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ABSTRACT OF DISSERTATION 
 
 
 
 

DNA-BINDING SITE RECOGNITION  
BY  

bHLH AND MADS-DOMAIN TRANSCRIPTION FACTORS 
 

Herewithin, two transcription factor (TF) regulatory complexes were investigated.  A 
bHLH–MYB–WDR (BMW) DNA-binding complex from maize was the first complex to be 
studied.  R, a maize bHLH involved in the activation of genes in the anthocyanin 
pathway, had been characterized to indirectly bind DNA despite the presence of a 
functional DNA-binding domain.  Findings presented here reveal that this is only partially 
correct.  Direct DNA-binding by R was found to be dependent upon two distinct 
dimerization domains that function as a switch.  This switch-like mechanism allows R to 
be repurposed for the activation of promoters of differing cis-element structure.   
 
The second regulatory complex studied was of the Arabidopsis thaliana MIKC-MADS TF 
family.  For many TFs, DNA-binding site recognition is relatively straightforward and very 
sequence specific, while others exhibit relaxed sequence specificity.  MADS-domain TFs 
are one family of TFs with a wider range of cis-element sequences.  Though consensus 
cis-element sequences have been determined for various MADS-domains, correctly 
predicting and identifying biologically functional cis-elements has been a challenge.  In 
order to study the influence of nucleobase associations within the cis-element, a DNA-
Protein Interaction (DPI)-ELISA method was modified and optimized to screen a panel of 
specific probes.  Screening of the SEP3 homodimer against a panel of sequential, 
palindromic probes revealed that nucleobases in position -1:+1 of the CArG-box 
influence binding strength between the MADS-domain and DNA.  Additionally, the 
specificity of AGL15 towards CT-W6-AG forms was discovered to be determined by the 
functional groups present in the minor groove at position -4:+4 using inosine:cytosine 
(I:C) base pairs. 
 
Finally, the FLC–SVP MADS-domain heterodimer, bound to a native cis-element, was 
modeled and binding simulated using molecular dynamics.  In conjunction with 
simulations of AGL15 and SEP3 homodimers, a potential binding mechanism was 
identified for this unique heterodimer.  DNA sequence recognition by the MADS-domain 
was found to occur asymmetrically.  In the case of the FLC–SVP heterodimer, the 
direction of asymmetrical DNA-binding in heterodimers was found to be fixed.  
Furthermore, the molecular dynamics simulations provided insight towards 
understanding the results generated from previous DPI-ELISA experiments, which 



 

should provide an improved means for predicting biologically significant CArG-boxes 
around genes. 
 
 
 
KEYWORDS:  DNA-BINDING SITE RECOGNITION, LEUCINE ZIPPER-LIKE DOMAIN, 
TRANSCRIPTIONAL SWITCH, DPI-ELISA/TF-EIA, MOLECULAR DYNAMICS 
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CHAPTER 1 

Review and Introduction 

 

Many agronomically and ecologically valuable traits can be attributed to transcription 

factors (TFs) containing basic–helix–loop–helix (bHLH) domains or MADS domains.  

Partial functional redundancy within the group IIIf bHLHs in Arabidopsis allows them to 

regulate key enzymes in the flavonoid biosynthetic pathway, as well as, genes involved 

in trichome and root hair initiation and development.  MADS-domain containing TFs 

most notable roles include the regulation of flowering time, flower differentiation, and fruit 

development. 

 

What are transcription factors and their complexes? 

TFs are proteins that typically bind unique DNA sequences or cis-elements in or near the 

promoter region of a gene through their DNA-binding domain (DBD) and consequently 

activate or repress transcription.  Cis-elements are generally unique to a particular type 

of TF; however, they can be shared if, for example, two TF families share similar 

structure in their DBDs.  With well over 2000 identified TFs and nearly 29,000 genes 

(protein coding and non-coding RNAs) [1] in Arabidopsis thaliana, a model plant related 

to broccoli and cabbage, most, if not all, TFs function in regulatory complexes and 

generate expansive regulatory networks.  These TFs have been organized into 50 

families, though many share similarly functioning domains [1]. 

 

The bHLH–MYB–WDR complex 

Anthocyanin accumulation has been the target for the inquisitive naturalist (Figure 1.1).  

As a phenotype, the ease of detecting changes has contributed to its appeal and has 

made it the subject for both beauty and utility.  In maize, the leaf color trait, Lc, is a trait 

in which the leaves of the plant turned red due to the accumulation of anthocyanins.  The 

trait was isolated from a South American originating strain, Ecuador 1172, and was 

found to map near the R locus (RED1) [2-4].  In 1989, the gene at the R locus was 

identified as a bHLH-domain containing protein [5]. 

 

R protein sequence clusters with the group IIIf bHLHs identified in Arabidopsis by both 

sequence and function.  These include AtMYC1 [6-8], AtGL3 (GLABRA 3) [9,10], 

AtEGL3 (ENHANCER of GLABRA 3) [11,12], and AtTT8 (TRANSPARENT TESTA 8) 
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[13,14].  Group IIIf bHLHs are multi-domain proteins comprised of a MYB-interacting 

region (MIR) [15-18], an acidic domain, a bHLH domain, and a C-terminal ACT 

(aspartate kinase, chorismate mutase and TyrA) domain [19] (Figure 1.2A).  As 

pr1F3H

*bp1 –

pal PAL

c2 CHS

CHIchi1

DFRa1

ANSa2

UFGTbz1

GSTbz2

dihydroflavanols flavonols phlobaphenes

flavan-3,4-diols condensed
tannins

flavanonesflavones
DFR

a1

c4h C4H

4cl 4CL

anthocyanidins

phenylalanine

anthocyanins

flavanonesdihydroflavanols

f3h F3’H

f3hF3’H
pr1 F3H

flavan-4-ols
DFR

a1

DFRa1

Figure 1.1 Anthocyanin biosynthetic pathway in maize. Beginning with 
phenylalanine to produce flavanones, a variety of products can be generated from the 
anthocyanin biosynthetic pathway.  Abbreviations:  phenylalanine ammonia lyase (pal, 
PAL); cinnamate 4-hydroxylase (c4h, C4H); 4-coumarate:CoA ligase (4cl, 4CL); 
chalcone synthase (c2, CHS); chalcone isomerase (chi1, CHI); flavanone 3-hydroxylase 
(f3h, F3H); flavonoid 3’-hydroxylase (pr1, F3’H); dihydroflavonol 4-reductase (a1, DFR); 
anthocyanidin synthase (a2, ANS);  UDP-glucose:flavonoid O-glucosyltranserase (bz1, 
UFGT); glutathione S-transferase (bz2, GST); brown pericarp (bp1) has yet to be 
characterized. 
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activators of gene expression, these bHLHs interact and bind R2R3- or R3-MYB TFs 

(naming derived from the myeloblastosis oncogene) (Figure 1.2B).  The R3 domain is a 

protein–protein interaction domain that interacts with the MIR of group IIIf bHLHs, while 

the R2 domain is a DBD (Figure 1.2C) [20].  R3-MYBs function as transcriptional 

repressors by interacting with group IIIf bHLH proteins and not providing a DBD for 

stabilization of the protein complex with DNA.  In maize, ZmC1 (COLORLESS 1) is the 

R2R3-MYB interacting partner for R.  ZmP1 (PERICARP 1) is another R2R3-MYB 

involved with anthocyanin accumulation in maize; however, it can activate gene 

expression without a bHLH component [20-23]. 

 

R3R2 R3R2

MIR ACTACIDIC bHLH MIR ACTACIDIC bHLH bHLH 

R3R3

R2R3-MYB

R3-MYB

bHLH (IIIf)

A

B

MIR ACTACIDIC bHLH 

MYB
E-box
DNA

RIF1

MIR ACTACIDIC bHLH MIR ACTACIDIC bHLH bHLH 

MYB
E-box
DNA

RIF1

C

Figure 1.2   Schematic of group IIIf bHLH domain structure and anthocyanin 
biosynthetic pathway in maize.   (A) Representation of the domain structure of Group 
IIIf bHLHs.  (B) Differences between R2R3-MYBs and R3-MYBs. R2 is a DNA-binding 
domain and R3 is a protein interaction domain. (C) Relationship of interactions between 
maize R and partners.  Please see text for details. 
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A WD-repeat (WDR) domain protein is the third member of the complex.  It does not 

bind DNA, but rather functions as a scaffold or adaptor between other proteins within the 

complex.  WDRs are a diverse family of proteins that have roles in a wide range of 

cellular functions [24-29].  Many WDRs interact with kinases and/or chromatin [30], but 

how AtTTG1 (TRANSPARENT TESTA 1) [11,31-34] in Arabidopsis functions within the 

transcriptional complex is largely a mystery.  It participates in trichome and root hair 

initiation, anthocyanin biosynthesis, and seed mucilage biosynthesis.  Properties of its 

homolog ZmPAC1 (PALE ALEURONE COLOR 1) are even less known, though it 

appears that deletions of this protein only impact anthocyanin biosynthesis and not 

trichomes or root hairs [35].  Neither AtTTG1 nor ZmPAC1 interact with the MYB TFs, 

but only with the bHLH TFs. 

 

In Zea mays, a fourth component was later identified, ZmRIF1 (R-INTERACTING 

FACTOR 1) [36,37].  It contains AGENET [38] and EMSY-like [39] domains, which are 

domains found in chromatin-associated proteins.  Its discovery was not unexpected 

since most genomic DNA is a condensed-form (i.e. euchromatin).  Euchromatin is 

predominately DNA wrapped around histones and condensed no further.  This 

arrangement allows for another layer of regulatory control for gene expression and helps 

to keep genomic DNA organized within the nucleus.  The R–RIF1 interaction, however, 

has only been found to be valid in maize thus far (Figure 1.2C) (unpublished data, E. 

Grotewold lab of Ohio State University). 

 

DNA-binding in bHLH TFs 

After early experiments failed to demonstrate that the bHLH domain in R could bind 

DNA, it was accepted that the domain was incapable of binding DNA despite the 

presence of a normal appearing bHLH domain.  The typical bHLH domain binds E-boxes 

(CANNTG) or the canonical G-box (CACGTG).  Comprised of two α-helices joined by a 

loop, the N-terminal portion of the first helix is comprised of many basic or negatively 

charged amino acid residues and interacts within the major groove of DNA (Figure 1.3).  

The rest of the first helix and the second helix are a protein–protein interaction domain, 

which allows bHLHs to form hetero- or homodimers.  The ability of bHLHs to bind DNA is 

a function of a bHLH’s ability to form dimers and without the ability to form dimers, this 

DNA–protein complex cannot be stabilized [40]. 
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The origin to the belief that R is unable to bind DNA likely stems from an incomplete 

understanding of secondary structure.  The coiled-coil is a feature of α-helices that 

allows them to interact with each other as in the case of the bHLH protein–protein 

interaction domain.  The concept was proposed by Crick in 1952 [41].  When discovered 

in 1989, the bHLH domain of R was identified as a region of homology to L-myc and 

MyoD1 bHLHs in humans and spanned from amino acids 420 to 462 [5].  Later when 

studies were performed using individual domains, a full basic domain was included (411 

to 462), but apparently no one seriously questioned whether position 462 was the 

appropriate place to make a C-terminal truncation (Figure 1.3A,C).  

 

R forms transcriptional complexes on many promoters with two promoters in particular 

serving as models, the ZmA1 and ZmBz1 gene promoters (Figure 1.1).  The ZmA1 gene 

encodes a dihydroflavonol 4-reductase (DFR), while the ZmBz1 (Bronze1) gene 

encodes an anthocyanidin 3-O-glucosyltransferase (UFGT). 

Figure 1.3  Basic-helix-loop-helix structure.  (A) Partial alignment of group IIIf 
bHLHs, ZmR and AtEGL3, with bHLH-LZs found in humans. (B) A representation of 
bHLH–LZ interacting with DNA with the basic domains seated in the major groove of 
DNA.  (C) Comparison of structural differences between HsMax and ZmR homodimers.  
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MADS domain TFs 

Within the context of TFs, when one thinks of a plant, its roots, its leaves, its flowers it 

can be easy to attribute a structure or phenotype to a particular locus.  In Arabidopsis, 

for example, a loss-of-function mutation in the AGAMOUS  (AG) locus gives rise to 

double flowers with repeating whorls of sepals and petals due to the loss of stamens and 

carpels, while the loss of APETALA3 (AP3) or PISTILLATA (PI) results in flowers lacking 

sepals and petals [42].  Initially, it can be quite easy to think that AG is responsible for 

the formation of stamens and carpels or that AtAP3 and AtPI are responsible for the 

formation of petals and stamens.  However, these structures are merely an emergent 

property from a cascade of events regulated by AtAG, AtAP3, and AtPI.   

 

With leaves being the default structure, sepals, petals, stamens, and carpels are all a 

modification of the leaf form.  In the most evident observations, conversion of a leaf to a 

petal would include repression of chlorophyll biosynthetic genes and degradation of 

chlorophyll.  For those plants whose flowers are pigmented, genes involved in the 

carotenoid and/or flavonoid biosynthetic pathways are upregulated and in the case of 

fragrant flowers, genes of the appropriate regulatory and biosynthetic pathways must 

also be upregulated.  These changes, however, are almost superficial compared to the 

changes that must occur in order to alter form as the structure or organ to include 

changes in the cellular morphology by way of changes in cell wall deposition and 

organelle differentiation that result in the wildly different shapes and forms of flowers 

found in nature. 

 

AtAG, AtAP3, and AtPI are members of the MADS TF family.  MADS domain TFs 

comprise a family of DNA-binding proteins whose major role and function is in the 

regulation of animal and plant spatiotemporal development.  This family of TFs derives 

its name from the various genes and proteins from which members of this family were 

originally discovered — MCM1 (minichromosome maintenance 1, Saccharomyces 

cerevisiae), AGAMOUS (A. thaliana), DEFICIENS (Antirrhinum majus, AtAP3 

homologue), and SRF (serum response factor, Homo sapiens).  Few plant TF families 

possess the breadth of regulatory control as do MADS TFs and because of this MADS 

TFs could be viewed as master TFs.   
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Significance of plant MADS domains TFs 

MADS domains of plant origin are without representation in structures determined by X-

ray crystallography or solution NMR despite plants (Arabidopsis) possessing upwards of 

30 times more MADS domain proteins than either animals (humans) or fungi (yeast) 

(see appendix for chart).  Though important and tremendously helpful to our present day 

understanding of the MADS domain, past research involving motif swaps and targeted 

mutations within and between Type I (SRF-like) and Type II (MEF2-like) proteins only 

sampled a relatively small sample of the total available sequence-space utilized by 

MADS domains.  Within the domain itself, plant MADS domains, as a whole, possess 

greater diversity of sequences – sequences that have a biological context and 

relevance. 

 

Role of MADS domain TFs in mitigating impacts from climate change 

Drastic changes to Earth’s climate have been ongoing since its formation some 4.54 

billion years ago [43].  Since the rise of Homo sapiens, our species has endured the 

hardships these great climatic fluctuations have created and yet, as a result, these 

changes helped to form who are as a species today.  With an increasing world 

population, our food security, even our geopolitical stability, is at risk to the current 

changes in climate that disrupt our ability to produce food. 

 

Nearly all of our food is derived in one way or another from plants.  Whether it be in the 

form of fresh fruits and vegetables, grains for breads, or grains for livestock, flowering 

plants are the primary source of the world’s food supply.  Therefore, a full understanding 

of the flowering mechanism and its regulation is one of several steps towards increasing 

food security. 

 

Over the past 50 some years (1956 to 2005), the global mean surface temperature has 

increased by 0.64°C ± 0.13°C [44].  However, this rise has not been steady and evenly 

distributed.  Extreme weather patterns have been an expected outcome of global 

warming and include early springs and late freezes, long summers and late falls, heat 

waves, periods of extreme precipitation and drought [45,46].  These changes have the 

potential to considerably impact agricultural and ecological systems.  Impacts include the 

obvious, such as drought, but also the non-obvious.   
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Flowering time is coordinated through the inputs of the autonomous, photoperiodic, 

thermosensory, and vernalization pathways.  Early springs and late falls increase the 

number of degree days, which can speed-up or delay spring flowering in many 

perennials and trees [46-48].  Some of the greatest instabilities in temperatures have 

been found to occur during the spring and fall [49].  As a consequence of warmer 

springs, plants are breaking winter dormancy earlier and the new tender vegetation 

becomes highly susceptible to late freezes [50].  Control of winter dormancy in plants is 

tightly regulated in order to protect reproductive tissues from killing freezes.  These late 

freezes can decimate fruit yields, which is damaging agronomically and ecologically for 

creatures dependent on fruits as a primary food source [50-52]. 

 

Not only is there a risk of freeze-damage to spring flowering plants, but also extreme 

high temperatures for summer flowering plants.  Many plants cannot tolerate high 

temperatures or drought-stress during critical events such as pollen formation, 

pollination, and fruit development [53,54].  Dry weather and, in particular, soil moisture 

levels have been determined to be a significant factor of high temperature extremes as 

observed for the high temperatures in Texas in 2011 [45] and the high temperatures for 

the continental United States in the summer of 2012.  Additionally, temperatures can 

also be differentiated into daytime and nighttime temperatures, of which, high nighttime 

temperatures appear to have to the greatest impact on plants. 

 

Heat-induced, male-sterility in plants has been well-documented [55-61] and recently, it 

appears that pollen development is aborted as a result of auxin depletion due to the 

repression of auxin biosynthetic genes [53,62].  Through chromatin immunoprecipitation 

sequencing (ChIP–SEQ) using a dominant–repressor form of MADS TF, SEPALLATA3 

(AtSEP3), 33 loci for auxin response and homeostasis were significantly 

overrepresented in heat-stressed Arabidopsis, indicating possible control via MADS 

domain TFs [63]. 

 

In cereals, there appears to be some debate as to the effects of high temperatures on 

the later steps of grain development.  In general, high temperatures are thought to 

decrease yields.  Yields, however, are determined by a number of factors such as grains 

per spike, grain size, grain composition, and so on.  For example, in spring wheat, 

nighttime temperatures decreased overall yields, grains per spike, and grain size at 
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temperatures of 20°C (68°F) and above [64,65].  Complicating issues also include 

sowing times as these influence the eventual environmental conditions (photoperiod, 

temperature, and rainfall) for grain-filling [66].  MADS TFs of the SQUA-like clade 

(members include AtAP1, AtCAL, AtFUL) are thought to specify spikelet and/or floral 

meristem identity [67,68], which could have a direct influence on grains per spike.   

 

The rest of what is known at the molecular biology level of grain-filling primarily comes 

from rice.  A study [69] was conducted to determine whether low grain weights under 

high temperatures were due to decreased capacity of the developing grain to store 

assimilate (photosynthate) or the availability of assimilate.  The developing grain can be 

thought of as a sink for assimilate and the grain dry matter increase rate as the rate at 

which assimilate is captured by the grain with capture of assimilate by the developing 

grain occurring during the grain-filling period.  To increase the availability of assimilate, 

plots were thinned at the onset of the grain-filling period.  Thinned plots were able to 

compensate in yield for the loss of spikelets due to thinning and reduced (accelerated 

[70]) grain-filling period induced by high temperatures.  Results indicated that as 

temperatures increased during the grain-filling period, so did the grain dry matter 

increase rate, but was limited by the availability of assimilate. 

 

Again, high night temperatures appear to be more harmful than high day temperatures.  

Cross-sectional analysis of rice grains under high temperatures revealed similar cell 

numbers within the endosperm; however, those exposed high night temperatures had 

reduced cell sizes compared to those exposed to high day temperatures [71].  

Additionally, in both rice and wheat, high temperatures alter the protein to carbohydrate 

composition by a reduction in starch and type of starch accumulated [66,72,73]. 

 

An incredibly interesting piece of information was found in a transcriptome analysis study 

between heat susceptible and tolerant wheat varieties.  Aside from the anticipated 

transcriptional changes for heat shock protein and heat shock factor genes, one 

particular probe ID stood out, Ta.3854.1.S1_at (Affymetrix GeneChip Wheat Genome 

Array).  This probe ID represents a wheat MADS TF (TaSEP2-B/TaAGL4) with 

homology to Arabidopsis SEPALLATA2 (SEP2) and is upregulated 15-fold in the heat 

susceptible variety over the heat tolerant variety [58].  Another SEPALLATA homolog, 

TaMADS1, was found to cause early flowering when overexpressed in Arabidopsis [74].  
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This could indicate that in the heat susceptible variety, the flowering program is 

advanced too quickly, limiting the ability of the wheat to form properly developed flowers 

as well as timing and ability of the wheat to form well-developed, full seeds. 

 

Two other MADS TFs, OsMADS6 and OsMADS29, have been identified in rice that 

appear to have involvement in endosperm development and/or grain-filling.  Defects in 

OsMADS6 resulted in grains with seed coats and embryos, but had reductions in starch-

filling and production of fully matured seed [75].  In the case of OsMADS29, it appears 

that pollination reinforced auxin signaling upregulates OsMADS29 expression, which in 

turn, upregulates genes involved in further auxin signaling, programmed cell death, and 

starch biosynthesis.  OsMADS29 appears to have greater importance than OsMADS6 to 

this process.  If OsMADS29 expression is reduced or inhibited into endosperm 

development, a reduction in nutrient transport gene expression is also observed.  These 

events are the likely cause of the abnormal seed phenotype found in OsMADS29 

mutants [76]. 

 

Origins and classification MADS TFs 

The MADS domain proper is thought to have been derived from a motif of an ancestral 

prokaryote topoisomerase IIA subunit A (TOPOIIA-A) via a gene duplication event in a 

common ancestor of extant eukaryotes (Figure 1.4).  A second gene duplication event in 

a ‘most recent common ancestor’, estimated to have occurred nearly 1.5 billion years 

ago, is understood to have given rise to the Type I (SRF-like) and Type II (MEF2-like) 

MADS domains [77].  Therefore, both lineages are represented in nearly all eukaryotes 

and this model also explains the absence of MADS domains in excavate eukaryotes 

(e.g. chromistans have only Type II) and prokaryotes (bacteria and archaea) [77]. 

 

Plants heavy reliance upon the MADS TF family is clearly evident when the number of 

MADS domain TF per organism is examined.  While metazoans, such as H. sapiens and 

Drosophila melanogaster possess 5 and 2 MADS TFs, respectively, and fungi, such as 

S. cerevisiae, possess 4 MADS TFs, the Arabidopsis genome possesses an astonishing 

105–111 MADS TFs [1,78,79].  Despite this disparity, most of what we know concerning 

determinants of DNA-binding specificity come from very limited sequence diversity found 

in H. sapiens and S. cerevisiae. 
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In animal and fungal lineages, the two types are well-known by whether they contain a 

SRF-like or MEF2-like MADS domain.  Here, animal and fungal Type I MADS TFs (SRF-

type MADS TFs) possess a SAM-domain (SRF, ARG80, MCM1) [80] following the 

MADS domain, while animal and fungal Type II MADS TFs (MEF2-type MADS TFs) 

possess a MEF2-domain (myocyte enhancer factor 2).  It should be stressed that these 

are not the only domains that accompany MADS TFs in animals and fungi.  Many MADS 

domain containing TFs typically range between 500 and 700 amino acids with several 

other domains present.  In the case of human blood flukes, Schistosoma sp., MEF2-type 

MADS TFs have been found with lengths of over 700 amino acids (CAX69766 and 

CCD78322). 

Type I Type II

M-type SRF-type MIKCC-type MEF2-type

Mα Mβ Mγ

MIKC*-type

TOPOIIA

TOPOIIA-A MADS

SRF
ARG80
MCM1

MEF2A-D
RLM1
SMP1AG

AGL15
AP1
AP3
CAL
FLC
FUL
PI

SEP3
SVP

plant plantmetazoan metazoan

Figure 1.4  MADS domain origin, classifications, and relationships.  The MADS 
domain is thought to have been derived from a gene duplication event involving 
topoisomerase IIA subunit A (TOPOIIA-A) leading to the formation of the MADS 
domain.  Another gene duplication event in our ‘most recent common ancestor’ formed 
the basis of the Type I and II MADS TFs.  Eventual diversification formed the many 
MADS TFs present today [77]. 
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Major groups and clades 

Based upon phylogenetic analysis (and function [81]), the MADS TF family in the plant 

lineage has been separated into various groups and clades [82-85].   

 

Plant Type I MADS TFs (M-type MADS TFs) have been separated into three clades:  

Mα, Mβ, and Mγ [78,85,86] (Figure 1.4).  Though thought to be derived of the SRF 

lineage, M-type MADS TFs lack the SAM-domain characteristic of Type I MADS TFs in 

animals and fungi [87].  Within this group are there about 61 M-type MADS TFs in 

Arabidopsis [86], of which 20 are unlikely to be expressed [88] due to high rates of 

supersession/obsolescence for this group [89] leaving about 40 that are functional.  As a 

group, their primary function appears centered upon developmental regulation of the 

female gametophyte and seed development [88,90-93] and because of this, much less is 

currently known about the M-type MADS TFs.  Two notable M-type MADS TFs are 

AtAGL62 and AtAGL28.  In the developing seed, AtAGL62 expression was found to 

abruptly decline before cellularization of the endosperm.  If AtAGL62 expression was 

maintained, the endosperm did not cellularize [91].  However, in a role unexpected for 

this group (and with some disbelief [88]), the vegetatively and seed expressed AtAGL28 

was found to cause precocious or early flowering via the autonomous pathway when 

overexpressed in Arabidopsis [94]. 

 

MIKC MADS TFs are of the Type II lineage and still possess a form of the MEF2 

domain.  This group possesses an Intervening domain adjacent to the MADS domain, 

followed by a Keratin-like coiled-coil domain, and finally, a variable C-terminal region [95] 

(Figure 1.5).  With about 46 present in Arabidopsis, they fall into two groups, a large 

“classical” group termed MIKCC [96] and a much smaller out group termed MIKC* (a.k.a. 

Mδ in earlier analysis/reports) [78,96-98].  MIKC* MADS TFs have qualities that 

distinguish them from the larger MIKCC group, such as a longer I-domain and unique 

exon structure.  Additionally, MIKC* MADS TFs have been found to predominantly serve 

critical roles in the gametophytic generation of plants [99] and in the case of flowering 

plants, pollen maturation, and pollen tube growth [100-102]. 

 

MIKCC MADS TFs of angiosperms are comprised of about 15 clades, though not all are 

widely distributed.  Those clades that are not widely distributed are likely from plants that 

have specialized characteristics and adaptations that those plants are known for.  
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Clades that appear to not be widely distributed are AGL15-like, FLC-like, OsMADS32-

like [103], and TM8-like [96].  The OsMADS32-like clade might be unique to only 

monocots [103]. 

 

For greater depth of the unique characteristics and roles of MADS TFs for individual 

divisions, the following reviews are available:  Bryophyta (mosses) [97,104,105], 

Marchantiophyta (liverworts) [99], Lycopodiophyta (clubmosses) [106,107], Pteridophyta 

(ferns) [108,109], Coniferophyta (conifers) [110,111], and Ginkgophyta (Ginkgo) [112].  

Additionally, reviews are available for green algae [113-115], monocots [116,117], and 

poplar [118].   

 

Properties of the MIKC K domain 

Protein–protein interaction studies have been conducted extensively for the plant MADS 

TFs.  The most common methods being yeast two-hybrid interaction studies, followed by 

electrophoretic mobility shift assay (EMSA), and bimolecular fluorescence 

complementation (BiFC) [119-124].  Dimerization of MIKC MADS TFs is predominately 

determined by the K domain and to a lesser extent the MADS and Intervening domains.  

Within the K domain are three smaller α-helix subdomains: k1, k2, and k3 (Figure 1.5).  

Subdomains k1 and k2 tend to serve in dimer formation, while k3 tends to serves in 

tetramer formation for those that function in that manner [125]. 

 

Figure 1.5   MIKC MADS domain structure.   MIKC MADS are named by their unique 
domain organization.  The MADS domain in located N-terminally and possesses a 
DNA-binding domain.  Both the MADS and Intervening domains are responsible for 
protein-protein interactions leading to dimer formation.  The K domain has three 
subdomains and is predominantly known for protein-protein interactions leading to 
tetramer formation in those that form tetramers.  The C-terminal domain has widely 
varying sequence and can perform many diverse regulatory functions. 

MADS I K C

DNA
contact

dimerization protein interaction diverse
functions

k1 k2 k3
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Properties of the MIKC C-terminal domain 

In MIKC MADS TFs, the C-terminal domain imparts some of the individual 

characteristics of each TF.  Many of the motifs in the C-terminal domain are derived from 

a combination of gene duplication, subsequent mutation (frameshifts), functional 

diversification, and neo-functionalization [126,127].  For example, AtAP1 is a 

transcriptional activator as a result of two distinct transactivation domains present in the 

C-terminal domain [128].   

 

Early studies showed that some phenotypes of floral Arabidopsis mutants could only be 

complemented if the C-terminal domain was not truncated [129], but in some cases, 

merely swapping C-terminal domains was sufficient in restoring the wild-type phenotype 

[130].  However, in some cases and for certain functions, such as for AtAP3 and AtPI, 

the C-terminal domain was dispensable [131] for functional specificity in petals and that 

this role was served through the MIK domains [132]. 

 

In tomato, domains responsible for protein–protein interactions between histone 

deacetylases (HDAC) and MIKC MADS have been discovered in the C-terminal domain 

through in vitro methods with a mammalian HDAC [133].  This is significant as several 

MADS TFs in plants have been demonstrated to function as both transcriptional 

activators and repressors.  If demonstrated to be biologically functional in plants, this 

may explain the dual functionality of those MADS TFs [134]. 

 

Post-translational modification of MIKC MADS TFs 

Post-translational modification has been well established for the animal and yeast MADS 

TFs.  MEF2C’s activity is modulated by phosphorylation [135] and MEF2D’s activity is 

modulated by acetylation [134,136,137], while in yeast MCM1, activity is modulated 

through phosphorylation [138].  This understanding has been the basis for research 

regarding modifications to MADS TFs in plants. 

 

Post-translational modification has not been well demonstrated for plant MADS TFs.  In 

protein extracts from non-vernalized and flc–20 null Arabidopsis, FLOWERING LOCUS 

C (FLC) was found to be predominantly post-translationally modified [139].  Variations in 

these populations were found to be dependent upon flowering time.  Analysis suggested 

that these modifications were phosphorylated forms of FLC.  Six sites and eight serines 
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were mutated to aspartic acid to mimic the phosphorylated form or to alanine to prevent 

formation of the phosphorylated form.   In the phosphorylated mimic, flowering time was 

found to occur earlier, while the non-phosphorylated form resulted in plants with delayed 

flowering.  Therefore, the active form of FLC appears to be the non-phosphorylated 

form.  However, many follow-up questions remain. 

 

Non-MADS TF interaction partners 

Non-MADS interaction partners in plants have only recently come to light and therefore, 

knowledge about them is still relatively sparse compared to what is known for systems in 

animals and yeast.  In animals and yeast, these interaction partners not only modulate a 

MADS’ complex status between activation and repression, but also influences the DNA-

binding site (DBS) selection as some cis-elements overlap each other.  A possible 

explanation for this discrepancy between plants and metazoans could be due the sheer 

number of MIKC MADS TFs present in plants compared to animals and yeast.  These 

are reviewed in references [120,140-142].  TCF protein (Elk1 or SAP-1) is required to 

engage SRF on non-optimal CArG sites [143,144] with the ets-motif being adjacent to 

the CArG box [145]. 

 
 

 
 
Figure 1.6  CArG box and the secondary structure of the MADS domain. CArG 
boxes are cis-elements targeted by MADS domain TFs (top). They are comprised of a 
10-bp core, but binding is also significantly influenced by adjacent flanking bases. Due to 
how MADS domain TFs bind CArG boxes, they can be divided into half-sites and 
influence binding selection. The secondary structure of the MADS domain is comprised 
of a variable N-terminal extension, an alpha helix, and two beta-strands that form a beta-
sheet with each other and its adjacent dimeric partner (bottom). The following 
Arabidopsis MIKCC MADS TFs possess N-terminal sequence that extends upstream:  
AG, MAF5, SHP1, and SHP2. 
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DNA-binding site recognition 

DNA, in its classical form, is comprised of just four nucleotides.  Many proteins bind DNA 

and can be divided into those that bind DNA nonspecifically and specifically.  Proteins 

that nonspecifically bind DNA include histones and DNA polymerases, while those that 

bind specific sequences of DNA include restriction endonucleases and TFs.  Therefore, 

several questions have asked.  How is a protein able to recognize specific DNA 

sequences, discriminate between similar sequences, and eventually bind DNA to form a 

stable complex?  Why is this important and how can this information be applied? 

 

Comprised of two antiparallel, sugar-phosphate backbones and four nitrogenous bases 

in the form of a double helix, deoxyribonucleic acid or DNA has a net negative charge 

located along the backbone of the polymer from the phosphates.  This evenly distributed 

negative charge is the predominant force that responsible for nonspecific DNA–protein 

interactions.  It is also utilized by proteins with sequence-specificities during the initial 

interaction or association between DNA and protein. 

 

The binding of a protein to DNA can be characterized into several different steps: 

scanning, initial fitting, induced fitting, and stabilization.  Protein movement or 

translocation along and throughout DNA occurs in a combination of four ways:  3D 

diffusion, sliding, hopping, and intersegmental transfer [146,147].  During translocation, 

potential binding sites are scanned.  Once a potential binding site has been located, an 

initial test of the site’s suitability occurs.  If the initial test does not find the site suitable, 

the protein moves along.  However, if the initial test finds the site suitable, then the initial 

test becomes an initial fit.  After a successful initial fit, typically DNA bending is induced 

by the protein for an induced fit.  As the DNA–protein complex forms more and more 

contacts, stabilization occurs.  During stabilization, contacts made during the initial and 

induced fits may be released, while other more conserved contacts take their place.   

 

A multitude of factors play a role in DNA–protein interactions 

The overall structure or fine-structure of any particular fragment or stretch of DNA is 

dependent upon just two aspects that work in tandem.  DNA structure, though not as 

malleable as protein or RNA, it by no means is a static and ‘lifeless’ molecule.  The fine-

structure of DNA is subject to the sequence or order of bases within the polymer and to 

the environment in which that polymer is located. 
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DNA structure is sensitive to hydration/dehydration, pH, and cation type and 

concentration, as well as biogenic cations found within the nucleus of cells.  Biogenic 

cations present within the nucleus include multifunctional polyamines [148] such as 

putrescine, spermidine, and spermine [149-152].  Polyamines are able to modulate 

transitions of B-DNA to A- and Z-DNA [153-156].  With potassium (ionic radius of 152 

pm for K+ versus 116 pm for Na+) as the dominant monovalent inorganic cation within 

the nucleus, it also becomes the dominant inorganic cation to neutralize the negative 

charge of DNA and also associate with the major and minor grooves of DNA [157].  In 

the case of divalent inorganic cations, such as magnesium (86 pm for Mg2+ versus 114 

pm for Ca2+), these tend to favor the major groove [158-160].  Competition between 

inorganic cations, biogenic cations, and water ultimately determines the degree of 

hydration DNA experiences and the conformation DNA takes [149,150,161-165].  

Additionally, many other small molecules are known to interact within the major or minor 

grooves or even intercalate between base-steps, though these influence DNA structure 

in a manner similar to proteins [166]. 

 

The bases of DNA do not possess equal properties and therefore, should be expected to 

have contextual properties.  Significant effort has been put forth to understand the 

intrinsic, sequence-dependent properties of DNA.  Some macromolecular properties that 

are sequence-dependent include bending (protein independent) and DNA type (e.g. A-

DNA [167], B-DNA, Z-DNA, etc.).  For example, d(CG)n and d(CA/TG)n sequences 

favor the base-sugar conformations of an alternating anti-syn pattern, compared to all (or 

mostly) anti-anti conformation of B-DNA, resulting in the formation of Z-DNA [168,169].  

Sequences with known preference for the B-DNA conformation, readily transition to the 

B-DNA conformation when started in an A-DNA conformation [170].  However, some B-

DNA sequences are known to transition from B-DNA to A-DNA and are stabilized by 

specific ion associations [165,171].  This demonstrates some of the intricacies 

encountered when trying to understand the role of sequence in DNA structure. 
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Objectives 

 

Chapter 2 – 

Understanding the influence of a leucine zipper-like (LZL) domain, present in ZmR and 

other group IIIf bHLH TFs, leading to progress in the ‘switch model’, which allows ZmR 

to be repurposed for the activation of promoters of differing cis-element structure within 

the same biosynthetic pathway. 

 

Chapter 3 – 

Understanding changes within specific positions of CArG boxes and how that influences 

the ability of MADS TFs to bind.  A DPI-ELISA method was modified and optimized for 

use with recombinant MADS TFs. 

 

Chapter 4 – 

Understanding differences in DNA-binding specificities of MADS TFs through molecular 

dynamics simulations and DPI-ELISA.  AtFLC and AtSVP function as a heterodimer, 

individually possess different DNA-binding specificities, and have widely divergent 

residues from other MADS TF clades. 
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CHAPTER 2 

A shortened, yet critical, leucine zipper-like domain present  

in group IIIf bHLH transcription factors 

 

Hypothesis 

During truncation analysis of R and other group IIIf bHLH TFs, the function of the bHLH 

domain was thought to have been compromised based upon secondary structure 

analysis.  Secondary structure prediction indicated an extended and continuous α-helix 

between residues 454 and 490, which is part of the bHLH interaction domain and has 

resemblance to bHLH–LZ domains.  The exclusion of these residues may therefore be 

responsible for some of the inconsistencies observed in prior data.  Restoration of these 

residues will thus improve the stability of the bHLH interaction domain and ultimately 

DNA binding, while mutation of restored residues would again disrupt the interactions. 

 

Introduction 

The R locus was one of the few loci originally found to be responsible for altering 

anthocyanin pigmentation in maize and came to be the basis of the R/B gene family.  

Members of the R/B gene family encode bHLH TFs and are currently classified as a 

group IIIf bHLH TF [172].  Members of group IIIf bHLH TFs are generally known to 

regulate anthocyanin biosynthesis or trichome and root hair initiation and development.  

In the case of Arabidopsis, significant of phenotypic overlap occurs between the bHLH 

TFs responsible for anthocyanin biosynthesis and trichome and root hair development. 

 

Also known as Lc, leaf color, R is a heavily studied and important member of R/B gene 

family and is located about 2 cM from the R locus [3,5].  Other homologous R/B family 

genes in maize include B-Peru, hopi, R-S, and Sn.  Unlike bHLH Myc-type TFs 

commonly seen in mammalian systems, R/B-type factors are much larger, containing 

several other additional domains such as an MYB-interaction domain [16,173], a 

transactivation domain [174], a bHLH domain [175], and an ACT domain [19] (Figure 

1.2).  Anthocyanin biosynthesis in maize is co-regulated by several loci comprised of 

bHLH (R/B) and R2R3-MYB (C1/Pl) transcription factors (TFs).  R/B-type TFs require a 

MYB factor in order to activate target gene expression; while the MYB factor P1 

(PERICARP 1) can bind DNA and activate target gene expression independently.  The 
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MYB factor C1 (COLORLESS 1), however, is dependent upon an R-type factor for gene 

expression [15,16,22,176-179].  Additional proteins, such as PALE ALEURONE COLOR 

1 (ZmPAC1), a WD40 repeat (WDR) protein and implicated in protein–protein 

interactions, also have significant roles in regulating anthocyanin biosynthesis in maize 

by stabilizing the protein–DNA complex [35,180].  Together, these form the bHLH–MYB–

WDR (BMW) transactivational complex.  

 

Figure 2.1  Maize stalks displaying differences in anthocyanin accumulation.  (A) 
These maize stalks are likely similar to differences observed in mutants of the 
anthocyanin pathway.  In the case of R, a transposon was inserted ahead of R, which 
resulted in activation of the gene and hyperaccumulation of anthocyanins (right stalk).  
(B) Brief pathway to anthocyanins from phenylalanine.  Abbreviations:  phenylalanine 
ammonia lyase (pal, PAL); cinnamate 4-hydroxylase (c4h, C4H); 4-coumarate:CoA 
ligase (4cl, 4CL); chalcone synthase (c2, CHS); chalcone isomerase (chi1, CHI); 
flavanone 3-hydroxylase (f3h, F3H); flavonoid 3’-hydroxylase (pr1, F3’H); 
dihydroflavonol 4-reductase (a1, DFR); anthocyanidin synthase (a2, ANS);  UDP-
glucose:flavonoid O-glucosyltranserase (bz1, UFGT); glutathione S-transferase (bz2, 
GST). 
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Group IIIf bHLH TFs have significant roles in regulating of flavonoid biosynthesis [172] 

and the basic region of the bHLH domain can recognize the core DNA sequence motif, 

the E-box (CANNTG), which is present in many dihydroflavonol 4-reductase (DFR) 

promoters [22,176].  More specifically, the canonical G-box (CACGTG), a subsequence 

of the E-box, is highly preferred.  This interaction between the basic domain and the G-

box is facilitated by the helix–loop–helix domain that follows.  Despite the requirement of 

a MYB factor in order for R to bind DNA, R can bind DNA when individual domains are 

isolated [22,37,181].  The bHLH domain, R411–462, has not been observed to bind DNA; 

however, when the bHLH domain is expanded slightly to include a region containing a 

shortened putative leucine zipper (LZ) that would be homologous to other bHLH–LZ 

domains, this extended bHLH domain, R411–470, will bind DNA [37] (Figure 2.5).  This 

lends to growing recognition of some group IIIf bHLH TFs containing a partially 

conserved bHLH–LZ domain [172].  

 

Recognition of a shortened LZ immediately after the bHLH domain is not without 

controversy.  In the identification of AtRAP1/AtMYC2/AtbHLH6, a drought-induced bHLH 
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Figure 2.2  Labeling of residue positions in coiled-coils of leucine zippers and the 
sequence logo of A. thaliana group IIIf bHLHs at the LZL domain.  LZs can be 
reduced to repeated heptads that defined by seven residues labeled a through g.  In 
this view, one is looking down from the C-terminal end of the heptad.  The previous 
heptad’s g residue will typically participate in stabilization pair.  Hydrophobic residues 
generally occupy positions a and d, while g and e’ positions are generally occupied by 
charged residues.  These charged residues assist in the selection of pairing of α-helices 
(left).  The four group IIIf bHLH TFs of Arabidopsis (MYC1, GL3, EGL3, and TT8) were 
trimmed to the LZL region and processed through WebLogo3 to emphasize the 
conserved and complementary residues at positions 464-469 (relative to ZmR).  This 
position corresponds to the equivalent of heptad 1 (shown in purple).  Additionally, 
residues at 464 and 469 are highly conserved among all sequences available (right). 
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TF in Arabidopsis, and currently classified as a group IIIe bHLH TF [172], the potential 

for a putative LZ immediately after the bHLH domain was mentioned [182].  R, Sn, and 

R-S were all described as containing a putative LZ domain, while B-Peru and AmDEL 

[183], an Antirrhinum majus homologue to R, did not [182].  In the disputed region, R 

and AtRAP1 have significant points of mention.  Both have key amino acid residues for 

LZs; however, four putative heptad repeats can be identified in AtRAP1, while R has 

only one.  Even more significantly for R, is the presence of three prolines within a span 

of 16 residues shortly after the mentioned heptad, which almost certainly limits the 

length of the any putative LZ.  A separate classification of bHLH TFs refused to classify 

even AtRAP1 as containing a putative LZ based upon computer prediction of coiled-coils 

[184] 

Classical LZs are parallel, amphipathic, coiled-coils comprised of α-helices that are four 

to five heptad repeats in length and each heptad having an inward facing leucine residue 

at position d [185,186].  Position d refers to one of seven positions, g’abcdef, that form a 

heptad (Figures 1.3A and 2.2) [187,188].  An ideal dimerization interface between two α-

helices is thus created when positions a and d consist of hydrophobic residues and 

when positions g and e’ consist of pairs of non-repulsive, charged residues.  Branched 

amino acids, isoleucine and valine, are most favorable and common in position a [189] 

and highly charged residues are common in positions g and e’ [185]. 

 

Electrostatic interactions of g↔e’ pairs are another significant force in contributing to 

complex stability [190-200].  R heptad 1, positions g0 and e1 (Figures 1.3A and 2.2) 

revealed that heptad 1 contains an attractive, basic-acidic pair (R↔E), as do the vast 

majority of TFs similar to R, and it has been shown in LZ-containing proteins [201,202] 

that attractive g↔e’ pairs assist in increasing complex stability.  Mutations to repulsive, 

basic–basic or acidic–acidic residue pairs will likely destabilize complex stability and 

prevent DNA binding of truncated forms of R bHLH domains.  It was therefore 

anticipated that the bHLH–LZL domain of R should behave in a similar manner. 

 

Materials and Methods 

Recombinant Protein Expression and Purification – Domain fragments were isolated by 

PCR from a Zea mays R cDNA template and inserted into pET41aTEV as either an N-

terminal GST fusion protein or a C-terminal polyhistidine fusion protein.  The plasmid, 

pET41aTEV, was a gift from Dr. Y.I. Chi of the University of Kentucky and was a 
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modified Novagen plasmid.  It contains a TEV protease cleavage site between the GST 

coding region and the multiple cloning site.  Verified constructs were transformed into E. 

coli BL21(DE3) cells.  Cell cultures were grown to an OD600 of ~0.6 and then induced by 

adding IPTG to a final concentration of 1 mM.  After induction for 3 h at 30°C, the cells 

were harvested by centrifugation and stored at –80°C until further use.  Bacterial cells 

were lysed using 1X CelLytic B (Sigma) per the manufacturer’s instructions.  GST fusion 

proteins were bound to Glutathione Sepharose 4B columns (Amersham, NJ) and eluted 

with 50 mM Tris–HCl, pH 8.0, and 10 mM glutathione.  The 6xHis fusion proteins were 

bound to HIS-Select Nickel Affinity Gel columns (Sigma) and eluted with 50 mM sodium 

phosphate, pH 8.0, 0.3 M NaCl, and 250 mM imidazole.  Purified proteins were dialyzed 

against 1x DNA binding buffer (10 mM Tris–HCl, pH 7.5, 50 mM KCl, and 1 mM DTT). 

Electrophoretic Mobility Shift Assay (EMSA) – Probes for EMSA were either the wild-

type G-box motif from the Arabidopsis DFR promoter (5’-CGTTCCCCACGTGCTTCTC 

C-3’) or the mutated G-box motif in which the core recognition sequence, CACGTG, was 

replaced with CAATTG or TGATAC.  Complementary oligonucleotides, labeled with 

biotin at the 5’-end, were synthesized by Integrated DNA Technologies (Coralville, IA) 

and annealed to produce double-stranded probes.  DNA binding reactions were carried 

out in 10 mM Tris–HCl, pH 7.5, 50 mM KCl, and 1 mM DTT.  Purified proteins were 

incubated with 0.25–0.5 nM DNA probe on ice for 30 min in a final volume of 20 µL.  

DNA–protein complexes were resolved on 6% non-denaturing polyacrylamide gels and 

were detected with a chemiluminescent nucleic acid detection kit (Pierce, Rockford, IL).  

 

Yeast One-hybrid and Two-hybrid Assays – In the yeast one-hybrid assays, an effector 

plasmid pAD–GAL4, containing bHLH411–478 or bHLH411–524, was transformed into yeast 

strain YM4271 containing a reporter plasmid, pLacZ–G–box or pLacZ–mG–box.  

Transformants were selected on SD medium lacking uracil and leucine.  β-Galactosidase 

(β-gal) activity was assayed according to procedures described in the Yeast Protocols 

Handbook (Clontech, CA).  Substrate used for the liquid culture assay was O-

nitrophenyl-β-D-galactopyranoside (ONPG).  One unit of β-galactosidase activity is 

defined as the hydrolysis of 1 μmol of ONPG to O-nitrophenol (yellow) and D-galactose 

per min per cell. 

 

For yeast two-hybrid experiments, the plasmids, pAD–GAL4–2.1 and pBD–GAL4 Cam, 

containing truncated forms of R, bHLH411–463, bHLH411–470, bHLH411–478, and bHLH411–524, 
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were co-transformed into yeast strain AH109 (Clontech, CA).  Transformants were 

selected on SD medium lacking leucine and tryptophan (SD –Leu –Trp (–LW)).  

Colonies from double selection plate were then screened for growth on triple selection 

SD medium lacking tryptophan, leucine, and histidine (SD –His –Leu –Trp (–HLW)) and 

quadruple selection SD medium lacking tryptophan, leucine, histidine, and adenine (SD 

–Ade –His –Leu –Trp (–AHLW)). 

 

Predicted Structural Model of R bHLH Domain – A structural model of the bHLH domain 

of Zea mays R (NCBI Accession P13526) was generated by SWISS-MODEL 3.5 using 

the Alignment Interface [203-205].  Alignments to the Homo sapiens Max sequence 

(obtained from PDB structures 1an2 and 1hlo) were initially made with Clustal X 1.83 

[206-209].  Alignments were then tailored in an educated manner to remove excessive 
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Figure 2.3  Significance of hydrophobic residues within the interface of the LZL 
demonstrated by EMSA.  Mutation of leucines at positions 461 and 468 show that 
DNA-binding of the G-box by R411–478 was disrupted in the L461A form (lane 4).  DNA-
binding, however, was not disrupted in the L468A form (lane 7).  (G = G-box; mG = 
mutated G-box) 
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spacing.  Since HsMax structures, 1an2 and 1hlo, covered different, but overlapping 

regions of the bHLH domain, R was modeled to both.  The resulting models were 

overlaid with the HsMax structures and fused in DeepView 3.7 (SP5) [203]. 

 

Results 

Impact of mutating the hydrophobic residues in the LZL 

Two dominant features responsible for the stability of LZs are the presence hydrophobic 

residues in the heptad a1 and d1 positions and electrostatic interactions in the g0 and e1 

positions.  Knowing that R411–470 and R411–478 forms can both homodimerize and bind 

DNA, but not the R411–462 form through a LZL motif, allowed for a simple test to determine 

if the hydrophobic residues contribute to the increased stability seen with the longer 

forms (Figure 2.5).  Two single mutations were made in R411–478 – L461A (position d0) 

and L468A (position d1).  Both were then assayed for homodimerization in a yeast two-

hybrid and for homodimerization and DNA binding in an EMSA.  Yeast expressing 

L461A R411–478 were unable to grow on either –His –Leu –Trp (–HLW) or –Ade –His –Leu 

–Trp (–AHLW), while yeast expressing L468A R411–478 were not distinguishable from 

wild-type (Figure 2.6, sectors 2 and 5).  In the EMSA, L461A R411–478 did not bind and 

retard the G-box, while L468A R411–478 was able to homodimerize and bind the G-box in 

agreement to the results of the yeast two-hybrid (Figure 2.3).  These mixed results 

showed that homodimerization and DNA binding is dependent upon the compatible 

WT R464D
V465N/
L468H E469R

G mGG mGG mGG

1 2 3 4 5 6 7

Figure 2.4 Significance of highly 
conserved residues found in the LZL of 
group IIIf bHLHs demonstrated by EMSA 
R411–478.  
Under the assumption that the putative LZL 
domain functions in a like manner, mutations 
were made to positions g0 and e1 that were 
predicted to disrupt the complementary 
electrostatic interactions thought to be 
participating in stabilization of the dimeric 
form.  While the R464D mutation did not 
disrupt dimer formation and DNA-binding of 
the G-box (lane 2), the E469R mutation did 
disrupt DNA-binding (lane 6) thought to be 
due to the disruption of dimer formation.  The 
double mutant, V465N/L468H, was thought to 
mimic the intermediate dimer formation found 
in the HsMax bHLH-LZ (lane 4).  (G = G-box; 
mG = mutated G-box) 
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interaction to increase the stability of dimerization.  Lack of disruption of dimerization and 

DNA binding by the L469A mutation is a possible indicator that forces, such as 

electrostatic interactions, were able to compensate for any imbalance due to the L469A 

mutation. 

 

Dimerization of the R bHLH domain is dependent upon compatible electrostatic 

interactions in the LZL motif 

The group IIIf bHLH TFs were proposed to only bind G-boxes and not the more general 

E-box.  However in Bronze1, R recognizes a non-G-box form of the E-box.  In 

Arabidopsis, the group IIIf bHLH TFs are EGL3, GL3, ATMYC1, and TT8, which, except 

for ATMYC1, are all involved in a similar regulatory mechanism for both anthocyanin 

biosynthesis and trichome and root hair initiation with some overlap with regard to 

1 252 411 610462 525

-AHLW -AHLWEMSA

411-462 – ++++no 0.82 ± 0.04

411-470 +++ ndyes 3.00 ± 0.15

525-610 +++ ndnd nd

rel. str.
MIR ACTACIDIC self AD-RIF1G-box β-gal unitbHLH

411-478 +++ –yes 5.00 ± 0.25

411-496 – ndyes 2.00 ± 0.01

411-510 – ndnd 0.50 ± 0.03

411-524 – ndyes undetectable

411-610 ++++ ++++no 33.50 ± 3.90

R

Figure 2.5   Domain truncations relative to full-length TF and tested interactions.   
Many truncated forms of R have made and tested.  These truncations have revealed 
that the bHLH-only (R411-462) does not dimerize or bind DNA, while elongated forms 
(R411-470 and R411-478; based upon the current work) both dimerize and bind DNA, 
specifically the G-box.  The ACT domain-only, R525-610, dimerizes was the likely reason 
for increased dimerization in the R411-610 form.  However, with inclusion of the ACT 
domain, DNA-binding activity is lost.  When interaction partner, RIF1, was tested for 
protein-protein interaction, interaction was lost in the R411-478 form. RIF1 was determined 
to interact within the bHLH domain R411-462.  RIF1 appears to recognize the monomeric 
form of the bHLH and cannot bind if dimerization occurs at the bHLH.  (–Ade –His –Leu 
–Trp (AHLW) drop-out medium in a yeast two-hybrid assay) 
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formation of the BMW complex and subsequent downstream gene activation.  EGL3, 

GL3, and TT8 are all able to heterodimerize.  This, however, is not due to decreased 

stability of the homodimer, but rather due to the presence of the extremely conserved 

heptad 1 (Figure 1.3A and Appendix).  Therefore, the differences in regulation 

functionality are due to differences in other domains and their interacting partners as well 

as spatiotemporal expression patterns. 

 

Group IIIf bHLH TFs are notoriously difficult to work as full-length proteins and only up 

until recently [210], recombinant expression of this group had not been successful.  

Because of these difficulties and the multiple domains present, this group of TFs is 

regularly worked with as truncated proteins and individual domains.  Some of the original 

work with this group had shown that the bHLH domain did not dimerize and did not bind 

DNA.  This did not sit well with the known properties of this domain – that they bind DNA 

and the promoters known to be regulated by these TFs, have G-boxes.  In bHLH–LZs, 

Figure 2.6  Yeast-two hybrid homodimerization analysis of mutations to the LZL 
region.  Homodimerization of the bHLH domain is possible if additional residues are 
added.  To determine the sensitivity of this interaction to perturbations in what is 
thought to be a LZ-like domain, mutations known to disturb coiled-coil interactions were 
made.  All mutations tested, except for L468A and E469K, disrupted homodimerization 
under –AHLW selection. Mutations L461A and R464D severely disrupted homo-
dimerization such that no growth occurred under –HLW selection.  (–His –Leu –Trp (–
HLW) and –Ade –His –Leu –Trp (–AHLW) drop-out media in a yeast two-hybrid assay) 
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helix 2 and the LZ are typically a single helix with the LZ being an extension of helix 2.  

Though this group did not the extend helix of bHLH–LZs, it did have a longer helical 

region that credited.  Secondary structure prediction showed that these previous 

experiments had actually truncated the helix, of which helix 2 is a part of, too short. 

 

Previous experiments have shown that extended helix displayed the expected 

properties.  These properties included dimerization and binding DNA, exclusively the G-

box.  In bHLH–LZs, the LZ begins with heptad 0, located in helix 2 (Figures 1.3A and 

Appendix).  Heptad 1 begins the defined LZ and heptads generally repeat themselves 

for a total of five heptads.  Alignment with bHLH–LZ proteins revealed the presence of a 

second heptad in R that aligned with heptad 1 in bHLH–LZs.  Unlike bHLH–LZs, R and 

other group IIIf bHLHs does not have additional heptad repeats.  Further evidence that 

this region in R was likely to behave similarly to bHLH–LZs was that in bHLH–LZs, a 

conserved alanine was found at the fourth position (Figures 1.3A and Appendix) after the 

last full heptad and this conserved alanine was present in the group IIIf bHLHs. 

 

A noted characteristic of LZs, in both bHLH–LZs and bZIPs, is that charged residues 

adjacent to the hydrophobic residues in positions a and d, are generally involved in 

electrostatic interactions or salt bridges, which increase or decrease the stability of the 

protein–protein interaction [185,191-193,197-200,202,211-222].  These electrostatic 

interactions (cutoff 4 angstroms) must be complementary for strong dimerization to 

occur.  If they do not complement each other, then the two peptides will either only be 

able to weakly dimerize, of which the overall stability of the complex can be increased 

when binding DNA, or not dimerize at all.  The inability or decreased ability to 

homodimerize among bHLH–LZ indicates that the particular bHLH–LZ could 

heterodimerize with one or more partners.  Heterodimerization can be a means by which 

to increase the number of complexes available with a minimal number of peptides. 

 

In order to determine whether heptads 0 and 1 in group IIIf bHLHs, functioned in ways 

similar to how the multiple heptad repeats function in bHLH–LZs, a series of experiments 

were conducted to determine if the introduction of antagonistic residues at positions g 

and e would disrupt the dimerization and DNA-binding abilities of this truncated domain 

in R.  The residues present in R, at this motif, provide numerous possibilities for salt 

bridges; however, for these experiments, those that fit the classical positions, g and e, 
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for salt bridge formation in LZs were mutated.  The goal was to determine how 

susceptible R dimerization and binding was when these electrostatic interactions were 

disrupted. 

 

With very few exceptions, nearly all group IIIf bHLHs are comprised of a basic–basic–

hydrophobic–neutral–acidic–hydrophobic–acidic motif.  In R, it is RRVQELE (Figures 

1.3A and Appendix).  Single mutations to position g0 were made, R464D and R464E, in 

R411–478.  In a yeast two-hybrid assay for homodimerization, the R464E form permitted 

yeast growth on –His –Leu –Trp (–HLW), but not on the more stringent –Ade –His –Leu 

–Trp (–AHLW) selection, while the R464D form prevented yeast growth on both drop out 

mediums (Figure 2.6, sectors 3 and 4).  When the DNA-binding capabilities of R464D 

form towards the G-box were tested using EMSA (Figure 2.4), binding and sifting 

occurred, but at a much reduced degree compared to wild-type R411–478 (R464E was not 

tested by EMSA).  Thus, both the R464D and R464E mutations disrupted the 

electrostatic interactions between the helices in this region; reducing the stability and 

ability to homodimerize to that of the R411–462 truncated form. 

 

Additional single mutations were made to position e1 in R411–478 – E469R and E469K.  

When evaluated in a yeast two-hybrid assay, both forms permitted yeast growth on –His 

–Leu –Trp (–HLW) selection (Figure 2.6, sectors 6 and 7).  On the –Ade –His –Leu –Trp 

(–AHLW) selection, yeast with the E469R form was unable to grow; however, unlike the 

mutations prior, moderate yeast growth occurred with the E469K form.  With EMSA, the 

E469R form was unable to cause retardation of the G-box (Figure 2.4). 

 

A special case – mimicking Max N78/H81 in R V465N/L468H 

HsMax is a weakly interacting bHLH–LZ and therefore, does not readily homodimerize, 

but rather heterodimerizes.  When N78V/H81L mutations are introduced into HsMax, the 

monomers are able to readily homodimerize [223].  The reverse of this experiment was 

repeated in R to determine as to what degree of stability these two positions provide in 

the homodimerization of R. 

 

In the V465N/L468H R411–478 mutant, yeast grew on –His –Leu –Trp (–HLW), but not the 

more stringent –Ade –His –Leu –Trp (–AHLW) plates in contrast to wild-type R411–478 

growing well on both (Figure 2.6, sector 8).  This indicates that the V465N/L468H R411–
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478 mutant destabilizes the homodimerization of R to make it weakly interacting as it does 

in the longer, full HsMax bHLH–LZ.  When tested for binding a G-box in an EMSA using 

the same amount of protein and probe, V465N/L468H R411–478 bound the G-box, but only 

with about half the intensity as that of wild-type R (Figure 2.4).  Thus, R with a single 

heptad bHLH–LZL motif has a significant role in the maintaining the ability of R to 

homodimerize and that the regulatory mechanism of R is likely to not tolerant of 

mutations that reduce its capacity to homodimerize (Appendix). 

 

Impact of dimerization on the RbHLH–RIF1 interaction 

RIF1 interacts and binds the bHLH domain of monomeric R411–462, but not dimeric R411–

478 or R411–478 (Figures 2.5 and 2.7, sectors 1 and 2).  However, with the inclusion of the 

ACT domain, homodimerization no longer occurs at the bHLH domain, but rather 

Figure 2.7 Interaction of R and RIF1 via yeast-two hybrid analysis utilizing 
mutations in the LZL region.  Disruption of interactions were apparent under 
quadruple selection.  Sector 1 and 2 imitate the biological role since both are only 
truncated.  Both R411–478 and R411–610 homodimerize without the presence of RIF1 
(Figure 6 and [37]), however R411–610 possesses two interaction domains of which the 
second, the ACT domain, has, at times, a stronger bond.  With the homodimer 
stabilized at the ACT domains, the interaction between HLH-LZL domains is free to 
dissociate.  RIF1 enters and interacts with the HLH domain(s) as seen in sector 2.  
Sectors 3 and 6 are similar in that these mutations inhibit homodimerization and 
generate free-form HLH monomers (Figure 6).  With the introduction of RIF1, RIF1 is 
observed to interact with monomeric forms of R between residues 411 and 462 [37].  
An interaction between R411–478 R464D and RIF1 (sector 4) despite the R464D 
mutation’s ability to disrupt homodimerization.  (–His –Leu –Trp (–HLW) and –Ade –His 
–Leu –Trp (–AHLW) drop-out media in a yeast two-hybrid assay) 
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through the ACT domain.  Therefore, mutations that disrupt homodimer formation 

through the bHLH domain could facilitate RIF1 interaction.  Mutations that fully disrupted 

bHLH homodimer formation, in all cases, and DNA binding were L461A and R464D 

(Figure 2.6, sectors 2 and 4).  Those with a significant degree of disruption were R464E, 

E469R, and V465N/L468H (Figure 2.6, sectors 3, 6, and 8).  These five forms were 

evaluated for interaction with RIF1 by a yeast two-hybrid assay.  Since R411–478 dimerizes 

in the yeast two-hybrid, as expected, it did not interact with RIF1 on –Ade –His –Leu –

Trp (–AHLW) drop out medium (Figure 2.7, sector 1), while inclusion of the ACT domain 

in R411–610 permitted interaction with RIF1 (Figure 2.7, sector 2).  Additionally, R464D and 

V465N/L468H did not interact with RIF1 (Figure 2.7, sectors 4 and 5).  Mutants that did 

interact with RIF1 were L461A and E469R (Figure 2.7, sectors 3 and 6).  The interaction 

of RIF1 with R464D and not E469R was unexpected since R464D disrupts 

homodimerization, while E469R does not. 

 

The bHLH–LZ TFs of the Myc/Max/Mad network are known for their latitude in partner 

swapping based upon these same hydrophobic and electrostatic interactions at the 

dimerization interface of their LZs [215,224-227].  Containing five heptads, Max has an 

intermediate stability to homodimerize in part due to deviations from optimal residues at 

heptad 1, positions a and d.  Mutational analysis of these positions resulted in a marked 

increase in DNA binding and complex stability in the N78V/H81L Max double mutant, as 

well as, showing independent folding of helix 2 and the LZ [223].  Interestingly in R 

heptad 1, valine and leucine appear to occupy to same positions seen in the Max double 

mutant (Figure 1.3A) and the Max double mutant suggests that V465 and L468 in R 

could function in a similar manner to the LZ by increasing dimer and overall complex 

stability.  
 

Other information supporting the presence of a coiled-coil, include consensus secondary 

structure predictions for AmDEL, R, and PfMyc-RP (Perilla frutescens).  All three 

proteins show agreement for the presence of helical structure with R matching as to 

when the helix ends.  R has a predicted helical structure to include heptad 1.  AmDEL 

and PfMyc-RP are not as sharply demarcated, but the consensus predicts an end to 

helical structure in AmDEL after heptad 1 and midway into heptad 2 for PfMyc-RP.  

Interestingly for AtRAP1, the region corresponding to heptad 1 in R had some prediction 

results showing potential β-strand or non-helical structure as did HsSREBP1.  Helical 
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structure resumed in the heptad 2 equivalent and continued for another two heptads.  

This may have dissuaded the classification of AtRAP1 as a bHLH–LZ when coiled-coil 

prediction analysis was performed [184]. 

 

As to whether group IIIf TFs could merely possess an extend helix 2, this is unlikely due 

to the independent folding of helix 2 and the LZ in Max [223] and the highly optimized LZ 

nature of R heptad 1 consistent to the register of typical bHLH–LZ TFs.  Thus, R heptad 

1 and similar TFs should be recognized as containing a putative, though shortened, 

bHLH–LZL domain assisting as a ‘leucine button’ for a potential dimerization interface. 
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Figure 2.8  Summary of results for mutations within the LZL domain of R411-478.  
L461A and R464D mutations severely disrupted dimerization, but in the case of R464D, 
it was apparently not significant enough to disrupt cooperative DNA-binding.  L468A 
and E469K mutations did greatly impact dimerization. L461A and E469R disrupted 
dimerization and DNA-binding and likely created obligate monomeric forms, which 
resulted in the ability to interact with RIF1. D12 is a naturally occurring deletion 
determined not to dimerize or interact with RIF1.  (–His –Leu –Trp (–HLW) and –Ade –
His –Leu –Trp (–AHLW) drop-out media in a yeast two-hybrid assay) 
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Discussion 

Model 

The current model for promoter transactivation by R involves a bimodal or switch-like 

mechanism (Figure 2.9).   Most importantly, this switch model allows for R to be 

repurposed for the activation of promoters with differing cis-element structure within the 

same biosynthetic pathway.  The promoters of two late pathway genes are 

transactivated by R, A1 and Bz1.  While the promoter of Bz1 possesses an E-box and 

no MYB-binding sites, the promoter of A1 possesses MYB-binding sites, but no E-boxes.  

Despite this, both R and C1 are required for transactivation of both A1 and Bz1.  For 

Bz1, it is thought that R binds and transactivates in a more classical mechanism, in 

which the HLH–LZL domains homodimerize and the basic domains bind DNA at the E-

box.  Due to the stable interaction between the HLH–LZL interfaces, RIF1 is blocked 

from interacting.  Additionally, the ACT domains remain separated.  Whether this is due 

Figure 2.9  Switch model for promoter activation by R. (A) Representative of R 
interacting with the A1 promoter (for DFR), which does not possess a G-box. The ACT 
domain dimerizes and RIF1 binds the helix-loop-helix domain of R. R is unable to 
directly bind DNA. It interacts with the promoter through the R2R3-MYB, C1, which 
binds DNA directly. (B) In the Bz1 promoter (for UFGT) there is a G-box. R is able to 
directly bind with the promoter and activate it. (Adapted from [37]) 
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to steric hindrance, posttranslational modification, or possibly even the binding of a small 

molecule ligand by the ACT domain is unknown. 

 

For A1, the mechanism is slightly more complicated.  Since no E-box is present, a stable 

bHLH–LZL–DNA complex is not formed.  This exposes the HLH domain and permits 

RIF1 to interact.  In this configuration, homodimerization occurs at the second 

dimerization interface, the ACT domain.  Thus, R becomes a scaffold and is anchored to 

the A1 promoter via interaction with C1 and the interaction with RIF1 and the 

nucleosome [37].  The order in which this complex is formed is not yet known. 

 

Monomer versus dimer pathway for binding DNA 

Cooperative binding is a well-documented phenomenon in bHLH–LZ and bZIP TFs 

[228,229].  DNA specificity and rate can be enhanced when binding occurs through the 

monomer pathway as opposed to the dimer pathway [230].  It has been reported that 

HsMax22–113 fully dimerizes at concentrations above 10 µM and that when rapidly diluted 

to 0.6 µM, dissociation to monomers occurs, and redimerization only occurs slowly [219].  

Using disulphide bond cross-linked HsMax22–105, HsMax22–105 was expected to show 

speedier DNA binding towards the E-box; however, preformed dimer was found to bind 

more slowly than monomeric HsMax22–113 in experiments with and without nuclear 

extract [219].  The proposed mechanism for this difference is thought to be due to the 

interaction of nonspecific protein and/or DNA partners, which are entrapped and 

nonproductive [219,231,232]. 

 

Further work has demonstrated the in case of Max, Mad, and Myc dimer formation as 

protein dimerization was found to be the rate-limiting step.  By following the monomer 

pathway, it is thought that the final complex could be formed faster [40].  Ecevit, O. et. al. 

go on to note that within the cellular environment, both monomeric and dimeric forms 

exist and compete for DNA.  The pathway of DNA-binding taken would likely be a 

consequence of the ratio between monomeric and dimeric forms [40]. 

 

Could RIF1 be controlling which pathway R binds? 

The inclusion of the LZL-domain in R assures a more stable dimerization interface at the 

HLH domain.  This is likely critical for maintaining R homodimers that function as a bHLH 

and for those promoters that require functional R bHLH homodimer for DNA-binding.  
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Without the added affinity provided by the LZL-domain, it is likely that promoter 

transactivation would only occur through the RIF1 pathway and only those genes 

utilizing it.  

 

Within the cellular environment, the presence of RIF1 would likely alter the availability of 

monomeric R and force R to bind promoters, like that of Bz1, through the dimeric 

pathway.  With Max, Mad, and Myc, dimerization or the protein–protein interaction was 

found to be the rate limiting step during complex formation.  Determining the binding 

kinetics between the HLH–LZL and ACT domain interfaces, as well as between the HLH 

and RIF1, would likely go a long way in understanding the bias of complex formation 

under the presence of RIF1. 

 

The position of these two genes within the anthocyanin biosynthetic pathway may shed 

light upon the differences between the two different modes of regulation by R (Figure 

2.1).  Thought to localized to the surface of the endoplasmic reticulum in the cytoplasm, 

DFR begins the late anthocyanin biosynthetic pathway by the reduction of 

dihydroflavonols to flavan-3,4-diols.  In turn, anthocyanidin synthase (ANS) oxidizes 

flavan-3,4-diols to anthocyanidins.  Blockage of anthocyanidin transport to the vacuole 

can significantly decrease anthocyanidin accumulation and without transport into the 

vacuole, anthocyanidins are subject to oxidative degradation within the cytoplasm.  This 

is what occurs with negative mutations to Bronze1 (UFGT) and Bronze2 (a transporter) 

in maize, which creates a bronze-like color.  Glycosylation of anthocyanidins is the 

dominant modification that permits transport into the vacuole.  It could be seen that DFR 

is a committed branch of the flavonoid biosynthetic pathway, deviating from flavanones 

(Figure 1.1), and tighter regulation of its transcription would be preferable.  Genes 

downstream of DFR, such as Bz1, are obligated to be activated in order to clear 

potentially toxic metabolites from the cytoplasm and would thus likely have a lower 

threshold for activation of transcription. 

 

Together with the knowledge of the preference for RIF1 to interact with monomeric 

rather than dimeric R at the bHLH domain and the highly conserved nature of the LZL 

motif within the group IIIf bHLHs would indicate that the reason for the degree of 

conservation in the LZL motif is due to a requirement for the dimerization of R at the 

bHLH domain during some point in time as it functions as a regulator of transcription.  In 
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order to ensure that R can form a dimer at the bHLH domain, the LZL motif must have 

been selected to provide a sufficiently strong and redundant surface for dimerization.  It 

would also seem to be the case that this mechanism is conserved throughout the group 

IIIf bHLHs as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Joshua R. Werkman 2013 



 

 37 

CHAPTER 3 

 

An adapted ELISA-based method for determining binding specificity  

and kinetic data for MADS-domain transcription factors 

 

Hypothesis 

It is possible to develop measurements of the binding affinity with regards to specific, 

known DNA sequences that allows for a more quantitative assessment of DNA-binding 

site (DBS) recognition amongst MADS domains and complements bulk, nonspecific 

methods such as Chromatin ImmunoPrecipitation (ChIP)-based techniques or SELEX 

(Systematic Evolution of Ligands by EXponential enrichment). 

 

Introduction 

Identification of cis-elements with biological activity has been a major challenge with 

MADS box TFs and TFs in general.  Putative CArG boxes can be readily identified by 

using a consensus sequence and simple string searching scripts.  Advanced methods 

can be employed that make use of conserved pairs of cis-elements within promoters 

with similar expression profiles.  This can be particularly problematic with CArG boxes 

that have upwards of 16 nucleotides when flanking sequence is included.  By 

understanding the individual kinetics between unique CArG box sequences, one might 

be better able to understand the binding characteristics, requirements, and specificity of 

these interactions as compared to bulk methods such as those based upon ChIP or 

SELEX. 

 

Three common approaches have been used when selecting cis-elements to study the 

binding specificity of TFs – native verified cis-elements from promoters, ChIP–seq, and 

SELEX.  Each approach has its own pros and cons.  Identifying native cis-elements from 

known promoters has been the classical method to identifying and understanding the 

biological significance of a cis-element and its corresponding TF(s).  Typically in 

promoter analysis, the sequence of the promoter of interest is scanned for cis-elements 

using known consensus sequences from a database of cis-elements.  Once the 

locations of putative cis-elements have been identified, truncations are made to 

promoter to combinatorially test select putative cis-elements by its ability, or lack of, to 

drive the expression of a reporter gene.  Putative cis-elements can also be more 
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specifically tested by site-directed mutagenesis away from the consensus sequence of a 

particular cis-element in hopes of identifying biologically significant cis-elements from 

decoy binding sites [233] making promoter analysis a gold standard for the identification 

of relevant cis-elements. 

 

Chromatin immunoprecipitation-based techniques include ChIP–on–Chip (ChIP–chip), 

ChIP–PCR/qPCR, and ChIP–sequencing (ChIP–seq).  Each has specific advantages 

and disadvantages in the identification of cis-elements throughout an entire genome.  

ChIP–seq is an approach well-suited, though not required, to organisms with sequenced 

genomes and labs with high-throughput resources.  Tissue is treated with a cross-linking 

agent to preserve TFs in their current interaction state with DNA.  A lysate is made, the 

chromatin is sheared by sonication, and the resulting lysate is passed over an 

immunoaffinity column to enrich for chromatin fragments specifically bound by the TF.  In 

cases where a strong, specific antibody is not available, the TF of interest can be tagged 

with a peptide sequence suitable for affinity purification, transformed into the organism, 

and subsequently, purify chromatin fragments over an appropriate affinity column.   

High-capacity sequencing is performed on the enriched, purified DNA.  Multiple 

sequences are collected for each binding site genome-wide to allow for the mapping of 

binding sites and more representative consensus sequences as well as a host of 

additional bioinformatic analyses. 

 

SELEX is a technique in which DNA probes are synthesized with a stretch of random 

sequence within the middle of the probe.  Recombinant, tagged TF and random DNA 

probe is mixed and allowed to interact under suitable conditions.  The TF is purified and 

DNA sequences that have the high affinities with the TF are co-purified.  Co-purified 

DNA is then amplified by PCR and purified.  Several rounds of binding and purification 

are repeated with those sequences possessing the highest binding affinities with the TF.  

Finally, probe from the later rounds are sequenced.  Advantages to this technique 

include a wide range of sequences that the TF can interact within a more controlled 

environment. 

 

Despite these powerful methods to identify which cis-elements that a particular TF binds, 

none offer a systematic analysis for the sequence specificity of a TF towards a cis-

element.  A systematic analysis for binding specificity involves beginning with a known 
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cis-element for which the TF binds with a high affinity and rotating through every base at 

every position in that cis-element.  Frequently, canonical cis-elements are palindromic, 

especially those that are bound by dimeric TFs.  For lengthy cis-elements, the sheer 

number of permutations for DNA probes could make a full analysis potentially cost 

prohibitive.  E-boxes, for example, are six base pairs in length.  To assay a six base pair 

element, permitting repetition without importance to order, would require the synthesis of 

nearly 84 probes.  As mentioned before, CArG boxes are ten base pairs in length 

resulting in 286 permutations and with flanking sequence (14 bp), 680 permutations.  

Some sequences, of course, could be omitted due to duplications created between 

sense and antisense orientations.  However, if only palindromic elements are initially 

considered, the number of permutations can be reduced considerably (Appendix).  In the 

case of MADS domains and CArG boxes, each half of a palindromic element 

corresponds to a half-site (Figure 1.6).  Palindromic cases are particularly beneficial in 

assuring an accurate description when measuring binding kinetics due to the behavior of 

half-sites and dimeric TFs. 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑡𝑒𝑠 =
(𝑛 + 𝑟 − 1)!
(𝑟)! (𝑛 − 1)!

; 

𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒𝑠 𝑎𝑛𝑑 𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

 

 

The electrophoretic mobility shift assay (EMSA) has been the traditional means of 

examining the binding properties of MADS domain TFs.  It is an adaption to the Western 

blot where proteins or DNA are separated by size in a polyacrylamide gel under the 

influence of an electric current (polyacrylamide gel electrophoresis; PAGE) followed the 

lateral transfer to a membrane and finally detected with a reporting system.  In the 

EMSA, purified or unpurified TF is incubated with DNA probe in a binding reaction.  The 

binding reaction is then separated by PAGE, transferred to a membrane, and UV cross-

linked.  It is also important to note that running conditions for EMSAs must be 

nondenaturing and that buffer conditions should not radically alter the structure and 

binding behavior from native structure and binding.  Contemporary, non-radioactive 

EMSAs generally employ DNA probes end-labeled with biotin.  The membrane is 

incubated with a streptavidin-HRP (horseradish peroxidase) conjugate and finally a 

chemiluminescent substrate to detect the location of biotin-labeled DNA.  An interaction 
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between TF and DNA is indicated by a retardation or shift in size due to the formation of 

a larger protein–DNA complex. 

 

Though a powerful and highly useful method, EMSA can be tedious, time-consuming, 

and susceptible to variation between multiple gels [234,235].  Using EMSA to examine 

binding kinetics greatly increases the number of gels required.  Therefore, an alternative 

to EMSA was sought that would allow increased the throughput, ease of use, increased 

consistency, and improved signal measurement.   

 

One widely adaptable method is the enzyme-linked immunosorbent assay (ELISA) 

(reviewed by R. M. Lequin [236]), which helped transform medicine since its invention in 

the 1960s by P. Perlmann, E. Engvall, A. Schuurs, and B. van Weemen.  A relatively 

cheap and very sensitive nonradioactive form of the immunoassay, the general 

procedure of the ELISA involves the immobilization of antigen to an inert surface such as 

polystyrene.  In this case, proteins from blood serum, including the antigen, nonspecially 

interact and associate with the irregular, hydrophobic surface on untreated polystyrene, 

a process known as adsorbance.  The surface is washed with an appropriate buffer to 

remove unbound protein.  To reduce signal background, another protein, such as casein 

from milk, is applied to the surface in excess as a blocking reagent and allowed to 

adsorb to any exposed surface as well as to any proteins that might nonspecifically 

interact with reagents used later in the assay.  After removal of the blocking reagent 

solution, an antibody with specificity towards the antigen and that has also been 

chemically linked to an enzyme such as HRP is applied to the surface, which then binds 

to the immobilized antigen.  Following removal of the antibody–enzyme conjugate and 

washing of the surface with buffer, a chromogenic substrate for the enzyme is applied, in 

which the enzyme acts upon producing an amplified signal that can measured with a 

spectrophotometer.  Higher signals typically indicate higher levels of antigen.  Common 

variations of the ELISA include: direct, indirect, sandwich, and competitive ELISA.  It is 

well-suited for high-throughput, replicates, and statistical analysis and has been 

deconstructed and adapted for the study of nearly every type of interaction possible.   

 

ELISA-based DNA–protein interaction assays have been described as early as 1994 

and were used for the detection, quantification, and measurement of DNA–protein  
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binding kinetics [237,238].  However, it was not until 2001 that this adaption became 

mainstream for the study of the TF HsNFκB (nuclear factor kappaB), which is involved in 

the immune response and activated by inflammation [239] and represented a new target 

for the development of anti-inflammatory drugs.  To detect the presence of NFκB in 

Nickel

Streptavidin-HRP conjugate

MADS domain homodimer with 8xHIS tag

Biotin-labeled dsDNA probe

Ni2+-coated plate; pre-blocked with BSA

Addition and binding of clarified lysate; 
binding of tagged homodimers and other 
proteins with cross-specificity to nickel

3x wash

3x wash

3x wash

Addition of biotin labeled probe

Addition of streptavidin-HRP conjugate

Development of signal

Figure 3.1  Flowchart for redesigned DPI-ELISA.  Recombinant HIS-tagged protein is 
purified from processed lysate using a nickel coated plate. The plates are then washed 
and biotin labeled DNA probe is added to the wells of the plate and incubated.  
Following washing streptavidin-HRP conjugate is added to the wells and incubated.  
Finally after further washing, TMB substrate is added to the wells and the signal is 
allowed to develop.   
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whole cell lysates, biotinylated double-stranded DNA (dsDNA) oligonucleotide with the 

NFκB consensus binding site is immobilized to a streptavidin-coated microtiter plate.  

The wells are washed and cell lysates are added to the wells.  Any active NFκB in the 

cell lysates interacts with its consensus binding site and binds.  Another set of washes 

are performed to remove unbound proteins and rabbit anti-NFκB antibodies are then 

added to the wells and incubated.  After washing, peroxidase-conjugated anti-rabbit 

antibodies are applied and incubated.  Finally, NFκB is detected with the application of a 

chromogenic peroxidase substrate and the subsequent colorimetric reaction. 

 

In plants, DNA–protein interaction ELISA (DPI-ELISA) or TF enzyme-linked 

immunoassay (TF-EIA) has been slow to be adopted in favor of the traditional EMSA.  It 

has been used in the study of bZIPs and WRKYs TFs [240,241] using roughly the same 

method as described by Hibma and others [237].  Redesigning the method was sought 

in order to allow combined protein folding and purification (Figure 3.1).  Briefly, C-

terminally, HIS-tagged protein is expressed as inclusion bodies in E. coli BL21(DE3) 

cells, isolated inclusion bodies are solubilized with urea, solubilized inclusion bodies are 

diluted and applied to nickel-chelated coated microtiter plates.  After immobilization of 

tagged protein to the plates, wells are washed to remove extraneous proteins.   Biotin-

labeled dsDNA probes, at varying nanomolar concentrations, are applied to the plate, 

followed by HRP conjugate.  The plate is then colorimetrically developed with 3,3’,5,5’-

tetramethylbenzidine (TMB) substrate and evaluated in a spectrophotometer.   

 

Materials and Methods 

Preparation of Expression Constructs – Expression constructs were prepared using 

standard molecular biology techniques.  Gene fragments were amplified by PCR based 

upon desired domain combinations from Arabidopsis thaliana cDNA clones purchased 

from the Arabidopsis Stock Center (AGL15 (PYAT5G13790), FLC (U89754), SEP3 

(U90075), and SVP (U89996)).  DNA fragments were inserted into the NdeI and XhoI 

sites of pET41 for the generation of C-terminally polyhistidine tagged fusion protein 

without a GST tag.  The final arrangement chosen was in the form of NcoI–MADS1–60–

HindIII–SEP3IK–SpeI–XhoI–8xHIS–Stop or NcoI–MIK– SpeI–XhoI–8xHIS–Stop.  Site-

directed mutagenesis was used to remove a native HindIII site in the K domain of SEP3.  

Alternative MADS domains can be swapped in as NcoI–HindIII fragments and the K 
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domain provides bulk and an extended surface for homodimerization.  Additionally, 

alternative C-terminal tags can be added such as a possible internal control.  Verified 

constructs were transformed into E. coli BL21(DE3) cells. 

 

Preparation of Recombinant Protein – Protein expression was performed overnight with 

100 mL ZYM-5052 auto-induction medium with 100 µg/mL kanamycin in 500 mL 

Erlenmeyer flasks at 37°C, 300 rpm [242].  Cells were pelleted and resuspended in 1X 

CelLytic B (Sigma B7435), 10 µL/mL protease inhibitor cocktail (Sigma P8849), 1.5 

U/mL benzonase (Sigma E1014), and 10 µL/mL lysozyme (10 mg/mL) (Sigma L3790).  

Lysis was performed osmotically with the addition of five volumes water.  Inclusion 

bodies were pelleted by centrifugation, washed with water, resuspended in storage 

buffer (50 mM Tris HCl, pH 8.0, 100 mM KCl, 50% (v/v) glycerol, 1 mM DTT (fresh)), and 

stored at –20°C.  Total protein concentration of the recombinant protein stock in storage 

buffer was measured from serial dilutions of solubilized inclusion bodies in 6 M urea 

using a microtiter plate formatted Bradford assay (Bio-Rad 500-0006) against a BSA 

(Bio-Rad 500-0007) standard curve also in 6 M urea. 

 

Preparation of Biotinylated dsDNA Probes – DNA oligomers were purchased from 

Integrated DNA Technologies (Coralville, IA).  The 5’-biotinylated sense strand was in 

the form of 5’-CCGGGTTTTACTATATATAGTAAAAGGGCC-3’ while the antisense strand was 

without modification.  Sequence flanking the CArG box (underlined) was based upon the 

HABS isolated for AGL15 [243] and a stretch of GC-rich sequence was used for a clamp 

for either end.  Oligomers were reconstituted to 100 mM with Tris–EDTA buffer pH 8.0.  

Equimolar amounts of each oligomer were combined in a buffer of 75 mM Tris–HCl, 150 

mM NaCl, 15 mM MgCl2, 1.5 mM dithiothreitol, pH 7.9 (1.5X NEBuffer #3) for a final 

individual oligomer concentration of 10 mM.  Diluted oligomers were annealed by 

heating to 95°C in a heat block for 5 min, followed by moving the heat block to a 37°C 

incubator to anneal.  The heat block was moved to a bench at room temperature to finish 

cooling before placing on ice or storing in the freezer at –20°C. 

 

Generalized Assay – A calculated amount of purified inclusion bodies for the DPI-ELISA 

at hand are removed from the protein stock solubilized on-demand in 6 M urea made the 

same day.  With exception for 8 M urea, all solutions containing urea were kept in an ice 

bath and at no point were any solutions with urea permitted to rise above 25°C.  After 30 
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minutes at 6 M urea, the concentration was incrementally reduced by dilution to a total 

protein concentration of 200 ng/mL and 0.5 M urea. 

 

HIS-tagging and nickel plates were selected for the following reasons:  “in position” 

purification, multiple use of the small protein tag, adsorption could block the DNA-binding 

domain (DBD) of the dimer and by using this method the DBD is oriented away from the 

surface.  Nickel-chelate coated plates (96-well) (Pierce 15142 or 15442 (0.24 μg/well)) 

are washed once with wash buffer (10 mM HEPES, 50 mM NaCl, 50 μM EDTA, 0.005% 

Tween 20, 5% (v/v) glycerol, pH 7.2, 0.25% BSA) and 200 μL diluted, refolded protein is 

added to each well except for specific control wells.  Plates are covered and incubated 

for 2 hours at room temperature with shaking on a Thermo Scientific microtiter plate 

shaker (Model 4625-Q) at setting 5.  Protein solution is then removed by pipette and 

wells are washed 3 times with wash buffer.  Buffer conditions for binding and washing 

were found to be radically different than for IMAC purification of HIS-tagged proteins and 

were modeled after buffer conditions for surface plasmon resonance (SPR) NTA sensor 

chips [244].  An added benefit is that only minimal optimization will likely be needed if 

binding kinetics were to be analyzed using SPR. 

 

Previously prepared biotin-labeled dsDNA probes, 30 bp in length, are diluted in deep-

well microtiter plates (1 mL) at varying nanomolar concentrations for measurement of 

binding kinetics or a single concentration (90 nM) for screening probes.  Diluted probes 

are then applied to the wells accounting for appropriate controls.  Plates are covered and 

incubated for 1 hour at room temperature with shaking on a microtiter plate shaker.  

Probe solution is then removed by pipette and wells are washed 3 times with wash 

buffer. 

 

NeutrAvidin-horseradish peroxidase (NA-HRP) conjugate (Pierce 31001) is diluted to 2.5 

µg/mL and sterile filtered to remove precipitated clumps, which is critical for assay 

reproducibility.  Plates are covered and incubated for 30 minutes at room temperature 

with shaking on a microtiter plate shaker.  NA-HRP conjugate is removed by pipette and 

wells are washed 4 times with wash buffer.  Plates are developed with room temperature 

1-Step Ultra TMB substrate (Pierce 34028) for 5 minutes at room temperature with 

shaking.  Peroxidase reaction in stopped with 2 M sulfuric acid.  The developed plate is 

read at 450 nm in a DTX 880 plate reader. 
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Results 

Recombinant protein production 

Early in the production of MADS TFs, it was found that expression of MI domains AGL15 

(10.1 kDa) resulted in an abrupt halt in cell growth in E. coli BL21(DE3) cells upon 

addition of IPTG and no identifiable protein.  Standard methods to resolve this issue 

were tried including:  pLysS, pLysSRARE2, temperature, rare-codon plasmids (Figure 

3.2).  Expression of only the MI domain was chosen in order to focus solely on the DNA-

binding specificities of the MADS domain and to minimize effects from other domains.  

Later, personal communication with Dr. Sharyn Perry, University of Kentucky, indicated 

that recombinant expression of AGL15 with the presence of the MADS domains was 

notoriously difficult and that these forms would be located in inclusion bodies, while 

truncated forms without the MADS domain were soluble.  Furthermore, SEP11–70 (AGL2) 

was reportedly to be weakly expressed and difficult to work with when compared to 

SEP11–77 [245].  Realizing additional domains would be necessary to successfully 

produce recombinant MADS proteins; a truncated form, AGL15MIK, (196 aa, 22.6 kDa) 

and the full-length AGL15MIKC (30.5 kDa) were also expressed in E. coli.  Both longer 

forms formed inclusion bodies and did not severely stunt the growth of E. coli (Figure 

2.3).  The truncated MIK form was selected for production as expression was slightly 

better than for the full-length and additional, unknown bands were consistently present 

with SDS-PAGE with the full-length protein. 

 

Development and optimization of DPI-ELISA 

Initially, attempts were made using nickel-chelated plates and a phosphate buffer 

system, which resulted in real differences between probes though at very low signal 

intensities.  Improvements and optimizations would be required to make this a viable 

method.  Aspects examined included changing the chelated metal ions, testing various 

blocking agents, modification of the buffer system, and titration of the components. 

 

Copper versus nickel plates 

As a variation of the direct ELISA, which is known to be less sensitive than indirect or 

sandwich ELISAs, an increase in the amount of HIS-tagged protein bound by the chelate  
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Figure 3.2  Growth characteristics of BL21(DE3) cells producing recombinant 
AGL15 protein.  Only one set of conditions permitted cell growth while containing the 
vector.  These conditions used BL21(DE3) transformed with pET41 and 1% glucose.  
When additional helper plasmids were included cell growth was inhibited.  To detect 
cytotoxicity, plasmids were transformed into BL21(DE3) cells and their growth 
monitored following transformation. 
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metal ion could hypothetically increase the signal and sensitivity of the assay.  Plates 

chosen were Pierce brand from Thermo Fisher Scientific.  The means by which metal 

atoms are chelated to the polystyrene plates is proprietary, but were assumed to be 

nitrilotriacetic acid (NTA)-based.  NTA-based anchors can accept a variety of metal 

atoms, such as cobalt, copper, or nickel.  Each metal has unique properties and affinities 

for polyhistidine tags and proteins in general.   

 

Of the three mentioned, cobalt and copper have greater capacity for protein binding, but 

with lower specificity towards polyhistidine tags.  Nickel, on the other hand, has the 

greatest specificity, but with lower capacity.  Assuming Pierce’s nickel- and copper-

Figure 3.3 Selection of metal ion for “in position” IMAC purification and DPI-
ELISA.  Two concentrations of re-solubilized AGL15 inclusion bodies were applied to 
copper or nickel coated plates followed by the addition of probe.  The copper coated 
plates resulted in a much higher overall signal at 450 nm though the signal was inverse 
with respect to probe concentration.  The nickel coated plates had a much lower overall 
signal, however the signal was linear and positively correlated to probe concentration. 
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coated plates are coated with the same density of metal atoms, these differences are 

apparent by Pierce’s reported binding capacities.  Pierce nickel-coated plates (15142) 

have a binding capacity of 8.9 pmoles of a 27 kDa HIS-tagged fluorescent protein per 

well, while their high-binding capacity copper-coated plates (15143) have a binding 

capacity of 36.5 pmoles.  Thus, the copper coated plates have the potential to increase 

the signal approximately four-fold.  However, the reduced specificity of copper could also 

reduce the signal-to-noise ratio [246]. 

 

In a comparison experiment between nickel and copper coated plates, the copper plates 

did outperform in overall measured signal intensity (Figure 3.3).  However, in the copper 

plates there was a non-linear, inverse relationship between the signal and concentration 

of probe, while the nickel plates showed the complete opposite.  Data for the nickel plate 

is indicative of nonspecific binding between the probe and the chelated nickel and not 

AGL15.  Neither outcome fit the expected hyperbolic model for one-site binding of an 

AGL15 homodimer and a single CArG box.  Conditions for the assay included metal-

chelate binding with resolubilized AGL15 at 0.5 and 1.0 µg/mL total protein, phosphate-

based buffer, biotin-labeled probe, and 5 µg/mL NA-HRP. 

 

Avidin is a notoriously “sticky” protein that will bind to proteins and surfaces in general 

and is a major source for background in ELISAs.  NeutrAvidin has been chemically 

modified to reduce such nonspecific interactions.  For both metals, plates are coated 

with AGL15, followed by the addition of biotin-labeled probe, and then NA-HRP.  In the 

copper plate, biotin-labeled probe likely nonspecifically bound the chelated copper and 

suggested in the nickel plate.  However, the nonspecific interaction between NA-HRP 

and copper appeared to be much stronger than between NA-HRP and nickel. 

 

A follow-up experiment without AGL15 or labeled probe was performed.  Serially diluted 

sheared salmon sperm DNA was applied to part of a copper plate, while only buffer was 

applied to another part.  Following washing, 5 µg/mL NA-HRP was applied to the part of 

the plate with DNA and serially diluted NA-HRP was applied to the part of the plate with 

only buffer.  NA-HRP was found to nonspecifically bind chelated copper (Figure 3.4B).  

Since unlabeled DNA was applied prior to the addition of NA-HRP and possessing a 

high-affinity for copper, it was very effective in blocking the nonspecific binding of NA-

HRP.  This effect was not observed on the nickel plate, which would suggest that the 
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affinity of DNA for copper is large and to a degree specific.  Additionally, NA-HRP has 

significant affinity for copper, though not so large as to be able to displace DNA, while 

NA-HRP showed negligible affinity for nickel and permitting the detection of nonspecific 

Blocking of NA-HRP Non-specific Binding by Sheared Salmon DNA
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 Figure 3.4  (A) Blocking of NA-HRP nonspecific binding by sheared salmon 
sperm DNA.  Sheared salmon sperm DNA drastically reduced all signal from the assay 
and omitted because of reduction in signal without significant improvements in noise 
reduction.  (B) Nonspecific binding of NA-HRP to nickel coated plate with 
adsorbed AGL15.  The addition of NA-HRP was linearly correlated to concentration 
and indicated nonspecific binding. 
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binding by the biotin-labeled DNA towards the chelated nickel. 

 

One might expect that since the probe is labeled, NA-HRP should be able to specifically 

bind the biotin-label.  Two factors come into play.  Since NA-HRP was nonspecifically 

interacting with copper and the probe was applied prior to the addition of NA-HRP, there 

was a reduction in the availability of unbound copper in which NA-HRP can bind.  The 

second factor is that despite the probe being biotinylated, the interaction between avidin 

and the biotin was sterically hindered.  Since the probe was nonspecifically interacting 

with the copper, conceivably along the entire length of the probe, it was likely that the 

avidin was unable to maneuver around the biotin.  Furthermore, if AGL15 has not been 

displaced, it too was likely blocking NA-HRP from accessing the biotin as a tree canopy 

shades the forest floor from sunlight. 

 

Copper plates were therefore deemed to likely be more problematic than nickel plates.  

In copper plates, blocking would require significant optimization for both the nonspecific 

interaction of NA-HRP and probe with no guarantee that AGL15 is not undergoing 

significant displacement. 

 

Buffer system and protein concentration 

Buffer guidelines for performing IMAC protein purification recommend using phosphate 

based buffers and against the use of buffers with secondary or tertiary amines.  

Secondary and tertiary amines are known to reduce Ni2+; rendering the ion unable to 

coordinate histidines present in polyhistidine tags.  Furthermore, amine containing 

buffers can also participate in coordination with the metal ion. 

 

ELISA and surface plasmon resonance (SPR) use methodologies that are very similar to 

each other.  In the case of IMAC, NTA sensor chips and protocols have been worked out 

for SPR.  These protocols provided invaluable insight on the behavior of the nickel-

polyhistidine interaction. 

 

A critical aspect of a strong interaction that can often be overlooked are the rebinding 

effects.  Even in an ELISA, if excessive quantities of protein are used to coat a plate, the 

resulting calculations will be skewed from the true values.  In SPR, it was found that the 

binding stability is improved at lower concentrations of HIS-tagged protein [244].  
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Continuous rebinding was the critical for stable binding of the lower affinity polyhistidine–

nickel interaction and continuous rebinding was only made possible if free nickel sites 

were available.  In order to provide free nickel sites, the amount of protein applied must 

be low.  Therefore, the amount of AGL15 applied was also evaluated. 

 

Buffer condition effects on the binding of HIS-tagged proteins to NTA sensor chips have 

been described by L. Nieba [244].  Certain considerations can be made that can improve 

the affinity of this interaction.  Buffer components that have the greatest reduction in 

binding include increased pH and salt concentration.  Compared with TRIS and 
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Figure 3.5  Buffer conditions influence binding.  Phosphate buffer resulted in low 
signal which is likely caused by known interactions with the chelated nickel ion.  HEPES 
buffer however, permitted greater stabilization of the immobilized complex resulting in 
higher signal yields and lower signal-to-noise ratios.  AGL15 showed a hyperbolic curve 
profile upon immobilization, while NA-HRP showed a linear profile. 
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phosphate buffers, HEPES has been reported provide better detection sensitivity [247].  

EDTA is added to sequester trace metal ion impurities that can bind to the polyhistidine 

tag and reduce immobilization to the plate [244]; of course, too much EDTA will strip 

nickel ions from the plate.  Two buffers were selected for a side-by-side comparison, a 

phosphate buffer composed of 10 mM sodium phosphate, 50 mM potassium chloride, 50 

µM EDTA, 0.005% Tween 20, 10% (v/v) glycerol, pH 7.8 and a HEPES buffer composed 

of 10 mM HEPES, 50 sodium chloride, 50 µM EDTA, 0.005% Tween 20, 10% (v/v) 

glycerol, pH 7.2 (Figure 3.5).  Assay conditions included nickel coated plates and all 

washes and components diluted in the respecting buffers.  Furthermore, it was also 

suspected that NA-HRP was also nonspecifically binding AGL15 and that this property 

could be later used to assess the binding of HIS-tagged AGL15 homodimer to the 

chelated nickel.  Thus, no probe was used. 

 

In the phosphate buffer system, the signal measured was exceedingly low indicating that 

either the nonspecific binding of NA-HRP to AGL15 was weakened or the capture of 

HIS-tagged AGL15 by the chelated nickel was poor (Figure 3.5A,B).  However, the 

HEPES buffer system revealed several important pieces of information.  NA-HRP was 

observed to nonspecifically bind AGL15 and the nickel-coated plate (Figure 3.5D).  

Without AGL15, the signal increases linearly as the concentration of NA-HRP increases.  

As the concentration of AGL15 applied increases, the signal increases further.  When 

the amount of NA-HRP applied was held constant, a hyperbolic saturation curve was 

observed within the range of AGL15 concentrations applied.  In the case of AGL15 

homodimer, the multimeric complex has two octahistidine tags and therefore, technically 

two dissociation constants.  At 5 µg/mL NA-HRP, the apparent dissociation constant was 

found to be approximately 79 nM and approximately 65 nM at 2.5 µg/mL NA-HRP for an 

average apparent total KD of 72 nM (assuming no free monomers were present).  

Reported apparent KD values widely vary [244,248-250].  The apparent KD for a free 

hexahistidine polypeptide is 14 nM [248], while the apparent KD for a hexahistidine-

streptavidin is 121 nM [244]. 

 

Blocking agent 

At this point, it has been established that NA-HRP nonspecifically binds both AGL15 and 

the plate and to a degree, A/T rich DNA probes also nonspecifically bind chelated nickel.  

Proteinaceous blocking agents are commonly used to uniformly block sites that would 
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otherwise be occupied by components such as avidin.  Both bovine serum albumin 

(BSA) and non-fat dry milk (NFDM) were tested for effectiveness in blocking nonspecific 

binding of NA-HRP to AGL15 (Figure 3.6). 
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Figure 3.6  Selection of a blocking agent towards NA-HRP.  Both bovine serum 
albumin (BSA) and nonfat dry milk (NFDM) were tested as blocking agents against NA-
HRP.  While NFDM controlled background signal it severely reduced detection of the 
signal.  BSA also strongly reduced signal at higher concentrations, but concentrations 
below 0.25%, nonspecific binding of NA-HRP was reduced. 
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Building upon previous findings, 3 µg/mL AGL15 (~70 nM dimers) was chosen as 

concentration for coating the nickel plate.  Following binding, serial dilutions of BSA or 

NFDM in buffer were applied to the plate starting at 2%.  Blocking was permitted for 30 

minutes.  Upon removal the blocking agent, various concentrations of NA-HRP were 

applied.  No probe was used. 

 

BSA performed as expected (Figure 3.6) in reducing the nonspecific binding by NA-HRP 

with increasing percentages of BSA.  This was not the case for NFDM as the signal was 

barely detectable across all percentages.  NFDM is known to contain endogenous biotin 

and it was assumed this free biotin was likely occupying the binding sites in the avidin of 

NA-HRP.  Subsequently, untethered NA-HRP would be washed away.  Both BSA and 

NFDM were effective in reducing background signal.  BSA was predictable and selected 

as the blocking agent. 

 

HRP positive control 

In order to monitor direct binding of HIS-tagged proteins to the metal coated microtiter 

plates during assay development, a HIS-tagged HRP control was desired.  

Unfortunately, this product was not commercially available at this time.  A literature 

search revealed that a synthetic version of recombinant HRP (rHRP) has been made 

before in E. coli, but that it is poorly expressed [251].  Furthermore, it requires heme as a 

cofactor, which is very limited within E. coli. 

 

HRP has been a favorite for studying enzyme mechanics and engineering improved 

variants.  HRP1A6 is one such variant.  HRP1A6 is an evolved variant with a N255D 

mutation that has a 14-fold higher than wild-type at ~110 µg/L of culture.  The mutation 

is believed not to increase the enzyme’s activity, but rather increase the amount of 

correctly folded protein [252].  HRP1A6 was kindly provided by Dr. Frances Arnold, 

California Institute of Technology, in the plasmid, pETpelBHRP1A6–KAN.  This plasmid 

contained an unused 6xHIS-tag.  A small adaptor was designed in which the stop codon 

was removed and ligated into the plasmid.  The plasmid was transferred to BL21(DE3) 

and rHRP1A6:6xH expressed under IPTG induction.  Cells were lysed with 1X CelLytic 

B (Sigma) followed by clarification of the lysate in a microcentrifuge.  For proper activity, 

hemin chloride (FW 652.0, H-5533, Sigma) in DMSO (1 mg/mL) was added to the 

extract in order to supply the heme prosthetic group.  Dilutions were made to titrate the 
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extract.  Binding to nickel coated microtiter plates occurred over an hour followed by four 

washes in wash buffer.  TMB substrate was used to detect the presence of bound HRP.  

A negative control lysate was also included. 

 

Validation via EMSA and determination of the apparent dissociation constant for 

AGL15 

Validation of the AGL15MIK binding capabilities was performed using EMSA (Figure 3.7) 

and the AGL15 high-affinity binding site (HABS) (CTATATATAG) [243].  AGL15MIK plus 

probe yielded a shift towards a larger molecular mass, indicting formation of a protein–

DNA complex as expected.  Following successful validation and optimization of assay 

components, the apparent dissociation constant for AGL15 was measured.   

 

The apparent dissociation constant between AGL15 and the AGL15 high-affinity binding 

site was measured using DPI-ELISA (Figure 3.7).  Probe concentration ranged from 

0.54–90 nM.  Data was fitted with GraphPad Prism 5.0 using the model for one-site, total 

CArG + +

A

B

protein – +

Kd
apparent = 1.75 nM

Figure 3.7  Validation of recombinant AGL15 by EMSA and determination of the 
apparent dissociation constant for AGL15 and HABS.  EMSA with re-solubilized 
AGL15 incubated with or without the AGL15 HABS probe.  In the presence of protein, a 
second band of a higher molecular weight, “A”, was detected upon probing for biotin 
labeled probe indicating a shift in binding from unbound DNA probe, “B”. Using the 
generalized assay, the apparent Kd for AGL15 and HABS was determined to be 1.75 
nM using the one-site model (fit total and nonspecific binding). 
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binding and the calculated apparent dissociation constant between AGL15 and the 

AGL15 high-affinity binding site was determined to be Kd
app = 1.75 nM (Bmax = 0.3993 

ABS@450nm).  This value indicates a slow rate of dissociation of AGL15 from the high-

affinity probe at equilibrium and therefore, a high-affinity of AGL15 towards this specific 

probe.  

 

Screening SEP3 against a panel of palindromic probes for relative binding 

DPI-ELISA is particularly amendable towards screening probes with specific and distinct 

sequences.  This allows for the possibility of rationally screening many different 

sequences for their interaction with a particular MADS domain.  Measurement of the 

relative binding affinities of SEP3 towards a panel of palindromic DNA sequences 

(Appendix) was evaluated using the adapted DPI-ELISA.  Both CCWWW and CTWWW 

variants yielded fold changes above 10 compared to the nonspecific probe 

(TTCGCGCGTT) with exception to CCTAT 6.5 (Figure 3.8).  

 

Relative changes in signal intensity, correspondent to relative affinity, agreed with 

previous reports of specificity with regard to variations made at position -4:4 using the 

palindromic AGL15 HABS (CTATATATAG) as the reference sequence.  Variants with 

pyrimidines (C/T) (x ̄=27.0) in position -4:4 had fold differences that were on average 12-

fold higher than variants with purines (A/G) (x ̄=2.2) in the same position (Figure 3.9). 

 

Variations at position -3:3 within the AGL15 HABS reference sequence and a CC form 

(CCATATATGG) did not display a pyrimidine versus purine distinction, consistent with 

the consensus sequence (Figure 3.9).  C(C/T)(A/T)TA variants (x̄=20.5) had fold 

differences on average 4-fold higher than C(A/G)(C/G)TA variants (x̄=5.1), while within 

the C(C/T)(A/T)TA subgroup, C(C/T)ATA variants (x̄=27.0) had fold differences on 

average 1.9-fold higher than C(C/T)TTA variants (x ̄=14.0).  Notably, the CCGTA variant 

signal intensity was 8.2-fold above the nonspecific probe, indicating that the CCG motif 

yields some favorability towards a stabile SEP3–DNA complex.  In contrast, the CTCTA 

variant had a signal intensity of 2.2-fold above the nonspecific probe.  Overall, CC 

variants (σ=7.79) appear more moderate and have less spread than CT variants 

(σ=13.08) with regard to this data set. 
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As positions -4:4 and -3:3 are adjacent to one another, binding affinity tends to display 

some interdependency between combinations of bases.  Despite the dominant effects in 

affinity from these positions, position -1:1 also has a role in stabilizing binding separate 

that of positions -4:4 and -3:3 (later examined in Chapter 4).  A trend observed within the 

panel of probes evaluated revealed that position -1:1 influenced the binding affinity 

Figure 3.8  Relative binding of SEP3MIK towards a panel of palindromic probes via 
modified DPI-ELISA.  Using the optimized DPI-ELISA method, SEP3MIK was allowed to 
reach equilibrium with a panel of palindromic probes.  Absorbances were measured at 
450 nm.  Background was subtracted from the data set and then each probe was 
divided by the value obtained for the nonspecific control (TTCGCGCGTT) to obtain the 
fold-change.  Probes are grouped by sequence characteristics (CC, CT, CA, and CG). 
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between the probe and SEP3 (Figure 3.9).  This trend was observed among 

C(C/T/A)WWW variants.  Those probes with an AT (x̄=19.2) at position -1:1 consistently 

yielded higher fold differences above the nonspecific probe with SEP3 than a TA 

(x̄=13.4).   A thymidine at position -2:2 appears to compensate for the lower affinity 

found with a TA at position -1:1 within the CCT subgroup (CCTAT (6.5) < 

CCTTT,CCTTA,CCTAA (x̄=14.6)).   

 

Position -4:4 

CCATA 23.1 

CTATA 30.9 

CAATA 2.6 

CGATA 1.8 
 

Position -3:3 

CCCTA 5.6 

CCTTA 14.5 

CCATA 23.1 

CCGTA 8.2 

 

CTCTA 2.2 

CTTTA 13.5 

CTATA 30.9 

CTGTA 4.4 
 

Position -1:1 

CCTAA 17.8 CCTAT 6.5 

CCTTA 14.5 CCTTT 11.5 

CTTTA 13.5 CTTTT 9.1 

CTATA 30.9 CTATT 26.4 

CATAA 2.7 CATAT 2.5 
 

 
Figure 3.9  Fold-differences for  SEP3MIK and series selected palindromic probes.  
Fold-differences determined for select palindromic probes based upon nucleotide 
rotations at specific positions.  Data obtained from DPI-ELISA. 
 
 

An I:C base pair to mimic the minor groove of an A:T base pair at positions -4:4 

Binding of MADS domains to CArG boxes is particularly sensitive to bases located in 

positions -5:-4 and 4:5 of the CArG box.  As a result, consensus sequences appear in 

two forms, CC-W6-GG and C-W8-G (more preferably, CT-W6-AG).  In either case, both 

are variants of the form CY-W6-RG.  However, some MADS TFs, such as AGL15 and 

FLC, possess greater specificity towards the C-W8-G form than the CC-W6-GG form.  

Those that bind both forms, such as SEP3, could be said to possess relaxed specificity. 

 

A distinguishing characteristic between CC-W6-GG and CT-W6-AG forms, is the 

availability of a free C2 keto group of thymine in the minor groove of the A:T pairs at 

positions -4:4 in the CT-W6-AG form (Figure 3.10A).  The availability of the C2 keto 

group of thymine as a hydrogen bond donor results from the absence of a C2 amino  
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Figure 3.10   Mimicking an A:T base pair with an I:C base pair at positions -4:4.  (A) 
View of major and minor grooves of A:T, I:C, and G:C base pairs respectively.  The blue 
highlights how the minor groove of the I:C base pair resembles the minor groove of the 
A:T base pair.  The red highlights how the major groove of the I:C base pair remains 
similar to the G:C base pair.  (B) Selected CArG box sequences (left), when substituted 
with inosine resemble the respective major and minor grooves of sequences of which 
AGL15 has higher and lower affinity for.  (C) Results of the optimized DPI-ELISA with 
AGL15 and inosine-containing probes and their respective mimic sequences for 
comparison. 
 

group in the corresponding adenine.  In the CC-W6-GG form, cytosine pairs with 

guanidine and utilizes all available hydrogen bond acceptors and donors of cytosine.  

Therefore, it is likely that MADS TFs, such as AGL15 and FLC, do not intrinsically 

possess the appropriate amino acids in the appropriate locations to stabilize an 

 
CArG-box major groove 

seen as 
minor groove 

seen as 
5’-CCAAATTTIG-3’ 
3’-GITTTAAACC-5’ 

5’-CCAAATTTGG-3’ 
3’-GGTTTAAACC-5’ 

5’-CTAAATTTAG-3’ 
3’-GATTTAAATC-5’ 

5’-CCATATATIG-3’ 
3’-GITATATACC-5’ 

5’-CCATATATGG-3’ 
3’-GGTATATACC-5’ 

5’-CTATATATAG-3’ 
3’-GATATATATC-5’ 

 
 

 
 

 
 

 

0.0

0.2

0.4

0.6

0.8

1.0

CCAAATTTGG CCATATATGG CCAAATTTIG CCATATATIG CTAAATTTAG CTATATATAG

AB
S 

45
0 

nm
 



 

 60 

interaction with a CC-W6-GG form cis-element.  Thus, for a MADS TF, such as AGL15 

or FLC, to form a stabile complex, it is likely that a hydrogen bond donor must be 

available for the MADS domain interact with at position -4:4.  For MADS TFs, such as 

SEP3, which have relaxed specificity, it is likely that this group of MADS TFs do not 

require the presence of an available C2 keto group at position -4:4 in order to form a 

stabile protein–DNA complex.  However, it is likely that some other mechanism 

compensates for the stability that the C2 keto group provides. 

 

Using modified and uncommon nucleobases, the target(s) for binding specificity can be 

determined with greater clarity than with typical single base pair substitutions.  With 

modified and uncommon nucleobases, binding characteristics can be deconstructed and 

reduced to either the major or minor groove and even to particular functional groups.  

Inosine is an uncommon, yet natural, purine.  Resembling guanidine, it lacks the C2 

amino group.  When paired with cytosine, the cytosine C2 keto group is made available 

as in an A:T base pair.  Thus, the inosine:cytosine (I:C) base pair mimics the functional 

group profile of the minor groove of the A:T base pair while retaining the functional group 

profile of the major groove of the G:C base pair (Figure 3.10A). 

 

AGL15 has higher affinity towards CT-W6-AG forms, such as CTAAATTTAG and 

CTATATATAG, and has lower affinity for CCAAATTTGG and CCATATATGG sequences 

(Figure 3.10C).  Therefore, it was hypothesized that if the guanidines at positions -4:4 of 

CCAAATTTGG and CCATATATGG were substituted with inosines, AGL15 would bind with 

higher affinity.  The substituted probes would resemble the minor groove of 

CTAAATTTAG and CTATATATAG, respectively, while the major grooves would resemble 

CCAAATTTGG and CCATATATGG, respectively (Figure 3.10B).  Binding with high-affinity 

toward the substituted probes would be akin to a gain-of-function. 

 

The binding capability of AGL15 to the six probe sequences (above) was evaluated 

using DPI-ELISA (Figure 3.10C).  Both CCAAATTTGG and CCATATATGG probes 

interacted with lower affinity towards AGL15, while CTAAATTTAG and CTATATATAG 

probes interacted with high-affinity.  Probes CCAAATTTIG and CCATATATIG interacted 

with higher affinity than for the CT-W6-AG form probes.  The ability of AGL15 to interact 

with high-affinity with the inosine substituted CC-W6-GG form probes indicates that 
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AGL15 is interacting within the minor groove of the probes at positions -4:4 in a 

stabilizing manner and not the major groove (considering that the major groove was 

unmodified).  Thus, the binding specificity of AGL15 was found to be oriented toward the 

functional group profile of the minor groove of an A:T pair at positions -4:4 rather than 

those in the major groove. 

 

Discussion 

These findings demonstrate that DPI-ELISA possesses the ability to resolve the changes 

in binding of MADS TFs towards small differences between CArG box cis-elements and 

has the capacity for high-throughput analysis. 

 

Assay development and optimization 

A microtiter, ELISA-based assay was selected for its ability to handle multiple 

concentrations and samples easily and efficiently.  Additionally, several other groups 

have had success with similarly based assays.  Previous DPI-ELISA designs first bind 

biotin-labeled DNA probe to the matrix.  Here, I modified earlier DPI-ELISA designs to 

accommodate “in position” protein purification at the initial step (Figure 3.1).  Though 

protein purification has become relatively straight-forward, determining the concentration 

of correctly folded and active protein, especially from resolubilized inclusion bodies, can 

be a challenge.  Swapping the order of which component is bound first to the matrix, 

reduces the requirement for knowing the concentration of correctly folded protein 

applied. 

 

AGL15 as a positive control 

The apparent dissociation constant provides a means to understand the role of both 

large and subtle differences conveyed by changes in the DNA sequence of a binding 

site.  If subtle, the changes in binding affinity cannot be readily assessed through 

quantitative methods such as EMSA.  To qualitatively measure the influences made by 

seemingly small changes in a cis-element or protein that change the protein–DNA 

interaction, the affinity of that interaction must be determined.  Measurement of the 

apparent dissociation constant, using the optimized DPI-ELISA, between AGL15 and the 

AGL15 HABS yielded a value (Kd
app = 1.75 nM) within the expected range for 

macromolecular high-affinity interactions (Figure 3.7).  An additional improvement over 
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EMSA is that the optimized DPI-ELISA method can be completed in one day with 

prepared reagents. 

 

SEP3 binds similar CArG boxes differently 

Besides successfully screening of SEP3 against a large sample of uniquely, identifiable 

probes, some notable observations were made.  With the AGL15 HABS (CTATATATAG) 

as a reference sequence, the CCGTATACGG probe sequence had a signal intensity 8.2-

fold higher than of the nonspecific probe sequence (Figure 3.8).  Though nowhere near 

the 30.9-fold difference for AGL15 HABS, it is still nearly 3-fold higher than highest fold 

change of any CAWWW variants evaluated.  Therefore, the binding specificity SEP3 is 

likely more fluid than given credit.  Overall, SEP3 binding to CC-W6-GG variants 

appeared to have less spread than CT-W6-AG variants, which have lower low values 

and higher high values. 

 

SEP3 serves a unique role within the MADS TF regulatory network as a common 

component in a multitude of combinations with other MADS TFs [253].  Therefore, it 

stands to reason that the binding specificity of SEP3 is relaxed in comparison to MADS 

TFs involved in limited or specific roles.  Several studies have been performed to deduce 

the consensus sequence specifically for SEP3 through methods such as SELEX and 

ChIP with the Arabidopsis genome [63,254].  Those methods provided a basis for 

understanding the overall binding of SEP3 complexes as well as the location of binding 

within the Arabidopsis genome.  However, because SEP3 serves as a common 

component in many MADS TFs combinations, methods such as ChIP cannot isolate the 

specific binding characteristics of lone SEP3 [254].  Additionally, even with SELEX, 

nuances imparted by particular sequence combinations cannot be directly detected and 

measured in order to determine whether a particular sequence combination would be 

preferred over another. 

 

An example of subtle sequence combinations with dramatic differences in SEP3 binding 

was observed between CCTAATTAGG and CCTATATAGG probes.  SEP3 had a signal 

intensity of 17.8-fold with the CCTAATTAGG probe compared to a signal intensity of 6.5-

fold with the CCTATATAGG probe (Figure 3.9).  Whether or not sequence combinations 

with low or moderate affinity serve a biological function any different than those with high 
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affinity is uncertain at this time, but without the ability to classify sequence combinations 

by affinity, an answer to biological significance will likely remain unanswerable. 

 

AGL15 binding stability with its cis-element is a result of the functional group 

profile of the minor groove at positions -4:4 

Compared with the relaxed specificity observed for SEP3, the AGL15 binding preference 

is for the CT-W6-AG form (Figures 3.8 and 3.10A).  Substitution of CC-W6-GG probes 

with inosine in place of guanidine, at positions -4:4, results in probes with minor grooves 

that resemble the CT-W6-AG form, while the major groove remains unchanged (Figure 

3.10B).  Using the optimized DPI-ELISA, AGL15 was observed to bind CC-W6-IG and 

CT-W6-AG probes with higher signal intensity than the CC-W6-GG probes (Figure 

3.10C).  This indicated a gain-of-function as a result of changing the minor groove’s 

functional group profile from that of a G:C base pair to one of an A:T base pair (Figure 

3.10A).  It is likely that SEP3 possess residues at other locations that allow it to 

compensate for the absence of binding properties afforded by the functional group 

profile of the minor groove of an A:T base pair.  Since AGL15 likely does not possess 

the compensating residues, it can only be stabilized by the functional group profile of the 

minor groove an A:T base pair at position -4:4 and thus restricting it to only binding CT-

W6-AG forms. 

 

Context and motivation 

A significant issue has been the inability to accurately predict biologically active cis-

elements.  For example, when an accession line in wheat (Triticum monococcum 

G2528, allele Vrn-Am1a) with a strong vernalization requirement was linked to the 

VERNALIZATION 1 (VRN1) allele, it was hypothesized that a deletion encompassing an 

identified CArG box located within the promoter of VRN1 could be responsible for the 

observed phenotype.  Analysis of other accessions with alterations to this region 

revealed that this CArG box was not essential for vernalization [255]. 

 

Furthermore, work performed in tobacco (Nicotiana tabacum) by Drs. Yanhong Bai and 

Sitakanta Pattanaik, University of Kentucky, showed that when several CArG boxes in 

either the DFR  or AN1 (homologue of ZmR [256]) promoters were destroyed in 

combination, no changes in anthocyanin accumulation or transcript levels were observed 

(unpublished data).  It had been anticipated that since activation of both NtDFR and 
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NtAN1 in tobacco is developmentally regulated, it was likely that MADS TFs would be 

involved in the regulation of those genes due to the role of MADS TFs in flower timing 

and specification.  Since the changes in gene expression were not observed, it was 

concluded that these CArG boxes are not essential to the regulation of either NtDFR or 

NtAN1. 

 

One hypothesis has been proposed for these frustrating dead-ends is that despite the 

lack of direct biological activity, there may still be a biological function for multiple CArG 

box sites.  It has been proposed that the multitude of cis-elements without direct 

biological function could serve as decoy sites to sequester transcriptional activators, 

thereby inhibiting gene expression [233].  Clearly, a better understanding of the specifics 

of protein–DNA interactions for MADS TFs is still needed.  TFs are active over a range 

of affinities, but at what point does this affinity diminish, rendering the TF inactive or 

unable to bind?  The goal of this study was to develop a scalable, sensitive, and simple 

assay in which to measure the relative affinities between TFs and DNA with very small, 

subtle variations. 

 

The format was altered from that used for the detection and study of HsNFκB [239] and 

later plant bZIP and WRKY TFs [240,241].  The premise behind the format for the NFκB 

DPI-ELISA was to monitor NFκB activation, as only active NFκB binds DNA [239].  

Attachment of a single DNA probe to the substrate allowed for “in position” purification of 

free (active) NFκB from cell lysates followed by simple detection of NFκB with an 

antibody as in the classical ELISA.  This allowed for detection and quantification of 

active NFκB within tissue and ultimately the measurement of inflammation. 

 

Conclusion 

As stated previously, the goal was to measure the relative affinities of TF–DNA 

interactions with very small, subtle changes to either the TF or DNA.  This involved the 

synthesis of many synthetic DNA probes, which have a higher degree of purity and 

consistency than from resolubilized and refolded, recombinant proteins.  Since a greater 

degree of control was available from the DNA probes, the DNA probe was selected to be 

varied.  With regard to the TF, because the starting material was recombinant protein, 

several other factors were considered.  Our recombinant protein was a fusion protein 
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with a polyhistidine tag.  It was also formed as inclusion bodies and as a single band by 

SDS-PAGE.  By utilizing IMAC technology, our particular recombinant proteins were 

able to be resolubilized and refolded, then purified “in position”.  Since binding affinity is 

not affected by protein concentration, knowing the exact concentration of protein was not 

necessary and allowed one to vary DNA concentration, which is much simpler determine 

and control.  An advantage of using the protein as the component with an unknown 

concentration is that for determining kinetics, the concentration only needs to be 

consistent.  In conclusion, DPI-ELISA fills a void in the analysis of DNA:TF binding 

interactions.  Here, it permitted the determination of the apparent dissociation constant 

for AGL15 and several probes.  It also permitted the broad evaluation of affinities 

between SEP3 and a panel of DNA probes. 
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CHAPTER 4 

 

Modeling DNA recognition of the FLC–SVP heterodimer via molecular dynamics 

 

Hypothesis 

Within the MADS domain family, the amino acid residues involved in DNA-binding have 

been identified and these residues are highly conserved.  These residues have been 

identified through static X-ray crystallography and mutation analysis predominantly in 

MADS domains of human (five for Homo sapiens) and yeast (four for Saccharomyces 

cerevisiae) origin.  Despite the highly conserved nature of these residues, MADS 

domains show sequence specificities that cannot be explained by these residues, 

especially considering the limited number of MADS TFs in these organisms compared to 

the numbers found in plants (107 in Arabidopsis thaliana).  MIKC MADS TFs of 

angiosperms can be separated into about 15 clades based upon sequence.  It is the 

variable residues adjacent to the highly conserved DNA-binding residues that provide a 

means for sequence-specific recognition of cis-elements.  The FLC and StMADS11 

(SVP) clades are two clades with divergent adjacent residues.  These two clades display 

different DNA-binding specificities, can form heterodimers between clades, and function 

within the same regulatory pathways.  Molecular dynamics, computationally intensive 

simulation of matter at an atomic level, provides a way to access the dynamic nature of 

DNA recognition.  These simulations can be used to address the behavior and role of 

those variable residues. 

 

Introduction 

Most of what is known concerning the binding determinants of MADS domain TFs has 

been performed with proteins of mammalian and fungal origin.  Within the genomes of 

plants are a disproportionate number of MADS domain TFs compared to animals and 

fungi and where our basis of understanding lies.  Plant MADS domains possess a 

greater diversity of sequence, which has implications for the understanding of both 

protein sequences that provide redundant DNA recognition and novel DNA recognition 

as well as the potential to the better understand the aspects and mechanisms of DNA 

binding in the MADS domain.  By utilizing the sequence repertoire of plant MADS 

domain TFs, a large pool of biologically relevant sequences, we might be able to 
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discover different routes to DNA-binding site (DBS) recognition within the MADS domain 

and a better understanding of noncanonical site selection.  

 

FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) represent 

MADS domain TFs from two different clades within Arabidopsis and are involved in the 

repression of flowering.   While neither FLC nor SVP homodimerize, they do form a 

heterodimer (Figure 4.1) [257].  Additionally, SVP is the only known MADS domain 

containing interaction partner for FLC [119].  However, SVP, unlike FLC, is not limited 

and was shown to interact with nine other MIKC MADS TFs via yeast two-hybrid assays 

[119].  In Arabidopsis, the FLC clade is comprised of an additional five genes (MAFS1-5, 

MADS AFFECTING FLOWERING), while the StMADS11 clade is comprised of 

AGAMOUS-LIKE 24 (AGL24) and SVP.  Despite the inability of SVP to homodimerize 

and AGL24 and SVP to heterodimerize, AGL24 can form homodimers [119,258]. 

 

Repression of flowering is essential to the life cycle of plants.  While repression of 

flowering is controlled by a set fundamental factors and mechanisms, evolutionary 

lineage and pressure from specific climates and environments has altered these 

regulatory pathways by the addition or subtraction of flowering timing mechanisms.  The 

cue to flower is determined by the integration and final consensus of one or more of the 

following input pathways:  autonomous, photoperiod, and vernalization/dormancy.  

Vernalization, in winter annuals, and dormancy, in perennials and woody plants, is the 

block to flowering lifted by cold temperature. 

 

FLC SVP  Figure 4.1   Interaction partners of FLC and SVP.  FLC 
has only one identified MIKC MADS dimerization partner, 
SVP and does not homodimerize.  SVP has ten identified 
MIKC MADS dimerization partners and also does not 
homodimerize.  Other members of the FLC clade are 
notably absent with regard towards dimerization with SVP. 
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FLC clade description 

Like most other MADS TFs in Arabidopsis, homologs of the FLC clade were anticipated 

to be discovered in most plants.  However as genomic and transcriptomic sequencing 

projects began releasing data, it was soon realized that the FLC clade was not as wide 

spread as originally expected.  The FLC clade has been found to be predominately 

limited to the Brassicaceae family, which includes Arabidopsis and Brassica.  

Occurrences outside Order Brassicales have only been recently discovered due to 

expanded genome sequencing efforts.  These occurrences have been found in the 

Asteraceae family of Order Asterales.  FLC-like homologs have been identified in the 

Asteraceae family in Artemisia annua, Barnadesia spinosa, Cichorium intybus, C. 

endivia, Lactuca sativa and L. serriola with only those in C. intybus having been 

characterized [259]. 

 

FLC is thought to have arisen recently during the evolution of plants [96].  Since FLC is a 

critical component in vernalization and the repression of flowering in plants, such as 

Arabidopsis, it has been proposed for plants that do not undergo vernalization, no longer 

maintained its’ functionality and have either repurposed it (OsMADS32 [260]) or let it 

become a pseudogene.  Only in plants that have undergone genomic sequencing can it 

be determined if the FLC clade has dwindled into pseudogene status.  There also exists 

the possibility of convergent evolution towards the FLC clade in Brassicaceae and 

Asteraceae sourced from a gene duplication event. 

 

FLC expression is heavily dependent upon its chromatin state, which is beneficial for 

long term regulatory control.  For example, the chromatin state is modified during 

gametogenesis and embryogenesis [261,262] and then at the onset of floral 

transitioning.  Expression of FLC is reactivated during reproduction by the assistance of 

FRIGIDA, a scaffold protein involved in the recruitment of chromatin modification factors 

[263].  Repression of FLC occurs through both the autonomous and vernalization 

pathways and therefore, can be redundantly repressed. 

 

StMADS11 (SVP) clade description 

The StMADS11 clade is relatively ubiquitous among plants.  The twist is that multiple 

SVP-like copies arise.  This is possibly due to the adaption of the niches that each 

species has evolved for and to compensate for the absence of the FLC clade.  
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Understandably, floral transitioning and initiation requires the integration of several 

different conditions [264-266].  FLOWERING LOCUS T (FT) and LEAFY (LFY) [264] are 

two significant activators of floral transition.  FT accepts photoperiod pathway signals 

through upregulation by CONSTANS (CO) [267].  Repression of FT expression occurs 

through the FLC–SVP heterodimeric complex. 

 

In the case of the vernalization pathway, VERNALIZATION INSENSITIVE 3 (VIN3) 

assists with histone deacetylases (HDACs) to inactivate FLC expression [268-270].  

Only upon long periods of cold exposure is VIN3 expression induced; though VIN3 alone 

is not sufficient for vernalization and suppression of FLC expression [271].  Both AGL24 

(StMADS11 clade) and AGL19 have been demonstrated to promote flowering by 

vernalization through an FLC-independent pathway, but are still thought to be regulated 

by VIN3 [272,273]. 

 

SVP expression, on the other hand, relies heavily on cues from the circadian clock [274] 

and the thermosensory pathway [275].  Deletion mutants of SVP show early flowering 

[276], while overexpression of SVP yields late-flowering plants [275,277].  The 

thermosensory capabilities are not redundant in AGL24 (StMADS clade).  Inputs from 

the thermosensory pathway appear to enter downstream of FLC [275]. 

 

Transcriptional activator(s) for both FLC and SVP are unknown at this time.  It is known, 

however, that chromatin remodeling is significant for the expression of FLC [268-270].  

For SVP, there is a possibility of constitutive gene activation through minimal type 

promoter elements, which would then be interrupted by floral specific transcriptional 

repression and further chromatin remodeling.  When expressed, SVP transcript levels 

remain relatively constant between day and night [274,278].  This is in contrast to the 

diurnal pattern observed for SVP protein in which it more abundant at dawn and morning 

and decreasing by evening and night under long days [274].   

 

DNA bending 

Secondary structure prediction for full-length HsMEF2A, once beyond the MADS and 

MEF2 domains, is predicted to be relatively disordered.  Whereas in MIKC MADS TFs, 

the entire protein is shown to possess a good deal of defined secondary structure as 

opposed to long stretches of undefined disordered sequence (data not shown).  Based  
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Figure 4.2  Alignment of MADS domain for residues predominately involved in 
DNA binding.  The majority of MIKC MADS domains from Arabidopsis are represented.  
They are grouped based upon similarities observed at positions containing variable 
residues and upon clade.  Representatives from Type I and II MADS domains from 
Homo sapiens and Saccharomyces cerevisiae are also included as a reference.  
Number positions are based upon AGL15.  (N-terminal domain (N), αI helix (αI)) 
 

upon what is known for the organization of quaternary structure, MIKC MADS TFs are 

unlikely to possess this turn back towards the DNA if in fact MEF2A in reality does this 

as MEF2A, itself, is truncated in the crystal structures [279].  In the case of MIKC MADS 
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TFs, those involved in the ABC model [280] are thought to form tetramers [281,282].  

However, in other complexes such as those for AGL15 homodimer and the FLC–SVP 

repressor complex that are known not to require upwards of four separate MADS TFs, it 

is likely that these may only have a dimeric quaternary structure. 

 

Interaction 

For MIKC MADS TFs, DNA binding to single CArG boxes is thought to proceed via the 

dimerization pathway, in which dimers are formed prior to DNA binding [219,281].  

Kinetic data for AGL15 does not show cooperative binding as the data is hyperbolic and 

not sigmoidal (Chapter 3, Figure 3.7).  In quartet formation and DNA looping, when two 

CArG boxes are present, cooperative and phase-dependent DNA binding occurs.  Dimer 

formation occurs prior to DNA binding and looping.  DNA binding is represented by Kd1 

for the first dimer-CArG box interaction and Kd2 for the second interaction.  Following 

this, if DNA looping is to occur, then a Kd3 exists for the protein–protein interaction 

between the pair of dimers [281,282].   

 

Materials and Methods 

Molecular Dynamics – Computations were performed on the Lipscomb High 

Performance Computing Cluster (2010-2012) built by Dell, Inc. in McVey Hall on the 

campus of the University of Kentucky.  The basic cluster is comprised of 376 nodes 

(4512 cores) assembled from Intel Xeon X5650 Westmere 2.66 GHz CPUs with two 

sockets per node and six cores per socket for a total of twelve cores per node and 36 

GB RAM per node.  It operates on Red Hat 4.1.2-46 Linux 2.6.18-164.e15.  Interconnect 

is provided through a Mellanox Quad Data Rate Infiniband switch.  This provides nearly 

40 teraflops of computing power and draws about 180 KW during peak usage.  In 2012, 

four GPU nodes with 36 GB of RAM were added to the cluster comprised four NVidia 

M2070 GPUs per node. 

 

Protein sequences were obtained from translated Arabidopsis Biological Resource 

Center cDNA clones for AGL15 (PYAT5G13790; NM_121382), FLC (U89754; 

BT030637), SEP3 (U90075; BT033157), and SVP (U89996; BT033098).  Threaded 

models of the MADS domain, residues 2–60, were generated using Swiss-Model 

Automatic Modeling (matching to PDB structure ID 1N6J).  Coordinate files for linear B-

DNA probes were generated with AmberTools Nucleic Acid Builder (NAB).  Protein and 
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DNA structures were combined and oriented with DeepView and LEaP with the MADS 

dimer sitting just above the CArG box.  Alignments were performed to previous finalized 

orientations, so that all cases simulated were started in as similar positions as possible.  

Again using AmberTools LEaP, ff10, parmbsc0 [283], and the Joung ion set [284,285] 

force field parameters were loaded onto the system.  The system was neutralized with 

potassium counter ions, followed by raising the salt concentration to 200 mM KCl, and 

hydrated with an 11 Å deep truncated octahedron shell of TIP3P waters.  Salt ions were 

randomized around the DNA, the MADS dimer, and the counter ions with waters by a 

distance of 5 Å and an overlap of 3.5 Å using AmberTools PTRAJ to disperse them 

throughout the solvent shell.  A copy of the topology file was made and edited to link 

each strand of DNA and each peptide all into a single molecule to prevent compression 

of those molecules during minimization, heating, and equilibration of the system.  On 

average, systems were comprised of around 113,000 atoms, of which nearly 109,000 

were TIP3P waters. 

 

Minimization, heating, and equilibration (MHE) was performed on CPUs using AMBER 

11.0 pmemd.MPI.  Initial minimization – Systems were initially minimized through 500 

steps of steepest descent and 500 steps of conjugated gradient with a non-bonded 

cutoff of 9 Å, maintaining constant volume, and 25 kcal/mol restraints on the protein and 

DNA.  Steps are in 2 femtosecond increments.  Heating – Maintaining the restraints and 

constant volume, the system was initiated with the “weak-coupling ensemble” at 100°K 

(–173°C) and heated to 300°K (26.9°C) over the course of 5,000 steps followed by 

45,000 steps of molecular dynamics with shaking at 300°K for a time of 100 ps.  

Equilibration – A series of five alternating minimizations and equilibrations were then 

performed starting 5 kcal/mol restraints on the protein and DNA and dropping 1 kcal/mol 

after each alternation.  Settings for each minimization were the same as the initial 

minimization except for subsequent reductions in restraint force.  Each equilibration used 

the previous minimization’s restraint force, a constant temperature of 300°K using the 

“weak-coupling ensemble,” a constant pressure of 1 atm, a coupling constant of 0.2 with 

shaking, and 25,000 steps for a time of 50 ps.  After the equilibration at 1 kcal/mol, the 

last restrained equilibration was performed at 0.5 kcal/mol, under the previous 

conditions, while reading the previous velocities.  Once the overall system was 

equilibrated, the original topology file was used; thereby, unlinking the strands of DNA 
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and peptides.  A brief 50 ps equilibration without restraints and a coupling constant of 

5.0 readied the system for production. 

 

Production runs were performed on single nodes of four GPUs at a time using AMBER 

11.0 pmemd.CUDA.MPI in 1 ns increments at about 8.15 ns/day.  Molecular dynamics 

were conducted at a constant temperature of 300°K using the “weak-coupling 

ensemble,” a constant pressure of 1 atm, a coupling constant of 5.0 with shaking, and a 

nonbonded cutoff of 9 Å.  Translational and rotational center-of-mass motion was 

removed every 5,000 steps.  To keep output files manageable, coordinates were 

wrapped and outputted in binary NETCDF format.  Coordinates were written every 1,000 

steps, while the restart file was written every 10,000 steps.  Depending upon the system, 

runs were taken to either 100 or 200 ns. 

 

Preparation of Expression Constructs – Expression constructs were prepared using 

standard molecular biology techniques.  Gene fragments were amplified by PCR, based 

upon desired domain combinations from Arabidopsis thaliana cDNA clones purchased 

from the Arabidopsis Biological Resource Center (AGL15 (PYAT5G13790), FLC 

(U89754), SEP3 (U90075), and SVP (U89996)).  DNA fragments were inserted into the 

NdeI and XhoI sites of pET41 for the generation of C-terminally polyhistidine tagged 

fusion protein without a GST tag.  The final arrangement chosen was in the form of 

NcoI–MADS1–60–HindIII–SEP3IK–SpeI–XhoI–8xHIS–Stop or NcoI–MIK–SpeI–XhoI–

8xHIS–Stop.  Site-directed mutagenesis was used to remove a native HindIII site in the 

K domain of SEP3.  Alternative MADS domains can be swapped in as NcoI–HindIII 

fragments and the K domain provides bulk and an extended surface for 

homodimerization.  Verified constructs were transformed into E. coli BL21(DE3) cells. 

 

Preparation of Recombinant Protein – Protein expression was performed overnight with 

100 mL ZYM-5052 auto-induction medium with 100 µg/mL kanamycin in 500 mL 

Erlenmeyer flasks at 37°C, 300 rpm [242].  Cells were pelleted and resuspended in 1X 

CelLytic B (Sigma B7435), 10 µL/mL protease inhibitor cocktail (Sigma P8849), 1.5 

U/mL benzonase (Sigma E1014), and 10 µL/mL lysozyme (10 mg/mL) (Sigma L3790).  

Lysis was performed osmotically with the addition of five volumes water.  Inclusion 

bodies were pelleted by centrifugation, washed with water, resuspended in storage 

buffer (50 mM Tris–HCl, pH 8.0, 100 mM KCl, 50% (v/v) glycerol, 1 mM DTT (fresh)), 
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and stored at –20°C.  Total protein concentration of the recombinant protein stock in 

storage buffer was measured from serial dilutions of solubilized inclusion bodies in 6 M 

urea using a microtiter plate formatted Bradford assay (Bio-Rad 500-0006) against a 

BSA (Bio-Rad 500-0007) standard curve also in 6 M urea. 

 

Preparation of Biotinylated dsDNA Probes – DNA oligomers were synthesized by 

Integrated DNA Technologies (Coralville, IA).  The 5’-biotinylated sense strand was in 

the form of 5’-CCGGGTTTTACTATATATAGTAAAAGGGCC-3’ while the antisense strand was 

without modification.  Sequence flanking the CArG box (underlined) was based upon the 

HABS isolated for AGL15 and a stretch of GC-rich sequence was used for a clamp for 

either end.  Oligomers were reconstituted to 100 mM with Tris–EDTA buffer pH 8.0.  

Equimolar amounts of each oligomer were combined in a buffer of 75 mM Tris–HCl, 150 

mM NaCl, 15 mM MgCl2, 1.5 mM dithiothreitol, pH 7.9 (1.5X NEBuffer #3) for a final 

individual oligomer concentration of 10 mM.  Diluted oligomers were annealed by 

heating to 95°C in a heat block for 5 min, followed by moving the heat block to a 37°C 

incubator to anneal.  The heat block was moved to a bench at room temperature to finish 

cooling before placing on ice or storing in the freezer at –20°C. 

 

DPI-ELISA Assay – A calculated amount of purified inclusion bodies for the DPI-ELISA 

at hand was removed from the protein stock solubilized on-demand in 6 M urea made 

the same day.  With exception for 8 M urea, all solutions containing urea were kept in an 

ice bath and at no point were any solutions with urea permitted to rise above 25°C.  After 

30 minutes at 6 M urea, the concentration was incrementally reduced by dilution to a 

total protein concentration of 200 ng/mL and 0.5 M urea. 

 

Nickel-chelate coated microtiter plates (96-well) (Pierce 15142 or 15442 (0.24 μg/well)) 

were washed once with wash buffer (10 mM HEPES, 50 mM NaCl, 50 μM EDTA, 

0.005% Tween 20, 5% (v/v) glycerol, pH 7.2, 0.25% BSA) and 200 μL diluted, refolded 

protein was added to each well except for specific control wells.  Plates were covered 

and incubated for 2 hours at room temperature with shaking on a Thermo Scientific 

microtiter plate shaker (Model 4625-Q) at setting 5 for “in position” purification.  Protein 

solution was then removed by pipette and wells were washed three times with wash 

buffer.  Buffer conditions for binding and washing were based upon buffer conditions for 

surface plasmon resonance (SPR) NTA sensor chips [244]. 
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Previously prepared biotin-labeled dsDNA probes, 30 bp in length, were diluted in deep-

well microtiter plates (1 mL) at varying nanomolar concentrations for measurement of 

binding kinetics or a single concentration (90 nM) for screening probes.  Diluted probes 

were then applied to the wells accounting for appropriate controls.  Plates were covered 

and incubated for 1 hour at room temperature with shaking on the microtiter plate shaker 

at setting 5.  Probe solution was then removed by pipette and wells were washed three 

times with wash buffer. 

 

NeutrAvidin-horseradish peroxidase (NA-HRP) conjugate (Pierce 31001) was diluted to 

2.5 µg/mL and sterile filtered to remove precipitated clumps, which was critical for assay 

reproducibility.  Plates were covered and incubated for 30 minutes at room temperature 

with shaking on a microtiter plate shaker at setting 5.  NA-HRP conjugate was removed 

by pipette and wells were washed four times with wash buffer.  Plates were developed 

with room temperature 1-Step Ultra TMB substrate (Pierce 34028) for 5 minutes at room 

temperature with shaking.  The peroxidase reaction was stopped with 2 M sulfuric acid.  

The developed plate was read at 450 nm in a Beckman Coulter DTX 880 plate reader. 

 
Results 

Molecular dynamics 

Four systems were generated and simulated using molecular dynamics.  The first 

system is the well-characterized AGL15 homodimer with its HABS (CTATATATAG), a CT-

W6-AG form CArG box.  Additionally, the SEP3 homodimer binding was simulated with 

CCAAATTTGG, a CC-W6-GG form CArG box) as well as the AGL15 HABS.  The fourth 

system simulated was of the FLC–SVP heterodimer binding to a known binding-site 

(CTATTTTTGG) from the SOC1 promoter [257].  In all cases, the fluctuations in RMSD 

(Å) of the protein dimers were small compared with those of the DNA fragment (Figures 

4.9–4.12).  Results are described and interpreted based upon the simulation timescales 

unless otherwise noted.  Stability of the complex can be inferred by a reduction in large 

movements as well as what is generally known concerning the final confirmation of 

MADS domain:DNA complexes.  Generally, Type II MADS TFs (Chapter 1, Figure 1.4) 

bend DNA upon binding [286-293].  Therefore, the DNA bending, as determined by the 

distance between phosphates (P6 and P36) of the DNA fragment, can indicate 

increased stability of the complex (Figures 4.3 and 4.8B).  The initial distance between  
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A 

 
B 

 
 
Figure 4.3  Numbering of nucleobase positions in simulated DNA fragments and 
atoms within individual nucleobases. The numbering of the positions 1–60 is the 
numbering used by the coordinate file to uniquely identify each nucleotide, while the 
numbering of the positions -7:7 is used for referencing positions within the CArG box.  
Positions 6 and 36 are highlighted yellow to indicate the positions of phosphates used in 
measuring distance (an indicator of DNA bending). (A) AGL15 high-affinity binding site 
used in both the AGL15 and SEP3 homodimer simulations, a palindromic CC-W6-GG 
binding site used with SEP3 homodimer, and a known binding-site of the FLC–SVP 
heterodimer identified from the SOC1 promoter. It is a mixed form CArG box. DC5, DC3, 
DG5, and DG3 are representations of nucleotides with end-cap hydrogens. (B) Naming 
of atoms within the four nucleobases used for the simulations [294]. 
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P6 and P36 for all DNA fragments was measured to be 58.0 Å.  For a graphical 

description of the parameters used in Figures 4.9–4.12, please see Figure 4.8. 

 

AGL15 homodimer binding of CTATATATAG  

Extreme changes in RMSD (>5 Å) for the AGL15 homodimer and DNA alone tapered   

off within the 30 ns of the simulation (Figure 4.9, panel A).  Convergence was not 

reached until 85 ns after the start of the simulation (Figure 4.9, panel C and D).  Bending 

of the DNA fragment occurred within 30 ns (Figure 4.9, panel C).  The homodimer 

interacted with the DNA fragment by first “falling” to one side (similar to Figure 4.5D), 

situating the αI helix (AA 14–39) into the major groove of the probe and over positions -

5:-4 of the CArG box (Figures 4.3, 4.8A,C, and 4.9, panel D, green).  As both the 

homodimer and the DNA fragment are chemically symmetrical, the direction of this 

interaction is likely not significant.  With an initial distance of 58.0 Å, the distance 

between P6 and P36 approached 35 Å within 30 ns and generally remained under 40 Å 

for the rest of the simulation (Figure 4.9, panel C).  The distances between LYS23 (in the 

αI helix) of Chain A and B, to their corresponding binding positions with the DNA 

fragment (positions -6,-5,-4:+4,+5,+6) reveal that despite the symmetrical nature of the 

complex, AGL15 homodimer did not symmetrically bind the DNA fragment (Figure 4.9, 

panel D).  The highly conserved ARG3 was used as a representative to track the 

behavior of the N-terminal domain in each chain.  According to hydrogen bond analysis 

(via ptraj), the ARG3, Chain A formed hydrogen bonds with nucleobase 12 (T) nearly 

100% of the time and nucleobase 13 (A) 6.87% of the time (Appendix).  ARG3, Chain B 

Figure 4.4  Focused alignment of MADS domain for residues predominately 
involved in DNA binding.  Asterisks indicate positions found to be unique or important. 
Positions 4 and 33 in SVP (and AGL24) is unique with the presence of oppositely 
charged residues compared with the consensus, which includes animal and yeast 
proteins. In FLC, position 30 also displays an oppositely charged residue from the rest. 
Positions 3 and 23 are highly conserved and involved in direct DNA contact. (N-terminal 
domain (N), αI helix (αI)) 
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behaved differently by interacting with phosphate backbone as well as intramolecularly 

with GLU7. 

 

SEP3 homodimer binding of CCAAATTTGG and CTATATATAG 

Two sequences, representing both CC-W6-GG and CT-W6-AG forms, were selected for 

simulation with SEP3 because of the dual-binding capabilities of SEP3.  In the SEP3- 

CCAAATTTGG case, the RMSD of the DNA fragment quickly moderated to around 5 Å 

and remained consistent for the remainder of the simulation (Figure 4.10, panel A).  The 

αI helices (AA 14–39) for both SEP3 chains showed little change with the RMSD 

remaining under 1 Å (Figure 4.10, panel B).  The stability in the positions of each αI helix 

was observed in greater detail by calculating the distance between the conserved LYS23 

of both chains to their corresponding binding positions with the DNA fragment (positions 

-6,-5,-4:+4,+5,+6 of CCAAATTTGG) (Figure 4.10, panel D).  LYS23, Chain A 

approached no closer than 10 Å, while LYS23, Chain B came within range of hydrogen 

bond formation (<3 Å) (Figure 4.10, panel D).  As water-mediated hydrogen bonds were 

not calculated, the degree of coordination between LYS23, Chain A and the DNA 

fragment is uncertain.  The SEP3 N-terminal domains in the SEP3–CCAAATTTGG 

simulation case interact within the minor groove of the DNA fragment (Appendix).  The 

N-terminal domain of Chain A was observed interacting outside of the CArG box (ARG3 

with nucleobases 38 and 39), while the N-terminal domain of Chain B was observed 

interacting with the central nucleobases (ARG3 with nucleobases 17, 44, and 45) 

(Appendix).  With an initial distance of 58.0 Å between P6 and P36, the distance did not 

vary greatly from this initial distance (Figure 4.10, panel C) and indicated that protein-

induced bending did not occur despite previously mentioned indicators of stability 

(Figure 4.10, panel A, B, and D). 

 

In the SEP3–CTATATATAG simulation case, the RMSD of the complex did not stabilize 

as observed with the other simulations (Figure 4.11, panel A).  However, the RMSD of 

both αI helices (AA 14–39) remained around 1 Å (Figure 4.11, panel B).  The distance 

between P6 and P36 was erratic throughout the simulation and did not indicate DNA 

bending (Figure 4.11, panel C).  Examination of the distances between LYS23 and the 

anticipated DNA interaction positions within the major groove, revealed a stark 

difference in the movements of the αI helices (Figure 4.11, panel D).  LYS23 of the αI 

helix of SEP3, Chain B appears to have strongly interacted with nucleobases 19, 20, and  



 

 79 

 

Figure 4.5  Key residues and movements within the FLC–SVP DNA complex.  (A) 
SVP LYS23 (K23) from the αI helix situated in the major groove over nucleobases 19–21 
(refer to Figure 4.3). (B) Interactions were observed between the phosphate backbone 
and specific residues. SVP ARG26 (R26) and FLC GLU30 (E30) were of particular 
interest.  O1P and O2P atoms of nucleotide positions 38, 39, 47, and 48 are identified in 
relation to these specific residues and only the phosphate and oxygens are highlighted. 
The center of mass between O1P and O2P of 38–39 and 47–48 was used as a point to 
indicate the phosphate backbone, while atoms CZ of SVP ARG26 and CD of FLC 
GLU30 were used as points for the respective residues. (C) Plot of distances between 
identified points.  The center-of-mass between nucleobase 19, 20, or 21 atoms O6 and 
N7 or O4 were used as points of measurement between lysine atom, N7, indicating how 
far the αI helix enters into the major groove. The inset graph shows the earliest changes 
to occur within the first 10 ns. A possible attractive shift between the positively charged 
SVP LYS26 and the negatively charged phosphate backbone occurred concurrently with 
a likely repulsion of the negatively charged FLC GLU30 and negatively charged 
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21 by retaining a close distance.  Chain A became very distant with regard to the 

anticipated DNA interactions (nucleobases 49, 50, and 51).  Upon investigation of some  

of the final coordinate files generated, it appeared that the SEP3 homodimer was 

dissociating from the DNA fragment by “rolling off the end” of the fragment. 

 

FLC–SVP heterodimer binding of a known cis-element, CTATTTTTGG  

The flanking sequence of the simulated DNA fragment used for this simulation remained 

the same as for the previous simulations.  The core (10 bp) sequence (CTATTTTTGG) 

was swapped to that of a characterized and known FLC–SVP binding-site in the SOC1 

promoter (tatgCTATTTTGGtcttt) [257].  It is a mixed form CArG box comprised of a 

CT-W6-AG form half-site (CTATT) and a CC-W6-GG form half-site (CCAAA).  Other 

known binding-sites for FLC–SVP are also found as mixed forms, e.g. 

tttaCTTATTTTGGttttt (again from the SOC1 promoter) [295].  Based upon DPI- 

ELISA (Figure 4.13), the αI helix of FLC was situated over the CTATT half-site and the αI 

helix of SVP was situated over the CCAAA half-site. 

 

Within the first few nanoseconds of the simulation, the distance between the phosphate 

backbone of the DNA fragment (nucleotides 38–39) and SVP ARG26 sharply dropped 

(Figure 4.5C, inset, blue line), allowing SVP ARG26 to hydrogen bond with the DNA 

backbone.  In contrast with AGL15 (SER26) and FLC and SEP3 (ASP26), basic 

residues at this position are largely unique to the StMADS clade (Figures 4.2 and 4.6).  

Meanwhile, the distance between FLC GLU30 and the phosphate backbone of the DNA 

fragment (nucleotides 47–48) increases (Figure 4.5C, inset, red line).  It is thought these 

two events are coordinated with the like charge between FLC GLU30 and the phosphate 

backbone serving to directionally repel the αI helix of FLC away from the DNA fragment 

at its current location (Figure 4.5D and 4.6).  It appears that this reinforces and directs 

the SVP αI helix into the major groove of the half-site of the CArG box (CCAAA).  Acidic 

residues at position 30 are unique to the FLC clade (Figure 4.2). 

phosphate backbone. (D) These electrostatic interactions are thought to be a significant 
cause of the initial movements and initial recognition of the binding site. The asymmetric 
interaction biases the αI helix of SVP to be the first of the αI helices to interact with the 
major groove; thus, setting the initial preference for base pair recognition with SVP over 
FLC. (SVP is shown in purple and FLC is shown in green.) 
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The status quo was disrupted by the interaction of K+ ions with SVP ARG26, releasing 

the hydrogen bonded SVP ARG26 from the backbone (Figure 4.7, panel B, 50 ns)  Once 

released, SVP ARG26 was free to hydrogen bond with SVP GLU33 and only in the 

StMADS clade are acidic residues found at this position (Figure 4.2).  Until the 50 ns 

mark (Figure 4.12), all parameters measured appear stable.   

 

The disruption of SVP ARG26 from the DNA backbone by K+ ions coincides with several 

other changes.  Though already relatively stable (SVP LYS23, Figure 4.12, panel D), the 

SVP αI helix appears to further stabilize with the interaction of SVP ARG26 with K+ ions 

with a reduction in the RMSD for SVP αI helix (AA 14–39) (Figure 4.12, panel B, 50 ns).   

 

 
Figure 4.6  Comparative view of the FLC–SVP heterodimer versus the AGL15 
homodimer in the early phase of DNA-binding site selection. Arginines at position 
26 are unique to just a handful of the MADS domains, while a negatively charged 
residue at position 30 is even rarer (Figure 4.2). In the case of AGL15 homodimer, the 
highly conserved LYS30 (K30) is attracted to the phosphate backbone. This appears to 
be in contrast to what was observed in the FLC–SVP DNA complex. Additionally, AGL15 
lacks a strong, positively charged residue at position 26 and may reduce the 
selectiveness observed by SVP in the FLC–SVP DNA complex. However, a water-
mediated hydrogen bond appears to partially compensate (arrow). In an evolutionary 
perspective, SVP was likely selected for a longer and positively charged residue to ‘lock-
in’ a particular interaction mechanism. In MADS domains, such as AGL15, this 
interaction mechanism may regulated through phosphorylation resulting in longer, 
positively charged side-chains. 
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There was also an increase in the RMSD for FLC’s N-terminal domain (AA 2–8), 

followed by a drop and stabilization in the RMSD for FLC’s N-terminal domain (Figure 

4.12, panel B, 40–60 ns).  Following these observations, a reduction in the distance 

between P6 and P36 occurred (Figure 4.12, panel C, 60 ns), which is indicative of DNA 

bending as observed in the AGL15–CTATATATAG case (Figure 4.9, panel C, 20 ns). 

 

As the bend in the DNA fragment was stabilized, FLC LYS23, in the αI helix, moved 

closer into the major groove of the opposite half-site (CTATT) (Figure 4.12, panel D, 60 

ns).  This series of events culminate into an apparent convergence about 80 ns after the  

 

 
Figure 4.7 Disturbances of interactions by K+ ions leads the way toward 
rearrangements within the FLC–SVP DNA complex. SVP GLU33 is adjacent to SVP 
ARG26 along the αI helix. Throughout the first 40 ns, the interaction between the SVP 
ARG26 and the phosphate backbone remained stable (also in Figure 4.5C). A 
disturbance, possibly initiated by K+ ion movements (purple lines indicate individual ions) 
around the system or bending of the probe, appeared to permit SVP ARG26 to move 
slightly away from the phosphate backbone (blue line). Once this occurred, the distance 
between SVP ARG26 and SVP GLU33 closed (red line), releasing SVP ARG26 from the 
phosphate backbone and a likely energy minima. Rearrangement of the complex 
progressed after escaping this minimum.  
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Figure 4.8  Location reference for subsequent figures. (A) The highlighted regions 
(yellow) correspond to residues used to determine the RMSD values for the N-terminal 
domain and αI helix of the second panel. The structure is of a dimer and only one of the 
chains has been highlighted. (B) Orange spheres represent phosphates for nucleotides 
6 and 36 (represented in green). The numbering system is listed in Figure 4.3A and is 
based upon the residue numbering system used for the MD simulations. The central 
region (yellow) highlights the location of the CArG box. (C) This structural model is 
representative of a MADS TF–DNA complex. Several key positions are highlighted to  
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start of the simulation.  The RMSD of the DNA fragment stabilized below 5 Å (Figure 

4.12, panel A) and the distance between P6 and P36 dropped and stabilized around 45  

Å (Figure 4.12, panel C).  No parts of the αI helices or their end-caps entered into the 

major groove or otherwise interacted with the bases. 

 

Hydrogen bond analysis (via ptraj) on position 3 for ARG3 of both FLC and SVP 

revealed that FLC ARG3 interacted with nucleobase 12 (T) nearly 90% of the time, 

nucleobase 50 (G) for a minimum of 10%, and nucleobase 11 (C) for 7% (Appendix).  

SVP ARG3 interacted with nucleobase 17 (T) nearly 75% of the time, nucleobase 18 (T) 

11%, and nucleobase 45 (A) nearly 45%.  Furthermore, SVP ARG3 hydrogen bonded to 

the adjacent glutamic acid, SVP GLU4, at a minimum 45% of the time.  Acidic residues 

at position 4 are unique to the StMADS clade (Figure 4.2). 

  

show the relationships plotted in the bottom panel of Figures 4.9–4.12. The conserved 
K23 (Figure 4.2) is highlighted in either purple (Chain A) or green (Chain B). Nucleotide 
positions 19, 20, and 21 and 49, 50, and 51 are highlighted in yellow and the expanded 
views show their positions within the major groove in relation to K23. Figure 4.3B can be 
used to identify the specific locations of the atoms used in the measurements. For K23, 
the NZ atom corresponds to the nitrogen at the end of the side chain.  The central region 
(light blue) highlights the CArG box. 
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Figure 4.9  AGL15 homodimer binding of CTATATATAG. 
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Figure 4.10  SEP3 homodimer binding of CCAAATTTGG. 
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Figure 4.11  SEP3 homodimer binding of CTATATATAG.
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Figure 4.12  FLC–SVP heterodimer binding of CTATTTTTGG. 
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Comparison of binding for artificial FLC and SVP homodimers by DPI-ELISA 

Recombinant, chimeric protein FLC and SVP was produced (FLC1–60–SEP3IK–8xHIS and 

SVP1–60–SEP3IK–8xHIS).  Since FLC and SVP do not homodimerize, swapping the 

major dimerization domains (I and K) with those from SEP3 permitted the formation of 

artificial FLC and SVP homodimers.  This allowed characterization of the binding 

specificities by DPI-ELISA of each MADS domain in an isolated manner. 

 

FLC1–60–SEP3IK–8xHIS bound CTATATATAG (AGL15 HABS) and CTATTAATAG 

sequences at greater than 5-fold above the nonspecific probe, while SVP1–60–SEP3IK–

8xHIS bound CTATATATAG (AGL15 HABS), CCAAATTTGG, CCATATATGG, and 

CCTAATTAGG sequences to about the same degree (Figure 4.13).  These results are in 

agreement with reports concerning two characterized binding sites for FLC from the 

SOC1 promoter and correspond to the following half-sites:  CTATT, CTTAT, and CCAAA 

[257,295].  In general, it appears that the FLC MADS domain has a preference for the 

CT-W6-GG form CArG boxes and SVP has a preference for CC-W6-GG form CArG 

Figure 4.13  DPI-ELISA screening of DNA binding selectivity in artificial FLC and 
SVP homodimers.  FLC was shown to be very selective towards CT-W6-AG form half-
sites, while SVP showed a preference towards CC-W6-GG forms and the AGL15 
HABS, a CT-W6-AG form.  One characterized native DNA-binding site for the FLC-
SVP heterodimer is a mixed form of CArG box (CTATTTTTGG), comprised of a CT-W6-
AG form half-site (CTATT) and a CC-W6-GG form half-site (CCAAA).  The DPI-ELISA 
suggests that FLC binds the CTATT half-site and SVP binds the CCAAA half-site. 
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boxes.  The exception was with SVP and the AGL15 HABS.  It is uncertain as to whether 

there properties unique to this sequence that permit it to be broadly recognized by 

MADS domains in general. 

 

Discussion 

Investigation of the FLC–SVP heterodimer and supporting simulation cases did indeed 

reveal roles and mechanisms for DNA recognition that are both unique to the FLC–SVP 

heterodimer, yet insightful to MADS domain DNA recognition in general. 

 

Function/role of the αI Helix 

The αI helix interacts and recognizes functional groups of the major groove.  Only one αI 

helix from one monomer can initially interact within the major groove, which also 

corresponds to a half-site.  Though the highly conserved LYS23 is a dominant 

interacting residue and the only residue from the αI helix to directly hydrogen bond to 

nucleobases of the major groove (Appendix), it is the surrounding residues that specify 

how the protein first interacts with DNA at the major groove of a potential binding site. 

 

Residues in positions 26 and 30 (Figures 4.2 and 4.6) can adjust which helix will be the 

first to interact with the nucleobases within the major groove.  It is probable that other 

nearby residues can perform this role; however, these are the only positions with an 

observed role.  In the FLC–SVP–CTATTTTTGG case, SVP αI helix acted as a fulcrum, 

while FLC GLU30 appeared to provide some repulsion of FLC αI helix away from the 

DNA backbone and permitting SVP ARG26 to latch onto the DNA backbone (O1P 39 

and O2P 39) via hydrogen bonding (Figure 4.5C,D).  All adjacent ARG25 residues of the 

corresponding chain also participate in latching onto the DNA backbone similarly to SVP 

ARG26, but the ARG26 of SVP likely reinforces this latching in conjunction with FLC 

GLU30. 

 

In the AGL15–CTATATATG case, which contains matching peptide chains, AGL15 

LYS30, of either chain, would not provide a repulsive force.  AGL15 SER26, Chain A 

formed a water-mediated hydrogen bond to the DNA backbone in the same position as 

SVP ARG26 (Figure 4.6).  There is the possibility that phosphorylation of AGL15 SER26 

could an additional mechanism of enhancing DNA-binding, making SER26 mimic SVP 

ARG26.  Thus, residues of the αI helix aid in directing which αI helix is first to interact 
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with the major groove.  Only after the direction is set, does the conserved LYS23 migrate 

to the nucleobases and hydrogen bond predominantly with guanidine (O6 20) (-5:5) 

(Figure 4.9, panel D). 

 

Function/role of the N-terminal domain 

While the αI helix interacts with major groove, the N-terminal domain interacts 

throughout the minor groove.  In the AGL15–CTATATATG and FLC–SVP–

CTATTTTTGG cases, the conserved ARG3 of the appropriate chain, hydrogen bonded 

to the O2 of thymidine at nucleobase 12 (position -4) (Appendix).  This, however, is not 

specific since cytosine also possesses an O2 in the same location in the minor groove. 

 

Of greater interest was the observation that the predominant positions for hydrogen 

bonding to nucleobases within the CArG box included 17, 18, 44, and 45 (Appendix).  

Nucleobases 17 and 44 represent position +2.  When SEP3MIK was screened against a 

panel of palindromic probes by DPI-ELISA (Chapter 3, Figures 3.8 and 3.9), position -1:1 

displayed a small preference for an AT over a TA center (Appendix).  It appears that the 

asymmetrical preferences observed around position -2:2 can be attributed to the N-

terminal domain.  Additionally, AGL15 ARG3 was observed to interact with AGL15 GLU7 

and SVP ARG3 was observed to interact with SVP GLU4.  It is possible that these 

nearby residues modulate the availability of ARG3 to directly hydrogen bond to 

nucleobases of the minor groove, enhancing the effect seen here. 

 

MADS N-terminal domain as a disordered tail 

Disordered tails and regions have been implicated in a Monkey Bar-like DNA search 

mechanism [296,297], in which a disordered tail with an overall positive charge density is 

electrostatically attracted to the negatively charged DNA backbone.  When two of these 

tails are present, one can remain attached while the other is free to search for nearby 

DNA backbone whether it is adjacent or intersegmental.  Once secure, the first positively 

disordered tail is free to dissociate.  The process is repeated allowing the protein to 

migrate amongst the DNA.  Additionally, disordered tails and regions also have the 

potential to function as tuners of affinity in protein–DNA interactions [298]. 

 

The N-terminal domains of MADS domains have an overall positive charge density – 

consistent with the requirements of the Monkey Bar mechanism.  AGAMOUS (AG), 
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MADS-AFFECTING FLOWERING 5 (MAF5), and SHATTERPROOF 1 and 2 (SHP1/2) 

possess an extended N-terminal domain.  Therefore, it would not be surprising if these 

extended N-terminal domains modulated the affinity of the MADS domain and DNA or 

even the binding specificity. 

 

A dynamic mechanism for DNA recognition by MIKC MADS domain TFs 

Of the four simulations, only ARG3 of the N-terminal domain and LYS23 of the αI helix 

directly hydrogen bonded to the nucleobases of the DNA fragment (Appendix).  This 

corresponds to results from previous studies.  However, this adds to the question of how 

these MADS domains display sequence specificity.  Here, it is proposed that a dynamic 

mechanism directs sequence specificity. 

 

Since the N-terminal domain is the first subdomain of the MADS domain to direct 

sequence specificity as it is likely to be the first subdomain to interact with DNA based 

upon the Monkey Bar DNA search mechanism.  Once an N-terminal domain interacts 

with a sequence with a low dissociation constant, the αI helices and remaining N-

terminal domain interact nonspecifically with the DNA backbone.  The αI helices and 

remaining N-terminal domain “test” the underlying sequence.  If the sequence is 

incompatible, the dissociation constant will be high and the DNA–protein interaction will 

not stabilize.  If the sequence is compatible, one αI helix will migrate into the major 

groove dictated by residues present at positions 26 and 30 of the peptide chains.  As the 

underlying sequence is “tested” and the DNA–protein complex stabilizes, the complex 

undergoes an organizational shift with a further increase in stability and in the case of 

AGL15 and FLC–SVP, strong bending of the DNA.  During the organizational shift, the 

conserved LYS23 of the αI helix, hydrogen bonds to positions within the major groove.  

This later configuration permits the greatest stability for the DNA–protein complex, but 

also hides what was the originally perceived DNA-binding sequence. 

 

Biological implications 

With the proposed mechanism for DNA recognition by MIKC MADS TFs, perturbations 

made early could have a significant impact on DNA specificity.  Perturbations would 

include other DNA-binding proteins or adaptor proteins, as well as the influence of ions, 

though their influence is likely to be minimal in a consistent environment.  These 

additional proteins would likely influence which αI helix is first to interact with the major 
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groove and thus orchestrate DNA recognition.  This has been observed and 

characterized for animal and fungal MADS TFs [299], but only on a very limited basis for 

plant MADS TFs due to limited number of proteins identified that interact with plant 

MADS TFs.  With HsMEF2A, DNA is only minimally bent [290,291], while HsSRF 

requires a TCF protein in order to bind non-optimal CArG boxes [143,144].   

 

Another aspect which may possess regulatory functionality from binding to specificity is 

the N-terminal domain.  In peach, for example, the FLC clade is absent, yet members of 

the StMADS (SVP) clade are present in multiple copies [300,301].  Though unlike 

Arabidopsis, peach SVP-like MADS TFs possess extended N-terminal domains.  

Therefore the question arises as to whether the extended N-terminal domain 

compensates for the absence of FLC or if there is another purpose for it. 

 

MADS domains bind CT-W6-AG forms by default 

Within Type I and II MADS TFs, there are both MADS domains that preferentially bind 

CC-W6-GG forms and others that preferentially bind CT-W6-AG forms.   SEP3 and SVP 

bind both, though both still possess a preference for CC-W6-GG forms (Figures 3.8 and 

4.13).  Therefore, a question that arises is whether CTA-type MADS TFs can be 

converted to CCA-types and vice versa.  This question was examined previously with 

MEF2A (RSRFC4) and SRF (p67SRF) [302,303].  The METcore SRF MADS domain can 

bind both CC-W6-GG and CT-W6-AG forms, while MEF2A is only able to bind CT-W6-

AG forms.   

 

When chimeric proteins were generated with METcore SRF as the backbone, some 

variants lost the ability to bind CT-W6-AG forms [302].  Position 14, relative to MEF2A 

and most MIKC MADS TFs, in the METcore SRF was found to be susceptible.  A K14E 

mutation in METcore SRF destroyed the ability of core SRF to bind CC-W6-GG forms.  

However, when attempts were made to isolate residues that would yield a MADS 

domain that would obligately bind CC-W6-GG forms, no such combination could be 

found [302,303].  With regard to the MIKC MADS TFs examined here, neither AGL15 

nor FLC possess a glutamic acid at position 14 (Figure 4.2), yet both are to have 

preference for CT-W6-AG forms.  Though not addressed, data presented here suggests 

that all MADS TFs bind CT-W6-AG forms by default and that binding may be expanded 

to include CC-W6-GG forms. Additionally, one concern that was brought up at the time 
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was that residues identified in shifting DNA-binding specificities did not appear to be 

involved in direct base pair recognition [302].   

 

When examining the movements of the N-terminal domain from the MD simulations, it 

was observed that ARG3, a highly conserved residue, hydrogen bonded with 

nucleobases in relatively common positions along the CArG box (Appendix).  For both 

AGL15 and FLC, ARG3 interacted with a range of nucleobases at positions 11–13 and 

50.  For SVP, the location of ARG3 is similar to that of SEP3, which interact with a range 

of nucleobases at positions 17–19, 44, and 45.  In these two examples, the interaction is 

directed toward the -4:4 position.  Additionally, the other chain of SEP3 interacted 

nucleobases 38 and 39. 

 

The N-terminal domain is likely to support DNA searches via the Monkey Bar 

mechanism and without the N-terminal domain, initial DNA-binding would likely be 

negligible.  Furthermore, the N-terminal domain appears to possess specificity for CT-

W6-AG forms.  Therefore, MADS TFs are most likely by default, binders of CT-W6-AG 

forms.  In the K14E SRF mutant [302], the ability for SRF to interact with C:G pairs at 

positions -4:4 in CC-W6-GG forms was likely destroyed, leaving the N-terminal domain 

to dominate stabilization.  This means that it is not probable to find a MADS domain that 

obligately binds CC-W6-GG forms. 

 

Conclusion 

The current knowledge gap surrounding MADS domain DNA recognition involves 

determination of what imperfections to the canonical CArG box sequence are permitted 

during DNA recognition by a MADS domain.  Several highly conserved residues are 

present within the MADS domain and have had their roles identified DNA sequence 

recognition.  However, these studies were done utilizing a limited and under-

representative set of MADS domains (Appendix).  Furthermore, by the inherent nature of 

X-ray crystallography, structural studies have been limited to a single static end-state 

that gave little information outside the highly conserved residues (Appendix).  Molecular 

dynamics brought a means to examine the events leading up to the static end-state 

retrieved by X-ray crystallography.  Additionally, examination of MADS domain clades 

with under-represented sequence characteristics provided insight to a broader set of 

biologically-relevant MADS domain sequences.  What was found was that the N-terminal 
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plays a significant role in specifying bases within the central portions of the CArG box.  

Also, asymmetric DNA recognition by the αI helices and the N-terminal domains is a 

likely cause for the acceptance of imperfections to the canonical CArG box sequence.  

Later experiments may be able to ascertain patterns between imperfections permitted to 

the canonical CArG box and specific non-conserved residues in the MADS domain 

family. 
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CHAPTER 5 

Future Directions 

 

The following are questions that arose from my research that would be interesting to 

pursue as a postdoc or an independent researcher. 

 

Is there a pocket in the ACT domain of group IIIf bHLH TFs and do small 

molecules regulate dimer formation? 

Two particular experiments that would be intriguing to conduct would be to model the 

ACT domain of R and attempt to determine the basis for dimerization of the domain.  It is 

known that for some ACT domains, small molecules play a role in dimerization [19,37].  

Modeling the ACT domain of R would allow one to determine if a pocket is present 

before or after dimerization as well as the size and any residues that could be used to 

stabilize a putative ligand metabolite.  Knowing this information would be useful for site-

directed mutagenesis studies both in vitro and in vivo, which may yield an undiscovered 

feed-back regulatory mechanism through allosteric conformational changes at the ACT 

domain.  Since ACT-like domains appear to be present in the entire group IIIf bHLH TFs, 

this information would be valuable for not only to further understanding anthocyanin 

biosynthetic pathway, but also in trichome and root initiation and development.  

Ultimately if a pocket were identified in the ACT domain, identification of putative small 

molecule ligands would be critical to identification of a putative feed-back regulatory 

mechanism.  Therefore the main goal of modeling the R ACT domain would be to 

perform computational small molecule ligand discovery similar to what is performed for 

drug discovery.  This study would be conducted with software such as AutoDock, DOCK 

(UCSF), Hex, SwissDock, or other similarly available ligand docking software with a 

small molecule library interface. 

 

Does a DNA loop form in the bHLH–MYB–DNA activation complex and is DNA 

binding dependent upon the correct phasing of cis-elements? 

The second experiment attempts to answer questions concerning the overall 

arrangement and confirmation of the transcription factor activation complex.  As 

mentioned before in the proposed model for R binding DNA, it appears that R is unique 

among the group IIIf bHLH TFs that regulate anthocyanin biosynthesis in how it interacts 
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with DNA.  The others, however, are thought to bind G-box cis-elements in the 

respective promoters.  In the promoters of DFR genes in Nicotiana tabacum and other 

Solanaceous species, such as Petunia sp., the presence of multiple G-boxes that can be 

aligned indicate the conservation of these G-boxes through evolution is likely a result of 

the maintenance of a similar regulatory mechanism.  An experiment that would have 

been interesting to conduct would be to determine if the phase of these conserved cis-

elements (G-boxes) in relation to each is critical for binding and activation. 

DNA should be thought of as a tube rather than a string and the position of cis-elements 

in a promoter can be critical [281,282].  For example, if the distance between two cis-

elements bound by a bHLH and MYB, respectively, is increased.  The major groove of 

one cis-element will rotate to the opposite side of the DNA strand in relationship to the 

other.  There is the likelihood that the bHLH–MYB complex will not be flexible enough to 

efficiently reach and bind both cis-elements.  This scenario is more relevant to shorter 

distances between cis-elements due to the ability of larger DNA loops to overcome this.  

Thus, an experiment where the length between two cis-elements in a representative 

DFR promoter is increased and decreased to come in and out of phase would expect to 

observe a reporter signal to increase and decrease, respectively.  This would provide 

insight to the overall arrangement and confirmation of the transcription factor activation 

complex and putative DNA loop.  This could also provide insight into whether putative 

cis-elements would be blocked in ways similar to the lac promoter for E. coli.  

Furthermore, if phasing is critical to activation of this type of TF complex, this information 

would be useful for identifying biologically significant cis-elements for those promoters 

utilizing it. 

 

Improved tag for DPI-ELISA 

One regret of the current DPI-ELISA is the associated cost of the nickel-coated microtiter 

plates.  The nickel–HIS-tag system was selected to minimize the introduction of new 

variables.  However, this required the use of specially treated microtiter plates that were 

significantly more expensive than those used for a typical ELISA.  There is a small push 

to reduce costs for ELISAs in general.  One of these systems involves the use of a 

small, hydrophilic polystyrene tag to bind directly to the microtiter plate [304-309].  Some 

of the polystyrene tags identified through biopanning had affinities of adsorption that 

where 10 times higher than for wild-type GST [309].  A concern of the Ni2+NTA HIS tag 
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system is the lower affinity of the HIS-tag towards Ni2+ and the use of a system, such as 

the polystyrene tag, could also alleviate this concern. 

 

Map interactions and resolve positional redundancy between CArG boxes and 

plant MADS domain TFs using inosine and other non-standard bases 

A set of probes similar to the inosine probes used in Chapter 3 used be designed and 

synthesized.  These would be used to probe the binding of MADS domains to specific 

positions and functional groups using DPI-ELISA and possibly surface plasmon 

resonance (SPR).  Representatives from each major clade and/or sequence subclade 

would be evaluated for binding specificity.  Performing an assay in this manner will 

provide a consistent background and permit the data recovered from each clade to be 

more easily compared between clades.  This should provide a good map for the 

understanding of the function of the unique sequence differences observed between 

major clades and/or sequence subclades.  Additionally, using non-standard bases in 

particular combinations should be able resolve if and how redundancy is distributed 

within the CArG box. 

 

Are the unique combinations of residues found in each MADS domain clade 

necessary and sufficient for the observed binding specificities? 

Site-directed mutagenesis and swapping would be performed on select residues in 

MADS domain clades, such as FLC and SVP.  Select positions would be centered on 

positions 7, 13–16, and 30–34 (see Figure 4.2).  Additionally, mutations that would 

mimic a phosphorylated residue could be performed at positions 6, 14–16, 22, and 26.  

The rational for this approach is the presence of residues that mimic phosphorylation 

(arginine and lysine)  are already present at position 26 in AGL24, SVP, AGL17, and 

AGL21, for example.  Using SEP3 as a neutral or nonspecific MADS domain due its 

broad affinity for various CArG box sequences, mutations would also be made into SEP3 

to attempt the conversion of SEP3 specificity to that observed in AGL15, FLC, or SVP.  

Course-grained modeling would be used to permit the testing of the behavior of site-

directed mutagenesis candidates.  It would allow for a reiterative approach and 

validation of both wet lab and simulation data. 
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What is the significance of extended N-terminal domains? 

Extended N-terminal domains are found in MADS domains like AGAMOUS (AG), 

MADS-AFFECTING FLOWERING 5 (MAF5), and SHATTERPROOF 1 and 2 (SHP1/2).  

Additionally, extended N-terminal domains are also found in the SVP-like MADS TFs of 

peach, which does not possess any members of the FLC clade.  Expanding the analysis 

of extended N-terminal domain function would include an extensive search and 

classification of MADS domains that include an extended N-terminal extension, but 

without any further N-terminal domains.  The binding presences of representatives would 

be determined by DPI-ELISA.  Studies of their binding characteristics and kinetics would 

be determined through truncations of the extended portion of the N-terminal domain, as 

well as swapping experiments.  It would also be interesting to know if the extended N-

terminal domain plays a role in DNA sequence selectivity in the flanking sequence of 

CArG boxes.  Course-grained modeling would also be used to try to understand behave 

of the N-terminal domain at longer time frames. 

 

Did the FLC clade evolve into presence after the StMADS11 clade?  If so, how did 

the StMADS11 clade adapt? 

Since the FLC clade has limited presence, it likely formed after the StMADS11 clade.  

Understanding these adaptations could help to better understand how SVP-like MADS 

TFs work in general.  Another question concerning the presence of FLC-like clade 

members in distantly related plants is whether or not their common ancestor had a FLC-

like clade member.  If it did, then why was it lost?  If it did not, then did the FLC-like 

MADS TFs from distantly related plants evolve by convergent evolution?  If convergent 

evolution is at work, then this could indicate the binding specificity of the FLC clade is 

limited to a unique set of residues.  Questions such as this have been raised previously, 

but answers still wait [116]. 

 

Can affinity and kinetics parameters be computationally modeled and then used to 

predict whether or not a MADS domain will bind a specific cis-element? 

Using a combination of MD simulations and wet lab techniques such as EMSA, DPI-

ELISA, SPR, circular dichroism, and/or isothermal titration calorimetry, a rank order 

would compiled.  The goal would be two-fold.  The first goal would be to attempt to 

discover what elements can be used to predict affinity and kinetics between specific 

MADS domains and specific DNA sequences.  The second goal would occur 
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simultaneously and would be to reduce the complexity and multitude of factors involved 

into discrete elements useful for predicting affinity and binding kinetics.  The importance 

of this second goal is to reduce the amount of resources required to solve the first goal.  

The tools developed here should be applicable to other discrete TFs and hopefully in a 

broader sense with multi-factor TF regulatory complexes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Joshua R. Werkman 2013



 

 101 

APPENDIX 

 

Abbreviations: 

4CL – 4-coumarate:CoA ligase 

a1 – dihydroflavonol 4-reductase, Zea mays 

a2 – anthocyanidin synthase, Zea mays 

ACT – aspartate kinase, chorismate mutase and TyrA 

AD – activating domain 

AGL – agamous-like 

AHLW, HLW, LW – Drop-out medium lacking adenine, histidine, leucine, and tryptophan 

AMBER – Assisted Model Building with Energy Refinement 

ANS – anthocyanidin synthase 

app – apparent 

BD – binding domain 

β-gal – β-galactosidase 

bHLH – basic helix loop helix 

bHLH–LZ – basic helix loop helix leucine zipper 

bHLH–LZL – basic helix loop helix leucine zipper-like 

BiFC – bimolecular fluorescence complementation 

BMW – bHLH–MYB–WDR 

bp1 – BROWN PERICARP 1, Zea mays 

BSA – bovine serum albumin 

bz1 – UDP-glucose:flavonoid O-glucosyltranserase, Zea mays 

bz2 – glutathione S-transferase, Zea mays 

bZIP – basic leucine zipper 

C1 – COLORLESS 1, Zea mays 

c2 – chalcone synthase, Zea mays 

C4H – cinnamate 4-hydroxylase 

cDNA – complementary DNA 

CHI – chalcone isomerase 

ChIP – chromatin immunoprecipitation 

ChIP–SEQ – chromatin immunoprecipitation with sequencing  

CHS – chalcone synthase 

COM – center of mass 
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CPU – central processing unit 

DBD – DNA-binding domain 

DBS – DNA-binding site 

DFR – dihydroflavonol 4-reductase 

DMSO – dimethyl sulfoxide 

DPI-ELISA – DNA-protein interaction enzyme-linked immunosorbent assay 

dsDNA – double-stranded DNA 

DTT – dithiothreitol 

EDTA – ethylenediaminetetraacetic acid 

ELISA – enzyme-linked immunosorbent assay 

EMSA – electrophoretic mobility shift assay 

EMSY – named after Luke Hughes-Davies sister, because “SISTER” appears in the first 

line of the protein sequence 

F3’H – flavonoid 3’-hydroxylase 

F3H – flavanone 3-hydroxylase 

FLC – FLOWERING LOCUS C, Arabidopsis thaliana 

fs – femtosecond 

GB – gigabyte 

GPU – graphics processing unit 

GST – glutathione S-transferase 

HABS – high-affinity binding site 

HDAC – histone deacetylase 

HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HPC – high performance computing 

HRP – horseradish peroxidase 

IMAC – immobilized metal ion affinity chromatography 

IPTG – isopropyl β-D-1-thiogalactopyranoside  

Kd – dissociation constant 

kDa – kiloDalton 

Lc – LEAF COLOR, Zea mays 

LZL – leucine zipper-like 

MADS – MCM1, AGAMOUS, DEFICIENS, and SRF  

MAF – MADS AFFECTING FLOWERING 

MCM1 – MINICHROMOSOME MAINTENANCE 1, Saccharomyces cerevisiae 
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MD – molecular dynamics 

MEF2 – MYOCYTE ENHANCER FACTOR 2, Homo sapiens 

MHE – minimization, heating, and equilibration 

MIKC – MADS, Keratin-like coiled-coil, Intervening, and C-terminal domains 

MIKCC – MIKC classical 

MIR – MYB interacting region 

MYB – myeloblastosis oncogene family of transcription factors 

NA-HRP – NeutrAvidin-horseradish peroxidase conjugate 

NFκB – nuclear factor kappaB 

NFDM – non-fat dry milk 

NMR – nuclear magnetic resonance 

ns – nanosecond 

NTA – nitrilotriacetic acid 

ONPG – O-nitrophenyl-β-D-galactopyranoside (ONPG) 

P1 – PERICARP 1, Zea mays 

PAC1 – PALE ALEURONE COLOR 1, Zea mays 

PAGE – polyacrylamide gel electrophoresis 

PAL – phenylalanine ammonia lyase 

pm – picometer 

pr1 – flavonoid 3’-hydroxylase, Zea mays 

ps – picosecond 

R – RED1 locus in maize 

RIF1 – R-INTERACTING FACTOR 1, Zea mays 

RMSD – root-mean-square deviation 

SAM – SRF, ARG80, and MCM1 

SDS-PAGE – sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SELEX – systematic evolution of ligands by exponential enrichment 

SOC1 – SUPPRESSOR OF CONSTANS OVEREXPRESSION 1, Arabidopsis thaliana 

SPR – surface plasmon resonance 

SREBP1 – STEROL REGULATORY ELEMENT BINDING PROTEIN 1, Homo sapiens 

SRF – SERUM RESPONSE FACTOR, Homo sapiens 

StMADS – Solanum tuberosum MADS 

SVP – SHORT VEGETATIVE PHASE, Arabidopsis thaliana 

TEV – tobacco etch virus 
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TF – transcription factor 

TF-EIA – transcription factor enzyme-linked immunoassay 

TIP3P – transferable intermolecular potential 3 point 

TMB – 3,3',5,5'-tetramethylbenzidine 

TOPOIIA-A – topoisomerase IIA, subunit A  

UFGT – UDP-glucose:flavonoid O-glucosyltranserase 

WDR – WD-repeat (tryptophan-aspartate repeat); specifically WD40 
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 |-----helix2-----|-leucine zipper----------------| 

ZmR  KASILAETIAYLKELQRRVQELESSREPASRPSETTTRLITRPSRGNNESVRKEVCAGSKR   
AtRAP1 KASLLGDAIAYINELKSKVVKTESEKLQIKNQLEEVKLELAGRKASASGGDMSSSCSSIKP 
HsMyc  KVVILKKATAYILSVQAEEQKLISEEDLLRKRREQLKHKLEQLRNSCA* 
HsMax  RAQILDKATEYIQYMRRKNHTHQQDIDDLKRQNALLEQQVRALEKARSSAQLQTNYPSSDF 

           gabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdef 
            *  *   *  *   *  *   *  *   *  *   *  * 
            000000011111112222222333333344444445555555666666 
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Structure 

ID MADS DNA Other molecules Type Organism Ref. 

1hbx HsSRF 26mer Hs ETS-domain protein 
ELK-4 I human [310] 

1k6o HsSRF 23mer Hs ETS-domain protein 
ELK-4 I human [145] 

1srs HsSRF 19mer none I human [311] 

1mnm ScMCM1 26mer ScMATalpha I yeast [289] 

1c7u HsMEF2A 20mer none II human [286] 

1egw HsMEF2A 17mer none II human [312] 

3kov HsMEF2A 13mer none II human [279] 

3mu6 HsMEF2A 17mer (E)-N'-(2-aminophenyl)-N-
phenyl-oct-3-enediamide II human [313] 

3p57 HsMEF2A 15mer 
Histone acetyltransferase 

p300 TAZ Hs 
Zn 2+ 

II human [137] 

1n6j HsMEF2B 14mer Hs Calcineurin-binding 
protein Cabin 1 II human [314] 

1tqe HsMEF2B 17mer Mus musculus Histone 
deacetylase 9 II human [299] 
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