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SHORT REPORT Open Access

Morphological and genetic changes induced by
excess Zn in roots of Medicago truncatula A17
and a Zn accumulating mutant
Ricky W Lewis1, Guiliang Tang2,3 and David H McNear Jr1,4*

Abstract

Background: Nutrient fluxes associated with legume-rhizobia symbioses are poorly understood and little is known
regarding the influence of abiotic stresses on development and maintenance of N-fixing nodules and root system
architecture (RSA). We examined effects of Zn on nodule development and structure, root architecture, and
expression of nodulation-related miRNAs in Medicago truncatula and the mutant, raz (requires additional Zn).

Findings: Excess Zn increased root and shoot associated Zn in both genotypes, however, raz plants had lower root
associated Zn than WT plants. Roots of raz plants exposed to excess Zn had less volume, surface area, and total
length compared to WT plants. Raz plants had lower lateral root number than WT plants. Excess Zn was found to
increase root diameter in both genotypes. The Mn Translocation Factor (TfMn) increased in response to Zn in both
genotypes; this was more pronounced in raz plants. TfZn was higher in raz plants and reduced in both genotypes in
response to Zn. Nodulation was not influenced by Zn treatment or plant genotype. MicroRNA166 was upregulated
under excess Zn in WT plants.

Conclusions: Neither the raz mutation nor Zn treatment affected nodulation, however, raz plants had altered RSA
compared with WT and responded differently to Zn, implying the mutation potentially modulates RSA responses to
Zn but doesn’t play a direct role in nodulation. MicroRNA166 was significantly induced in WT plants by excess Zn,
warranting further investigation into the potential role it plays in controlling RSA.

Keywords: Medicago truncatula, Abiotic stress, MicroRNA (miRNA), Zn stress, Translocation factor, QRT-PCR, Legume,
Root architecture

Findings
Background
Medicago truncatula has been established as a model
legume species because it has many desirable attributes,
including, a small diploid genome, short generation time
[1], and some level of transformability and regenerability
in some genotypes [2]. There are also a number of gen-
etic resources available, such as, ESTs, a nearly complete
sequence of gene rich regions of the genome, and gen-
etic and physical maps [2]. Wild-type M. truncatula
plants are not known to accumulate or hyperaccumulate

metals, however, M. truncatula raz (for requires add-
itional Zn) is an ethyl methanesulfonate (EMS) gener-
ated, Zn accumulating mutant first characterized in
2003 [3]. This mutant has been shown to accumulate
greater than 10,000 μg Zn/ g d. wt. associated with root
tissues and greater than 400 μg Zn/ g d. wt. associated
with shoot tissues when grown in nutrient solutions
containing 3 μM Zn and 2 μM Mn [3]. When grown in
nutrients solutions defined by the authors as adequate
for wild-type (WT) plants, raz exhibits a high level of
leaf necrosis and subsequent leaf loss, which is very
similar to WT plants grown in Zn deficient conditions
[3]. Both leaf necrosis and leaf loss were partially amelio-
rated by providing the plants with 3 μM Zn and 0.2 μM
Mn, however, raz produced less biomass than WT plants
regardless of Zn treatment [3]. Segregation analysis of
progeny from crosses of WT M. truncatula and third
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generation raz plants revealed that a single, recessive
gene is likely responsible for the raz phenotype [3]. The
mutation was localized to the upper arm of linkage
group 7, as defined by Kulikova et al. [4] through genetic
mapping studies of raz x M. truncatula A20 populations
[3]. The phenotype observed in raz plants is thought to
be generated by a functional Zn deficiency [3]. The raz
phenotype, as characterized by Ellis et al. [3], was
observed in non-nodulated plants, therefore, the pheno-
typic consequences of the mutation in nodulated plants
have not yet been adequately explored. Zinc toxicity has
been found to have numerous affects on plant growth.
Studies in wheat and cucumber have revealed that high
Zn decreases percent germination and inhibits root
elongation as well as hypocotyl and coleoptile growth
[5]. Elevated Zn has also been found to reduce root
elongation rate in 4-weeks-old seedlings of Picea abies
[6] and in rye grass [7]. At pZn activity = 5.25 and 5.0,
Ibekwe et al. [8] found nodulation to be inhibited in al-
falfa and Zn induced root damage was thought to be the
cause. Additionally, zinc toxicity was found to cause de-
position of lipids on the lumen surface of xylem vessel
walls and deposition of phenolic compounds on the
walls of secondary vessel cells [9]. High Zn may also in-
hibit cell division and elongation and increase root
diameter [10,11].
A number of studies have recently emerged covering

the response of microRNAs (miRNAs) to nutrient avail-
ability [12-23]; [24], but to date none have reported Zn
responsive miRNAs. MicroRNAs are small non-coding
RNA (21 nucleotides long) that are important players in
regulation of almost all aspects of plant development,
and the RNA interference (RNAi) related pathways.
Through RNAi machinery, genes are posttranscription-
ally regulated by miRNA resulting in cleavage of mRNA,
or inhibition of mRNA translation due to the binding of
the miRNA to the 3' UTR (untranslated region) [25].
RNAi pathways are important during biological develop-
ment [25] and in adaptive plant responses to nutrient
stress [26]. Studies have revealed the role of miRNA
in sulfur and phosphate homeostasis, as discussed by
Chiou [26]. One miRNA, miRNA 399, is thought to
be a long distance signal in phosphate homeostasis in
Arabidopsis [18]. It has also been shown that miRNAs
regulate the expression of genes responsible for Cu/Zn
superoxide dismutase under Cu limiting conditions in
Arabidopsis [27].
In shoots of A. thaliana, miR166 and the close relative

miR165 have been found to be involved in regulating the
class III homeodomain-leucine Zipper (HD-ZIP III) fam-
ily of transcription factors [28]. The dynamic, tissue spe-
cific regulation of these two miRNAs along with their
associated targets are thought to be essential for mul-
tiple aspects of proper shoot development including,

shoot apical meristem and floral development [29], vas-
cular development in Arabidsopsis inflorescences [28],
radial patterning [30,31], and initiation of floral and lat-
eral shoot meristems [32]. Less is known about the func-
tion of these miRNAs in roots. Carlsbecker et al. [33],
reported findings in support of a role for miR166b and
miR165a in xylem cell identity and development in Ara-
bidopsis. The authors propose induction of SHR
(SHORT ROOT) in the metaxylem is followed by inter-
cellular signaling which leads to the induction of SCR
(SCARECROW) in the endodermis, where SHR and
SCR induce miR165a/miR166b. The miRNAs are then
thought to become mobile and migrate toward the
metaxylem, regulating HD-ZIP III activity, leading to
definition of cellular identity. Interestingly, Carlsbecker
et al. [33] found miR166a to be undetectable in Arabi-
dopsis roots and cite similar findings in other studies,
but in M. truncatula, miR166a was found to be
expressed in roots and nodules and to be involved in
vascular patterning and nodule and lateral root forma-
tion [34]. Boualem et al. [34], found 2x35S:MtMIR166a
overexpression resulted in reduced lateral root and nod-
ule formation accompanied by, and possibly resulting
from, disorganized vascular bundling. Overexpression of
MtMIR166a also led to reduced transcript levels of three
of the MtHB sub-class of HD-ZIP III genes, MtCNA1,
MtCNA2, and MtHB8, however, the exact function of
these genes remains unknown [34]. Expression of
miR166 and the HD-ZIP III targets within the nodule
are not mutually exclusive, with the miRNA and the
MtHBs exemplifying co-regulation with respect to space
and time. MicroRNA169 has been implicated in drought
response in rice [23] and Arabidopsis [35], as well as in
N and P limitation [36]. During nodulation in M. trun-
catula, miR169 is essential for proper nodule develop-
ment by restricting MtHAP2-1 transcripts primarily to
the meristematic region of the nodule through posttran-
scriptional cleavage and overexpression of miR169 leads
to the inhibition of nodule development presumably due
to the lack of temporal-spatial control over MtHAP2-1
expression [37]. Pant et al. [36] found many miR169s to
be repressed during N limitation in Arabidopsis and sug-
gested that this may be a mechanism for detecting N de-
ficiency and at least partially initiating nodulation
through the mechanisms proposed by Combier et al.
[37]. Rapid drops in miR169 transcript levels in phloem
sap in response to N and P limitation also indicate the
possibility of miR169 as a long-distance signal, whereby
N and P deficiency are first detected in the shoots [36];
currently this hypothesis remains untested. As described
above, miR166 and miR169 are thought to be involved
in different aspects of nodulation. MicroRNA166 is
likely involved in vascular bundling and it is thought
that positional information derived from the stele is
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involved in lateral root and nodule development [38,39].
MiR166 might also be involved later in nodule develop-
ment through tight regulation of MtHB expression [34].
The involvement of miR169 in nodulation is thought to
be through maintenance of the meristematic region by
restricting MtHAP2-1 expression primarily to this devel-
opmental region [37]. The objectives of this study were
to examine root architectural responses and nodule de-
velopmental processes associated with Zn in wild type
Medicago truncatula or a raz mutant. We examined
nodule development and structure over a 28 day time
course, recorded whole root system parameters, exam-
ined metal concentrations associated with shoot and
root tissues, and quantified Zn responses of the
nodulation-related miRNAs, miR166 and miR169, in
nodulated WT and raz plants exposed to ideal and ex-
cess Zn. The root and nodule morphological data were
gathered by using a combination of confocal microscopy
and WinRHIZO image analysis software. MiRNA ex-
pression levels were quantified using qRT-PCR. In
attempting to develop Zn fortified legume crops, it will
be very beneficial to understand the influence of Zn on
root architecture and nodule formation. Studying
miRNA expression in M. truncatula will give us insights
into gene regulation that is applicable to many N-fixing
legumes, (i.e. Soybean, Chickpea, Lentil, Common Bean),
which provide essential oils and proteins with little ni-
trogen input compared to non-leguminous crops. Ex-
ploration of the role of miRNA in symbiotic nodule
development in M. truncatula has led to the identifica-
tion of many genes and their associated miRNAs essen-
tial to nodulation [34,37,40].

Materials and methods
Plant growth
M. truncatula raz and A17 seedlings were grown in
a modified RainForest™ 236 aeroponic growth sys-
tem (General Hydroponics, Sebastopol, CA, USA)
(Additional file 1: Figure S1a). The Rainforest ™ system
comes equipped with a vortex style pump, (Additional
file 1: Figure S1b) which is ideal for hydroponic experi-
ments requiring microbial inoculation as it minimizes
microbial death associated with impeller type pumps
that macerate the microbes or create too great a pres-
sure differential. However, we found that the water drop-
let size released from the pump was too large for M.
truncatula resulting in diminished lateral root forma-
tion, root growth and nodule number. To reduce the
droplet size we attached a 125 μm polypropylene mesh
around the circumference of the pump bracket (Add-
itional file 1: Figure S1c) which reduced the spray to a
fine mist. The smaller nutrient solution droplets pro-
moted development of more lateral roots and generally
enhance root growth, nodulation and plant health. Plant

inserts accompanying the RainForest™ 236 unit were
replaced with slimmer panels constructed from black
acrylic through which 35, 5/16” holes were drilled every
inch to accommodate plants (Additional file 1: Figure
S1d). These panels can be easily lifted to access root tis-
sue (Additional file 1: Figure S1e). The hydro units and
all materials used for the preparation of nutrient solu-
tions were acid washed in 10% HCl or 10% HCl-10%
HNO3, and further, the hydro units were surface steri-
lized and allowed to dry prior to sowing plants. WT and
raz seeds were acid scarified and surface sterilized and
then put on plates to germinate overnight in a dark
drawer at room temperature. The next day plants of
each genotype were sown into three black plant supports
(Additional file 1: Figure S1d) by inserting their radical
through the 5/16” hole. Prior to sowing the panels were
covered with plastic wrap to support seedlings and pro-
vide a barrier to water loss or contamination to the res-
ervoir. To maintain adequate humidity the system was
outfitted with clear plastic domes and the plant foliage
periodically sprayed with DDI water. Plants were grown at
Room Temperature ± 3°C with 14 hours light (~5,382 lx)
and 10 hours dark. Plantlets were grown in N replete
conditions for five days, then N-starved for 5 days. On
the sixth day after starving plants, solutions were inocu-
lated with Sinorhizobium meliloti. Zn exposures were
performed in modified 1/2x Lullien solutions (Lullien
et al., 1987) at pH 6.5. “Ideal Zn” = 0.35 μM Zn (pZn ac-
tivity ~9.85 with N and ~9.84 without N) and “High
Zn” = 18 μM Zn (pZn activity ~7.55 with and without
N) as calculated by GeoChem-EZ [41]. The nutrients
and concentrations in Table 1 were entered into the

Table 1 Nutrient solution modified from Lullien et al. [47]

Modified Lullien Solution

Compound 0.5x 0.5x High Zn 0.5x -N 0.5x High Zn -N

K2SO4 0.26 mM 0.26 mM 0.26 mM 0.26 mM

MgSO4 0.125 mM 0.125 mM 0.125 mM 0.125 mM

Na2-EDTA 25 μM 27 μM 25 μM 27 μM

H3BO3 15 μM 15 μM 15 μM 15 μM

MnSO4 5 μM 5 μM 5 μM 5 μM

ZnSO4*7H2O 0.35 μM 18 μM 0.35 μM 18 μM

CuSO4 0.1 μM 0.1 μM 0.1 μM 0.1 μM

Na2MoO4 0.5 μM 0.5 μM 0.5 μM 0.5 μM

CoCl2 0.02 μM 0.02 μM 0.02 μM 0.02 μM

CaCl2 0.5 mM 0.5 mM 0.5 mM 0.5 mM

NH4NO3 2.5 mM 2.5 mM – –

KH2PO4 1.375 mM 1.375 mM 1.375 mM 1.375 mM

K2HPO4 1.375 mM 1.375 mM 1.375 mM 1.375 mM

Fe(SO4)*7H20 25 μM 25 μM 25 μM 25 μM

Bold and italicized values indicate changes in concentration necessary for
treatments, – indicates nutrients were absent.
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software and free activities were estimated using the
following criteria: fixed pH = 6.5, convergence criter-
ion = 1e-4, number of iterations = 50, solids were
allowed to precipitate, and ionic strength was estimated
using a guess of 0.1 M/L (Table 2). Na2-EDTA concen-
trations were altered to augment Zn activities and main-
tain similar activities of other ions across treatments.

RNA Isolation and qRT-PCR
Plants were harvested at two time points, 10 dpi, while
nodules are developing, and at 15 dpi, when WT
nodules should be mature [42]. Upon harvesting, plants
were separated into roots and shoots, massed and flash
frozen in liquid N2, with any damaged or dying tissue
being removed. Samples were stored in −80°C until fur-
ther processing. Total RNA containing microRNA was
isolated from whole root tissues of 3 bioreps (5 plants
each) using the mirVana™ miRNA Isolation Kit (Ambion,
Austin, TX, USA) according to the manufacturer’s
instructions. Quantity and quality of total RNA was
assessed using a Cary 50 UV–vis spectrophotometer
(Varian Australia Pty Ltd., USA). DNase treatment was
performed on 10 μg total RNA in 50 μl reactions con-
taining 2 μl DNase using TURBO™ DNase (Ambion,
Austin, TX, USA). Reverse transcription was performed
on 1 μg total RNA using the High Capacity cDNA Re-
verse Transcription Kit (Applied Biosystems, Foster City,

CA, USA) according to manufacturer’s protocol. The
same kit and RNA quantity was used for miRNA cDNA
synthesis but random primers were replaced with 1 μM
stem-loop primers specific to miR166 and miR169. The
pulsed reverse transcription method described by
Varkonyi-Gasic et al. [43] was used to generate cDNA
for each miRNA in separate reactions. QRT-PCR was
performed using 20 μl Power SYBR Green Master Mix
reactions containing 2 μl of 1/10 diluted cDNA and the
Applied Biosystems StepOnePlus 96-well plate system
(Foster City, CA, USA) (See Additional file 2: Table S1
for primer concentrations). To amplify miR166 and
miR169 along with the reference mRNA gene, actin-11,
simultaneously it was necessary to modify the method
established by Chen et al. [44] and refined by Varkonyi-
Gasic et al. [43]. In short, the 1 sec extension step at 72°C
was adjusted to 10 seconds which aided in achieving
adequate primer efficiencies (Additional file 2: Table S1),
particularly for actin-11. Primers were obtained from
IDT (Integrated DNA Technologies, USA). All miRNA
real-time primers and RT primers were designed accord-
ing to methods developed by Chen et al. (2005). Primer
sequences for actin-11 were used from Boualem et al.
[34]. Fast PCR [45] was used to design and test (in silico)
real-time primers. Sensitivity for primer detection was
set to “3” as advised by the programmers. Amplification
specificity was determined via melt-curve analysis and
observing products on 4% agarose gel in TBE buffer.
Mortars, pestles, and spatulas used in RNA extraction
were washed and baked at 180°C overnight and RNase
Zap (Ambion, Austin, TX, USA) was used to reduce the
likelihood of RNase contamination. Real-time data were
analyzed using GenEx Pro gene expression analysis soft-
ware (version 5.2.7.44) and Systat and SAS statistical
analysis software. The delta-delta Ct method was used to
determine relative expression. The average relative ex-
pression of all treatments is set to zero, thus, values
above zero indicate greater than average expression and
values below zero indicate less than average expression.
Standard error is the error of each biogroup (composed
of 3 bioreps each). The Tukey’s post-hoc analysis was
used to evaluate statistical differences between groups.

Confocal light microscopy
Nodule development and bacterial occupancy were
monitored via confocal microscopy using SYTO13 (Mo-
lecular Probes, Inc., Eugene, OR, USA) as described by
Haynes et al. [46]. Briefly, root sections containing
nodules were harvested into a Petri dish containing 80
mM PIPES buffer at 7, 14, 21, and 28 days post inocula-
tion (dpi). A 7x-45x trinocular stereo zoom microscope
(AmScope, Chino, Ca, USA) was used to visualize the
nodules while they were isolated from the root seg-
ments and bisected lengthwise using a double-edged

Table 2 Results of GeoChem-EZ analysis of nutrients
solutions in Table 1

Free Activity (−log)

Ion 1/2x 1/2 High 1/2x -N 1/2x High -N

Mg 4.176 4.177 4.16 4.16

Fe +2 5.902 5.818 5.894 5.822

Mn +2 6.189 5.801 6.178 5.79

Na 4.337 4.304 4.331 4.299

Zn 9.847 7.552 9.838 7.551

Cu +2 12.691 12.106 12.682 12.105

Co +2 11.09 10.506 11.081 10.505

Ca 3.563 3.563 3.546 3.545

K 2.378 2.378 2.372 2.372

EDTA 14.984 15.571 14.968 15.547

B(OH)4 7.522 7.522 7.521 7.521

Cl 3.044 3.044 3.038 3.038

SO4 3.585 3.568 3.565 3.547

MoO4 6.478 6.478 6.455 6.455

NH3 5.146 5.146 – –

NO3 2.646 2.646 – –

PO4 9.273 9.275 9.266 9.268

Activities are estimated -log free activity. Zn and EDTA are in bold because
concentrations of these compounds were altered to achieve sufficient Zn and
excess Zn.
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razorblade. Bisected nodule halves were then transferred
to 1.5 ml microcentrifuge tubes containing 80 mM
PIPES buffer. Bisects were stained at room temperature
for approximately 15–20 minutes in 1 ml of 80 mM
PIPES buffer containing 3 μM SYTO 13 (Molecular
Probes, Inc., Eugene, OR, USA). Nodules were then
rinsed thrice in 80 mM PIPES buffer to remove excess
dye. Stained nodule bisects were transferred with a min-
imal amount of PIPES solution to appropriate slides
(Corning, Inc., Corning, NY, USA). Confocal imaging
was performed with a Leica TCS SP5 inverted laser scan-
ning confocal microscope (Leica Microsystems, Exton,
Pa.) at 7 dpi and with a Leica SP1 inverted confocal
microscope (Leica Microsystems, Exton, Pa.) for the
remaining time points. In both cases, SYTO 13 excita-
tion was achieved with an Argon helium laser (488 nM).
Images were obtained in single layers (2-D) and multiple
layers (3-D) depending on nodule orientation and the
desired information. ImageJ (MacBiophotonics) was used
to render single maximum-intensity projections, to scale
the images, and to perform general analyses. Nucleic
acid distribution (and hence bacterial occupancy) is
depicted as green in the confocal images. Fluorescent in-
tensities were adjusted to minimize maximum inten-
sities, then contrast was normalized at +20%.

Total metal analysis
At 24 dpi, raz and WT plants grown in High and Ideal
Zn were harvested and separated into roots and shoots.
Tissue was massed and washed in 0.001 M CaCl2 to
remove weakly sorbed cations and samples stored at
−20°C for future analysis. Prior to ICP-MS analysis sam-
ples were freeze-dried for 3 days and massed into 15 ml
metal free polypropylene centrifuge tubes (VWR Scien-
tific). Samples were acid digested using an open vessel
microwave digestion system (CEM MARS Express,
Mathews, NC). Digestions were performed in two steps,
first in 750 μl of trace metal grade HNO3 at 100°C for
10 minutes and then, after samples were cooled, 250 μl
of H202 was added and the samples were heated again at
100°C for 10 minutes. Digestions were then brought to
15 ml using DDI H20. Concentrations of Zn, Mn, and
Mo were determined using an Agilent 7500 series ICP-
MS (Santa Clara, Ca).

Root morphology
At 10 dpi roots of M. truncatula WT and raz grown in
High and Ideal Zn were excised and examined to deter-
mine the influence of Zn on root morphology. For each
genotype x treatment group, the roots of 5 plants were
scanned and several root parameters, including total
root length, average diameter, and total surface area,
were recorded via WinRhizo Pro (Regent Instruments,

Quebec, Canada). Lateral root and nodule counts were
taken interactively using scanned images.

Results
Both the raz mutation and Zn treatment have little effect
on nodule phenotype and most differences observed in root
morphology are genotype dependent
We examined nodules from WT and raz plants via con-
focal microscopy over a 28 day time course to determine
the effects of Zn treatment on nodule development
(Figure 1). We found no significant alteration in nodule
development or structure in relation to Zn treatment or
genotype in both raz and WT plants. Raz nodules in
High and Ideal Zn treatments developed similarly to
those of WT plants in the same treatment. This supports
similar findings in M. sativa, where Zn was not found to
alter nodule function, however, it is in conflict with
results of Haynes et al. [46] which reported enlarged
vacuoles in raz nodules. At 7 dpi, from nodule tip to
stele, we observed the nodule meristem, prefixation zone
and interzone (Figure 1). The quality of the confocal
micrograph for the High Zn treated raz nodule at 7 dpi
is poor, however, the micrographs for time points be-
yond this show no difference from those of the WT
plants indicating that this was likely a sampling error
and not a treatment effect. The N-fixation zone is
expected to be underdeveloped at this stage. At 14 dpi
we see the additional development of the N-fixation
zone and the initiation of the senescence zone. From 14
to 28 dpi the senescence zone is expanding as the entire
nodule elongates. Our studies did not consider nodule
function, however, light microscope images of bisected
WT and raz nodules appeared pink indicating the pres-
ence of leghemoglobin and the likelihood that nodules
were able to fix N (unpublished data). Furthermore,
Ibekwe et al. [8] found little difference in N2 fixation by
nodules of M. sativa exposed to various levels of Zn as
determined by acetylene reduction assays. Figure 2
shows the influence of Zn treatment and plant genotype
on overall root system architecture at 10 dpi. Raz plants
had significantly fewer lateral roots in Ideal and High Zn
compared to WT (Figure 2a), however, no genotype or
treatment effect was observed with respect to the num-
ber of nodules (Figure 2b). For both WT and raz, we
observed nodule numbers much lower than those
recorded by Ibekwe et al. [8] in alfalfa (174 at pZn ~ 8)
exposed to similar Zn activities; this may be a result of
differences in the species or in experimental design. Root
elongation was inhibited by excess Zn in raz compared
to WT (Figure 2c.), implying the mutation potentially
modulates root architectural responses to Zn in nodu-
lated plants. As was also seen in Quercus suber L. seed-
lings by Disante et al. [10], exposure to High Zn resulted
in increased root diameter in WT and raz plants
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compared to plants in Ideal Zn (Figure 2d). Raz plants
in both treatments appear to have slightly greater root
diameter compared to WT in respective treatments
(Figure 2d). Root surface area and volume was greater in
WT plants compared to raz plants in High Zn
(Figure 2e,f ).

Nodulation may dramatically influence concentrations of
root associated Zn in raz plants
Due to our inability to nodulate plants in the nutrient
solutions used by Ellis et al. [3] (pZn = 5.7 (3 μM)) we
switched to a modified 1/2x Lullien solution [47], which
is widely used by the M. truncatula community, supple-
mented with 18 μM Zn (pZn = 7.55) which supplied sig-
nificantly higher than normal Zn to the plant but didn’t
inhibit nodule formation (Table 1). The “Ideal” treatment
had 0.35 μM Zn (pZn ~9.85) which is close to pZn activ-
ities in the typical 1x Lullien solution (~9.9) (Table 1).
Zn activities were much higher in all Zn treatments
(save no Zn) in the studies of Ellis et al. [3] and Lopez-
Millan et al. [48] than in a standard 1x Lullien. In the
nutrient solutions used by Ellis et al. [3] and Lopez-
Millan et al. [48] the lowest Zn concentration tested
(save no Zn) was [Zn] = 0.2 μM, at which pZn activity is
~6.9; roughly 3 orders of magnitude greater Zn activity
than the standard 1x and ½x Lullien solutions. Using

these growth conditions (0.35 and 18 μM), we found
greater root associated Zn in nodulated WT plants
(>320 ppm d. wt.) compared to nodulated raz plants
(>230 ppm d. wt.) in the High Zn treatment (Figure 3a).
This finding is different than that found by Ellis et al. [3]
and Lopez-Millan et al. [48] in non-nodulated plants,
suggesting nodulation may affect Zn uptake and alloca-
tion in raz plants. While shoot associated Zn showed no
difference between genotypes in either treatment, excess
Zn resulted in a statistically significant increase in both
genotypes compared to Ideal Zn (Figure 3b). Since the
pZn activities in nutrient solutions used in our studies
are different than those used by Ellis et al. [3] and
Lopez-Millan et al. [48] it is difficult to compare the ac-
tual tissue associated concentrations, although our
results for root and shoot Zn concentrations in WT
plants are similar in magnitude to theirs. The High Zn
treatment effectively reduced the Zn Translocation Fac-
tor (Tf(Zn) = [Znshoot]/[Znroot]) in both genotypes
(Figure 4a), which is expected because plants are known
to tolerate metal concentrations beyond their physio-
logical requirements by sequestering the metals either in
or on the roots, reducing translocation to the shoots
[11]. Interestingly, raz plants had greater translocation
of Zn to the shoots under both Zn conditions compared
to WT (Figure 4a). Ellis et al. [3] and Lopez-Millan et al.

Figure 1 Confocal images of M. truncatula raz and WT nodules at 7, 14, 21, and 28 dpi. Images at 7 dpi were obtained with a Leica TCS
SP5 Inverted Laser Scanning Confocal Microscope (Leica Microsystems, Exton, Pa.). Images at 14, 21, and 28 dpi were collected using a Leica SP1
Inverted Confocal Microscope (Leica Microsystems, Exton, Pa.). Green bars are 150 μm and red asterisks represent the stele of the root. SYTO 13, a
green fluorescent nucleic acid specific stain was used to evaluate nodule development by tracking bacterial occupancy throughout the various
transformations taking place during nodule formation. Some images are montages.
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[48] found raz plants had greater root tissue associated
Zn and Mn levels than WT plants under various Zn-Mn
regimes and that raz plants appear to take up more Mn
with increasing Zn concentrations, with the exception of
[Zn] = 0. As such we monitored Mn concentrations in
our nodulated treatments. Nodulated raz plants in the
High Zn condition had lower root associated Mn levels
(>1,180 ppm d. wt.) than in the Ideal Zn condition
(~2,400 ppm d. wt.), while there was no difference in
root Mn concentration between treatments in the WT
plants (Figure 3c). Shoot associated Mn showed no stat-
istical differences with respect to genotype or treatment
(Figure 3d). In this study, raz plants in Ideal Zn had a
lower Tf(Mn) compared to WT plants in Ideal Zn
(Figure 4b). The raz plants also had a lower Tf(Mn) com-
pared to both plant genotypes in High Zn (Figure 4b).
WT plants appear to show only a slightly greater Tf(Mn)

in High Zn compared to Ideal Zn (alpha = 0.1)
(Figure 4b). From these observations, it appears that Mn

translocation is affected by Zn much more dramatically
in raz plants and that the High Zn condition results in a Tf
(Mn) similar to that of WT in Ideal and High Zn. Molyb-
denum is an important cofactor in the nitrogenase enzyme
complex which is essential to N fixation in legumes, as
such, tissue associated Mo was measured to ensure the
nutritional status of the plant was adequate to support N-
fixation in raz and WT plants. Surprisingly, we found shoot
and root molybdenum levels (Figure 3e,f) well above
5 ppm, the “maximum tolerable concentration” deter-
mined for beef cattle [49] even at the low Mo activities
(pMo activity ~6.5) used in this study which were similar
to those used by Ellis et al. [3] and Lopez-Millan et al. [48].
As noted by Gupta [50], there is little research on Mo tox-
icity because it rarely occurs in plants and no definite leg-
ume toxicity concentration could be found in the literature
by the authors of this work, however, similar levels of Mo
have been observed in alfalfa grown in mine tailings [51].
Plants used in this study did not exhibit any signs of Mo

Figure 2 Root parameters of Medicago truncatula. Wild-type (grey columns) and raz (open columns) observed at 10 dpi using WinRhizo Pro.
a) number of lateral roots, b) number of nodules, c) root length (cm), d) average root diameter (mm), e) root surface area (cm2), and f) root
volume (cm3). Letter rankings indicate differences as determined by Tukey’s HSD at 95% confidence. Bars are standard error. * and † indicated
trend evaluated at alpha = 0.1.
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toxicity as defined in the close relative M.sativa (i.e. yellow-
ing and eventual bronzing of the leaves) [50]. No trends
were noticed in shoot associated Mo with regards to treat-
ment or genotype and there were no genotype or treatment
effects found with regards to Tf(Mo) (Figure 4c). However,
WT plants grown under excess Zn showed significantly
more Mo associated with roots (>280 ppm d. wt.) compared
to WT (>170 ppm d. wt.) and raz (>195 ppm d. wt.,
alpha = 0.1) plants under Ideal Zn (Figure 3e,f). Raz plants
showed no statistical increase in root associated Mo con-
centrations with respect to High Zn, which may indicate
an association between the raz mutation and Mo uptake
in response to Zn. Previous researchers found no relation-
ship between Zn and Mo levels associated with plant tis-
sues of Trifolium pratense L [52], so the relationship we
observed may not be universal to all plants.

qRT-PCR analysis shows mature miR166 is upregulated in
response to Zn
Expression of miR166 was observed in WT and raz
plants under Ideal and elevated Zn conditions at 10 dpi
and 15 dpi (Figure 5). Three-factor ANOVA analysis of
miR166 relative expression data revealed a significant

treatment effect (p-value ~ 0.0001) and treatment x day
effects (p-value ~ 0.017). Due to treatment x day interac-
tions 2-factor ANOVA analyses were performed at each
time point. Elevated Zn led to statistically significant
upregulation of miR166 at 15 dpi in the roots of nodu-
lated M. truncatula WT and raz compared to nodulated
WT roots in Ideal conditions (Figure 5). While raz
plants at 15 dpi in High Zn do not demonstrate a statis-
tically significant upregulation compared to raz plants in
Ideal Zn at this time point, there is no difference be-
tween genotypes, indicating little difference in miR166
Zn responses between raz and WT. At 10 dpi miR166 is
not statistically upregulated under elevated Zn condi-
tions, nonetheless, given that miR166 is downregulated
in control plants at the 15 dpi time point, our results in-
dicate that elevated Zn induces miR166 and leads to
maintenance of higher miR166 expression over the
observed time frame (10-15dpi).

qRT-PCR analysis shows mature miR169 is downregulated
at the 15 dpi time point
Expression levels of miR169 did not show any statisti-
cally significant trend in response to Zn in WT or raz

Figure 3 Root and shoot tissue concentrations (ppm d. wt.) of Zn, Mn, and Mo at 24 dpi. Medicago truncatula wild-type (gray columns)
and raz (open columns). a) is root Zn , b) is shoot Zn, c) is root Mn, d) is shoot Mn, e) is root Mo and f) is shoot Mo. Letter rankings indicate
differences as determined by Tukey’s HSD at 95% confidence. Bars are standard error. * indicates trend evaluated at alpha = 0.1.
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plants at either time point (Figure 6). However, 3-way
ANOVA analysis revealed a significant day effect. At 15
dpi, miR169 expression was downregulated with respect
to 10 dpi at α = 0.05. Whole root tissue was used for
both time points and our results imply that miR169 is
downregulated at the 15 dpi time point in both plant
genotypes under both Zn treatments. This result is com-
plementary to the findings of Combier et al. [37] where
the precursor, MtMIR169a, was downregulated at 14 dpi
compared to 10 dpi in nodulated roots.

Discussion
Exposure of WT and raz to excess zinc resulted in many
differences in root system architecture between the two

genotypes. Interestingly, differences in lateral root num-
ber were evident between genotypes but no difference
was noticed in nodule number or development; implying
that while the raz mutation does inhibit lateral root for-
mation it does not inhibit the closely related process of
nodulation. Ibekwe et al. [8] found high Zn activities
delayed or inhibited nodulation in Medicago sativa
inoculated with S. meliloti, but did not inhibit N-fixation
in developed nodules. Conversely, Zn deficiency has
been shown to disturb symbiotic N-fixation by altering
other processes within the host plant, such as nutrient
transport and assimilation [53]. Expression of a Krüppel-
like zinc finger protein is integral to the formation of the
N-fixation zone in M. truncatula [54]. In these ways, Zn
plays a significant role in nodule development. In our
study, the process of nodulation was unaffected by the
Zn treatment in both genotypes.
Ellis et al. [3] found Zn tissue concentrations in non-

nodulated M. truncatula WT and raz to be dependent
upon Mn concentrations and vice versa, with raz exhi-
biting greater sensitivity to variations in concentration of
either nutrient. For instance, at 3 μM Zn and 2 μM Mn,
raz plants had root Zn levels >10,000 μg g-1 d. wt. com-
pared with raz at 3 μM Zn and 0.2 μM Mn which had
<4,000 μg g-1 d. wt. In contrast, WT plants showed little
difference in root Zn levels in either of these treatments.
Also, raz had greater root Mn levels at 3 μM Zn and
2 μM Mn (~3,000 μg g-1 d. wt.) and 0 μM Zn and 2 μM
Mn (>4,000 μg g-1 d. wt.) compared with 1 μM Zn and
2 μM Mn (<2,000 μg g-1 d. wt. ). Under these and sev-
eral other Zn:Mn ratios raz plants had greater root Zn
and Mn concentrations than WT plants. Using the same
nutrient solution with Zn and Mn concentrations (3 μM
Zn and 0.2 μM Mn and pH 5.5) that Ellis et al. [3]
showed to be ideal for raz in non-nodulated treatments,
we made several unsuccessful attempts to nodulate WT
and raz plants. To evaluate why the plants weren’t nodu-
lating, we used GeoChem EZ to model the nutrient
solutions used by Ellis et al. [3] and found the pZn activ-
ity to be around 5.7 at pH 5.5. Ibekwe et al. [8] showed
that yellowing and necrosis in young leaves of M. sativa
occurred at a pZn activity = 8, 5.25, and 5.0, with plant
health improving after 10 days of treatment at pZn activ-
ity = 8. However, at pZn activity = 5.25 and 5.0 they
found overall plant growth was stunted and no nodula-
tion was achieved. Lack of nodulation was attributed to
damaged root tissue. Ibekwe et al. [8] were examining
the interaction of Cd/ Zn toxicity on M. sativa and
S. meliloti, but the Zn studies were carried out at a Cd
activity that was found to not influence the growth or
nodulation of the plants or rhizobia. There is little re-
search on the influence of metal concentrations on
nodulation in M. truncatula so it is possible that the re-
sponse to heavy metals may be slightly different than

Figure 4 Translocation Factor (Tf). Zn (a), Mn (b), and Mo (c)
(Tf = [Metalshoot]/[Metalroot]) at 24 dpi in Medicago truncatula
wild-type (gray columns) and raz (open columns). Letter rankings
indicate differences as determined by Tukey’s HSD at 95%
confidence. * indicates alpha = 0.1 for this pairwise comparison.
Bars are standard error.

Lewis et al. BMC Research Notes 2012, 5:657 Page 9 of 14
http://www.biomedcentral.com/1756-0500/5/657



that of M. sativa. Regardless, we have shown some
agreement with the influence of Zn on nodulation be-
tween the species.
Nodulation appears to alter the relationship between

Zn and Mn uptake and allocation in M. truncatula com-
pared to non-nodulated experiments shown in previous
studies [3,48]. This relationship seems to be altered
more dramatically in the raz mutant, where a greater
proportion of Zn was allocated to the shoots in both
High and Ideal Zn compared with WT and where a
greater proportion of Mn remained associated with the
roots in Ideal Zn (Figure 4xa, b). In our study, WT and
raz plants had significantly higher levels of Zn in root
and shoot tissues in the High Zn treatment compared to
Ideal conditions (Figure 3a, b). Ellis et al. (2003) reported
greater Zn concentration in roots verses shoots and ele-
vated Zn conditions are known to influence metal

distribution in the plant by inhibiting translocation of
Zn to the shoots leading to Zn accumulation in the roots
(Rout and Das 2003). Interestingly, WT plants had sig-
nificantly more Zn associated with root tissues com-
pared to raz under High Zn conditions. This finding is
contrary to the results of Ellis et al. (2003) and Lopez-
Millan et al. (2005) in non-nodulated plants, suggesting
nodulation affects Zn uptake and distribution in raz
plants. Since the pZn activities in nutrient solutions used
in our studies are different than those used by Ellis et al.
(2003) and Lopez-Millan et al. (2005) it is difficult to
compare the actual tissue concentrations, though our
results for root and shoot Zn concentrations in WT
plants do fall roughly in the range that one may expect
based on their results. Perhaps the lower levels of Zn in
the roots is an artifact of the excess Zn being shuttled to
the shoots (TfZn is higher in raz). It could also be related

Figure 5 Real-time RT-PCR analysis of miR166. M. truncatula WT (black and gray bars) and raz (white and striped bars). DPI is days post
inoculation and bars are standard error. Expression is set relative to the average. Data is normalized to actin-11.

Figure 6 Real-time RT-PCR analysis of miR169. M. truncatula WT (black and gray bars) and raz (white and striped bars). DPI is days post
inoculation and bars are standard error. Expression is set relative to the average. Data is normalized to actin-11.
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to the smaller size of raz roots given that surface area
and volume are lower in this genotype. We also
observed greater uptake of Mn by raz roots exposed to
Ideal Zn versus High Zn (Figure 3c). Ellis et al. (2003)
and Lopez-Millan et al. (2005) found raz plants had
greater root tissue associated Zn and Mn levels than
WT plants under various Zn-Mn regimes and that raz
plants tend to take up more Mn with increasing Zn con-
centrations, with the exception of [Zn] = 0. These results
again point to a possible influence of nodulation on the
partitioning of metals within the plant and warrants fur-
ther experimentation to deduce the mechanisms under-
lying this dramatic, possibly nodulation induced, change
in Mn (and Zn) uptake by raz mutants.
There is much to learn concerning the nutrient

demands generated by nodulation or the fluxes in nutri-
ent uptake and allocation possibly associated with the
formation and maintenance of nodules, as well as
symbiosis as a whole. The potential nodulation-related
changes we observed in Zn and Mn uptake in M. trun-
catula may be indicative of nutritional adjustments ne-
cessary to properly form and maintain the symbiosis.
Previous studies in non-nodulated plants have found no
correlation between MnSOD and total Mn associated
with plant tissues of either genotype, however, a strong
correlation was found between tissue associated Zn and
ZnSOD [55]. The authors found ZnSOD levels were
lower in raz plants exposed to high Zn compared with
WT in the same treatment and compared with both
genotypes in lower Zn, indicating that Zn is less avail-
able in raz roots past a certain threshold. Concentrations
of root associated Mo were increased in response to Zn
in WT but not raz. This may be indicative of differences
in the plant genotypic responses to excess Zn. If raz
plants are less sensitive to high levels of Zn, then the Zn
tolerance mechanisms, such as the release of metal
sequestering compounds into the rhizosphere, would be
induced to a lesser extent compared with WT, thereby
leading to lower levels of root associated Mo. However,
since previous researchers have found no such associ-
ation in other species and no work has been done
regarding this type of interaction in Medicago species,
this warrants further study.
As discussed earlier, excess Zn is known to affect sev-

eral developmental parameters (i.e. increased root diam-
eter, inhibition of root elongation, and inhibition of
hypocotyl and coleoptile growth). Given that miR166
is thought to play roles in root cell identity [33], our
findings, even though we are unable to determine
which miR166 family member(s) is/are the source of
the mature miRNA, may allude to part of the genetic
mechanism by which Zn inhibits cell division. It is
not uncommon for researchers to report increases in
root diameter along with decreases in root elongation

[56-59]. It is also thought that decreases in root elong-
ation can potentially arise from decreases in cell division
[59], understandably, given the intimate connection
between the two processes [58]. Boualem et al. (2008)
showed that MtMIR166a is involved in nodule develop-
ment as well as root architecture in nodulated and non-
nodulated M. truncatula. They showed a progressive
trend in downregulation of MtMIR166a in nodules of
M. truncatula moving from 1, 3, 8, and 21 dpi, with the
21 dpi point showing significant downregulation. Here,
we are reporting two time points within this range and
have found a similar trend in mature miR166 expression;
downregulation from whole nodulated roots in Ideal Zn.
Boualem et al. [34], also showed that overexpression of
miR166 in M. truncatula via 2x35S promotion leads to a
decrease in nodule number and lateral root formation
accompanied by dramatic reordering of vascular bund-
ling patterns. We did not investigate vascular bundling
patterns, but we found no experimental effect on nodule
number and no treatment effect on lateral root number
(Figure 2a). We did note a genotypic difference in lateral
root number, where WT plants generated significantly
more lateral roots than raz plants (Figure 2a); the same
phenomenon was observed in lateral root density
(Additional file 3: Figure S2). Boualem et al. [34] exam-
ined the effects of overexpressing miR166 through
strong promotion and our study was constructed to
analyze the behavior of miR166 in response to Zn in
non-transgenic plants. The upregulation we witnessed is
likely inadequate to reproduce the drastic changes in
phenotype observed by Boualem et al. [34] and is poten-
tially indicative of other, more subtle, roles of miR166 in
Zn response. The suggested role of miR166 directed
regulation of HD-ZIP III transcription factors in vascular
bundling and patterning insinuates Zn induction of
miR166 is possibly related to changes in root vascular
structure necessary to withstand, or induced by, the ele-
vated Zn condition.
Investigation into the functions of miRNAs in plants is

rapidly evolving, revealing their roles in a multitude of
biological processes from basic development to abiotic
stress response via long distance phloem transport. Here
we have shown that miR166 is upregulated in response
to chronic Zn exposure in nodulated M. truncatula WT
and raz. The effect of Zn on miR166 is statistically sig-
nificant at the 15 dpi sample point. Given that Zn expos-
ure did not generate phenotypes similar to those with
2x35S:MtMIR166a overexpression [34], our results may
imply a previously unidentified role for miR166 in Zn re-
sponse. WT plants developed significantly more lateral
roots than raz plants while miR166 expression was very
similar across genotypes. Differences in lateral root for-
mation were not associated with Zn treatment, yet upre-
gulation of miR166 was. We found no relationship
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between Zn exposure and expression of miR169. We
also found no difference in expression of miR169 be-
tween genotypes. Complimentary to other experiments
monitoring expression of the precursor, MtMIR169a, we
found mature miR169 to be downregulated at the 15 dpi
point compared to the 10 dpi point [37]. Suggesting that
expression of mature miR169 in whole nodule contain-
ing root tissues may mimic what has previously been
observed in root nodules. However, we observed no dif-
ference in nodule formation in response to Zn or be-
tween genotypes and given miR169 expression is related
to nodule development and function by limiting the ex-
pression of MtHAP2-1to the meristematic region [37] it
is unlikely that examination of nodule tissue only would
show any meaningful trends.

Conclusions
In summary, nodule development appears to be un-
affected by the raz mutation, suggesting the alteration in
Zn partitioning induced by the mutation is of little con-
sequence concerning this process. Excess Zn also
appears to have little influence on nodule development
or number in M. truncatula, as has been observed in M.
sativa. The major root architectural Zn responses
observed in this study were amongst genotypes, indicat-
ing the raz mutation modifies root development in rela-
tion to WT plants and that this modification alters
phenotypic responses to Zn. We have provided evidence
that nodulation may alter the relationship between Zn
and Mn concentrations associated with root and shoot
tissues and possibly hinder the Zn accumulating abilities
previously characterized in raz. MiR166 is induced in
roots of M. truncatula WT and raz in response to Zn
and this appears to be maintained through time under
chronic Zn exposure. Given the proposed mechanism by
which miR166 is thought to regulate, at least partially,
root cell identity; our results may imply some part of the
mechanism by which excess Zn inhibits cell division.
Further studies should investigate the role that miR166
plays in Zn responses to determine the precise function
of this miRNA in chronic Zn exposure. The findings we
report here provide insight into how legume roots re-
spond to Zn and add to previous research which also
found moderately high Zn levels to have little effect on
nodule development, provided Zn concentrations were
beneath the threshold where nodulation is drastically
inhibited. Future research should focus on the nutri-
tional demands that nodule development places upon
legumes and how this may alter nutrient fluxes within
the plant. Investigation into the roles of miRNA in Zn
stress may also prove fruitful in attempts to further
understand genetic mechanisms governing Zn induced
phenotypic responses.

Additional files

Additional file 1: Figure S1. Images of the modified General
Hyrdoponics Rainforest 236 aeroponic system. Ranforest 236 system as
purchased, b) bacteria friendly vortex pump used to circulate and aerate
the nutrient solution (ruler is 16”), c) addition of 125 micron
polypropylene mesh connected by Velcro™ to the top cover of the
Rainforest system to reduced the size of the nutrient solution to a fine
mist, d) top loading acrylic panel insert with 5/16” holes drilled every
inch to accommodate ~35 plantlets, and e) an operating RainforestTM

236 with single grow panel lifted to reveal roots, nutrient solution and
mist screen.

Additional file 2: Table S1. Forward (FWD) and reverse (REV) primer
concentrations and efficiencies used in qRT-PCR. Primer concentrations
found to provide the most efficient amplification and the calculated
efficiencies.

Additional file 3: Figure S2. Lateral root density (# of lateral roots/cm)
of Medicago truncatula. Wild-type (grey columns) and raz (open
columns) observed at 10 dpi using WinRhizo Pro. Letter rankings indicate
differences as determined by Tukey’s HSD at 95% confidence. Bars are
standard error. Ideal Zn = 0.35 μM (pZn activity ~9.85 with N and ~9.84
without N) and High Zn = 18 μM (pZn activity ~7.55 with and without N
as calculated by GeoChem-EZ).
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miRNA: microRNA.
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