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Donor-acceptor copolymers have received a great deal of attention for application 

as organic semiconductors, in particular as the active layers in low-cost consumer 

electronics.  The functional groups grafted to the polymer backbones generally dictate the 

molecular orbital energies of the final materials as well as aid in self-assembly.  

Additionally, the side chains attached to these functional groups not only dictate the 

solubility of the final materials, but also their morphological characteristics.  

The bulk of the research presented in this dissertation focuses on the synthesis and 

structure-property relationships of polymers containing novel acceptor motifs.  Chapter 2 

focuses on the synthesis of 1,2-disubstituted cyanoarene monomers as the acceptor motif 

for copolymerization with known donors.  It was found that cyanation of both benzene 

and thiophene aromatic cores resulted in a decrease of the molecular orbital energy 

levels.  Additionally, the small size of this functional group allowed favorable self-

assembly and close -stacking to occur relative to related acceptor cores carrying alkyl 

side chains as evidenced by UV-Vis and WAXD data.   

Chapter 3 describes the systematic variation of side chain branching length and 

position within a series of phthalimide-based polymers.  Branching of the side chains on 

bithiophene donor units resulted in the expected increase in solubility for these materials.  

Furthermore, a correlation was found between the branching position, size, and the 

HOMO energy levels for the polymers.  Additionally, it was demonstrated that branching 

the alkyl side chains in close proximity to polymer backbones does not disrupt 

conjugation in these systems.     

A novel acceptor motif based on the 1,3-indanedione unit is presented in Chapter 

4.  Despite the stronger electron withdrawing capability of this functional group relative 

to phthalimide, it was found that polymers based on this unit have the same HOMO 

molecular orbital energy levels as those presented in Chapter 3.  It was found, however, 



 

 

the presence of orthogonal side chains greatly enhanced the solubility of the final 

polymers.  Additionally, UV-Vis and WAXD measurements revealed that thermal 

annealing had a profound effect on the ordering of these polymers.  Despite the presence 

of orthogonal side chains, long range order and close -stacking distances were still 

achieved with these materials.   

Finally, alkynyl “spacers” were used in Chapter 5 to separate the solubilizing 

alkyl side chains from the polymer backbones on bithiophene donor monomers.  The 

alkynyl groups allowed for conjugated polymer backbones to be achieved as well as low 

HOMO energy levels.  A correlation between the side chain size, -stacking distances 

and HOMO-LUMO energy levels was measured in this polymer series. 

 

KEY WORDS: Conjugated polymers, organic thin-film transistors (OTFTs), organic 

photovoltaic devices (OPVs), polymer electrochemistry, polymer spectroscopy 
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Chapter One: Introduction to Organic Semiconductor Materials 

1.1 Organic Electronics Introduction 

 

 Conjugated polymers, for electronic applications, first appeared in the literature 

with the reports of conductive, doped polyacetylene in 1977.
1
  Since then, a large 

research effort has taken place to further this technology, resulting in large scientific 

advances through the past 36 years.  Specifically, a major goal of the organic electronics 

(OE) field is to replace/supplement conventional Si-based technologies in applications 

such as thin-film transistors,
2 
photovoltaic devices,

3 
sensors

4
, and radio-frequency 

identification (RF-ID) tags.
5  

One main attraction of “going organic” rather than using 

traditional silicon and metalloid semiconductor materials lies in the reduced cost of 

fabricating devices from soluble organic compounds, rather than the costly and energy 

intensive methods required for traditional devices fabricated from insoluble silicon.  A 

number of cheap, simple, high-throughput deposition techniques such as spin coating and 

inkjet printing have been developed that can be applied to process soluble semiconductor 

materials.
6
 Recent developments in the field have also produced organic-based devices 

that can compete with, and even outperform amorphous-Si (a-Si) in certain figures of 

merit for thin-film transistor applications.
8,9,10

 Solution processability also allows these 

materials to be compatible with temperature sensitive device substrates such as plastics 

and fabrics.  Novel products can be created using these materials that otherwise would 

not be possible using metalloid semiconductors requiring high temperature processing 

steps.
7
  Despite impressive technological advances over the past five years, OE have not 

found wide-spread use in real-world devices on the market today.  Indeed the majority of 

low-end contemporary electronic technologies are still dependant on semiconductors 
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based on the metalloid compounds.  This is due to the fact that organic materials still 

have a host of unsolved issues.  The main drawback to OE technology is that these 

carbon-based materials are simply not stable during device operation.
68

  These materials 

undergo redox processes with ambient species such as O2 and H2O when operated in 

devices, thus greatly limiting device efficiency and lifetime.
11,12, 13

  One solution to this 

issue is to encapsulate the active organic layer, shielding it from contact with the 

atmosphere.
13

  This approach, however, requires extra materials and steps in processing, 

driving up the final cost of devices and taking away the most attractive feature of cost 

savings associated with going organic.  Other approaches, which are a major topic of this 

dissertation, rely on the design of compounds to thermodynamically and/or kinetically 

prevent the active materials from undergoing redox chemistry with atmospheric species.
69

   

 

1. 2 Organic Thin-Film Transistors 

 

 

 In particular, research in the past 5 years has produced large increases in device 

performances in the field.  Such advances necessitate a multidisciplinary approach to 

achieve efficient final devices.  This and the following section describe the basic device 

structures and operating principals of organic thin-film transistor (OTFT) and organic 

photovoltaic (OPV) devices.  These sections are intended to give just enough background 

to understand the motivation for the synthesis of polymers presented in later sections and 

are by no means comprehensive.  Both p-type and n-type organic semiconductors are 

known, but the focus of this dissertation is p-type semiconductors so only those materials 

will be discussed in this section. Sections 1.4 and 1.5 summarize the bulk of the topics for 

this dissertation; molecular design principals and materials synthesis.   
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OTFTs, as mentioned above, have numerous practical uses as the active components in 

many modern devices.  In addition to functional devices they also provide valuable 

fundamental information and may be considered a characterization tool for OE materials.  

The four basic device structures for OTFTs are shown in figure 1.1. 

 

 

Figure 1.1:  Basic device architecture for OTFTs:  Top contact bottom gate (TCBG), 

bottom contact bottom gate (BCBG), bottom contact top gate (BCTG) and top contact top 

gate (TCTG). 

 

While the overall configurations for these devices are different, the basic components are 

all the same.  A three electrode set-up consisting of source, drain and gate electrodes are 

present in all configurations.  The source and drain electrodes are typically made from 
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gold, but other materials may be used.  The gate electrode is generally heavy doped 

silicon although other materials may be used as well.  An insulating dielectric layer 

separates the gate electrode from the semiconductor in all cases; the gate electrode is 

capacitively coupled to the semiconductor through the dielectric layer.  Inorganic or 

polymeric dielectrics are commonly used for this purpose.  The semiconducting layer is 

not purposely doped, so ideally the concentration of charge carriers (holes or electrons) is 

extremely low when no gate voltage is applied and the device is in the “off” state.  

Application of a gate voltage induces an increase in charge-carrier concentration in the 

semiconducting layer (accumulation layer) and the device is said to be “on”.  Finally, 

after charge accumulation, a potential difference between the source and drain electrodes 

is applied and holes are injected into the highest occupied molecular orbital (HOMO) 

energy level of polymer.  Current then flows between the two electrodes as illustrated 

 

 

Figure 1.2:  Schematic of OTFT device function.   

 

in figure 1.2.  Although this diagram and the operating principles described above are an 

oversimplification of how OFETs work, the focus of this dissertation is not on the device 
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engineering and solid-state physics aspect of OFETs.  Rather, this basic idea of OFET 

operation will be sufficient to understand the molecular design principals presented later.  

Three important figures of merit are used when evaluating the performance of OFETs.
76 

 

Charge carrier mobility (): The charge carrier mobility, by definition, is the drift 

velocity of a charge (electron or hole) per unit of the applied electric field.  Mobility 

greater than 0.5 cm
2
/Vs is desirable for real world applications.

76
 

 

 

On/off current ratio (Ion/Ioff):  The on/off current ratio is simply a ratio of the current 

flowing through the device in the “on” state and the “off” state.  When no gate voltage is 

applied, there should be minimal mobile charges in the active layer and hence, no current 

flowing through the device.  However, if impurities are present they may act as dopants, 

creating mobile charges while the device is in the “off” state.  Ion/Ioff then, can be an 

indicator of the purity and stability of the semiconductor, with desirable values of  > 

10
5
.
76 

 

Threshold voltage (Vth): The threshold voltage is the gate voltage at which the 

accumulation layer is formed.  Generally, hole or electron traps are present in the films of 

semiconductors that must be filled before the device can conduct.  Numbers close to zero 

are desirable for Vth. 
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1.3 Organic Photovoltaic Devices 

 Photovoltaic cells, otherwise known as solar cells, utilize light to create electrical 

current employing a photoactive semiconducting material.  Traditionally, solar cells have 

been based on inorganic materials; specifically on silicon, making up 85% of the market 

as of 2010.
14

  While the prospect of using a clean, non-CO2 releasing, renewable energy 

source such as the sun has been attractive to many scientists and politicians for years, the 

practical aspects of solar energy capture have hampered widespread adoption.  The main 

issue associated with solar energy, based on classic inorganic cells, is the prohibitively 

high cost of manufacturing crystalline silicon.  Silicon must be highly purified and 

processed at high temperatures under vacuum, a very costly and energy-expensive 

process.  Additionally, large-scale grid operations of silicon solar cells cannot compete 

with traditional grid-type electricity.
15

  The active materials for OPVs on the other hand, 

may be easily synthesized and purified by routine laboratory procedures and solution 

processed at or near room temperature into devices, greatly decreasing manufacturing 

cost.  The attractive features of large-area, low-cost solar cells have generated extensive 

research interest in the field of OPVs.  However, organic-based cells have serious 

limitations of their own, generally associated with their low power conversion 

efficiencies (PCEs) and poor long term stability.  Considering that silicon solar cells have 

certified efficiencies >25%
10

 while their organic counterparts have just begun to achieve 

efficiencies exceeding 10%, OPVs appear to be purely an academic exercise as of now.  

It has been estimated, however, that OPVs operating with 10% PCE with device stability 

of ~ 10 years could reduce the overall cost of ownership to less than that of silicon solar 

cells making real world OPV cells a reality.
15

  The lower manufacturing costs of OPVs 
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relative to their higher performing inorganic counterparts will compensate for their lower 

device performance and stability.
16

  Recent progress further suggests this may become 

reality as the PCEs of some OPV devices are topping the 12% mark.
80 

 

Operating Mechanism 

 

 While various architectures for OPVs have been proposed and tested throughout 

the years the current state of the art is known as the bulk heterojunction (BHJ) design.  

The key feature of the bulk heterojunction design is the blending of a p-type conjugated 

polymer or small molecule with an n-type electron acceptor, almost exclusively a soluble 

fullerene derivate such as PCBM or P71BCM (figure 1.3). 

 

Figure 1.3:  Schematic representation of the active layer of an OPV (not to scale) with 

the structure of commonly used acceptor PCBM .  
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The overall performance of an OPV is expressed as the power conversion efficiency 

(PCE) represented by equation 1. 

 

Pin

FFJscVoc
PCE


  

 

 

eq. 1 

It can be seen from equation 1 that the overall PCE is represented by three terms that may 

be extracted from the J-V output curve of an OPV device.  These terms are briefly 

defined here: 

Open-circuit voltage (VOC): The open-circuit voltage is the voltage across an OPV when 

there is no current flowing. 

Short-circuit current density (Jsc): The short-circuit current density is the current 

flowing through the OPV when the potential across the cell is zero.  It is proportional to 

the area of the cell illuminated by light; therefore it is expressed as a ratio of current to 

area (mA/cm
2
). 

Fill Factor (FF): Fill factor is the ratio of the maximum power produced by the cell to the 

product of Voc and Jsc.  

The general operating mechanism for BHJ OPVs is illustrated in figure 1.4 and described 

as follows:
18

   

1) Absorption of photons by the conjugated polymer creating a exciton (a bound 

electron-hole pair). 

2) Diffusion of the exciton to the donor-acceptor interface. 

3) Dissociation of the exciton, charge generation and diffusion to the proper electrodes. 
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Figure 1.4:  Diagram of optical excitation, charge transfer and charge collection in BHJ 

OPV. 

 

It becomes apparent from figure 1.3 that intimate mixing of the donor and acceptor 

phases as well as the overall morphology of the blend are crucial for high-performance 

cells to be realized.  The blends must form an interpenetrating network (IPN) with 

domains of the donor and acceptor on the scale of the exciton diffusion length, about 10 

nm.
70

  Fullerene derivatives are, as of now, the prime materials used as electron acceptors 
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in BHJ cells.  Fullerenes possess a number of unique characteristics.  Their triply 

degenerate LUMO allows them to be reduced with up to six electrons in solution
77

 and
 

they possess high electron mobility, up to 1 cm
2
/Vs in OTFTs

78
.  Electron transfer from 

excited donors to fullerenes is ultra fast, on the order of 45 fs, while competing relaxation 

processes are much slower, on the order of 1 ns.
20

  Their energetically deep lying LUMO 

of -4.2 eV
19

 (high electron affinity) provides the thermodynamic driving force for step 3, 

charge dissociation at the donor/acceptor interface.  Their spherical structure also allows 

3-dimensional electron transport.  In order to obtain the necessary energetic driving force 

for forward electron transfer to fullerene, a minimum energetic offset of ~ 0.3 eV 

between the LUMOs of the donor and acceptor materials is generally reported to be 

sufficient to overcome the exciton binding energy.
21

  The VOC is also partially dependent 

on the difference in HOMO energy level of the donor and LUMO energy level of the 

acceptor.   Brabec et al. found a direct relationship between the electron acceptor strength 

of 4 different fullerene derivatives with the donor poly(phenylene vinylene), MDMO-

PPV.
22  

Further studies by Brabec et al. showed that a similar trend was observed using 

PCBM as the acceptor while varying the donors.
23

 Assuming PCBM will be used as the 

electron acceptor phase we are searching for materials with HOMO energies of -5.4 eV 

and a HOMO-LUMO energy gap (Eg) ~ 1.5 eV to achieve maximum cell efficiency. 

The second key factor for materials to be used in OPVs is the light harvesting capability 

of the polymers.  Approximately 70% of the sun’s light flux is distributed in the 

wavelength region between 900 and 380 nm.
24

  Ideal donor polymers will have a broad 

absorption profile across this range and low Eg to obtain high overall efficiency.  From 

the molecular design and synthetic chemistry point of view we are mostly concerned with 
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synthesizing polymers with the appropriate Eg and FMO energies as to maximize both 

VOC and JSC.  We also wish to maintain high levels of solubility for our materials to 

facilitate processing, ideally with good self-organization properties. 

 

1. 4 Molecular Properties 

 

 The major focus of this dissertation is optimizing the molecular properties of 

conjugated polymers for applications in OTFTs and OPVs and will be introduced here.  

A qualitative model for the prediction of the Eg of conjugated polymers was first 

presented by Roncali in 1997.
25

  As shown in figure 1.5 the Eg may be thought of as a 

function of five interrelated contributions described below. 
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Figure 1.5: Qualitative model and “equation” for Eg contributions.
 25
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EBLA:  (BLA = bond-length alternation) The two “resonance” structures shown in figure 

1.5 are not energetically equivalent.
26

  The quinoidal structure of the polymer has been 

calculated to have a smaller Eg, hence, its contributions to the ground state structure will 

result in systems with smaller Eg.
27

   

E:  Twisting of the repeating units relative to one another decreases π-orbital overlap 

and overall conjugation in the system.  The result is an increase in the Eg. 

Eres:  This term refers to the intrinsic resonance stabilization energy of the units in the 

polymer backbone.   For example, benzene has a higher resonance stabilization energy 

than thiophene, 1.56 and 1.26 eV respectively.
25

  Therefore, based on this alone, one may 

predict thiophene-based polymers would have smaller Eg than the analogous benzene-

based polymers. 

Esub: The substitution of hydrogen by various functional groups on the aromatic moieties 

in CPs has a large influence on the EHOMO and ELUMO, and hence, the Eg of the polymer.  

This will be discussed in greater detail later. 

Eint: Intermolecular interactions, specifically interchain coupling, in solution and 

especially the solid state can impact the Eg.  Generally, decreases in Eg are observed for 

CPs as interchain coupling increases. 

 Returning to the definition of Eg as difference in energy between HOMO and 

LUMO energies in conjugated systems, any of the above contributions that affect the Eg 

of the CP does so by affecting the FMO energies of the polymer.  As will be shown in the 

next sections, the magnitude of the changes of the FMO energies is not always equal. 
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1. 4. 1 Structural Considerations 

 

Conjugated -electron system   

 Charge transport in OE materials typically occurs through conjugated p-orbitals in 

aromatic systems.  First, ionization potentials (IP) for electrons in the HOMO of 

conjugated molecules, very commonly part of the -framework, are much lower than 

those associated with the -framework, or isolated -orbitals of non-conjugated alkenes.
2
  

This, from a practical point of view, means that charges may be injected into the HOMO 

of π-conjugated molecules from common metal electrodes.  Second, following injection, 

the charge must be delocalized throughout the molecule in order to travel to the necessary 

electrodes.   Figure 1.6 shows a resonance structure for a commonly used OE material, 

P3HT. The ideal situation, illustrated in figure 1.6 suggests that if P3HT were 

sandwiched between two electrodes it would function essentially as a wire; fast charge 

delocalization would occur through the whole polymer leading to high charge carrier 

mobility.  However, it is well known that this is not the case.  Defects in the polymer 

chain from chemical synthesis and (photo)chemical decomposition may block complete 

charge delocalization.  Physical defects, such as tilting of the monomer units relative to 

one another (E) also limits the conjugation within a polymer chain.  Limiting these 

chemical and physical defects through molecular design and choice of synthetic route can 

increase carrier mobility.  These implications will be discussed in detail later.   
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Figure 1.6:  Resonance structure for a segment P3HT showing charge delocalization. 
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Solid State Ordering 

 

 Another mode of charge transport is believed to be dominant in organic 

semiconductors. Charges “hop” from one polymer chain to adjacent polymer chains as 

illustrated in figure 1.7, i.e. in an intermolecular fashion.
71

  Therefore, it is important to 

design materials that preferentially adopt face-to-face π-stacking at close intermolecular 

distances in order to maximize charge transport rates and overall mobility.   

 

 

Figure 1.7:  Schematic diagram of charge delocalization in a polymer OE device.  The 

solid red blocks represent CP backbones (side chains omitted).  The arrows between the 

backbones show the movement of charge from one chain to another.  Intrachain 

delocalization occurs in the Z direction, interchain hopping occurs in the X direction.  

 

The relationship between intra- and interchain electron delocalization and hopping leads 

to two dimensional charge transport.  The insulating alkyl chains would generally 

populate the Y direction in figure 1.7 and do not contribute to charge transport.
71

 

It is however, a difficult task to predict whether polymers will order in this fashion or not 

a priori. 

Appropriate FMO energies 

 

 Not only must the π-electron system of conjugated polymers have accessible 

HOMO energy levels for hole injection from common metal electrodes such as gold, they 
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must also have suitable energies to impart ambient stability.  One of the biggest issues 

facing commercialization for OE devices, as noted before, is their lack of ambient 

stability when operated in devices.
  
The general design of polymeric OE semiconductors 

incorporates electron-rich aromatics in the backbone of the polymer.  These highly 

electron-rich species are prone to undergo oxidation processes with ambient species such 

as O2, H2O and ozone.  de Leeuw and co-workers applied the standard redox potentials of 

common ambient species to derive a relationship between a polymer’s EHOMO and 

operational device stability.
28

  It is worth noting here that the Nernst equation was used 

for their calculations, which is valid for aqueous solutions.  The polymers in question, of 

course, are generally not deposited from aqueous solution.  More importantly, these 

materials are in the solid state when operated in devices and sandwiched between 

electrodes with different work functions.  Additionally, the free energy of activation 

(overpotential) for electrochemical reactions to occur was also neglected in their 

calculations, which may amount up to a volt.
69

  Nonetheless, they found that 

semiconductors in OTFTs must have an EHOMO deeper than - 4.9 eV relative to vacuum in 

order to be stable against redox chemistry with O2 and H2O.  In order to achieve this, 

electrons in the HOMO must be somehow stabilized relative to vacuum level.   

Small HOMO-LUMO energy gap 

 

 The Eg is an important consideration for materials specifically in OPVs.  As 

shown in figure 1.8, and stated in section 1.3, approximately 70% of the sun’s energy is 

distributed in wavelength region between 900 and 380 nm.  In order to capture as many 

photons as possible it is necessary for the polymer to have a narrow Eg of ~ 1.4 eV, and, 

ideally a large spectral distribution in this wavelength region.
 24

  For example, the 
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absorption spectrum of polymer “B”, shown as the black line in figure 1.8, has an Eg of 

1.4 eV and a broad absorption profile in the 900 to 380 nm range.  A material with such 

absorption characteristics would be expected to efficiently capture photons in this 

wavelength region. Polymer “A” on the other hand, has an Eg of 2.6 eV and a narrow 

absorption profile in this region, and would not be capable of harvesting a large fraction 

 

Figure 1.8:  Absorption of spectrum of a low-energy gap polymer “A” (black line) with a 

broad spectral distribution and a large energy gap polymer “B” (red line) with a narrow 

spectral distribution. 

 

of solar photons in this wavelength region. 

1. 4. 2 The Donor-Acceptor Approach to Conjugated Polymers 

 

 In order to satisfy the above requirements for conjugated polymers the 

contemporary strategy is to synthesize polymers comprised of alternating electron-
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donating and accepting monomers; otherwise known as the donor acceptor (D-A) 

approach.  All of the highest performing polymers to date (as will be shown in the 

following section) are D-A materials.  The main benefits of the D-A approach are thought 

to be in the areas of polymer self organization and FMO energy level control.  

Alternating electron-rich and electron-poor monomers within a polymer backbone can 

provide a driving force for favorable self-assembly (-stacking); the electron-rich and 

electron-poor units may assemble in a close, face-to-face fashion (figure 1.9), as 

observed, for example, in benzene and hexafluorobenzene mixtures,
72

 necessary for good 

performance in OTFTs. 

 

 

Figure 1.9:  Illustration of attractive interactions between electron-rich (donor) and 

electron-poor (acceptor) units of a D-A polymer. 

 

 Second, this approach allows for the Eg, as well as the FMO energy levels of polymers to 

be rationally varied as illustrated in figure 1.10.  Copolymerization of donor and acceptor 

monomers generally raises the HOMO energy of and stabilizes the LUMO energy of the 

resulting D-A polymer relative to the isolated monomers, thus narrowing the Eg.
73

  

Additionally, the HOMO in many D-A systems is concentrated more on, or the EHOMO is 
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more strongly governed by the EHOMO of, the donor unit while the LUMO is concentrated 

more on, or the ELUMO is more strongly governed by, the acceptor unit.
73,74

  Therefore, by  

 

 
 

Figure 1.10:  Qualitative molecular orbital diagram for donor and acceptor monomers 

and the resulting D-A polymer after polymerization. 

 

appropriately choosing the relative FMO energy levels of the monomers, the FMO 

energies of the resulting D-A polymers may also be varied in a rational fashion. 

 

 

 

 

 



19 

 

1. 4. 3 Design Strategies Used in This Dissertation 

 

 Simple structural modifications can tune the FMO energies of CPs to provide 

suitable FMO energy levels for ambient stability and small Eg for OPV applications.  The 

following section describes the molecular design strategies used in this dissertation to 

achieve the appropriate FMO energies and Eg, in addition to solubility and self-assembly, 

for the conjugated polymers.  

 

1)  Use the D-A approach to obtain polymers with the appropriate FMO energies and 

high propensity for favorable self organization. 

 

2)  Use head-to-head bithiophene linkages.  Head-to-head (HH) linkages refers to the 

relative alkyl chain positions on adjacent thiophene rings as illustrated in figure 1.11. 

 

 

Figure 1.11:  HH-linkages in a D-A copolymer. 

 

This motif allows for the regular placement of alkyl chains along the polymer backbone 

while minimizing steric interaction with adjacent acceptor units, thus allowing the 
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concomitant highest possible loading of acceptor and solubilizing side chains whilst still 

allowing backbone coplanarity.  It has been shown that HH bithiophene linkages in 

poly(alkylthiophenes) (PATs) results in twisting of the polymer backbones.
29

  However, 

it has also been shown that the presence of these linkages in D-A polymers does not 

hinder backbone planarization, likely due to additional driving forces for self 

organization such as donor acceptor interactions.
30

  Furthermore, 3,3’-dialkoxy-2,2’-

bithiophene units (3,3’-ROT2) are also used in this dissertation on the donor motif as 

illustrated in figure 1.11(R= OCnH2n+2).  The presence of alkoxy linkages between the π-

system and the alkyl chains will have large effects on both Eg and the FMO energies of 

the polymers.    Additionally, it has been proposed that there are attractive, rather than 

repulsive intramolecular interactions between the pendant oxygen atoms and adjacent 

thiophene units.   

For example, Reynolds and co-workers collected crystal structures of monomers 

A and B, shown in figure 1.12, and found the dihedral angle between the thienyl and 

phenyl groups became drastically reduced upon alkoxylation of the 2- and 5-positions of 

the benzene ring.
31, 32

  Furthermore it was found the distance between the phenylene 

oxygen atom and the sulfur atom in the thiophene ring was 2.63 Å, less than the sum of 

the van der Waals radii of 3.2 Å for the two atoms.  After electrochemical polymerization 

they found the resulting polymer from monomer A had both a lower Eg and than 

polymers from monomer B by 0.6 eV.  The difference in space filling demands of the 

large alkoxy side chains in monomer A relative to hydrogen in monomer B was likely 

another factor that affected the properties of the polymers in these studies.   
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Figure 1.12:  Close contacts and restricted dihedral angles between thienyl sulfur and 

phenylene pendant oxygen atoms.
31,32 

  

Many other groups have observed the close contacts and restricted dihedral angles 

in crystal structures of similar small molecules containing adjacent oxygen and thienyl 

sulfur atoms.
85,34,35

 The same general observations of red-shifted absorption maxima and 

lower ionization potential in alkoxylated thiophene-containing polymers has also been 

reported.
36,37

  Theoretical works on the source of these attractions
38

 have not clearly 

provided an explanation for these interactions in polymers-whether they are purely 

electrostatic in nature or p-
* 
type bonding.  Nonetheless the experimental evidence 

clearly shows that this motif is effective in lowering the band gap of conjugated 

polymers.  This approach will allow low Eg materials to be synthesized for OPV 

applications.  Unfortunately, as will be discussed in later chapters, a significant decrease 

in the solubility of polymers containing 3,3’-ROT2 units is generally observed, limiting 

the choices of acceptor monomers that may be used for polymerization. 

 

3)  Use novel acceptors to acquire the appropriate energy levels for FMOs
 
as 

illustrated in figure 1.10.  Known D-A polymers in the literature and knowledge of basic 

organic chemistry allows rational functional group choices to be made to obtain 

appropriate FMO energies.   
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4) Use branched side chains, when necessary, to increase solubility and decrease 

polymer HOMO energies by sterically modifying π-conjugation in the backbone and/or 

solid state organization and interchain coupling.  

 

1. 5 The State of the Art in Materials Performance 

 

 Impressive advances in the mobilities of OTFTs and efficiencies of OPVs have 

been made in the past 5 years.  This section focuses solely on p-type semiconductors 

which are the focus of this dissertation. 
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Figure 1.13:  Polymers with highest OFET hole mobilites reported in the literature, 

PDVT
10

 CDTBTZ-C16
9

 and IIDDT-C3
39

 

 

Figure 1.13 shows the structures of the highest performing semiconducting polymers in 

OTFTs to date reported in the literature.  It is worth noting here that all of the polymers 

contain a strongly electron-accepting group copolymerized with a weakly electron-



23 

 

donating group in the backbone.  Furthermore, it is worth noting that all of these 

materials contain branched side chains, and in the case of CDT-BTZ-C16, orthogonal 

side chains with respect to the polymer backbone.  The highest mobility polymer reported 

in the literature to date is PDVT-10
10

, shown in figure 1.13 with a maximum measured 

mobility of 8.2 cm
2
/Vs.  Devices based on small molecules such as 6,13-

dichloropentacene
173

 and dioctylbenzothienobenzothiophene
174

 were reported to have 

mobilites of 9.0 and 9.1 cm
2
/Vs, respectively. 

 Figure 1.14 shows the highest performing polymers in OPVs to date.  The same 

general motifs found in high performance OTFT materials are also present in OPV 

materials such as the D-A motif, branched side chains, as well as orthogonal side chains.  

The highest performing (proprietary) OPV material to date was recently reported by 

Heliatek.  They used vacuum-deposited small molecules rather than solution processed 

polymers to fabricate OPVs with PCEs of 12%.
80 
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Figure 1.14:  Polymers with highest PCEs reported in the literature, PDTSiTPD
40

 

PDTGeTPD
41

 BnDT-TT
42

 PBnDT-DTffBT.
43 

 

1.6 Methods  

 

 This section summarizes the methods used for the measurements of the optical 

properties, FMO energies, and solid state ordering of the final polymers.  The 

polymerization reaction conditions used throughout this dissertation are also presented. 

 

1. 6. 1 Electrochemistry 

 
 Molecular orbital energy, as stated in the previous sections, is a very important 

factor to consider when designing polymers for synthesis.  Therefore, it is of interest to 

easily and accurately estimate the energy required for both the oxidation and reduction of 
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our polymers.   Specifically, we are interested in measuring the ionization potential (IP) 

for p-type doping and electron affinity (EA) for n-type doping.  These may then be 

related to the HOMO and LUMO energy levels of the polymers, respectively, via 

Koopmans’ theorem.
45

  IP, by definition, is the energy required to remove an electron 

from a gaseous atom or molecule to vacuum.  The method best suited to measure IP then, 

is ultraviolet photoelectron spectroscopy (UPS).  This method involves exposing a 

sample of analyte to ultraviolet light under high vacuum.  Electrons are ejected and their 

kinetic energy varies according to which molecular orbital from which it was ejected.
46

    

However, this method is costly and time consuming compared to the more commonly 

employed electrochemical measurements.  In a classical cyclic voltammetry experiment, 

a forward then a reverse linear potential scan are applied to a working electrode that is 

immersed in a solution containing dissolved analyte and a supporting electrolyte.  If 

oxidation of the analyte (and reduction of the oxidized species) is accessible within the 

experimental window the average of the oxidation (Epc) and reduction peak (Epa) 

potentials may be used to approximate the formal potential of the redox couple according 

to equation 2.
47 

E1/2
 = 1/2(Epc+ Epa) =Eo + (RT/nF)ln(DR/DO)1/2                 eq. 2 

 

The electrochemical oxidation potentials may then be related to vacuum level using an 

internal standard such as the ferrocene/ferrocenium (Fc/Fc
+
) redox couple.

48
  However, 

electrochemical analysis of conjugated polymers involves deposition of a polymer thin 

film on the working electrode and immersion into a solvent in which the polymer is 

insoluble.  Therefore, the analyte is not dissolved and diffusion of (un)charged analyte to 

the working electrode does not occur as in the established CV methods.  Furthermore,  
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redox processes for conjugated polymers result in large conformational and energy level 

reorganization relative to small molecules.
47, 49

  Therefore redox processes being studied 

with conjugated polymers are often non- or quasi-reversible and standard equation 2 is 

not valid.
49  

Indeed large hysteresis and broad peaks are generally observed in CVs of 

conjugated polymers.  Charging of the polymer backbone during the experiment adds 

further error to the measurement.
49

  As a result, the onset of oxidation, rather than peak 

oxidation is generally used to probe the energies of charge injection in the ground state of 

conjugated polymers.  Although CV is generally used to determine polymer FMO 

energies in the literature, it came to our attention that this electrochemical technique was 

not the best suited for measuring the onset of oxidation.  Differential Pulse Voltammetry 

(DPV) may be a superior method for measuring the onset of oxidation potentials for 

conjugated polymers.  The DPV technique provides greater sensitivity than CV due to the 

fact that the current sampling points allows for the decay of the capacitive current during 

the experiment, thus producing a more sensitive measurement of the Faradic current.
50, 51

  

Indeed, it has been reported that DPV produces sharper oxidations allowing for more 

accurate determinations for the onset of oxidation for conjugated polymers.
52, 53, 54  

To test 

the relative merit of DPV versus CV, a sample of P3HT was used for measurement.  The 

CV EHOMO values for P3HT reported in the literature range from -4.8 eV
55 

to -5.2 eV
56

 

with UPS measurements producing the former value.
75

  Figure 1.15 shows the DPV and 

CV voltammograms of thin-films of P3HT drop cast from toluene.  This came after days 

of repeated measurements, changing variables such as preconditioning the polymer film 

with incomplete scans, until reliable technique could be established in-house. 
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Figure 1.15:  DPV versus CV of P3HT calibrated versus Fc/Fc
+
.  

 

A clear difference between the onsets of oxidation is seen between the two methods.  In 

fact, the difference between the onsets of the two peaks is 40 mV, corresponding to the 

difference in the upper and lower limits for the P3HT ionization potential reported in the 

literature.  The DPV method gave an EHOMO  of -4.8 eV relative to vacuum, in agreement 

with UPS measurements.
 75

  Accordingly, DPV was adopted for all electrochemical 

measurements reported in this dissertation.  

 

1 . 6. 2 Optical Spectroscopy 

 

 Optical spectroscopy, in particular UV-Vis spectroscopy, is a useful tool for 

gaining a preliminary understanding of the molecular order present in polymer solutions 

and thin-films.  The onset of absorption (λonset) is generally used to estimate the Eg of a 
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given material as illustrated in figure 1.16.  This method must be used with caution as 

onset of absorption does not necessarily correspond to the formation of free charge  

 

 

Figure 1.16:  Example of a UV-Vis spectrum of a D-A polymer illustrating the 

estimation of Eg from a polymer thin-film, the Δλmax between the solution and thin-film 

spectra and the presence of fine structure (circled region). 

 

 

carriers, rather a bound electron-hole pair is formed.
49

  In many cases the energy gap 

measured by electrochemical methods such as DPV yields higher values of Eg when 

compared to the optical energy gaps.
49,81-83

 Nonetheless, in many cases reduction peaks 

are not observed in electrochemical voltammograms of p-type semiconductors (or 

oxidization peaks for n-type) and this method is commonly used in the literature.  The 

term Eg, used for the remainder of this dissertation refers to the optical energy gap 

measured by the method described above.             
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Comparison of the solution and solid state absorption spectra provides 

information about differences or similarities in two states.  For example, similar solution 

and thin-film absorption profiles implies similarities in the two states, whether the peaks 

are broad and featureless (dissolved polymers in solution/amorphous polymers in the 

solid state) or structured (ordered polymers).  A large red-shift in the absorption profile 

(as illustrated as Δλmax in figure 1.16) upon going from solution to the solid state implies 

a large difference between the two states.   The red-shifts in going from solution to the 

solid state are thought to be a product to increased backbone planarity, increased 

conjugation and increased intermolecular orbital overlap relative to polymers dissolved in 

solution.
84  

Finally, fine structure (circled region in figure 1.16) is sometimes observed in 

thin-films of conjugated polymers.
79

  The fine structure is generally attributed to “inter-

chain” interactions of π-stacked polymer backbones in the solid state, implying polymers 

displaying fine structure in their absorption spectra are relatively ordered. 

 

1. 6. 3 2-D Wide Angle x-ray Diffraction (WAXD) 

 A schematic representation of a WAXD experiment is shown in figure 1.17.  In a 

typical WAXD experiment, a sample of polymer is mechanically forced through a home-

built extruder to align the polymer backbones vertically.  The polymer fiber is then 
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Figure 1.17:  Schematic diagram illustrating a WAXD experiment.  A)  Alignment of 

polymer fibers through extruder.  B)  Illustration of lamellar packing of side chains and π-

stacking of polymer backbones.  The red blocks represent monomer repeating units and 

the black blocks represent alkyl side chains.  C)  2D-WAXD pattern of a mechanically 

aligned polymer fiber. 

 

mounted perpendicular to the incoming X-ray beam and diffracted X-rays are collected 

by an area detector.  Diffraction maxima along the meridian provide information about 

the repeating element distance along the polymer backbones.  Maxima along the 

equatorial provide information about the lamellar stacking and π-stacking distances 

between polymer backbones.   

 

1. 6. 4 General Remarks About Stille Polymerization 

 

 The general route used to produce all of the final polymers in this dissertation was 

Stille coupling.
57   

In general, materials for electronics applications must be extremely
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Scheme 1.1:  General Stille polymerization for D-A polymers. 
 

 
pure because impurities can, among other things, act as defects in packing and charge 

carrier traps.
58

  For polymers in particular, a synthetic method is necessary that will give 

little or no side reaction products that are permanently (covalently) contained within the 

polymers.  Additionally, high molecular weights with reproducible PDIs are desirable.  

The monomers used for polymerization should also be stable enough to withstand routine 

purification procedures and have a reasonable shelf life. The mild reaction conditions, 

high selectivity, functional group compatibility and overall reliability of the Stille 

coupling makes it the reaction of choice for most research groups synthesizing polymers 

for OE applications.  In addition to the attractive reaction features, the final monomers 

are generally able to be purified by recrystallization or basic alumina column 

chromatography and have relatively long shelf lives in air.  The published reaction 

conditions reported vary little between research groups and are briefly discussed below. 

Mechanism 

 

 The general (simplified) catalytic cycle for the Stille reaction is show in scheme 

1.2.  Like all other Pd-catalyzed coupling reactions the mechanism is thought to involve 

at least 3 steps: 
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Oxidative Addition:  In this step of the catalytic cycle, Pd
0
, acting as a nucleophile, 

inserts into the long, weak carbon halogen bond.  Pd is oxidized from Pd
0
 to Pd

II
. 

Transmetalation:  The oxidative addition adduct undergoes a ligand “swap”, replacing 

the halogen atom on palladium with a carbon containing residue.  This is generally 

believed to be the rate determining step of the Stille coupling.
59

  

LnPd0 + R X

Oxidative addition

PdIIR X

Ln

M R'

Transmetalation

PdIIR R'

Ln

M X

R R'

Reductive
elimination

 

Scheme 1.2:  General catalytic cycle for transition metal coupling reactions. 

Reductive Elimination:  With the two carbon residues placed in a favorable position 

relative to one another, carbon-carbon bond formation takes place regenerating the Pd
0
 

catalyst and completing the catalytic cycle. 

 

Palladium Source 

 

 The catalyst system employed, Pd2dba3, and P(o-Tol)3 was specifically chosen 

based on the following parameters:  First and foremost, a relatively air-stable source of 

palladium(0), Pd2dba3 was chosen.  The dba ligand is weakly coordinating ligand
60

 that 

may easily be displaced by other more strongly coordinating ligands such as phosphines 

after simply mixing.  Here, the assumption is made that the dba ligand will be inert 

throughout the reaction and can be removed from polymer products during subsequent 

Soxhlet extractions.  A Pd
0
 precatalyst is essential for obtaining high molecular weights 
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for the polymerization reactions.  If a Pd
II 

precatalyst were used, it must be reduced to Pd
0
 

by the stannyl reagent before it may enter the catalytic cycle.  This has two consequences.  

First, as predicted by the Carothers equation, the stoichiometric imbalance between the 

two monomers will result in lower molecular weights.
60,61

  Of course this may be 

partially circumvented by adding excess stannyl monomer to compensate for this side 

reaction.  Secondly, and perhaps more importantly, this side reaction will result in 

structural defects being incorporated into the conjugated backbones as illustrated in 

scheme 1.3.  

 

 

Scheme 1.3:  Incorporation of defects in polymer backbones by reduction of a Pd
II
 

catalyst.  

 

 It is well known that highly regio-regular structures are required for good electrical 

performance of these materials.  The commonly used “McCullough Method”
62

 of 

synthesizing rr-P3HT uses a Ni
II
 precatalyst and is known to generate terminal as well as 

internal tail to tail (TT) defects in the polymer backbone (scheme 1.4).  Indeed, rr-P3HT 

synthesized using a Ni
0
 catalyst has been found to possess slightly increased crystallinity, 

lower PDIs
 
and longer conjugation lengths

63
 relative to rr-P3HT synthesized using a Ni

II 
 

catalyst.  
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Scheme 1.4:  Effects of reductive elimination of Ni(dppp)Cl2 by the Gringard reagents 

used for the preparation of rr-P3HT. 

 

Phosphine Ligands 

 

 The choice of the ligand to be used on the palladium center when performing 

small molecule synthesis is generally triphenylphosphine (PPh3).  However, for 

polycondensations the ligand most commonly reported in the literature, as well as in this 

dissertation is tri(o-tolyl)phosphine, P(o-Tol)3.  The scrambling of the R groups on the 

phosphine ligand with oxidative addition products to palladium has been well 

documented.
64

  During their work on poly(p-phenylenes) employing the related Suzuki 

polymerizations, Novak and co-workers found that instead of producing the expected 

anisotropic rods they isolated branched isotropic materials.
65

  They proposed that the 

unexpected results were due to an exchange reaction between the oxidative addition 

adduct of the aryl bromides and the phenyl groups in triphenylphosphine (scheme 1.5). 
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Scheme 1.5:  Ligand scrambling in a Pd-catalyzed coupling reaction.
65

 

 

This reaction would terminate growing polymer chains with phenyl end groups as well as 

incorporate phopshine-containing impurities into the polymer backbone.  If all three 

phenyl groups are exchanged onto the phosphine then a cross linking unit would be 

incorporated into the backbone.  All of these side reactions could seriously affect the 

electronic performance of materials without being directly detectable by conventional 

methods. 

  Further mechanistic studies revealed that an intermediate phosphonium salt could 

be formed via reductive elimination, followed by oxidation addition into a different 

phosphorus carbon bond (scheme 1.6).
66
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Scheme 1.6:  Proposed mechanism for aryl exchange with phosphine ligands.
66

 

 

Optimization of the reaction conditions showed that using a hydrophobic solvent such as 

dichloromethane (DCM) nearly suppressed all of the ligand exchange reaction.
66

  

Unfortunately, typical D-A polymers used in our work are rarely soluble in DCM.  An 

alternative solution exploits bulkier ligands on the phosphine.  Heck earlier realized that 

using P(o-Tol)3 in vinylic substitution reactions significantly reduced the amount of 

exchanged products, presumably due to the steric bulk around the phosphine center, 

slowing the rate of reductive elimination.
67

   Of the ligands tested in their polymerization 

reactions, P(o-Tol)3 in THF as solvent gave considerably smaller amounts of the 

exchanged product. 

 

Coupling partners 

 

The first step of the catalytic process, oxidative addition, is essentially 

nucleophilic insertion of the palladium center to the carbon halogen bond.  In this 

context, the aryl halide may be considered an electrophile and the rate of oxidative 

addition will follow the bond disassociation energies of the carbon halogen bond 

resulting in the trend Cl << Br < I.  The second step of the catalytic process, 

transmetalation (generally regarded as the rate limiting step),
59

 involves nucleophilic 

attack of the organometallic coupling partner on the palladium center, displacing the 
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halogen.  Thus, the organometallic reagent may be considered a nucleophile in these 

reactions.  Following this, it is desirable to make the aryl halide as electron deficient as 

possible and the organometallic as electron rich as possible to maximize the rates for each 

of these steps.  Since we are focused on D-A polymers, the acceptor fragment always 

contains the halide and the donor fragment is always organometallic as illustrated in 

scheme 1.1. 

 

1. 7 Summary of the Remaining Chapters   

 

 The goal of the work presented in the remainder of this dissertation is to rationally 

design, synthesize and characterize novel D-A polymers for use in OTFT and OPV 

devices.  Chapter 2 describes the synthesis and characterization of novel cyanothiophene- 

and (tere)phthalonitrile-based acceptor units and D-A polymers with the goal of 

enhancing the self organization properties and optimization of the FMO energies for the 

resulting polymers.  Branched alkyl side chains on 3,3’-ROT2 units are explored in 

Chapter 3 as a tool to tune the solubility and FMO energies of phthalimide-based D-A 

polymers.  Chapter 4 describes an example of a functional group interconversion (FGI) 

strategy, from imide-based phthalimide acceptor units to diketone-based indanedione 

motifs to tune FMO energies and the solubilities for D-A polymers.  Finally, some of the 

problems associated with the currently used donor motifs is addressed in Chapter 5 and 

an effort to overcome those problems is presented with the introduction of 3,3’-

dialkynylbithiophene donor motifs for D-A polymers. 

 

Copyright © Mark J. Seger 2013 
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Chapter Two: Cyanoarene-Based Donor-Acceptor Copolymers 

 

2.1 Introduction 

 

 The organic chemist has a large number of functional groups to choose from 

when considering electron withdrawing groups for D-A polymers.  An ideal candidate 

would be a powerful electron withdrawing group that does not impede close 

intermolecular packing of the polymer backbones.  Additionally the group should not 

induce intramolecular twisting between adjacent monomer units, which could disrupt 

conjugation, and possess reasonable chemical stability.  One of the obvious functional 

groups that falls into this category is the nitrile group.  The strong electron-withdrawing 

capability (Hammett parameter para ~ 0.6)
110

 as well as its small size make it ideally 

suited for incorporation into D-A polymers to be used in OE applications.   

Indeed, much work with respect to OE has already been performed on materials 

containing this functional group.  According to DFT calculations, cyanation lowers both 

HOMO and LUMO energy levels,
85

 decreases internal reorganization energy and 

encourages π-stacking,
86

 as well as enhances self organization by CN···H and 

RCN···NCR  interactions
87 

in acenes and oligothiophenes.  Calculations performed on a 

series of cyanated pentacene derivates suggested that this functional group provides a 3-

in-1 advantage relative to other popular electron withdrawing groups such as fluorine.
86 

 

The calculated EA and IP for cyano-substituted pentacenes both became larger relative to 

unsubstituted pentacene.  The reorganization energies for both hole and electron transfer 

also became smaller, the difference in the reorganization energy (relative to unsubstituted 

pentacene) being larger for electron transfer.  It was also found that larger intermolecular 
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electronic couplings were present in dimers of cyanated pentacenes relative to 

unsubstituted pentacene.
 86

  The findings from this theoretical study suggested that 

cyanation could lead to higher charge carrier mobilites and increased air stability for 

pentacene chromophores.  

 Experimentally, cyanation of small molecules has proven to be an efficient 

strategy for tuning orbital energies and switching inherently p-type materials into n-type 

materials.  Di-cyanation of naphthalene bisimide (NBI) and perylene bisimide (PBI) 

cores was found to be an effective method to tune orbital energetics (figure 2.1).   
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Figure 2.1:  Unsubstituted and core cyanated NBI (top) and PBI (bottom), R = n-octyl. 

 

Both the EHOMO and ELUMO were decreased by approximately 0.7 eV and 0.4 eV for NBI 

and PBI respectively, while the energy gaps remained essentially constant.
69

  This, in 
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addition to fluoroalkylation of the N-imide positions produced active materials for air 

stable n-type devices with electron mobilites of 0.24 and 0.11 cm
2
/V s in air for PDI and 

NDI respectively.
69

 

Similar decreases in FMO energies were observed experimentally with cyanated 

trialkylsilylethynyl pentacene derivates (figure 2.2); the number of nitrile groups added to 

the aromatic core lowered both EHOMO and ELUMO without having a significant impact on 

the Eg.
88,90
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R1

R2

 

 

R
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R
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 R
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 EHOMO (eV) ELLUMO (eV) 
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H H H -5.16 -3.35 

Cyclopentyl CN H H -5.31 -3.50 

Cyclopentyl CN CN H -5.47 -3.64 

Isopropyl CN CN CN -5.75 -3.90 

Figure 2.2:  Cyanated trialkylsilylethynyl pentacene derivatives and FMO energies.
 
 
*
The 

authors note that varying the “R” groups on silicon does not affect the FMO energies.
89 

 

A series of mono-, di- and tetracyano derivatives were synthesized and the FMO energy 

levels were found to decrease by ~ 0.15 eV per pendant cyano group while the energy 



41 

 

gap remained constant.
88,89

  Electron transport in these materials was observed and they 

were used as electron acceptors with P3HT donors in bulk heterojunction OPV’s.
89

 

 Fewer examples of nitrile-functionalized conjugated polymers have been reported 

in the literature.  The well studied system MEH-CN-PPV, containing cyanovinylene 

linkages has a lower EHOMO relative to its unsubstituted parent MEH-PPV by ~ 0.5 eV, 

without a significant difference in Eg (figure 2.3).
91

  This material was recently used in 

place of PCBM in a solution processed all polymer OPV yielding a 2.0% PCE, which is 

among the highest reported for an all-polymer solar cell.
92  

However, cyanovinylene 

moieties are known to be relatively unstable and easily photooxidized,
 107

 decreasing their 

usefulness for OPV applications.  A related material to MEH-CN-PPV, DOCN-PPV, 
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Figure 2.3:  Cyanovinylene and cyanobenzene MEH-PPV derivatives. 

 

where the cyano groups are transferred from the vinylene linkage of parent MEH-CN-

PPV to the phenylene core is known and has been used as an acceptor in all-polymer 

OPV cells with an efficiency of 1%.
93   

 Heeger et al. synthesized insoluble films of poly(3,4-dicyanothiophene) from 

vacuum pyrrolysis of 2,5-iodo-3,4-dicyanothiophene.
94  

They estimated a very deep 

EHOMO of -6.3 eV and ELUMO of -3.6 eV for this material.  The absorption maximum for 
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the given polymer was only 366 nm (blue-shifted relative to polythiophene) suggesting 

that the backbone of this system is highly twisted, which in turn would affect film 

morphology and electron transport.  Additionally, this material was highly insoluble, 

taking away all of the attractive advantages of OE.  Nonetheless this material was used 
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Figure 2.4:  Poly(3,4-dicyanothiophene) synthesized by Heeger and coworkers.
94

 

 

to fabricate rectifying heterojunction bilayer devices with MEH-PPV as the donor.  The 

in device FMO energies for poly(3,4-dicyanothiophene) were estimated to be -6.7 and -

3.6 eV for the HOMO and LUMO respectively.  Further characterization was lacking due 

to insolubility.   

 Janssen and coworkers carried out a systematic study on the substitution patterns 

of regio-regular head-to-tail poly(3-dodecylthiophene) (PDDT) derivates.
95

 All of the 

materials (shown in figure 2.5) were prepared using the McCullough method
111

 

producing a low molecular weight nitrile containing polymer with Mn ~ 2,875 g/mol.  

Four polymers were synthesized to compare to the parent PDDT; a dodecyl side chain in 

the repeat unit was replaced with a hydrogen (PTDDT), phenyl (PPhDDT), and a cyano 

group (PCNDDT).  Optical measurements revealed that the absorption profiles were 

nearly identical for PDDT, PTDDT and PCNDDT with almost no variation in the Eg for 

all of the polymers.  Furthermore, they found a large decrease in the HOMO energy for 

PCNDDT relative to PDDT of about 0.5 eV after cyano substitution (LUMO energy not 

estimated).  Comparing the hydrogen (PTDDT) and cyano (PCNDDT) substituted 
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polymers, a decrease of 0.4 eV was estimated in the LUMO energy, again with 

essentially no effect on the energy gap.  This study showed that incorporation of the  

 

S

CN

S

C12H25
S

S

C12H25

S

C12H25

S

C12H25

S

H

S

C12H25

PDDT PTDDT PPhDDT PCNDDT
 

Figure 2.5:  Janssen and coworkers P3DDT derivatives.
95

 

 

nitrile functional group into the poly(alkylthiophene) backbone lowered the EHOMO of the 

parent polythiophene, thus increasing its ambient stability and theoretically increasing 

Voc for solar cell applications.  Furthermore, the optical characteristics of the materials 

were not greatly affected by cyano substitution. 

 The purpose of the work reported in this chapter was to synthesize and carry out 

preliminary measurements to elucidate structure-property relationships of a series of 

cyanoarene based D-A polymers.   Emphasis was placed on two different donors in this 

project, a weakly electron donating 3,3’-didodecyl-2,2-bithiophene (DBT) unit, and a 

strongly electron donating 3,3’-dibutyloctyloxy-2,2’-bithiophene (BOBT) unit.  

Additionally, a cyclopentadithiophene (CPDT) unit was included in one example for 

comparison of the effects of a covalently fused CPDT bithiophene donor, versus non-

fused DBT and BOBT donors.  A series of different cyanated-thiophene and 

(tere)phthalonitrile based acceptors were used for copolymerization.  The number and 

placement of nitrile groups on the aromatic rings, as well as the identity of the rings they 
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are attached to were varied to study the effects on the optical and electrochemical 

properties of the resulting D-A copolymers. 

 

2. 2 Synthesis 

 

 Cyanothiophene monomers were prepared from the commercial bromothiophenes 

using CuCN under standard Rosenmund-von Braun (RvB) conditions, shown in scheme 

2.1.
96  

Bromination of 3,4-dicyanothiophene was achieved with NBS in a mixture of  

trifluoroacetic acid and sulfuric acid at room temperature.  The harsh halogenation   

S

Br Br

S

NC CN

S

Br

S

NC CN

Br Br

S

CN

S

CN

I I

70%

75%

48%

40%

S

Br

87% 50%

i ii

iiii

i iii

1-1 1-2

1-3 1-4

1-15 1-5

S

Br Br

S

NC CN

S

Br

S

NC CN

Br Br

S

CN

S

CN

I I
75%

48%

40%

S

Br

i ii

iiii

i iii

S

Br
S

CN
S

NC
S

CN
S

NC
I

I

 

Scheme 2.1: Synthesis of cyanothiophene acceptor monomers. Reagents and conditions: 

i: a). CuCN, DMF, reflux; b). FeCl3 aq. HCl;  ii: TFA, H2SO4, NBS, r.t. 5 h; iii: a). 

LiTMP, THF, -78 °C 1 h; b). I2, THF, - 78 °C  rt 3 h;  

 

conditions produced inseparable mixtures of di- and tri-brominated products when 

applied to 1-3 and 1-5.  All other electrophilic substitution reaction conditions failed to 

produce the desired products.  Ortho-lithiation using lithium tetramethylpiperidine 
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(LiTMP) as base followed by quenching with I2 produced the final halogenated 

thiophene-based acceptor monomers 1-4 and 1-6 in acceptable yield.   

(Tere)phthalonitrile based acceptors were obtained by “dehydration” of the 

corresponding diamides 1-8 and 1-10 using either P2O5 or SOCl2 as shown in scheme 

2.2.
97

  In the case of 2,5-dibromoterephthalonitrile, 1-9, the starting material was 2,5-

dibromo-p-xylene; no halogenation steps were required to secure the final monomer.  3,6-

diiodophthalonitrile
98

 was obtained by ammonolysis of phthalimide, followed by 

dehydration of the diamide.  Ortho-lithiation and iodination of phthalonitrile was then 

carried out as described for the thiophene-based monomers.   
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Scheme 2.2: Synthesis of (tere)phthalonitrile acceptor monomers i: a). KMnO4, pyridine, 

H2O reflux; b).  KMnO4, KOH, H2O, reflux; c). aq HCl; ii: a). ClCOCOCl, DMF (cat.), 

PhH; b). NH3 (aq.); iii:  P2O5, 170 °C, neat; iv: NH3 (aq), EtOH, reflux, overnight; v: 

SOCl2, DMF, 70 °C; vi: a) LiTMP, THF, -78 °C, b) I2, THF, -78 °C to rt. 
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Donor bithiophene monomers were prepared according to published procedures (scheme 

2.3)
.99
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Scheme 2.3: Synthesis of bithiophene donor monomers. Reagents and conditions; i: a). 

Mg, Et2O reflux, 1 h; b). Ni(dppp)Cl2, reflux, overnight; ii: a). Br2, CHCl3, AcOH, 0 °C 

 r.t, reflux 24 h; b). KOH, reflux, 5 h; iii: Zn, AcOH, HCl (aq), reflux, 5 h; iv: 

C12H25MgBr, Ni(dppp)Cl2, Et2O, 0 °C  reflux, 3 h; v: a). BuLi, THF, -78 °C 2 h, b). 

Bu3SnCl, - 78 °C  r.t.; vi: MeONa, MeOH, CuI, reflux ;vii: ROH, PTSA (cat.), PhMe, 

110 °C; viii: NBS, DMF, 0 °C; ix: Ni(COD)2, COD, 2,2’-dipyridyl, DMF, PhMe, 80 °C. 
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Polymerization 

 

 Stille polymerizations were carried out under standard conditions as described in 

Chapter One with THF as solvent giving acceptable molecular weights for the polymers.  

All of the polymers have relative number-average molecular weights (GPC vs 

polystyrene) of ~ 15-20 kDa with the exception of P6b (table 2.1). 
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Scheme 2.4.  Synthesis and structures of the final polymers 
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Table 2.1. Yields, molecular weights and (opto)electronic properties of the polymers. 

 Yield 

(%) 

Mn (kDa) 

[PDI] 

λmax 

soln
a
/film

b 

(nm) 

EHOMO  

(eV)
c 

ELUMO
d

 

(eV) 

Eg 

(eV)
e 

TCN2DBT 89 

17.4 

[1.47] 

465/566 5.70 ± 0.04 4.00 1.70 

TCN2BOBT 15
g
 N/A

f
 730/745 5.14± 0.04 3.82 1.32 

TCNDBT 89 

22.8 

[1.72] 

433/452 5.70 ± 0.05 3.64 2.06 

TCNOC14 89 N/A
f
 709/650, 712 4.95 ± 0.006 3.45 1.50 

TCN2CPDT 90 N/A
f
 621/645 5.33 ± 0.04 3.78 1.55 

T2CN2DBT 49
h 

N/A
f 

463/500 5.75 ± 0.05 3.79 1.96 

1,2-

PhCN2DBT 

92 

22.5 

[1.45] 

397/419 6.02 ± 0.02 3.88 2.14 

1,2-

PhCN2BOBT 

91 

14.8 

[2.30] 

567/609 5.32 ± 0.02 3.67 1.65 

1,4-

PhCN2DBT 

92 

21.2 

[1.89] 

423/463 6.04 ± 0.02 3.83 2.21 

1,4-

PhCN2BOBT 

61 176 [3.16] 660/664 5.33 ± 0.02 3.66 1.67 

a
 10

-5
 M in chloroform, chlorobenzene used for P4.  

b
 Spin cast from 1 mg/mL toluene 

solutions and thermally annealed.  
c
 Measured by DPV and relative to Fc/Fc

+
.  

d
Estimated 

using ELUMO = EHOMO - Eg.  
e
Estimated from the low-energy absorption edge of annealed 

thin-films using E = 1240 eV· nm/
f
Insoluble in THF.  

g
CHCl3 fraction, insoluble 

material remained in Soxhlet thimble.  
h
Collected using chlorobenzene as final Soxhlet 

solvent. 
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2.3 Optical Properties  

 

 Thin-film and solution absorption spectra for all of the polymers are shown in 

figure 2.6 and relevant values are listed in table 2.1.  Large relative red-shifts are 

observed for the 3,3’-ROT2-based polymers (BOBT) versus the alkylated polymers 

(DBT) and are in agreement with observations reported in the literature
99,100

 and as 

described in Chapter One.  As expected, the polymers containing the smaller thiophene-

based acceptor units (TCN2 and TCN) have a red-shifted λmax relative to the analogous 

polymers containing (tere)phthalonitrile acceptor units (1,2- and 1,4-PhCN2 ) . 

 
 

Figure 2.6.  Normalized thin-film and solution absorption spectra of thiophene-based 

(top two) and benzene-based (bottom two) polymers. 
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Both the smaller size and the lower resonance energy of the thiophene ring relative to the 

benzene ring probably contribute to better orbital overlap and decreased bond length 

alternation (BLA) for the TCN2 series relative to the 1,2- and 1,4-PhCN2 series.  

Removing one cyano group from the thiophene ring (TCN2 vs. TCN series) does not 

greatly affect the solution absorption profiles, blue-shifts of ~ 30 nm are observed for the 

TCN-based polymer relative to TCN2.  However the change in max (max) upon going 

from solution to the solid state is much smaller for the TCN-based polymers. This is 

possibly a result of its regio-irregular structure, leading to a more amorphous-like 

structure in the solid state.  Similar observations in absorption spectra have been made on 

amorphous regio-irregular P3HT and semi-crystalline regio-regular P3HT.
101

  Another 

possibility is weaker D-A interactions in the solid state for TCNDBT relative to 

TCN2DBT.  A much smaller difference in max is observed for the TCN2 and TCN 

polymers carrying alkoxy-side chains, TCN2BOBT and TCNOC14.  This is likely due to 

both the planarization effects of the 3,3’-ROT2 units as well as the branched chains on 

the BOPT units versus the straight chains on TCNOC14.  Branched side chains, as will be 

discussed in detail in Chapter Three, result in both a larger intramolecular dihedral angle 

between adjacent monomer units as well as larger intermolecular -stacking distances 

(interchain coupling).  This results in blue-shifts in the absorption profiles for polymers 

carrying branched alkyl side chains relative to straight alkyl side chains leading to a 

smaller max for TCN2BOBT versus TCNOC14.  “Spreading” the two cyano-groups out 

over two thiophene rings in a HH fashion (T2CN2DBT) produces an intermediate shift 

between TCN2DBT and TCNDBT. The low solubility of this material containing DBT 

donor units prohibited the synthesis of BOBT containing polymers with this acceptor as 
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described in Chapter One.  The cyclopentadithiophene containing polymer, TCN2CPDT, 

containing a fused donor unit, has λmax intermediate between the TCN2DBTand 

TCN2BOBT polymers containing non-fused donors.  This is likely due to the covalently 

bridged backbone, reinforcing co-planarity (red-shift) relative to DBT and the weaker 

electron donating effect of the alkyl chains on the CPDT unit (blue-shift) relative to 

BOBT.   

The differences of ortho versus meta dicyano-substitution patterns of the 1,2-

PhCN2 and 1,4-PhCN2 polymers yields non-negligible effects on the absorption profiles.  

However, the large difference in molecular weights (> 150 kDa) and solubility may 

explain the shifts observed based on solution aggregation which further transfers into the 

solid state.
102

  The effect on the Eg of the polymers follows the same trend as discussed 

above for max; the cyanothiophene-acceptor based polymers have a smaller Eg than the 

(tere)phthalonitrile based acceptor polymers for both DBT and BOBT donors.   

 Interestingly, TCN2DBT showed a casting solvent dependence on the thin-film 

absorption profile (figure 2.7).  Spin-coating films from chloroform or toluene solutions 

produced films with only small shifts in λmax relative to solution as observed for many 

amorphous polymers containing HH bithiophene linkages.
105

  Indeed, the other DBT 

polymers in these experiments only showed small shifts on going from solution to the 

solid state regardless of casting solvent.  However, using THF as casting solvent led to a 

large relative red-shift of ~ 100 nm in the absorption profiles of the thin-films.  Thermally 

annealing the thin-films cast from CHCl3 and toluene produced absorption profiles nearly 

identical to that of the pristine film from THF.  Furthermore, solvent vapor annealing 

(which will be discussed in greater detail in Chapter Three) of the CHCl3 and toluene thin  
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Figure 2.7. Normalized thin-film absorption spectra of TCN2DBT before and after (top 

two spectra) solvent annealing.  Solution absorption spectra in the casting solvents (10
-5

 

M) at room temperature and 70 °C (bottom two spectra). 
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films with the respective casting solvents also caused a shift in λmax similar to that of 

thermal annealing (figure 2.7).  The absorption spectra of the films after solvent 

annealing all converged to yield very similar absorption profiles.  Solution absorption 

measurements were made in all three solvents at 25 °C and at 70 °C (figure 2.7) to 

investigate the difference in solvent “quality”.  Polymer aggregates formed in “marginal” 

solvents (solvents in which the polymers are marginally soluble but form aggregates) 

tend to display structured and red-shifted absorption profiles relative to a molecularly 

dissolved solution.  Elevated temperatures generally are required to better solvate the 

polymer in marginal solvents which may be measured by UV-Vis as relative blue-shifts 

and loss of fine structure.
112

   No difference was observed in the two sets of spectra.  

Indeed, the spectra collected as THF solutions were slightly blue-shifted relative to the 

other solvents both at room temperature and at elevated temperature, suggesting that the 

polymer is better solvated in THF than the other solvents.   

The origin of the differences are not yet clear but similar observations in thin 

films of 3[2(S2-methylbutoxy)ethyl]-polythiophene (PMBET) spin-coated from 

THF/methanol solutions have been made.
 106

  Addition of increasing concentrations of 

methanol (bad solvent) to the casting solution (THF) caused the absorption maximum of 

the thin-films to red-shift from 546 nm to 628 nm.  The authors attributed this red-shift to 

solution aggregation as poor solvent is added, introducing rigid rod character to the 

polymers in which is then transferred to the films during spin-coating.  However, in the 

case of TCN2DBT different degrees of aggregation for the different solvents were not 

detected by the variable-temperature solution UV-vis spectra (at the concentrations 

measured) and no color difference was discernable by eye of the casting solutions.  It is 
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also known that P3HT forms more highly ordered films when cast from high boiling 

solvents such as 1,2,4-trichlorobenzene, due to the slower evaporation rate of the 

solvent.
108

  However, THF has a significantly lower boiling point (66 °C) than toluene 

(110 °C).  Bao et al. observed that P3HT films drop cast from lower boiling point 

solvents THF and chloroform had greater crystallinity than films from toluene as well as 

different morphologies.
109

  The absorption profile dependence of TCN2DBT is likely due 

to a subtle interplay between solvent properties (evaporation rate and polymer solubility) 

and differing polymer morphologies produced from the various solvents.  Absorption of 

solvents by the polymer films (partially dissolving the polymer) during the solvent vapor 

annealing process, followed by slow evaporation would allow the materials to reorganize 

to (average) lower energy states from kinetically trapped states formed during spin-

coating and possibly explain the convergence of the absorption profiles.   

 

2. 4 Electrochemistry 

 

 The FMO energy levels of the polymers were estimated from thin, drop-cast films 

using DPV and are listed in table 2.1.  The EHOMO of the DBT-based copolymers with 

cyanothiophene- and cyano-bithiophene acceptors are constant at ~ 5.7 eV, regardless of 

the number of nitrile groups and thiophene rings per repeat unit (TCN2DBT, TCNDBT 

and T2CN2DBT).  The same constancy is observed for the phthalonitrile isomers 1,2-

PhCN2DBT and 1,4-PhCN2DBT with EHOMO at ~ 6.0 eV for each polymer.  The ELUMO 

of these polymers were, however, dependant on the number of nitrile groups.  The ELUMO 

was raised from -4.00 eV in TCN2DBT with two nitrile groups to -3.64 eV in TCNDBT 

containing only a single nitrile group.  The same difference in ELUMO of ~ 0.4 eV was 

observed for the dicyano- and mono-cyanothiophene polymers TCN2BOBTand 
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TCNOC14 with 3,3’-ROT2 donors.  An intermediate effect on the ELUMO was observed 

with T2CN2DBT.  “Spreading” the two nitrile groups out over a bithiophene unit, relative 

to thiophene in TCN2DBT, resulted in a shallower ELUMO by 0.21 eV.   

Replacement of the DBT donor portion with BOBT results in a large EHOMO 

destabilization for all the polymers as well as a large decrease in Eg.  The EHOMO for all of 

the polymers increased by nearly 0.7 eV and a constant change in ELUMO of 0.2 eV was 

also observed for all of the BOBT-based polymers relative to DBT.  The large increase in 

EHOMO relative to the small increase in ELUMO led to a decreased Eg of in between 0.4 to 

0.6 eV for BOPT donors relative to DBT donors.  This is accordance with the Esub 

parameter shown in figure 1.5 in Chapter One.  The strong electron donating effects of 

the alkoxy side chains in BOBT relative to the alkyl side chains in DBT raises EHOMO for 

the polymers and decreases the Eg.  Replacement of the strongly electron donating 3,3’-

ROT2 side chains in TCN2BOBT with a relatively weak fused donor in TCN2CPDT 

produced a polymer with the same ELUMO, consistent with observations that LUMO 

energies of D-A polymers are strongly dependant on the electron accepting unit, not the 

electron donor.
103,104

  The weaker electron donating effects of the CPDT unit in 

TCN2CPDT resulted in a deeper EHOMO by 0.2 eV relative to TCN2BOBT, which would 

be expected to have favorable impact on OTFT stability and open-circuit voltage in 

OPVs.     

According to solution DPV measurements of the non-halogenated acceptor 

monomers, (tere)phthalonitrile acceptors reduce at potentials 300 mV more positive than 

3,4-dicyanothiophene, with Ered
1/2

 of 2.34 V and 2.64 V, respectively.  The larger Eg as 

well as the blue-shifted absorbance maxima for the (tere)phthalonitrile copolymers 
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suggests that poorer orbital overlap (reduced conjugation) is responsible for the deeper 

HOMO levels and shallower LUMO levels for the phthalonitrile-based polymers.  

Additionally, the differences in the FMO energies of the polymers is likely also effected 

by different contributions of MO mixing/symmetry and energetics between the two 

different acceptors.  This possibility, however, cannot be addressed without calculations.  

 

2. 5 WAXD 

 

 WAXD was employed to further study the solid state ordering for these materials. 

Based on the absorption spectra and previous experience it is assumed that 1,2-

PhCN2DBT and 1,4-PhCN2DBT are both amorphous polymers and they are omitted 

from this discussion.  Polymers TCN2DBT, TCN2BOBT and TCN2CPDT, containing 

the dicyanothiophene acceptor motif all show some degree of order.  TCN2DBT, 

containing HH-dialkyl units, only shows faint diffractions for π-stacking, at a distance of 

3.90 Å. TCNOC14 , shows sharper diffractions and possibly long-range order and gives a 

stacking distance of 3.77 Å. Interestingly, the π -stacking distance for TCN2BOBT is 

larger than that of TCN2CPDT (3.65 Å), containing orthogonal side chains.  Polymer 

TCNOC14, containing the mono-cyanothiophene motif shows high order and close π-

stacking (3.60 Å) most likely attributable to linear side chains rather than the bulky 

branched chains present in the other polymers.  Interestingly T2CN2DBT, containing HH 

donor and acceptor units appears to have a relatively ordered structure as well despite 

both repeating units have HH linkages. 
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Figure 2.8:  WAXD of the polymers.  Arrows indicate the diffractions attributed to π-

stacking. 

 

2. 6 Conclusions 

 

 Novel cyanothiophene and phthalonitrile acceptor monomers were successfully 

synthesized and copolymerized with different bithiophene donors. Two different 
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acceptors were employed to study the effects of changing the aromatic acceptor core 

from thiophene to benzene.  Electrochemical measurements revealed that the 

(tere)phthalonitrile polymers have HOMO energies  ~ 0.25 eV deeper than 3,4-

dicyanothiophene polymers for both DBT and BOBT donors.  The difference in the 

relative HOMO energies for polymers with DBT and BOBT donors is 0.7 eV (within 

experimental error).  LUMO energies for all of the polymers containing the BOBT 

donors was ~ 0.2 eV higher than those with DBT donors.  The LUMO for the 3,4-

dicyanothiophene based acceptor is ~ 0.2 eV deeper than its (tere)phthalonitrile 

counterparts.    
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Figure 2.9:  Structures and FMO energies of dicyanothiophene (left) and 

thiophenediimide
115

 (right) polymers. 
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Related 1,2-difunctionalized polymers based on phthalimide
113,114

 and 3,4-

thiophenediimide
,115

 have been reported to both have good charge transport 

characteristics in OTFTs and high performance in bulk heterojunction OPVs.  The 

measured energies of the dicyanothiophene-based polymers shows they have deeper 

HOMO and LUMO energies, as well as smaller Eg than their diimide counterparts shown 

in figure 2.8.  It is worth noting that the literature on the diimide copolymers does not 

contain donor units with 3,3’-ROT2 donor units and this certainly would affect HOMO 

energies to some extent as will be discussed in Chapter Three. This implies that the 

cyano-substituted D-A copolymers may be higher performing materials in OPVs with 

increased VOC and increased ambient stability in OTFTs all other things being equal.   

These new materials may be promising for future applications in OE. 
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Chapter Three:  Branched Side Chains on 3,3’-dialkoxy-2,2’-bithiophene Donor 

Units in Phthalimide-Based Copolymers.  Increasing Solubility and Tuning FMO 

Energies 

 

3. 1 Introduction 

One of the drawbacks associated with the cyanoarene based polymers presented 

in Chapter Two was the absence of solubilizing alkyl chains on the acceptor units.  On 

one hand, this is likely beneficial for solid state polymer self organization on the basis of 

steric interactions and space filling demands.  One the other hand, this greatly reduces the 

solubility of the resulting polymers, demanding compensation with a higher relative 

volume fraction of solubilizing side chains on donor monomers.  Realizing this drawback 

of using unsubstituted acceptor monomers, many research groups have incorporated 

electron deficient nitrogen containing functional groups into polymer backbones.  An 

attractive and commonly used functional group for small molecules to be used in OE 

materials is the imide functional group.  In addition to its strong electron withdrawing 

capability, the “free” N-position allows for incorporation of a wide variety of alkyl chains 

to be attached to this acceptor unit to tailor solubility and to optimize self organization.  

Additionally, the presence of alkyl chains on the acceptor monomer allows a wider range 

of donor monomers to be used for copolymerization, relative to non-alkylated acceptors 

like those presented in Chapter Two. 

  Di-imide based OE materials were first introduced in Chapters One and Two and  
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Figure 3.1:  Examples of imide functionalized polymers based on naphthalene bisimide 

(NBI)
116

 perylene bisimide (PBI)
117

, bithiophene imide (BThI)
118,148

 and thiophene imide 

(ThI)
119

. 

 

have been extensively reported in the literature, examples of which are shown in figure 

3.1.  The majority of the di-imide based materials, in particular rylene di-imides such as 

NDI and PBI (figure 3.1) are efficient n-type semiconductors.
33,116,117 

 Mono-imide based 

materials such as ThI are generally p-type
119

 while bithiophene-imide polymers such as 

BThI may be p- or n-type
3
 based on the donor used for copolymerization.

37
  Our group 

was the first to report NBI-based D-A copolymers,
61

 as well as phthalimide based D-A 

polymers (e.g. PhBT-12 figure 3.2, patented
144

) with structures optimized to provide then 

state of the art OFET performance.
 61,113

  Phthalimide based D-A polymers, containing 

only one electron withdrawing imide motif per repeat unit were found to be efficient p-

type semiconductors.  The average hole mobility for PhBT-12 was measured to be 0.17 
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cm
2
/Vs, one of the highest reported in the literature at that time,

113
 with much higher 

values obtained by an industrial partner exploiting proprietary device fabrication.
 

Furthermore the oxidation potential was measured (via CV) to be ~ 0.1 V more positive 

the P3HT, suggesting OTFTs fabricated from this material should display enhanced  

 

 

 

 

 

Figure 3.2:  Structure of PhBT-12. 

relative ambient stability.  Unfortunately, even though devices fabricated from PhBT-12 

initially performed well in air, performance rapidly degraded.
 113

  In addition to 

performance degradation issues this material could not meet industrial demands for 

room-temperature solubility in non-halogenated solvents.  Nonetheless, the high hole 

mobility and narrow Eg (1.64 eV) of this polymer warranted OPV fabrication with PhBT-

12 as the donor polymer.  Relatively low PCE values (maximum 1.92%) were obtained 

from the devices.
120

  This may, in part, be due to the high lying HOMO energy level of 

PhBT-12,  -5.12 eV
 
(measured independently in this work via DPV) relative to vacuum, 

leading to low Voc  values of ~ 0.55 V when blended in devices.  Furthermore, severe 

macroscopic phase separation occurred in thermally annealed blends of PhBT-12 and 

fullerenes
6
 limiting the opportunity for further optimization of OPVs based on this 

material via this approach.  In line with the observations described in Chapter One, that 

higher OPV performance seems to be somehow associated with branched side chains, an 

N

S

S
OC12H25

C12H25O
O O

C12H25

PhBT-12



63 

 

analogue with N-2-ethylhexyl side chains gave modestly better performance with PCE 

topping 4%.
145

 

 Working with the industrial licensee of our PhBT technology, we sought to 

increase the solubility of phthalimide based D-A polymers for ease of device fabrication.  

Additionally, we sought to address the issues of device instability and low open-circuit 

voltages encountered with PhBT-12 by synthesizing similar materials with increased 

ionization potential relative to the parent polymer.  Ideally, the new materials would also 

retain the attractive features of PhBT-12 such as the small Eg and high hole mobility.  

We chose to attach bulky, branched side chains to the 3,3’-ROT2 donor units to increase 

the solubility of the polymers relative to PhBT-12.  Additionally, large branched side 

chains could possibly induce sterically driven twisting of the polymer backbones and/or 

effect polymer packing and interchain coupling, thus lowering HOMO energy levels 

resulting in increased ambient stability for OTFT applications and increased VOC for OPV 

applications.  

  Indeed it has been demonstrated that increasing the percentage of branched 2-

ethylhexyl chains in the backbone of P3HT in a regioregular, random fashion does lower 

the HOMO energy of the resulting polymers relative to vacuum as illustrated in figure 

3.3.
121  

The authors stated that the origin of the observed trend in the HOMO energies was 

not clear, i.e. whether it was due to intramolecular backbone twisting or reduced 

intermolecular orbital coupling.  It was noted that the onset of absorption of thin-films for 

all of the polymers was identical (with the exception of the 100% branched chain 2-

ethylhexyl polymer), and relatively small blue-shifts in λmax were observed with 

increasing percentages of 2-ethylhexyl side chains relative to 100% P3HT.
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m (%) n (%) EHOMO (eV) Eg (eV) 

100 0 -5.17 1.9 

75 25 -5.43 1.9 

50 50 -5.48 1.9 

0 100 -5.57 2.0 

Figure 3.3:  Structures, HOMO energies and energy gaps for rr-P3HT with an increasing 

percentage of branched side chains randomly incorporated into the polymer.  “m” and “n” 

refer to the feed ratio of the monomers used for the polymerization reaction.
121

 

 

This study suggested that incorporation of branched side chains in the backbones of 

poly(3-alkylthiophenes)  could efficiently lower the HOMO energy levels relative to 

P3HT without having a large detrimental impact on light harvesting capabilities of the 

polymers.  Ideally, similar results would be obtained for our materials.  Additionally, the 

S∙∙∙O interactions and/or strong electron donating effects of the ether oxygen atoms in the 

3,3’-ROT2-units used for this project should enhance the degree of backbone planarity 

relative to the PATs from the published study discussed above.   

 With these observations in mind a series of materials was developed in order to 

simultaneously increase the solubility and ionization potential of phthalimide based 

polymers.
  
The final results of these efforts were expected to be deeper HOMO energy 

levels, leading to increased ambient stability, higher VOC in OPV applications and small 
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increase in the Eg.  Ideally, a large increase in VOC would be achieved to counteract the 

possible drop in Jsc due to the increased Eg and lead to higher overall PCEs.  We proposed 

the following structures shown in figure 3.4 to fill these criteria. 

 

 

 

Figure 3.4:  Proposed materials. 

Initially, we envisioned using a large -branched side chain (β- relative to the 

oxygen atom) under the assumption that the butyl and octyl groups would impart 

sufficient solubility to the resulting polymer, 3-P1.  The 3-P3 series was then chosen as 

an extreme; I assumed that creating an -branched alkyl chain in close proximity to the 

polymer backbone would likely result in twisting between adjacent thiophene units and 

destroy conjugation along the polymer backbone.  However, such a study has not been 

published on materials containing the 3,3’-ROT2.  The presence of S∙∙∙O interactions 

could preserve backbone planarity in this extreme situation.   

The motivation for the synthesis of 3-P2 is based on the demonstrated favorable 

impact that fluorination has on aromatic systems for supramolecular organization and 

FMO energy control.  Our group, in addition to other groups, has shown that alternating 
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copolymers of 3,3’-dialkyl-2,2’-bithiophene donors and hexafluorobenzene leads to 

increased order, -stacking, and backbone planarization relative to the non-fluorinated 

analogues.
122  

These properties arise from the unique characteristics of the fluorine atom.  

It is the most electronegative element (Pauling scale = 4.0) with a small van der Walls 

radius of 1.35 Å (hydrogen = 1.22 Å).  Fluorinated aromatics generally show an inverted 

charge distribution
123 

possibly leading to the enhanced -stacking observed in these D-A 

polymers and solid state order is greatly enhanced by C-F··H, F··S and C-F··F
 

interactions.
124

  Both HOMO and LUMO energies are generally lowered relative to 

vacuum upon fluorination, resulting in increased ambient stability and possibly larger 

VOC
 
when these materials are used in devices.  Furthermore, fluorinated organic 

compounds generally show greater hydrophobicity and lipophobicity compared to their 

non-fluorinated counterparts.
125

  This can favorably impact film forming properties of the 

polymer and lead to higher Jsc and FF in OPV devices.   

 You et al. recently applied these concepts to synthesize PBnDT-DTffBT  and 

compared OPV performance relative to the non-fluorinated analogue PBnDT-DTBT 

(figure 3.5).
126  

Both polymers had similar molecular weight distributions and identical 

side chains, differing only in the replacement of two hydrogen atoms with two fluorine  

atoms in the polymer backbone.  The two polymers had similar energy gaps as estimated 
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Figure 3.5:  Fluorinated and non-fluorinated DTBT-containing polymers for OPV 

applications.
 126
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from the onset of absorption.  The FMO energies of the fluorinated polymer, PBnDT-

DTffBT, were lower than PBnDT-DTBT by 0.14 and 0.2 eV for HOMO and LUMO 

respectively.  Slightly larger VOC
 
and JSC values of 0.04 V and  2.90 mA were measured 

for PBnDT-DTffBT relative to PBnDT-DTBT leading a high overall PCE of 7.2%.  

 

3. 2 Synthesis 

 Synthesis of phthalimide acceptor monomers was carried out following published 

procedures in two simple steps.
113

  Bromination of phthalic anhydride in oleum afforded 

key intermediate 3-1.  A mixture of all possible isomers is produced under these reaction 

conditions.  Fortunately the target isomer selectively crystallizes from glacial acetic acid, 

albeit in low yield.
127

  Imidization in glacial acetic acid  gives the desired phthalimide 

monomers in acceptable overall yield. 

N OO

C12H25

Br Br

O OO

Br Br

O OO i ii

25 % 94 %

3-1 3-2  

Scheme 3.1:  Reagents and conditions:  i) Br2, I2 (cat), 30% oleum: ii) H2N-R, AcOH, 80 

°C 

 

During the course of this project an alternate synthetic procedure to produce 3-1 

became desirable.  Replacing oleum with concentrated sulfuric acid produced no 

detectable bromination products.  Elevated temperatures in H2SO4 produced a tar-like 

mixture that presumably contained self condensation products.  The same results were 

observed when switching to NBS as the bromine source in concentrated sulfuric acid.
128
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Changing brominating agents from NBS to 1,3-dibromo-5,5-dimethylhydantoin 

(DBMH),
129

 in concentrated sulfuric acid at 80 °C however,  produced 3-1 in yields 

comparable to the oleum/Br2 system.  This method has the added benefit of not producing 

large amounts of HBr gas during large scale synthesis.  Workup of the reaction mixture 

when oleum was used as solvent involved the addition of water to precipitate the solid 

product and filtration.  Oddly, employing this workup with the DBMH/H2SO4 system 

resulted in 0% recovery of any products.  Presumably, hydrolysis of the anhydride 

occurred to produce water soluble products.  It was important to extract the crude 

reaction products from the H2SO4/
 
DBMH reaction with DCM, without the addition of 

water, followed by neutralization of the organic layer with solid base before adding 

aqueous solvent.  Recrystallization of the solids in same manner afforded 3-1 in 

comparable yield. 

Synthesis of the novel fluorinated phthalimide derivative, 3-7, employing similar 

methodologies as those applied to the cyanoarene monomers in Chapter One failed.  

Rosenmund von Braun nitrile synthesis from 1,2-dibromo-4,5-difluorobenzene produced 

the target in <5% yield.  The reaction mixture produced a deep blue solid that was 

insoluble in all solvents, presumably the corresponding copper phthalocyanine which is 

known to be a by-product of the RvB nitrile synthesis when applied to ortho-substituted 

systems.
130

  A mild alternative to the RvB synthesis utilizes zinc cyanide and palladium 

as catalyst to effect the cyanation of aromatic halides.
130,131

  This method allowed  
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Scheme 3.2:  Reagents and conditions: i) Zn(CN)2, Pd2dba3, DPPF, DMAc, 100 °C: ii) 

LiOtBu, I2, DMF, 100 °C: iii) 50% H2SO4, 150 °C, sealed tube: iv) Ac2O, reflux:  v) 

H2N-R, AcOH, 80 °C 

 

 

isolation of 3-3 in > 80% yield.  Traditional electrophilic bromination of 3-3 either 

resulted in zero conversion or decomposition of the starting material.  No 3-4 was 

detected under a variety of conditions.  Switching to the basic conditions employed in 

Chapter One for iodination of cyanoarene monomers produced mixtures of products from 

which the target could not be isolated.  Starting material was consumed, but significant 

amounts of benzyne derived products were produced using various lithium amide bases.   

Fortunately, Daugulis and co-workers have shown that for sufficiently acidic aromatics, 

deprotonation and halogenation can be achieved simultaneously using the much milder 

lithium tert-butoxide as base.
132

  This method presumably produces a small equilibrium 

concentration of the lithiated arene, which is then be quickly halogenated under the 

reaction conditions.
 132

  Yields of 3-4 greater than 90% were obtained on 1 mmol scale, 

however this method did not scale up well, giving < 30% yield on 10 mmol scale. 
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 Once again, brominated products could not be obtained using this method with various 

electrophilic bromine sources.  The final steps were nitrile hydrolysis to produce 3-5, 

followed by anhydride formation and imidization like the sequence shown for 3-2  to give 

the final monomer, 3-7, in acceptable overall yield.   

 Polymerization reactions were carried out under the standard conditions reported 

in Chapter One yielding high molecular weight polymers.  Additionally, all of the 

polymers, with the exception of 3-P2, had similar molecular weight distributions between 

110 and 145 kDa (table 3.1). 
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Scheme 3.3:  Synthesis and structures of the phthalimide polymers. 
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 The solubility of the branched chain polymers relative to PhBT-12 was greatly 

increased.  Polymers 3-P1, 3-P3b and 3-P3c were all soluble in a wide range of non-

halogenated solvents such as toluene, anisole and warm hexanes.  Polymer 3-P3a 

displayed better solubility than PhBT-12 in aromatic solvents such as toluene and 

anisole, however it dissolved to a lesser extent than the other polymers with larger 

branched chains.  The solubility of polymer 3-P2 was decreased relative to PhBT-12, 

despite the presence of the branched side chains, likely due to fluorination of the acceptor 

core.
 126  

 

 

 

Table 3.1:  Yields, molecular weights and melting points of the polymers. 

 Yield (%) Mn (kDa) [PDI]
a
 Tm (°C)

b
 

3-P1 92 130 [2.8] 247, 295 

3-P2 80 60.2 [1.73] N/A 

3-P3a 81 115 [2.5] 348 

3-P3b 83 110 [2.7] 340 

3-P3c 89 145 [3.1] 330 

aGPC versus polystyrene standards.  bMeasured byDSC at a scan rate of 10 °C per minute. 

 

3. 3 Optical Properties 

3. 3. 1 Solution and Thin-Film Measurements 

 Solution and thin-film absorption spectra of the polymers are shown in figure 3.6.  

All of the polymers have featureless absorption profiles in CHCl3 solution with max 
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centered at ~ 560 nm, suggesting all of the polymers, regardless of branching position 

and size have similar solution state conjugation lengths and main chain conformation.  

The fluorinated polymer, 3-P2, has the most blue-shifted max of the series suggesting 

that the presence of fluorine atoms on the phthalimide unit is causing twisting of the 

polymer backbones in solution, or differential shifts in FMO energies.  The magnitude of 

the blue-shift of 3-P2 relative to 3-P1 is similar to observations made in the literature 

when comparing other fluorinated and non-fluorinated polymers.
 133

  Slight blue-shifts 

also occur in the onset of absorption as the steric bulk of the side chains increases. 
 



73 

 

 

Figure 3.6:  Absorption spectra of 10
-5

 M chloroform solutions (top) and thin-films spin-

coated from 1 mg/ mL toluene solutions (bottom). 

 

The thin-film absorption profiles for all of the polymers are shown in the bottom 

spectrum in figure 3.6.  The -branched 3-P3 series all have max centered at ~ 590 nm.  

Weak shoulders are present in the spectra at approximately 608 nm, increasing in 
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intensity as the size of the α-branch increases (3-P3a  3-P3c).  These max values are 

blue-shifted from that of the PhBT-12 film by ~ 36 nm.  The small blue-shifts relative to 

PhBT-12 suggest that while a small degree of backbone twisting is likely occurring, the 

polymer backbones of the -branched 3-P3 series are still relatively conjugated in thin 

films.  If the steric bulk of the branched side chain were the only variable, however, it 

would be reasonable to predict that the β-branched polymer, 3-P1 should have max -

intermediate between the -branched polymers (3-P3) and PhBT-12.  This trend is 

reasonably followed for the solution state measurements, but, as can be seen from figure 

3.6, this is clearly not the case for the polymers in the solid state.  Two distinct peaks are 

present for 3-P1 with a small shoulder on the high energy side of the spectrum.  

Interestingly, the spectra for both 3-P1 and PhBT-12 appear to be quite similar in peak 

position, differing only in the relative intensities of the peaks at 696 and 626 nm.  The 

position of the low-energy shoulder in PhBT-12 nearly matches max for 3-P1 at 696 nm, 

while max for PhBT-12 corresponds to the second higher energy peak for 3-P1 at 626 

nm.  This suggests that similar low-energy-absorbing species are being formed for both 

polymers, a larger fraction of which being formed for 3-P1.  The low-energy absorption 

bands can either be attributed to planarization
122

 and extended conjugation of the polymer 

backbones, or interchain (π-stacking) interactions of the of the polymer backbones
38

.  

Filtering solutions of both polymers through a 0.2 m PTFE filter before spin-coating 

resulted in no change in the absorption spectrum excluding 
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Table 3.2:  Optical and electrochemical properties of the polymers. 

 max soln 

(nm)
a 

max film 

(nm)
b 

film-soln Eabs onset 

(nm) 

Eg
opt

  

(eV)
c 

EHOMO (eV)
d 

ELUMO 

(eV)
e 

PhBT-

12 

565 629 64 741 1.64 -5.12  0.03 -3.48 

3-P1 559 620 60 775 1.60 -5.27  0.04 -3.67 

3-P2 543 564 21 711 1.74 -5.27  0.02  -3.53 

3-P3a 557 588 21 692 1.79 -5.12  0.04 -3.33 

3-P3b 565 558 -7 692 1.79 -5.23  0.06 -3.44 

3-P3c 567 568, 619 52 706 1.76 -5.27  0.03 -3.51 

a
 Solutions 10

-5
 M in CHCl3.  

b
 Thin-films spin-coated from 1 mg/mL toluene solutions 

and thermally annealed.  
c
  Optical energy gap estimated from the absorption edge of 

thin- films annealed at 200 °C.  
d
DPV measurements of films drop cast thin from 1 

mg/mL PhMe solutions versus Fc/Fc
+
.  

e
Estimated from ELUMO = EHOMO + Eg. 

 

aggregates greater than that length scale as the source of the low-energy shoulder.   

3. 3. 2 Thermal Annealing Experiments 

To examine the effect of thermal history on the absorption profiles, spectra of the 

same thin-films were collected after thermal annealing (guided by phase transitions 

observed in DSC).  Thermal annealing has been shown to promote self organization of rr-

P3HT resulting in longer range chain stacking, increased film crystallinity and overall 

morphological order
134,135

, i.e. this is a macroscopic effect.  This is generally observed by 

UV-Vis spectroscopy as a red-shift in the absorption profile and the appearance of low-

energy shoulders.
135  

 Figure 3.7 shows the thermally annealed thin-film absorption 

spectra for all of the polymers in comparison to the non-annealed pristine films.   
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Figure 3.7:  Thermally annealed thin-film absorption profiles for the polymers (top) 

compared to as-cast films (bottom).  Annealing was performed at 200 °C for 10 minutes 

under N2 with a heating and cooling rate of 10 °C/min. 

 

The annealing effects for the 3-P3 -branched polymers are for now puzzling.  Little 

change in the absorption profile of 3-P3a is observed.  A blue-shift and loss of fine 

structure is observed for 3-P3b while the absorption for 3-P3c is broadened with more 

fine structure.  A large difference is observed for 3-P1.  The low-energy peak at 696 nm 
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is reduced to a small shoulder while the high energy shoulder completely disappears.  

max remains essentially constant at  620 nm.  Under these conditions, max  for 3-P1 is 

intermediate between the -branched polymers and PhBT-12 as one would predict based 

solely on steric bulk around the polymer backbone as noted earlier.  The shoulder at 696 

nm at 80% intensity of max is still present in PhBT-12 after thermal annealing as well.  

This finding suggests that a low-energy polymer domain (intra- or intermolecular) of 3-

P1 is likely being kinetically trapped during the spin coating process. 

 Furthermore, it was found that the low-energy peaks for 3-P1 completely 

disappeared in the spectra of thin-films annealed at temperatures much lower than the 

polymer’s melting point observed by DSC (table 3.1).   

400 500 600 700 800 900
0.0

0.4

0.8

643 nm

Annealing T (°C)
 Pristine
 100
 225

A
b

s
o

rb
a

n
c
e

Wavelength (nm)

696 nm

 

Figure 3.8:  Absorption spectra of thin-films of 3-P1 annealed at various temperatures. 
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Figure 3.8 shows the absorption spectra for films of 3-P1 at various annealing 

temperatures.  The peak at 696 nm became less intense after annealing at temperatures as 

low as 80 °C (not shown) and is reduced to a shoulder after annealing at 100 °C although 

no phase changes were observed by DSC below 240 °C.  This observation further 

suggests the nature of this change is due to kinetic trapping of the polymer chains in a 

low-energy state due to rapid solvent evaporation during the spin-coating process.  In a 

typical DSC experiment performed for this work, solid polymer (generally precipitated 

from CHCl3 solution with methanol) is placed directly into an aluminum crucible and 

placed in the instrument.  Phase changes of the polymer are then measured as a function 

of temperature.  An extrinsic variable is introduced when the materials are spin-coated 

onto quartz plates.  It is known that the solvent used for spin coating has a significant 

impact on the final film morphology.
27

   Low-energy domains formed by the spin coating 

process may be detected optically, but not by the DSC measurement in this fashion.   

Unfortunately, our instrument is not sufficiently sensitive to make measurements on such 

thin-films. These findings suggest that the artifact at 696 nm in the absorption spectrum 

of 3-P1 is a product of solvent driven self organization of the polymer backbones in 

solution with is then transferred to the thin-films.  

 

3. 3. 3 Casting Solvent Experiments 

To further examine the hypothesis of solvent driven self assembly, thin-films 

were cast from other solvents varying in polarity and boiling point.  Experiments in the 

literature have linked the crystallinity of P3HT with OTFT and OPV performance as a 

function of the boiling point of the solvent used for deposition.  For example, it was 
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found that OTFTs fabricated using 1,2,4-trichlorobenzene (bp = 214 °C) as solvent had 

mobility one order of magnitude higher than those fabricated from chloroform (bp = 61 

°C).
136

  The difference in mobility was explained in terms of the solvents’ boiling points.  

Higher boiling point solvents evaporate more slowly, giving the polymer chains more 

time to interact with one another and form more crystalline structures.
136

  The differences 

in absorption profiles for P3HT as a function of the boiling point of the solvent has also 

been studied.  The general trend is as the solvent boiling point increases, the absorption 

profiles red-shift and fine structure becomes more intense as a result of longer range 

order and higher crystallinity present within the polymer films.
137 

 If solvent boiling point were the only factor affecting the morphology for the 

polymer thin-films in this project, however, it would be reasonable to expect a similar, or 

slightly blue-shifted absorption profile for 3-P1 relative to PhBT-12 based solely on the 

identical polymer backbones and differences in the steric bulk of the side chains. The 

spectra in figure 3.6 were measured from films cast from the same solvent, toluene.  It 

has also been shown with P3HT the solvent “quality” has a major influence on the 

resulting film morphology and crystallinity.
138-140  

In this context, solvent quality is 

defined as good, marginal or bad.  The term good solvent refers to any solvent that will 

molecularly dissolve the polymer sample.  Marginal solvents either only partially 

dissolve the polymers, or result in solutions of strongly aggregated polymer chains.  Poor 

solvents are those that the polymers are completely insoluble in.  Solvents of marginal 

quality enhance crystallization and interchain interactions which then may be transferred 

to films during the spin-coating process.  To disentangle these variables thin-films were 

cast from a wide variety of solvents, varying in both polarity and boiling points.  PhBT-
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12 is poorly soluble at room temperature in the majority of organic solvents, limiting the 

solvents used for this study.  This discussion will be limited to 4 solvents and two 

good/bad solvent mixtures.  It is worth noting here that these experiments were 

performed on the 3-P3 series as well, however significant changes were not observed and 

they are omitted from this discussion for clarity.  Table 3.3 shows the Hildebrand 

solubility parameters and boiling points for the solvents used in this study and are listed 

in order of increasing polarity.  Spin-coating films from chloroform solutions produced 

absorption profiles markedly different than those from toluene solutions as shown in 

figure 3.9. 

 

Table 3.3:  Casting solvents, Hildebrand solubility parameters
146

 and solvent boiling 

points
147

. 

Solvent  (cal
1/2

/cm
3/2

) Boiling point (°C) 

Toluene 8.91 110.6 

Chloroform 9.21 61.2 

1% acetone/chloroform 9.22 N/A 

5% acetone/chloroform 9.24 N/A 

Chlorobenzene 9.50 131 

Tetrahydrofuran 9.52 66.0 

Acetone 9.77 56.5 

  

 No fine structure is present in the spectra for either polymer.  Indeed, both of the profiles 

are nearly identical.  The featureless spectra for both polymer films obtained from 

chloroform, relative to toluene is consistent with the difference in their boiling points 
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(61.2  and 110.6 °C, respectively) and the observations from the literature noted above.  

Spin-coating films from a solvent with a similar boiling point to chloroform, THF (66.0 

°C), results in a large difference in the absorption profile.  3-P1 films produce a similar 

absorption spectrum as films from toluene with an increased relative intensity of the 

lower energy peak.  PhBT-12 even produces a spectrum with increased intensity in the 

absorption shoulder at 696 nm.  The similar boiling points of chloroform and THF 

suggest that slow evaporation of solvent alone is not the only factor affecting the fine 

structure in the spectra.  Spin-coating films from chlorobenzene also produced structured  

 

Figure 3.9:  Films of PhBT-12 and 3-P1 cast from various solvents, chloroform (top 

left), THF (bottom left), toluene (top right) and chlorobenzene (bottom right). 
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spectra with two distinct peaks for each polymer.  The trend of solvent boiling point and 

the fine structure present in the spectra is consistent following from chloroform, toluene 

and chlorobenzene.  The fine structure present in films cast from THF however, cannot 

be explained using the solvents’ boiling points alone.  The  values of the solvents and 

the presence of fine structure in the films shows no clear trend either.  THF and 

chlorobenzene have similar  values of 9.50 and 9.52 cal
1/2

/cm
3/2

.  The least polar solvent 

used, toluene, has  = 8.91 cal
1/2

/cm
3/2

, and these three solvents produce structured 

spectra despite their large differences in polarity.  Chloroform, having an intermediate 

polarity ( = 9.21 cal
1/2

/cm
3/2

) and a similar boiling point to THF is the only solvent that 

produces unstructured spectra.  These observations suggest that both solvent quality and 

boiling point are factors affecting the absorption spectra for these polymers. 

 To further elucidate the nature of solvent quality on the absorption profiles of the 

polymers, a poor co-solvent (acetone) was added to the chloroform casting solution 

before spin casting.  Figure 3.10 shows the absorption spectra of the polymers cast from 

binary acetone/CHCl3 solvent mixtures with differing compositions.  The  values for the 

mixtures change little relative to pure CHCl3 as shown in table 3.3, however, it can be 

seen clearly from figure 3.10 that even 1% of acetone, when mixed in the casting solution 

has a large influence on the absorption profile of the thin-films.  Indeed, when the 

acetone concentration reaches 5% the absorption profiles for both polymers are nearly 

identical to the profiles for films cast from toluene.  Since the boiling point of the 

acetone/CHCl3 solvent mixture should not significantly change relative to pure CHCl3, 
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this should be a reflection of the quality of the casting solvent mixture, not the boiling 

points. 

 

 

 

Figure 3.10:  Thin-films cast from good solvent (CHCl3) and good/bad solvent (acetone) 

mixtures. 

 

 3. 3. 4 Solvent Vapor Annealing Experiments 

Finally, under the assumption that marginal to poor solvent quality was the 

driving factor for self organization of the polymers, solvent vapor annealing (SVA) was 

performed.  SVA, first introduced in Chapter Two, is a widely used process to promote 

crystallization and rearrangement within thin-films of both small molecules
143

 and 
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polymers
141

.  Additionally, if self organization of the polymers is occurring in solution 

and fast solvent removal during spin coating is trapping that particular polymer 

conformation, annealing the thin-films for a prolonged period of time may allow 

structural rearrangement to occur to the thermodynamically preferred solid state 

arrangement.  Figure 3.11 shows the absorption spectra for SVA thin-films of PhBT-12.    

 

Figure 3.11:  Solvent annealing of PhBT-12.  The thin-films were placed in a 25 mL 

beaker and sealed in a Mason jar (height = 15 cm, inside diameter = 6 cm) containing 10 

mL of annealing solvent.  The sealed jars were left in the dark, undisturbed for 4 h.  The 

beaker containing the film was removed from the solvent pool and air dried for 5 minutes 

followed by drying under a high flow of N2 for 5 minutes immediately before 

measurement.  Spectra were also collected (not shown) after vacuum drying the films for 

1.5 h and no changes were observed. 
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An increase in the intensity of the shoulders is observed in the films annealed with 

toluene.  Little change is seen with both THF and CHCl3 vapor.   

Interestingly, large changes are observed for the films of 3-P1 annealed with THF 

and toluene vapor as shown in figure 3.12.  The fine structure is destroyed for both of the 

 

Figure 3.12:  Solvent annealing of 3-P1.  The conditions were identical to those 

described for PhBT-12. 

 

films and a single peak is observed, similar to the effects of thermal annealing.  Again, 

only a minor difference is observed from the thin-films annealed with CHCl3. 
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 Based on these data alone an unambiguous conclusion cannot be reached.  It does 

appear the same low-energy domain of the polymer (evidenced by the shoulder at 696 

nm) for both PhBT-12 and 3-P1 can be obtained through appropriate solvent choice and 

film processing.  3-P1 is qualitatively more soluble than PhBT-12 in all of the solvents 

used.  Solvent molecules likely penetrate the films 3-P1 during SVA to a much greater 

extent than PhBT-12 causing structural reorganization of polymers within the films and 

loss of fine structure.  The fast evaporation of solvent during spin coating precludes such 

relaxation.  The low-energy shoulder at 696 nm is not observed in films of either of the 

polymers cast from CHCl3, likely because both polymers are more fully solvated, limiting 

pre-assembly.  Addition of a poor solvent (acetone) to the CHCl3 casting solutions causes 

aggregation of the polymer backbones, which is then transferred to the films.  In a similar 

fashion, after casting from marginally good solvents such as toluene and THF, the 

absorption peak at 696 nm is observed.  These findings cannot be ascribed to boiling 

point alone due to the similar boiling points of THF and CHCl3.  Using a good solvent 

with a high boiling point, such as chlorobenzene, produces a similar effect in the 

absorption profile, likely due slower solvent evaporation and increased polymer 

crystallinity as reported in the literature.  The difference between the solubilities for 

PhBT-12 and 3-P1 is likely the source for the differences in their thin-film absorption 

profiles.  PhBT-12 has poor solubility in both toluene and THF.  These solvents likely do 

little to actually solvate the polymer backbone before spin coating i.e. they are marginal 

solvents for this polymer; it is still trapped in the conformation produced by workup 

(precipitation into methanol).  3-P1 on the other hand has increased solubility in these 

solvents relative to PhBT-12, these solvents likely fall closer to the “good” category 
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described above.  This polymer is solvated enough to undergo solvent driven re-

organization/aggregation to a different conformation which is then transferred to the film 

during the spin-coating process.  Prolonged exposure to solvent vapor then destroys these 

re-organized/aggregated phases in the thin-films and the absorption profile becomes to 

similar to that observed for films cast from a good solvent such as CHCl3. 

 

3. 4 Electrochemistry  

 DPV was preformed to estimate the relative FMO energy levels for all of the 

polymers.  It is emphasized here that only the alkyl-side chains on the donor portion of 

the polymers were varied in this study.  PhBT-12, the only material containing linear side 

chains on the 3,3’-ROT2 unit has a EHOMO of -5.12 eV (relative to the reported CV 

measurement of -5.2 eV).
5
  Branching the side chain on the 3,3’-ROT2 unit in the α-

position with smallest methyl group, 3-P3a, had no effect on the estimated HOMO 

energy.  Increasing the branch size in the α-position to ethyl in 3-P3b, however, did result 

in a decrease in the HOMO energy to -5.22 eV.  The trend of deepening HOMO energy 

with larger branches is followed for the α-propyl branched polymer and β-butyl branched 

polymer 3-P3c and 3-P1.  Both of these materials have an EHOMO of -5.27 eV. 

Fluorination of the phthalimide core in 3-P2 also produced a material with a 

HOMO energy equivalent to those of 3-P3c and 3-P1, despite the presence the 

presumably stronger electron accepting nature of the fluorinated phthalimide unit.  This is 

likely due to backbone twisting due to steric effects of the fluorine atoms as evidenced by 

UV-Vis, or the EHOMO of the polymer is not affected by substitution of the fluorine atoms 

on the phthalimide acceptor unit.  Figure 3.13 shows the DPV traces for all of the 
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polymers, calibrated to the oxidation onset of Fc/Fc
+
 at 0 V.  A clear decrease in the onset 

of oxidation as a function of branch size can been seen.  LUMO energies follow a similar 

trend.  As the branches become larger, the LUMO energies become more negative 

relative to vacuum.   

 

Figure 3.13: DPV of the phthalimide polymers referenced to Fc/Fc
+
. 

 These effects, again, may be taken as intramolecular or intermolecular.  As the 

branching of the side chains becomes larger, it would be expected for some degree of 

twisting of the polymer backbones to take place.  This would be observable as blue-shifts 

in both max and the onset of absorption in UV-Vis experiments.  A clear trend in the film 

UV-Vis spectra for these polymers, however, was not observed.  Additionally, 3-P1 has 
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the second most red-shifted max and onset of absorption, but has the lowest HOMO 

energy of the materials.  This suggests these effects are likely not due to intramolecular 

backbone twisting.   

A second possibility would be a restircted dihedral angle between the oxygen lone 

electron pairs on the 3,3’-ROT2 units and the polymer π-electron system.  If the bulky 

side chains narrows the population of solid-state rotational states about this bond, the 

oxygen atom could act as an electron accepting group, inductively removing electron 

density from the π-system which could result in a lower EHOMO for the polymers.  If this 

were the operating mechanism then it would be expected that this could be detected by 

UV-Vis as well; weaker D-A interactions would be present within the polymers and this 

would be observable as blue-shifts in the absorption spectra.  Again there is no clear trend 

in the UV-Vis spectra for these polymers, and in particular the -branched 3-P3 series. 

Finally, this could be an intermolecular phonemenon, as the branching of the polymer 

alkyl chains becomes larger, less efficient interchain coupling is present resulting in 

lower HOMO energies for the polymers .  

 

3. 5 WAXD 

 In order to try to disentangle these effects, WAXD patterns were collected from 

extruded fibers of the polymers. The diffraction patterns are shown in figure 3.15, listed 

with the measured π-stacking distances.  All of the polymers, with the exception of 3-P2, 

show clear diffractions attributable to π-stacking between the polymer backbones.  As 

expected, polymers containing larger branched alkyl side chains gave larger measured -
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stacking distances.   PhBT-12, carrying straight chains on the 3,3’-ROT2 donor units, has 

a -stacking distance of 3.7 Å.  Polymer 3-P3a, carrying the smallest branched side 

 

 

Figure 3.14:  WAXD for the phthalimide polymers.  PhBT-12 from reference 7.  Arrows 

indicate diffractions attributed to -stacking. 

 

chain (-methyl) has the same -stacking distance as PhBT-12 and the diffraction 

patterns as whole look similar.  Increasing the branch size in the 3-P3 series to ethyl (3-

P3b) and propyl (3-P3c) resulted in an increased -stacking distances of 4.2 Å, a 

difference of 0.5 Å relative to PhBT-12.  3-P1, with the largest branched side chain in 

the β-position has a -stacking distance intermediate between PhBT-12 and the larger α-
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branched polymers 3-P3b and 3-P3c at 4.0 Å.  From this data it appears that both the 

branch size and position play important roles in how close the polymer backbones may 

stack with adjacent chains.  Assuming S··O interactions of some nature are operative in 

these systems then this becomes an issue of side chain position.  The attractive S··O 

interactions, provide a kinetic “block” against free rotation around the 2,2’-bithiophene 

linkage.   As the branches become larger so do the -stacking distances commensurate 

with the size of the side chains.  Moving the branching position to the β-position would 

alleviate some the intermolecular steric congestion and allow the backbones to come in 

closer proximity to one another.  

 The fluorinated polymer 3-P2 shows no clear diffraction attributable to -

stacking.  The blue-shifted absorption profile relative to the other polymers suggests that 

this material is less coplanar than the others and/or the fluorine atoms do not affect the 

FMO energies of these materials.  A twisted polymer backbone would certainly not allow 

close -stacking.   

This data could explain the change in the onset of oxidation observed by DPV.  

Less interchain coupling could certainly lead to the lower EHOMO values measured for the 

polymers.
142

  This trend is supported by the WAXD measurements and the -stacking 

distances. 

3. 6 Conclusions 

 Branching the side chains on the 3,3’-ROT2 units for the phthalimide-based 

polymers in this chapter greatly increased their solubility relative to the straight chain 

polymer PhBT-12.  UV-Vis studies suggested that conjugation within the polymer 

backbone is preserved, despite the presence of bulky side chains in close proximity to the 
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polymer backbones.  This is likely a product of the attractive S···O interactions operating 

in these systems.  Only slight blue-shifts were observed for the branched polymers 

relative to PhBT-12.  The solid state absorption behavior of 3-P1 was complicated and 

likely a product of self organization in solution.  DPV measurements revealed that 

branching the side chains affected the FMO energy levels of the polymers, driving them 

more negative relative to vacuum as a function of steric bulk.  Assuming S···O 

interactions of some nature are operative in these systems the relative coplanarity for all 

of the polymers should be equal.  Thus, the measured differences in the optical and 

electrochemical properties are likely due to differences in intermolecular coupling.  
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Chapter Four:  Improving Phthalimide-Based Copolymers by Functional Group 

Interconversion.  Indanedione-Based Copolymers. 

 

4. 1 Introduction 

 The limited success seen with the new, branched-chain donors employed with 

phthalimide acceptors presented in Chapter Three motivated the synthesis of a related, 

novel acceptor for polymerization.  The HOMO energies of the phthalimide polymers 

carrying branched 3,3’-ROT2 units did decrease relative to PhBT-12, however we 

desired to produce materials with FMO energies slightly lower than those presented in 

Chapter Three.  The initial solution to further reduce FMO energies of branched chain 

phthalimide-based polymers, fluorination of the phthalimide core, resulted in unaffected 

HOMO energies and decreased solubility of the polymer.   

We suspected that changing the imide moiety in phthalimide-based copolymers to a di-

ketone moiety should allow for further lowering of the HOMO energy level and 

increased solubility due to the presence of the orthogonal side chains on the acceptor unit.  

 
Figure 4.1:  

13
C NMR comparison of 1,3-indanedione and phthalimide adapted from 

Sigma Aldrich.
186 
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Figure 4.1 shows the 
13

C NMR spectra for N-methylphthalimide and 1,3-indanedione 

(indanedione).  It can be seen that the carbon resonances for indanedione are slightly 

farther downfield than the resonances for phthalimide.  This implies that the benzene ring 

in indanedione is more electron deficient than the benzene ring in phthalimide, 

suggesting that it might act as a stronger electron acceptor unit in D-A polymers.  

Furthermore, comparison of the pKa values for acetone versus N,N’-dimethylacetaminde 

(DMAc) shows that acetone is ~ 1.5 times more acidic than DMAc, reflecting the 

stronger electron accepting nature of the carbonyl group in ketones relative to amides.   

 At first glance, the orthogonal side chains relative to the polymer backbones 

present in the indanedione acceptors would be expected to have a negative impact on 

solid state ordering by preventing close interactions of the polymer backbones and 

efficient -stacking.  However, the presence of such tetrahedral atoms in the backbones 

of conjugated polymers has been well established in the literature, with, for example, the 

donor monomers fluorene
149,150

 and (hetero)cyclopentadithiopehenes
9
.  In fact, the 

highest performing polymer-based BHJ OPV reported in the literature contains such a 

tetrahedral germanium atom yielding devices with PCEs in excess of 8%
41

 (figure 4.2, 

4B). 
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Figure 4.2:  Examples of high performance polymers containing orthogonal side chains.
 

9,41,151
 

 

Polymers based on indacenodithiophene donors (4C, figure 4.2) containing two sp
3
 

carbons and 4 orthogonal side chains in the backbone per repeat unit produced OTFT 

devices with mobilites as high as 1.0 cm
2
/Vs.

151  
Furthermore, it was found by GIXS that 

this polymer was, in fact, semi-crystalline with a π-stacking distance of 4.1 Å and 

displayed good solubility in a wide range of common organic solvents.  

  These observations from the literature suggest that the presence of sp
3
 

(hetero)atoms in the polymer backbone does not necessarily impede efficient self 

assembly and close π-stacking.  Furthermore, as illustrated in Chapter One and figure 4.2, 

all of the top performing polymers to date contain branched and/or orthogonal side 

chains.  Frechet et al. recently performed a study on the bulkiness of the side chains in 

PAT derivatives.  They found polymers with increased side chain bulkiness in close 

vicinity to the polymer backbones displayed enhanced exciton dissociation and improved 

photocurrent.
152

   However, one large difference between the proposed indanedione 

acceptor and the structures shown in figure 4.2 is that the branched chains are located on 

the acceptor unit, rather than the donor unit.  Placing the sp
3
 carbon on the acceptor 
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portion of the conjugated backbone, to my knowledge, has not been reported in the 

literature.  Not only does the indanedione motif present an opportunity to tune FMO 

energies and solubility of our polymers (relative to phthalimide), it presents an 

opportunity to study the fundamental aspects of OPV operation.  As shown in Chapter 

One, one of the mechanistic steps in OPV operation is charge transfer from the donor 

polymer to fullerene.  It is generally accepted that in D-A type polymers the LUMO is 

localized on the acceptor units in the polymer backbone.
153-155  

If this mechanism is 

operative with these polymers, placing orthogonal side chains on the acceptor unit, while 

likely detrimental to OPV device performance, could present an interesting opportunity to 

study the fundamental operations of OPVs. 

4. 2 Synthesis 

Synthesis of the indanedione acceptor monomers began with 3,6-dibromophthalic 

anhydride, first described in Chapter Three.  Condensation with tert-butyl acetoacetate in 

the presence of triethylamine and acetic anhydride followed by in situ decarboxylation
156

 

smoothly afforded the 3,6-dibromoindanedione building block. 

 

O

BrBr

OO

i

60% BrBr

OO

ii
BrBr

OO

RR

4-2: R = CH3, 65%

4-3: R = C12H25, 60%
4-1

 

Scheme 4.1 Synthesis of indanedione acceptor monomers. Conditions and Reagents:  

i)  1) Ac2O, NEt3, tert-butyl acetoacetate, 2) HCl (aq) 70 °C.  ii) KF/celite, R-I, MeCN, 

50 or 70 °C (for R = CH3 and C12H25 respectively), 2 d. 
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1,3-indanedione is known to be a sensitive material; prolonged heating or changes in pH 

cause self condensation to bindone.
157

 This material was used crude for the next step of 

the synthesis.  Alkylation of the indanedione acceptor 4-1 was easily carried out with a 

suspension of KF adsorbed on Celite using alkyl iodides in acetonitrile.
158

.  The final 

monomers 4-2 and 4-3 were stable to elevated temperatures and low pH.  They were 

chromatographed on silica gel and recrystallized before polymerization.  Polymerizations 

were carried out as described in earlier chapters to produce the polymers in acceptable 

yields with reasonable molecular weights (scheme 4.2 and table 4.1). 

OO
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S

S SnBu3
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R

R Pd2dba3, P(o-Tol)3

THF
80 °C

+ S
S

R RO
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R
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Me MeO

O

O

O

4-P1

S
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C12H25

C12H25O

O

4-P2 4-P3

S
S

Me MeO

O

C12H25

C12H25C4H9

C6H13

C4H9

C6H13  

Scheme 4. 2. Polymer synthesis and structures. 

 

 Polymers 4-P1 and 4-P2 were very soluble in common organic solvents, 

including warm hexanes.  The solubility of 4-P3 was decreased relative to 4-P1 and 4-P2 

due to the unsubstituted-bithiophene donor unit in this polymer.  However, it was soluble 

in chlorinated solvents and warm aromatic solvents such as toluene and anisole. 
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Table 4.1:  Yields, molecular weights, melting points and optical properties of the 

polymers. 

 

 Yield (%) Mn (kDa) [PDI]
a
 max soln

b
/film

c
   Tm

d
 

4-P1 88 24.0 [2.01] 594/663   241 

4-P2 67 45.0 [1.40] 424/435   80 

4-P3 92 N/A
e
 487/535(576)   243 

a
By GPC relative to polystyrene standards  

b
10

-5
 CHCl3 solutions.  

c
Spin-coated from 1 

mg/mL toluene solutions.  
d
Measured by DSC at a scan rate of 10 °C/min.  

e
Insoluble in 

THF 

 

4. 3 Optical Properties 

Figure 4.3 shows the absorption profiles for the polymers as chloroform solutions 

and as thermally annealed thin-films.  It can be seen, as demonstrated in the previous 

chapters, that the polymers containing 3,3’-ROT2 donors are far red-shifted relative to 

the unsubstituted bithiophene donors.  The solution spectra are featureless and fairly 

narrow, indicative of a molecularly-dissolved solution, owing to the high chloroform 

solubility for all of the polymers.  Fairly large red-shifts are observed in max  upon going 

from solution to the solid state implying increased backbone coplanarity and conjugation 

for the polymers in films.  Fine structure is observed for both 4-P1 and 4-P3 after thermal 

annealing, suggesting that these materials have the ability to “thermally relax” and form 

structures with increased order and crystallinity.  In particular, 4-P1 displays a broad 

absorption profile with a low-energy shoulder at ~ 750 nm with an onset of absorption at 

~ 815 nm, suggesting this material could be an efficient photon harvester in OPV 

applications.  Two separate, well defined peaks are present in films of 4-P3 at 535 and 

576 nm.  Fine structure is also present on the high energy side of λmax for 4-P3.  Polymer 



99 

 

4-P2, containing the HH-dialkylbithiophene donor motif is far blue-shifted relative 4-P1 

and 4-P3 as observed for polymers in the previous chapters containing the same donor 

motif. 

 

Figure 4.3:  Solution (top) and annealed thin-film (bottom) UV-Vis spectra. 

 

4. 4 Electrochemistry 

Table 4.2 lists the DPV results for the polymers.  4-P1 had a similar EHOMO as the other 

polymers with β-branched 3,3’-ROT2 donors in Chapters One and Three at  -5.25 eV.  

Our hypothesis, that the stronger electron accepting indanedione group would slightly 

lower the HOMO energy for these polymers is not consistent with this observation.  This 
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is likely a result of decreased FMO orbital mixing between the donor acceptor units in 

these polymers.  A decrease in the energy gap, and therefore a decrease in ELUMO by 0.5 

eV relative to phthalimide was observed.  This picture is consistent with the LUMO level 

of these D-A polymers being dependent on the acceptor unit while the HOMO is 

dependant on the donor unit.
103,104

    Similar observations were made with the other two 

polymers relative to their phthalimide counterparts.  A decrease in the energy gaps as 

well as decreases in LUMO levels was measured for both materials. 

 

Table 4.2:  Electrochemical results for the polymers. 

 EHOMO
a
 ELUMO

b
 Eg

c
 

4-P1 -5.25 ± 0.01 -3.74 1.51 

4-P2 -5.86 ± 0.03 -3.61 2.25 

4-P3 -5.69 ± 0.02 -3.79 1.90 

a
DPV measurements of thin-films drop cast from 1 mg/mL PhMe solutions versus 

Fc/Fc
+
.  

b
Estimated from ELUMO = EHOMO + Eg.  

c
Optical energy gap estimated from the 

absorption edge of thin-films annealed at 200 °C.   

 

4. 5 WAXD 

The final question to address with the indanedione based polymers was the solid 

state ordering; whether or not the orthogonal side chains had a dramatic impact on the π-

stacking and ordering of the polymers.  As can be seen from figure 4.4, the WAXD 

profiles for both 4-P1 and 4-P3 display clear diffraction attributable to -stacking.  4-P1 

in particular clearly shows many diffractions suggesting that the presence of orthogonal 

side chains does not interfere with the ability of these polymers to form ordered 

structures.  The -stacking distances for 4-P1 and 4-P3 were measured to be 4.0 and 3.7 
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Å, respectively.  These values are identical to those with phthalimide-based polymers 

containing bithiophene and 3,3’-ROT2 donors. 

Figure 4.4:  WAXD for the polymers. 

4. 6 Comparison with Phthalimde-Based Polymers

The structures of indanedione- and phthalimide-based copolymers with identical 

donor units used for comparison in this section are shown in figure 4.5. 
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Figure 4.5:  Structures of phthalimide and indanedione-based copolymers.  Phthalimide 

polymers PT-R and PT-H are unpublished and were synthesized and studied in our lab 

by Xugang Guo. 

 

4. 6. 1 Optical Properties 

Figure 4.6 shows the absorption spectra of indanedione and phthalimide 

derivatives.  If the indanedione moiety is a stronger electron acceptor relative to 

phthalimide, it would be expected that a smaller Eg, both in solution and the solid state 

would be observed due to  
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Figure 4.6:  Thermally annealed thin-film (top) and solution (bottom) absorption spectra 

for indanedione and phthalimide polymers. 

 

Increased D-A interactions between the units and lower LUMO molecular orbital 

energies.   As can be seen, λmax and the onset of absorption are red-shifted for the 

indanedione polymers relative to phthalimide.  Additionally, fine structure is present with 

greater intensities for 4-P1 and 4-P3 relative to their phthalimide counterparts 3-P1 and 

P-TH suggesting that these indanedione-based polymers have a higher level of solid state 
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ordering.  Polymers 4-P1 and 4-P2 show red-shifts in solution of ~ 30 nm, while polymer 

4-P3 shows a blue-shift of the same magnitude relative to the phthalimide polymers.  The 

unsubitiuted bithiophene donor, in the case of , severely hampers the solubility of these 

polymers and the insolubility of  P-TH, in this case, is probably is reason for the relative 

blue-shift.  The structured and broad absorption of P-TH suggests this.  4-P3 on the other 

hand, containing orthogonal dodecyl side chains on the acceptor, easily dissolved in 

CHCl3 and likely represents a more molecularly dissolved solution.   

 

4. 6. 2 Electrochemistry 

An FMO energy diagram for the polymers is shown in figure 4.7.  There is little 

difference in the HOMO energies for the indanedione-based polymers relative to 

phthalimide-based polymers.  The LUMO energies for polymers containing indanedione-

acceptors are ~ 0.1 eV more negative than the analogous phthalimide-based polymers, 

corresponding to the 0.1 eV decrease in Eg for those polymers.  This suggests that FMO 

mixing between donor and acceptor fragments is likely not occurring to a great extent in 

these systems, rather the HOMO energies and LUMO energies are governed by the donor 

and acceptor units, respectively. 
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Figure 4.7:  FMO energy graph of phthalimide and indanedione polymers (negative 

signs were omitted for clarity). 

 

4. 7 Conclusions 

 Novel indanedione-based D-A polymers were synthesized and copolymerized 

with three different donor units.  Despite the hypothesis of a diketo-moiety being a 

stronger electron accepting group than an imide moiety, the HOMO energies of the 

indanedione based polymers were nearly equal to that of phthalimide, likely due to 

localization of the HOMO and LUMO and the donor and acceptor polymer units, 

respectively.  LUMO energies were found to be ~ 0.1 eV more negative than phthalimide 

donors, suggesting that the indanedione motif may play a role in n-type semiconductors 

after appropriate functionalization. 

 

Copyright © Mark J. Seger 2013 
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Chapter Five:  3,3’-Dialkynyl-2,2’-bithiophene Donor Units in Donor-Acceptor 

Copolymers 

5. 1 Introduction

5. 1. 1 Fused-Ring Donor Units 

The highest performing materials in OPVs and OTFTs (as shown in Chapter One) 

to date are D-A polymers incorporating strong electron accepting groups and weak, fused 

electron donating groups.  Examples of these groups, shown in figure 5.1, include 

diketopyrrolopyrrole (DKPP)
159

 and thiophene-dimide (TDI)
40

 as acceptors and

benzodithiophene (BDT)
119,160

 and (hetero)cyclopentadithiophene (CPDT) derivatives as

donors.
9,40,41

  Specifically, the donors shown in figure 5.1 fulfill three important

Figure 5.1:  Structures of commonly used acceptors and donors for high performance OE 

materials (CPDT: Q = C, Si or Ge). 

requirements when copolymerized with various acceptors.  First, they enforce backbone 

rigidity and planarity through their covalently-fused structures.  Free rotation is restricted 

between the fused thiophene units and the donor portion of the polymer is locked in a 

coplanar geometry.  Second, the placement of the alkyl side chains on the donor motif 
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Figure 5.2:  Example of a polymer containing the cyclopentadithiophene donor motif. 

 

minimizes steric interactions between the donor and acceptor units of the polymer, 

allowing for full conjugation between the donor and acceptor units (figure 5.2).  Finally, 

the weak electron-donating nature of side chains allows reasonably deep HOMO energy 

levels to be achieved.  The desirable consequences of this design tends to be small 

HOMO-LUMO energy gaps,  satisfactorily deep HOMO energy levels and highly soluble 

polymers, all of which are beneficial to overall device performance.
23  

 

5. 1. 2 Alkyl Chain Position in PATs and D-A Polymers 

Early work on PATs with non-fused backbones showed that the most beneficial 

placement for the alkyl chains was in the head-to-tail (HT) position.
161

  This placement of 

alkyl side chains minimizes the steric repulsion between the adjacent monomer units in 

thiophene homopolymers, resulting in minimal backbone twisting as illustrated by 

structure A in figure 5.3.  This, approach, however, is not applicable to D-A copolymers; 

large steric interactions are introduced between the alkylated-thiophene rings and the 

acceptor units, causing twisting of the polymer backbone as illustrated by structure B in 
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figure 5.3.  To overcome this drawback in D-A systems, insertion of unsubstituted spacer 

groups within the polymer backbones (C) has been applied to reduce twisting of the 
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Figure 5.3:  HT-P3HT (A), HT bithiophene motif in a D-A polymer (B) and D-A 

polymer with spacer groups (C) 

 

adjacent units.
18

  This approach, however, has two deleterious consequences.  First, the 

solubility of these polymers will likely be reduced due to a smaller fraction of side chains 

per repeat unit.  This can lead to precipitation of the polymers from the reaction medium 

during synthesis and low molecular weights.  Additionally, reduced solubility makes 

processing these polymers into devices more difficult.  Second, dilution of the acceptor 

units within the polymer backbone has consequences on the FMO energies of the 

resulting polymers.  Koch and coworkers have shown that insertion of an increasing 

percentage of tetrafluorobenzene units in the backbone of polythiophenes increases the IP 

of the resulting polymers as a function of the percentage of TFB added.
19 

 As stated in 
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Chapter One, polymers possessing high IPs can possibly lead to materials with increased 

ambient stability and higher VOC in devices.   

5. 1. 3 Head-to-Head Coupled Bithiopehene Donor Units 

Our group is one of the few interested in head-to-head (HH) coupled bithiophene 

donor units in our conjugated polymers (figure 5.4).  This motif removes the need for the 

use of “spacer” groups within the polymer backbone between donor and acceptor groups 

to maintain conjugation.  However, the presence of the adjacent alkyl groups on the 

adjacent thiophene rings generally causes large repulsion and twisting within the 

bithiophene donor unit, resulting in loss of conjugation throughout the polymer 

backbone. 

N
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R

OO

R

R

Minimal repulsion

Large repulsion

 
 

Figure 5.4:  D-A polymer with HH bithiophene linkages. 

 

It has been shown that in the special case of using tetrafluorobenzene acceptors, long 

range order was not disturbed by the presence of HH-dialkyl donor units and the HOMO 

energy levels of the polymers were very deep.
122

  However, when this donor motif was 

used with nearly any other electron acceptors, as shown in Chapters One and Four, the 

polymers were usually amorphous and lacked long range order, presumably due to 

sterically driven backbone twisting from the 3,3’alkyl-subsitiuted linkages.  Following 
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these observations the use of 3,3’-ROT2 was adopted; these donor monomers form 

attractive S··O interactions and enforce coplanarity of the adjacent thiophene units
36,162

 

rather than causing steric twisting of the polymer backbones as discussed in Chapter One.  

Polymers containing this donor unit have been reported to have some very attractive 

features such as low optical energy gaps, high degrees of intermolecular ordering, and in 

some cases high charge carrier mobility.
61,113

  It has become apparent however, that this 

design has one major drawback.  The strong electron donating nature of the alkoxy 

groups attached to thiophene backbone, and/or the enforcement of coplanarity by 

attractive S···O interactions leads to polymers with HOMO energies that are below the 

ambient stability threshold.  Electrochemical measurements as well as long term device 

instability
113

 have clearly demonstrated this point.   

5. 1. 4 Proposal for Using Alkyne Spacer Units 

 The above observations led to the realization that a new donor motif was needed 

for incorporation into our D-A copolymers.  Ideally, a suitable donor would retain the 

attractive properties of the 3,3’-ROT2 donor units when copolymerized such as low Eg 

and allow close π-stacking of polymer backbones and simultaneously increase air 

stability and VOC in device performance.  To this end a series of 3,3’-dialkynyl-2,2’-

bithiophene donor monomers was developed to achieve this purpose (figure 5.5).  

 This motif will allow a coplanar backbone to be achieved by reducing steric 

interactions between the alkyl chains on the adjacent thiophene units.  Additionally, the 

HH linkages will result in minimal steric interactions between bithiophene donor units 

and adjacent acceptor units, without the use of a spacer in the polymer backbone.  

Finally, the alkynyl linkages will not act as strong electron donors into the π-system.   
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Figure 5.5:  3,3’-dialkoxy- and 3,3’-dialkynyl-2,2’-bithiophene motifs. 

 

All of these factors together should produce polymers with relatively coplanar backbones 

and deep HOMO energy levels. 

5. 1. 5 Literature Precedents  

 Indeed, some work based on this idea has already been performed by Yamaoto 

and co-workers.  They were the first to prepare a copolymer of 3-(dodec-1-yn-1-

yl)thiophene with 1,4-bis-dodecyloxy benzene via Suzuki coupling and compare the 

polymer with its alkylated counterpart (figure 5.6, D and F).
 163

  In-depth studies of the 

optical and electronic properties were not performed but both solution and solid state 

absorption maxima for polymer D were red-shifted relative to polymer F by greater than 

80 nm.  By comparison, the absorption maximum of the unsubstituted-thiophene based 

polymer E lies in middle of D and F, with max at 486 nm.
164

  The absorption profile of 

the alkynylated-polymer D also showed a bathochromic shift of max of greater than 60 

nm upon going from solution to thin-film with the appearance of fine structure.  These 

observations suggest the polymers were not greatly aggregating in solution and  
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Figure 5.6:  Structures and listed thin-film absorption maxima of alkylated (F),
163

 

alkynylated (D),
163

 and unsubstituted (E)
164

 polymers. 

 

planarization of the polymer  backbone was occurring in the solid state.
165

   

 They also synthesized the 3,3’-didodecynyl-2,2’-bithiophene homopolymer (G, 

figure 5.7) by palladium-catalyzed polycondensation with (SnBu3)2.
166

  The soluble 
 

fraction of the isolated polymer had fairly low number-average molecular weight of 4.4  

kDa, but nonetheless had a red-shifted film absorption maximum of 157 nm relative to  

HH-P3HT
166

 (Mn = 37 kDa) and was even slightly red-shifted relative to unsubstituted 

P3DDT
96

(structures I and H, respectively).  Furthermore, single crystal X-ray analysis of 

3,3’-didodecynyl-2,2’-bithiophene monomers showed the sp carbons of the alkynyl unit 

were coplanar with the thiophene ring, and a dihedral angle of only 1° was measured 

between the adjacent thiophene rings.
166  

 The monomer crystal structure alone, however, 

does not necessarily mean that the thiophene units will remain coplanar once 

incorporated into a polymer.  The evidence as a whole from the literature, including both  
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Figure 5.7:  Structures and thin-film absorbance maxima for HH-dialkynylated- (G),
 166

 

HH-alkylated- (I)
166

, and unsubstituted-(H)
96 

polythiophene polymers. 

 

the monomer crystal structure and the polymer UV-Vis data, however, suggested that 

these units likely to do remain coplanar once incorporated into polymers and warranted 

the synthesis of these materials. 

5. 1. 6 Purpose of This Project 

 The purpose of this project was to synthesize 3,3’-dialkynyl-2,2’-bithiophene 

units as donors for D-A polymers, using phthalimide as the acceptor unit.  The side chain 

length and branching pattern on the donor monomers were varied and the structure-

property relationships were studied using UV-Vis, electrochemical and WAXD analysis.  

Finally, comparisons are made of the new polymers with known similar phthalimide 

based polymers containing 3,3’-dialkyl-, 3,3’-dialkoxy- and unsubsitiuted 2,2’-

bithiophene donor units . 
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5. 2 Synthesis 

 Initially, I proposed that a large number of terminal alkynes could be synthesized 

from trimethylsilylacetylene (TMSA) using SN2 reactions with the appropriate alkyl 

halides.  Despite reports
167

 of 50% yields using BuLi as base and stoichiometric HMPT 

with stirring overnight, the reactions were very sluggish under these conditions.  

Increasing the temperature and changing from alkyl bromides to iodides did little to 

increase the reaction rate.  After 7 days only 20% conversion could be detected by GC-

MS and only 10% yield could be isolated after 1 week, even at elevated temperature.  An 

alternate route, shown in scheme 5.1 was then adopted to isolate the desired alkynes.  

Commercial alcohols were used to generate the corresponding aldehydes via Swern 

oxidation.
168 

  The aldehydes were converted to the final alkynes, 5-3, by standard Corey-

Fuchs methodology.
169

  With the alkynes in hand, Sonogashira coupling was attempted 

using common intermediate 1-15 following Yamamoto’s published procedure.
163  

The 

authors reported 80% yield after 24 h reaction time using identical substrates.  A complex 

mixture of products was obtained after work-up that could not be separated.    

Application of microwave heating and shorter reaction times did not circumvent the 

problems either.  Negishi methodology produced similar results.  Finally, a Kumada-type 

coupling was attempted using palladium as catalyst yielding the alkynylated bithiophenes 

5-4 in reasonable overall yields.  Lithiation and stannylation were to be carried out 
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Scheme 5.1: Synthesis of monomers.  Reagents and Conditions: i. a) oxalyl chloride, 

DMSO, DCM, -78 °C.  b) ROH.  c)  NEt3 -78 °C  rt.  ii. a) PPh3, CBr4, Zn dust, DCM,  

24h.  b) RCHO (0.5 eq) 5 h, rt.  iii. a)  BuLi, THF.  b)  NH4Cl (aq). iv) EtMgBr, THF, rt 

 50 °C, 2 h.  v)  Pd(PPh3)4, THF, 110 °C bath, sealed tube. vi) a)  BuLi, Et2O, -78 °C, 2 

h. b)  Me3SnCl/hexanes,  -78 °C  rt 4 h. 
 

under the conditions used for the donor monomers described in the previous chapters (3 

equivalents of BuLi followd by 3 equivalents Bu3SnCl).  Surprisingly, a complex mixture 

of products was obtained after work-up via 
1
H NMR.  Experience with the other 

bithiophene donor monomers has shown that reacting excess BuLi with the substrates and 
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quenching with excess Bu3SnCl gives complete conversion to product.   The only 

contaminate from these reactions is Bu4Sn produced from reaction of excess BuLi and 

Bu3SnCl as evidenced by NMR.  Precipitation of the salts from the crude reaction 

products of 5-5 with pentane followed by solvent evaporation and 
1
H NMR analysis 

provided a spectrum identical to that obtained after aqueous work-up.  Returning to the 

published procedure
163

 the solvent was changed to diethyl ether (Et2O) and 4 eq. of BuLi 

was used, still producing a mixture of products.   

To gain further insights to the reaction pathways small scale reactions were 

performed using both THF and Et2O as solvents, with both excess and stoichiometric 

amounts of BuLi from a freshly titrated bottle and trimethylsilyl chloride as anion 

trapping agent.  Figure 5.8 shows the GC traces of the extreme cases (4 eq. BuLi in THF 

and 2 eq. BuLi in Et2O).  Excess BuLi in either solvent produced isomeric products as 

well as tri-silylated products, the proportion being much lower in Et2O.  Even 

stoichiometric quantities of BuLi in THF led to isomeric mixtures of products.  Two 

equivalents of BuLi using Et2O as solvent produced the desired product after trapping 

with TMSCl as evidenced by GC-MS and NMR analysis.   
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Figure 5.8:  GC traces of the product mixture from 5-4 and 2 eq. of BuLi in Et2O (black) 

and 4 eq. of BuLi in THF (red) 

 

Finally, Bu3SnCl was replaced with Me3SnCl on this project to produce crystalline solids 

so recrystallization of these monomers could be used as purification.  Stille 

polymerizations were carried out under standard conditions to produce polymers with 

reasonably high molecular weights (table 5.1). 

 

 

 

 

 

 

 



118 

 

S
S

R2

R2

Me3Sn
SnMe3 Br

N

Br

R1

OO
+

Pd2dba3
P(o-Tol)3

THF
80 °C

S S

NO O

R2

R2

R1

 
 

 

S

S

N

C12H25

OO

C11H23

C11H23

S

S

N OO

C11H23

C11H23

C12H25

C10H21

S

S

N OO

C4H9

C4H9

C12H25

C10H21

S

S

N OO

C12H25

C10H21

C6H13

C4H9

C4H9
C6H13

5-P1 5-P2

5-P3 5-P4  
Scheme 5.2:  Polymerization reaction and structures of the polymers. 
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Table 5.1:  Yields, molecular weights and optical properties of the polymers. 

 Yield (%) Mn (kDa) 

[PDI] 

λmax 

soln
a
/film

b 

(nm) 

Eg (eV)
c
  λmax 

film/soln 

(nm) 

 

5-P1 

5-P2 

66 

67 

75 [3.58]
 

101 [3.61] 

494/520 

492/524 

2.07 

2.06 

26 

32 

5-P3 8
d

 30.1 [5.51] 491/527 2.01 36 

5-P4 75 95 [3.45] 478/514 2.16 36 

a
 10

-5
 M in chloroform  

b
 Spin-coated from 1 mg/mL chlorobenzene solutions and 

thermally annealed.  
c
Estimated from the low-energy absorption edge of annealed thin 

films using E = 1240 eV· nm/
d
 Chloroform soluble fraction. 

 

5. 3 Optical Properties 

 Figure 5.9 shows the thin-film and solution absorption profiles the polymers.  The 

solution spectra are featureless with λmax values around 490 nm for all of the polymers.  

Small blue-shifts in λmax occur (table 5.1) as the steric bulk of the side chains increases.  

5-P1, carrying the smallest butyl alkyl-side chain attached to the alkyne spacer, has λmax 

located at 494 nm.  Increasing the alkyl chain length on the alkynyl units to undecyl, 5-

P2, only causes a small blue-shift of 2 nm relative to 5-P1.  Changing the side chains on 

the phthalimide acceptor from branched N-2-decyltetradecyl to linear N-dodecyl (5-P2 to 

5-P3) induces a slightly larger blue-shift of 3 nm relative to 5-P1.  This subtle difference 

is likely due to the large differences in molecular weights of the polymers and solution 

aggregation effects.  Branching the alkyl chains on the donor units in the propargyl 

position in 5-P4 leads to the largest blue-shift of 16 nm relative to 5-P1.  This is likely 

due to the steric bulk of the side chains in close proximity to the polymer backbone, as 

well as increased solubility and reduced aggregation of the polymers in solution.  The 



120 

 

onset of absorption is nearly the same for all of the polymers in solution with the 

exception of 5-P4, suggesting that they all have similar same main chain conformations 

regardless of the side chain length used in this study.  The UV-Vis measurements suggest 

these polymers are relatively conjugated in solution, being red-shifted greater than 30 nm 

relative to rr-P3HT.
170

 

 

 
Figure 5.9:  Solution (top, 10

-5
 M CHCl3) and annealed thin-film (bottom) absorption 

spectra. 

 

 The thin-film absorption profiles show red-shifts in both max and the onset of 

absorption for all of the polymers, suggesting an increase in conjugation and ordering for 

the polymers upon going from solution to the solid state.  The magnitude of the 

absorption shifts is dependent on the size of the alkyl chains attached to the alkynyl 
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spacer.  Interestingly, the bulkier side chains produced greater red-shifts upon going from 

solution to the solid state (λmax film/soln, table 5.1).  These effects, however small, are 

likely a product of aggregation in solution; smaller shifts are observed for the less soluble 

polymers with shorter side chains due a larger fraction of strongly aggregated species in 

solution.  The absorption maxima in the solid state are similar for all of the polymers.  A 

slight decrease in the Eg for the polymers occurs as the steric bulk on both the donor and 

acceptors units decrease as shown in figure 5.9.  5-P1 and 5-P2 have a difference in the 

energy gap of only 0.01 eV, suggesting little impact of the length of the alkyl side chains 

attached to the alkynyl spacer on conjugation in the solid state.  There is however, a small 

shoulder present in 5-P1 that is absent in 5-P2 suggesting a higher degree of  solid state 

ordering for 5-P1.
171

  A larger difference is noticeable between 5-P1 and 5-P3.  The Eg 

for 5-P3 is the smallest of the series, 2.01 eV, with a small shoulder present at ~ 560 nm.  

The difference in the spectra for all of the polymers with regard to fine structure suggests 

that only the polymers with short, straight side chains are adopting ordered structures in 

the films (this will be examined further with WAXD below).  Similar observations on the 

degree of polymer ordering have been made for PATs of varying side chain lengths.
172

  

The relatively high energy max and large Eg values suggests that the polymers may be 

relatively coplanar such as rr-P3HT, however there are likely no strong D-A interactions 

between the monomer units such as for polymers in Chapter Three based on phthalimide 

with 3,3’-ROT2 donors. 
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5. 4 WAXD 

To gain a deeper understanding of the nature of the solid state ordering of these 

polymers, WAXD was measured.  The data showed a lack of long-range order for all of 

the polymers; indeed they are mostly amorphous.  Only the polymers with the short butyl 

chains on the bithiophene donor, 5-P1, and straight chains on the imide nitrogen and 

bithiophene unit, 5-P3, show weak diffractions.  Indeed, these are the only two polymers 

showing small shoulders in the absorption spectra of thin-films.  The π-stacking distances 

measured for 5-P1 and 5-P3  are 3.78 and 3.70 Å, respectively.  The weak diffractions 

from these materials suggest they are forming relatively disordered structures in the solid  

 
 

Figure 5.10:  WAXD of the dialkynyl polymers.  Arrows indicate the diffractions 

attributed to π-stacking. 

 

state.  The absorption spectra suggests that these materials are still relatively conjugated 

so it is likely that the absence of strong D-A interactions in these polymers does not 

provide a strong driving force for self-assembly in the solid state.  Therefore, the solid 

state behavior observed in the WAXD is solely is function of space filling and packing of 

the polymer side chains.  Only the materials with smallest and non-branched alkyl side 

chains can pack in a somewhat ordered fashion.  More details on the solid state behavior 

of these materials will be discussed below. 

 



123 

 

 

 

5. 5 Electrochemistry  

DPV results for the polymers are listed in table 5.2 and an FMO energy graph is 

provided in figure 5.11.  Interestingly, a correlation between the side chain length and 

FMO energies is observed.  Increasing the alkyl chain length from 4 carbons in 5-P1 to 

11 carbons in 5-P2 results in a ~ 0.1 eV decrease in EHOMO and ~ 0.15 eV decrease in 

ELUMO with a constant Eg.  5-P3, the only polymer containing straight chains on both the 

donor and acceptor units was found to have an EHOMO 0.1 eV shallower than 5-P1 and a 

lower optical energy gap by 0.6 eV.   Branching of the side chains in 5-P4 produces the 

deepest EHOMO of -5.89 eV of the group with an ELUMO similar to 5-P2. 

 

Table 5.2:  Electrochemical results for the polymers 

 EHOMO
 
(eV)

 a
 ELUMO (eV)

b 
Eg

c 

5-P1 

5-P2 

-5.64 ± 0.03 

-5.76 ± 0.02 

-3.57 

-3.70 

2.07 

2.06 

5-P3 -5.54 ± 0.02 -3.53 2.01 

5-P4 -5.89 ± 0.06 -3.73 2.16 

a
DPV measurements of drop-cast thin-films versus Fc/Fc

+
.  

b
Estimated from ELUMO = 

EHOMO + Eg.  
c
Optical energy gap estimated from the absorption edge of thin-films 

annealed at 200 °C.   
 

 

The electrochemical results in combination with the UV-Vis and WAXD studies suggests 

that self-assemble these materials is quite sensitive to side chain length and branching, 

both on the imide nitrogen and alkynyl positions.  According to Roncali
25 

and as 

discussed in Chapter One,
 
the energy gap of conjugated polymers, hence the HOMO and 

LUMO energy levels depend on five factors:  bond length alteration, deviation of the 
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polymer backbone from planarity, electronic effects of the substituents, aromatic 

resonance energy, and intermolecular (chain) coupling the solid state.  The first four 

“terms” should be the same within this series of polymers, identical aromatic cores were 

used and the environment in the immediate vicinity of the conjugated backbones is 

similar due to the alkynyl spacers.  The similar solution absorption profiles further 

support this for polymers 5-P1 through 5-P3.  Branching the alkyl chains in 5-P4 likely 

results in backbone twisting and a relative blue-shift in the solution absorption profile.  

Therefore, the origin of the electrochemical differences is likely intermolecular; 

 

 
 

Figure 5.11:  FMO energy graph of the polymers as a function of increasing steric bulk. 

 

 

stronger interchain coupling in the solid state occurs only with those polymers carrying 

smaller side chains due to space filling demands, as evidenced by lower FMO energies 

and by the absorption spectra.  WAXD further supports this conclusion.  The only 

polymers with discernable diffractions are 5-P1 and 5-P3, the materials with least 
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sterically demanding side chains.  As the bulkiness of the side chains increases in 5-P2 

and 5-P4 WAXD diffractions are not observed, fine structure in the absorption profiles 

disappear and the FMO energies decrease. 

5. 6 Comparison of the “Spacer” Groups Used in Bithiophene Donor Units

5. 6. 1 Polymer Structures Compared in This Study 

The goal of synthesizing these monomers was to find a suitable replacement for 

dialkoxy- and dialkyl-bithiophene donors.  The following section discusses the influence 

of the side chains of the donor monomers using phthalimide acceptor monomers.  It is 

noted here that the structures (figure 5.12) are very similar, but slightly vary in the chain 

lengths on the N-imide nitrogen atoms. However, we have found that the length of the 

branched chains on the N-imide positions does not greatly affect the absorption profiles 

and oxidation potentials of these polymers.  These factors are mainly dependant on 

backbone torsion and electronic properties of the donors.  Polymer 5-P2 will be used for 

comparison throughout this section due to the similarity of its alkynyl side chain length 

with the other polymers shown in figure 5.12. 
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Figure 5.12:  Structures of the polymers in discussion.  P-TH and P-TR are unpublished 

materials that were synthesized and studied in our lab by Xugang Guo. 

5. 6. 2 Optical Properties 

The thin-film absorption maximum for 5-P2 is red-shifted relative to P-TR by > 

110 nm and even slightly red-shifted by 6 nm relative to P-TH.  Figure 5.13 shows the 

thin-film absorption profiles for the polymers.  The large blue-shift for P-TR of  > 110 

nm relative to 5-P2 and P-TH clearly shows the effects of the HH-dialkyl units and the 

loss of conjugation in this polymer.  A well defined shoulder, present for P-TH is absent 

for both P-TR and 5-P2.  It is noted, however, that the absorption profiles for the films of 

5-P2 and P-TH are nearly the same regarding the max
 
values, peak widths and energy 
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Figure 5.13: Comparison of annealed thin-film absorption profiles for phthalimide based 

polymers with donors of varying strength. 

 

 gaps.  This implies that the effective conjugation for 5-P2 is not disrupted by the 

presence of the alkynyl spacers between the alkyl side chains.  Comparing 5-P2 relative 

to P-TOR, a large blue-shift in both max and Eg is observed.  This is due to the absence 

of strongly electron donating side chains and/or attractive  S···O interactions. 

  

5. 6. 3 Electrochemistry 

The estimated FMO energies for the polymers are listed in table 5.3.  5-P2 and P-

TR have similar HOMO energies of -5.76 and -5.78 eV, respectively, compared to 

unsubstituted P-TH with an EHOMO of -5.64 eV.  The UV-Vis data shows that 5-P2 and 

P-TH each have an Eg of ~ 2.01 eV and that P-TR is a twisted species with a 0.4 eV 
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larger energy gap than 5-P2 and P-TH.  The similar optical energy gaps and thin-film 

absorption profiles of 5-P2 and P-TH suggests that these materials have the same  

 

Table 5.3:  Electrochemical results for polymers with various donor side chains. 

 EHOMO (eV)
a
 ELUMO (eV)

b
 Eg (eV)

c
 

5-P2 

P-TH 

-5.76 

-5.64 

-3.74 

-3.63 

2.02 

2.01 

P-TR -5.78
d
 -3.37 2.41 

P-TOR -5.12 -3.43 1.69 

a
DPV measurements of drop cast thin-films versus Fc/Fc

+
.  

b
Estimated from ELUMO = 

EHOMO + Eg.  
c
Optical energy gap estimated from the absorption edge of thin-films 

annealed at 200 °C.  
c
Measured by CV. 

 

relative conjugation.  The electrochemical data shows that 5-P2 has both a deeper EHOMO 

and ELUMO than P-TH by ~ 0.1 eV, suggesting that the alkynyl donors are in fact not 

acting as donors at all relative to hydrogen, rather then, acceptors.  However, recalling the 

side chain length dependence on the FMO energies for the alkynyl polymers (figure 

5.11), comparison of P-TH and shorter chain 5-P1, shows that their FMO energies are 

nearly the same.  If the alkynyl linkages were indeed acting purely as acceptors (relative 

to hydrogen) with all other factors being equal, a relative decrease for the FMO energies 

should be observed with 5-P1 as well.  This again suggests that the variation in FMO 

energies is purely a manifestation of solid state effects.  Comparing with P-TOR, a large 

difference in FMO values are observed, again highlighting the effects of the electron 

donating oxygen atom attached to the polymer backbone. 
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5. 6. 4 WAXD  

The WAXD for the four polymers discussed above is shown in figure 5.14.  As 

can be seen for 5-P2 and as was discussed above, intense diffractions are absent.  This 

gives rise to a similar WAXD profile as that for the alkylated polymer, P-TR.  The UV-

Vis data suggests the length of conjugation for 5-P2 and P-TH are similar. If the 

complete lack of any D-A interactions alone is to blame for the lack of order in 5-P2 then  

 

 
 

Figure 5.14:  WAXD of polymers with varying donor side chain motifs.  P-TH and P-

TR were measured by Xugang Guo (unpublished).  Arrows indicate the diffractions 

attributed to π-stacking.  

 

it is reasonable to expect a WAXD pattern similar to that of P-TH.  As can be seen in 

figure 5.14 however, this is not the case.  This suggests that the lack of solid state 

ordering is due to presence of the alkyl chains attached to the alkynyl spacer.  Indeed the 

diffractions attributable to π-stacking are more intense for the short chain alkynyl 

polymers  5-P1 and 5-P3.  Finally, P-TOR produces the most structured patterns of the 

series with π-stacking distance of 3.8 Å.  This is likely a combination of enforced 

backbone coplanarity due to S···O interactions and strong D-A interactions within the 

polymer backbone, producing a strong driving force for self organization. 
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5. 7 Conclusions

3,3’-Dialkynyl-2-2’-bithiophene donor units were successfully synthesized and 

copolymerized with phthalimide acceptor units.  The initial goals of retaining a coplanar 

polymer backbone while decreasing HOMO energies relative to vacuum were achieved 

with the new donor.  Conjugation within the polymer backbone does not appear to be 

disrupted by the HH-linkages in these polymers; a stark contrast to what is generally 

observed with HH-dialkyl bithiophene containing polymers as seen in Chapters 1 and 4.  

The optical properties for this particular class of phthalimide-based material are similar to 

those of unsubstituted bithiophene donor units.  Both HOMO and LUMO energies are 

decreased by ~0.1 eV relative to the bithiophene based polymer, implying an electron 

withdrawing effect of the alkyl linkages relative to hydrogen.  Finally, these materials 

lacked long range order as evidenced by WAXD measurements.  Apparently, the side 

chains, while not destroying conjugation of adjacent monomer units, do not allow long 

range registry of the polymers in the solid state and would likely be detrimental in OE 

applications. 

Copyright © Mark J. Seger 2013 
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6. 1 Summary

The field of OE has witnessed impressive growth over the past five years due to advances 

in materials chemistry, materials science, and device engineering.  The major goal of this 

research was to further this technology by contributing novel polymers to this field. 

Cyanoarene acceptor units were synthesized and shown to produce D-A polymers with 

FMO energy levels sufficient for p-type operation.  FMO energy levels were found to be 

dependant on the type of aromatic core that the cyano-groups were attached to.  

Cyanobenzene-based polymers had deeper HOMO energy levels and larger energy gaps 

than cyanothiophene-based polymers in agreement with Roncali’s Eg model presented in 

Chapter One. 

Branched side chains on 3,3’-ROT2 donor units were shown to effectively 

increase the solubility for phthalimide-based polymers relative to 3,3’-ROT2 donors 

carrying non-branched side chains.  The HOMO energy levels for the branched chain 

polymers were also deeper relative to polymers with non-branched side chains on the 

donor units, suggesting that they may produce devices with greater performance in OPV 

applications.  Spin-coating polymer films from a wide range of solvents and SVA 

experiments showed that the solid state behavior of two of these polymers can be 

controlled simply by spin-coating from “marginal” solvents or annealing the films for 

prolonged periods with the casting solvents.  Additionally, a novel, fluorinated 

phthalimide acceptor unit was synthesized and used for polymerization with a 3,3’-ROT2 

unit.  The resulting copolymer was found to have identical HOMO energies then the non-

fluorinated polymers and a larger Eg. 

Chapter Six:  Summary and Future Outlook 
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 Novel indanedione functionalized D-A polymers were reported for the first time 

in Chapter Four.  An alternative route to produce the key precursor to phthalimide and 

indanedione acceptors, 3,6-dibromophthalic anhydride, was also devised.  The polymers 

in Chapter Four were shown to achieve long ranger order despite the presence of 

orthogonal side chains within the polymer backbone.  HOMO energies relative to 

phthalimide-based D-A polymers were not greatly affected by incorporation of this unit 

into the polymer backbones.  The Eg and LUMO energies for these polymers were found 

to decrease slightly relative to polymers containing identical donors with phthalimide-

based acceptors. 

 In Chapter Five 3,3’-dialkynyl-2,2’-bithiophene units were reported and 

copolymerized with phthalimide acceptors.  Copolymerization with this unit produced 

materials that had similar properties to polymers containing unsubstituted bithiophene 

donors.  Additionally, it was found that properties of these polymers were very sensitive 

to the side chain length of the alkyl units attached to the alkyne spacer.   

 

6. 2 Outlook 

 The obvious next-step for these materials is device testing and device 

optimization.  Many of the cyanoarene polymers presented in Chapter One possessed the 

appropriate FMO energy levels and favorable solid state ordering (by WAXD) for device 

operation.  The decreased HOMO energies and increased solubility for the polymers in 

Chapter Three based on branched chain 3,3’-ROT2 units suggests that they may display 

increased OPV performance in relative to PhBT-12.  There is much room for further 

expansion of the indanedione-based polymers.   WAXD and UV-Vis spectroscopy 
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suggests that these materials display good long-range order.  A derivative of fluorene-

based polymers based on a 9-alkylidene-9H-fluorene unit has been reported in the 

literature and is shown (6-P1) in figure 6.1.
180

  The authors found that the alkylidene-

based polymer produced OPVs with PCE twice as high as the analogous fluorene-based 

polymer.  Furthermore, they found that 6-P1 possessed higher crystallinity than 6-P2, 

resulting in higher charge carrier mobility, and lower Eg.  Therefore, it would be 

reasonable to expect that moving the branching position farther away from the polymer 

backbones would impart similar      

 

Figure 6.1:  Structures and PCEs of alkylidene- and alkyl-fluorene-containing 

polymers.
180 

 

improvements in the indanedione-based polymers.  I have synthesized two alkylidene-

dione based acceptor monomers, shown in scheme 6.1.  Copolymerization of the  
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Scheme 6.1:  Synthesis of alkylidene-dione acceptor monomers. 
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monomers with the branched chain 3,3’-ROT2 donors used in Chapters Three and Four 

will produce polymers 6-P3 and 6-P4.  The properties of these polymers, including 

device performance, can then be compared with the materials in Chapter Four and the 

function of the orthogonal side chains on the indanedione motif can be further studied. 

 

 
 

Figure 6.2: Proposed alkylidene-indanedione-based polymers. 

 

 The indanedione acceptors can also be functionalized with electron withdrawing 

groups to produce polymers with deeper FMO energy levels and possibly n-type OTFT 

properties.  2-Dicyanomethyleneindane-1,3-dione is a known compound and its synthesis 

has been reported in the literature.
175-177

  The proposed synthesis of di-brominated 2-

dicyanomethyleneindane-1,3-dione is shown in scheme 6.2.  Direct bromination of the 

phenyl ring of ninhydrin to produce 6-4 would likely not occur without decomposition of 

indanedione moiety.  Therefore, this synthesis begins with the di-brominated indanedione 

derivative as described in Chapter Four.  A similar synthesis reported in the literature to 

produce 5-bromo-ninhydrin will then produce 6-4.
178

  Finally Knoevengal reaction with 

malonitrile will produce the final monomer 6-5.
179

  Polymers based on this acceptor will 

likely suffer from poor solubility as did the  cyanoarene polymers in Chapter One.  



135 

 

Therefore, it will be necessary to copolymerize this unit with donors that have large 

branched side chains.   
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Scheme 6.2:  Proposed synthesis of the brominated 2-Dicyanomethyleneindane-1,3-

dione monomer. 

 

It is possible that the dicyanomethylene moiety in 6-5 will not be chemically inert during 

polymerization reactions.  Small molecule studies on the Stille reaction of monomer 6-5 

with aromatic bromides, complete with careful product characterization will be necessary 

before polymerization.  Nevertheless, the potential reactivity of 6-5 could provide a 

synthetic handle for further functionalization of the monomer before polymerization (see 

references 183 and 184 for examples of this reactivity).
 

 Finally, fluorination of the indanedione moiety may also be achieved to lower 

FMO energy levels and serve to increase self ordering.  A brominated 

difluorodioxocyclopenta-[c]thiophene has been reported in the literature, the reaction is 

shown in scheme 6.3.  Fluorination of the indanedione can be achieved in a similar 

manner, using an electrophilic source of fluorine, either N-fluoro-6-

(trifluoromethyl)pyridinium-2-sulfonate (MEC-O4B)
181

 or Selectfluor
®182

. 



136 

 

S BrBr

O O

S BrBr

O O

F F

MEC-O4B

EtOAc

84%

S O

O

Selectfluor

TBAH

THF

S O

O

F

F
77%  

 

Scheme 6.3:  Synthesis of fluorinated thiophene-dione derivatives reported in the 

literature.
181,182 

 

The resulting acceptor unit may then be copolymerized with a variety of donor units for 

the fabrication of n-type OFET materials. 
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Scheme 6.4:  Proposed synthesis of fluorinated indanedione acceptor. 
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Chapter Seven:  Experimental Details 

7. 1 General Experimental Details

All solvents used for synthesis were distilled from appropriate drying agents and stored 

under N2 over molecular sieves.  THF was freshly distilled from Na/K alloy before use.  

n-butyllithium was purchased from Acros as a 2.5 M solution in hexanes.  Anhydrous 

DMF was purchased from Acros and used for all reactions without further purification.  

All other materials were used as purchased unless otherwise stated.  All reactions were 

carried out in oven dried glassware under N2 atmosphere using standard Schlenk 

techniques unless otherwise stated.  
1
H and 

13
C NMR spectra were recorded on a Varian

INOVA 400 MHz spectrometer (purchased under the CRIF program of the National 

Science Foundation, grant CHE-9974810) and referenced to residual protio-solvent 

signals.  Relative molecular weight determinations of polymers were made at room 

temperature with THF as eluent at a flow rate of 1 mL/min using a Waters 600E HPLC 

system, driven by Waters Empower Software and equipped with two linear mixed-bed 

GPC columns (American Polymer Standards Corporation, AM Gel Linear/15) in series. 

Eluting polymers were detected with both refractive index and photodiode array 

detectors. The system was calibrated with 11 narrow PDI polystyrene samples in the 

range of 580 - 2 x10
6
 Da. GC-MS data were collected from an Agilent Technologies

6890N GC with 5973 MSD.   

Polymer melting points are reported as the endothermic maxima of 1
st
 order transitions

measured by differential scanning calorimetry using a Mettler 822
e
 DSC, with a heating

rate of 10 ºC/min, under nitrogen.  Differential pulsed voltammograms were collected on 

a BAS 100 B/W electrochemical analyzer.  A three electrode setup using a platinum 
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button working electrode, platinum wire counter electrode and silver wire reference 

electrode was used and referened to Fc/Fc
+
.  Thin-films were drop cast from 1 mg/mL 

toluene solutions and measured using 0.1 M tetra-n-butylammonium 

hexafluorophosphate as electrolyte in acetonitrile at a scan rate of 20 mV/s.  The 

electrolyte solution was thoroughly purged with N2 before all measurements.  UV-Vis 

spectra were collected on Varian Cary 1 UV-Visible spectrometer.  All of the final 3,3’-

dialkyl-, and 3,3’-dialkoxy-2,2’-bithiophene donor monomers were synthesized following 

published procedures.
61

 

 

7. 2 Synthetic Details for Chapter Two 

 

 

 

3,4-Dicyanothiophene  A solution of 3,4-dibromothiophene (15.00 g, 62.00 mmol) and 

CuCN (16.66 g, 186.0 mmol) in DMF (65 mL) was refluxed for 7 h.  The oil bath was 

cooled to 60 °C and a solution of FeCl3 (16.0 g) in 80 mL of 1.7 M HCl was added.  The 

reaction was cooled to room temperature after 1 h and filtered.  The filtrate was extracted 

with dichloromethane (5 x 100 mL) and the combined organic layers were washed with 

10% HCl (2 x 150 mL) and brine.  After drying over MgSO4 and evaporating the solvent 

under reduced pressure a yellow solid was obtained.  The crude product was filtered 

through a silica gel plug using dichloromethane as eluent followed by precipitation from 
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a minimum amount of dichloromethane into hexanes to yield 5.00 g (60%) of colorless 

solid.  
1
H NMR (CDCl3)  δ 8.14 (s, 2H).  

13
C NMR δ 141, 111, 120. 

 

 

 

3-Thiophenecarbonitrile  A solution of 3-bromothiophene (10.00 g, 63.30 mmol) and 

CuCN (8.24 g, 92.0 mmol) in DMF (15 mL) was heated to 170 °C for 7 h.  The flask was 

cooled to 60 °C and a solution of FeCl3 (16.0 g) in 80 mL of 1.7 M HCl was added.  The 

reaction was cooled to room temperature after 1 h and filtered.  The filtrate was extracted 

with dichloromethane (5 x 100 mL) and the combined organic layers were washed with 

10% HCl (2 x 150 mL) and brine.  After drying over MgSO4 and evaporating the solvent 

under reduced pressure a dark green liquid was obtained.  The crude product was 

chromatographed on silica gel using dichloromethane as eluent yielding 4.667 g (70%) 

colorless liquid.  
1
H NMR (CDCl3)  δ 7.93 (dd, 1 H), 7.42 (m, 1 H), 7.29 (dd, 1 H).  

13
C 

NMR δ 142, 135, 130, 111, 116. 

 

 

 

3,3’-Dicyano-2,2’-bithiophene   3,3’-Dibromo-2,2’-bithiophene (1.501 g, 4.629 mmol), 

CuCN (1.658 g, 18.51 mmol) and DMF (10 mL) were stirred at reflux under N2 

overnight.  After cooling to 60 °C a solution of 1.26 g FeCl3 in 24 mL of 1.7 M HCl was 



140 

 

added and the mixture was stirred for 1 h.  The solution was filtered and the filtrate was 

extracted with DCM (4 x 100 mL).  The combined organic layers were washed with 10% 

HCl, brine and concentrated to give 2.01 g yellow solid.  The crude product was 

chromatographed using DCM as eluent to give 1.07 g light yellow solid (87%).  
1
H NMR 

(CDC l3)  δ 7.51 (d, 2 H), 7.34 (d, 2 H).  
13

C NMR (CDCl3 100 MHz)  δ 141, 130, 128, 

114, 110.   

 

 

 

2,5-Dibromo-3,4-dicyanothiophene.  3,4-Dicyanothiophene (0.4293 g, 3.669 mmol), N-

bromosuccimide (1.6327 g 9.173 mmol) and trifluoroacetic acid (10 mL) were combined 

in a vacuum flask.  The mixture was stirred until homogeneous (~ 5 minutes) and sulfuric 

acid (2.5 mL, 18 M) was added drop wise.  After 5 h the reaction was quenched by slow 

addition of a saturated sodium bicarbonate solution.  DCM was added and the layers were 

separated.  The aqueous layer was extracted (3 x 25 mL) with DCM, dried over MgSO4 

and concentrated.  The resulting yellow solid was purified by vacuum sublimation (0.1 

torr, 120 °C) followed by recrystallization from ethanol yielding colorless needles, 0.516 

g (48 %).  
1
H NMR (CDCl3)  No proton observed.  

13
C NMR (CDCl3 100 MHz)  δ 125, 

116, 110. 
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2,5-Diiodo-3-thiophenecarbonitrile  This compound was prepared in the same manner 

as  3,6-diiodophthalonitrile (below).  The product was purified by silica gel 

chromatography using dichloromethane as eluent followed by recrystallization from 

ethanol (35%). 
1
H NMR (CDC l3)  7.20 (s).  

13
C NMR (CDCl3 100 MHz)  δ 139, 122, 

113, 90, 78. 

 

 

 

3,3’-Dicyano-5,5’-diiodo-2,2’-bithiophene  This compound was prepared in the same 

manner as  3,6-diiodophthalonitrile.  The product was recrystallized from DMSO four 

times.  The recrystallized solid was sonicated in THF for 15 minutes and collected by 

filtration to give yellow powder, 60%.  
1
H NMR (DMSO, 80 °C) δ 7.90.  Due the very 

poor solubility of this monomer in organic solvents 
13

C was not recorded. 

 

 

 

2,5-Dibromoterephthalic acid  To a refluxing solution of 2,5-dibromo-p-xylene (10.00 

g, 38.01 mmol) in pyridine (166 mL) was added a solution of potassium permanganate 

(40.46 g, 63.34 mmol) in water (110 mL).  The solution was stirred at reflux overnight 
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and cooled.  The resulting brown solid was collected on a Buchner funnel and washed 

with hot water.  The filtrate was filtered through a pad of celite and acidified with 6 M 

HCl.  A colorless solid was collected by filtration and added to a solution of 5.06 g KOH 

in 85 mL water.  The mixture was heated to reflux and 12.0 g KMnO4 in 175 mL of water 

was added.  After stirring overnight methanol was slowly added to the solution until the 

purple color disappeared.  The heterogeneous solution was filtered through a pad of 

Celite and concentrated to approximately 75 mL.  6 M HCl was added until the solution 

was acidic to pH paper and the colorless precipitate was collected by filtration.  The 

crude product was used without further purification (10.05 g, 82%).  

 

Br

Br

NH2

H2N O

O

Br

Br
CO2H

CO2H
 

 

2,5-Dibromoterephthalamide To a stirring solution of  2,5-dibromoterephthalic acid  

(5.00 g, 15.4 mmol), benzene (70 mL) and two drops of DMF was added oxalyl chloride 

(2.69 g, 21.2 mmol) in one portion. The mixture was refluxed for 2 h.  After cooling, 250 

mL of 3 M ammonium hydroxide was added to the solution in one portion and the 

resulting tan solid was collected by filtration, thoroughly washed with water, methanol 

and ether to yield 4.35 g, (88%.) of tan solid.  
1
H NMR (DMSO) δ 8.01 (s, 1 H), δ 7.72 

(s, 1H), δ 7.63 (s, 2H).  
13

C (DMSO) δ 167, 141, 133, 117. 
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2,5-Dibromoterephthalonitrile  2,5-Dibromoterephthalamide (0.2792 g, 0.8674 mmol) 

and P2O5 (0.4925 g, 3.470 mmol) were combined and thoroughly ground together under 

N2.  The solid mixture was heated to 140 °C for 2 h.  Ice water was carefully added and 

the aqueous layer was extracted with ethyl acetate (5 x 50 mL).  The combined organic 

layers were washed with brine, dried and evaporated to give a light yellow solid which 

was chromatographed on silica gel using a gradient elution (4:5 hexane/DCM  DCM).  

The light yellow solid was recrystallized from ethyl acetate to give colorless powder 

(0.1041 g, 42%).  
1
H NMR (dioxane) δ 8.23, (s, 1H).  

13
C NMR (dioxane 100 MHz)  δ 

142, 128, 125, 119. 

 

 

 

Benzene-1,2-dicarboxamide  Phthalimide (10.5 g, 71.2 mmol), concentrated ammonium 

hydroxide (40 mL) and absolute ethanol (25 mL) were combined and the heterogeneous 

solution was stirred overnight at room temperature.  The solid was collected by filtration 

and washed with equal volumes of ammonium hydroxide, water and ethanol.  The 
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colorless solid was dried and used without further purification, 9.80 g.  Due to poor 

solubility in all tested solvents analytical data were not collected. 

 

 

 

Phthalonitrile  Benzene-1,2-dicarboxamide  (9.80 g, 59.7 mmol) was suspended in 90 

mL DMF and thionyl chloride (8.71 mL) was added slowly at 0 °C .  The yellow 

homogenous solution was stirred for 30 minutes, allowed to warm to room temperature 

and then heated to 60 °C overnight.  The mixture was poured into 5% HCl (300 mL) to 

produce white precipitate that was collected on a Buchner funnel, washed with 5% HCl, 

water and methanol to give 7.20 g pure product (94%).  
1
H NMR (DMSO, 500 MHz) δ 

8.14, 7.90.  
13

C NMR (DMSO, 100 MHz) δ 140, 120, 115, 100. 

 

 

3,6-Diiodophthalonitrile 2,2’,6,6’-Tetramethylpiperidine (2.000 g, 14.16 mmol) was 

dissolved in 60 mL of THF and cooled to -78 °C.  BuLi (5.66 mL, 2.5 M) was added 

dropwise and the mixture was allowed to warm to room temperature and stirred for 1 h.  

After cooling to -78 °C, a  0.71 M solution of phthalonitrile in THF (10 mL total volume) 

was added slowly via cannula.  The green solution was stirred at this temperature for 1.5 

h.  A solution of I2 (3.95 g 15.72 mmol) in 12 mL THF was added in one portion and the 

mixture was stirred overnight reaching ambient temperature.  Water was added and the 
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aqueous layer was extracted with ether.  The organic extracts were combined and washed 

with 10 % HCl, water, aqueous sodium thiosulfate, water and finally brine.  After drying 

and removing the solvent under reduced pressure the crude tan solid was 

chromatographed using dichloromethane as eluent to give 1.90 g off yellow solid.  The 

product was further purified recrystallization from ethyl acetate to yield 0.650 g colorless 

solid (24%).  
1
H NMR (DMSO) δ 7.98.  

13
C NMR (DMSO 100 MHz)  δ 144, 124, 117, 

102. 

 

 

 

 

General Procedure for Polymerizations, Chapter Two 

The diaryl halide and tributyltin monomers were sequentially added to a vacuum flask 

(1:1 molar ratio).  The flask was evacuated and backfilled with N2 three times.  A mixture 

of Pd2(dba)3 and P(o-tol)3 was added (1:8 molar ratio, 0.03 eq Pd based on the 

monomers) and the mixture was pump-purged two additional times.  Freshly distilled 

THF was added via syringe to bring the monomers to a final concentration of 0.05 M.  

The flask was sealed and placed in an 80 °C oil bath.  After stirring for two days the 

mixture was cooled to room temperature and dripped into 100 mL of acetone containing 

5 mL of 12 M HCl.  The precipitated solids were stirred vigorously in the acidic acetone 

solution for 4 hours and poured into a Soxhlet thimble.  The solids were thoroughly 

washed with methanol in the thimble and dried under a stream of N2.  Sequential Soxhlet 
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extractions (24 h each) followed using acetone, hexanes and chloroform (the final solvent 

used for T2CN2DBT was chlorobenzene).  The soluble chloroform fraction was 

concentrated with a N2 stream to ~ 20 mL and precipitated into MeOH.  The polymers 

were collected by centrifugation and dried under reduced pressure.  
13

C spectra could not 

be recorded to the limited solubility and strong solution aggregation of the polymers. 
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TCN2DBT:  Purple solid.  89%.  
1
H NMR (C2D2Cl4 120 °C):  δ 7.61 (s, 2H) (end groups 

observed in aromatic region) 2.69 (t, 4H) 1.71 (m, 4H) 1.33 (m, 36 H) 0.94 (t, 6 H). 

 

TCN2BOBT:  Blue solid.  15% from the CHCl3 fraction, solid remained in the Soxhlet 

thimble.  
1
H NMR (C2D2Cl4 120 °C): 7.56-7.49 (br m, 2 H) 4.20-4.18 (br m, 4 H) 3.15 
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(br s, 2 H) 2.01 (br m, 4 H) 1.65-1.32 (br m, 32 H) 0.99-0.91 (br m, 12 H).  Note:  Poorly 

resolved spectra were obtained due to the insolubility of this polymer. 

 

TCNDBT: Orange solid.  89%. 
1
H NMR (C2D2Cl4 80 °C): δ 7.58 (s, 1H) 7.57 (s, 1H) 

7.30 (s, 1H) 2.66 (br m, 4H) 1.70 (br m, 4H) 1.40 (br m, 36 H)  0.95 (t, 6H). 

 

TCNOC14: Blue solid.  89% 
1
H NMR (C2D2Cl4 120 °C):  δ 7.47 (br s, 1H) 7.26 (br s, 

1H) 7.02 (br s, 1H) 4.27 (br m, 4H) 2.02 ((br m, 4H) 1.45 (br m, 44H) 0.95 (t, 6H). 

 

TCN2CPDT:  Purple solid.  90%.  
1
H NMR (C2D2Cl4 120 °C): δ 7.57 (s, 2H) 1.94 (br m, 

4 H) 1.20 (br m, 18H) 0.85 (t, 6 H). 

 

T2CN2DBT:  Red solid.  49%.  
1
H NMR (C2D2Cl4 120 °C): 7.40 (s, 2 H) 7.27 (s, 2H) 

2.66 (br m, 4 H) 1.70 (br m, 4 H) 1.36 (br m, 36 H) 0.96 (t, 6H). 

 

1,2-PhCN2DBT:  Orange solid.  92%.   
1
H NMR  (C2D2Cl4 rt):  δ 7.90 (s, 2 H) 7.73 (s, 2 

H) 2.75 (t, 4 H) 1.76 (m, 4 H) 1.35 (br m, 36 H) 0.95 (t, 6 H). 

 

1,2-PhCN2BOBT:  Purple solid.  91%.  
1
H NMR  (C2D2Cl4 120 °C): δ 7.87 (s, 2 H) 7.74 

(s, 2 H) 4.27 (d, 4 H) 2.05 (m, 2 H) 1.71-1.40 (br m, 32 H) 1.02-0.95 (br m, 12 H). 

 

1,4-PhCN2DBT: Orange solid  92%.  
1
H NMR (CDCl3 rt):  7.99 (s, 2H) 7.66 (s, 2H) 2.62 

(t, 4H) 1.53 (m, 4H) 1.22 (br m, 4H) 1.22 (br m, 36H) 0.86 (t, 6H). 
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1,4-PhCN2BOBT: Blue solid.  61%.  8.05 (s, 2H) 7.60 (s, 2H) 2.62 (t, 4H) 1.53 (m, 4H) 

1.22 (br m, 4H) 1.22 (br m, 32H) 0.86 (br m, 12 H). 

 

 

 

7. 3 Synthetic Details for Chapter Three 

 

O OO

N

N
O

O

Br

Br

O OO

BrBr
+

 

 

3,6-Dibromophthalimide - alternate procedure  Phthalic anhydride (25.0 g, 169 mmol) 

was dissolved in concentrated sulfuric acid (100 mL) in a 500 mL flask open to air.  1,3-

dibromo-5,5-dimethylhydantoin was added portion wise over 30 min (1 eq.).  The 

reaction mixture was stirred at 60 °C overnight.  A colorless precipitate formed.  After 

cooling to room temperature 300 mL of DCM was added and the solids dissolved.  The 

layers were separated and the H2SO4 phase was extracted with DCM (5 x 175 mL).  Solid 

NaHCO3 (5 g) was added portion-wise to the DCM layer with vigorous stirring.  After 

bubbling ceased the solution was transferred to a separatory funnel and water was slowly 

added.  After bubbling ceased the phases were separated and the organic layer was 

washed with water (3 x 100 mL), dried and evaporated.  A colorless solid was obtained 

that was recrystallized from AcOH twice to give 13.33 g of colorless product, 26%. 
1
H 

NMR (CDCl3) δ 7.80 (s), 
13

C NMR (CDCl3) δ 160, 140, 130, 120. 
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BrBr

F F

CNNC

F F  

 

1,2-Difluoro-o-phthalonitrile  1,2-Dibromo-4,5-difluorobenzene (5.44 g, 20.0 mmol) 

was dissolved in anhydrous DMAc (15 mL) and N2 was bubbled into the solution for 15 

minutes.  The solution was placed in a 100 °C preheated oil bath and Pd2dba3 (366 mg, 

0.4 mmol) and DPPF (300 mg, 0.5 mmol) were added in one portion.  Zn(CN)2 was 

added in ~ 550 mg portions every 30 minutes (2.82 g, 24 mmol total).  The solution was 

stirred overnight.  The solvent was removed under vacuum and the residue was diluted in 

EtOAc (50 mL).  The solids were removed by filtration and the mother liquor was 

washed with water (2 x 50 mL), brine and dried.  After evaporation of the solvent the 

solid was dissolved in DCM in filtered through a pad of silica gel.  Recrystallization from 

EtOH  followed by vacuum sublimation (0.9 torr, 100 °C) yielded 500 mg  yellow solid, 

15%.  
1
H NMR (CDCl3) δ 8.30 (m) 

 

CNNC

F F

CNNC

F F

II

 

4,5-Difluoro-3,6-diiodo-phthalonitrile  1,2-Difluoro-phthalonitrile (200 mg, 1.22 

mmol) and iodine (928 mg, 3.66 mmol) were stirred in DMF (1 mL) and a solution of 

freshly prepared lithium tert-butoxide in DMF (1.14 mL, 3.2 M) was added in one 

portion.  After the exothermic reaction cooled, the solution was placed in a 60 °C oil 
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bath.  The reaction was monitored by GC-MS and was complete after 1 h.  The solution 

was cooled to room temperature and poured into a saturated solution of sodium 

thiosulfate (20 mL).  The precipitated solid was collected by filtration and washed with 

water, followed by diethyl ether and dried under vacuum to yield 0.458 g tan solid, 91%.    

1
H NMR (DMSO) no proton observed.  

13
C NMR (DMSO) δ 155 (d), 151 (d), 122, 116.  

19
F (DMSO, CFCl3) δ -102. 

 

NC CN

F F

II

HO2C CO2H

F F

II

 

 

4,5-Difluoro-3,6-diiodo-phthalic acid  4,5-Difluoro-3,6-diiodo-phthalonitrile  (458 mg, 

1.10 mmol) and aqueous H2SO4 (70%, 5 mL) were heated to 150 °C in a sealed screw-

cap tube overnight.  The cooled solution was poured into ice water and extracted with 

dichloromethane (3 x 10 mL).  The combined organics were washed with water (until the 

aqueous layer was neutral to litmus), brine and then dried.  Evaporation of the solvent 

yielded 273 mg yellow solid that was used without further purification, 55%. 

 

HO2C CO2H

F F

II

F F

II

O OO

 

4,5-Difluoro-3,6-diiodophthalic anhydride  4,5-Difluoro-3,6-diiodo-phthalic acid 500 

mg, 1.10 mmol) and acetic anhydride (15 mL) were placed in a screw cap tube and 

sparged with N2 for 15 minutes.  The tube was sealed and placed in a 150 °C oil bath and 
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the mixture was stirred overnight.  The solution was cooled to room temperature and 

concentrated to ~ 50% of the original volume and cooled in an ice bath.  The precipitated 

solid was collected on a Buchner funnel, washed with ice cold acetic anhydride followed 

by a minimum amount of ice cold methanol and dried under vacuum.  The colorless solid 

was used without further purification, 450 mg, 93%. 

 

F F

II

O OO

F F

II

N OO

C12H25

 

N-dodecyl-4,5-difluoro-3,6-diiodo-phthalimide  4,5-Difluoro-3,6-diiodo-phthalic 

anhydride (270 mg, 0.062 mmol), N-dodecylamine (150 mg, 0.0809 mmol) and glacial 

acetic acid (10 mL) were combined in a round bottom flask and sparged with N2.  The 

mixture was refluxed for 6 h, cooled to room temperature and the solid precipitate was 

collected by filtration and washed with acetic acid, then water.  The brown precipitate 

that formed in the mother liquor after the water wash was then also collected by filtration.  

The mother liquor was evaporated and TLC of the three crops showed nearly the same 

level of purity.  The three crops were combined and purified by column chromatography 

using 1:1 DCM/hexane as eluent.  170 mg of colorless solid was isolated, 45%.  
1
H NMR 

(CDCl3) δ 3.66, (t) 3 H, δ 1.64, (m) 2 H, δ1.29-1.22, (m) 18 H, δ 0.84, (t) 3 H. 
13

C NMR 

(CDCl3) δ 164, 154 (d), 152 (d), 130, 39, 32, 29.5-29.1, 28, 26, 23, 14.  
19

F (CDCl3, 

CFCl3) δ -107. 
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General Procedure for Polymerizations, Chapter Three  
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R
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The same synthetic procedure described for Chapter One was followed.  The polymers 

were precipitated from the reaction mixture into an acidic methanol solution instead of 

acetone.  The Soxhlet solvents for 3-P3a and 3-P2  were methanol, acetone, hexanes and 

chloroform.  Polymers 3-P1, 3-P3b and 3-3c were isolated from the hexane fraction with 

no solid left in the Soxhlet thimble. 

 

3-P1: Blue solid.  92%. (CDCl3, 50 °C):  8.00 (br s, 2 H),  7.82 (br s, 2 H),  4.22 ( br 

s, 4 H),  3.70 (br s, 2 H), 1.95 (br s, 2 H),  1.68 (br m, 4 H),  1.67-1.28 (br m, 44 H), 

 0.94-0.85 (br m, 18 H). 

 

3-P2: Blue solid.  85%.  
1
H NMR (C2D2Cl4 120 °C):   7.52 (s, 2 H),  4.30 ( br s, 4 H),  

3.71 (br s, 2 H),  2.00 (br s, 2 H),  1.65 (br s, 4 H),  1.32 (br m, 46 H)  0.92 (br m, 15 

H). 
19

F NMR (C2D2Cl4, CFCl3, 120 °C):  -126. 
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3-P3a: Blue solid.  81%.  
1
H NMR (C2D2Cl4 120 °C):  7.95-7.89 (br m, 4 H),  4.61 (br 

s, 2 H),  3.75 (br s, 2 H),  2.05 (br s, 2 H),  1.63 (br s, 4 H),  1.55-1.32 (br m, 30 H), 

 0.99-0.93 (br m, 9 H). 

 

3-P3b: Blue solid.  83%. 
1
H NMR (CDCl3 50 °C):  8.00 (br s, 2 H),  7.86 (br s, 2 H),  

4.43 (br s, 2 H),  3.71 (br s, 2 H),  1.92 (br s, 2 H),  1.80-1.56 (br m, 8 H),  1.40-1.27 

(br m, 32 H),  1.11 (br m, 8 H), 0.89 (br m, 12 H). 

 

3-P3c: Blue solid.  89%.  
1
H NMR (CDCl3 50 °C):  8.00 (br s, 2 H),  7.86 (br s, 2 H),  

4.48 (br s, 2 H),  3.71 (br s, 2 H),  1.94 (br s, 2 H),  1.80 (br s, 6 H),  1.59 (bs s, 12H)  

 1.40-1.28 (br m, 8 H),  1.02 (br m, 16 H),  0.91 (t, 6 H) 0.89 (m, 9 H). 

 

 

7. 4 Synthetic Details for Chapter Four 

 

BrBr

O OO

BrBr

OO

 

 

4,7-Dibromo-2H-indene-1,3-dione 2,5-Dibromophthalic anhydride (2.00 g, 6.54 mmol) 

was suspended in acetic anhydride (4 mL).  Triethylamine (2 mL) was added and the 

mixture became homogenous.  tert-butyl acetoacetate (0.141 g ,0.893 mmol) was added 

and the solution was stirred overnight.  Ice (1 g) and concentrated HCl (0.5 mL) was 
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added to the heterogeneous yellow suspension followed by 5 M HCl (5 mL).  After the 

exotherm subsided, the solution was heated to 70 °C until gas evolution ceased (~ 1 h).  

The aqueous phase was extracted with dichloromethane (4 x 10 mL).  The combined 

organic layers were washed with water until neutral to litmus, then brine.  After drying 

and concentrating, the product can be used without further purification.  If purification is 

required, the brown solid may be filtered through a silica gel plug using DCM as eluent 

(note: a color change occurs on the column, the product is not stable to SiO2 

chromatography).  The purple solid may be further purified by recrystallization from 

anhydrous, degassed acetonitrile to give green needles, 60 %. 
1
H NMR (DMSO) δ 7.94 

(s), 2 H, δ 3.41 (s), 2 H.  
13

C NMR (DMSO) δ 194, 159, 141, 116, 46. 

 

 

BrBr

OO

BrBr

OO
H3C CH3

 

 

4,7-Dibromo-2,2-dimethyl-2H-indene-1,3-dione   The potassium fluoride/celite reagent 

was prepared as follows:  Celite 545 was suspended in water (0.0581 g/mL) and poured 

into a solution of aqueous KF (0.116 g/mL, 1:1 final mass ratio, KF / Celite).  The 

mixture was gently stirred for 1 h and the solvent was removed on a rotory evaporator 

(note:  the solids were not completely dried to allow for easier manipulation of the 

reagent).  Acetonitrile was added (1.16 g KF-Celite mix/mL) and the suspension was 

briefly shaken.  The solid was collected on a Buchner funnel, washed with acetonitrile, 
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then finely ground with a mortar and pestle.  The reagent was dried under vacuum 

overnight. 

4,7-Dibromo-2H-indene-1,3-dione (0.200 g, 0.658 mmol), iodomethane (0.280 g ,1.97 

mmol) and acetonitrile (3 mL) were combined in a vacuum flask.  Under vigorous 

stirring the potassium fluoride/Celite reagent (0.41 g) was added; the flask was sealed and 

stirred at 50 °C for two days.  After cooling to room temperature the mixture was filtered 

through a pad of Celite and the mother liquor was concentrated under vacuum.  The 

golden solid was purified by column chromatography using 1:1 pentane/dichloromethane 

as eluent to yield light yellow solid, 63%.  
1
H NMR (CDCl3):  7.77 (s, 2H),  1.29 (s, 6 

H).  
13

C (CDCl3)   201, 141, 139, 119, 50, 21. 

 

BrBr

OO

BrBr

OO

C12H25C12H25

 

 

4,7-Dibromo-2,2-didodecyl-2H-indene-1,3-dione  This was prepared in an analogous 

fashion to 4,7-dibromo-2,2-dimethyl-2H-indene-1,3-dione, (SiO2, 1:3 DCM/hexane 

eluent), 56% yield.  
1
H NMR (CDCl3):  7.76 (s, 2H),  1.77 (m, 4H),  1.27 (m, 36 H),  

0.99 (m, 4 H)  0.85 (m, 6 H).  
13

C (CDCl3)  201, 143, 138, 120, 55, 33-30 (multiple), 

26, 25, 23, 14 

 

General Procedure for Polymerizations, Chapter Four 
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OO

BrBr
+ S

S SnBu3

Bu3Sn

R

R Pd2dba3, P(o-Tol)3

THF
80 °C

OO

*
S

S *

R

R

R R RR

The same synthetic procedure described for Chapter One was followed.  The polymers 

were precipitated from the reaction mixture into an acidic methanol solution instead of 

acetone.  The Soxhlet solvents for  4-P1 and 4-P2  were methanol, acetone, hexanes.  The 

same sequence of solvents was used for 4-P3, the final solvent was chloroform. 

4-P1: Blue solid. 88%. 
1
H NMR (CDCl3, 55 °C):  7.92 (br s, 2 H),  7.82 (br s, 2 H), 

4.21 (br s, 4 H),  1.94 (br s, 2 H),  1.66 (m, 4 H)  1.53-1.29 (br m 40 H),  0.92 (m, 6 

H),  0.84 (m 6 H). 

4-P2: Orange solid.  67%. 
1
H NMR (CDCl3, rt)  7.90 (d, 2H),  7.65 (d, 2 H),  2.68 (t,

4 H),  1.69 (m, 4 H)  1.45-1.23 (br m, 36 H),  0.85 (t, 6 H). 

4-P3: Red solid.  90%. 
1
H NMR (C2D2Cl4, 110 °C);  7.96 (br s, 2 H),  7.73 (br s, 2 H)

 7.40 (br s, 2 H),  1.87 (br m, 4 H) 1.29-1.26 (br m, 40 H),  0.91 (br m, 6 H). 
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R OH R O

H

General procedure for the oxidation of alcohols to aldehydes
6
 (all listed equivalents

based on the alcohol)  Freshly distilled dimethyl sulfoxide (2 eq.) was dissolved in DCM 

(0.4 M final concentration of DMSO) and placed in a – 78 °C bath.  Oxalyl chloride (1.05 

eq.) was added slowly via syringe (~0.1 mL/min).  The mixture was stirred for 30 

minutes and the alcohol was added slowly via addition funnel (~0.1 mL/min).  

Triethylamine (3 eq.) was added dropwise after stirring the mixture for 40 minutes.  The 

whole was stirred for 15 minutes and then removed from the cooling bath.  The mixture 

was stirred overnight.  1 M HCl was added and the aqueous layer was extracted with 

DCM.  The combined organics were washed with water, brine, dried and evaporated.  

The aldehydes were filtered through a plug of silica gel using hexanes as eluent and used 

without further purification. 

R O

H

R

H
Br

Br

R H

General procedure for the conversion of aldehydes to terminal alkynes
  
Zinc and 

CBr4 were purified before use as follows: CBr4 was dissolved in DCM (0.1 g/mL) and 

MgSO4 was added with stirring.  After 20 minutes the dessicant was filtered off and the 

solvent removed by rotary evaporation.  The solid was further dried under vacuum and 

quickly weighed in air before being transferring to the reaction flask.  

7.5 Synthetic Details for Chapter Five
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Zinc dust was activated by stirring in 10% HCl for ~ 3 minutes.  The liquid was decanted 

and the zinc was washed with water 3 times.  This process was repeated three times; after 

the final water wash the activated zinc was washed with THF three times and dried under 

vacuum. 

 

Dibromoolefin synthesis Purified zinc dust (2 eq.) and CBr4 (2 eq.) were dissolved in 

DCM (to a concentration of 0.36 M) and chilled to 0 °C.  Triphenylphosphine (2 eq.) 

dissolved in DCM (1.6 M solution) was added slowly through a dropping funnel.  The 

solution was stirred overnight and produced a pink solution with white precipitate.  The 

aldehyde was then added neat via syringe.  After 3 h pentane was added (4 x DCM by 

volume) and the white precipitate was filtered off.  The solvents were evaporated and the 

residue was dissolved in a minimum amount of DCM and precipitation was carried out 

again.  After filtration and evaporation of the solvent, the residue was dissolved in 

pentane and filtered through a silica gel plug yielding the dibromoolefin as clear oil 

which was used without further purification.   

 

R = C11H23 : 82 % 

R =  1-butyl-1-hexyl:  60 % 

 

Terminal alkyne synthesis The dibromoolefin was dissolved in THF (1.8 M solution) 

and the solution was cooled to – 78 °C.  BuLi (2.1 eq.) was added dropwise and the 

reaction was stirred for 1 h at – 78 °C.  The mixture was allowed to reach room 

temperature and stirred for 1 h.  Water was added to the solution and the aqueous phase 
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was extracted with diethyl ether three times.  The combined organics were washed with 

water once, brine, dried and evaporated to yield the terminal alkyne as clear oil that was 

used without further purification.   

R = C11H23:  98 % 

R = 1-butyl-1-hexyl:  93% 

 

 

RBrMg
S

S

Br

Br

+
S

S

R

R  

 

General procedure for coupling of alkynes to bithienyl dibromide.  Prepartion of 

alkynyl magnesium bromide reagents:  Neat bromoethane (distilled from CaH2, 0.3 mL) 

was added to Mg turnings (1.2 eq.) in THF (containing a small crystal of I2) to initiate the 

reaction.  If the I2 color remained the flask was heated with a heat gun.  The remaining 

bromoethane was then added dropwise as a solution in THF (1.8 M).  The reaction was 

heated to 60 °C for 1 h.  After cooling, the alkyne was added dropwise to the solution of 

the Grignard reagent.  Once gas evolution ceased the mixture was heated to reflux for 1 h.   

In a separate screw cap flask, 3,3’-dibromo-2,2’-bithiophene was dissolved in THF (0.08 

M) and the cooled Grignard reagent was transferred over via cannula.  N2 was bubbled 

into the mixture for 15 minutes and Pd(PPh3)4 was added.  The solution was sealed and 

placed in a 110 °C oil bath for 3 days.  After cooling, the reaction was quenched by the 
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addition of 5 % HCl and extracted with Et2O three times.  The combined organics were 

washed with water, brine, dried over MgSO4 and evaporated.  The products were purified 

by column chromatography followed by recrystallization as listed below. 

 

 

R = C4H9: SiO2, 7:1 hexanes/DCM EtOH recrystallization. 20 %  
1
H NMR (CDCl3) δ 

7.12 (d) 2 H, δ 7.01 (d) 2 H, δ 2.48 (t) 4 H, δ 1.60, (m) 4 H, δ 1.46, (m) 4 H, δ 0.89, (t) 

6H. 
13

C NMR (CDCl3) δ 137, 131, 123, 120, 97, 77 (resolved inside of the CDCl3 

resonances), 30, 22, 17, 18. 

 

R = C11H23: SiO2, hexanes, EtOH recrystallization 26 %.  
1
H NMR (CDCl3) δ 7.15 (d) 2 

H, δ 7.02 (d) 2 H, δ 2.48 (t) 4 H, δ 1.65, (m) 4 H, δ 1.46, (m) 4 H, δ 1.26, (m) 28 H, δ 

0.88, (t) 6 H. 
13

C NMR (CDCl3) δ 137, 130, 123, 120, 97, 77 (resolved inside of the 

CDCl3 resonances), 32, 29-28 (multiple) 23. 

 

R =  1-butyl-1-hexyl: SiO2, hexanes, EtOH recrystallization, 30 % 
1
H NMR (CDCl3) δ 

7.11 (d) 2 H, δ 7.01(d) 2 H, δ 2.58 (m) 2 H, δ 1.55, (m) 16 H, δ 1.28, (m) 16 H,  δ 0.88 

(m) 12 H. 
13

C NMR (CDCl3) δ 137, 131, 123, 120, 100, 77 (resolved inside of the CDCl3 

resonances), 35, 34, 33, 32, 30, 29, 28, 22, 14. 
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S

S

R

R

S

S

R

R

Me3Sn

SnMe3

 

 

General procedure for stannylation of the di-alkynyl monomers Freshly titrated BuLi 

(from N-benzylbenzamide,
185

 2.0 eq.) was added to a Schlenk flask and chilled to -40 °C.  

Diethyl ether was added to bring the final concentration of BuLi to 0.16 M.  In a separate 

flask, 3,3-dialkynyl-2,2’-bithiophene was dissolved in Et2O (0.13 M).  The monomer 

solution was slowly added to the BuLi solution dropwise at – 40 °C.  The mixture was 

stirred at this temperature for 15 minutes, then at room temperature for 1.5 h.  After 

cooling the reaction to – 40 °C, trimethyltin chloride (1.0 M in hexanes, 2.0 eq.) was 

added dropwise and the solution was stirred overnight.  Ice cold water was added and the 

organic layer was washed with water twice then brine.  After drying, the solvent was 

removed under reduced pressure at room temperature to yield colorless crystals.  The 

products were pure enough by 
1
H NMR to be used directly for polymerization but could 

be recrystallized from EtOH or a mixture of acetone and EtOH if necessary. 

 

R = C4H9: Recrystallized from EtOH, colorless crystals, 87 %.  
1
H NMR (CDCl3) δ 7.07 

(s), 2 H, δ 2.50 (t), 4 H, δ 1.66 (m) 4 H, δ 1.52 (m) 4 H, δ 0.95 (m) 6 H, δ 0.37 (m) 18 H.  

13
C NMR (CDCl3) δ 143, 139, 136, 121, 97, 31, 22, 20, 14, - 8. 
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R = C11H23: Evaporation of solvent after workup yielded 90 % light yellow crystals 
1
H 

NMR (CDCl3) δ 7.07 (s), 2 H, δ 2.49 (t), 4 H, δ 1.66 (m) 4 H, δ 147 (m) 4 H, δ 0.1.25 (m) 

29 H, δ 0.87 (m) 6 H δ0.37 (m) 18 H. 
13

C NMR (CDCl3) δ 143, 138, 136, 121, 97, 32, 

29.7-29.0 (multiple), 28, 23, 20, 14, -8. 

 

 

R =  1-butyl-1-hexyl: Recrystallized from acetone/EtOH , 88%.  
1
H NMR (CDCl3) δ 

7.07 (s), 2 H, δ 2.60 (t), 2 H, δ 1.58 (m) 4 H, δ 1.45 (m) 13 H, δ 1.28 (m), 13 H, δ 0.98 

(m) 6 H, δ 0.87, (m) 4 H, δ 0.37 (m) 18 H.  
13

C NMR (CDCl3) δ 143, 139, 135, 121, 100, 

78, 35-33 (multiple), 32, 30, 29, 28, 23, 14, -8. 

 

General Procedure for Polymerizations, Chapter Five 

 

N OO

BrBr
+ S

S SnBu3

Bu3Sn Pd2dba3, P(o-Tol)3

THF
80 °C

N OO

*
S

S *

R

R

R

R

R R

 

 

The same synthetic procedure described for Chapter One was followed.  The polymers 

were precipitated from the reaction mixture into an acidic methanol solution instead of 

acetone.  The Soxhlet solvents for 5-P1, 5-P2 and 5-P3 were methanol, acetone, hexanes, 

chloroform and chlorobenzene.  5-P4 was collected from the chloroform fraction.  Data 

reported below and in the text for 5-P3 are from the chloroform fraction. 
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5-P1:  Red solid.  66%. 
1
H NMR data, even at 130 °C, could not be collected due to the 

poor solubility/strong aggregration of this polymer. 

 

5-P2:  Red solid.  67%. 
1
H NMR (C2D2Cl4, 120 °C):  7.87-7.84 (br m, 4 H),  3.74 (m, 

2 H),  1.87 (m, 4 H),  1.77-1.57 (br m, 69 H),  0.90 (br m, 12 H).   

 

5-P3:  Red solid.  8%.  
1
H NMR (CDCl3, 50 °C):  7.87 (br s, 2 H),  7.54 (br s, 2 H),  

3.72 (bs s, 2 H),  2.66-2.58 (m, 4 H),  1.77 (br, s 8 H),  1.28 (br m, 48 H),  0.87 (br 

m, 9 H). 

 

5-P4:  Red solid.  75%. 
1
H NMR (CDCl3 50 °C):  7.86-7.82 (br m, 4 H),  3.63 (br m, 2 

H),  2.71 ( br m, 2 H),  1.98 (br m, 2 H),  1.63 ( br m, 8 H),  1.28 (br m, 61 H),  

0.89 (br m, 18 H). 
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7. 6 Polymer NMR for Chapter Two 
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7. 7 Polymer NMR for Chapter Three  
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7. 8 Polymer NMR for Chapter Four 

 

 

 

 

 
 

 

 



179 

 

 
 

 



180 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



181 

 

7. 9 Polymer NMR for Chapter Five 

 
%Contamination in C2D2Cl4 at ~ 2 ppm 
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