the ratio of crude oil:char obtained was 3.76 by weight for the
oil fractions collected. The char had low calorific content (4.6 MJ/kg) and contained 13.3 wt%
volatile matter, while ultimate analysis showed it to contain 15.9 wt% carbon, together with small
amounts of nitrogen (2.3 wt%), sulfur (0.8 wt%), and hydrogen (0.8 wt%). 75 wt% of the biochar
mass was attributed to the presence of ash. SEM images (Figure 6.2) indicate that a significant
portion of the ash content resulted from the presence of frustules derived from Navicula diatoms
that were present in the algae feedstock as a contaminant. The presence of these organisms also
explains the high ash content (35.2 wt%) in the original feedstock (see Table 6.1). The ash
obtained from the biochar consisted of 49.5 wt% SiO;, 4.1 wt% Fe;Os and 11.0 wt% Al,O3 which
is consistent with the presence of the silicate frustules.?® The biochar ash also contained 10.7 wt%
Ca0, 1.6 wt% Na,O, 5.9 wt% K,0, 9.7 wt% P»0s, and 3.1 wt% SO; which were mainly
associated with the Scenedesmus sp. (originating from the nutrients supplied to the algae
feedstock).

Copyright © Anne Elizabeth Ware
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Figure 6.2. SEM micrographs of Scenedesmus sp. derived biochar showing presence of

frustules.
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Turning to the oil fractions, the filter oil constituted the largest percent of recovered oil product
by mass (33.8% of the total), followed by the C3 oil fraction (28.5% of the total, see Table 6.3).
The average total acid number for the oil products was 68 mg KOH/g, which is somewhat lower
than typical bio-oil produced from wood pyrolysis.'® The average calorific content and total acid
number of the oil as a whole was calculated based on normalization of the mass of the different

oil fractions.

Table 6.3. Product distributions for select oil fractions based on GC-MS analysis.

Compounds C2 C3 C4 Filter
(Class of Compounds) (Area %) (Area %) (Area %) (Area %)
Alkanes 0.0 2.0 0.0 2.6
Alkenes 1.5 8.9 0.0 9.4
Fatty Oxygenates 21.0 12.1 0.0 323
Steroids 2.8 0.0 12.9 3.1
Aromatics 0.0 0.0 0.0 1.8
N-containing 18.7 70.4 86.2 21.7
Compounds

Unidentified 56.0 6.7 1.0 29.1
Yield of oil fraction (% 3.1 28.5 11.4 33.8

of total oil recovered)

Ultimate and proximate analysis showed the oil products to contain an average of 27.6 wt%
oxygen, 51.9 wt% carbon, 9.0 wt% hydrogen and 8.6 wt% nitrogen (dry basis), the relatively high
nitrogen content being a consequence of the high protein content of the algae. Figure 6.3 displays
the results from ultimate and proximate analyses for the two most abundant oil fractions. It should
be noted that the “moisture” content corresponds to compounds boiling around 100 °C, not just
water, and “volatile” content includes “moisture” content and higher boiling point compounds.
The average density of the oil was 1.1 g/mL, which is slightly lower than that of bio-oil derived
from wood pyrolysis'® but similar to values reported for pyrolysis oil derived from

autotrophically grown algae.'®"
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Figure 6.3. Ultimate and proximate analysis of select fractions obtained from Scenedesmus

sp. pyrolysis in the spouted bed reactor.

The average calorific content of the oil was approximately 18.4 MJ/kg. This is comparable to bio-
oil produced from the fast pyrolysis of wood'® but is lower than the value of 30 MJ/kg reported
by Miao and Wu'® for pyrolysis oil obtained from fast pyrolysis of Chlorella protothecoides
cultured autotrophically. This difference can be attributed to the lower oxygen content (19.43%)
of the oil obtained by Miao and Wu (and correspondingly higher carbon and hydrogen contents)
as compared to the oil produced in the current study. Additionally, there may also be differences
in the water content of the bio-oils (the water content is not reported in references 15 or 16). The
reason for these differences in bio-oil properties is not apparent, although we note that Babich et
al.?! reported an intermediate heating value of ~26 MJ/kg for bio-oil obtained from pyrolysis of
Chlorella sp. at 450 °C.

Simulated distillation GC results, shown in Figure 6.4, indicated that each fraction contained a
high proportion of components boiling in the heavy gas oil range (343 °C-524 °C). The lighter
fractions also show a significant proportion of products that boil in the range typical of kerosene
(204 °C-288 °C). GC-MS analysis of the oil fractions indicated the presence of nitrogenous and
oxygenated compounds, such as amides and fatty acids, as well as a variety of hydrocarbons.
Many of the compounds were branched or unsaturated as indicated by the C:H ratios and GC-MS

results.
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Figure 6.4. Simulated distillation GC results for select oil fractions.

The area % for the compounds identified for each oil fraction using GC-MS is summarized in
Table 6.3 and select nitrogenous species detected in the bio-oil fractions are shown in Figure 6.5.
Nitrogenous compounds identified include amines, amides, pyridines, pyrroles, pyrazoles,
pyrazines, nitriles, imidazoles and indoles, although the majority of these compounds were
amides. The amides varied in chain length ranging from acetamide to stearamide and also
included cyclic amides such as 2-pyrrolidone (with these mentioned compounds being dominant).
Cyclic amides may be formed from protein and amino acid intramolecular cyclization®*
whereas linear amides may be formed from primary protein decomposition or from amines in
amino acids that reacted with carboxylic acids to produce amides and water (Figure 6.6). The
presence of pyrroles can be attributed to the decomposition of amino acids such as glutamine
present in proteins,® as well as decomposed chlorophyll in the algae feedstock.*® Pyrazines,
pyridines, piperidines and pyrazoles are also likely formed from protein decomposition and/or
intramolecular cyclization. Additionally, pyrazines and other nitrogenous species may form from
subsequent reactions of Amadori compounds generated by Maillard reactions.?’ Imidazoles may
be formed from the decomposition of histidine amino acids present in proteins®* and indoles may
be produced from decomposed tryptophan amino acids.***? Each of these compounds may be the
result of primary or secondary reactions that occurred during pyrolysis or in the condensed oil

phase.
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Figure 6.5. Select nitrogenous species detected in bio-oil fractions via GC-MS.

While the amount of nitrogenous compounds formed seems high, the results agree with elemental
analysis. For example, if the average nitrogenous compound is compositionally similar to
octanamide, then based on its empirical formula, a nitrogen content of 10 wt% would be
expected. Since N-containing species constituted less than 100% of the various oil fractions, a

nitrogen content of less than 10 wt% is to be expected.
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Figure 6.6. A) Intramolecular cyclization of proteins resulting in pyrrolidone structures. B)

Carboxylic acids react with amines to produce linear amides.

Fatty oxygenates identified include aldehydes, ketones, acids, and alcohols with long carbon
chains, including saturated and unsaturated, branched and linear isomers. Alkanes and alkenes in
the products were identified in accordance with retention time calibrations and mass spectra
analysis based on a NIST library. The majority of these hydrocarbon compounds were formed
primarily from the pyrolysis of the lipid fraction (triglycerides and fatty acids) of the algae
feedstock. Lipid pyrolysis mechanisms are complex and have been thoroughly investigated.**** A
simplified schematic of the pyrolysis of the triglycerides and fatty acids based on previous

36-42

findings is shown in Figure 6.7. Steroids and aromatic compounds such as phenols,

naphthalene and toluene were also observed in the oil products, particularly in the filter oil.

RCH=CH, + CO +H,0

H,C—OCOR!
HG-OCOR? — ™ RCOH ——= (C0,+RH
H,C-OCOR® Diels‘Alder\ RCO.H

of olefinic R

groups R*
—
RCO.H R R, etc.
R

Figure 6.7. Production of saturated and unsaturated hydrocarbons, aromatic compounds,
CO, and CO- from pyrolysis of triglycerides and fatty acids. Additional reactions ultimately

lead to smaller chain hydrocarbons, as well as aldehydes and alcohols.***
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FTIR spectra were similar for each of the oil fractions. Large, broad bands between 3200 cm
and 3600 cm™ indicated the presence of water, alcohols, amides and amines. Strong bands
between 2800 cm™ and 2900 cm™ resulted from aliphatic C-H stretching. Bands at 1660 cm
occurred in each spectrum and can be attributed to amide carbonyl stretching and/or C=C
stretching. Medium-strength bands present at 1550 cm™ indicated the presence of aromatic
compounds. *C NMR spectra (not shown) of the filter oil and the C3 oil fraction contained peaks
at 180 ppm, indicating the presence of carboxylic acids, while several peaks between 156 and 158
ppm were consistent with the presence of amides. There was also an abundance of peaks
appearing between 120 and 140 ppm suggesting the presence of alkenes, aromatics and pyridine,
while several peaks between 100 and 120 ppm indicated the presence of pyrazoles, pyrroles, and

sugar pyrolysates such as furans.

The filter oil contained the most diverse range of compounds, whereas the C4 oil contained
mostly water and nitrogen-containing molecules, particularly short-chain amides and cyclic
nitrogenous species. The denser fractions and the filter oil contained a large amount of
oxygenated compounds such as fatty acids and fatty alcohols. These fractions also contained the
largest amount of alkanes, alkenes, and aromatic compounds. However, smaller chain acids,
cyclic compounds, alcohols, and other products expected from the pyrolysis of carbohydrates and
polysaccharides from the algaec were not abundant in the oil fractions as indicated by GC-MS
NIST library results. The distribution of the various species into each of the condensing train
fractions corresponds to properties such as their condensing temperatures. Many higher boiling
point compounds such as triglycerides and PAHs are not capable of being analyzed via GC-MS
analysis. Hence, overall analysis of each separate fraction in solvent may not be a fair
representation of the bio-oil as a whole. Therefore, a pyrolysis-GC-MS analysis was utilized to
further elucidate the compounds produced from the pyrolysis of the microalgae. More
importantly, pyrolysis-GC-MS provides the opportunity to analyze the composition of the initial
pyrolysis vapor, as opposed to the condensed product which may contain the products of

secondary reactions occurring in the liquid.
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6.3.3 Pyrolysis-GC-MS

The pyrogram displayed in Figure 6.8 shows that pyrolysis of Scenedesmus sp. at 480 °C
produces a significant amount of fatty oxygenates that appear at later retention times in the
pyrogram, particularly beyond 28 min. These compounds, which include alcohols, ketones, acids
and aldehydes, are derived predominantly from the pyrolysis of the fatty acids and triglycerides in
the algae. Although many of these peaks could not be not unambiguously identified, the peak at
44.1 minutes corresponds to phytol, which would derive from chlorophyll.>* The pyrogram also
shows that a large amount of nitrogenous products are created; the majority of these products
appear to be amines such as pyrroles and piperidines based on comparison of spectra with the
NIST database, whereas the nitrogenous compounds from the spouted bed reactor appear to be
mostly amides. The pyrolysis conditions may have been more severe in the spouted bed reactor
such that the primary products underwent secondary reactions to produce the observed amides,
or, more likely, secondary reactions may have occurred in the bio-oil (i.e., RCOOH + RNH,; —
RCONHR + H,0). Also, pyrazines were much more abundant in the bio-oil than in the products
seen from the Py-GC/MS of the algae. Pyrazine production can occur as the result of a sequence
of reactions following the Maillard reaction between sugars and proteins in the algae.?® Since the
pyrolysis vapors generated in the pyroprobe were quickly swept to the GC inlet they were not
able to undergo many of the secondary reactions that may occur in condensed bio-oil to produce

pyrazine derivatives.

The pyrogram also contains peaks corresponding to fatty olefins, paraffins, and aromatic
compounds which are also likely produced from the pyrolysis of the lipid fraction of the algae
(Figure 6.7). Carbohydrate pyrolysates such as butyrolactone and furan derivatives were observed
in small quantities in the oil fractions from the spouted bed reactor but are more abundant in the
pyrogram shown in Figure 6.8. This implies that they are primary pyrolysis products that can
undergo secondary reactions, thereby explaining why there is a lower abundance of these

compounds in the condensed pyrolysis oil.
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Figure 6.8. Pyrogram displaying products from Scenedesmus sp. pyrolysis in a pyroprobe at
480 °C.

The area percent of various types of compounds in the pyrogram are shown in Table 6.4. The
majority of the peaks can be attributed to carbohydrate pyrolysates, fatty oxygenates, aromatics
and nitrogen-containing compounds, with smaller amounts of alkanes and alkenes being present.
The Py-GC/MS results for product distributions agree to a certain extent with the GC-MS results
obtained from the bio-oil fractions when considering the weight distributions for each of the oil
fractions. However, the Py-GC/MS analysis did not detect the presence of steroids which may
have condensed in the transfer line prior to the GC inlet. In addition, GC-MS analysis of the oil
fractions appeared to show higher percentages of nitrogen-containing compounds than the Py-
GC/MS analysis because fewer of the fatty oxygenated hydrocarbons were detected. This is likely
the result of secondary reactions that occurred during pyrolysis or in the oil during condensation.
The Py-GC/MS analysis was also able to detect more carbohydrate pyrolysates that did not

appear in GC-MS analysis of the bio-oil fractions. However, both techniques indicate that the
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major components of pyrolysis oil produced from Scenedesmus algae are fatty oxygenated

hydrocarbons and nitrogen-containing molecules such as amides and amines.

Table 6.4. Distribution of product types from Scenedesmus sp. pyrolysis in a pyroprobe at

480 °C.

Compounds Area % (standard deviation)
Alkanes 2.4 (0.8)

Alkenes 2.1(0.9)

Fatty oxygenates 23.7 (1.6)

Aromatics 8.9 (1.6)

N-containing compounds 14.3 (1.6)

Carbohydrate pyrolysates 8.6 (0.63)

Unidentified 40.0 (3.7)

6.4 Conclusions

Two reactor scales were utilized in order to compare and understand the origin and formation of
products from fast pyrolysis of Scenedesmus algae. First, a technical, larger-scale production of
bio-oil from the fast pyrolysis of a dried microalgae feedstock was investigated using a spouted
bed reactor. Product analysis shows that the fractions of the bio-oil collected are, in certain
respects, comparable to pyrolysis products from lignocellulosic feedstocks. Indeed, the overall
heating value of the oil product is typical of lignocellulose-derived pyrolysis oil, although the
average total acid number of the oil is lower than for bio-oil produced from wood pyrolysis.
Furthermore, the bio-oil has a higher average nitrogen content due to the high protein content of
the algae feedstock. Micro-scale Py-GC-MS was also used to study the pyrolysis of the dried
Scenedesmus sp. in order to determine the composition of the primary pyrolysis products. Large
amounts of fatty oxygenates and nitrogenous products were observed, while the Py-GC-MS was
able to detect significant production of carbohydrate pyrolysates which were observed in only
very minor amounts in the spouted bed pyrolysis oil fractions. Differences between the products
generated from the different reactors are attributed mainly to secondary reactions that occurred

either during pyrolysis in the spouted bed or in the oil during condensation.
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Chapter 7. Concluding Remarks and Future Studies

The purpose of the research reported in this dissertation was to use Py-GC/MS to characterize the
structure and composition of several types of biomass and extracted lignin based on the
compounds the feedstocks generated upon pyrolysis. The pyrolysis of two lignin monomers,
sinapyl and coniferyl alcohol, was also analyzed in order to understand the origin of lignin-based
pyrolysates from lignin and lignocellulosic biomass. Fruit endocarp waste analyzed by Py-
GC/MS included black walnut shell (Juglans nigra), coconut shell (Cocos nucifera), peach pit
(Prunus persica) and olive pit (Olea europaea). Lignin was extracted from the endocarp samples
using two techniques, sulfuric acid and formic acid, and was also analyzed by Py-GC/MS. Wild
type and mutated sorghum of the Della variety and Scenedesmus sp. microalgae were analyzed
for pyrolysate distributions as well. Other techniques, such as thermogravimetric analysis (TGA),
nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared spectroscopy

(FTIR) were used to analyze the biomass samples.

Pyrolysis of sinapyl and coniferyl alcohol generated pyrolysates associated with each individual
alcohol. Coniferyl alcohol generated pyrolysates with a guaiacyl moiety containing various
groups at the para position of the aromatic ring. Sinapyl alcohol generated pyrolysates with a
syringyl moiety containing various groups at the para position on the aromatic ring. There was a
very low abundance of guaiacyl pyrolysates generated from demethoxylation of the sinapyl
alcohol. Pyrolysis-GC/MS calibration lines were obtained by plotting S:G sum area % ratios from
certain marker pyrolysates originating from sinapyl and coniferyl alcohol against the molar
sinapyl:coniferyl alcohol ratio. Having the pyrolysate profiles of sinapyl alcohol, coniferyl
alcohol, and various mixtures of the two made it possible to construct S:G ratio calibration lines
using a variety of marker compounds from each alcohol. Different marker compounds may be
needed for different types of biomass in order to calculate accurate S:G ratios. To validate the
calibration, the S:G ratio of peach pit lignin was determined using Py-GC/MS and found to agree
with the S:G ratio obtained from capillary electrophoresis of KMnO4 oxidation products from the

peach pit lignin.

Pyrolysis-GC/MS was used to analyze pyrolysates obtained from drupe endocarp waste including
peach pits, coconut shells, olive pits and walnut shells and their respective formic acid and
sulfuric acid extracted lignin and formic acid residue fractions. The formic acid treatment
extracted only a fraction of the lignin present, as determined by the sulfuric acid technique
(Klason lignin content). The pyrolysate distributions of lignins from different biomass types,

extracted using the same formic acid procedure, revealed that the extraction technique doesn’t
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only vield lignin of particular structure or composition. The pyrolysates observed from each
biomass type and its lignin fractions were found to be biomass dependent, but still differed
slightly from biomass to each extracted lignin. These results indicate that the lignin may have
changed during the extraction process and TGA indicated that the lignins decomposed at different
temperatures and rates. Walnut shells and peach pits and their respective lignin fractions
produced very few pyrolysates from sinapyl monomers whereas coconut shells and olive pits and
their respective lignin fractions generated higher amounts of sinapyl-based pyrolysates. Coconut
shell and the corresponding extracted lignins also generated large amounts of phenol upon
pyrolysis, an observation unique to this biomass. HSQC NMR spectra of the formic acid-
extracted lignins supported the Py-GC/MS data indicating the coconut shell and olive pit lignins
contained more sinapyl monomers than the peach pit and walnut shell lignins. The HSQC spectra
also revealed that the coconut shell lignin contained higher amounts of the coumaryl monomer

than the other biomass, explaining the increased production of phenol during pyrolysis.

Wild type and mutated sorghum bicolor (L.) of the Della variety was also analyzed by Py-
GC/MS. The mutant sorghum contained more lignin in the leaves and less lignin in the stems in
comparison to the wild type biomass. However, pyrolysates generated from the mutants showed
an increase in the amount of lignin-based pyrolysates and sinapyl-based pyrolysates from both
stems and leaves in comparison to the wild type. The production of more lignin-based pyrolysates
from the stems may be due to the presence of metals (ash) in the biomass influencing the amounts
and types of pyrolysates generated. Additionally, thermogravimetric analysis (TGA) showed that
the pyrolysis of the mutant stems left behind a greater percentage of nonvolatile residue than wild
type, which may also explain the differences in the pyrolysate abundances observed. Overall, Py-
GC/MS and thermogravimetric analysis of the wild type and mutant stems and leaves revealed
differences in the structure and composition of the biomass and its subsequent decomposition in

to other products upon pyrolysis.

Scenedesmus sp. microalgae were also analyzed by Py-GC/MS and pyrolysates were compared to
those generated when the microalgae were pyrolyzed in a spouted fluidized bed pyrolysis unit. A
large amount of fatty oxygenates originating from lipids present in the microalgae and
nitrogenous products originating from the proteins were observed in the bio-oil fractions obtained
from the fluidized bed pyrolysis unit. Py-GC-MS also observed fatty oxygenates and nitrogenous
species from the microalgae feedstock. Additionally, Py-GC/MS was also able to detect
significant production of carbohydrate pyrolysates, which were observed in only very minor

amounts in the spouted bed pyrolysis oil fractions. Differences observed in the products generated
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from the different reactors are attributed mainly to secondary reactions that occurred either during
pyrolysis in the spouted bed or in the oil during condensation. Overall, Py-GC/MS provided a
better understanding of the primary pyrolysates and the distribution of components present in the
microalgae feedstock but still provided insight towards the types of compounds that can be

generated on a larger scale pyrolysis unit.

Py-GC/MS was able to characterize the structure and composition of each biomass source
analyzed according to unique pyrolysates generated. Lignin monomers were analyzed as models
to validate the determination of certain monomers present in lignin in lignocellulosic biomass.
The similarities and differences between micro-scale Py-GC/MS pyrolysates and those obtained
from a larger fluidized bed unit have also been addressed. Py-GC/MS analysis of biomass and
biomass constituents has been supported and validated by other techniques including TGA and
NMR. However, interpretation of large data sets can be complicated and data obtained from the
pyrolysis of biomass can be dependent on many variables, including the presence of metals and
the formation of unanalyzable char fractions. Unlike many wet chemistry techniques though, Py-
GC/MS allows for rapid analysis of microgram quantities of biomass samples, requires little
sample preparation, does not require the use of hazardous materials and does not generate large
amounts of wastes. In conclusion, Py-GC/MS is capable of rapidly analyzing biomass and its
constituents in order to compare the structural variation of the components present in biomass.
Py-GC/MS analysis provides information which is complimentary to other techniques used to
analyze biomass and provides insight towards the kinds of chemicals capable of being generated

by the thermal decomposition of biomass on larger scales.

There is still much to be learned about the structure, composition and pyrolysis of the biomass
reported herein. Additional investigations varying the Py-GC/MS parameters, as well as those
incorporating large scale pyrolysis units, wet chemistry techniques and spectroscopic analysis
could be implemented in future studies. For example, solid-state NMR techniques or
thioacidolysis methods may be useful for comparing the structure of the lignin present in the
drupe endocarp to the sulfuric and formic acid-extracted lignins. Larger scale pyrolysis of the
endocarp feedstocks would also be necessary to determine if they would generate bio-oil with
improved properties (such as higher heating values) in comparison to other feedstocks such as
switchgrass. Studies on the saccharification properties and sugar analysis of the sorghum mutants
have already been performed, but further understanding of the structure of the lignin fraction and
its potential utilization and thermal decomposition could be investigated. Overall, Py-GC/MS

analysis has provided a means to compare biomass structures while simultaneously monitoring
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their thermal degradation products rapidly. However, it is important to gain a more
comprehensive understanding of the structure of biomass by the application of multiple analytical
techniques and it is important to understand its potential applications through larger scale

thermochemical conversion processes.

Copyright © Anne Elizabeth Ware

142



Appendix 1. List of Abbreviations

ASTM: Analytical Standard Test Method

ATR: Attenuated Total Reflection

CAD: Cinnamyl Alcohol Dehydrogenase

COMT: Caffeic Acid O-Methyl Transferase

DFRC: Derivatization Followed by Reductive Cleavage
DMSO: Dimethyl Sulfoxide

DTG: Derivative Thermogravimetric Analysis

E.lLA.: Energy Information Administration (USA)
EMS: Ethyl Methane Sulfonate

FTIR: Fourier Transform Infrared Spectroscopy
HHV: Higher Heating Value

HPLC: High Performance Liquid Chromatography
HSQC: Heteronuclear Single Quantum Coherence
LAP: Laboratory Analytical Protocol

LCC: Lignin Carbohydrate Complex

M1-M6: Marker Compound Group Numbers

MFC: Mass Flow Controller

ML or MWL Milled Wood Lignin

NBO: Nitrobenzene Oxidation

NIST: National Institute of Standards and Technology
NMR: Nuclear Magnetic Resonance

NREL.: National Renewable Energy Laboratory

PAH: Polycyclic Aromatic Hydrocarbon

Py-GC/MS: Pyrolysis-Gas Chromatography/Mass Spectrometry
RG: REDforGREEN Mutant Sorghum

SEM: Scanning Electron Microscopy

S:G or S/G: Sinapyl: Coniferyl Alcohol Ratio

TGA: Thermogravimetric Analysis

WT: Wild Type
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Appendix 2. Supplementary Tables

Supplementary Table 4.1. Walnut shell pyrolysates for biomass and extracted lignin. Bold species
are those that occur in highest abundance and standard deviations for pyrolysates from multiple

lignin extractions and multiple analysis of biomass are provided for the most abundant species.

Compound  Retention ~ Compound Whole Biomass Formic Acid Sulfuric Acid

Number Time Area % Lignin Area % Lignin Area %
6.50 2,3 butanedione 0.59 0.04 0.06
7.12 benzene 0.00 0.03 0.12

1 8.63 acetic acid 4.85 (+/-0.47) 0.10 0.09
9.84 1-hydroxy-2-propanone 1.33 0.00 0.00
10.12 toluene 0.19 0.58 0.22
13.20 ethylbenzene 0.00 0.2 0.03
13.43 xylene 0.00 0.07 0.16
13.44 acetic acid ethenyl ester 1.48 (+/- 0.09) 0.00 0.00
14.90 styrene 0.00 0.11 0.02

2 15.50 furfural 1.75 (+/- 0.06) 0.48 0.91
17.67 2-methyl-2-cyclopenten-1-one 0.00 0.00 0.09
19.80 1,2-cyclopentanedione 1.62 (+/- 0.08) 0.01 0.03
20.80 5-methyl-2-furancarboxaldehyde 0.00 0.03 0.19
21.70 2(5H)-furanone 0.57 0.00 0.00

3 22.80 4-hydroxy-5,6-dihydro-2H-pyran-2- 1.92 (+/- 0.11) 0.20 0.07
23.65 g?lfydroxy-3-methyl-2-cyclopenten- 1.72 (+/- 0.07 0.00 0.00

4 24.71 ;1)110;;1 0.96 3.25 (+-1.37) 1.27 (+/- 0.41)

5 25.35 2-methoxyphenol 5.06 (+/- 0.21) 9.62 (+/- 2.61) 4.58 (+/- 0.95)
26.46 2-methylphenol 0.56 1.80 (+/- 1.05) 1.60 (+/- 0.65)
27.00 2,6-dimethylphenol 0.00 0.23 0.36
27.72 4-methylphenol 0.67 2.89 (1.02) 1.54 (+/- 0.38)
27.80 3-methylphenol 0.61 0.96 0.71
27.90 2-methoxy-3-methylphenol 0.23 0.79 0.93

6 29.01 2-methoxy-4-methylphenol 3.87 (+/- 0.48) 10.51 (+/-2.57) 7.76 (+/-2.36)
29.37 2,4-dimethylphenol 0.47 2.00 (+-1.27) 2.27 (+/- 0.90)
29.81 3,4-dimethoxytoluene 0.11 0.24 0.02
30.05 2,3,5-trimethylphenol 0.00 0.07 0.25
30.78 4-ethylphenol 0.28 0.68 0.47
32.31 4-ethyl-2-methoxyphenol 1.56 (+/- 0.28) 3.05 (+/- 0.65) 2.41 (+/- 0.60)
33.06 1,4:3,6-dianhydro-.alpha.-d- 0.41 0.00 0.0

glucopyranose

33.67 4-vinylphenol 1.20 1.30 0.40

7 33.76 2-methoxy-4-vinylphenol 12.61 (+/- 0.23) 10.59 (+/-1.39) 3.65 (+/-0.15)
34.55 eugenol 2.80 (+/- 0.15) 1.80 (+/- 0.58) 0.34
34.70 2-methoxy-4-propylphenol 0.73 0.99 0.70
35.39 1,2-benzenediol 0.00 0.52 1.50
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Supplementary Table 4.1 (continued)

10
11

12

35.48
36.31

37.63
37.80
37.90

38.30
38.65
40.48
40.90

41.05
42.15
42.56

42.68
44.10

45.71

47.03

48.20
49.60

48.81

49.79

2,6-dimethoxyphenol

2-methoxy-4-(1-propenyl)phenol
2)
4-(2-propenyl)phenol

4-methyl-1,2-benzenediol

2-methoxy-4-(1-propenyl)phenol
(E)
4-methylsyringol

vanillin
4-ethylsyringol

4-hydroxy-3-methoxybenzoic acid
methyl ester
4-Hydroxy-3-methoxyacetophenone

4-vinylsyringol

1-(4-hydroxy-3-
methoxyphenyl)acetone
2,6-dimethoxy-4-(2-propenyl)phenol

2,6-dimethoxy-4-(1-propenyl)phenol
2
2,6-dimethoxy-4-(1-propenyl)phenol
(B)

4-hydroxy-3,5-
dimethoxybenzaldehyde
4-propylsyringol

4-((1E)-3-Hydroxy-1-propenyl)-2-
methoxyphenol T
3,5-Dimethoxy-4-
hydroxyacetophenone
3-(4-hydroxy-3-methoxyphenyl)-2-
propenal

271 (+- 0.23)
2.33 (+/-0.23)

1.04
0.00
12.50 (+/- 0.26)

1.16
3.54 (+/- 0.83)

071

0.34

1.00
1.57 (+/- 0.41)
0.81

0.41
0.00

0.42
0.06

0.00
0.33

0.10

0.15

3.82 (+- 0.54)
2.03 (+/- 0.63)

0.86
0.00
6.73 (+/- 3.66)

2.66 (+/- 0.72)
3.47 (+/- 1.59)
0.33
0.17

0.79
0.38
0.98

0.20
0.00

0.38
0.50

0.00
0.00

0.12

0.00

3.22 (+- 0.38)
1.41 (+/- 0.46)

1.12
1.53 (+/- 0.76)
4.35 (+/- 0.67)

2.58 (+/- 0.50)
4.25 (+/- 1.50)
0.68
0.00

1.71 (+/- 1.56)
0.88
0.89

0.52
0.28

0.34
0.00

0.00
0.00

0.00

0.00

Sum identified compounds

Sum lignin-based pyrolysates
Sum sinapyl-based pyrolysates
Sum coniferyl-based pyrolysates

Sum area % S/G

78.37 (+/- 0.56)
61.61 (+/- 1.12)
7.14 (+/- 0.96)
47.61 (+/- 0.54)
0.15 (+/- 0.02)

76.56 (+/- 5.32)
75.70 (+/- 4.94)
8.39 (+/- 0.60)
50.73 (+/- 2.74)
0.17 (+/- 0.02)

56.51 (+/- 1.53)
55.07 (+/- 2.13)
8.50 (+/- 2.35)
32.05 (+/- 1.51)
0.27 (+/- 0.06)
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Supplementary Table 4.2. Peach pit pyrolysates from biomass and lignin. Bold species are those
that occur in highest abundance and standard deviations for pyrolysates from multiple lignin
extractions and multiple analysis of biomass are provided for the most abundant species.

Compound  Retention  Compound Whole Biomass Formic Acid Sulfuric Acid

Number Time Area % Lignin Area % Lignin Area %
6.50 2,3 butanedione 0.36 0.20 0.29
7.12 benzene 0.00 0.00 0.07

1 8.63 acetic acid 1.87 (+/- 0.66) 0.92 0.14
9.84 1-hydroxy-2-propanone 112 0.16 0.00
10.12 toluene 0.39 0.15 0.49
13.40 5-Hydroxymethyl-2[5H]-furanone 0.17 0.00 0.00
13.43 xylene 0.00 0.08 0.29
13.44 acetic acid ethenyl ester 1.90 (+/- 0.06) 0.00 0.00
14.80 Propanoic acid, 2-oxo-, methyl ester 0.84 0.00 0.00
14.90 styrene 0.00 0.00 0.31

2 15.50 furfural 1.89 (+/- 0.21) 1.35 1.20
17.10 5-methyl-2-3h-furanone 0.15 0.00 0.00
17.67 2-methyl-2-cyclopenten-1-one 0.00 0.00 0.17
14.20 2-furanmethanol 0.10 0.00 0.00
18.70 2-cyclopentene-1,4-dione 0.19 0.07 0.00
19.80 1,2-cyclopentanedione 1.18 0.09 0.00
20.80 5-methyl-2-furancarboxaldehyde 0.21 0.01 0.32
20.87 3-methyl-2-cyclopenten-1-one 0.03 0.00 0.02
21.70 2(5H)-furanone 0.66 0.04 0.00

3 22.80 4-hydroxy-5,6-dihydro-2H-pyran- 4.23 (+/- 0.34) 141 0.00
23.65 ;—;)1;3roxy-3-methyl-2-cyclopenten- 2.16 (+/- 0.27) 0.00 0.12

4 24.71 :);.0::121 0.74 0.77 2.00 (+/- 0.60)

5 25.35 2-methoxyphenol 3.08 (+/- 0.38) 3.70 (+/- 0.05) 7.50 (+/- 1.81)
26.46 2-methylphenol 0.49 0.59 2.67 (+/- 1.03)
27.72 4-methylphenol 1.20 0.67 1.52 (+/- 0.36)
27.80 3-methylphenol 0.62 0.36 0.90
27.90 2-methoxy-3-methylphenol 0.23 0.23 1.74 (+/- 0.65)
28.20 5-Hydroxymethyldihydrofuran-2-one 1.28 0.00 0.00

6 29.01 2-methoxy-4-methylphenol 4.89 (+/- 0.85) 5.63 (+/- 0.86) 10.09 (+/- 1.54)
29.37 2,4-dimethylphenol 0.87 0.90 3.63 (+/- 1.24)
29.80 3,4-dimethoxytoluene 0.00 0.11 0.11
30.05 2,3,5-trimethylphenol 0.00 0.17 0.59
30.78 4-ethylphenol 0.27 0.19 0.65
30.80 3,5-dimethylphenol 0.39 0.00 0.99
32.20 3-methyl-2,4(3H,5H)-Furandione 1.61 (+/- 0.16) 0.00 0.00
32.31 4-ethyl-2-methoxyphenol 1.67 (+/- 0.04) 1.32 3.36 (+/- 0.87)
33.06 1,4:3,6-dianhydro-.alpha.-d- 0.16 0.00 0.00

glucopyranose
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Supplementary Table 4.2 (continued)

10
11

12

33.67
33.76
34.55
34.70
35.39
35.48
36.31

37.63
37.90

38.30
38.65
40.48
41.05
42.15
42.56

42.68

44.10

45.71

47.03

48.81

49.79

494

4-vinylphenol
2-methoxy-4-vinylphenol
eugenol
2-methoxy-4-propylphenol
1,2-Benzenediol
2,6-dimethoxyphenol

2-methoxy-4-(1-propenyl)phenol
()]
4-(2-propenyl)phenol

2-methoxy-4-(1-propenyl)phenol
(E)
4-methylsyringol

vanillin

4-ethylsyringol
4-Hydroxy-3-methoxyacetophenone
4-vinylsyringol

1-(4-Hydroxy-3-
methoxyphenyl)acetone
2,6-dimethoxy-4-(2-
propenyl)phenol
2,6-dimethoxy-4-(1-propenyl)phenol
@
2,6-dimethoxy-4-(1-propenyl)phenol
®

4-hydroxy-3,5-
dimethoxybenzaldehyde
3,5-Dimethoxy-4-
hydroxyacetophenone
3-(4-hydroxy-3-methoxyphenyl)-2-
propenal

Sinapy! alcohol

067
10.35 (+- 1.71)
2.77 (+- 0.26)

0.80

0.00
2.51 (+/- 0.61)
2.12 (+/- 0.04)

0.35
9.21 (+/- 1.97)

2.96 (+/- 0.76)
2.89 (+/- 1.80)
0.45
0.00
0.60
0.22

0.30
0.00
0.16
0.22
0.09
0.43

0.28

0.50
4.67 (+/- 1.08)
2.01 (+/- 0.63)
1.06
0.64
4.71 (+/- 0.84)
2.21 (+/-0.33)

0.77
7.38 (+- 0.97)

6.11 (+/- 1.35)
6.55 (+/-2.23)
115
1.56 (+/- 0.95)
1.70 (+/- 0.94)
2.17 (+/- 1.37)

1.60 (+/- 0.92)
073
1.03
0.28
0.12
0.00

0.00

0.00
3.23 (+-1.23)
0.33
0.46
0.00
3.60 (+/- 0.91)
0.77

0.00
2.71 (+- 1.40)

2.69 (+/- 1.19)
2.82 (+/- 2.04)
057
1.08
0.43
041

0.17
0.08
0.00
0.00
0.00
0.00

0.00

Sum identified compounds

Sum lignin-based pyrolysates
Sum sinapyl-based pyrolysates
Sum coniferyl-based pyrolysates

Sum area % S/G

72.30 (+- 2.94)
52.19 (+/- 3.93)
7.54 (+/- 1.43)

38.43 (+/- 3.77)
0.20 (+/- 0.05)

66.07 (+/- 2.52)
61.82 (+/- 6.03)
17.43 (+/- 5.08)

38.26 (+/- 1.87)
0.46 (+/- 0.12)

58.69 (+/- 2.89)
56.43(+/- 2.25)
7.54 (+1- 2.57)

32.93 (+/- 1.01)
0.23 (+/- 0.07)
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Supplementary Table 4.3. Coconut shell pyrolysates from biomass and extracted lignin. Bold
species are those that occur in highest abundance and standard deviations for pyrolysates from
multiple lignin extractions and multiple analysis of biomass are provided for the most abundant
species.

Compound  Retention Compound Whole Biomass Area Formic Acid Sulfuric Acid
Number Time % Lignin Area % Lignin Area %
6.50 2,3 butanedione 0.44 0.26 0.06
7.12 benzene 0.00 0.05 0.00
1 8.63 acetic acid 4.68 (+/- 0.19) 1.36 (+/- 0.19) 0.00
9.84 1-hydroxy-2-propanone 0.93 0.09 0.00
10.12 toluene 0.00 0.22 0.36
13.20 ethylbenzene 0.00 0.04 0.00
13.43 xylene 0.00 0.05 0.17
13.44 acetic acid ethenyl ester 1.22 0.00 0.00
14.90 styrene 0.00 0.00 0.00
2 15.50 furfural 1.64 (+/- 0.04) 1.49 (+/- 0.45) 1.24
17.67 2-methyl-2-cyclopenten-1-one 0.00 0.00 0.06
18.70 2-cyclopentene-1,4-dione 0.00 0.03 0.04
19.80 1,2-cyclopentanedione 1.05 0.12 0.00
20.80 5-methyl-2- 0.12 0.00 0.26
furancarboxaldehyde
20.87 3-methyl-2-cyclopenten-1-one 0.00 0.06 0.01
21.70 2(5H)-furanone 0.47 0.00 0.00
3 22.80 4-hydroxy-5,6-dihydro-2H- 2.70 (+/- 0.11) 1.15 0.02
pyran-2-one
23.65 2-hydroxy-3-methyl-2- 1.16 0.00 0.00
cyclopenten-1-one
4 24.71 phenol 6.43 (+/- 0.34) 9.42 (+/- 2.69) 12.71 (+/-3.09)
5 25.35 2-methoxyphenol 2.33 (+/- 0.06) 4.26 (+/- 0.91) 3.27 (+/- 0.68)
26.46 2-methylphenol 0.47 1.33 5.98 (+/- 2.88)
28.00 2,6-dimethylphenol 0.00 1.38 0.48
27.72 4-methylphenol 0.36 0.58 1.53 (+/- 0.47)
27.80 3-methylphenol 0.38 0.54 0.76
27.90 2-methoxy-3-methylphenol 0.16 4.88 (+/- 0.48) 0.87
6 29.01 2-methoxy-4-methylphenol 1.70 (+/- 0.06) 0.95 3.83 (+/- 0.53)
29.37 2,4-dimethylphenol 0.24 0.35 1.72 (+/- 0.71)
30.05 2,3,5-trimethylphenol 0.00 0.12 0.25
30.78 4-ethylphenol 0.00 0.39 0.31
30.80 3,5-dimethylphenol 0.09 0.00 0.00
32.31 4-ethyl-2-methoxyphenol 0.72 1.78 (+/- 0.27) 1.40
33.06 1,4:3,6-dianhydro-.alpha.-d- 0.28 0.00 0.71
glucopyranose
33.67 4-vinylphenol 0.64 0.86 0.35
7 33.76 2-methoxy-4-vinylphenol 7.23 (+/- 0.33) 5.67 (+/-1.22) 3.14 (+/- 0.63)
34.55 eugenol 0.97 1.28 0.42
34.70 2-methoxy-4-propylphenol 0.22 1.35 0.44
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Supplementary Table 4.3 (continued)

10
11

12

35.48
36.31

37.63
37.90

38.30
38.65
40.48
40.90

41.05

42.15
42.56

42.68

44.10

45.71

47.03

48.20
49.60

48.81

49.79

2,6-dimethoxyphenol

2-methoxy-4-(1-
propenyl)phenol (Z)
4-(2-propenyl)phenol

2-methoxy-4-(1-
propenyl)phenol (E)
4-methylsyringol

vanillin
4-ethylsyringol

4-hydroxy-3-methoxybenzoic
acid methyl ester
4-Hydroxy-3-
methoxyacetophenone
4-vinylsyringol

1-(4-Hydroxy-3-
methoxyphenyl)acetone
2,6-dimethoxy-4-(2-
propenyl)phenol
2,6-dimethoxy-4-(1-
propenyl)phenol (Z)
2,6-dimethoxy-4-(1-
propenyl)phenol (E)
4-hydroxy-3,5-
dimethoxybenzaldehyde
4-propylsyringol

4-((1E)-3-Hydroxy-1-
propenyl)-2-methoxyphenol T
3,5-Dimethoxy-4-
hydroxyacetophenone
3-(4-hydroxy-3-
methoxyphenyl)-2-propenal

11.94 (+- 0.28)
0.83

0.50
5.4 (+/- 0.01)

5.62 (+/- 0.09)

1.49 (+/- 0.20)

1.89 (+/- 0.12)
0.25

0.73

6.46 (+/- 0.34)
0.49

2.35 (+/- 0.36)
1.00

3.89 (+/- 0.24)
0.44

0.00
0.41

0.00

0.22

11.93 (+/-1.45)
1.62 (+/- 0.06)

0.69
4.38 (+/- 1.01)

8.14 (+/- 1.28)
2.12 (+-1.42)
1.40
0.07

0.17

1.17
0.67

0.92
0.16
0.44
0.16

0.00
0.00

0.14

0.00

9.16 (+/- 2.90)
0.77

0.00
1.98 (+/- 0.71)

9.09 (+/-3.17)

1.59 (+/- 0.95)

2.07 (+/- 0.78)
0.18

0.11

1.36
0.00

0.44
0.11
0.19
0.00

0.07
0.00

0.05

0.00

Sum identified compounds
Sum lignin-based pyrolysates
Sum sinapyl-based pyrolysates

Sum coniferyl-based
pyrolysates
Sum area % S/G

8L11 (+/-0.57)
66.03 (+/- 0.411
33.59 (+/- 0.29)
23.03 (+/- 0.31)

1.46 (+/- 0.03)

74.24 (+/- 2.51)
69.68 (+/- 3.06)
24.46 (+/- 0.60)
24.32 (+- 3.34)

1.01 (+/- 0.15)

67.56 (+/- 2.60)
65.16 (+/- 2.80)
22.54 (+/- 8.03)
17.13 (+/- 2.99)

1.32 (+/-0.33)
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Supplementary Table 4.4. Olive pit pyrolysates from biomass and lignin. Bold species are those
that occur in highest abundance and standard deviations for pyrolysates from multiple lignin
extractions and multiple analysis of biomass are provided for the most abundant species.

Compound  Retention Compound Whole Biomass Area Formic Acid Sulfuric Acid
Number Time % Lignin Area % Lignin Area %
6.50 2,3 butanedione 0.62 0.19 0.00
7.12 benzene 0.00 0.00 0.35
1 8.63 acetic acid 4.66 (+/- 0.34) 0.17 0.08
9.84 1-hydroxy-2-propanone 1.54 (+/- 0.04) 0.06 0.00
10.12 toluene 0.00 0.00 0.48
13.20 ethylbenzene 0.00 0.25 0.00
13.43 xylene 0.00 0.03 0.14
13.44 acetic acid ethenyl ester 1.62 (+/- 0.20) 0.00 0.00
14.90 styrene 0.00 0.03 0.15
2 15.50 furfural 1.88 (+/- 0.10) 1.36 0.88
17.67 2-methyl-2-cyclopenten-1-one 0.00 0.04 0.10
14.20 2-furanmethanol 0.30 0.00 0.00
18.70 2-cyclopentene-1,4-dione 0.00 0.00 0.03
19.80 1,2-cyclopentanedione 0.95 0.07 0.00
20.80 5-methyl-2-furancarboxaldehyde 0.00 0.00 0.12
20.87 3-methyl-2-cyclopenten-1-one 0.00 0.00 0.05
21.70 2(5H)-furanone 0.51 0.00 0.00
3 22.80 4-hydroxy-5,6-dihydro-2H- 2.84 (+/- 0.13) 0.36 0.11
pyran-2-one
23.65 2-hydroxy-3-methyl-2- 1.44 0.00 0.00
cyclopenten-1-one
4 24.71 phenol 0.48 0.48 0.57
5 25.35 2-methoxyphenol 3.71 (+/- 0.46) 4.96 (+/- 1.22) 4.13 (+/- 0.78)
26.46 2-methylphenol 0.39 0.63 1.11
27.00 2,6-dimethylphenol 0.00 0.00 0.00
27.72 4-methylphenol 0.13 0.33 0.36
27.80 3-methylphenol 0.44 0.37 0.48
27.90 2-methoxy-3-methylphenol 0.14 0.39 1.07
28.50 levoglucosenone 0.00 0.00 1.85
6 29.01 2-methoxy-4-methylphenol 2.19 (+/- 0.09) 6.66 (+/-1.17) 5.76 (+/- 1.53)
29.37 2,4-dimethylphenol 0.32 0.85 1.68 (+/- 0.02)
29.80 3,4-dimethoxytoluene 0.06 0.11 0.00
30.05 2,3,5-trimethylphenol 0.00 0.14 0.25
30.78 4-ethylphenol 0.00 0.35 0.38
30.80 3,5-dimethylphenol 0.13 0.34 0.73
3231 4-ethyl-2-methoxyphenol 0.85 1.71 (+/- 0.46) 1.98 (+/- 0.46)
33.06 1,4:3,6-dianhydro-.alpha.-d- 0.45 0.00 1.08
glucopyranose
33.67 4-vinylphenol 0.20 0.00 0.10
7 33.76 2-methoxy-4-vinylphenol 8.01 (+/- 0.56) 4.81 (+/- 0.79) 2.54 (+/- 0.31)
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Supplementary Table 4.4 (continued)

10
11

12

34.55
34.70
35.48
36.31

37.63
37.90

38.30
38.65
40.48
40.90

41.05

42.15
42.56

42.68

44.10

45.71

47.03

49.60

48.81

eugenol
2-methoxy-4-propylphenol
2,6-dimethoxyphenol

2-methoxy-4-(1-
propenyl)phenol (Z)
4-(2-propenyl)phenol

2-methoxy-4-(1-
propenyl)phenol (E)
4-methylsyringol

vanillin
4-ethylsyringol

4-hydroxy-3-methoxybenzoic
acid methyl ester
4-Hydroxy-3-
methoxyacetophenone
4-vinylsyringol

1-(4-Hydroxy-3-
methoxyphenyl)acetone
2,6-dimethoxy-4-(2-
propenyl)phenol
2,6-dimethoxy-4-(1-
propenyl)phenol (Z)
2,6-dimethoxy-4-(1-
propenyl)phenol (E)
4-hydroxy-3,5-
dimethoxybenzaldehyde
4-((1E)-3-Hydroxy-1-propenyl)-
2-methoxyphenol T
3,5-Dimethoxy-4-
hydroxyacetophenone

1.38

0.29
10.58 (+/- 0.42)

1.15

0.00
8.11 (+/- 0.21)

4.45 (+/- 0.33)

2.30 (+/- 0.41)

2.08 (+/- 0.03)
0.18

0.99

9.28 (+/- 0.67)
1.07

2.18 (+/- 0.10)
0.65
2.19 (+/- 0.10)
0.19
051

0.00

1.79 (+/- 0.13)
1.16
11.12 (+/- 2.74)
1.75 (+/- 0.29)

0.00
6.06 (+/- 0.67)

10.06 (+/- 0.90)
435 (+/- 0.66)
1.62(+/- 0.55)

0.52

0.75

1.38
1.48

1.73 (+/- 1.10)
0.79
0.56
0.08
0.00

0.06

0.99

1.13
9.86 (+/- 1.26)

0.89

0.00
2.79 (+- 0.03)

8.64 (+/- 1.71)

2.64 (+/- 0.36)

1.52 (+/- 0.51)
0.28

0.49

0.72
0.43

0.35
0.00
0.11
0.13
0.00

0.00

Sum identified compounds

Sum lignin-based pyrolysates
Sum sinapyl-based pyrolysates
Sum coniferyl-based pyrolysates

Sum area % S/G

81.44 (+/- 0.95)
64.63 (+/- 0.46)
31.60 (+/- 0.82)
29.36 (+/- 0.61)
1.08 (+/- 0.04)

69.95 (+/- 4.82)
67.70 (+/- 4.29)
27.40( +- 1.84)
34.21 (+/- 4.70)
0.80 (+/- 0.12)

57.53 (+/- 1.58)
53.23(+/- 2.89)
21.33 (+/- 2.99)
23.06 (+/- 1.77)
0.92 (+/- 0.16)
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Supplementary Table 4.5. Pyrolysates obtained from the pyrolysis of endocarp pulp residues from
formic acid extractions (extractions at 65 °C, 24 h).

Retention Compound Walnut shell Coconut shell Peach pit Olive pit
Time residue residue residue residue
6.30 2,3-butanedione 0.47 0.34 0.38 0.60
6.63 hydroxyacetaldehyde 0.03 0.00 0.00 0.00
7.62 formic acid 0.00 0.35 0.00 0.00
8.38 acetic acid 0.88 0.64 0.15 0.33
9.24 1-hydroxy-2-propanone 0.61 0.53 0.34 1.94
10.12 toluene 0.06 0.04 0.04 0.04
12.73 acetic acid methyl ester 0.93 0.46 0.44 0.54
14.36 propanal 0.30 0.20 0.00 0.00
14.80 propanoic acid, 2-oxo-, methyl 0.33 0.09 0.00 1.12
15.04 :litrefrural 2.02 (+/- 0.16) 1.58 (+/-0.22)  1.70 (+/-0.65)  2.58 (+/- 0.61)
17.10 5-methyl-2-3h-furanone 0.12 0.11 0.00 0.00
17.50 1-(2-furanyl)-ethanone 0.00 0.00 0.00 0.14
18.30 2-cyclopentene-1,4-dione 0.15 0.04 0.08 0.17
19.00 4-hydroxydihydro-2(3H)-furanone 0.00 0.00 0.00 0.02
19.40 1,2-cyclopentanedione 0.81 0.76 0.54 1.72 (+/- 0.55)
20.18 2-Cyclohexen-1-ol 0.49 0.36 0.17 0.43
20.40 5-methyl-2-furancarboxaldehyde 0.21 0.23 0.12 0.53
20.87 3-methyl-2-cyclopenten-1-one 0.02 0.03 0.00 0.13
21.49 2(5H)-furanone 0.26 0.24 0.26 0.79
22.40 4-hydroxy-5,6-dihydro-2H- 2.84 (+/- 0.87) 1.84 (+/-0.57)  1.40 (+/- 0.86) 1.15
pyran-2-one
23.22 2-hydroxy-3-methyl-2- 0.48 0.83 0.47 1.48 (+/- 0.60)
cyclopenten-1-one
24.42 phenol 0.51 4.12 (+/- 0.87) 0.34 0.67
25.00 2-methoxyphenol 2.39 (+/- 0.19) 1.81 (+/-0.44)  2.58 (+/-0.57)  3.09 (+/- 0.20)
26.18 2-methylphenol 0.42 0.49 0.40 0.34
26.69 2,6-dimethylphenol 0.27 0.00 0.23 0.00
26.90 2,5-furandicarboxaldehyde 0.51 0.35 0.37 0.26
27.30 4-methylphenol 0.50 0.15 0.19 0.09
27.40 3-methylphenol 0.00 0.14 0.23 0.24
27.50 2-methoxy-3-methylphenol 0.00 0.64 0.00 0.18
28.20 5-hydroxymethyldihydrofuran-2- 0.00 0.19 0.50 0.26
28.33 ?erlleoglucosenone 0.00 0.00 0.00 0.70
29.01 2-methoxy-4-methylphenol 3.88 (+/- 0.48) 2.04 (+-025) 429 (+/-0.59)  1.50 (+/- 0.46)
29.03 2,4-dimethylphenol 0.59 0.30 0.62 0.24
29.39 3,5-dihydroxy-2-methyl-4H- 0.07 2.14 (+/- 0.55) 0.37 0.90
pyran-4-one
30.78 4-ethylphenol 0.08 0.11 0.00 0.00
3231 4-ethyl-2-methoxyphenol 0.85 0.32 0.37 0.21
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Supplementary Table 4.5 (continued)

32.20
32.73

33.43
34.19
34.28
34.73
35.11
35.95

36.95
37.56

37.94
38.30
40.00
40.50

40.67

41.80
42.13

42.33

43.39

43.717

44.80
45.04
45.37

45.98

47.03

48.00

48.97

2,3-anhydro-d-mannosan

1,4:3,6-dianhydro-.alpha.-d-
glucopyranose
2-methoxy-4-vinylphenol

eugenol
2-methoxy-4-propylphenol
5-(hydroxymethyl)furfural
2,6-dimethoxyphenol

2-methoxy-4-(1-propenyl)phenol
(z)
4-(2-propenyl)phenol

2-methoxy-4-(1-propenyl)phenol
(E)
4-methylsyringol

vanillin
4-ethylsyringol

4-hydroxy-3-methoxybenzoic acid
methyl ester

4-hydroxy-3-
methoxyacetophenone
4-vinylsyringol

1-(4-hydroxy-3-
methoxyphenyl)acetone
2,6-dimethoxy-4-(2-
propenyl)phenol
4-((1E)-3-Hydroxy-1-propenyl)-
2-methoxyphenol T
2,6-dimethoxy-4-(1-
propenyl)phenol (Z)
1,6-anhydro-p- D-glucopyranose

3-methoxy-2-naphthalenol

2,6-dimethoxy-4-(1-
propenyl)phenol (E)
4-hydroxy-3-methoxy-
phenylacetylformic acid
4-hydroxy-3,5-
dimethoxybenzaldehyde
3,5-Dimethoxy-4-
hydroxyacetophenone
3-(4-hydroxy-3-methoxyphenyl)-2-
propenal

0.86
0.81

5.34 (+/- 1.34)
1.41 (+/- 0.09)
0.38
2.65 (+/-1.27)
117
1.35 (+/- 0.09)

2.57 (+/- 1.64)
5.64 (+/- 1.21)

1.65 (+/- 0.42)

4.03 (+/- 0.28)

1.55 (+/- 0.38)
0.43

1.31 (+/- 1.04)

1.32 (+/- 0.44)
3.65 (+/- 0.69)

1.03
1.46 (+/- 0.09)
0.50

2.47 (+/- 2.00)
0.80
1.52 (+/- 0.03)

0.73
0.22
0.08

0.98

0.65
0.82

4.06 (+/- 0.87)
0.61
0.24
3.66 (+/- 1.73)
4.74 (+/- 0.47)
0.94

0.00
3.14 (+- 0.55)

6.41 (+/- 0.92)
1.83 (+/- 0.34)
0.78
0.25

0.68

4.68 (+/-0.13)
139 (+- 0.21)

2.85 (+- 0.50)
0.53
1.36 (+/- 0.16)

1.51 (+/- 0.49)
0.00
5.25 (+/- 0.99)

0.13
0.27
0.13

0.00

0.95
112

3.94 (+/- 1.22)
1.62 (+/- 0.81)
0.37
1.30 (+/- 0.30)
1.49 (+/- 0.28)
1.08

0.00
4.75 (+/- 0.76)

1.99 (+/- 0.23)
3.58 (+/- 0.69)
1.19
0.37

2.01 (+/- 0.32)

1.62 (+/- 0.21)
3.71 (+-1.05)

1.30 (+/- 0.17)
1.91 (+/- 0.18)
1.12

3.62 (+/- 0.68)
1.01
2.77 (+- 0.73)

1.58 (+/- 0.51)
1.14
0.42

1.14

1.73 (+/- 0.16)
2.14 (+/- 0.20)

1.83 (+/- 0.23)
0.41
0.18

7.53 (+/- 0.58)

3.58 (+/- 0.19)
0.65

0.00
2.19 (+/- 0.29)

1.99 (+/- 0.62)
1.48 (+/- 0.28)
0.60
0.37

0.95

1.48 (+/- 0.34)
2.10 (+/- 0.71)

0.60
0.60
0.55

3.02 (+/- 1.61)
0.55
1.19

0.00
0.43
0.03

0.00

Sum identified compounds

Sum lignin-based pyrolysates
Sum sinapyl-based pyrolysates
Sum coniferyl-based pyrolysates

Sum area % S/G

67.00 (+/- 5.08)
48.69 (+/- 1.19)
9.05 (+/- 1.90)
34.64 (+/- 1.36)
0.26 (+/- 0.05)

68.38 (+/- 1.69)
50.43 (+/- 3.60)
26.47 (+1- 2.11)
17.97 (+/- 1.39)
1.47 (+/- 0.02)

63.65 (+/- 3.16)
49.39 (+- 0.27)
13.04 (+/- 0.73)
34.29 (+/- 0.74)
0.38 (+/- 0.01)

58.57 (+/- 1.22)
28.36 (+/- 4.97)
10.45 (+/- 1.74)
16.10 (+/- 3.17)
0.65 (+/- 0.02)
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Appendix 3. Supplementary Figures

Supplementary Figure 4.1. Walnut shell formic acid lignin (red) and sulfuric acid lignin (purple)
ATR IR spectra.
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Supplementary Figure 4.2. Coconut shell formic acid lignin (red) and sulfuric acid lignin (purple)
ATR IR spectra.
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