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RESEARCH ARTICLE Open Access

A support vector machine based test for
incongruence between sets of trees in
tree space
David C Haws1, Peter Huggins3, Eric M O’Neill2, David W Weisrock2 and Ruriko Yoshida1*

Abstract

Background: The increased use of multi-locus data sets for phylogenetic reconstruction has increased the need to
determine whether a set of gene trees significantly deviate from the phylogenetic patterns of other genes. Such
unusual gene trees may have been influenced by other evolutionary processes such as selection, gene duplication, or
horizontal gene transfer.

Results: Motivated by this problem we propose a nonparametric goodness-of-fit test for two empirical distributions
of gene trees, and we developed the software GeneOut to estimate a p-value for the test. Our approach maps trees
into a multi-dimensional vector space and then applies support vector machines (SVMs) to measure the separation
between two sets of pre-defined trees. We use a permutation test to assess the significance of the SVM separation. To
demonstrate the performance of GeneOut, we applied it to the comparison of gene trees simulated within different
species trees across a range of species tree depths. Applied directly to sets of simulated gene trees with large sample
sizes, GeneOut was able to detect very small differences between two set of gene trees generated under different
species trees. Our statistical test can also include tree reconstruction into its test framework through a variety of
phylogenetic optimality criteria. When applied to DNA sequence data simulated from different sets of gene trees,
results in the form of receiver operating characteristic (ROC) curves indicated that GeneOut performed well in the
detection of differences between sets of trees with different distributions in a multi-dimensional space. Furthermore,
it controlled false positive and false negative rates very well, indicating a high degree of accuracy.

Conclusions: The non-parametric nature of our statistical test provides fast and efficient analyses, and makes it an
applicable test for any scenario where evolutionary or other factors can lead to trees with different multi-dimensional
distributions. The software GeneOut is freely available under the GNU public license.

Background
Systematists often wish to compare gene trees, or sets
of trees, to each other in a statistical framework and
ask whether or not they are significantly different. These
efforts have been more traditionally applied to the eval-
uation of competing phylogenetic hypotheses [1,2]. For
example, in the analysis of a single data set, a tree recon-
structed in an unconstrained search can be compared to
a tree reconstructed under a topological constraint to cal-
culate the difference in tree scores. When compared to the
distribution of tree-score differences calculated in a series

*Correspondence: ruriko.yoshida@uky.edu
1Department of Statistics, University of Kentucky, 725 Rose Street, Lexington,
KY 40536-0082, USA
Full list of author information is available at the end of the article

of simulated data sets, the systematist can determine if
their data reject alternative phylogenetic hypotheses [3].
More recently, with the growth of multi-locus phyloge-
netic data sets, this need has also grown to compare
trees generated from different genomic regions, spurring
the development of a number of different methods for
assessing concordance or discordance among trees across
genes [4]. In addition, comparisons need not be restricted
to trees generated from analyses of separate data sets.
For example, Markov chain monte carlo (MCMC) phy-
logenetic analyses require a user to determine when
independently-run MCMC analyses of the same data set
have converged on the same posterior distribution of
trees. Often this is assessed through the comparison of
simple summary statistics such as the distribution of log

© 2012 Haws et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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likelihood scores or through visualization methods that
permit comparisons of the tree topology across indepen-
dent runs [5].

Overall, this is not meant to be an exhaustive list of sit-
uations where trees, or sets of trees, need to be compared
with each other, but it highlights a general need in phylo-
genetics for tools to assess congruence, particularly from
a statistical perspective. A non-parametric test is a prefer-
able tool to use for these purposes in light of the growing
availability of phylogenomic data sets because of the sim-
plicity in its implementation and efficiency in providing
results.

Projecting and visualizing trees in a multi-dimensional
framework provides a useful mechanism for comparing
large numbers of phylogenetic trees [6,7]. For exam-
ple, pairwise distances between trees can be calcu-
lated using a variety of metrics (e.g., Robinson-Foulds
distances) and these matrices can be analyzed using
multi-dimensional scaling techniques to plot tree-to-
tree distances in ordination space [6]. Another example
is the software AWTY for a visual comparison of the
posterior distributions from two runs of Bayesian tree
construction analysis [5]. These methods can be infor-
mative in highlighting differences in pre-defined sets of
trees (e.g., [8]). However, few actual statistical tests are
available for distinguishing between pre-defined sets of
trees that have significantly different multi-dimensional
distributions.

Here we propose a non-parametric test combined with
a permutation test and the use of support vector machines
(SVMs) as a quantitative tool of a statistical test to deter-
mine if sets of vectorized gene trees have significantly
different multi-dimensional distributions. SVMs can be
applied to any two collections of trees which may or may
not have been sampled from the same underlying distri-
bution (e.g., reconstructed gene trees for host and parasite
species), or two posterior sets of trees independently gen-
erated from Bayesian analysis of a single dataset. From a
practical perspective, a major reason for the popularity of
SVMs in machine learning is their efficiency and accu-
racy at classifying data in a high dimensional vector space
(see [9] for a recent review of SVMs along with biological
applications).

In our approach, trees can be incorporated into a sta-
tistical framework by converting them into a numerical
vector format based on a distance matrix or map, see
Figure 1. These vectorized trees can then be analyzed as
points in a multi-dimensional space where the distance
between trees increases as they become more dissimilar
[6,10,11]. While these methods are effective in the evalu-
ation of large numbers of trees, they have primarily been
used in the qualitative visualization of tree space [6,12] or
statistical applications that test for incongruence simply
between two trees [7,13].

SVMs are supervised learning algorithms that can be
used to compute the separation between two sets of
points, or point-clouds, in a multi-dimensional space [14].
Given two sets of points X+ and X− in high dimensional
space, an SVM finds a hyperplane H that maximizes lin-
ear separation between X+ and X− (see Figure 2) while
attempting to avoid overfitting. The hyperplane splits
multidimensional space into two half-spaces H+ and H−.
The separation percentage δ is half the percentage of
points of X+ in H+, plus half the percentage of points
of X− in H−. For data sets X+ and X− which are not
entirely separable, the separation percentage produced by
the SVM hyperplane is a quantitative and intuitive mea-
sure of separation. Overall, the classification of data with
SVMs is a two-step process. In the first step (i.e. training),
the SVM algorithm uses a set of pre-classified examples
each belonging to one of two categories to learn a hyper-
plane that maximizes an objective that balances between
separating the two categories while avoiding overfitting.
In the second step (i.e. testing), new examples are mapped
into the same space and predicted to belong to a cate-
gory based on which side of the established hyperplane
they fall.

To implement SVMs in the statistical testing of tree dis-
tributions, we developed a permutation test, augmented
by bootstrapping for application to DNA sequence align-
ments, that assesses the significance of SVM separation
percentages between two predefined sets of vectorized
trees in multidimensional space. We emphasize that the
SVM separation alone is not an indication that the two
sets of trees are incongruent. That is, the SVM separation
percentage is only relevant when compared to all possible
SVM separation percentages when permuting the data.
For example, suppose 100 gene trees were sampled under
the coalescent. Most likely the trees will not be identical
but the SVM separation percentages will be indistinguish-
able for all possible test with 1 tree in one set and the
other 99 trees in the other test, implying that no sin-
gle tree will appear as an outlier. Also, we note that the
SVM separation percentages may be above 50% and this
does not present a problem as all other SVM separation
percentages when permuting the data will be similar.

To demonstrate the utility of our statistical test in dis-
criminating between different sets of trees, we apply it
in a simulation study that compares gene trees sam-
pled from two different eight-taxa species trees. By vary-
ing the total depth of the species trees, this frame-
work serves as a general proxy for generating sets
of trees with varying levels of overlap in multidimen-
sional space. In addition to exploring the sensitivity
of our statistical test in detecting differences among
gene tree distributions, we also explore its perfor-
mance using different mapping techniques (dissimilar-
ity maps vs. topological dissimilarity maps) and tree
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Figure 1 Schematic of how trees are converted to vectors. Numbers on branches in the unrooted tree are branch lengths. In this example, the
tree is first converted to either a branch length-based dissimilarity map (matrix of distances between tips) or topological dissimilarity maps (matrix of
number of edges between tips). Moving from left to right across rows in one half of a matrix, values are placed into a single column to yield a vector
of distances between tips in the tree.

reconstruction methods (Bayesian, Maximum Likelihood,
and Neighbor Joining). Finally, we assess the scalabil-
ity of our statistical test to trees with larger numbers
of taxa.

Methods
Representing trees as vectors
To apply SVMs, we represent gene trees as vectors as fol-
lows. Given a tree T with n taxa, the dissimilarity map
of T is the n × n matrix whose (i, j)th entry is the sum
of the branch lengths between taxa i and j [15]. Simi-
larly, the topological dissimilarity map of T is the n × n

matrix whose (i, j)th entry is the number of branches
between taxa i and j. This is also called the vector of
branching numbers (see page 531 in [16]) and the vector
of path differences [17]. Note that the topological dis-
similarity map is the dissimilarity map when each branch
length of T is set to 1. We represent a dissimilarity
map by a vector by lexicographically listing the upper
diagonal entries of the matrix: [ (1, 2), (1, 3), . . . , (1, n),
(2, 3), (2, 4), . . . , (2, n), (3, 4), . . . , (n−1, n)]. For a tree with
n taxa, the resulting vector is of length

(n
2
) = n(n − 1)/2.

Figure 1 provides a visual depiction of this process. Both
the dissimilarity map and topological dissimilarity map
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SVM Hyperplane

Figure 2 A two dimensional example of a support vector
machine (SVM) training to find the best hyperplane (dashed
line) separating two pre-defined groups of points (labeled ’x’
and ’o’). In this example, the hyperplane correctly classifies 9 of the
12 o’s and 16 of the 20 x’s, and thus the data has a separation
percentage of (9 + 16)/32 = 0.78125, or 78.125%.

have the desirable properties that they can be computed
quickly, and represent trees by vectors of relatively low
dimension (

(n
2
)

for trees with n taxa).

Testing for incongruence between sets of reconstructed
gene trees using SVM
We present a goodness-of-fit test, which takes two sets of
sequence alignments as input and tests the null hypothe-
sis that the underlying distributions of phylogenetic trees
are the same. We require some terminology in order to
state our formal hypothesis. Suppose gene trees have been
mapped into m-dimensional real space (Rm) where m =
n(n − 1)/2 and n is the number of leafs in the trees. Given
two distributions p, q over trees, we define the separation
percentage δ to be maxH+ 1

2 (p(H+)+1−q(H+)), where the
max is taken over all half-spaces H+. Here the notation
p(H+) denotes the total probability (under p) of all trees
in H+, and similarly for q(H+). That is, any half-space H+
will contain a subset (or all) of all possible vectorized trees
in Rm. Then p(H+) is the total probability of the trees
contained in the half-space H+, i.e. p(H+) := ∫

H+ dp.
Similarly for q(H+).

Our statistical hypotheses is

H0 : Two sets of trees are drawn from the same
distribution.

H1 : Two sets of trees are not drawn from the same
distribution.

In a model where trees are generated according to a
distribution p, and then DNA alignments are generated
on each tree, trees reconstructed from alignments are

not direct samples from the original distribution p. As an
example, for gene trees generated by a coalescent model,
reconstructed gene trees are not merely samples from
the coalescent, but also are influenced by the observed
sequence data and choices of gene tree inference. We
do not know the null distribution of the separation per-
centages; hence, we develop methods to estimate the
null distribution. Again we emphasize that in practice we
often observe SVM separation percentages above 50% but
we can only reject the null hypothesis when we evaluate
this separation percentage in light of the null distribution
(estimated by a permutation test).

Our statistical test includes a novel non-parametric
statistical procedure that estimates a p-value for the sta-
tistical hypotheses described above, from input DNA
sequences. At the core of our statistical test is the sub-
process of using an SVM to compute a separation per-
centage between vectorized gene trees inferred from two
sets of DNA sequences. This sub-process is outlined in
Figure 3 and is described as follows. Our test takes two
sets of DNA sequence alignments A = {A1, . . . , Am1}
and B = {B1, . . . , Bm2} as input, shown in the left of
Figure 3. From each set of alignments, A and B, two sets
of gene trees, TA and TB respectively, are inferred. These
are labeled “training set” in Figure 3. The inferred trees
TA and TB (training set) are vectorized and an SVM is
used to compute a separating hyperplane, as depicted in
the center oval of Figure 3. Again, from each set of align-
ments A and B two different sets of gene trees T ′

A and T ′
B

are inferred. These are labeled “testing set” in Figure 3.
The inferred trees T ′

A and T ′
B (testing set) are vectorized

and the previously computed hyperplane is used to calcu-
late the separation percentage between the vectorization
of T ′

A and T ′
B. This final step is shown in the right oval of

Figure 3. Finally, the separation percentage test statistic δ̂

is recorded.
In order to estimate the null distribution δ, this sub-

process is repeated multiple times with hypothetical data
sets A∗ and B∗ generated by a permutation procedure
as follows. First alignment labels are permuted to create
hypothetical sets of alignments A∗, B∗. Then each align-
ment in A∗ is replaced by a bootstrap replicate with the
same number of columns as the corresponding alignment
in A (and similarly for B∗). See the appendix for pseudo-
code of the GeneOut procedure. The set of alignment
sizes in A∗, B∗ is identical to A, B, but each alignment col-
umn in A∗ and B∗ follows the same marginal empirical
distribution derived from A union B.

In the GeneOut procedure, each time trees are inferred
from alignments, the user can specify that multiple trees
are inferred from each alignment. For a single-tree recon-
struction method like NJ or ML, this means the user can
specify that several bootstrap trees are reconstructed for
each alignment. For a Bayesian reconstruction method,
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Figure 3 A flowchart describing how our statistical test calculates the separation percentage of the evolutionary histories of two sets of
DNA sequence alignments, A and B. First, gene trees, labeled “training set”, are inferred from alignments A and B. The training set gene trees are
vectorized and an SVM is trained to find a hyperplane separating the vectorized gene trees. Next, a new set of gene trees, labeled “testing set”, are
inferred from alignments A and B. The testing set gene trees are vectorized and the hyperplane previously computed by the SVM is used to
calculate a separation percentage.

the user can specify that multiple samples are taken
for each posterior distribution of trees. Reconstructing
multiple trees for each alignment allows the SVM sep-
aration to take into account uncertainty in tree recon-
struction. In the GeneOut procedure, we allow more than
one reconstructed tree per alignment, via a parameter M
that specifies how many total trees should be sampled for
each set of alignments. See the pseudo-code for details.
Note that in the above description, the choice of tree
reconstruction method is not specified; any statistically
consistent tree reconstruction method can be used.

Our use of the SVM separation percentage is motivated
by the observation that systematic differences between
sets of trees may manifest as a separating direction in
feature space (e.g. if tree space is defined by using splits

as features, then a separating direction indicates which
splits tend to occur in one set of trees and not the other).
The SVM tries to find a maximal separating direction
by deep analysis of the data, without making Gaussian
assumptions like Fisher’s linear discriminant. Further-
more, for two sets of points with high variance and a
small but reliable separation (e.g. two parallel discs with
only a small separation between), the separation statis-
tic gives a more representative indicator of how likely the
two point sets come from different distributions, versus
distance-only statistics such as comparing within group
to between group variance [18]. The power of the SVM
separation percentage is also naturally robust to many
unusual configurations of points (e.g. generated by mix-
ture models) – the only requirement for statistical power
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is that a separating hyperplane can be found which causes
some appreciable imbalance between the two point sets
on either side of the plane.

Results and discussion
To obtain simulated trees with different distributions, we
used coalescent-modeled gene trees simulated within dif-
ferent species tree histories. We first simulated pairs of
species trees (S1, S2) with n = 8 lineages using a pure-
birth (Yule) model [19], with a fixed effective population
size (Ne) of 100, 000 haploid individuals, and various tree
depths ranging from 0.1Ne to 10Ne. We then simulated
sets of 10,000 gene trees (denoted T1 and T2) under the
respective species tree histories using a neutral coales-
cent model. In addition, for the purpose of assessing false
positive rates (see below), we generated an additional set
of 10,000 gene trees (T3) within S2 using the same pro-
cess and model parameters used for T2. These simulation
conditions were chosen to represent a broad range of coa-
lescent gene trees within each species tree. For example,
at low species tree depth we expect considerable variation
among gene trees within a species tree, causing overlap in
multidimensional space among gene trees from different
species trees. All species tree and gene tree simulations
were performed in Mesquite v2.72 [20].

To independently assess the variation between sets of
gene trees simulated under different species tree at dif-
ferent species tree depths, we used principal component
analysis (PCA) and Fisher’s linear discriminant (FLD) [21].
Specifically FLD projects T1 and T2 onto a line which
maximizes the distance between the means of T1 and T2
while minimizing the variance within T1 and T2. Larger
values of FLD indicate greater separation between dif-
ferent sets of gene trees. Because these data are in high
dimensions we used PCA to reduce the dimensionality of
the data. To visualize separation between T1 and T2, we
graphed the first two principal components for each gene
tree at each species tree depth. Both FLD and PCA were
applied to gene trees vectorized using the dissimilarity
map.

To simulate DNA sequence data, we used the sim-
ulated gene trees described above. For each gene tree
we simulated sequences of 1, 000 nucleotides under a
Hasegawa-Kishio-Yano (HKY)+� model [22,23] with a
transition-transversion ratio of 3.0, and a discrete � distri-
bution with four rate categories and a shape parameter of
0.8. In each data set we assigned the stationary probabil-
ity distribution π := (πA, πC , πG, πT ) = (0.3, 0.2, 0.2, 0.3):
and maintained an AT:GC ratio equal to 3 : 2 through-
out the gene tree. The coalescent gene trees had branch
lengths in terms of coalescent units; therefore, a branch-
length scaling factor of 3 × 10−8 was used. These param-
eters were similar to those used in other recent studies
of gene tree evolution within species trees [24], and

resulted in pairwise DNA sequence divergences similar
to the sequence divergences in Table 1 of [24]. All DNA
sequences were generated using Mesquite v2.72.

For gene tree reconstruction we used NJ under the
Felsenstein 84 (F84) model [25] in the software package
PHYLIP v3.6 [26], and ML under the HKY + � model
using the software PhyML [27]. We also used MrBayes
v3.1.2 [28] with HKY + � model to obtain posterior sam-
ples. Convergence statistics for the MCMC sampling were
within the guidelines suggested in the MrBayes v3.1.2.
manual. See Additional file 1 for more details about how
MrBayes was run.

Simulation study using simulated gene trees
In reality, we estimate phylogenetic trees from observed
data so that these trees are subject to uncertainty at some
level. Thus, in order to determine our statistical tests’
inherent ability to detect separation of the underlying
distribution of trees, we first performed a series of exper-
iments where we assume all trees are the true trees. To
asses the true positive and false negative rates of our sta-
tistical test we conducted our statistical hypothesis test
with two samples of gene trees generated under the dis-
tributions of different species trees. Similarly, to asses the
true negative and false positive rates we conducted our

Table 1 Average and minimum pairwise uncorrected
percent sequence divergences calculated from simulated
DNA sequence data

Species tree depth Average pairwise Average minimum

(in Ne generations) sequence divergence sequence divergence

0.1 0.9371 (0.3631) 0.08 (0.0356)

0.2 1.0410 (0.3589) 0.1 (0.0570)

0.3 1.0910 (0.3832) 0.1 (0.06378)

0.4 1.2010 (0.3763) 0.1 (0.0790)

0.6 1.0510 (0.3645) 0.14 (0.0948)

0.8 1.2590 (0.3757) 0.18 (0.1066)

1.0 1.3630 (0.3860) 0.24 (0.1219)

2.0 1.9040 (0.4014) 0.42 (0.2092)

4.0 2.6340 (0.5113) 0.62 (0.2092)

6.0 3.437 (0.5556) 0.82 (0.4014)

8.0 4.409 (0.5312) 0.54 (0.3151)

8.5 3.787 (0.6200) 0.7 (0.3406)

9.0 4.281 (0.7800) 0.62 (0.2801)

9.5 4.311 (0.5041) 0.52 (0.3124)

10.0 4.426 (0.5165) 0.8 (0.4001)

Divergences were calculated using all 3000 simulated data sets for a species tree
depth (1000 from the first replicate species tree and 2000 from the second
replicate species tree). Standard deviations are given in parenthesis. All species
trees were simulated using an Ne of 100,000.
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statistical hypothesis test with two samples of gene trees
generated under the distributions of the same species tree.

For the first type of tests (assessing true positive and
false negative rates) we ran our statistical test using, as
input, 10, 000 gene trees T1 and 10, 000 gene trees T2. We
calculated a separation percentage by training and testing
an SVM with 168 and 336 (respectively) gene trees sam-
pled from T1 and T2. That is, we sampled 168 gene trees
from T1, and 168 gene trees from T2, and trained an SVM.
Next, we sampled 336 gene trees from T1, and 336 gene
trees from T2, and we used the previously trained SVM
to compute the separation percentage. We calculated the
separation percentage 100 times and took its average. We
approximated the null distribution by repeating the fol-
lowing 100 times: we trained and tested an SVM with 168
and 336 gene trees sampled just from T2. We estimated
a p-value using the separation percentage and the null
distribution approximation. We performed this statistical
test for all fifteen species tree depths and using either the
dissimilarity or topological dissimilarity map vectors.

For the second type of tests (assessing true negative and
false positive rates) we ran our statistical test using, as
input, 10, 000 gene trees T2 and 10, 000 gene trees T3. We
calculated a separation percentage by training and test-
ing an SVM with 168 and 336 (respectively) gene trees
sampled from T2 and T3. We calculated the separation
percentage 100 times and we took its average. We approx-
imated the null distribution by repeating the following 100
times: we trained and tested an SVM with 168 and 336
gene trees sampled just from T3. We estimated a p-value
using the separation percentage and the null distribu-
tion approximation. We performed this test for all fifteen
species tree depths and using either the dissimilarity or
topological dissimilarity map vectors.

Simulation study using simulated DNA sequences
We explored a range of options when testing our statis-
tical test in order to assess the effects of balanced vs.
unbalanced sets, species tree depth, tree reconstruction
method, and tree vectorization method. To test our statis-
tical tests’ ability to detect separation when the underlying
tree distributions were not the same, we performed sta-
tistical tests with alignments generated from gene trees
within different species trees. To assess false positive
error, we also performed tests where the alignments were
generated from gene trees within the same species tree.
We fixed four conditions for all tests: We computed the
separation percentage 100 times and we took its aver-
age, we repeated the permutation sub-process 100 times
in order to estimate the null distribution, and we used
the SVM training and testing phases with samples sizes
of 168 and 336, respectively. Our statistical test takes,
as input, two sets of DNA sequence alignments A and
B (described above). We described our experiments in

terms of T1, T2, T3 defined above. The experiments we
performed fall into three categories determined by the
number of alignments in A and the number of alignments
in B: 1 vs. 10, 1 vs. 50 and 10 vs. 10, each with two sub-
categories. The sub-categories correspond to tests where
the species trees are different and the species trees are the
same. The three categories are summarized as follows.

1 vs. 10: We selected the first ten alignments generated
from T1 and the first ten alignments generated from T2.
We denoted the two sets of ten alignments L and R. For
each alignment A of L we ran GeneOut with input A and
R, resulting in ten tests. We performed these ten tests for
all fifteen species tree depths, using Neighbor Joining (NJ),
Maximum Likelihood (ML), and Bayesian Inference (BI)
tree reconstruction methods, and using both dissimilarity
and topological dissimilarity maps.

We selected the first eleven alignments generated from
T2. We called the set of eleven alignments R, and for
an alignment A in R we define R − A as the set of all
alignments in R except A. For each alignment A of R we
ran GeneOut with input A and R − A, resulting in ten
tests. Tests were performed as described in the preceding
paragraph.

1 vs. 50: We selected the first 50 alignments gener-
ated from T1 and the first 50 alignments generated from
T2. We denoted the two sets of fifty alignments L and
R. For every alignment A in L we ran GeneOut with
input A and R, resulting in 50 tests. We performed these
50 tests using the NJ tree reconstruction method for all
fifteen species tree depths using both dissimilarity and
topological dissimilarity maps.

We selected the first 51 alignments generated from T2
and called the set of alignments R. For every alignment
A in R we ran GeneOut with input A and R − A, result-
ing in 50 tests. Tests were performed as described in the
preceding paragraph.

10 vs. 10: We selected the first 100 alignments generated
from T1 and the first 100 alignments generated from T2.
We denoted the two sets of 100 alignments L and R. Let
L = L1, . . . , L10 and R = R1, . . . , R10 where Li and Ri are
the ith set of ten alignments of R and L, respectively. We
selected every pair (Li, Ri) of two sets of ten alignments
from R and L and we ran GeneOut with input Li and Ri,
resulting in 10 tests. We performed these ten tests using
the NJ tree reconstruction method and performed them
for all fifteen species tree depths, using both the dissimi-
larity and the topological dissimilarity maps. Similarly, we
repeated the above experiments with the exception that
we selected the first 100 alignments generated from T2
and the first 100 alignments generated from T3.

ROC Curves and False positive plots
To assess the overall accuracy of our statistical test, we
used receiver operating characteristic (ROC) [29] curves.
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A ROC curve is a graphical representation of the true pos-
itive rate vs. false positive rate of a binary classifier as a
classifier boundary is varied. ROC analysis therefore pro-
vides a tool to evaluate a method’s ability to accurately
classify data. In our simulation study, the binary classifier
was the GeneOut procedure and α-level was the classi-
fier boundary. A data set is classified according to whether
or not the null hypothesis is rejected (i.e. p-value is less
than a given α-level). A true positive means that GeneOut
detects significant separation between two sets of trees
when the distributions on trees are not equal, and a false
positive means that there is a significant separation when
the distributions on trees are equal. To generate each data
point on a ROC curve, we first fixed an α-level. We then
computed the true positive and false positive rates from
all the data for the fixed α-level. In order to generate
the entire ROC curve, we varied the α-level from 0 to 1.
The diagonal of a ROC graph represents random classi-
fication of the data (i.e. true positive rate = false positive
rate). Perfect classification (i.e. 100% true positives and
0% false positives) results in a curve that passes through
(x = 0, y = 1). Therefore the closer the ROC curve is to
the upper left corner, the higher the overall accuracy of the
test [30].

We also calculated the area under the curve (AUC)
for each ROC curve to provide a summary statistic of
classification accuracy. In general terms, the AUC is the
probability that a binary classifier will rank a randomly
chosen positive example higher than a randomly chosen
negative example; therefore the AUC is equivalent to a
Wilcoxon signed-rank test. In our simulation study, the
classifier was the GeneOut’s procedure, the rank was
determined by the p-value, a positive example was a set of
gene trees simulated under two different species tree dis-
tributions, and a negative example was a set of gene trees
simulated under the same species tree distribution. The
AUC for a 1 : 1 diagonal ROC curve (i.e. random clas-
sification) is 0.5, whereas the AUC for a perfect classifier
is 1.0. We compared ROC curves and AUCs across dif-
ferent tree reconstruction methods, sample sizes and tree
vectorization methods.

To assess how our statistical test controls false posi-
tive rates, we created graphical representations of the false
positive rates vs. α-levels (levels of significance). Note, α

is the probability of making a false positive error (reject-
ing the null hypothesis when the null hypothesis is true).
Thus an α-level (level of significance) is preset to be the
upper bound of the probability of making a false pos-
itive error. Therefore in these graphs, the diagonal line
(y = x) means that a statistical test has the α-level as
its false positive rates (which is a maximum allowance
of false positive rates). If the test has 0% false positive
rate (i.e., the probability of rejecting the null hypothesis
when the null hypothesis is true is 0), then the curve is

x-axis (the line y = 0). Therefore, if a curve is under the
diagonal line (y = x) then the test controls false positive
rates below the α-level. Also the closer the curve is to the
lower right corner the lower the false positive rate of the
test is. We compared these curves across different tree
reconstruction methods and different tree distances.

We computed all empirical plots for false positive rates
vs. α-levels, ROC curves, and AUC calculations using R
[31]. We drew empirical ROC curves by connecting con-
secutive pairs of plotted points using a “lower staircase”. In
other words, if a point (a, b) in the plot was lower-left of
a point (c, d), then we drew segments from (a, b) to (c, b)
and from (c, b) to (c, d). This gives the most conservative
estimate of a ROC curve passing through the points. Sim-
ilarly for AUC calculations, we calculated the area under
the “lower staircase” curves. We did this in an effort to
avoid overestimating AUCs.

As described below, NJ reconstruction exhibited com-
petitive performance with ML and BI reconstruction
methods in empirical ROC curves and AUCs, and also
controlled false positive rates at the desired α-level for all
choices of α-levels. NJ is also computationally fast com-
pared to ML and BI methods. Thus, in order to compare
the performance of our statistical test with topological dis-
similarity maps and dissimilarity maps, we restricted our
simulation study to NJ tree reconstruction for simulation
scenarios of 10 vs. 10 and 1 vs. 50 trees.

Data sets with large numbers of taxa
To evaluate the scalability of our methods for larger num-
bers of taxa, we tested three larger simulated data sets,
with 30, 50, and 75 taxa. We ran GeneOut for each num-
ber of taxa, testing 10 alignments from each species tree.
The data sets were generated using a framework similar to
the 8 taxa data sets, with a fixed (Ne) of 100, 000 and a tree
depth of 100Ne. Within each species tree, we simulated
10 gene trees along with simulated DNA sequence data
(again using a process similar to the 8 taxa data), using
scaling factors of 3 × e−9, 3 × e−10, 3 × e−10 for the 30,
50, and 75 taxa data sets, respectively. Because this par-
ticular exercise was performed primarily to evaluate the
computational time required to scale to larger numbers
of taxa, species tree depths were chosen to create “tight”
distributions of gene trees with low discordance. For tree
reconstruction we used NJ and we vectorized gene trees
using the dissimilarity map. We used training and testing
set sizes of 100 and 200 and also 200 and 400.

Simulation results
Trees in space
The first two principal components of the PCA indicated
that, at all species tree depths there was substantial vari-
ation in the spread of vectorized gene trees generated
under each species tree, and that the amount of overlap
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between sets of vectorized gene trees, simulated under
different species trees, decreased as species tree depth
increases (Additional file 1: Figure S1.). This overall pat-
tern was confirmed by the FLD analyses. FLD values for
sets of vectorized gene trees, simulated under different
species trees, were larger when species tree depth was
greater (Additional file 1: Figure S2.). However, FLD values
for sets of vectorized gene trees, simulated under the same
species trees did not change across species tree depths
(Additional file 1: Figure S2.). At the species tree depth of
0.4Ne and lower we observed that between-species tree
FLD was less than 0.3106, indicating very little separa-
tion of the gene trees. Thus, our statistical test applied
to gene trees generated from species trees with species
depths of 0.4Ne and lower were omitted when construct-
ing ROC curves and curves for false positive rates vs.
α-levels.

Simulation study using simulated gene trees
The application of GeneOut directly to simulated gene
trees from different species trees resulted in rejection
of the null hypothesis (p < 0.05) at a wide range of
species tree depths (Figure 4). When trees were vector-
ized using topological dissimilarity maps the null hypoth-
esis was rejected for all trees with Ne ≥ 0.1. However,
when trees were vectorized using dissimilarity maps the

GeneOut on Simulated Gene Trees

Figure 4 Our statistical test directly applied to sets of simulated
gene trees. Our statistical test was applied to two sets of 10,000 gene
trees, using the dissimilarity and topological dissimilarity maps, and
across the fifteen species tree depths. In the first test shown in a line
with “D” and in a line with “T”, the two sets of gene trees were
generated under different species trees. In the second test shown in a
line with “d” and a line with “t”, the two sets of gene trees were
generated under the same species tree.

null hypothesis was rejected for all trees with Ne ≥ 0.6.
Furthermore, when gene trees were generated under the
same species tree as input for GeneOut, the null hypoth-
esis was not rejected at any species tree depth and esti-
mated p-values were greater than 0.36. The dissimilarity
maps and topological dissimilarity maps produced similar
results.

Simulation study using simulated DNA sequences
In an initial application of our statistical test, using an
alignment sampling strategy of 1 vs. 10, all three tree
reconstruction methods produced ROC curves that were
well above the diagonal and empirical AUCs derived from
these curves were all greater than 0.805 (Figure 5). Both
of these results indicated a high degree of accuracy in
the use of our statistical test to statistically differenti-
ate between different distributions of gene trees. When
a dissimilarity map was used to vectorize trees, there
was very little difference in performance among NJ, ML,
and BI methods (Figure 5A). However, when topological
dissimilarity maps were used, NJ exhibited a compet-
itive performance based on an empirical AUC (0.847)

compared to ML and BI reconstruction methods (0.839
and 0.805, respectively) (Figure 5B). In other words, all
three reconstruction methods performed similarly well.
Furthermore, all three reconstruction methods of gene
tree reconstruction (NJ, ML, and BI) controlled the false
positive rates approximately at the desired α-level for
all choices of α-levels (Figure 5C,D). In other words,
for each reconstruction method, the plot of false posi-
tives (Y -axis) versus α-levels (X-axis) was below the line
y = x.

In the evaluation of the performance of our statis-
tical test across different alignment sampling strategies
(1 vs. 10; 1 vs. 50; 10 vs. 10), the ROC curves were well
above the diagonal and produced larger empirical AUCs
(AUC ≥ 0.79) (Figure 6A–C), again indicating that our
statistical test produced accurate results. Three additional
patterns emerged from these results that were worth not-
ing. First, for both types of dissimilarity maps, empirical
AUCs were smaller in tests involving single gene align-
ments (i.e. 1 vs. 10 and 1 vs. 50) (Figure 6A,B) compared
with tests involving a balanced sampling design (10 vs. 10)
(Figure 6C). Second, topological dissimilarity maps
resulted in larger empirical AUCs compared with dissim-
ilarity maps (Figures 6A–C). This pattern was consistent
across all three sampling strategies; however, the AUC dif-
ferences were smallest for 1 vs. 10 and largest for 10 vs.
10. The largest AUC (0.968) was achieved when using the
topological dissimilarity map and the 10 vs. 10 sampling
strategy (Figure 6C). Third, our results indicated that,
under all explored gene alignment sampling strategies,
false positive rates were always controlled at the desired
α-level for all choice of α-levels (Figures 6D–F).
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Figure 5 Comparison of our statistical test performance for three choices of tree reconstruction methods: NJ (red/crosses), ML
(blue/circles), and BI (red/X’s). Trees were reconstructed using PHYLIP, MrBayes and PhyML. A and B show comparisons of ROC curves on
simulated data. See the section ROC Curves and False positive plots for a description of the ROC curve. C and D show comparison of curves on false
positive rates (Y axis) vs. α levels (X axis). Panels A and C are for dissimilarity map-based tree space; panels B and D are for topological dissimilarity
map. In C and D, the Y axis gives the p-values which are less than the α level (X axis).

Computation Time
The running of GeneOut on the eight-taxon data sets
required relatively little computation time. The average
run time for tests performed with NJ method under a
range of gene sampling scenarios ranged from 35.34 to
41.97 minutes. Use of BI required more time, with an aver-
age of 2.23 to 2.24 hours. Use of a ML method required
substantially greater amounts of computation time, with
average of 16.59 to 16.79 hours. These latter two recon-
struction methods were only used in tests that involved a
1 vs. 10 sampling strategy.

The running of GeneOut on data sets featuring a
larger number of taxa required greater computational
time. The average run time of GeneOut for 30-taxa trees
using NJ and a 10 vs. 10 sampling scenario required
either 8.74 or 16.82 hours using a training/testing set
of 100/200 or 200/400 trees, respectively. Correspond-
ingly, increasing the number of taxa to 50 resulted in
increased run times of 20.09 and 38.43 hours, and increas-
ing the number of taxa to 75 resulted in computation
times of 38.26 and 75.36 hours. As expected, in all analyses
that explored the application of GeneOut to trees with

greater taxon sampling the estimated p-values were all
very small (p < 0.01), due to the choice of large species
tree depths.

Conclusions
Easier access to the genome now provides the opportunity
to collect genetic data, either intentionally or unintention-
ally, from loci that reflect different underlying evolution-
ary processes. Analysis of trees in multidimensional space
has been used previously as a statistical test of trees in a
multi-dimensional vector space; however, this has largely
been performed as a test for congruence between two
given trees [7,13], and the analysis of large sets of trees in a
tree space has been primarily performed as a visualization
method, without a corresponding statistical test [6]. Our
work here presented a novel statistical hypothesis test for
use on multiple sets of trees in a multi-dimensional vector
space using SVMs. These results indicated that our SVM-
based statistical test is an effective and accurate non-
parametric method for statistically discerning between
trees that have significantly different distributions in a
multi-dimensional space.
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Figure 6 Graphs depicting the performance of the SVM-based test in detecting differences between gene trees reconstructed from
simulated data using NJ. Trees were reconstructed using PHYLIP. Three different tree comparisons are used: one gene tree from species 1 versus
10 gene trees from species 2 (A and D), one gene tree from species 1 versus 50 gene trees from species 2 (B and E), and 10 gene trees from species
1 versus 10 gene trees from species 2 (C and F). In all graphs, we denote red lines with crosses topological dissimilarity maps and blue lines with
circles standard dissimilarity maps of trees. A, B, and C show ROC curves on the simulated data from gene trees generated under different species
trees. See the section ROC Curves and False positive plots for a description of the ROC curve. D, E, and F show curves for false positive rates vs.
alpha-levels on the simulated data with gene trees generated under the same species trees. In D, E, and F, the X axis represents the α-levels and the
Y axis represents the false positive rates.

Our use of gene trees simulated across a range of
species-tree depths provided us with an opportunity to
evaluate the performance of our statistical test across a
range of multidimensional tree distributions, from those
that were virtually indistinguishable from each other
(e.g. at species tree depths of 0.1 Ne; Additional file 1:
Figure S1.) to non-overlapping tree distributions (e.g.
depths of at least 4.0Ne; Additional file 1: Figure S1.). In
tests utilizing simulated gene trees (i.e. without gene tree
reconstruction) our statistical test appeared to be particu-
larly sensitive in detecting small differences between tree
distributions and correctly rejected the null hypothesis
for two different sets of gene trees simulated at species
tree depths as low as 0.2Ne. This result at this species
tree depth was particularly surprising due to the excep-
tional amount of visually-perceived overlap between tree

distributions in PCA ordination space (presumably as a
function of substantial incomplete lineage sorting). This
accuracy at low species tree depths may be be due to
the fact of large sample sizes (10, 000 vs. 10, 000). Such
large sample sizes are unlikely to be used in empiri-
cal tests where smaller numbers of genes are compared
and where tree reconstruction will be employed. How-
ever, even when these conditions were factored in to
the performance of our statistical test, the ROC and
AUC results indicated that it is a robust method for
detecting differences between tree distributions. Equally
important in the discussion of our statistical tests’ per-
formance is its controlling of false positive rates. In our
testing sets of gene trees within the same species tree,
our statistical test consistently did not reject the null
hypothesis. This was evident in high p-values in the
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application of our statistical test directly to simulated gene
trees (Figure 4), and in ROC curves that were plotted
below the diagonal (Figures 5, 6). Both patterns strongly
indicate that the power of our statistical test does not
come at the expense of a higher probability for false
positive rates.

From our simulation study it seems that our statis-
tical test has more power with topological dissimilar-
ity maps than with dissimilarity maps. Ané discussed
in [32] that events that changed the tree topology
seem more important to detect than events that only
modified the tree’s branch lengths. Thus we want to
weight more on topological difference between trees
than difference on branch lengths. Using topologi-
cal dissimilarity maps puts most weights on topologi-
cal difference between trees than difference on branch
lengths. This seems to cause our statistical test higher
power with topological dissimilarity maps than with the
dissimilarity maps.

The generality of our statistical test and its implemen-
tation provides a number of benefits. First, the core of
our statistical test is based on a non-parametric test,
which provides a relatively fast method of analysis. Even
when using model-based BI reconstruction methods the
majority of our tests required only a couple hours of com-
putation time. Expanded taxon sampling to as many as 75
taxa pushed computation times into the 1–3 day range,
which we see as very acceptable computation time in
the current field of model-based multi-locus phylogenet-
ics. Second, our statistical tests’ use of reconstructed tree
distributions through bootstrapping or sampling from a
posterior distribution is expected to help mitigate the
problem of tree reconstruction error. This is a likely con-
tributor to the low probability of false positives seen in
the ROC plots. Additional file 1: Figure S3. This may also
explain the lack of substantial differences in results based
on NJ, ML, and BI reconstruction methods: even though
one method may provide a more consistent point estimate
of a tree, they may all generate similar tree distributions.
Third, our statistical test has the flexibility to compare tree
distributions for a range of combination of genes. This
accommodates tests confirming outlier gene tree behav-
ior for a single gene relative to a larger collection of
genes sampled from the same taxonomic group, but could
also accommodates the comparison of two multi-gene
sets. In fact, our 10 vs. 10 tests with GeneOut demon-
strated an improved performance over those involving a
single gene (i.e. 1 vs. 10 or 1 vs. 50). This is perhaps
due to the fact that a statistical test with two indepen-
dent samples works well with balanced samples, because
the variances of the two samples are approximately equal
under the null [33]. In any case, the multi-gene version of
our statistical test may be particularly useful in the com-
parison of gene trees from putative host-parasite taxa to

test for co-evolution. Finally, while we used dissimilarity
and topological dissimilarity maps to define the vec-
tor space of trees, our statistical test can be applied to
vector spaces derived from a wide range of tree met-
rics, such as Robinson-Foulds distances [34] and quartet
distances [35].

Systematists often aim to statistically evaluate compet-
ing phylogenetic hypotheses with a single gene or con-
catenated set of genes by comparing trees reconstructed
with and without a topological constraint [1,36]. Our sta-
tistical test can serve as a novel approach for testing
the distributions of trees that result from these com-
parisons. Multi-dimensional visualization of trees sam-
pled from independent Bayesian phylogenetic analyses
has been proposed as a method for assessing conver-
gence of Markov chains on the posterior distribution [6]
and our statistical test can add a statistical edge to this
approach. Finally, as noted above, our statistical test may
be useful for testing hypotheses of coevolution (e.g. in
host/parasite systems) by testing sets of genes from each
of the potentially coevolving groups. This is not meant
to be an exhaustive list of applications, and we envi-
sion that our statistical test and the SVM-based test that
it is based on can be applicable to any situation where
there is the potential to compare two distributions of
trees. Note that this method is not meant to be used for
detecting outliers from a set of trees. If we apply this
method for the post-hoc analysis for detecting outliers
we have to conduct multiple comparisons and this causes
higher false positive rates. Thus if one wants to apply
this method for detecting outliers, a correction for mul-
tiple comparisons, such as Bonferroni correction, should
be applied.

While the non-parametric nature of our statistical test
has the upside that it can be applied to tests of discor-
dance between two sets of trees caused by a range of
reasons, the flip-side is that it does not provide an ability
to draw specific conclusions about the underlying cause
for significant differences between tree distributions. Sub-
sequent model-based analyses that can identify specific
genetic processes (e.g. selection [37] or recombination
[38]) can then be used to identify the potential under-
lying causes. We also note that the supervised nature of
the SVM algorithm will limit the exhaustive application of
our statistical test to data sets containing large numbers
of genes, and that for these situations, some basic infor-
mation must be provided regarding the potential compar-
isons to be made. There have been several attempts to
cluster trees in a multi-dimensional framework [39,40],
and it is possible that unsupervised learning techniques,
such as k-means clustering or quality threshold (QT) clus-
tering, can serve as an important addition to our SVM-
based method by identifying hypothetical sets of trees to
be tested.
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Software
The software GeneOut is freely available at http://
cophylogeny.net/SVM.php. The core of the software was
written in C++ and unix shell scripting. GeneOut
reads in alignments and parameters specified in Nexus
format [41].

Appendix
GeneOut Algorithm
Input: Two sets of alignments, A and B, sample size M for
training phase and N for testing phase.
Output: p-value under the null hypothesis that the
trees underlying A and B are drawn from the same
distribution.

Set mA := ceil(M/|A|) and mB := ceil(M/|B|).
For each alignment in A, reconstruct mA trees.
For each alignment in B, reconstruct mB trees.
Let VA := set of trees generated from A.
Let VB := set of trees generated from B.
Train SVM on data (VA, VB).
Set nA := ceil(N/|A|) and nB := ceil(N/|B|).
For each alignment in A, reconstruct nA trees.
For each alignment in B, reconstruct nB trees.
Let RA := set of trees generated from A.
Let RB := set of trees generated from B.
Let δ0 := Separation percentage between RA and RB.
Set count := 0.
for i = 1, . . . , k do

Order the alignment sets arbitrarily, A =
(a1, . . . , a�), B = (b1, . . . , bm).
Randomly permute set membership labels of
alignments in A,B to obtain A′, B′.

For each a′i, replace with a bootstrap of |ai| columns
of a′

i.
For each b′i, replace with a bootstrap of |bi| columns
of b′i.
For each alignment in A′, reconstruct mA trees
For each alignment in B′, reconstruct mB trees.
Let VA′ := set of trees generated from A′.
Let VB′ := set of trees generated from B′.
Train SVM on data (VA′ , VB′)
For each alignment in A′, reconstruct nA trees.
For each alignment in B′, reconstruct nB trees.
Let RA′ := set of trees generated from A′.
Let RB′ := set of trees generated from B′.
Let δ := Separation percentage between RA′ and RB′ .
ifδ ≤ δ0 then

count := count + 1.
end if

end for
Output p-value := count / k.

Additional file

Additional file 1: MrBayes parameters. All Bayesian analyses were run
using MrBayes. Two independent runs were performed for each data set,
each using four Markov chains and the default temperature parameter
setting of 0.2. 100,000 generations were run with a sample drawn every
100 generations and 25% of the samples treated as burn-in. The minimum,
first quartile, median, second quartile, and maximum of all 2,640,000 split
frequencies (observed across all simulations) were 0.0, 0.003497, 0.007667,
0.010443, 0.098460. Figure S1. Fifteen data sets, with 100 gene trees (blue
diamonds) generated under a coalescent model under a species tree S1,
and 100 gene trees (red circles) generated via coalescence under a
different species tree S2. All fifteen data sets had a fixed effective
population size of 1 Ne individuals. The first two PCA components were
used to plot gene trees in two-dimensional space. PCA projections were
computed using R [31]. Figure S2. Fishers linear discriminant for 20,000
gene trees generated under either the same species tree (blue) or two
different species trees (red). Gene trees were vectorized using the
dissimilarity map. The dashed line at FDL = 1 indicates where the variance
between gene trees is equal to the variance within gene trees. Values of
FLD that are greater than 1 suggests clear separation between sets of gene
trees. Figure S3. Graphs depicting the performance of the SVM-based test
in detecting differences between gene trees reconstructed from simulated
data using NJ, BI, and ML. Trees were reconstructed using PHYLIP, MrBayes
and PhyML. One gene tree from species 1 vs. 10 gene trees from species 2.
In all graphs, both topological dissimilarity maps (red crosses) and standard
dissimilarity maps (blue circles) of trees are considered. Top panels: ROC
curves on the simulated data where gene trees are taken from different
species trees. See the section Simulation Study of GeneOut for a
description of the ROC curve. Bottom: false positive rates were plotted
where gene trees are taken from the same species trees. The X-axis is the
?-level and the Y-axis gives the corresponding false positive rate.
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