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ABSTRACT OF DISSERTATION 

 

REDOX-REGULATED RELB-AR AXIS MEDIATES PROSTATE SPECIFIC 
ANTIGEN EXPRESSION: INSIGHT IN PROSTATE CANCER RESPONSE TO 

RADIATION THERAPY 

Although the prostate specific antigen (PSA) test is widely used in clinical settings 
for prostate cancer (PCa) diagnosis and post-treatment follow-up monitoring, false 
positive PSA test results, which contribute to over-diagnosis of PCa, and false negative 
results, which miss some patients with aggressive PCa, remain problems of clinical 
importance. 

Our study demonstrates that radiation therapy, which is widely used for treatment of 
localized PCa, generates TNF-α in tumor cells and stromal fibroblasts, redox dependently. 
Interestingly, TNF-α rapidly and transiently triggers the RelA-mediated NF-κB canonical 
pathway, but its effect on RelB expression is more robust and long lasting, which leads to 
sustainable suppression of PSA expression. TNF-α further amplifies endogenous reactive 
oxygen species (ROS) partially through NADPH oxidase activation and mediates redox-
dependent downstream signaling pathways. Addition of the NADPH oxidase inhibitor or 
ROS scavengers such as superoxide dismutase (SOD) mimetic can abrogate TNF-α-
mediated suppression of PSA expression by inhibiting the RelB-AR axis. Treatment with 
TNF-α suppresses PSA expression and it confers minor yet statistically significant 
protection to LNCap cells against irradiation, indicating that radiation-induced TNF-α 
may not only interfere with the PSA-based PCa diagnosis and post-treatment monitoring 
but may also diminish the efficacy of radiotherapy. 

In addition, we uncover a role for RelB in suppressing PSA expression at the 
advanced stage of PCa, which could be a mechanism for the low PSA level in some 
patients bearing aggressive PCa. Experiments with both RelB overexpression and siRNA 
knockdown indicate that RelB negatively regulates androgen receptor (AR) and PSA 
levels in human prostate cancer, LNCap, cells.  RelB directly interacts with AR to form a 
complex on the enhancer elements of the PSA promoter.  Thus, the RelB-AR axis is an 
important contributor to PSA suppression at the advanced stage of PCa.  



Overall, this study is the first to reveal a redox-mediated association among radiation-
generated TNF-α, activation of the RelB-mediated alternative NF-kappaB pathway and 
PSA suppression.  This mechanistic information provides new insights with practical and 
clinical implications for PSA-based PCa diagnosis and post-treatment monitoring as well 
as redox intervention in radiation therapy. 

KEYWORDS: radiation, prostate cancer, RelB-AR axis, PSA, oxidative stress 
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Chapter One 

Introduction 

Cancer is a major public health issue around the world and accounts for about 25% of 

all deaths in the United State. Prostate cancer accounts for close to 29% of newly 

diagnosed cancer cases and 9% of cancer death in men in 2012 [1]. The common forms 

of treatment for prostate cancer are surgery, ionizing radiation (IR) therapy, 

chemotherapy and hormone management [2]. Radiation therapy may be effectively 

applied if the tumor is localized to the original site in the body or as a part of curative 

therapy to prevent cancer recurrence after surgical removal of the primary tumor. 

Unfortunately, as many as 30-40% of prostate cancer patients treated with radiation 

would have disease recurred and progressed to the advanced stages [2]. The presence of 

radiation-resistant prostate cancer cells and cancer stem cells, the complexity of tumor 

microenvironment, such as hypoxia, inflammatory cytokine and growth factor secretion, 

as well as the elevated relevant receptors expression are contributing factors that 

influence the outcomes of radiation therapy.  

The effects of radiation therapy should not be considered just in terms of isolated 

cells since the entire tissue has a role to play in determining the response of individual 

cells to any regulatory or damaging signals [3, 4]. The localized release of radiation 

energy generates free radicals, mainly via ionization of water, which constitutes about 80% 

of cells, and produces various reactive oxygen species (ROS). The ROS can then rapidly 

diffuse and react with other molecules to damage DNA, protein and lipid targets. This 

indirect effect of IR, such as X-Rays and γ–Rays, is expected to cause a majority of 

radiation-induced damage [3, 5, 6].  

Different types of cells within tumor tissue are subject to complex regulatory 

mechanisms depending on their interactions with other cells and cellular products that 

comprise their microenvironment. Many proteins are sensitive to oxidative modification, 

making ROS important signaling molecules when an organism is exposed to IR. Aerobic 

organisms are continuously exposed to a modest level of oxidative stress, which provides 

the essential signaling functions for maintaining metabolic homeostasis in mammalian 

cells [7]. Because ROS plays crucial dual roles in inducing cancer development 

(initiation, promotion and progression) and maintaining metabolic homeostasis, both pro-
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oxidant and antioxidant-based agents have been developed for cancer prevention and 

treatment [8-12].  

One of the major obstacles in radiation therapy for prostate cancer is that tumor cells 

that are initially sensitive to radiation treatment gradually develop resistance to 

radiotherapy. Even though the development of radiation resistance in human tumors is 

not fully understood, extensive research indicates that antioxidant enzyme-mediated 

adaptive responses to IR are partially involved in this process [13-15]. IR-stimulated 

inflammatory factor production can not only alter redox status within tumor 

microenvironment directly but also activate a wide spectrum of genes, which regulate 

anti-apoptosis, invasion and angiogenesis pathways and confer radioresistance to tumor 

cells. In this introductory chapter, commonly elevated cytokines and growth factors, such 

as interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α) and 

transforming growth factor-beta (TGF-β), as major mediators of IR response found in the 

prostate cancer after radiation therapy will be reviewed and different redox signaling 

pathways and redox sensitive transcription factors controlled by these proteins will be 

discussed.  Biological significances of such information can be particularly useful in 

understanding the development of cancer radioresistance to improve radiation therapeutic 

effects in humans. 

Radiation in prostate cancer treatment 

Ionizing radiation and radiation therapy 

IR, which is both a carcinogen and a therapeutic agent, can be generated from 

radioactive materials, X-ray tubes and particle accelerators or present in the environment 

[3].  Cancer radiotherapy is the medical use of ionizing radiation to control or kill 

malignant cells.  For prostate cancer treatment, radiation is most commonly given from 

an external source (external beam radiotherapy) but may also be administered by 

inserting small radioactive seeds directly into the tumor (brachytherapy) for some men 

with early prostate cancer [2]. External beam radiotherapy is much more widely used 

than brachytherapy. Delivery of a lethal dose of radiation to the tumor lesion while 

minimizing damage to normal surrounding tissues is one of the major challenges in 

radiotherapy.  Progress has been made in imaging technology to facilitate the accuracy 
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and precision of radiotherapy, especially with the use of 3-dimensional conformal 

radiation therapy (3DCRT) and intensity modulated radiation therapy (IMRT) [16, 17].  

External beam radiotherapy delivers one of two types of radiation, photons, such as 

X-rays and γ-rays, or charged particles, such as protons, to damage the DNA and other 

macromolecules of cancerous cells. X-rays are generated extranuclearly from X-ray 

machines whereas γ-rays are produced intranuclearly from radioactive materials. While 

they differ in the source of generation, X-rays and γ-rays share the same radiophysical 

properties [4, 5, 18] (Figure 1.1). Direct action of IR refers to direct interaction of 

radiation beams or particles with critical target molecules in cells, such as DNA, to cause 

various types of damages in DNA structure, leading to lethal chromosome aberrations [19, 

20].  Indirect action of radiation are the multicellular effects by water radiolysis that 

produce free radicals, such as hydrated electrons (e-aq), ionizied water (H2O+), 

hydroperoxyl radical (HO2•), hydrogen radical (H•), and hydroxyl radical (•OH), which 

can diffuse far enough to reach and damage the DNA, protein and lipid targets [3-5, 20]. 

Both direct action and indirect action of IR are closely linked, for example, direct damage 

to DNA by IR can induce ROS generation via histone H2AX-mediated mechanisms 

involving NADPH oxidase 1 (NOX1) and ras-related C3 botulinum toxin substrate 1 

(Rac1) GTPase [21]. To a large extent, it is these free radicals that break chemical bonds, 

produce chemical changes, and initiate the chain of events that results in the final 

expression of biological damage. Oxygen is known to sensitize the tumor and oxygen 

molecules present in the tumor can react with free radicals (R•) to produce organic 

hydroperoxide (RO2•), which is a nonrestorable form of the biological target that “fixes” 

the radiation lesion [4, 5]. This so-called oxygen effect and the associated reoxygenation 

strategy may enhance the radiation-induced cell killing.  

Radioresistance: an important impediment in prostate cancer treatment 

The development of resistance to radiation is one of the most important obstacles in 

prostate cancer radiotherapy. Thus, understanding of mechanisms of radioresistance is 

quite important for developing strategies that can either sensitize tumor cells to radiation 

treatment or protect normal tissue from radiation damage, which can be of significant 

benefit to patients. Some of the molecular entities associated with the development of 

radioresistance have been identified in prostate cancer although the underlying 
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mechanisms are still not fully understood [22]. For example, a novel tumor suppressor 

gene DAB2IP (DOC-2/DAB2 interactive protein) is a member of the RAS-GTPase-

activating protein family and downregulation of DAB2IP in prostate cancer cells not only 

leads to epithelial mesenchymal transition (EMT) but also results in resistance to IR [23]. 

A proteomics study comparing individual parental cell lines with three ionizing radiation 

resistant prostate cancer cells lines revealed higher levels of androgen receptor (AR), 

epidermal growth factor receptors (EGFR) and activation of their downstream pathways, 

such as Ras- mitogen-activated protein kinase (MAPK), phosphatidyl inositol 3-kinase 

(PI3K)-AKT and janus kinase-STAT in the IRR cell lines [24]. Mutations in dominant 

tumor suppressor gene or constitutive activation of some prosurvival pathways, such as 

NF-κB pathway, Ras-MAPK and PI3K pathways, have also been correlated with 

resistance to ionizing radiation-induced cell killing [23-27].  

The neuroendocrine differentiation (NED) of prostate cancer cells is closely 

correlated with radioresistance [28, 29]. In the prostate gland, neuroendocrine (NE) cells 

are less than 1% of total epithelial cells compared with the luminal and basal cells; 

however, the number of NE-like cells increases in advanced prostate cancer [30, 31]. 

Fractionated ionizing radiation can induce NED in the LNCaP prostate cancer cell line 

and in patients by activation of cAMP response element binding protein (CREB) and 

cytoplasmic sequestration of activating transcription factors 2 (ATF2) [28]. NE-like cells 

can de-differentiate back to a proliferating state, which may contribute to tumor 

recurrence [28, 32]. The neuroendocrine-like cells secrete a variety of factors, including 

parathyroid hormone–related peptides, serotonin, calcitonin, bombesin-related peptide, 

and neurotensin that enhance DNA synthesis, proliferation, and migration of prostate 

cancer cells in vitro [29]. The selective antagonist to the high-affinity neurotensin 

receptor 1 (NTR1) can sensitize prostate cancer cells to ionizing radiation by inhibiting 

downstream signaling events such as EGFR and Src activation [29]. Both of these two 

independent lines of studies suggest that the process of NED and/or the specific receptor 

to the protein secreted by NE-like cells may represent possible intervention opportunities 

to enhance the sensitivity of prostate cancer to radiotherapy. Interestingly, by utilizing 

LNCaP cell clones with stably overexpressed manganese superoxide dismutase (MnSOD) 

with lower superoxide levels and higher H2O2 levels, Quiros-Gonzalez. et al showed that 
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MnSOD upregulation was sufficient to drive NE differentiation, resulting in androgen 

independence and cell survival in prostate cancer cells [33]. It is believed that the balance 

between O2
•− and H2O2 can determine pathways that drive the NED process [33]. Thus, it 

is conceivable that MnSOD might affect NED by modulating the level of H2O2 and 

balance between O2
•− and H2O2. Further investigation on the roles of MnSOD in 

regulating prostate cancer cell NED and significance of NED in prostate cancer 

radioresistance and recurrence may lead to new discoveries that can be explored to 

overcome radioresistance. 

Reactive oxygen species and prostate cancer  

Reactive species, which include ROS and reactive nitrogen species (RNS), can be 

categorized into two groups: free radicals that contain one or more unpaired electrons, 

such as superoxide (O2
•-), •OH, nitric oxide (NO•), and non-radicals, such as H2O2. To 

maintain a delicate redox homeostasis, biological organisms are endowed with a complex 

intracellular “redox buffer” network including both enzymatic and non-enzymatic 

antioxidants. The major enzyme defense system against ROS includes SOD, catalase, 

glutathione peroxidase (GPx), peroxiredoxin (Prx) and glutathione S-transferase （GST）

[34]. In addition to these antioxidant enzymes, small thiol-containing peptides, such as 

glutathione (GSH), glutaredoxin (Grx) and thioredoxin (Trx) systems also help to 

scavenge ROS and maintain appropriate redox homeostasis [12, 35].  

The redox status (oxidizing/reducing conditions) of cells can regulate various 

transcription factors/activators such as AP-1, nuclear factor kappa B (NF-κB) and p53, 

thereby influencing target gene expression and modulating cellular signaling pathways. 

Appropriate levels of ROS and RNS are necessary for normal physiological function of 

the living organisms [36]. The increase in production of reactive species and/or the 

decrease in antioxidants can lead to oxidative stress, which can damage DNA, inhibit 

cellular enzyme activities and induce cell death through activation of kinases and caspase 

cascades [37-39]. Oxidative stress resulting from an imbalance between pro-oxidant and 

antioxidant in favor of the former is believed to play a critical role in prostate 

carcinogenesis and prostate cancer progression (reviewed in [40-42]).  
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Sources of reactive oxygen species 

ROS derived from incomplete reduction of oxygen can be produced either 

endogenously (e.g., mitochondria respiration) or exogenously (e.g., ionizing radiation) 

[18, 43, 44] (Figure 1.2). The most important endogenous source of ROS is the 

mitochondrial electron transport chain [45]. ROS are produced as an inevitable byproduct 

of oxidative phosphorylation. The electrons leak from some components of the 

mitochondrial ETC, especially from complex I (NADH-dehydrogenase) and complex III 

(ubiquinone-cytochrome b), leads to the one electron reduction of O2 and generation of 

O2
•-. Exogenous IR (i.e., 10 Gy of X-rays) can induce a time-dependent increase in the 

mitochondrial ROS level and raise mitochondrial membrane potential, mitochondrial 

respiration, and mitochondrial ATP production, which are indicative of upregulated 

mitochondrial ETC function [46]. Superoxide can be dismutated by SOD to yield 

hydrogen peroxide and O2. In the presence of transition metal ions, especially iron ions, 

hydrogen peroxide is subsequently converted through Fenton and Haber-Weiss reactions 

to a hydroxyl radical, which is the most toxic form of ROS, leading to various types of 

lipid peroxidation, protein modification and particularly oxidative DNA damages, such as 

8-hydroxy-deoxyguanosine (8OH-dG) [4]. IR-induced ROS/RNS generation, which 

occurs within minutes after irradiation, is inhibited by mitochondrial permeability 

transition inhibitor cyclosporine A and is absent in the mitochondria-deficient ρ0 cells, 

indicating that mitochondria are the primary source of radiation-induced reactive species 

[47]. Mitochondrial dysfunction that causes persistent oxidative stress may contribute to 

radiation-induced genomic instability [48].     

Somatic mutations in the mitochondrial genome are relatively frequent events in 

prostate cancer. Certain mutations are associated with elevated prostate specific antigen 

(PSA) levels [49] or increased degree of tumor malignancy in prostate cancer patients [50, 

51]. The circular, multi-copy mitochondrial DNA (mtDNA) is a sensitive target for most 

exogenous carcinogens, including IR, and mtDNA damage is implicated as having a 

causal role in oncogenic transformation and metastasis [52]. Petros. et al provided 

convincing evidence that prostate cancer patients have a significantly increased frequency 

of functionally important cytochrome oxidase subunit I (COI) mutations and the 

introduction into prostate cancer cells of a mtDNA ATP6 T8993G mutation, which 
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inhibits oxidative phosphorylation and increases ROS production, increased in vivo 

growth of these cells as compared to the wild-type (T8993T) cybrids [53]. Compared to 

nuclear DNA, mtDNA is more susceptible to radiation-induced loss of integrity due in 

part to the lack of protective histones, an inefficient DNA repair system, and continuous 

exposure to the mutagenic effect of ROS [54], which is exacerbated by GSH depletion in 

mitochondria [52]. ROS-induced mtDNA damage can alter polypeptides encoded by 

mtDNA for respiratory complexes, resulting in further decreased electron transfer activity 

and increased ROS generation, thereby establishing a “vicious cycle” of oxidative stress 

[55] and decline in mitochondria energy production after initial oxidative damage of 

mtDNA [56]. Considering the genetic association between mtDNA mutations and 

prostate cancer, quantitative traits such as PSA levels and Gleason score as well as high-

quality sequencing to detect differences in mtDNA may help clinicians to monitor 

prostate malignant transformation, tumor progression and metastasis.  

ROS can also be generated by other enzymes, such as xanthine oxidase (XO), 

membrane-associated NOX and cytochrome P450 in endoplasmic reticulum and oxidases 

in peroxisomes [57]. The NADPH oxidase family, which catalyzes the NAD(P)H 

dependent reduction of molecular oxygen, is responsible for the generation of superoxide 

anion, which is then dismutated to form hydrogen peroxide. The association of NOX 

enzymes with prostate cancer growth and malignant phenotype has been extensively 

reviewed [42, 58]. Importantly, NADPH oxidase has significant therapeutic implications 

in prostate cancer radiotherapy. A useful strategy for prostate cancer treatment is to 

sensitize cancer cells to radiotherapy by specifically activating NADPH oxidase in 

prostate tumor cells, which already have high levels of oxidative stress, and pushing 

prostate cancer cells over to death while sparing normal cells that are capable of 

maintaining redox homeostasis through adaptive responses [59]. Compared with 

uncharged diffusible hydrogen peroxide, superoxide radicals exert signaling functions 

locally with a shorter lifespan. Low levels of hydrogen peroxide are utilized for many 

signaling pathways, such as the one for cell survival [60], and are responsible for 

integrating redox homeostasis and disulfide formation in the endoplasmic reticulum [61]. 

However, exogenous H2O2 may strongly enhance lysosome-dependent radiation-induced 

apoptosis in PC-3 human prostate cancer cells. A combined treatment with X-rays and 
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H2O2 can injure the mitochondrial cytoplasmic organelles and lead to production of ROS 

and apoptosis [62]. Depending on the prostate cancer cell type and the level of the 

intracellular ROS, IR-induced oxidative stress can lead to very different consequences, 

ranging from elevated proliferation, adaptive response, to cell injury, senescence and 

death. 

Reactive oxygen species and prostate cancer progression 

Increased oxidative stress plays a significant role in several physiological situations 

such as aging and aging-associated diseases. Prostate cancer cells generally have a higher 

level of oxidative stress as compared to normal prostate cells, and the level of oxidative 

stress is associated with prostate cancer occurrence, recurrence and progression [58, 63, 

64]. It has been demonstrated that, at an early stage of cancer development, tumor cells 

are exposed to high oxidative stress in part due to the inhibition of various antioxidant 

enzymes activities (Figure 1.3). Consistently, lower antioxidant enzymes, such as 

MnSOD, Cu/ZnSOD, catalase [63, 64], and defects in several classes of GSTs [65] have 

been observed in prostate adenocarcinoma as compared with benign prostate cells and 

tissues. However, after cancer has progressed, ROS partially renders cancer cells more 

dependent on the function of antioxidant enzymes, such as SODs, to protect from 

damages caused by increased levels of superoxide radicals [66, 67]. Our laboratory has 

provided in vivo evidence and proposed the underlying molecular mechanism by which 

p53 differentially regulates the MnSOD expression between early and advanced stages of 

cancer [68]. A meta-analysis involving 8,962 subjects has been performed to derive a 

more precise estimate of the association between prostate cancer risk and MnSOD 

Val16Ala polymorphism that disrupts proper targeting of the enzyme from cytosol to 

mitochondrial matrix. The results suggest that the Ala allele of MnSOD gene is a low-

penetrance susceptible gene in prostate cancer development, especially in Caucasians 

[69]. It will be interesting and potentially useful to investigate the association between 

this specific gene polymorphism and radiosensitivity in prostate cancer patients.  

Although the protein levels of various antioxidant enzymes or signaling molecules are 

associated with cellular redox status, activation/inhibition of enzymatic activities and 

redox modification of those proteins during redox signaling or in response to cellular 

redox change in specific cellular compartments will play a more dominant role (Table 
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1.1). For example, it has been suggested that redox-sensitive molecule Trx1 functions as 

a protective cellular antioxidant and its upregulation protects cancer cells from oxidative 

stress [70].  However, despite the significant increase in its protein level, oxidation of 

nuclear Trx1 resulted in a loss of antioxidant activity, which clearly demonstrated the 

redox imbalance and an adaptation of prostate cancer cells to oxidative stress [71].  

Therefore, characterization of redox-sensitive protein structure and cellular localization, 

identification of potential redox modifications based on structure information and 

modeling strategies and investigation of different functions before and after modification 

will provide insightful knowledge of cellular redox status at each stage of cancer 

development.  

Based on the biomedical property of increased ROS and altered redox status in cancer 

cells, many avenues of research have been proposed to modulate the unique redox 

regulatory mechanisms of cancer cells for therapeutic benefits [9]. Mitochondrial ROS 

have been shown to promote production of proinflammatory cytokines [72] and fuel 

NLRP3 inflammasome activity [73]. NLRP3 inflammasome, a molecular platform 

triggering innate immune defense to cellular danger, senses mitochondrial dysfunction 

and links mitochondrial damage with inflammatory diseases [73-75]. Targeting prostate 

cancer cells by ROS-mediated mechanisms as a radical therapeutic approach has been 

proposed previously [9, 40]. Blocking androgen-induced ROS production by inhibiting 

polyamine oxidase could delay prostate cancer progression and death in animals 

developing spontaneous prostate cancer [76]. Compared with reducing ROS level at early 

stage of prostate cancer development, a highly oxidizing condition is strongly cytotoxic 

and is the primary mechanism for tumor cell killing by radiation therapy and some 

chemotherapeutics, such as taxol and adriamycin.  Since tumor cells are under more 

oxidative stress and normal cells usually carry higher redox buffering capacity, specific 

mild prooxidants, such as parthenolide, have shown to be a redox-modulating reagent 

capable of selectively pushing the tumor cells beyond the tolerance to oxidative stress 

and sensitizing cancer cells to radiation induced cell killing [59].  

ROS are not only involved in radioresistance but also implicated in prostate cancer 

progression and castration resistance. Growth and proliferation of castration-resistant 

prostate cancer is mediated by gain-of-function changes in the AR and AR reactivation. 
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MnSOD down-regulation is directly responsible for AR reactivation in prostate cancer 

and occurs through a ROS-mediated mechanism [77]. Masaki Shiota. et al have 

extensively reviewed both the effects of AR signaling on oxidative stress and the effects 

of oxidative stress on AR signaling in the context of prostate cancer, especially castration 

resistant prostate cancer [78]. Castration-induced oxidative stress may promote AR 

overexpression through transcription factor Twist1 overexpression, which may result in a 

gain of castration resistance [79]. Thus, modulating redox status to sensitize cells and 

overcome radioresistance may result in castration resistance, which diminishes 

therapeutic benefits of the redox modulation. Thus, it is necessary to determine the stage 

of prostate cancer development and AR signaling carefully before applying redox 

intervention strategies.  

Role of reactive oxygen species in a reciprocal interaction between the stroma and 

the prostate cancer cells 

It becomes increasingly clear that the microenvironment of prostate cancer cells are 

crucial to their survival, progression, metastasis (reviewed in [80-83]) and resistance to 

chemotherapy and/or radiotherapy. Redox status within such a microenvironment is 

complicated at different stages of prostate cancer development, due to the considerable 

heterogeneity with respect to cellular composition of the stroma and tumor. In addition to 

highly reactive free radicals generated from IR, it has been well documented that stromal 

components, such as cancer-associated fibroblasts (CAFs), tumor-associated 

macrophages (TAMs) and endothelial cells, enhance oxidative stress, which promotes 

tumor progression [84, 85].  

As the most abundant cell type in the microenvironment of solid tumors, fibroblasts 

are particularly prominent in prostatic carcinoma (Figure 1.4). The origin of CAFs and 

their significance in determining the cancer aggressiveness was elegantly demonstrated 

previously [35, 85-87]. Cunha. et al have shown that CAFs contribute to prostate tumor 

growth and metastatic potential. Human prostatic CAFs grown with initiated human 

prostatic epithelial cells dramatically stimulated the growth and altered histological 

characteristics of the epithelial cell population. However, this effect was not observed 

when normal prostatic fibroblasts were grown with the initiated epithelial cells under the 

same experimental conditions [87]. 
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Radiation-induced alterations in metabolic oxidation/reduction and signal 

transduction have been reviewed previously [6]. Ogawa. et al found that ROS formation 

increased immediately after irradiation and continued for several hours, resulting in  the 

production of 8-oxoguanine (8-oxoG), which is a product of oxidative DNA damage [88]. 

Persistence of ROS-induced DNA damage could lead to deleterious mutations. Oxidative 

damage in DNA is repaired mainly via the base excision repair (BER) pathway [89-91]. 

To allow time for DNA repair, the cells activate cell cycle checkpoints, leading to cell 

cycle arrest and preventing the replication of defective DNA with unrepaired damages 

[91]. The BER pathway is initiated by removal of the base by DNA glycosylases, leaving 

an intact abasic site (AP site). Subsequently, AP endonuclease 1 (APE1/Ref1) nicks the 

damaged DNA strand upstream of the AP site, creating a 3’-hydroxyl terminus and a 5’-

deoxyribose phosphate group flanking the gap [92, 93]. APE1/Ref-1 (APE1) possesses 

not only DNA repair functions but also transcriptional regulatory activities, controlling 

cellular response to oxidative stress [94]. It modulates the intracellular redox state by 

inhibiting ROS production. APE1 has been identified as a protein with nuclear redox 

activity, inducing the DNA binding activity of several transcription factors, such as AP-1 

[95], NF-κB [96], hypoxia-inducible factors-1 (HIF-1α) [34], p53 [97, 98], Myb and 

ATF/CREB family [99] (reviewed in [94]).  Thus, while IR-induced ROS lead to 

oxidative DNA damage, its repairing processes to remove those damages can also 

contribute to cellular redox status, at least in part, through APE1/Ref-1 functions. 

Due to the diffusibility and abundance, multiple reactive oxygen species and 

inflammatory mediators associated with aging, infection or ionizing radiation exposure 

may provide a permissive environment for cancer development. Compelling experimental 

and clinical evidence indicates that ROS mediated stromal-epithelial interactions in both 

normal and malignant prostatic environments involve a number of soluble factors and 

their corresponding receptors [80]. Extracellular superoxide dismutase (ECSOD) plays 

predominant roles in scavenging superoxide in the extracellular space where redox state 

regulates intracellular signaling or tumor growth. ECSOD-derived H2O2 can promote 

vascular endothelial growth factor (VEGF) signaling in caveolin-enriched lipid rafts and 

stimulate endothelial cell migration and proliferation through oxidative inactivation of 

protein tyrosine phosphatases (PTPs), such as density-enhanced protein tyrosine 
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phosphatase-1 (DEP-1) and PTP1B [100]. VEGF is critical for not only angiogenesis but 

also prostate cancer-mediated osteoblastic activity [101]. Ionizing radiation modulates 

VEGF expression through multiple MAPK dependent pathways [102] and enhances 

glioma cell motility through vascular endothelial growth factor receptor 2 (VEGFR2) 

signaling pathways [103]. Since prostate cancer cells lack the expression of specific 

VEGF receptors, especially VEGFR2, IR-induced VEGF are more likely to promote 

prostate cancer progression indirectly through their functions in stromal cells, in 

particular, endothelial cell survival and as a chemotactic agent within the tumor 

microenvironment [101]. Besides endothelial cells, CAFs can also exert their cancer 

promoting roles through release of growth factors, such as TGF-β and epidermal growth 

factor (EGF) as well as chemokines [84]. Recent advances in studies on metabolic 

communications between tumor and stromal cells attract more and more research interest. 

Oxidative stress dependent mono-carboxylate transporter 4 (MCT4) expression in CAFs 

is closely involved in a stromal-epithelial lactate shuttling [104]. According to a recently 

proposed model, increased ROS in CAFs drives tumor-stromal co-evolution, DNA 

damage and aneuploidy in cancer cells. Specifically, loss of stromal fibroblast caveolin-1 

induces ROS, leading to the removal of defective mitochondria from CAFs by mitophagy 

and autophagy. CAFs provide nutrients, such as lactate, to stimulate mitochondria 

biogenesis and oxidative metabolism in adjacent cancer cells (the “reverse Warburg 

effect”) [86]. Pavlides. et al provided very detailed information on how CAFs accelerate 

tumor growth and metastasis via oxidative stress, mitophagy and aerobic glycolysis [105]. 

The multiple roles of ROS in these new metabolic coupling interactions and models 

suggest that certain redox modulation based therapeutic methods can be helpful when 

used in combination with traditional radiotherapy in prostate cancer treatment. 

Radiation-induced bystander effect, mediated through gap junctions and 

inflammatory responses, is defined as the response of cells to their irradiated neighbors 

[106]. Many types of cancer-infiltrating immune cells, such as macrophages, dendritic 

cells and T cells, are important stromal components of prostate tumor as well as 

prominent bystander targets of radiotherapy. In this review, emphasis is placed on the 

implications of IR-generated soluble effectors on prostate cancer radiosensitivity and the 

underlying redox-mediated mechanisms. More information on the mechanisms by which 
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IR influences tumor-associated immune responses and various immune cells to secrete 

different inflammatory mediators have been reviewed recently [85, 107, 108]. In 

summary, activated immune cells are not limited to induction of anti-tumor immunity but 

also involved in creating an immunosuppressive and prooxidant network promoting 

tumor progression and facilitating immune evasion. Since tumor cells are often under a 

higher oxidative stress with deregulated and/or less adaptive redox buffering capacity 

than their normal counterparts, tumor cells are probably less able to cope with additional 

incremental increases in oxidative stress than normal cells, which can be explored to 

enhance anti-tumor immunity while minimizing the possibility of unintended tumor 

progression and evasion. 

Radiation therapy induced inflammatory mediator secretion 

When cells are exposed to IR, DNA damage generated from either direct or indirect 

effects of IR induce a multicellular program through a variety of signaling pathways to 

start DNA repair and prevent the proliferation of damaged cells. Such programs are 

usually mediated by soluble factors composed of cytokines, growth factors and 

chemokines, which function on both tumor and stroma to determine the fate of the 

affected cells [3]. IR exposure commonly induces stromal cells, especially CAFs, into a 

senescence-like phenotype in an altered tumor microenvironment. The so-called 

senescence-activated secretory pathways (SASPs) in senescent stromal fibroblasts 

generate an inflammatory environment through the secretion of proinflammatory 

cytokines and proteases [85, 109, 110]. These soluble factors can exert paracrine, or 

autocrine functions mediated by their respective receptors or interactive partners to 

promote prostate cancer progression and to create a continuous loop that pushes prostate 

cancer to a more aggressive state.      

Chronic inflammatory mediator secretion associated with aging has been involved in 

the etiology and progression of prostate cancer. Chronic inflammatory microenvironment 

leads to an increased fraction of epithelial cells to proliferate in local atrophy lesions, an 

event called proliferative inflammatory atrophy [111]. Proliferative inflammatory atrophy 

[111] may progress to high-grade intraepithelial neoplasia and prostate cancer [112]. 

Thus, inflammation, as the seventh hallmark of cancer, and oxidative stress are important 

etiologic factors in prostate cancer. The relationship between chronic inflammatory 
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microenvironment and prostate cancer is gaining a wide acceptance [113, 114]. Genetic 

factors, environmental factors, such as infection and dietary carcinogens, and aging are 

potential sources of prostatic inflammation that contributes to the development of 

prostate cancer (reviewed in [112]). The evidence that the microenvironment is altered as 

a result of radiotherapy, especially the generation of various types of cytokine, has been 

elegantly reviewed [3, 106].  There are many types of small molecule weight mediators 

induced by ionizing radiation [3], including EGF [115], fibroblast growth factor (FGF) 

[3], interferon-γ (IFN-γ) [116],  TGF-β [117], proinflamamtory cytokines IL-6 [118], 

TNF-α [119], the chemokine IL-8 [120] and others. [121]. A range of studies has shown 

clear differences in the level of circulating cytokines in prostate cancer patients as 

compared with normal or benign controls and changes in levels of circulating cytokines 

after radiation exposure and/or androgen deprivation therapy [122-124]. For the purpose 

of brevity, we will highlight the signaling pathways mediated by IL-6, IL-8, TNF-α and 

TGF-β induced by IR as well as their implications in prostate cancer malignancy and 

their potential significance in radiotherapy of prostate cancer.   

Interleukin 6 

IL-6 is a multifunctional cytokine that signals through a cell-surface type 1 cytokine 

receptor complex composed of the ligand-binding protein of IL-6Rα (also called CD126) 

and the signal-transducing component gp130 (CD130) [125].  Another type of receptor 

for IL-6 is a soluble IL-6 receptor (sIL-6R) that lacks a membrane-signaling domain but 

can bind with IL-6 and then with the membrane receptor β chain (gp130) to mediate the 

intracellular signaling pathways [126, 127]. IL-6 mainly activates JAK/STAT3 signaling 

pathway [128] but also participates in MAPK and PI3K/Akt pathways to influence a wide 

range of biologic activities in tumor cells [129]. IL-6 also acts as an autocrine and/or 

paracrine proliferative factor in prostate cancer cell lines [130]. IL-6 treatment not only 

stimulates the IL-6 autocrine loop but also activates insulin-like type I growth factor 

receptor (IGF-1R) signaling. This signal transducion and activation of transcription 3 

(STAT3) mediated cooperation between IL-6 signaling and IGF-IR signaling in the 

prostate plays a critical role in facilitating prostate malignancy and EMT. STAT3 has 

been shown to promote oncogenesis in human cancer due to the requirement of STAT3 

for cell transformation by the Src oncogene [131]. In additional to its classical role in the 
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nucleus, STAT3 modified by serine phosphorylation augmented oxidative 

phosphorylation in mitochondria and supported cellular transformation by oncogene Ras 

[132, 133]. Considering the differential cellular localization of STAT3 implicated in 

intracellular energy metabolism and a variety of redox sensitive genes, it will be 

interesting to investigate mitochondrial functions and cellular transformation under IR-

induced IL-6 activation (Figure 1.5).  

Different cell types, such as B and T cells, macrophages, monocytes, fibroblasts and 

certain tumor cells can synthesize IL-6 [134] that regulates various cellular functions 

including immune response, proliferation, apoptosis, angiogenesis and differentiation 

[135]. Several clinical studies reported that elevated serum levels of IL-6 and sIL-6R 

were associated with metastasis and castration-resistance, suggesting that IL-6 correlates 

with prostate cancer progression and patient morbidity [136-141]. Most clinical data 

support the biological role of the IL-6 pathway in prostate cancer, especially the 

significance of IL-6 pathways in advanced castration resistant prostate cancer patients 

mediated by a crosstalk between IL-6 and AR pathways [142]. Under androgen 

deprivation conditions, IL-6 is able to promote intracellular synthesis of androgens in 

prostate[143], resulting in AR activation and up-regulation of AR-targeted PSA 

expression, via STAT3 and MAPK signaling pathways [142] as well as an androgen 

enhancer region within human PSA promoter [144]. 

Even though increased IL-6 may indicate the presence of advanced prostate cancer 

tumor in patients or in vivo experiments, some in vitro results supporting the significance 

of IL-6 pathways in prostate cancer cells growth are still controversial. IL-6 can act as 

either a growth inducer [130, 145, 146] or inhibitor [147-149] in androgen-dependent 

LNCaP cells [142]. It is possible that IL-6-induced growth arrest may be associated with 

neuroendocrine differentiation [150]. The presence of neuroendocrine-like cells is 

correlated with a radioresistant phenotype and unfavorable prognosis [28, 29].  

IL-6 signaling is tightly regulated by several negative feedback inhibitors including 

suppressors of cytokine signaling (SOCS), Src-homology 2 (SH2) containing protein 

tyrosine phosphatase (SHPs) and protein inhibitors of activated STATs (PIAS) [151, 152]. 

More detailed mechanisms about how these inhibitors regulate IL-6 intracellular 

signaling pathways have been reviewed previously [152]. There are different approaches 
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to target IL-6. For example, the monoclonal antibody siltuximab (CNTO328) have been 

used in experimental and a phase I clinical study of prostate cancer treatment in 

combination with other chemotherapy agents. CNTO328 has some effects on sensitizing 

castration-resistant prostate cancer patients [153, 154]. However, since IL-6 also plays an 

inhibitory role in prostate cancer cells depending on signaling crosstalk and the difference 

between the cancer and normal cells in redox status and adaptive response to oxidative 

stress may influence the signaling crosstalk, blocking IL-6 with antibody or signaling 

inhibitors may promote prostate cancer progression instead. Thus, it is necessary to 

identify the role of IL-6 signaling in specific situations before applying anti-IL-6-related 

therapy.   

Interleukin-8 

IL-8, also known as CXCL8, is a member of the chemoattractant chemokines. IL-8 is 

usually associated with inflammation that predisposes cells to produce different 

chemokines for malignant transformation or progression [155, 156]. IL-8 secretion is 

increased by oxidative stress from either intracellular or extracellular sources. IL-8 can 

stimulate the recruitment of inflammatory cells, which further elevates oxidant stress 

mediators, thereby making IL-8 a key parameter in localized inflammation [157]. Two 

cell-surface G protein-coupled receptors, CXCR1 and CXCR2 [158], are responsible for 

the binding of IL-8 and regulating target gene expression through downstream signaling 

pathways, such as activation of serine/threonine kinases, protein tyrosine kinases and 

Rho-GTPases [159]. Depletion of CXCR1 leads to inhibition of IL-8 mediated androgen 

independent tumor growth by increasing proapoptotic proteins and decreasing 

antiapoptotic proteins [160].   

Studies using in situ hybridization have indicated that increased IL-8 expression is 

associated with both high Gleason score and tumor pathologic stage [161, 162].  

Elevation of IL-8 expression has been linked to various markers of progression of 

prostate cancer to advanced stage, such as castration-resistance, metastasis and enhanced 

angiogenesis in vitro [163, 164], in vivo [164, 165] and in human patients [166]. Several 

studies suggest a link between IL-8 signaling and chemotherapeutic resistance. It has 

been shown that IL-8 signaling, which is endogenous and induced by TNF-related 

apoptosis inducing ligand (TRAIL), can modulate the extrinsic apoptosis pathway in 
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prostate cancer cells through direct transcriptional regulation of c-FLIP, an endogenous 

caspase-8 inhibitor, and reduce the propensity of prostate cancer cells to undergo 

apoptosis [167].  Therefore, inhibiting IL-8 signaling may be a promising strategy to 

sensitize advanced prostate cancer to chemotherapy. The reduction of intrinsic IL-8 

potentiates ansamycin-based heat shock protein 90 (HSP90) cytotoxicity through several 

mechanisms, including inhibition of IL-8 induced NF-κB activity [168], cell cycle arrest 

at G1/S boundary, and increased spontaneous apoptosis as well as enhancing the efficacy 

of multiple chemotherapeutic drugs, such as docetalxel, Staurosporine and Rapamycin 

significantly [169].   

There are currently seven known CXC chemokine receptors in mammals, named 

CXCR1 through CXCR7. A variety of crosstalk exists between different chemokine-

mediated signaling pathways due to remarkable redundancy within chemokines with 

multiple chemokines binding to the similar or same receptor(s) and multiple receptors 

binding with the similar or same chemokine(s) [170]. For example, IL-8 and and CXCL6 

can both bind CXCR1 in humans, while all other ELR-positive chemokines, such as 

CXCL1 to CXCL7, bind only to CXCR2 [171, 172]. It has been shown that IL-8 can 

upregulate CXCR7 expression and ligand-independent functions of CXCR7, which 

usually binds to the CXCL11 and CXCL12 ligands to promote the growth, proliferation 

and angiogenesis of prostate cancer cells through increasing EGFR and ERK1/2 

phosphorylation [173]. Therefore, effects of IL-8/IL-8 receptors signaling pathways in 

prostate cancer progression and radiation sensitivity may be orchestrated by 

communications and/or interactions with many chemokines and their receptors, such as 

CXCR1-7s.   

The reciprocal correlation between IL-8 signaling and AR signaling pathways has 

been reviewed previously [155, 159]. The proteomic data illustrated that the androgen-

stimulated LNCaP cells had increased expression of IL-8 [174], which was dependent on 

AR since inhibition of AR expression by siRNA prevented IL-8 secretion in response to 

androgen stimulation. Additionally, IL-8 signaling also increased AR expression with 

altered the distribution and transcriptional activation of AR, leading to increased 

expression of AR-targeted gene [163]. Since the transition of prostate cancer to an 

androgen independent state is partially due to IL-8 signaling induced AR activation, 
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targeting IL-8 expression and signaling pathways may significantly enhance the efficacy 

of androgen ablation therapy. 

Besides the importance of IL-8 in developing chemoresistance [175], our laboratory 

found that up-regulation of IL-8 enhanced radioresistance of prostate cancer cells [176]. 

RelB-mediated NF-κB alternative pathway plays a crucial role in IL-8 upregulation [176]. 

This result is consistent with the observation of RelB in promoting prostate cancer 

progression and radioresistance [165]. The relationships between NF-κB pathway, 

increased antioxidant capacity and resistance to radiation treatment in many tumor cell 

types have been well documented [15, 177, 178]. RelB regulating MnSOD gene and 

resistance to ionizing radiation of prostate cancer cells has also been demonstrated [179] 

and reviewed previously [26]. Selective inhibition of RelB-mediated NF-κB alternative 

pathway can remarkably sensitize prostate cancer cell to IR-induced killing [180, 181]. 

Thus, it will be interesting to investigate the radiosensitizing effects of IL-8 signaling 

blockage with either inhibitors to IL-8 receptors or monoclonal antibodies against IL-8. 

This strategy may synergistically facilitate the killing of castration-resistant and/or 

radiation-resistant prostate cancer cells.   

Tumor necrosis factor-alpha 

TNF-α is synthesized as a 26 kDa (233 amino acids) membrane-bound pro-peptide 

(pro-TNF) and released as a 17kDa soluble polypeptide (157 amino acids) after cleavage 

by the TNF-converting enzyme (TACE) [182, 183]. The action of TNF-α is mediated by 

two distinct receptors named TNF-receptor I (55 kDa, TNFRI) [184], which mediates the 

majority of TNF-α biological activities, and receptor II (75 kDa, TNFRII) [185] with both 

having a similar affinity for TNF-α in human tissues. An imbalance between pro-survival 

and apoptosis signals by TNF-α-initiated signaling pathways (Figure 1.6) has been 

implicated in malignancies of a variety of organs and tissues, such as colon [186], skin 

[187], ovarian [188], breast [111] and prostate [139]. 

TNF-α is one of the central factors involved in stress responses, including the 

response to radiation exposure. This inflammatory cytokine was named because of its 

ability to induce rapid hemorrhagic necrosis via selective destruction of tumor blood 

vessels and generation of specific T cell antitumor immunity [189]. Antagonists of TNF-

α action have been developed for the treatment of rheumatoid arthritis and other 
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inflammatory diseases [190-193]. When present chronically in the tumor 

microenvironment, TNF-α is a major mediator of cancer-related inflammation. TNF-α 

not only maintains the homeostasis of the immune system, inflammation and host defense 

but also plays its paradoxical role in promotion and progression of cancer with pathways 

leading to activation of NF-κB and AP-1 transcription factor complexes (reviewed by 

Balkwill [193-195]). Circulating TNF-α is normally not detectable in healthy individuals 

but can be detected in some cancer patients. In a few prostate cancer clinical studies, 

elevation of serum TNF-α has been shown to correlate with clinicopathological features 

and patient survival [139, 141]. For example, TNF-α levels are significantly higher with 

metastatic disease (6.3 ± 3.6 pg/mL) compared to localized disease (1.1 ± 0.5 pg/mL, 

P<0.001) [139]. However, some independent studies indicated that TNF-α levels were 

not significantly different among normal control, benign prostate hyperplastic (BPH) and 

prostate cancer [140, 196]. Also, whether TNF-α elevation in prostate cancer patients is 

the cause or consequence of cancer development and progression requires more 

mechanistic investigations. Even though these conclusions are still controversial, there is 

a relatively consistent association between increased TNF-α and cachexia in patients with 

prostate carcinoma [197, 198]. Approximately 60-70% of patients with advanced stage of 

prostate cancer suffer from cachexia, which is one of the most devastating conditions at 

late stages of cancer. Some typical characteristics of cachexia syndrome including weight 

loss, anorexia, asthenia and anemia are invariably associated with the presence and 

growth of malignant tumors [199]. Roles of TNF-α in cancer cachexia include most of 

the changes concerning nitrogen metabolism associated with cachectic states [200], 

blockage of muscle differentiation associated with muscle tissue regeneration [201], 

activation of transcription factors NF-κB and AP-1 to increase proteolysis [202] 

(reviewed in [199]).  

TNF-α can be produced when NF-κB is activated and TNF-α is also an important 

stimulus of NF-κB signaling and further cytokine production. The NF-κB signaling 

pathway is critical in cancer-related inflammation and malignant progression as well as 

maintaining the immunosuppressive phenotype of TAMs [203] and inducing 

chemoresistance and radioresistance. It has been demonstrated by immunohistochemical 

analysis that TNF-α protein was strongly expressed in epithelial cells of prostate cancer 
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but not in normal prostatic tissue. TNF-α may play a role in the initiation of an androgen-

independent state in prostate cancer through its ability to inhibit AR sensitivity [204]. The 

interplay of NF-κB and B-myb contributes to the negative regulation of AR expression 

by TNF-α [205]. Contrary to the response observed in prostate cancer cells, TNF-α-

stimulated NF-κB binding to the AR promoter induced AR promoter activity and 

increased endogenous AR expression in primary cultures of Sertoli cells, indicating the 

significance of TNF-α signaling in spermatogenesis. Immunohistochemistry results 

showed that nuclear localization of NF-κB family member p65 was associated with PSA 

relapse, the first sign of prostate cancer recurrence, while cytoplasmic expression did not 

[206]. Our laboratory demonstrated that RelB-mediated alternative NF-κB pathway is 

involved in prostate cancer aggressiveness and radiation resistance [26, 165, 179]. TNF-α 

functions as a potent inducer of NF-κB signaling pathway and particularly mediates the 

crosstalk between classical and alternative NF-κB signaling pathways, as well as 

interactions with AR (as shown in Chapter 3). Thus, it is important to investigate the 

production of TNF-α after chemo/radiotherapy and potential influences of TNF-α on the 

activation of RelB-mediated alternative NF-κB pathway and implications in prostate 

cancer. 

The expression and activation of several genes and kinases, such as cyclooxygenase-2, 

Cyclin D1, Bcl-2 family, survivin, Akt, and EGFR, are regulated by NF-κB in NF-κB 

mediated chemoresistance and radioresistance in various tumor cells [207]. The 

therapeutic potential and benefit of targeting NF-κB in cancer and the possible 

complications and pitfalls associated with NF-κB modulation have been reviewed and 

explored [208]. Inhibition of NF-κB has been proposed as a means to treat cancer or to 

overcome chemoresistance and radioresistance in cancer therapy [178, 207, 209]. 

Inhibition of IR-induced activation of NF-κB, but not of Akt or MAPK kinase, sensitized 

Ki-Ras transformed prostate epithelial cells (267b1/K-Ras) to ionizing radiation [25]. A 

group of potential therapeutic agents, including 1α, 25-dihydroxyvitamin D3 (1α, 25-

(OH)2D3) [181],  STI571 [210] and a protein peptide SN52 [180], have been used to 

selectively inhibit RelB nuclear activation and downregulate the RelB-targeted gene 

MnSOD, leading to improve IR-induced killing of PC3 cells. 
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Transforming growth factor-beta  

TGF-β is a ubiquitous cytokine that plays a critical role in numerous pathways 

regulating homeostasis and injury response as well as in the progression of human cancer. 

Prior to tumor initiation and during the early phases of tumor progression, TGF-β acts as 

a tumor suppressor.  At later stages of cancer development, TGF-β promotes processes 

associated with tumor aggressiveness, such as cell invasion, dissemination and immune 

invasion [211, 212]. In mammals, there are three TGF-β isoforms, i.e., TGF-β1, TGF-β2 

and TGF-β3. With the assistance of co-receptors endoglin and betaglycan (known as type 

III receptors or TGFβRIII), active TGF-β binds to cell surface type I (TGFβRI) and type 

II (TGFβRII) serine/threonine kinase receptors, which phosphorylate and activate the 

Smad family of signal transducers [211, 213] (Figure 1.7). 

Once activated by TGF-β binding to the receptors, Smad2 and Smad3 associate with 

Smad4 and translocate to the nucleus where they regulate the transcription of genes 

involved in cell cycle arrest and apoptosis, which are essential for the tumor suppressor 

role of the TGF-βs in normal epithelial cells and at early stages of oncogenesis [214, 215]. 

TGF-β-induced growth arrest is mediated by the inhibition of cyclin-dependent kinases 

(CDKs) and the downregulation of MYC (reviewed in [211]). Mutational inactivation of 

TGF-β signal-transduction components, such as TGF-β type II receptor (TGFβRII) [216-

218] or its mediators, Smad2 and Smad4, leads to the defective TGF-β signaling in some 

cancers [219, 220]. Pu. et al developed a TRAMP based prostate cancer transgenic mouse 

model harboring the dominant negative mutant TGF-β type II receptor (DNTGFBRII) in 

epithelial cells to characterize the in vivo consequences of inactivated TGF-β signaling on 

prostate tumor initiation and progression and found that disruption of TGF-β signaling in 

vivo accelerated the pathologic malignant changes in the prostate by altering the kinetics 

of prostate growth and inducing EMT [221]. These findings indicate that TGF-β performs 

tumor suppressive functions through inhibition of cell proliferation, induction of 

apoptosis and regulation of autophagy. 

TGF-β is expressed at high levels in the later stages of tumor development [222-224], 

during which it is utilized as a potent promoter of cell motility, invasion, metastasis and 

tumor stem cell maintenance, as demonstrated in experimental prostate cancer models 

[225]. Local TGF-β1 elevation has been associated with tumor grade, pathologic stage 
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and lymph node metastasis in prostate cancer patients [226]. Though some investigators 

were not able to find a discriminative difference in serum concentration of TGF-β1 

between BPH and prostate cancer [227], elevated levels of plasma TGF-β1 [228], TGF-

β2 [229] and urinary TGF-β1 [229] were found to be higher in patients with prostate 

cancer. 

TGF-β1 plays a critical role in tumor-stromal cell interactions and modulates the 

growth of prostate cancer, either positively or negatively, through the balance between 

the amounts of IGF-1 and IGF binding protein-3 [230]. Resistance to TGF-β-mediated 

growth arrest results in highly malignant phenotypes with increased EMT, tumor invasion, 

metastatic dissemination and evasion of the immune surveillance [212]. Interestingly, 

TGF-β1 activates IL-6, which has been implicated in the malignant progression of 

prostate cancers as described above via multiple signaling pathways including Smad2, 

NF-κB, JNK, and Ras [231]. Zhu et al have provided a detailed description of the cross-

talk between AR and growth factors, including TGF-β-mediated signaling pathways, in 

prostate cancer cells [232]. Smad3, a downstream mediator of the TGF-β signaling 

pathway, can function as a coregulator to enhance AR-mediated transactivation and 

increase AR-targeted PSA gene expression [233]. Considering the correlation between 

increased circulating levels of TGF-β1 with invasion[228], metastasis [228, 234] and 

poor prognosis in patients with prostate cancer [223, 226], TGF-β1 could be an additional 

serum marker for prostate cancer [235, 236].  

TGF-β acts an important mediator for the response to IR, and its signaling is tightly 

regulated by redox status within tumor cells and tumor microenvironment. IR has been 

shown to induce the release and activation of TGF-β in cells and tissues [3]. A 

mechanistic study in a cell-free system demonstrated that oxidation of TGF-β latent 

complex acted as a sensor of oxidative stress to mediate the release and activation of 

TGF-β1 and orchestrate cellular responses to damage [237]. More aspects of TGF-β 

biology, particularly its involvement in the microenvironmental response to IR, have 

been described elegantly [3]. Intracellular redox equilibrium is essential for constitutive 

AP-1-dependent TGF-β1 expression [238]. Nitric oxide downregulates TGF-β1 

expression in prostate cancer cells at the transcriptional level by suppressing the de novo 

synthesis of TGF-β1 mRNA [239]. TGF-β1 induces stromal oxidant/antioxidant 
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imbalance as a result of an elevated NOX4-dependent ROS production and inhibits the 

expression of MnSOD and catalase [240] that may be critical in the acquisition of 

epithelial migratory properties [241, 242]. In addition, TGF-β1 decreases ETC complex 

IV activity by decreasing phosphorylation of the subunit 6b of glycogen synthase kinase 

3 (GSK3), which contributes to senescence-associated mitochondrial ROS generation 

[243]. The significant roles of TGF-β in modulating tumor intracellular and extracellular 

redox status suggest that TGF-β signaling is involved in mediating cell autonomous, local 

and systemic responses, which together regulate the initiation, promotion, progression 

and prognosis of prostate cancer. 

Radiotherapy-induced TGF-β activation may have undesirable side effects implicated 

in late tissue damage, such as fibrosis [244, 245]. Several studies support the use of TGF-

β inhibitors to ameliorate IR toxicity to normal tissues [246-249]. Anticancer therapies, 

such as ionizing radiation or doxorubicin, may accelerate the steps of tumor progression, 

such as EMT and metastasis, due to the promoting effect of TGF-β within the tumor 

microenvironment [45, 250]. This effect can be abrogated by administration of a pan-

TGF-β neutralizing antibody [215]. Current strategies to target TGF-β in radiotherapy 

mainly focus on general inhibition of TGF-β signaling. It has been shown that blockade 

of TGF-β signaling prior to irradiation attenuated DNA damage responses, increased 

clonogenic cell death, and promoted tumor growth delay and, thus, enhanced radiation 

response and prolonged survival in patients with breast cancer [251] and glioblastoma 

[252, 253] but rendered a lung cancer cell line more radioresistance [254]. Genetic 

differences and tumor specificity can be important factors in determining the 

radiosensitizing effect of TGF-β inhibition in radiotherapy. For an example, a 

hypofunctional genetic haplotype of the TGFB1 gene encoding TGF-β1 is associated 

with lower TGF-β1 plasma concentrations and increased sensitivity to radiation induced 

chromosomal aberrations and apoptosis in lymphoid cells [255]. There are three major 

approaches to inhibit TGF-β signaling: targeting TGF-β synthesis using antisense 

molecules, ligand traps that sequester TGF-β and small molecule inhibitors that hinder 

the kinase activity of TGF-β receptors (reviewed in [212, 256]). Since IR-induced TGF-β 

may not only provide a survival benefit to cancer cells that are radioresistant but also 

accelerate tumor progression, targeted disruption of the TGF-β signaling pathway for 
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therapeutic intervention may be an effective adjuvant in cancer radiotherapy. 

PSA test in prostate cancer detection 

Prostate specific antigen, PSA also known as human kallikrein-related peptidase 3, 

has been widely used as a biological marker of prostate cancer since the 1980s. PSA is a 

glycoprotein secreted by the epithelial cells of the prostate gland and found exclusively in 

prostate. The physiological function of PSA to liquefy semen in seminal coagulum and 

allow sperm to swim freely [257]. The FDA has also approved the PSA test to monitor 

patients with a history of prostate cancer for cancer recurrence. As shown in Figure 1.8, 

with prostate cancer progression, PSA level increases at early stage in which tumors are 

initially benign or sensitive to treatment. After clinical interventions such as radiotherapy 

or hormone ablation therapy, PSA levels dramatically drop to a relatively low level. In 

advanced stages of prostate cancer, PSA levels of some patients elevate gradually, with 

tumors becoming metastatic and eventually resistant to treatment.  

However, major clinical challenges in PSA testing arise due ambiguous results, 

leading to over- and under-diagnosis of such a bimodal disease, with both indolent and 

aggressive forms [258]. Although overall sensitivity of PSA test is close to 80%, it is 

much more sensitive than rectal examination and able to detect more than 90% of tumors 

with a diameter bigger than 1cm. A relatively high false positive rate compromises the 

specificity of PSA test due to many factors besides prostate cancer, such as benign 

prostatic hyperplasia, prostatitis, prostatic infarction, recent sexual activity [257, 258].  

Compared to false positive test results, false negative results raise more serious concerns. 

Many results analyzed from the cancer prevention trial conflict with the consensus that a 

cutoff PSA level of 4.0 ng/mL is predictive of prostate cancer. There are a significant 

number of prostate cancer patients carrying high-grade prostate cancers but showing low 

PSA levels [259]. Similarly, a comparison of four commonly used human prostate 

carcinoma cells lines demonstrates that PSA expression is inhibited in some highly 

aggressive prostate cancer cells (Table 1.2).  

In summary, while early detection and improved treatment options have dramatically 

increased the number of prostate cancer survivors, research suggests that more than half 

of prostate tumors may be nonaggressive and not require immediate intervention, such as 

surgery or radiation therapy. For clinicians, the frustrating question is, which half ? On 
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the other hand, when PSA levels decrease below a certain level after clinical intervention 

such as radiotherapy, is this an indication of patient safety? Therefore, the current state of 

PSA test dependent prostate cancer detection is unacceptable in that it leads to random 

discovery of harmless cancers and often misses potentially lethal cancers. 

Research objectives 

This study aims to demonstrate that the IR-generated proinflammatory mediator TNF-

α, secreted as part of radiotherapy bystander effects, regulates redox-dependent RelB-

mediated PSA suppression and to determine how the RelB-AR axis can downregulate 

PSA gene expression in advanced prostate cancer. 

In Chapter two, we report our investigation of whether IR can induce the secretion of 

proinflammatory mediator TNF-α, to cause bystander effects by using different cell lines 

including prostate cancer cell lines, human stromal fibroblast and mouse embryonic 

fibroblasts. This study was focused on investigating the sequential activation of canonical 

and noncanonical NF-κB pathways after TNF-α treatment in LNCap cells. As we 

compared the nuclear RelA and RelB levels at different time points after TNF-α exposure, 

as well as PSA gene expression, we found that RelB induction, but not RelA activation, 

participated in PSA suppression. Despite the absence or presence of radiotherapy, tumors 

located within such an inflammatory tumor microenvironment are usually subjected to 

sustained oxidative stress, which led us to investigate whether and how TNF-α enhances 

endogenous ROS and influences downstream signaling activation and PSA suppression.  

In Chapter three, we report novel molecular mechanisms by which the RelB-AR axis 

inhibits PSA gene suppression. In combination with the analysis of human Oncomine 

database, our in vitro studies focused on how RelB downregulates PSA gene expression 

and provided a mechanistic explanation to our previous in vivo unexpected findings that 

expression of RelB reduces the level of PSA and increases the tumorigenicity of prostate 

cancer. 

The overall objective of this research is to investigate whether IR generates TNF-α, 

which can contribute to bystander effects, how TNF-α induces ROS, and how RelB 

regulates PSA gene expression at the molecular levels. The results demonstrate that 

radiation triggers TNF-α production, which serves as a sustained source of ROS to 

activate the noncanonical NF- κB pathway resulting in RelB-mediated PSA suppression.  
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The results also suggest that redox intervention, together with anti-proinflammatory 

mediators, can be useful to improve radiotherapy efficacy by radiosensitizing cancer cells. 
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Figure 1.1. Electromagnetic spectrum of radiation and medical use of ionizing 

radiation.  

The direct and indirect actions of ionizing radiation on generating DNA damages are 

descripted. Direct action of IR leads to damages in DNA structure. Indirect action of 

radiation is the multicellular effects by water radiolysis that produce free radicals, which 

can diffuse far enough to reach and damage the DNA. Radiation therapy is frequently 

used to treat early stage and inoperable locally advanced prostate cancer. 

 

 

 
 

 

 

 

 



 

28 
 

Figure 1.2. Scheme of cellular ROS generation and antioxidant system.  

ROS that are generated from extracellular or intracellular sources can cause nuclear DNA 

and mtDNA damage. Various transcription factors such as NF-κB, p53, AP-1, STAT3, 

Nrf2, HIF-1α, Sp1, PPARγ and Ref1 are modulated by ROS. Extracellular sources of 

ROS: radiation, carcinogen, inflammation, hypoxia and etc. Intracellular sources of ROS: 

ETC, XO, xanthine oxidase; LPX, lipoxygenase; P450, cytochrome P450; COX. 

Antioxidant system: MnSOD, Cu/ZnSOD, ECSOD, GSH, GPx, Prx, GR, glutathione 

reductase; TrxR, thioredoxin reductase; TRXox, oxidized thioredoxin; TRXre, reduced 

thioredoxin. 
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Table 1.1. Roles of MnSOD expression or activity and MnSOD-regulated cellular 

redox status in different stages of tumor development. 
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Figure 1.3. Role of oxidative stress in cancer development and radioresistance.  

IR-induced genomic instability and oxidative stress are closely related to each other. 

Many human cancer cells harbor low levels of antioxidant at early stages of tumor, 

whereas those cancer cells may eventually develop tumor resistant and possess high 

levels of antioxidant at advanced stages of tumor. With cancer development, tumor cells 

are under increased oxidative stress and genomic instability continuously. 
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Figure 1.4. Radiation therapy induced cell killing and unintended effects on tumor 

stromal components leading to inflammatory mediator secretion. 

Major cellular components in tumor microenvironment are described. There are many 

types of small molecule weight mediators induced by ionizing radiation, including EGF, 

FGF, IFN-γ, TGF-β, proinflamamtory cytokines IL-6, TNF-α, the chemokine IL-8 and 

others. Both radiation treatment and IR-induced inflammatory mediators result in 

increased ROS levels within the tumor microenvironment, and also contribute to the 

development of tumor radioresistance and tumor recurrence. 
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Figure 1.5. IL-6-mediated Jak-STAT3 signaling pathway. 

IL-6 signals through a cell-surface type 1 cytokine receptor complex composed of the 

ligand-binding protein of IL-6Rα and the signal-transducing component gp130 

(glycoprotein of 130kDa). IL-6 can also bind to sIL-6R, which lacks a membrane-

signaling domain, and then with gp130 to mediate Jak phosphorylation and activation. 

Activated Jak family tyrosine kinases further phosphorylate STAT3, which in turn 

translocate to the nucleus and regulate target gene transcription. Many types of growth 

factors, such as EGF, VEGF, FGF, and IGF (insulin-like type I growth factor), can 

aggregate with respective receptors and activate STAT3 signaling pathways. 
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Figure 1.6. TNF-α-regulated major cellular signaling pathways. 

Binding of TNF-α to TNFR1/2 leads to the rapid phosphorylation of the NF-κB, ERK, 

p38 and JNK pathways, and activates a group of transcription factors such as NF-κB, 

Elk1 and AP-1 in the nucleus. In addition to these pro-survival pathways, TNF-α can 

induce apoptosis through receptor-mediated caspase activation, and caspase-dependent 

and -independent components of the mitochondrial cell death pathway. A balance 

between these intracellular signaling pathways determines whether cells will die or 

survive after exposure to TNF-α. TNF-α-mediated ROS generation is mainly derived 

from mitochondria and membrane-associated NADPH oxidase, which contributes to 

signaling pathways. 
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Figure 1.7. TGF-β-mediated classical Smads signaling pathway. 
With the assistance of TGFβRIII, active TGF-β (three isoforms, i.e., TGF-β1, TGF-β2 

and TGF-β3) binds to cell surface TGFβRI and TGFβRII, which phosphorylate and 

activate the Smad family of signal transducers.  
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Figure 1.8. General alterations of PSA serum levels during prostate cancer 

progression. 
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Table 1.2. Characteristics of four human prostate carcinoma cell lines 
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Chapter Two 

IR-generated TNF-α regulates the redox-dependent RelB-mediated  

PSA suppression 

 

Introduction 

Despite much recent progress, prostate cancer continues to be a major problem facing 

men, accounting for approximately 29% of newly diagnosed cancer cases and 9% of 

cancer deaths in men in 2012 to date [1]. The common forms of treatment for prostate 

cancer are surgery, ionizing radiation therapy, chemotherapy and hormone management. 

[2] Radiation can directly damage DNA and other biologically important molecules; 

however, most effects of radiation-mediated cell killing are derived from its indirect 

effects that generate free radicals that damage macromolecules and alter cellular 

signaling.  

Radiation therapy is an integral part of prostate cancer treatment across all stages and 

risk groups [2]. IR can lead to rapid, global and persistent responses within the 

microenvironment [3, 260]. IR activates ROS-mediated cellular processes and alters 

intracellular oxidative stress, thereby linking external stimuli with internal signal-

transduction pathways. ROS are crucial mediators within the microenvironment and are 

actively involved in the communication between primary tumor cells and various 

components of the surrounding microenvironment, such as TAM, CAF, tumor 

endothelial cells and cancer stem cells (CSC). In addition, evidence from clinical and 

experimental settings has shown a firm connection between radiation exposure and 

changes in cytokine, growth factor and chemokine levels [178, 261]. Cytokines, such as 

interleukin-1β (IL-1β), IL-6, and IL-8, TNF-α and TGF-β, convey information between 

cells through their secretion and interaction with receptors on neighboring or distant cells. 

Signaling by these molecules regulates cell proliferation, differentiation, motility, 

adhesion and apoptosis [121, 262]. IR-induced and macrophage-mediated immune 

response is a major contributor to the elevation of these inflammatory cytokines; however, 

CAFs and tumor cells exposed to IR can also directly regulate these cytokines [261, 263-

265]. Altered inflammatory cytokine expression can affect many signaling pathways that 

converge onto a few important transcription factors, including NF-κB, AP-1 and STATs. 
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These transcription factors also up-regulate the expression of several cytokines, such as 

IL-1β and TNF-α [265]. Such positive feedback loops amplify the inflammatory response 

and increase chronic inflammation [266]. Accumulating evidence suggests that chronic 

inflammatory diseases are subject to tight redox control. The identity, source, regulation, 

and biological activity of redox molecules, as well as their key roles in multiple 

pathological conditions, including cancer, have been reviewed extensively [267].  

IR-induced multiple proinflammatory mediators can also influence redox status in 

irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer 

progression, radiotherapy efficiency, and prognosis. Depending on the type and stage of 

the prostate cancer cells, these proinflammatory mediators may play different roles 

ranging from apoptosis to development of radioresistance. 

Extensive research has linked persistent inflammation and oxidative stress to the 

etiology and progression of PCa [112, 141, 268].  Reports indicate that some cytokine 

levels may be elevated due to multiple potential causes, such as infection, radiation 

therapy, aging and obesity [107, 112, 269]. For example, IL-6 and TNF-α levels correlate 

with clinicopathological features and patient survival in patients with PCa [139].  Despite 

the significant role of the IL-6 pathway in PCa, especially in advanced castration-

resistant PCa (CRPC) patients [142], recent findings provide convincing evidence that 

IL-6 upregulates intracellular androgen synthesis [143], AR [270] and PSA expression 

[144, 270]. Thus, application of circulating IL-6 level in PCa diagnosis and/or disease 

monitoring is not a focus in the current study because it partially overlaps with PSA 

testing.  

As one of the most well characterized cytokines, TNF-α is both a potent inducer of 

NF-κB and a target of activated NF-κB. The NF-κB family comprises five proteins RelA, 

p50, RelB, p52 and cRel. NF-κB is essential for the regulation of innate and adaptive 

immunity, and recent studies have provided evidence for a role of NF-κB in cancer 

initiation and progression [271, 272]. In contrast to IL-6, which enhances PSA and AR 

expression, the data presented here indicate sustained suppressive effects of TNF-α on 

PSA expression, which concomitantly depends on a time-dependent switch from 

immediate RelA-mediated NF-κB pathway to delayed RelB-mediated noncanonical NF-

κB activation. While TNF-α can induce an acute and pro-death response in cells, chronic 
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elevation of TNF-α at a relatively low level can result in cytoprotection that is related to 

increased levels of antioxidant, antiapoptotic and other defense proteins, such as RelB 

and MnSOD. Both RelB and NF-κB-targeted MnSOD upregulation have been implicated 

in the adaptive response induced by low or fractionated doses of ionizing radiation, 

leading to radioresistance in prostate cancer [26, 273]. Furthermore, we present data 

indicating that TNF-α-triggered ROS generation, particularly NADPH oxidase-dependent 

superoxide radicals, serves as a secondary ROS source after ionizing radiation exposure 

to participate in the activation of the noncanonical NF-κB pathway and RelB-mediated 

PSA suppression. Addition of a NADPH oxidase inhibitor or ROS scavengers, such as a 

SOD mimetic, can abrogate TNF-α-mediated suppression of PSA expression. After 

radiation therapy, PSA test results can be an important indicator for estimating effective 

tumor killing and monitoring tumor recurrence. Our studies provide significant evidence 

that aggressive tumor may still be present in patients after treatment in spite of PSA 

reduction.  

  



 

40 
 

Materials and Methods 

Cell culture and treatment. Human prostate cancer cell lines LNCap and PC3 were 

obtained from American Type Culture Collection (Manassas, VA). LNCap and PC3 cells 

were cultured in RPMI medium 1640 (Invitrogen, Carlsbad, CA) supplemented with 10% 

fetal bovine serum, 1% penicillin and streptomycin mixture, 1 mmol/L sodium pyruvate, 

10 mmol/L HEPES, 1% NEAA mixture (Cambrex), 1% MEM vitamin mixture (Cellgro) 

and 2 mmol/L L-glutamine. Cells were grown in a 5% CO2 atmosphere at 37°C. 

Recombinant human TNF-α was obtained from R&D Systems. NADPH oxidase inhibitor 

diphenylene iodonium (DPI, Sigma) was dissolved in DMSO. SOD mimetic (MnTE-2-

PyP5+) was kindly provided by Dr. Ines Batinic-Haberle. IR treatment was performed 

using a 250kV X-ray machine (Faxitron X-ray Corp.) with the peak energy of 130kV, 

0.05mm Al filter, at a dose of 0 to 8Gy. 

ELISA assay. Cultured media from radiated mouse embryonic fibroblast, LNCap cells or 

human immortalized foreskin fibroblast cell line BJ-5ta were changed to fresh medium 

containing only 1% FBS and were collected after 24hr at the end of experimental 

procedures. The levels of TNF-α secreted from cultured cells were quantified using either 

mouse or human TNF-α ELISA development kit (Promokine) according to the 

manufacturer’s protocol. The relative TNF-α secretion was normalized by protein 

concentration. 

MTT assay. Cells were plated at the density of 5,000 cells/well into 96-well plates and 

grew overnight. Then cells were pretreated with indicated concentrations of TNF-α for 24 

hours, and exposed to radiation with indicated doses or were sham-irradiated. Five days 

after radiation, 3-(4,5-methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT, 50 

µg/well) was added and incubated at 37°C for 1 hour. After removal of medium, DMSO 

200 µL was added to each well to dissolve the purple formazan crystal. The absorbance 

was measured at 540 nm. The cell survival was referenced to the control group. 

Western blotting analysis. For each treatment group, a certain amount of the whole cell 

lysate was separated on 10% SDS-PAGE gel and transferred onto nitrocellulose 

membrane. After blocking in 5% milk for 1 hour, the membrane was incubated with the 

primary antibody and then the corresponding secondary antibody. The signals were 

detected by enhanced ECL system and quantified by Quantity One® (Bio-Rad). The 
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following antibodies were used in this study: anti-AR (N-20), anti-PSA (C-19), anti-RelB 

(C-19) and anti-RelA (C-20) (Santa Cruz Biotech); anti-MnSOD (Upstate); anti-Nox1 

(abcam); β-actin (Sigma).  

Preparation of whole cell extracts, cytoplasmic and nuclear fractions. Cell pellets 

were suspended in 100µL cell lysis buffer and incubated for 30 minutes on ice. The 

samples were then centrifuged at 13,000 rpm for 1 minute. The supernatant was collected 

as whole cell extract. Cytoplasmic and nuclear fractions were isolated using the Nuclear 

Extract Kit (Active Motif). Protein concentration was determined by Bradford assay 

(Bio-Rad). 

RNA Isolation, cDNA synthesis and real-time PCR. Total RNA was isolated using 

RNasy kit (Qiagen). cDNA was generated from using 1µg total RNA using the 

SuperScript III first-strand synthesis system (Invitrogen) following the manufacturer's 

instructions. mRNA levels of RelA, RelB, AR or PSA were quantified using gene-

specific primers in presence of  Roche probes master by real-time PCR in a LightCycler 

480 (Roche Applied Science) and normalized to internal control human 18s.  

Reporter construct and luciferase assay. PSA (6.1 kb)-luciferase contains the 

promoter/enhancer regions of the PSA gene and was kindly provided by Dr. Alvaro Puga. 

The reporter constructs were cotransfected with and β-galactosidase (β-gal) construct into 

LNCap cells, treated with indicated concentrations of TNF-α for 24 hours to determine 

the effect of TNF-α on PSA promoter activities. Relative luciferase units were calculated 

as indicators of transcriptional activity. 

Electron spin resonance [274] assay. All ESR measurements were performed using a 

Bruker EMX spectrometer (Bruker Instruments, Billerica, MA) and a flat cell assembly, 

as described previously [275, 276]. The intensity of the ESR signal is used to measure the 

amount of short-lived hydroxyl radical trapped and the hyperfine couplings of the spin 

adduct are generally characteristic of the original trapped radicals. 5,5-dimethyl-1-

pyrroline-1-oxide (DMPO), used as spin or radical trap, was charcoal purified and 

distilled to remove all ESR detectable impurities before use. The Acquisit program was 

used for data acquisitions and analyses (Bruker Instruments). LNCap cells were harvested, 

treated with TNF-α at various concentrations for 30min and mixed with DMPO 
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(100 mM). The samples were then transferred to a flat cell for ESR measurement. 

Experiments were performed at room temperature and under ambient air. 

Quantitative ROS determination. Dihydroethidium (DHE) oxidation was used for 

quantifying O2
•- production by intact cells. General ROS production was quantified by 

DCF assay using carboxy-H2DCFDA (sensitive to oxidation, Invitrogen) and oxidized 

carboxy-DCFDA (insensitive to oxidation, Invitrogen) as optimized in [277]. The 

fluorescence in cells preloaded with carboxy-H2DCFDA was normalized to that in cells 

preloaded with carboxy-DCFDA (ratio of H2DCFDA/DCFDA) to control for the cell 

number, dye uptake, and ester cleavage differences between different treatment groups.  

NADPH oxidase activity assay. This assay was measured by the lucigenin-enhanced 

chemiluminescence method as described previously [278]. Photoemission generated by 

the reaction of superoxide radical and lucigenin in terms of RLU was measured every 

minute for 15 minutes. NOX activity was calculated as relative chemiluminescence (light) 

units (RLU) per minute per microgram protein.   

Trypan blue exclusion assay. Cell suspension (20 µL) was mixed with 20 µL 0.04% 

trypan blue solution and loaded on to a hemocytometer. Cells were counted under a light 

microscope. Dead cells retained the dye while the viable cells excluded trypan blue and 

appeared bright. Cell survival was calculated against the relative control group. 

Statistical analysis. Statistical analysis was performed using either Student's t-test (for 

two-group comparison) or one-way ANOVA followed by Dunnett’s test (for multiple-

group comparison). Data are reported as mean ± standard error (SE). 
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Results 

Ionizing radiation induces TNF-alpha secretion in both human prostate cancer cells 

and fibroblasts.     

While most cytokines are generated due to immune response, other factors such as 

aging, environmental factors, or therapeutic intervention, also contribute to the elevation 

of inflammatory mediators. Evidence that the microenvironment is altered as a result of 

radiotherapy, especially the generation of myriad cytokines, has been elegantly reviewed 

[3]. In PCa treatment, radiation therapy causes cancer cell death primarily by directly 

damaging DNA or producing ROS that can diffuse far enough to damage DNA indirectly. 

Due to the bystander effects of ionizing radiation, production of myriad proinflammatory 

mediators, including TNF-α, is triggered in various types of cells including leukocytes 

and tumor cells [279]. In the current study, we present data showing ionizing radiation 

significantly enhances TNF-α secretion both in LNCap cells and BJ-5ta human fibroblast 

cells in a dose-dependent manner  (Figure 2.1 A). Radiation induced TNF-α secretion 

was independent of cell type or species since IR can also induce TNF-α secretion in 

mouse embryonic fibroblasts in a dose- and time-dependent manner (Figure 2.1 B). To 

investigate whether IR-induced TNF-α is correlated with intracellular redox status, we 

compared TNF-α elevation between wild-type and knockout sod2 mouse embryonic 

fibroblast (MEF) cells after IR treatment. As shown in Figure 2.1 B, KO-sod2 MEFs with 

high oxidative stress secrete more TNF-α than WT MEFs.  

Compared with normal cells, redox status is often less adaptive in tumor cells than in 

their normal counterparts because tumor cells are usually under higher oxidative stress,. 

sod2 gene encodes one of the most important antioxidant proteins, MnSOD, the loss of 

which would significantly increase intracellular oxidative stress levels. Our results 

provided direct evidence demonstrating that cancer and stromal cells may be able to 

secrete more proinflammatory mediators, such as TNF-α, after IR exposure, particularly 

when tumors are under high level of oxidative stress. 

TNF-α suppresses PSA expression dose dependently and significantly. 

IL-6 can be generated in the microenvironment of prostate cancer in response to 

radiotherapy, during which it appears to peak after 15 days of radiotherapy before 

returning to pre-radiotherapy levels [280]. Elevation of IL-6 or overexpression of IL-6-
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induced STAT3 can cause radioresistance in solid tumors, such as glioma and non-small 

cell lung cancer [281-283]. Elevation of both IL-6 and TNF-α levels correlates with 

clinicopathological features and patient survival in patients with PCa [139]. IL-6 

stimulates STAT3 phosphorylation to upregulate expression of target genes, and TNF-α-

mediated activation of NF-κB in PCa cells has been documented in many publications 

[142, 205, 284].  

In contrast to cytokines, such as IL-6, which upregulates PSA and AR expression, we 

demonstrate a suppressive effect of TNF-α-induced and RelB-mediated NF-κB 

noncanonical pathway on PSA expression (Figure 2.2 A). Given the evidence that the 

RelB-mediated, but not RelA-mediated, canonical NF-κB pathway plays a more 

important role in prostate cancer progression and radioresistance, we carefully evaluated 

the expression of RelA and RelB in addition to PSA levels. LNCap cells exposed to TNF-

α for 24 h showed reduced PSA expression but increased RelB levels in a dose-dependent 

manner, as well as increased expression of MnSOD, which was used as the positive 

control of a NF-κB target gene in the study (Figure 2.2 B). TNF-α not only suppressed 

PSA protein levels, as shown by Western blotting, but also inhibited PSA promoter-

driven luciferase reporter activity (Figure 2.2 C). Real-time PCR also showed a 

significant induction of RelB transcription, but a reduction of PSA transcription (Figure 

2.2 D).  There were no significant changes in RelA protein (Figure 2.2 B) and mRNA 

(Figure 2.2 C) levels with the TNF-α treatment. In addition, TNF-α significantly induced 

RelB expression by 24hr in multiple cell types, but the suppressive effect on PSA was 

detected in LNCap cells (Figure 2.2 D). 

TNF-α sequentially activates the canonical and noncanonical NF-κB pathways, 

leading to PSA suppression. 

As shown in Figure 2.2 D, RelB induction and PSA suppression in LNCap cells 

happened at late, but not initial time points. To delineate the sequence of events, we 

collected total cell lysate at different time points after TNF-α treatment. The suppressive 

effects of TNF-α on PSA expression were observed initially at 6 h after treatment, 

concurrent with RelB induction, while RelA in total cell lysate remained essentially 

unchanged (Figure 2.3 A).  
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Since translocation of either RelA or RelB into nucleus with specific partners is 

sufficient to regulate the targeted gene transcription, we further determined RelA and 

RelB levels in the nuclear fraction. The results show that RelA induction occurred 

immediately after treatment with TNF-α then diminished quickly. For RelB, there was a 

gradual and prolonged increase that lasted into late time points up to at least 24hrs after 

TNF-α treatment (Figure 2.3 B), suggesting a sequential activation of RelA-mediated 

canonical and RelB-mediated noncanonical NF-κB pathways, with the RelB-mediated 

noncanonical pathway contributing to sustained PSA suppression. In addition to this 

TNF-α-mediated switch from the RelA-mediated pathway to the RelB-mediated pathway, 

we also found that AR levels increased initially, but decreased gradually, in both total 

lysate and nuclear fractions (Figure 2.3), consistent with RelA binding directly to the 5’ 

regulatory region of the AR gene and upregulating AR and its targeted PSA expression 

[285]. The alteration of AR levels during TNF-α exposure may result from decreasing 

RelA-mediated induction and increasing RelB-mediated suppression. 

TNF-α amplifies endogenous ROS and induces superoxide radical generation. 

Both increased production of ROS and decreased antioxidant levels can result in 

oxidative stress. TNF-α is often produced in response to oxidative stress and it also 

causes oxidative stress in its target cells. TNF-α-induced ROS, which can be inhibited by 

mitochondrial-specific MnSOD overexpression, may oxidize and inhibit JNK-

inactivating phosphatases, leading to sustained JNK activation [286]. The relationship 

between TNF-α-induced ROS and TNF-α-mediated PSA suppression in PCa cells 

remains to be determined. ESR was used to detect free radical generation from TNF-α-

stimulated LNCap cells. Figure 2.4 A shows the spectra recorded from mixtures 

containing cells treated with increasing doses of TNF-α for 30 min. Based on these 

splittings and 1:2:2:1 line shape, the spectra were assigned to the DMPO/•OH adduct 

[275], which is evidence of •OH radical generation.  Addition of TNF-α resulted in a 

dose-dependent increase in the 1:2:2:1 quartet ESR signal. Pretreatment with SOD or 

catalase was able to diminish the TNF-α-induced DMPO/•OH peak to basal levels, 

indicating that ROS such as O2
·− and H2O2 were generated in LNCap cells by TNF-α 

treatment (Figure 2.4 A). To further evaluate the ROS generation upon TNF-α treatment, 

we performed DHE assay and found a significant and dose-dependent increase in O2
·− as 
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early as 5 min and as late as 24 h post-treatment (Figure 2.4 B). TNF-α also slightly 

increased normalized carboxy-H2DCFDA fluorescence, a general indicator of cellular 

ROS level, in a dose dependent manner, but the increase was not as significant as DHE 

oxidation (Figure 2.4 B), suggesting that O2
·− is likely to be the major type of reactive 

oxygen species generated by TNF-α in prostate cancer cells. The magnitude of the TNF-α 

induced increase in O2
·− or general ROS diminished at 24 h as compared to 5 min post-

treatment, which is most likely due to some adaptive response induced by TNF-α. To 

determine whether TNF-α-induced oxidative stress is involved in PSA and AR 

suppression, LNCap cells were treated with TNF-α in the presence/absence of the O2
·− 

scavenging SOD mimetic, MnTE-2-PyP5+. SOD mimetic pretreatment abrogated TNF-α-

induced PSA and AR suppression, as well as RelB activation, significantly and dose 

dependently (Figure 2.4 C). These data support the notion that TNF-α treatment generates 

ROS, particularly O2
·−, which activates RelB-mediated noncanonical NF-κB pathway, 

resulting in PSA and AR suppression.  

Activation of NADPH oxidase by TNF-α is an initial source of ROS that results in its 

downstream signaling and PSA suppression.  

Many ROS generating systems, such as mitochondria, NADPH oxidase and nitric 

oxide synthase, may be influenced by TNF-α exposure. NADPH oxidase catalyzes the 

transfer of an electron to O2 to generate O2
·−, which is one major source of ROS 

generation and is required for the aggressive phenotype in PCa cells [58, 287]. We 

measured NADPH oxidase activity to determine whether it is involved in TNF-α-induced 

O2
·− in LNCap cells. Our results show that TNF-α enhanced NADPH oxidase activation 

rapidly which was sustained throughout the duration of TNF-α exposure (Figure 2.5 A).  

In LNCap cells, treatment with TNF-α increased NADPH oxidase activity in a dose-

dependent manner (Figure 2.5 A).  

There are seven members of the NOX family: NOX1 through NOX5 and 

Duox1/Duox2. We identified NOX1 as the major Nox isoform responsible for TNF-α-

induced NADPH oxidase activation. Based on the findings that Nox1 expression is 

enhanced in a dose dependent manner (Figure 2.5 B) as early as 5min after TNF-α 

treatment. The levels of NOX4, another important NOX isoform in prostate cancer, 

increased slightly when LNCap cells were treated with a high dose of TNF-α. However, 
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NOX4 expression exhibited a declining trend time-dependently (Figure 2.5 B). 

Furthermore, RelB induction was inhibited dose-dependently by DPI, a NADPH oxidase 

inhibitor, indicating that NADPH oxidase activation is an upstream event of the NF-κB 

pathway (Figure 2.5 C). Knockdown of NOX1 by siRNA inhibited TNF-α-induced PSA 

and AR suppression as well as RelB induction (Figure 2.5 C), suggesting that NOX1 

activation contributes to TNF-α-induced ROS generation, leading to PSA suppression.   

Low dose TNF-α exposure has no cytotoxic effects and stimulates radiation 

resistence in LNCap cells 

To evaluate the significance of low dose TNF-α exposure, LNCap or PC-3 cells were 

treated with increasing doses of TNF-α with or without IR. When exposed to TNF-α at 

concentrations that are within a physiologically relevant and/or IR-inducible range 

(<1.0ng/mL) [288], LNCap exhibited little change in cell survival and viability as 

determined by MTT assay (Figure 2.6 A) and Trypan blue exclusion assay (Figure 2.6 B), 

respectively. In addition to LNCap cells, low dose exposure of TNF-α prior to radiation 

in PC-3 cells had slightly cytoprotective or radioresistant effects (Figure 2.6 B). However, 

TNF-α treatment mitigated some of the effect of radiation on the cell survival as 

evidenced by the significantly higher survival of the cells treated 0.25 ng/mL TNF-α and 

exposed to 2 Gy radiation and the cells treated 0.5 ng/mL TNF-α and exposed to 2 or 4 

Gy radiation as compared to radiation or TNF-α treatment alone (Figure 2.6 A). These 

results indicate that low dose TNF-α exposure at physiologically relevant doses or after 

IR may confer small yet statistically significant protection or radio-resistance to the cells 

without appreciable effects on cell survival. 

  



 

48 
 

Discussion 

Our results demonstrate that IR directly induces the generation of proinflammatory 

mediators including TNF-α in both prostate cancer cells and stromal fibroblasts due to the 

bystander effect (Figure 2.1), an induction of some biological effect in cells that have not 

been directly traversed by radiation, but are in close proximity to a cell that has received 

radiation [289]. MnSOD, encoded by sod2 gene, is the most critical enzyme in the 

mitochondria and a center for regulating cellular redox balance [66]. The difference in 

TNF-α secretion between wt-MEF and sod2-KO MEF after IR exposure provides the 

direct evidence that this bystander effect of IR is highly dependent on cellular redox 

status (Figure 2.1).  

Various lines of evidence have suggested that chronic inflammation is causally linked 

to prostate carcinogenesis and PCa progression. While IL-6 elevation correlates with 

clinicopathological features and survival of patients with prostate cancer [139], the use of 

PSA to diagnose IL-6-based prostate cancer would be redundant because IL-6 positively 

regulates PSA expression and AR function [143, 144, 270].  Our study demonstrates that 

TNF-α, a major mediator of cancer-related inflammation when it is chronically present in 

the tumor microenvironment, can lead to significant RelB induction and PSA suppression 

significantly (Figure. 2.2). 

Considering the cellular heterogeneity in tumors and dynamic communications 

between stromal and prostate cancer cells, TNF-α can be generated by many sources, 

such as chronic inflammation or radiation-induced bystander effect, and it is a prime 

factor involved in stress response [119, 189].  When we compared the effects of low dose 

TNF-α exposure on downstream signaling pathways and target gene expression among 

different cancer cell lines, a significant suppression of PSA gene expression raised our 

interest in the current study (Figure 2.2 D). Because the PSA gene harbors several AREs 

in its promoter and enhancer, PSA expression is tightly regulated by AR level and 

function [258, 290]. Among commonly used prostate cancer cell lines, LNCaP cells 

express functional AR, while both DU145 and PC3 cells are AR negative [291]. 

Consistent with our findings, TNF-α also has been implicated in initiation of an 

androgen-independent state in prostate cancer through its ability to inhibit AR sensitivity 

[204], negative regulation of AR expression through the tumor necrosis factor receptor–
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associated death domain (TRADD) [284], and/or the interplay of NF-κB and B-myb 

[205]. Our results indicate that TNF-α immediately activates the RelA-mediated 

canonical NF-κB pathway, but the robust RelB-mediated noncanonical pathway 

contributes to sustained PSA suppression (Figure. 2.4). RelB upregulation by TNF-α or 

other factors may result in more aggressive characteristics in a tumor despite inhibition of 

PSA expression. Patients with the most devastating conditions of late stages of cancer 

[197, 198] can exhibit association between increased TNF-α and cachexia. The results of 

the current study are consistent with population-based national findings that obesity, 

which significantly induces TNF-α, is associated with an increased risk of prostate cancer 

mortality but negatively correlates with PSA [292].   

Elevated oxidative stress plays a significant role in several physiological/pathological 

conditions such as aging and aging-associated diseases. Aging is one of the most 

important factors in prostate cancer, as tumors occur frequently in older men. Cancer 

cells tend to secrete more proinflammatory mediators and have a higher level of oxidative 

stress compared to normal cells, and the level of oxidative stress is associated with 

prostate cancer occurrence, recurrence and progression [58]. Generally, at an early stage 

of cancer development, tumor cells are under high oxidative stress, in part due to 

inhibition of various antioxidant enzyme activities. However, after cancer has progressed, 

cancer cells tend to be equipped to cope with incremental increases in oxidative stress by 

inducing more antioxidant enzymes, such as MnSOD, which may confer aggressive or 

radioresistant phenotype of prostate tumors [66].  

IR-generated proinflammatory mediators play pleiotropic roles in the complexity of 

tumor microenvironment at different stages of prostate cancer development and 

progression. TNF-α functions as an indirect and sustained source of ROS source due to 

activation of NADPH oxidases, which leads to activation of downstream signaling 

pathways (Figure. 2.4-2.5). Blocking ROS by adding SOD mimetic or knocking down 

NOX1 leads to suppression of RelB induction, as well as PSA and AR suppression 

(Figure. 2.5-2.6). Although a relatively high dose of TNF-α usually induces an acute and 

pro-cell death response, chronic elevation of TNF-α at a relatively low level can result in 

cytoprotection and tumor progression, which is related to increased levels of antioxidant, 

antiapoptotic, and other defense proteins, such as thioredoxins and MnSOD. Additionally, 
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TNF-α mediated activation of the NF-κB signaling pathway is critical in supporting 

cancer-related inflammation and malignant progression, as well as maintaining the 

immunosuppressive phenotype of tumor associated macrophages [203]. For example, in 

human and mouse ovarian cancer, TNF-α maintains TNFR1-dependent IL-17 production 

by CD4+ cells, which leads to myeloid cell recruitment into the tumor microenvironment 

and enhanced tumor growth [293]. It is of interest to note that while treatment with low 

dose of TNF-α had little effect on cell survival, it conferred a small, yet statistically 

significant, radioresistance to the irradiated cells (Figure. 2.6), implicating IR-induced 

proinflammatory mediators in cancer promotion and progression pathways. 

In summary, the present study demonstrates that radiation therapy generates TNF-α, 

leading to the formation of an inflammatory microenvironment with sustained oxidative 

stress, in part, through NADPH oxidase activation. TNF-α triggers RelA-mediated NF-

κB canonical pathway rapidly and transiently but its effect on RelB expression is more 

robust and long-lasting, which led to sustainable suppression of PSA expression.   

Treatment with TNF-α within concentration ranges expected in the increased oxidative 

stress or after radiation exposure suppressed PSA expression and conferred a small, yet 

statistically significant, protection to LNCap cells against irradiation, which indicates that 

radiation-induced TNF-α may not only interfere with the PSA-based PCa diagnosis and 

post-treatment monitoring, but also diminish the efficacy of radiotherapy. Thus, redox 

intervention, together with anti-inflammatory mediators, can be useful to improve 

radiotherapy efficacy by radiosensitizing cancer cells while protecting normal cells and 

tissue from excessive radiation damage. 
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Figure 2.1. Ionizing radiation induces TNF-α secretion in both human prostate 

cancer cells and fibroblast.     

A. Ionizing radiation induces TNF-α secretion in prostate cancer LNCap cells and human 

immortalized foreskin fibroblast cell line BJ-5ta. Cells were irradiated at the indicated 

doses and then cultured for 6 days. Cultured media were changed to fresh medium 

containing only 1% FBS and conditioned media were collected 24 h later for ELISA. The 

relative TNF-α secretion was normalized against protein concentration. The results are 

shown as the mean ± SD of triplicate experiments and significant difference compared to 

control is indicated by *p<0.05 and **p<0.01.  
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B. Ionizing radiation induces TNF-α secretion in mouse embryonic fibroblasts time 

(upper panel) and redox dependently (lower panel). Cells were irradiated at the indicated 

doses and then cultured for 6 days. Cultured media were changed to fresh medium 

containing only 1% FBS and conditioned media were collected 24 h later for ELISA. The 

relative TNF-α secretion was normalized against protein concentration. The results are 

shown as the mean ± SD of triplicate experiments and significant difference compared to 

control is indicated by *p<0.05 and **p<0.01.  
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Figure 2.2. TNF-α dose dependently suppresses PSA expression. 

A. TNF-α activates NF-κB pathway while IL-6 induces STAT3 phosphorylation in 

LNCap cells leading to different effects on PSA and AR expression. LNCap cells were 

treated with TNF-α and IL-6 (1ng/mL) as indicated for 24 h (upper panel) or different 

concentration of IL-6 as indicated for 24 h. Total cell lysate was prepared and analyzed 

for the Western blotting assay. 

 

 
 

 

 



 

54 
 

 

B: TNF-α induces RelB but suppresses PSA in dose dependent manners. LNCap cells 

were treated with different concentration of TNF-α as indicated for 24 h. Total cell lysate 

was prepared for the Western blotting assay (upper panel). PSA promoter activity assay. 

LNCap cells were transiently transfected with PSA promoter construct (~6.1kb) and 

treated with different concentrations of TNF-α for 24 h. Firefly luciferase activity 

Normalized against internal β-gal activity was used as a surrogate measurement of PSA 

gene transcription (bottom panel).  
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C: Real-time PCR. Total RNAs were isolated and converted to cDNA to determine 

mRNA levels of respective genes following normalization against human 18S rRNA 

levels, which served as the loading control. 
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D. TNF-α induces RelB robustly in multiple cell types but suppresses PSA in LNCap 

cells. Multiple cell types were treated with TNF-α (1ng/mL) for 24 h as indicated. LNCap 

cells were treated for 30 min and 24 h for comparison. Total cell lysate was prepared for 

the Western blotting assay. 
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Figure 2.3. TNF-α sequentially activates the canonical and noncanonical NF-κB 

pathways, leading to PSA suppression. 

A: Time course analysis. To determine the sequence of canonical and noncanonical NF-

κB pathways after TNF-α treatment (0.5ng/mL), total cell lysate (upper panel) and 

nuclear fraction samples (bottom panel) were prepared at indicated time for Western 

blotting analysis. Staining signals obtained with anti-MnSOD and anti-PCNA antibodies 

were used as loading controls for cytosolic and nuclear fractions, respectively.  
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B. The nuclear RelA, RelB and AR protein bands were quantified and normalized against 

the band intensity of PCNA. Each data point is shown as the mean ± SE of triplicate 

experiments, and significant difference as compared to the untreated control is indicated 

by *p<0.05 and **p<0.01. 
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Figure 2.4. TNF-α amplifies endogenous ROS and induces superoxide radical 

generation. 

A: ESR spectrum for LNCap cells treated with TNF-α. ESR spectrum was recorded 

15 min after the addition of different concentrations of TNF-α for 30min as indicated and 

100 mM DMPO to 5 × 105 cells (upper panel). ESR spectrum for LNCap cells pre-treated 

with SOD or catalase and exposed to TNF-α.  Cells were pretreated with SOD (500U/mL) 

or catalase (500U/mL) for 5min and exposed to TNF-α (1ng/mL) for 30min. ESR 

spectrum was recorded as described above (bottom panel).  
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B: DHE assay. Cells were treated with different concentration of TNF-α as indicated for 

5min or 24 h; the oxidation of DHE was measured to quantify O2
·− generation. D: DCF 

assay. Cells were treated as described above; the ratio of carboxy-H2DCFDA (oxidation 

sensitive) to carboxy-DCFDA (oxidation insensitive) was compared. 
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C: Abrogation of TNF-α-mediated PSA and AR suppression by SOD mimetic. Cells were 

pretreated with SOD mimetic (100pg/mL) for 30min then exposed TNF-α (0.5ng/mL) for 

24 h (upper panel). RelB induction diminished after treatment with SOD mimetic.  

Addition of SOD mimetic diminishes TNF-α-mediated RelB induction and alleviated 

PSA and AR suppression in a dose dependent manner (bottom panel). The results are 

shown as the mean ± SD of triplicate experiments and significant difference as compared 

to control was indicated by * (p<0.05) and ** (p<0.01). Significant difference for groups 

with SOD mimetic addition as compared to the untreated control in aspect of TNF-α-

induced AR and PSA suppression is indicated by # (p<0.05) and ## (p<0.01).   
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Figure 2.5. Activation of NADPH oxidase by TNF-α is an initial source of ROS 

leading to downstream signaling and PSA suppression. 

A: NADPH oxidase activity assay of cells after treatment with 1 ng/mL TNF-α (upper 

panel). Cells were treated with TNF-α (1ng/mL) and harvested at different time for 

NADPH oxidase activity measurement. Reaction velocity (V) was calculated as the 

change of RLU per minute per µg protein. NADPH oxidase activity assay of cells treated 

with TNF-α at different concentrations (bottom panel). Cells were treated with different 

concentrations of TNF-α. Photoemission generated by the reaction of superoxide radical 

and lucigenin in terms of RLU was measured every minute for 15 minutes. Significant 

difference as compared to the untreated control is indicated by * (p<0.05).  
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B: TNF-α induces NOX1 but not NOX4 expression in a dose dependent manner. LNCap 

cells were treated with different concentration of TNF-α as indicated for 24 h (upper 

panel). TNF-α induces NOX1 expression in a time dependent manner, as early as 5min. 

On the other hand, NOX4 expression level gradually decreased. LNCap cells were treated 

with TNF-α at a concentration of 0.5ng/mL. Total cell lysate were prepared at the 

indicated times and analyzed by Western blotting (bottom panel). 
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C: NADPH oxidase activation is the upstream event of TNF-α-mediated RelB induction. 

LNCap cells were pretreated with different concentration of DPI, a NADPH oxidase 

inhibitor, then exposed TNF-α (0.5ng/mL) for 24 h (upper panel). Knocking down NOX1 

suppresses TNF-α-induced RelB activation, PSA and AR suppression. LNCap cells were 

transiently transfected with siRNA NOX1 or control siRNA for 12 h, then treated with or 

without TNF-α (0.5ng/mL) for 24 h. Total cell lysate was analyzed by Western blotting 

(bottom panel). 
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Figure 2.6. Low dose of TNF-α exposure exhibits little cytotoxicity but minor 

radioresistance in prostate cancer cells. 

A. MTT assay for cell survival. Cells were treated with different concentrations of TNF-α 

for 24hr and then irradiated at indicated doses. Cells were then cultured for four doubling 

times (~5day) and cell mass, which was a surrogate measurement of cell survival, was 

measured using MTT assay.  Each data point represents the mean ± SD of three 

independent experiments and significant difference as compared to the untreated control 

is indicated by * (p<0.05) and ** (p<0.01).  
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B. Typan blue exclusion assay for cell survival. LNCap or PC-3 cells were treated with 

different concentration of TNF-α for 24 h and then irradiated at indicated doses. Forty-

eight hours after irradiation, cells viability was determined by Typan blue exclusion assay. 
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Chapter Three 

RelB-AR axis mediates PSA suppression in advanced prostate cancer:  

significance in PSA dependent clinical applications 

Introduction  

According to the latest annual cancer statistics report from the American Cancer 

Society, 241,740 new cases of prostate cancer and 28,170 prostate cancer-specific deaths 

are projected for 2012 [1]. The advent of PSA testing has revolutionized both the initial 

diagnosis and the follow-up disease monitoring after treatment, such as hormone 

management and radiation therapy. However, PSA testing results can sometimes be 

ambiguous and its interpretation remains a major challenge to even very experienced 

clinicians, leading to over- and under-diagnosis of such a bimodal disease with indolent 

and aggressive forms [258]. Comparing to the overtreatment of patients who would 

otherwise require only conservative management, Thompson. et al reported that close to 

15% of men whose PSA levels were below a conventional cutoff of 4.0ng/mL did harbor 

PCa, including high-grade carcinoma [259]. In human prostate cancers, cancer cells 

expressing little or no PSA population contain tumor propagating cancer stem cells that 

resist castration, exhibit high clonogenic potential and possess long-term tumor-

propagating capacity [294]. Therefore, the current state of PCa detection is not optimal 

and can miss potentially lethal cancers, which highlights the critical need for additional 

molecular markers and/or a better understanding of mechanisms by which PSA 

expression is downregulated in advanced PCa.  

The above mentioned concerns have raised interest in fundamentally expanding our 

understanding of PCa progression and developing alternative and/or additional 

biomarkers that distinguish indolent versus aggressive forms of PCa, especially in 

patients with low or undetectable PSA levels.  

The PSA gene encodes a 33kDa glycoprotein, which consists of a single polypeptide 

chain of 240 amino acids. In the normal prostate, PSA is secreted into the glandular ducts 

where it functions to degrade high molecular weight proteins synthesized in the seminal 

vesicles to inhibit coagulation of the semen [257, 295]. However, PSA enters the serum 

through leakage into the extracellular fluid of the normal prostate. In most situations, 

with prostate tumor progression, serum PSA levels are elevated due to the loss of the 
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normal glandular architecture [295]. The expression of PSA is regulated by the AR. Upon 

binding to androgen, the AR translocates into the nucleus and binds to the ARE on the 

PSA promoter [257, 295]. Thus, androgen and AR signaling play fundamental roles in 

PSA expression at the transcription level. In addition, AR signaling through cross-talk 

with various signaling transduction pathway is a major contributor to the promotion of 

prostate cancer progression.  

Recent studies have provided evidence for a role of NF-κB in cancer initiation and 

progression [271, 272]. NF-κB pathway and increased antioxidant capacity are involved 

in causing resistance to radiation treatment in many tumor cell types [15, 177, 178]. The 

NF-κB family includes five proteins, RelA, p50, RelB, p52 and cRel, and is essential for 

the regulation of innate and adaptive immunity. All five NF-κB family members have a 

Rel-homology domain that contains a nuclear localization sequence and is important for 

DNA binding, dimerization, and interaction with IκB proteins [26]. Generally, the NF-κB 

pathway can be divided into RelA-mediated canonical pathway and RelB-mediated 

noncanonical pathway. Immunohistochemistry results show that nuclear localization of 

RelA is associated with PSA relapse, which is the first sign of prostate cancer recurrence 

[206], while in vitro mechanistic studies suggest RelA binds directly to the 5’ regulatory 

region of the AR gene and upregulates AR and its targeted PSA expression [285]. 

However, RelB-mediated noncanonical NF-κB pathway plays more significant roles in 

prostate cancer aggressiveness and radiation resistance [26, 165, 296]. RelB is the most 

frequently detected NF-κB subunit in prostate cancer tissue nuclei that significantly 

correlated with patient’s Gleason scores [296]. RelB regulates MnSOD expression 

through constitutively binding to the promoter region of the sod2 gene ([179] and 

reviewed in [26]), which is important for the resistance of prostate cancer cells to 

ionizing radiation. RelB nuclear localization is significantly higher in the aggressive PC-3 

prostate cancer cell line compared to the less aggressive LNCaP cell line, and correlates 

with increased MnSOD protein levels, enzyme activity and radioresistance in PC-3 cells 

[179]. Selective inhibition of the RelB-mediated NF-κB alternative pathway by a group 

of potential therapeutic agents, including 1α, 25-dihydroxyvitamin D3 (1α, 25-(OH)2D3) 

[181],  STI571 [210] and a protein peptide SN52 [180], can remarkably sensitize prostate 
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cancer cells to IR-induced killing through inhibiting RelB nuclear activation and 

downregulating the RelB-targeted gene, MnSOD.  

Our previous animal study showed that stable overexpression of RelB in LNCap cells 

enhanced prostate cancer tumorigenicity while, intriguingly, tumors with increased RelB 

level produced less PSA [165]. Here, we uncover a role for RelB in suppressing PSA 

expression at an advanced stage of prostate cancer, which could be a mechanism for the 

low PSA level in some patients bearing aggressive prostate cancer. In this chapter, four 

microarray gene expression datasets publicly available at Oncomine.org also consistently 

displayed an inverse relationship between RelB and AR expression in human prostate 

cancers. Our current study investigated the mechanisms by which RelB suppressed PSA 

expression and showed that RelB inhibited PSA promoter activity, AR expression and 

function, and interacted with AR to form a complex on the enhancer elements of the PSA 

promoter.  

According to data presented in the previous chapter, unlike IL-6, that enhances PSA 

and AR expression, TNF-α exerts sustained suppressive effects on PSA expression, 

which concomitantly depends on a delayed RelB-mediated noncanonical NF-κB 

activation. The relationship of TNF-α-induced PSA suppression with concurrent robust 

RelB induction is as follows. In this chapter, a number of molecular mechanisms 

indicating how PSA gene transcription is regulated by RelB-AR axis are discussed 

extensively. We demonstrated this novel RelB-AR axis as an important contributor to the 

downregulation of PSA expression in aggressive and radioresistant prostate tumors. This 

mechanistic study provides new insights into the clinical relevance of the PSA test and 

the improvement of redox intervention in prostate cancer treatments. 

In summary, this is the first study that reveals a fundamental association between the 

RelB-mediated noncanonical NF-κB pathway, and AR and PSA suppression in advanced 

prostate cancer. This mechanistic study provides new insights into the clinical relevance 

of the PSA test and the improvement of redox intervention in prostate cancer treatments. 
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Materials and Methods 

Cell culture and treatment. Human prostate cancer cell lines LNCaP were obtained 

from American Type Culture Collection (Manassas, VA) and were cultured in RPMI 

medium 1640 (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum, 1% 

penicillin and streptomycin mixture, 1 mmol/L sodium pyruvate, 10 mmol/L HEPES, 1% 

NEAA mixture (Cambrex), 1% MEM vitamin mixture (Cellgro) and 2 mmol/L L-

glutamine. Cells were grown in a 5% CO2 atmosphere at 37°C.  

Western blotting analysis. For each treatment group, a certain amount of the whole cell 

lysate was separated on 10% SDS-PAGE gel and transferred onto nitrocellulose 

membrane. After blocking in 5% milk for 1 hour, the membrane was incubated with the 

primary antibody and then the corresponding secondary antibody. The signals were 

detected by enhanced ECL system and quantified by Quantity One® (Bio-Rad). The 

following antibodies were used in this study: anti-AR (N-20), anti-PSA (C-19), anti-RelB 

(C-19) and anti-RelA (C-20) (Santa Cruz Biotech); anti-MnSOD (Upstate); anti-Nox1 

(abcam); β-actin (Sigma).  

Preparation of whole cell extracts, cytoplasmic and nuclear fractions. Cell pellets 

were suspended in 100 µL cell lysis buffer and incubated for 30 minutes on ice. The 

samples were then centrifuged at 13,000 rpm for 1 minute. The supernatant was collected 

as whole cell extract. Cytoplasmic and nuclear fractions were isolated using the Nuclear 

Extract Kit (Active Motif). Protein concentration was determined by the Bradford assay 

(Bio-Rad). 

RNA Isolation, cDNA synthesis and real-time PCR. Total RNA was isolated using 

RNasy kit (Qiagen). cDNA was generated from using 1µg total RNA using the 

SuperScript III first-strand synthesis system (Invitrogen) following the manufacturer's 

instructions. mRNA levels of RelA, RelB, AR or PSA were quantified using gene-

specific primers in presence of  Roche probes master by real-time PCR in a LightCycler 

480 (Roche Applied Science) and normalized to internal control human 18s.  

Cell transfection. Cells were transiently transfected with RelB expressing construct 

(kindly provided by Dr. Natoli Gioacchino) or pCDNA 3.1 vector control plasmid using 

LipofectamineTM 2000 (Invitrogen). Stable RelB and vector-transfected clones were 

selected based on neomycin resistance, and the tumorigenicity of the selected clones was 
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investigated in a mouse xenograft tumor model as previously reported [165]. To 

knockdown endogenous RelB in PCa cells, the specific RelB siRNA (Santa Cruz) and 

control siRNA were transfected using Transfectin (Santa Cruz) according to 

manufacturer’s protocol. The levels of protein overexpression or knockdown were 

confirmed by Western blot analysis.  

Reporter constructs and luciferase assay. An AR Reporter (luc) kit was purchased 

from SABiosciences. The AR-responsive luciferase construct encodes the firefly 

luciferase reporter gene under the control of a minimal CMV promoter and tandem 

repeats of the AR transcriptional response element. LNCaP cells were cotransfected with 

a mixture of an AR-responsive firefly luciferase construct and constitutively expressing 

renilla luciferase construct (40:1) with RelB expressing plasmid and pcDNA control for 

48hr or treated with TNF-α (1ng/mL) for 24hr.  

PSA (6.1 kb)-luciferase contains the promoter/enhancer regions of the PSA gene and was 

provided by Dr. Alvaro Puga. The reporter constructs were co-transfected with the RelB 

expression vector or RelB siRNA and β-galactosidase (β-gal) construct into LNCap cells 

to determine the effect of RelB on PSA promoter activities. Relative luciferase units were 

calculated as indicators of transcriptional activity. 

Electrophoretic mobility shift assay (EMSA). Nuclear protein was extracted using NE-

PER nuclear and cytoplasmic extraction reagents (Pierce). Double-stranded AR gel shift 

oligonucleotides (Santa Cruz) containing consensus AR binding element (5’-CTA GAA 

GTC TGG TAC AGG GTG TTC TTT TTG CA-3’) were labeled with [32P] ATP.  The 

assay was performed as previously described [297]. 

Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP assay). 

Cells were collected and processed using ChIP-IT kit (Active Motif). Fixed protein/DNA 

complexes were sheared and precipitated using anti-RelB antibody. The PSA promoter 

fragment containing putative binding element was amplified. The sequences of primer set 

were: upper-strand primer (5’-GCC TTT GTC CCC TAG ATG AA-3’) and lower-strand 

primer (5’-CAG GAC TCC GCC CCT GCC CT-3’). 

Statistical analysis. Statistical analysis was performed using either Student's t-test (for 

two-group comparison) or one-way ANOVA followed by Dunnett’s test (for multiple-

group comparison). Data are reported as mean ± standard error (SE). Pearson’s 
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correlation coefficient, a measure of the correlation (linear dependence) between two 

variables X and Y, giving a value between +1 and −1 inclusive, is widely used in the 

sciences as a measure of the strength of linear dependence between two variables [298]. 

This coefficient was calculated and shown together with 95% confidence interval (CI) to 

quantify the correlation between expression of RelB and AR for four human prostate 

cancer microarray datasets.  
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Results 

RelB suppresses PSA and AR expressions in vitro. 

We have previously demonstrated that RelB overexpression increased tumorigenicity 

of LNCap cells in a mouse xenograft tumor model. Although PSA level increased with 

the tumor load, the RelB overexpressing group exhibited a lower PSA elevation than the 

control group [165]. Perplexed with this unexpected in vivo finding of PSA suppression 

with concomitantly robust RelB induction after long-term TNF-α exposure, we explored 

the potential regulatory role of RelB on PSA suppression in this study. AR expression 

and function were evaluated together with PSA, since AR tightly regulates PSA 

expression.  Upon androgen binding and following subsequent signal cascade, AR 

translocates into nucleus and binds to multiple androgen response elements (AREs) in the 

proximal promoters and enhancers of the PSA gene [258, 290]. Transient transfection of 

RelB in LNCap cells resulted in a dose-dependent suppressive effects on PSA and AR 

expression (Figure 3.1 A). On the other hand, knocking down RelB expression by siRNA 

led to the recovery of PSA expression significantly and in a dose dependent manner 

(Figure 3.1 B). The levels of respective proteins are presented in this representative blot 

(top panels) and quantified by densitometric scanning (bottom panels). The suppressive 

effect of RelB on PSA expression was statistically significant. RelA expression had no 

significant effects on RelB levels in cells (Figure 3.1 A and B). To further verify the role 

of RelB on PSA and AR suppression, stably transfected RelB overexpressing and vector 

control LNCap cell lines were established. RelB overexpression resulted in suppression 

of PSA and AR expression at the protein and mRNA levels (Figure. 3.1 C and D, 

respectively).  

RelB negatively correlates with AR expression in human prostate cancer patients. 

To determine whether an inverse correlation similarly exists in human prostate 

tumors, four microarray gene expression datasets publicly available at Oncomine.org 

were analyzed. Scatter plots of data from each microarray dataset were depicted 

according to mRNA levels of RelB and AR. Pearson’s correlation coefficient was 

calculated to quantify the correlation between expression of RelB and AR.  Samples were 

classified as AR high expression or AR low expression based on the median AR 

expression level, which allowed each dataset to be more clearly displayed in a boxplot 
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format. Two-sample t-test was used to compare RelB expression in the two groups. In 

Taylor’s dataset obtained from 218 prostate cancer tumors (181 primaries, 37 metastases) 

[299], RelB and AR negatively and significantly correlated  (Pearson’s correlation 

coefficient=-0.34 [95% CI -0.48 to -0.2], p=1.2e-05). The levels of RelB mRNA were 

significantly higher in low AR groups than in high AR groups (p=0.00039) (Figure 3.2 

A).  Seventy-nine prostate cancer patients (37 with recurrent and 42 with nonrecurrent 

disease) [300] also showed an inverse correlation between RelB and AR (Pearson’s 

correlation coefficient=-0.45 [95% CI -0.61 to -0.25], p=3.5e-05) (Figure 3.2 B). Despite 

differences in tumor biology derived from different races or ethnicities, RelB and AR 

consistently and significantly displayed an inverse correlation in Wallace’s dataset 

including primary prostate tumors resected from 33 African-American and 36 European-

American patients [301] (Pearson’s correlation coefficient=-0.29 [95% CI -0.49 to -0.06], 

p=0.015) (Figure 3.2 C). Despite the limited sample size in Bittner’s dataset [302], RelB 

and AR expression still correlated negatively (Pearson’s correlation coefficient=-0.32 [95% 

CI -0.56 to -0.04, p=0.026] (Figure 3.2 D). These results demonstrate the significant 

inverse correlation of RelB mRNA levels with AR mRNA levels in human prostate 

tumors.  

RelB suppresses PSA expression through inhibiting AR functions. 

The AR gene encodes a transcription factor that regulates the expression of androgen-

responsive genes involved in prostate epithelial cell division and differentiation [295]. 

The AR gene is located on the long arm of the X chromosome (Xq11-12) and comprises 

eight exons that encode an mRNA of 11 kb. The mRNA has a 2.8 kb open reading frame, 

a 1.1 kb 5’ untranslated region and a 6 kb 3’ UTR [295]. AR protein has four domains: an 

N-terminal domain (TAD) involved principally in transcriptional activation, a DNA-

binding domain (DBD) that is required for interaction with specific gene sequences, a so-

called hinge region, and a C-terminal ligand-binding domain (LBD) that binds androgens 

[295]. AR regulated expression of PSA is mediated through multiple AREs in the 

proximal promoter (-600 to +12) and the 5’ upstream enhancer (-3875 to -4325) of the 

PSA gene (as depicted in Figure 3.3 A). To examine AR functions in RelB 

overexpressing LNCap cells, AR DNA binding activity was evaluated by EMSA assay 

and AR reporter activity. As shown in Figure 3.3 B, AR DNA binding activity was lower 
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in RelB overexpressing cells than in the control. Following transient cotransfection of the 

AR reporter together with RelB expressing plasmid or vector control, AR reporter 

activity measured with a simple dual-luciferase assay was reduced by approximately 55% 

(Figure 3.3 C). The AR reporter is a mixture of a constitutively expressing renilla 

construct and an androgen-responsive luciferase construct, which encodes the firefly 

luciferase reporter gene under the control of a minimal CMV promoter, and tandem 

repeats of the AR transcriptional response element. The AR reporter activity control 

experiments should have been performed in presence or absence of androgen. These 

results demonstrate that RelB significantly inhibits AR DNA binding activity and 

transcriptional activity.  

RelB inhibits PSA promoter activity leading to suppress PSA expression.  

The NF-κB family consists of five Rel-related proteins including RelA, p50, RelB, 

P52 and c-Rel. Structural analysis indicates that RelA and RelB contain both a N-

terminal DNA-binding domain and a C-terminal transactivation domain to directly 

regulate expression of a specific set of target genes [272, 303]. Wang et al have 

demonstrated that RelB mediated transcription of target genes, such as Bcl2 in breast 

cancer cells, which contributes to radioresistance [304]. RelB is the most frequently 

detected NF-κB subunit in the nuclei of prostate cancer tissues, and its level correlates 

with PCa aggressiveness [296]. To investigate the role of RelB in PSA gene transcription, 

LNCap cells were transiently transfected with different concentration of RelB expression 

vector and PSA promoters. Overexpression of RelB with the ~6.1kb PSA promoter 

construct led to a dose-dependent inhibition of PSA gene transcription (Figure 3.4 A), 

whereas siRNA knockdown enhanced PSA gene transcription as measured by luciferase 

reporter gene activity (Figure 3.4 B). To further identify the functional binding region of 

RelB within PSA promoter, we subcloned the proximal promoter (-600 to +12) into a 

reporter vector. Overexpression of RelB with this PSA proximal promoter construct also 

inhibited PSA transcription (Figure 3.4 C) and RelB knockdown increased the reporter 

activity at high level of siRNA transfection (Figure 3.4 D). Our results suggest that the 

short fragment from PSA gene proximal promoter may be sufficient for RelB-mediated 

suppression of PSA transcription. 
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RelB physically binds to the responsive sites of PSA promoter and forms a complex 

with AR. 

RelB, together with Aryl hydrocarbon receptor (AhR), binds to a NF-κB-like binding 

site (5′-GGGTGCAT-3′) located within IL-8 promoter [305]. Interestingly, this exact 

putative binding element can be found within the proximal promoter of PSA gene (Figure 

3.5 A). To determine whether RelB physically binds to this element in PSA promoter, we 

first performed ChIP assay using RelB or non-immune antibody with the cell extracts 

prepared from cells with or without RelB overexpression. As shown in Figure 3.5 B, 

ChIP with RelB antibody and subsequent PCR amplification detected a 176bp PSA 

promoter fragment (-313 to -114). RelB overexpression resulted in a higher level of PCR 

product as compared to empty vector control in the quantitative real-time PCR performed 

to amplify the precipitated DNA fragment (Figure 3.5 C). As shown in Figure 3.5 D, a 

co-immunoprecipation assay suggested the formation of a specific AR and RelB complex. 

RelB inhibited AR function (Figure 3.3) and there was an increase in the interaction 

between RelB and AR in RelB overexpressing LNCap cells (Figure 3.5 D).  These results 

suggest one mechanistic model based on the RelB-AR axis depicted in Figure 3.6. When 

RelB levels are low, AR can bind to ARE and transactivate PSA gene expression. 

However, in presence of high RelB expression (induced by TNF-α or other factors), RelB 

may directly bind to a responsive element within PSA promoter, interact with AR and 

displace AR binding from AREs, thereby resulting in the reduced AR functions and PSA 

expression.  
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Discussion 

The PSA test has been used in clinics to detect and monitor prostate cancer for more 

than thirty years. Unfortunately, clinical results indicate that the PSA test often cannot 

distinguish between the most indolent prostate cancers, which require little or no 

treatment, and the small fraction of prostate cancers that progress rapidly, which require 

immediate treatment [306]. Many other conditions, such as benign prostatic diseases, 

prostatic infarction, recent sexual activity or over-the-counter drugs like ibuprofen, can 

stimulate PSA elevation in healthy men [258]. More critically, some negative PSA-based 

screening results may overlook aggressive tumors that do not overexpress PSA. Prostate 

cancer may progress in some patients with low or undetectable serum PSA levels, and 

close to 15% of men with PSA levels below the conventional cutoff of 4.0 ng/mL harbor 

prostate cancer, including high-grade carcinoma [259, 307]. Why some patients with 

advanced prostate cancer have a low PSA level remains unclear.  

Because the PSA gene harbors several ARE in its promoters and enhancers, PSA 

expression is tightly regulated by AR level and function [258, 290]. An increase in PSA 

implies transcription of genes regulated by AREs and possibly suggests activation of the 

AR or other transcriptional signaling pathways [308]. AR transactivation is required for 

the maintenance and growth of the prostate, which forms the rationale for androgen 

ablation therapies for prostate cancer [309]. Various pathophysiologically relevant 

protein-protein interaction networks involving AR have been identified [310]. For 

example, the protein Fused/Translocated in LipoSarcoma (FUS/TLS), displaying a strong 

intrinsic transactivation capacity, functions as a novel co-activator of AR in prostate 

cancer cells [309]. Despite significant roles of AR in prostate cancer progression, highly 

invasive and metastatic prostate cancer and cell lines such as PC-3 and DU145 frequently 

have low or non-existent levels of AR. Niu. et al. demonstrated that the prostate AR 

might function as both a suppressor and promoter of prostate cancer metastasis. Through 

AR gain- and loss-of-function in epithelial–stromal cell coculture and coimplantation 

experiments, they provide convincing evidence that AR could function in epithelial basal 

intermediate cells as a tumor suppressor to suppress prostate cancer metastasis, in 

epithelial luminal cells as a surviving factor, and in stromal cells as a proliferator to 

stimulate cancer progression [311]. AR may directly or indirectly modulate expression of 
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metastasis-related genes and suppression of TGF-β1 signals, resulting in the partial 

inhibition of AR-mediated metastasis [311]. 

The NF-κB pathway contributes to the development of many cancers and confers 

radioresistance in prostate cancer [285]. Each NF-κB family member exerts distinctive 

effects on PSA expression. RelA-mediated canonical NF-κB pathway can enhance AR 

and PSA expression [285], and nuclear localized RelA is associated with PSA relapse in 

humans [206]. p52, another NF-κB subunit involved in the noncanonical pathway, 

induces androgen-independent growth of LNCap cells in vivo, and increases AR 

activation and transactivation of the response of AR to PSA gene expression [312]. 

A higher percentage of nuclear localized RelB than RelA has been observed in 

prostate cancer specimens [296]. Our laboratory has done extensive investigations to 

establish a better understanding of the mechanisms by which the alternative NF-κB 

pathway increases tumor growth, progression and radiation resistance in prostate cancer 

[26, 165, 179]. RelB nuclear localization is significantly higher in the aggressive and 

radioresistant PC-3 prostate cancer cell line compared to the less aggressive and 

radiosensitive LNCaP cell line [26, 179]. Consistently, inhibition of RelB activity in PC-

3 cells by overexpression of a dominant-negative p100 mutant or by knock-down of RelB 

expression by specific siRNA resulted in a decrease in tumor incidence and growth rate. 

Stable over-expression of RelB in LNCaP cells results in increased colony formation in 

soft agar and in vivo tumorigenicity compared to vector control [26, 165].  

In our previous animal study, we found that overexpression of RelB suppressed PSA 

serum level in androgen-responsive LNCaP cells compared to vector control group, 

which suggests a negative effect of RelB on PSA expression [165]. Here, we provide 

convincing evidence that RelB directly suppresses PSA and AR expression as well as AR 

function. The novel RelB-AR axis contributes to suppress the PSA gene in advanced 

stages of prostate cancer. The analyses from human prostate cancer microarray datasets 

confirm an inverse correlation between RelB and AR expression, and strengthen the 

existence and significance of this RelB-AR axis (Figure 3.1-3.3). RelB is shown to 

physically interact with a putative binding element within the PSA proximal promoter 

and form a complex with AR to mediate the suppressive effect on PSA transcription 
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(Figure 3.5). This is the first study to provide a molecular mechanism by which PSA 

expression is downregulated in prostate cancer.  

Although aberrant constitutive expression of c-Rel, p65 and p50 NF-κB subunits has 

been reported in over 90% of breast cancers [313, 314], similar to our findings in prostate 

cancer, an inverse correlation between RelB and ERα gene expression has been identified 

by Wang. et al in human breast cancer tissues and cell lines. Highly invasive, metastatic 

and hormone therapy resistant breast cancers are frequently ERα-negative [315]. 

Upregulation of de novo RelB synthesis targeting Bcl-2 can result in the more invasive 

phenotype of ERα-negative cancer cells. They further suggest that inhibition of de novo 

RelB synthesis represents a new mechanism whereby ERα controls EMT [304]. The 

suppressive effects of RelB on ERα or AR expression imply significant similarities 

between breast cancer and prostate cancer, especially at the advanced stage. Thus, the 

RelB-mediated noncanonical NF-κB pathway may be of paramount importance in 

inhibiting the expression and/or physiological functions of specific hormone nuclear 

receptors and promoting the aggressive characteristics of various hormone-related 

cancers, such as breast, ovarian and prostate cancer. Future investigations to explore the 

role of RelB as a biomarker or therapeutic approaches for treatment of metastatic prostate 

cancer or hormone-related diseases are warranted. 

This study was aimed at understanding how PSA expression is regulated. PSA level is 

a widely used indicator for prostate cancer prognosis and post-treatment monitoring. 

False positive PSA test results, which contribute to over-diagnosis of prostate cancer, and 

false negative results, which miss some cases of aggressive prostate cancer, remain 

problems of clinical importance. This is the first study to reveal a significant inverse 

relationship between the RelB-mediated NF-κB noncanonical pathway and AR 

expression both in vitro and in human prostate tumors. This novel RelB-AR axis is of 

paramount importance in understanding the mechanisms by which the PSA gene is 

suppressed in advanced stages of prostate cancer with low PSA levels. PSA suppression 

by the RelB-AR axis will provide new insights with practical and clinical implications in 

PSA-based post-treatment monitoring and interventions. 

 

 



 

80 
 

Figure 3.1. RelB suppresses PSA and AR expressions in vitro. 

A. Overexpressing RelB resulted in dose-dependent suppression of PSA and AR 

expression. The levels of respective proteins were presented in this representative blot 

(top panel) and quantified by densitometric scanning (bottom panel). The results are 

shown as the mean ± SD of triplicate experiments and significant difference compared to 

control is indicated by *p<0.05 and **p<0.01.  

Representative Blot 

 
 

Quantification 
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B: Knocking down RelB by siRNA increased PSA and AR expression in a dose 

dependent manner as shown in this representative blot (top panel) and the quantitative 

results by densitometric scanning (bottom panel).  The results are shown as the mean ± 

SD of triplicate experiments and significant difference compared to control is indicated 

by *p<0.05 and **p<0.01.  

Representative Blot 

            

Quantification 
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C: Chacteristics of stablely transfected RelB in LNCap cells. RelB expression construct 

and empty vector were stably transfected into LNCaP cells and selected by neomycin 

resistance. Total proteins were extracted from the selected clones and respective proteins 

were separated by Western blotting (left panel) and quantified by densitometric scanning 

(right panel). The results are shown as the mean ± SD of triplicate experiments and 

significant difference compared to control is indicated by *p<0.05 and **p<0.01.  

Representative Blot                                   Quantification 

 

D: Real-time PCR. Total RNAs were isolated from stably transfected cells and converted 

to cDNA to determine mRNA levels of respective genes following normalization against 

human 18S rRNA levels, which served as loading control. The results are shown as the 

mean ± SD of triplicate experiments and significant difference compared to control is 

indicated by *p<0.05 and **p<0.01.  
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Figure 3.2. RelB negatively correlates with AR expression in prostate cancer 

patients. 

Microarray and patient clinical data from four prostate cancer studies were accessed on 

the Oncomine Cancer Profiling Database (www.oncomine.org). Pearson’s correlation 

coefficient was calculated to quantify the correlation between expression of RelB and AR. 

For each data set, samples were further classified into AR high expression and AR low 

expression groups based on the median AR expression level. Two-sample t-test was used 

to give a p-value for the correlation between RelB and AR in scatterplots and to compare 

RelB expression in AR high and low expression groups as shown in boxplots. A. Taylor 

dataset [299]; B. Glinksy dataset [300]; C. Wallace dataset [301]; D. Bittner dataset [302].    
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Figure 3.3. RelB suppresses PSA expression through inhibiting AR functions. 

A. The schematic diagram of 5’ regulatory regions in PSA promoter region that are 

required for high androgen-stimulated expression (adapted from [295]). Multiple AREs 

exist in both proximal promoter and upstream enhancer regions. 

 

 

 

 

B: EMSA assay. Double-stranded AR gel shift oligonucleotides (Santa Cruz) containing 

consensus AR binding element (5’-CTA GAA GTC TGG TAC AGG GTG TTC TTT 

TTG CA-3’) were labeled with [32P] ATP. Nuclear extract was isolated from stably 

transfected cells for EMSA with radiolabelled AR probes.  
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C: AR reporter activity assay. To determine effects of RelB overexpression on AR 

activity, LNCap cells were cotransfected with the mixture of AR-responsive firefly 

luciferase construct, and constitutive expression renilla luciferase construct, as well as 

RelB expression construct or empty vector. Relative luciferase units were calculated as 

indicators of AR activity. Each data point represents mean ± SD of three independent 

experiments and significant difference as compared to the untreated control is indicated 

by *p<0.05 and **p<0.01. 
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Figure 3.4. RelB inhibits PSA promoter activity leading to suppress PSA expression. 

A: PSA promoter activity assay. To evaluate the effects of RelB on PSA promoter 

activity, the PSA promoter-driven luciferase reporter (~6.1kb) and RelB expression 

vector at different concentrations as well as internal control β-gal were cotransfected into 

LNCap cells.  Firefly luciferase activity normalized against internal β-gal activity was 

calculated for comparing PSA promoter activity. 

 

B: Cotransfection of RelB siRNA with PSA promoter construct (~6.1kb) as well as 

internal control β-gal. The cotransfection was performed and promoter activity was 

measure as described above. 
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C: PSA proximal promoter activity assay. The proximal promoter (-600 to +12) of PSA 

gene was PCR subcloned into reporter vector. To evaluate the effects of RelB on PSA 

promoter activity, the PSA proximal promoter-driven luciferase reporter and RelB 

expression vector at different concentrations as well as internal control β-gal were 

cotransfected into LNCap cells.  The cotransfection was performed and promoter activity 

was measure as described above. 

 

B: Cotransfection of RelB siRNA with PSA proximal promoter construct as well as 

internal control β-gal. The cotransfection was performed and promoter activity was 

measure as described above. 
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Figure 3.5. RelB physically binds to the responsive sites of PSA promoter and forms 

a complex with AR. 

A. Alignment of RelB binding element as identified in IL-8 promoter together with the 

putative element in PSA proximal promoter. The putative RelB binding element was 

located and highlighted within PSA proximal promoter region. 
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B: ChIP assay.  The putative RelB binding element was highlighted within PSA proximal 

promoter region. ChIP assay was performed using stably transfected LNCap cells. Input 

controls were prepared before adding antibody. Chromatins were immunoprecipitated by 

RelB antibody or IgG as control and immunoprecipitated DNA was amplified by PCR 

using primers as indicated in Materials and Methods. 

 

C: ChIP-qPCR assay (right panel).  ChIP assay was performed as described above. 

Quantitative real-time PCR was also used to amplify the precipitated DNA fragment. 

Each data point represents mean ± SD of three independent experiments and significant 

difference as compared to the untreated control is indicated by **p<0.01. 
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D: Co-immunoprecipitaion. Total cell lysate from stably transfected cells were 

immunoprecipitated with RelB control IgG. Coimmunoprecipitated AR was quantified by 

immunoblotting with specific antibodies.  The RelB-AR interaction were presented in 

this representative blot (top panel) and quantified by densitometric scanning (bottom 

panel). Each data point represents mean ± SD of three independent experiments and 

significant difference as compared to the untreated control is indicated by **p<0.01. 

Representative Blot 

 

Quantification 
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E: Schematic illustration of RelB suppressive effects on PSA proximal promoter.  
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Chapter Four 

Discussion and Summary 

Versatile partnership between radiation therapy and ROS elevation: insight in 

prostate cancer radioresistance 

It has been reported that IR increases intracellular ROS levels quickly after exposure 

and the elevated levels of ROS are sustained for several hours after initial IR exposure 

[47, 316, 317]. IR-induced mitochondrial dysfunction, especially decreased electron 

transport chain complex I activity, contributes to the persistent oxidative stress after 

irradiation [48]. Tohru Yamamori. et al demonstrated that this process is accompanied by 

upregulation of mitochondrial electron transport chain function and mitochondrial 

content [46]. NADPH oxidase is responsible for a late increase in intracellular superoxide 

generation after exposure to IR [316-318]. IR-induced mitochondrial dysfunction, 

especially decreased electron transport chain complex I activity, produces a feed forward 

loop that contributes to persistent oxidative stress after irradiation [48]. Since the 

mitochondrion is the most important energy generating organelle, mitochondrial 

dysfunction due to direct effects of IR or indirect effects mediated by ROS may result in 

alterations or adaptive responses of metabolic pathways, such as glycolysis, involved in 

cancer development. Free radicals may amplify and prolong the deleterious effects of 

radiation, leading to chronic oxidative stress, alteration of multiple metabolic pathways, 

normal tissue injury, cell death and other bystander effects (reviewed in [106]). 

DNA damage and ROS generated by IR exposure can stimulate many inside-out and 

outside-in cell signaling pathways involved in the control of cell survival and death, 

leading to either adaptive repair or apoptotic cell death [319]. However, the predominant 

mechanism for radiation killing of mammalian cells is the so-called mitotic cell death 

pathway in which damaged DNA with double-stranded breaks or dysfunctional 

chromosomal structure result in the loss of replicative potential after several mitotic 

cycles. Apoptosis is a minor form of cell death in irradiated solid tumors, including 

prostate tumors [320].  

Since radiotherapy mainly induces cell death by generating oxidative stress, cellular 

antioxidant status also affects normal tissue injury and tumor sensitivity to radiation 

treatment (reviewed in [26, 321]). Inhibiting prooxidant enzyme expression, like COX-2 
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[322], and overexpression or upregulation of antioxidant enzymes, such as extracellular 

ECSOD [323] and heme oxygenase-1 (HO-1) [324], protected against radiation-induced 

thoracic, lung and skin injury [325]. Radiation-resistant mice had higher levels of SOD 

and catalase activities compared to radiation-sensitive mice [14].  

Manganese superoxide dismutase (MnSOD) upregulation has been implicated in 

adaptive response induced by low or fractionated doses of ionizing radiation, leading to 

radioresistance [13, 15, 273]. MnSOD is one of the most important antioxidant enzymes 

and is located exclusively in mitochondria, the main source of ROS [66, 68]. The levels 

and activities of MnSOD modulate cellular redox status and influence the effects of 

chemotherapy or radiotherapy; therefore, MnSOD may confer radioresistence through its 

antioxidant enzyme activity. Our previous studies have demonstrated that selective 

inhibition of RelB-induced MnSOD after irradiation can sensitize prostate cancer cells to 

radiation treatment [26, 179], confirming the importance of MnSOD in radioresistance. 

Tolerance for oxidative stress may influence different cancer cell types to exhibit 

opposite responses to ROS elevation. For example, the anticancer drug 2-

methoxyestradiol (2-ME) is associated with upregulation of MnSOD as an adaptive 

response that protects pancreatic cancer cells from increased ROS [326].  In contrast, 2-

ME can sensitize radioresistant MCF-7/FIR breast cancer cells by activating apoptosis, 

arresting the cell cycle and further enhancing radiation-induced ROS [327]. Therefore, 

applying redox modulating reagents such as ascorbate [328], arsenic trioxide [329], 

selenite [330] or a metalloporphyrin antioxidant mimetic (MnTE-2-PyP5+) [331] in 

combination with ionizing radiation can either increase the cell killing effect of IR or 

protect against the radiation-induced oxidative stress. MnTE-2-PyP5+ treatment alone 

slowed prostate tumor progression and up-regulated immune parameters such as spleen 

mass relative to body mass, the numbers of splenic white blood cells (WBC) and 

lymphocytes (B and T) and circulating WBC, granulocytes, and platelets, but caused only 

minimal mitigation of the effects of 2  Gy total-body irradiation [331]. In response to ROS 

generation following radiotherapy, tumor reoxygenation leads to nuclear accumulation of 

HIF-1 and enhances translation of HIF-1-regulated transcripts, such as a prototypical 

angiogenic cytokine, VEGF, which inhibits endothelial cell apoptosis and limits 

treatment response by minimizing vessel damage [332, 333]. Inhibiting HIF-1 activation 
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after IR by blocking tumor reoxygenation processes may significantly increase tumor 

radiosensitivity as a result of enhanced vascular destruction, which has been implicated in 

tumor hypoxia condition [332, 333], growth factor expression [22] and tumor 

angiogenesis [333, 334]. In addition, the role of MnSOD activity in increased 

radioresistance through regulating cell cycle G2-checkpoint pathways suggests that 

mitochondria-derived superoxide and hydrogen peroxide signaling could regulate cellular 

responses to IR [335]. Additional understanding of the mechanisms of radioresistance 

under different redox status conditions in tumor cells will help to improve the outcome of 

radiation therapy. 

IR-induced TNF-α functions as a sustained source of ROS, activates RelB-mediated 

noncanonical NF-κB pathways and has implication in PCa radioresistance.  

Our data show that radiation therapy directly and dose dependently induces TNF-α, 

one of the most important proinflammatory mediators, in both prostate cancer LNCap 

cells and BJ-5ta human fibroblast cells. Because tumor cells are usually under higher 

oxidative stress, TNF-α secretion found in sod2-KO MEF after IR exposure is 

significantly higher than wt-MEF, suggesting that this bystander effect of IR is highly 

dependent on cellular redox status.  

TNF-α is often produced in response to oxidative stress and acts, at least in part, by 

causing oxidative stress in its target cells. Whether they are promoting cell survival or 

death, reactive oxygen species produced by TNF-α have the important function of 

determining the fate of the impacted cells. The mitochondrion is the main site of ROS 

generation contributing to TNF-α-initiated signaling pathway [336-338]. Changes in 

mitochondria membrane permeability and electron transport chain activity, especially the 

impaired respiratory complex I activity, lead to TNF-α mediated ROS generation, 

resulting in mitochondrial damage [338]. For example, Kim. et al have shown that in 

response to TNF-α binding, TNF complex II, which is composed of receptor interacting 

protein 1, TNF receptor-associated protein with death domain (TRADD), TNF receptor-

associated factor 2, Fas-associated death domain protein and pro-caspase-8, binds to the 

C-terminus of Romo1 (ROS modulator 1), which in turn recruits Bcl-xL to reduce 

mitochondrial membrane potential, resulting in ROS production and apoptotic cell death 

[339]. TNF-α-induced ROS, which can be inhibited by mitochondrial-specific MnSOD 
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overexpression, may also cause oxidation and inhibition of JNK-inactivating 

phosphatases, and sustained JNK activation is required for cytochrome c release and 

caspase 3 cleavage as well as necrotic cell death [286].  

Chapter 2 demonstrates that TNF-α amplifies endogenous ROS by ESR and DCF 

assays. Pretreatment with SOD or catalase diminishes the TNF-α-induced DMPO/•OH 

peak to basal levels, indicating that ROS such as O2
•− and H2O2 are generated in LNCap 

cells by TNF-α treatment. DHE oxidation, an indicator of superoxide radicals induction, 

changes immediately and significantly, suggesting that O2
•− is likely the major type of 

ROS generated by TNF-α in prostate cancer cells. NADPH oxidase activation is involved 

in TNF-α induced ROS production, depending on the cell types and the extent of TNF-α 

exposure [340, 341]. Acute TNF-α exposure induced rapid (within 5 minutes) p47phox 

phosphorylation and increased p47phox-TNF-α receptor-associated factor 4 (TNAF4) 

association and membrane translocation, which further mediated p47phox-p22phox 

complex formation, leading to NADPH dependent O2
•− production [340]. The binding of 

TNF-α to TNFR1 can activate NOX1 or NOX2 to generate ROS in the early endosome 

[342].  

NADPH oxidase activity was measured to determine its role in TNF-α-induced O2
•− 

in LNCap cells. The results show that TNF-α dose-dependently enhances NADPH 

oxidase activation and sustained NOX activity throughout the duration of TNF-α 

exposure. NOX1 is a major NOX member contributing to TNF-α-induced ROS 

generation and downstream signaling activation. Comparison of nuclear RelA and RelB 

levels, the data show that RelA induction occurred immediately after treatment with 

TNF-α then diminished quickly. For RelB, a gradual and prolonged increase last into late 

time points, up to as least 24 h after the TNF-α treatment, suggesting sequential 

activation of RelA-mediated canonical and RelB-mediated noncanonical NF-κB 

pathways. In addition to NF-κB signaling activation, a few important kinase signaling 

pathways, such as PI3K-Akt phosphorylation, ERK and p38 but not JNK pathways 

activated for a period of time, but were not sustained until very late time points (Figure 

4.1 A). Addition of respective kinase inhibitors abrogated RelB induction to a certain 

extent, indicating theses kinase pathways are the upstream events contributing to 

activation of the RelB-mediated noncanonical NF-κB pathway (Figure 4.1 B). 
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Many studies have shown that a relatively high dose of TNF-α generally induces an 

acute and pro-cell death response. However, chronic TNF-α elevation at a relatively low 

level can result in cytoprotection, which is related to increased levels of antioxidant, 

antiapoptotic, and other defense proteins, such as thioredoxins and MnSOD. Increased 

mitochondrial ROS production induced by TNF-α leads to activation of nuclear genes, 

especially NF-κB. In human and mouse ovarian cancer, TNF-α maintains TNFR1-

dependent IL-17 production by CD4+ cells, which leads to myeloid cell recruitment into 

the tumor microenvironment and enhanced tumor growth [293]. The survival data 

demonstrates that low dose of TNF-α exposure has no cytotoxic effects and enhances 

radiation resistance in prostate cancer cells. TNF-α-induced RelB and MnSOD 

expression may lead to more aggressive characteristics, as these two proteins are 

significant in prostate cancer progression.  

Fortunately, a variety of novel strategies have been proposed to target TNF-α 

mediated signaling for treatment of human prostate cancer. For example, Gambogic acid 

can inhibit TNF-α-induced invasion of human prostate cancer PC3 cells in vitro by 

inhibiting PI3K/Akt and NF-κB pathways [343]. TNF-α induces MnSOD expression, 

which mediates delayed radioprotection [344] through an NF-κB binding site located 

within the second intron of the sod2 gene [66]. The natural compound curcumin acts as a 

potent radiosensitizer in PC3 cells by inhibiting TNF-α-mediated NF-κB activity, 

resulting in bcl-2 protein downregulation [345]. There is a caveat to targeting TNF-α in 

prostate cancer therapy. TNF-α synergizes with γ-irradiation to induce apoptosis in 

LNCaP cells through a mechanism that may involve increased production of ceramide at 

48-72 hours after exposure [346]. Anti-TNF-α treatment may mitigate the effect of γ-

irradiation. Depending on TNF-α dose and prostate cancer cell type, different isoforms of 

C/EBPβ may regulate cell growth and confer TNF-α resistance to prostate cancer cells 

[347]. Although TNF-α is clearly linked with prostate cancer progression and 

radioresistance, it may also contribute to tumor immune surveillance and apoptosis-

mediated antitumor pathways. Thus, there currently appears to be no reason to reject 

TNF-α or NF-κB as a drug target. The results provide direct evidence of IR-mediated 

TNF-α secretion, the consequences in downstream signaling activation and significance 
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in prostate cancer radiation responses. More work need to be done to increase the 

therapeutic efficiency of chemotherapy and radiotherapy in prostate cancer treatment. 

Debate about PSA test in PCa clinical practice. 

PSA level and rate have been widely used as biomarkers for prostate cancer because 

their risings are related to the extent and biological potential for the disease [348]. The 

percentage of men with a higher volume tumor, extraprostatic disease, higher grade 

disease, and biochemical failure after treatment usually increase as the PSA level 

increases [349]. Although the burden of suffering from prostate cancer in the United 

States is significant, recent epidemiologic studies have shown that the lifetime risk of 

prostate cancer diagnosis is about 16%, but the lifetime risk of dying from this disease is 

only 3.4% [350]. PSA testing may reduce the risk of death through early detection, but it 

is associated with a variety of harms. Multiple studies suggest that PSA screening and 

treatment for prostate cancer may have a marginal benefit on the lifespan of men, and 

may incur a considerable cost [351]. Given that the risk of a serious infection from a 

prostate biopsy in the United States has been estimated at between 2% and 4%, the risk of 

a potentially lethal variant of prostate cancer may be less than the risk of biopsy 

complications [352]. 

Approximately 25% of men with a PSA level >4.0 ng/mL had prostate cancer [353]. 

Much controversy exists about the potential harm and benefit of screening. A relatively 

high false positive rate compromises the specificity of the PSA test, leading to significant 

issues of overdiagnosis, overtreatment, adverse events and diminished quality of life. 

Thus, several population-based groups cited inconclusive evidence to recommend for, or 

against, PSA screening for men younger than age 75 years [354, 355]. As for PSA test 

dependent prostate cancer screening, the American Society of Clinical Oncology 

addressed provisional clinical opinions as follows, 1) In men with a life expectancy of 

less than 10 years, it is recommended that general screening for prostate cancer with total 

PSA be discouraged, because the harm seems to outweigh potential benefits; 2) In men 

with a life expectancy of more than 10 years, it is recommended that physicians discuss 

with their patients whether PSA testing for prostate cancer screening is appropriate for 

them. PSA testing may save lives but it is associated with harm, including complications 

from unnecessary biopsy, surgery, or radiation treatment [350]. Thus, it is of paramount 
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importance to reduce the proportion of overdetection of indolent disease and to improve 

the ability to identify lethal tumors early. 

In addition to the false positive issues of PSA test, false negative results also raise 

tremendous concerns. There is no “safe” PSA value below which a man may be reassured 

that he does not have biopsy-detected prostate cancer [356]. Biopsy-detected prostate 

cancer, including high-grade cancers, is not rare among men with PSA levels of 4.0 

ng/mL or less - levels generally thought to be in the normal range. Thompson. et al 

observed an extraordinarily high prevalence of prostate cancer among 2950 healthy men 

(age range, 62 to 91 years), participating in a prostate cancer chemoprevention study. All 

of these men had PSA levels below 3.0 ng/mL at the start of the study, and all of the men 

studied had PSA levels that remained below 4.0 ng/mL during the seven years of 

followup. Prostate cancer was diagnosed in 449 (15.2%); 67 of these 449 cancers (14.9%) 

had a Gleason score of 7 or higher. The prevalence of prostate cancer was 6.6% among 

men with a PSA level of up to 0.5 ng/mL, 10.1% among those with values of 0.6 to 1.0 

ng/mL, 17.0% among those with values of 1.1 to 2.0 ng/mL, 23.9% among those with 

values of 2.1 to 3.0 ng/mL, and 26.9% among those with values of 3.1 to 4.0 ng/mL [259].  

Chapter 3 discusses a role for RelB in suppressing PSA expression at the advanced 

stage of prostate cancer, which could be a mechanism for the low PSA level in some 

patients bearing aggressive prostate tumors. Analysis of Oncomine datasets obtained 

from prostate cancer patients demonstrates an inverse correlation between RelB 

expression and AR expression in four human prostate cancer microarray datasets. RelB 

not only suppresses AR expression but also directly interacts with AR to form a complex 

on the enhancer elements of the PSA promoter. This RelB-AR axis is identified as an 

important contributor to PSA suppression in an advanced stage of prostate cancer. 

Furthermore, TNF-α induces RelB and MnSOD but suppresses PSA expression in spite 

of the status of the androgen receptor. TNF-α-induced RelB substantially suppresses PSA 

expression in the presence of androgen DHT or the anti-androgen compound casodex. 

Overexpressing RelB significantly suppresses DHT-induced PSA elevation (Figure 4.2). 

Thus, compared to the roles of AR on PSA activation, RelB exerts a dominant role in 

PSA suppression. 
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Applications of biomarker such as PSA may detect prostate cancers or predict the 

relapse earlier, but better approaches are needed, such as risk stratification for screening 

and assessing individualized risk for prostate cancer initiation or recurrence. Since most 

prostate tumors remain silent and cause a patient no morbidity, the use of additional risk 

assessment tools may help to determine whether the specific tumor is clinically 

significant or need to be subjected to further biopsy or more careful monitoring. In 

addition to PSA elevation, a few important risk factors, including age, race/ethnicity, 

family history, DRE findings and alterations of many other proinflammatory mediators, 

should be given serious attention during prostate cancer diagnosis and treatment follow-

ups. 

Summary  

Radiation therapy is generally used to treat early stage and inoperable locally 

advanced prostate cancer. Radiation kills prostate cancer cells and extends long-term 

patient survival by direct and indirect actions leading to macromolecule damages and 

altered redox signaling. However, IR is also responsible for the induction of neoplastic 

transformation and tumor progression, as well as normal tissue injuries. The development 

of radioresistance is a significant impediment to prostate cancer treatment. The side 

effects and late complications resulting from IR exposure limit the full potential of 

radiotherapy efficacy. Considering the heterogeneity of tumors, dynamic communications 

between stromal and prostate cancer cells, as well as the complicated redox-regulated 

mechanisms within the tumor microenvironment, simply applying generalized anti-

inflammatory strategies might result in unintended adverse effects. Thus, it is important 

to develop individualized treatment regimes that will be the most effective and will not 

disrupt antitumor immunity. Additionally, redox-dependent proinflammatory mediator 

production from the directly exposed cells and their neighboring non-irradiated cells 

(bystander effect of radiotherapy) may play a critical role in the response of cells and 

tissues to IR. The key roles of IR-induced cytokines and growth factors and their 

interference with prostate cancer radiotherapy have been extensively discussed with an 

emphasis on TNF-α.  

IR-induced TNF-α secretion in prostate cancer treatment is not only involved in 

modulating redox balance, but is also subjected to regulation by various oxidative 
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stresses. Compared to normal cells, tumor cells are usually under higher oxidative stress 

and secrete more pro-inflammatory mediators. Under sustained oxidative stress within 

the tumor microenvironment, TNF-α further amplifies IR-induced oxidative stress, 

leading to downstream signaling activation, such as rapid RelA-mediated canonical NF-

κB pathway and subsequent RelB-mediated noncanonical NF-κB pathway. In androgen-

responsive LNCap cells, RelB inhibits AR expression and/or forms a RelB-AR axis that 

contributes to sustained PSA suppression. Prolonged oxidative stress and RelB 

overexpression facilitate prostate cancer progression to an aggressive stage and/or to 

radioresistance. The considerable uncertainty about the reliability of the prognostic 

capabilities of the PSA test makes this study highly significant for clinical practices. It 

provides a convincing mechanism to explain false negative PSA results for patients with 

prostate cancer that is growing and progressing. 

The findings of this study also indicate that modulation of IR-induced oxidative stress 

and inflammatory cytokine signaling may provide a better basis for enhancing radiation-

mediated killing in prostate cancer treatment with minimal normal tissue damage. 

Inhibition of the RelB-AR axis and redox intervention, together with anti-TNF-α therapy, 

may be useful therapeutic approaches for the treatment of prostate cancer. 
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Figure 4.1. TNFα-regulated major cellular kinase signaling pathways in LNCap 

cells. 

A. To determine the activation of multiple kinase signaling pathways in a time dependent 

manner after TNF-α treatment (0.5ng/mL), total cell lysate were prepared at the indicated 

time points and analyzed by Western blotting.   
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B. Addition of respective kinase inhibitors abrogated RelB induction to a certain extent, 

indicating theses kinase pathways are the upstream events contributing to activation of 

RelB-mediated noncanonical NF-κB pathway. 

 

 

 
 

 

 

 

  

SB: SB203580   p38 inhibitor   SP: SP600125   JNK inhibitor  
PD: PD98059    ERK inhibitor 

Wortmannin    PI3K inhibitor      LY290042    PI3K inhibitor  
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C. Summarized illustration of sequential activation of major cellular signaling pathways 

in LNCap cells after low dose TNF-α treatment  
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Figure 4.2. RelB plays a dominant negative role in PSA suppression. 

TNF-α induces RelB and MnSOD but suppresses PSA expression in spite of the status of 

androgen receptor. LNCap cells were pretreated with different concentration of 

Dihydrotestosterone (DHT), a sex steroid and androgen hormone or different 

concentration of casodex (Bicalutamide) belonging to the group of medicines called 

antiandrogens, then exposed TNF-α (0.5ng/mL) for 24 h (upper panel). Overexpressing 

RelB suppresses DHT-induced AR and PSA elevation. LNCap cells were transiently 

transfected with RelB overexpressing plasmid or control vector for 12 h, then treated with 

or without DHT for 24 h. Total cell lysate was prepared for the Western blotting assay 

(bottom panel). 
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Figure 4.3. Overall summary 

Schematic illustration of sequential activation of canonical and noncanonical NF-κB 

pathway, and sustained PSA suppression mediated by RelB-AR axis at advanced stage of 

prostate cancer in presence of sustained high level of oxidative stress. 

 
 

 

 

 

 

 

Copyright © Lu Miao 2013



 

109 
 

Appendix: List of abbreviations 

 
2-ME = 2-methoxyestradiol  
3DCRT = 3-dimensional conformal radiation therapy  
8OH-dG = 8-hydroxy-deoxyguanosine 
8-oxoG = 8-oxoguanine  
AP-1 = activator protein-1 
APE1 = AP endonuclease 1  
AP site = abasic site 
AR = androgen receptor  
ARE = androgen response elements  
AhR = Aryl hydrocarbon receptor  
ATF = activating transcription factors 
BER= base excision repair 
BPH = benign prostate hyperplastic 
CAF = cancer associated fibroblast  
CHIP = chromatin immunoprecipitation 
CDK = cyclin-dependent kinases  
COI = cytochrome oxidase subunit I  
COX-2 = cyclooxygenase-2  
CREB = cAMP response element binding protein  
CRPC = castration resistant prostate cancer 
CSC = cancer stem cell 
Cu/ZnSOD = copper/zinc superoxide dismutase 
DBD = DNA binding domain 
DEP-1=density-enhanced protein tyrosine phosphatase-1 
DHE = dihydroethidium 
DHT = Dihydrotestosterone 
DPI =	
  diphenylene	
  iodonium 
DNTGFBRII = dominant negative mutant TGF-β type II receptor  
EMT = epithelial mesenchymal transition 
ETC = mitochondrial electron transport chain 
ECSOD = extracellular superoxide dismutase  
EGF = epidermal growth factor 
EGFR = epidermal growth factor receptors  
ESR = electron spin resonance 
FGF = fibroblast growth factor  
FUS/TLS= Fused/Translocated in LipoSarcoma 
GSH = glutathione 
GPx = glutathione peroxidase  
GST = glutathione S-transferase 
GSK = glycogen synthase kinase 
GR = glutathione reductase 
Grx = glutaredoxin 
HIF = hypoxia-­‐inducible	
  factors 
HO-1=heme oxygenase-1 
HSP90 = heat shock protein 90 
IGF = insulin-like type I growth factor 
IGF-1R = insulin-like type I growth factor receptor  
IL-1β = interleukin-1β  
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IL-6 = interleukin-6 
IL-8 = interleukin-8 
IMRT = intensity modulated radiation therapy  
IFN- γ = interferon- γ 
IR = ionizing radiation 
Jak = Janus kinase 
LBD =ligand binding domain 
LPX = lipoxygenase 
MAPK = mitogen-activated protein kinase  
MCT4 = mono-carboxylate transporter 4 
MEF = mouse embryonic fibroblast 
MnSOD = manganese superoxide dismutase  
mtDNA = mitochondrial DNA  
NE = neuroendocrine 
NED = neuroendocrine differentiation 
NF-κB = nuclear factor kappa B  
NOX = NADPH oxidase 
NTR1 = neurotensin receptor 1 
PI3K = phosphatidyl inositol 3-kinase  
PIA = proliferative inflammatory atrophy  
PIAS = protein inhibitors of activated STATs 
Prostate cancer = PCa 
Prx = peroxiredoxin 
PSA = prostate specific antigen 
PTP= protein tyrosine phosphatases  
Rac1=ras-related C3 botulinum toxin substrate 1 
RNS = reactive nitrogen species 
ROS = reactive oxygen species  
SASPs = senescence-activated secretory pathways 
SH2 = Src-homology 2  
SHP = small heterodimer partner 
sIL-6R = soluble IL-6 receptor  
SOCS = suppressor of cytokine signaling 
SOD = superoxide dismutase  
STAT = signal transducers and activators of transcription  
TAM = tumor-associated macrophages 
TACE = TNF-converting enzyme  
TNAF4 = TNF-α receptor-associated factor 4  
TNF-α = tumor necrosis factor-alpha  
TGF-β = transforming growth factor-beta  
TRADD = TNF receptor-associated protein with death domain  
TRAIL= TNF-related apoptosis-inducing ligand 
Trx = thioredoxin 
TRXox = oxidized thioredoxin  
TrxR = thioredoxin reductase  
TRXre = reduced thioredoxin 
VEGF = vascular endothelial growth factor 
VEGFR2 = vascular endothelial growth factor receptor 2 
WBC	
  =	
  white	
  blood	
  cells 
XO = xanthine oxidase  
  



 

111 
 

 References 

 
1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA: a cancer journal for 

clinicians 2012,62:10-29. 
2. Thompson I, Thrasher JB, Aus G, Burnett AL, Canby-Hagino ED, Cookson MS, et al. 

Guideline for the management of clinically localized prostate cancer: 2007 update. The 
Journal of urology 2007,177:2106-2131. 

3. Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment - 
tumorigenesis and therapy. Nature reviews. Cancer 2005,5:867-875. 

4. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. 
International journal of radiation biology 1994,65:27-33. 

5. Hall EJ. Radiobiology for the radiologist: Philadelphia: JB Lippincott Company; 1994. 
6. Spitz DR, Azzam EI, Li JJ, Gius D. Metabolic oxidation/reduction reactions and cellular 

responses to ionizing radiation: a unifying concept in stress response biology. Cancer 
metastasis reviews 2004,23:311-322. 

7. Halliwell B, Gutteridge.J.M.C. Free Radicals in Biology and Medicine. New York: 
Oxford University Press.; 2007. 

8. Ames BN. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative 
diseases. Science 1983,221:1256-1264. 

9. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated 
mechanisms: a radical therapeutic approach? Nature reviews. Drug discovery 
2009,8:579-591. 

10. Fruehauf JP, Meyskens FL, Jr. Reactive oxygen species: a breath of life or death? 
Clinical cancer research : an official journal of the American Association for Cancer 
Research 2007,13:789-794. 

11. Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of 
reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, 
prevention, and therapy. Antioxidants & redox signaling 2012,16:1295-1322. 

12. Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the 
sword. Cancer cell 2006,10:175-176. 

13. Fan M, Ahmed KM, Coleman MC, Spitz DR, Li JJ. Nuclear factor-kappaB and 
manganese superoxide dismutase mediate adaptive radioresistance in low-dose irradiated 
mouse skin epithelial cells. Cancer research 2007,67:3220-3228. 

14. Hardmeier R, Hoeger H, Fang-Kircher S, Khoschsorur A, Lubec G. Transcription and 
activity of antioxidant enzymes after ionizing irradiation in radiation-resistant and 
radiation-sensitive mice. Proceedings of the National Academy of Sciences of the United 
States of America 1997,94:7572-7576. 

15. Guo G, Yan-Sanders Y, Lyn-Cook BD, Wang T, Tamae D, Ogi J, et al. Manganese 
superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. 
Molecular and cellular biology 2003,23:2362-2378. 

16. Bhide SA, Nutting CM. Recent advances in radiotherapy. BMC medicine 2010,8:25. 
17. Sheets NC, Goldin GH, Meyer AM, Wu Y, Chang Y, Sturmer T, et al. Intensity-

modulated radiation therapy, proton therapy, or conformal radiation therapy and 
morbidity and disease control in localized prostate cancer. JAMA : the journal of the 
American Medical Association 2012,307:1611-1620. 

18. Mettler F, Upton A. Medical Effects of Ionizing Radiation. Philadelphia, PA: Saunders 
Elsvier; 2008. 

19. Iliakis G. The role of DNA double strand breaks in ionizing radiation-induced killing of 
eukaryotic cells. BioEssays : news and reviews in molecular, cellular and developmental 
biology 1991,13:641-648. 



 

112 
 

20. Mettler FA, Upton. AC. Medical Effects of Ionizing Radiation. Philadelphia, PA.: 
Saunders Elsvier.; 2008. 

21. Kang MA, So EY, Simons AL, Spitz DR, Ouchi T. DNA damage induces reactive 
oxygen species generation through the H2AX-Nox1/Rac1 pathway. Cell death & disease 
2012,3:e249. 

22. Fitzgerald TJ, Wang T, Goel HL, Huang J, Stein G, Lian J, et al. Prostate carcinoma and 
radiation therapy: therapeutic treatment resistance and strategies for targeted therapeutic 
intervention. Expert review of anticancer therapy 2008,8:967-974. 

23. Kong Z, Xie D, Boike T, Raghavan P, Burma S, Chen DJ, et al. Downregulation of 
human DAB2IP gene expression in prostate cancer cells results in resistance to ionizing 
radiation. Cancer research 2010,70:2829-2839. 

24. Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper BA, Schiestl B, et al. Intracellular 
signaling pathways regulating radioresistance of human prostate carcinoma cells. 
Proteomics 2008,8:4521-4533. 

25. Kim BY, Kim KA, Kwon O, Kim SO, Kim MS, Kim BS, et al. NF-kappaB inhibition 
radiosensitizes Ki-Ras-transformed cells to ionizing radiation. Carcinogenesis 
2005,26:1395-1403. 

26. Holley AK, Xu Y, St Clair DK, St Clair WH. RelB regulates manganese superoxide 
dismutase gene and resistance to ionizing radiation of prostate cancer cells. Annals of the 
New York Academy of Sciences 2010,1201:129-136. 

27. Affolter A, Drigotas M, Fruth K, Schmidtmann I, Brochhausen C, Mann WJ, et al. 
Increased radioresistance via G12S K-Ras by compensatory upregulation of MAPK and 
PI3K pathways in epithelial cancer. Head & neck 2012. 

28. Deng X, Elzey BD, Poulson JM, Morrison WB, Ko SC, Hahn NM, et al. Ionizing 
radiation induces neuroendocrine differentiation of prostate cancer cells in vitro, in vivo 
and in prostate cancer patients. American journal of cancer research 2011,1:834-844. 

29. Valerie NC, Casarez EV, Dasilva JO, Dunlap-Brown ME, Parsons SJ, Amorino GP, et al. 
Inhibition of neurotensin receptor 1 selectively sensitizes prostate cancer to ionizing 
radiation. Cancer research 2011,71:6817-6826. 

30. Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: 
implications for new treatment modalities. European urology 2005,47:147-155. 

31. Nelson EC, Cambio AJ, Yang JC, Ok JH, Lara PN, Jr., Evans CP. Clinical implications 
of neuroendocrine differentiation in prostate cancer. Prostate cancer and prostatic 
diseases 2007,10:6-14. 

32. Deng X, Liu H, Huang J, Cheng L, Keller ET, Parsons SJ, et al. Ionizing radiation 
induces prostate cancer neuroendocrine differentiation through interplay of CREB and 
ATF2: implications for disease progression. Cancer research 2008,68:9663-9670. 

33. Quiros-Gonzalez I, Sainz RM, Hevia D, Mayo JC. MnSOD drives neuroendocrine 
differentiation, androgen independence, and cell survival in prostate cancer cells. Free 
radical biology & medicine 2011,50:525-536. 

34. Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible 
transcription factor depends primarily upon redox-sensitive stabilization of its alpha 
subunit. The Journal of biological chemistry 1996,271:32253-32259. 

35. Cook JA, Gius D, Wink DA, Krishna MC, Russo A, Mitchell JB. Oxidative stress, redox, 
and the tumor microenvironment. Seminars in radiation oncology 2004,14:259-266. 

36. Sun Y, Oberley LW. Redox regulation of transcriptional activators. Free radical biology 
& medicine 1996,21:335-348. 

37. Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. 
Biochimica et biophysica acta 1998,1366:139-149. 

38. Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends 
in cell biology 2007,17:422-427. 



 

113 
 

39. Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK. 
Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-
1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and 
cancer. American journal of physiology. Heart and circulatory physiology 
2008,294:H570-578. 

40. Liou GY, Storz P. Reactive oxygen species in cancer. Free radical research 
2010,44:479-496. 

41. Gupta-Elera G, Garrett AR, Robison RA, O'Neill KL. The role of oxidative stress in 
prostate cancer. European journal of cancer prevention : the official journal of the 
European Cancer Prevention Organisation 2012,21:155-162. 

42. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK. Oxidative stress in prostate cancer. 
Cancer letters 2009,282:125-136. 

43. Naka K, Muraguchi T, Hoshii T, Hirao A. Regulation of reactive oxygen species and 
genomic stability in hematopoietic stem cells. Antioxidants & redox signaling 
2008,10:1883-1894. 

44. Kakkar P, Singh BK. Mitochondria: a hub of redox activities and cellular distress control. 
Molecular and cellular biochemistry 2007,305:235-253. 

45. Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, Geyer FC, Reis-Filho JS, Mao JH, et al. 
Radiation acts on the microenvironment to affect breast carcinogenesis by distinct 
mechanisms that decrease cancer latency and affect tumor type. Cancer cell 2011,19:640-
651. 

46. Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H, et al. 
Ionizing radiation induces mitochondrial reactive oxygen species production 
accompanied by upregulation of mitochondrial electron transport chain function and 
mitochondrial content under control of the cell cycle checkpoint. Free radical biology & 
medicine 2012. 

47. Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB. Ionizing radiation-
induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer 
research 2001,61:3894-3901. 

48. Yoshida T, Goto S, Kawakatsu M, Urata Y, Li TS. Mitochondrial dysfunction, a probable 
cause of persistent oxidative stress after exposure to ionizing radiation. Free radical 
research 2012,46:147-153. 

49. Kloss-Brandstatter A, Schafer G, Erhart G, Huttenhofer A, Coassin S, Seifarth C, et al. 
Somatic mutations throughout the entire mitochondrial genome are associated with 
elevated PSA levels in prostate cancer patients. American journal of human genetics 
2010,87:802-812. 

50. Yu JJ, Yan T. Effect of mtDNA mutation on tumor malignant degree in patients with 
prostate cancer. The aging male : the official journal of the International Society for the 
Study of the Aging Male 2010,13:159-165. 

51. Gomez-Zaera M, Abril J, Gonzalez L, Aguilo F, Condom E, Nadal M, et al. 
Identification of somatic and germline mitochondrial DNA sequence variants in prostate 
cancer patients. Mutation research 2006,595:42-51. 

52. Morales A, Miranda M, Sanchez-Reyes A, Biete A, Fernandez-Checa JC. Oxidative 
damage of mitochondrial and nuclear DNA induced by ionizing radiation in human 
hepatoblastoma cells. International journal of radiation oncology, biology, physics 
1998,42:191-203. 

53. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. mtDNA 
mutations increase tumorigenicity in prostate cancer. Proceedings of the National 
Academy of Sciences of the United States of America 2005,102:719-724. 

54. Wallace DC. Diseases of the mitochondrial DNA. Annual review of biochemistry 
1992,61:1175-1212. 



 

114 
 

55. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature 
1991,351:453-456. 

56. Lenaz G, Genova ML. Structure and organization of mitochondrial respiratory complexes: 
a new understanding of an old subject. Antioxidants & redox signaling 2010,12:961-1008. 

57. Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA 
damage in human carcinogenesis. Mutation research 2011,711:193-201. 

58. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK. Oxidative stress is inherent in 
prostate cancer cells and is required for aggressive phenotype. Cancer research 
2008,68:1777-1785. 

59. Sun Y, St Clair DK, Xu Y, Crooks PA, St Clair WH. A NADPH oxidase-dependent 
redox signaling pathway mediates the selective radiosensitization effect of parthenolide 
in prostate cancer cells. Cancer research 2010,70:2880-2890. 

60. D'Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate 
specificity in ROS homeostasis. Nature reviews. Molecular cell biology 2007,8:813-824. 

61. Kakihana T, Nagata K, Sitia R. Peroxides and peroxidases in the endoplasmic reticulum: 
integrating redox homeostasis and oxidative folding. Antioxidants & redox signaling 
2012,16:763-771. 

62. Kariya S, Sawada K, Kobayashi T, Karashima T, Shuin T, Nishioka A, et al. 
Combination treatment of hydrogen peroxide and X-rays induces apoptosis in human 
prostate cancer PC-3 cells. International journal of radiation oncology, biology, physics 
2009,75:449-454. 

63. Baker AM, Oberley LW, Cohen MB. Expression of antioxidant enzymes in human 
prostatic adenocarcinoma. The Prostate 1997,32:229-233. 

64. Bostwick DG, Alexander EE, Singh R, Shan A, Qian J, Santella RM, et al. Antioxidant 
enzyme expression and reactive oxygen species damage in prostatic intraepithelial 
neoplasia and cancer. Cancer 2000,89:123-134. 

65. Bostwick DG, Meiers I, Shanks JH. Glutathione S-transferase: differential expression of 
alpha, mu, and pi isoenzymes in benign prostate, prostatic intraepithelial neoplasia, and 
prostatic adenocarcinoma. Human pathology 2007,38:1394-1401. 

66. Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. 
Free radical biology & medicine 2009,47:344-356. 

67. Landriscina M, Maddalena F, Laudiero G, Esposito F. Adaptation to oxidative stress, 
chemoresistance, and cell survival. Antioxidants & redox signaling 2009,11:2701-2716. 

68. Dhar SK, Tangpong J, Chaiswing L, Oberley TD, St Clair DK. Manganese superoxide 
dismutase is a p53-regulated gene that switches cancers between early and advanced 
stages. Cancer research 2011,71:6684-6695. 

69. Mao C, Qiu LX, Zhan P, Xue K, Ding H, Du FB, et al. MnSOD Val16Ala polymorphism 
and prostate cancer susceptibility: a meta-analysis involving 8,962 subjects. Journal of 
cancer research and clinical oncology 2010,136:975-979. 

70. Mukherjee A, Martin SG. The thioredoxin system: a key target in tumour and endothelial 
cells. The British journal of radiology 2008,81 Spec No 1:S57-68. 

71. Shan W, Zhong W, Zhao R, Oberley TD. Thioredoxin 1 as a subcellular biomarker of 
redox imbalance in human prostate cancer progression. Free radical biology & medicine 
2010,49:2078-2087. 

72. Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, et al. Mitochondrial 
reactive oxygen species promote production of proinflammatory cytokines and are 
elevated in TNFR1-associated periodic syndrome (TRAPS). The Journal of experimental 
medicine 2011,208:519-533. 

73. Sorbara MT, Girardin SE. Mitochondrial ROS fuel the inflammasome. Cell research 
2011,21:558-560. 



 

115 
 

74. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory 
cytokine production. The Journal of experimental medicine 2011,208:417-420. 

75. Tschopp J. Mitochondria: Sovereign of inflammation? European journal of immunology 
2011,41:1196-1202. 

76. Basu HS, Thompson TA, Church DR, Clower CC, Mehraein-Ghomi F, Amlong CA, et al. 
A small molecule polyamine oxidase inhibitor blocks androgen-induced oxidative stress 
and delays prostate cancer progression in the transgenic adenocarcinoma of the mouse 
prostate model. Cancer research 2009,69:7689-7695. 

77. Sharifi N, Hurt EM, Thomas SB, Farrar WL. Effects of manganese superoxide dismutase 
silencing on androgen receptor function and gene regulation: implications for castration-
resistant prostate cancer. Clinical cancer research : an official journal of the American 
Association for Cancer Research 2008,14:6073-6080. 

78. Shiota M, Yokomizo A, Naito S. Oxidative stress and androgen receptor signaling in the 
development and progression of castration-resistant prostate cancer. Free radical biology 
& medicine 2011,51:1320-1328. 

79. Shiota M, Yokomizo A, Tada Y, Inokuchi J, Kashiwagi E, Masubuchi D, et al. Castration 
resistance of prostate cancer cells caused by castration-induced oxidative stress through 
Twist1 and androgen receptor overexpression. Oncogene 2010,29:237-250. 

80. Chung LW, Baseman A, Assikis V, Zhau HE. Molecular insights into prostate cancer 
progression: the missing link of tumor microenvironment. The Journal of urology 
2005,173:10-20. 

81. Condon MS. The role of the stromal microenvironment in prostate cancer. Seminars in 
cancer biology 2005,15:132-137. 

82. Alberti C. Prostate cancer progression and surrounding microenvironment. The 
International journal of biological markers 2006,21:88-95. 

83. Bonfil RD, Chinni S, Fridman R, Kim HR, Cher ML. Proteases, growth factors, 
chemokines, and the microenvironment in prostate cancer bone metastasis. Urologic 
oncology 2007,25:407-411. 

84. Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on the 
progression of cancer. The Journal of pathology 2011,223:162-176. 

85. Fiaschi T, Chiarugi P. Oxidative stress, tumor microenvironment, and metabolic 
reprogramming: a diabolic liaison. International journal of cell biology 
2012,2012:762825. 

86. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang 
C, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-
evolution: A new paradigm for understanding tumor metabolism, the field effect and 
genomic instability in cancer cells. Cell cycle 2010,9:3256-3276. 

87. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-
associated fibroblasts direct tumor progression of initiated human prostatic epithelium. 
Cancer research 1999,59:5002-5011. 

88. Ogawa Y, Kobayashi T, Nishioka A, Kariya S, Hamasato S, Seguchi H, et al. Radiation-
induced reactive oxygen species formation prior to oxidative DNA damage in human 
peripheral T cells. International journal of molecular medicine 2003,11:149-152. 

89. Collins AR, Ma AG, Duthie SJ. The kinetics of repair of oxidative DNA damage (strand 
breaks and oxidised pyrimidines) in human cells. Mutation research 1995,336:69-77. 

90. David SS, O'Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature 
2007,447:941-950. 

91. Barzilai A, Yamamoto K. DNA damage responses to oxidative stress. DNA repair 
2004,3:1109-1115. 



 

116 
 

92. Batuello CN, Kelley MR, Dynlacht JR. Role of Ape1 and base excision repair in the 
radioresponse and heat-radiosensitization of HeLa Cells. Anticancer research 
2009,29:1319-1325. 

93. Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of 
oxidative DNA damage. Mutation research 2003,531:231-251. 

94. Tell G, Quadrifoglio F, Tiribelli C, Kelley MR. The many functions of APE1/Ref-1: not 
only a DNA repair enzyme. Antioxidants & redox signaling 2009,11:601-620. 

95. Xanthoudakis S, Curran T. Identification and characterization of Ref-1, a nuclear protein 
that facilitates AP-1 DNA-binding activity. The EMBO journal 1992,11:653-665. 

96. Nishi T, Shimizu N, Hiramoto M, Sato I, Yamaguchi Y, Hasegawa M, et al. Spatial 
redox regulation of a critical cysteine residue of NF-kappa B in vivo. The Journal of 
biological chemistry 2002,277:44548-44556. 

97. Gaiddon C, Moorthy NC, Prives C. Ref-1 regulates the transactivation and pro-apoptotic 
functions of p53 in vivo. The EMBO journal 1999,18:5609-5621. 

98. Hanson S, Kim E, Deppert W. Redox factor 1 (Ref-1) enhances specific DNA binding of 
p53 by promoting p53 tetramerization. Oncogene 2005,24:1641-1647. 

99. Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T. Redox activation of Fos-Jun DNA 
binding activity is mediated by a DNA repair enzyme. The EMBO journal 1992,11:3323-
3335. 

100. Oshikawa J, Urao N, Kim HW, Kaplan N, Razvi M, McKinney R, et al. Extracellular 
SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic 
angiogenesis in mice. PloS one 2010,5:e10189. 

101. Kitagawa Y, Dai J, Zhang J, Keller JM, Nor J, Yao Z, et al. Vascular endothelial growth 
factor contributes to prostate cancer-mediated osteoblastic activity. Cancer research 
2005,65:10921-10929. 

102. Park JS, Qiao L, Su ZZ, Hinman D, Willoughby K, McKinstry R, et al. Ionizing radiation 
modulates vascular endothelial growth factor (VEGF) expression through multiple 
mitogen activated protein kinase dependent pathways. Oncogene 2001,20:3266-3280. 

103. Kil WJ, Tofilon PJ, Camphausen K. Post-radiation increase in VEGF enhances glioma 
cell motility in vitro. Radiation oncology 2012,7:25. 

104. Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, 
Witkiewicz AK, et al. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: 
MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell cycle 
2011,10:1772-1783. 

105. Pavlides S, Vera I, Gandara R, Sneddon S, Pestell RG, Mercier I, et al. Warburg meets 
autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via 
oxidative stress, mitophagy, and aerobic glycolysis. Antioxidants & redox signaling 
2012,16:1264-1284. 

106. Prise KM, O'Sullivan JM. Radiation-induced bystander signalling in cancer therapy. 
Nature reviews. Cancer 2009,9:351-360. 

107. Multhoff G, Radons J. Radiation, inflammation, and immune responses in cancer. 
Frontiers in oncology 2012,2:58. 

108. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, 
invasion, and metastasis. Cell 2006,124:263-266. 

109. Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of 
inflammatory factors for tumor progression. Cancer metastasis reviews 2010,29:273-283. 

110. Sabin RJ, Anderson RM. Cellular Senescence - its role in cancer and the response to 
ionizing radiation. Genome integrity 2011,2:7. 

111. Rivas MA, Carnevale RP, Proietti CJ, Rosemblit C, Beguelin W, Salatino M, et al. TNF 
alpha acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt 
and NF-kappa B-dependent pathways. Experimental cell research 2008,314:509-529. 



 

117 
 

112. Koul HK, Kumar B, Koul S, Deb AA, Hwa JS, Maroni P, et al. The role of inflammation 
and infection in prostate cancer: Importance in prevention, diagnosis and treatment. 
Drugs of today 2010,46:929-943. 

113. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002,420:860-867. 
114. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011,144:646-

674. 
115. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S. MAPK pathways in radiation 

responses. Oncogene 2003,22:5885-5896. 
116. Gallet P, Phulpin B, Merlin JL, Leroux A, Bravetti P, Mecellem H, et al. Long-term 

alterations of cytokines and growth factors expression in irradiated tissues and relation 
with histological severity scoring. PloS one 2011,6:e29399. 

117. Iyer R, Lehnert BE, Svensson R. Factors underlying the cell growth-related bystander 
responses to alpha particles. Cancer research 2000,60:1290-1298. 

118. Chou CH, Chen PJ, Lee PH, Cheng AL, Hsu HC, Cheng JC. Radiation-induced hepatitis 
B virus reactivation in liver mediated by the bystander effect from irradiated endothelial 
cells. Clinical cancer research : an official journal of the American Association for 
Cancer Research 2007,13:851-857. 

119. Zhou H, Ivanov VN, Gillespie J, Geard CR, Amundson SA, Brenner DJ, et al. 
Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling 
pathway. Proceedings of the National Academy of Sciences of the United States of 
America 2005,102:14641-14646. 

120. Narayanan PK, LaRue KE, Goodwin EH, Lehnert BE. Alpha particles induce the 
production of interleukin-8 by human cells. Radiation research 1999,152:57-63. 

121. McBride WH, Chiang CS, Olson JL, Wang CC, Hong JH, Pajonk F, et al. A sense of 
danger from radiation. Radiation research 2004,162:1-19. 

122. Johnke RM, Edwards JM, Evans MJ, Nangami GN, Bakken NT, Kilburn JM, et al. 
Circulating cytokine levels in prostate cancer patients undergoing radiation therapy: 
influence of neoadjuvant total androgen suppression. In vivo 2009,23:827-833. 

123. Bower JE, Ganz PA, Tao ML, Hu W, Belin TR, Sepah S, et al. Inflammatory biomarkers 
and fatigue during radiation therapy for breast and prostate cancer. Clinical cancer 
research : an official journal of the American Association for Cancer Research 
2009,15:5534-5540. 

124. Christensen E, Pintilie M, Evans KR, Lenarduzzi M, Menard C, Catton CN, et al. 
Longitudinal cytokine expression during IMRT for prostate cancer and acute treatment 
toxicity. Clinical cancer research : an official journal of the American Association for 
Cancer Research 2009,15:5576-5583. 

125. Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway in targeted 
therapy for cancer. Cancer treatment reviews 2012. 

126. Imada K, Leonard WJ. The Jak-STAT pathway. Molecular immunology 2000,37:1-11. 
127. Scheller J, Ohnesorge N, Rose-John S. Interleukin-6 trans-signalling in chronic 

inflammation and cancer. Scandinavian journal of immunology 2006,63:321-329. 
128. Masuda M, Wakasaki T, Suzui M, Toh S, Joe AK, Weinstein IB. Stat3 orchestrates tumor 

development and progression: the Achilles' heel of head and neck cancers? Current 
cancer drug targets 2010,10:117-126. 

129. Rose-John S. Coordination of interleukin-6 biology by membrane bound and soluble 
receptors. Advances in experimental medicine and biology 2001,495:145-151. 

130. Okamoto M, Lee C, Oyasu R. Interleukin-6 as a paracrine and autocrine growth factor in 
human prostatic carcinoma cells in vitro. Cancer research 1997,57:141-146. 

131. Yu H, Jove R. The STATs of cancer--new molecular targets come of age. Nature reviews. 
Cancer 2004,4:97-105. 



 

118 
 

132. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE. Mitochondrial 
STAT3 supports Ras-dependent oncogenic transformation. Science 2009,324:1713-1716. 

133. Reich NC. STAT3 revs up the powerhouse. Science signaling 2009,2:pe61. 
134. Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. 

Blood 1995,86:1243-1254. 
135. Culig Z, Steiner H, Bartsch G, Hobisch A. Interleukin-6 regulation of prostate cancer cell 

growth. Journal of cellular biochemistry 2005,95:497-505. 
136. Stark JR, Li H, Kraft P, Kurth T, Giovannucci EL, Stampfer MJ, et al. Circulating 

prediagnostic interleukin-6 and C-reactive protein and prostate cancer incidence and 
mortality. International journal of cancer. Journal international du cancer 
2009,124:2683-2689. 

137. Drachenberg DE, Elgamal AA, Rowbotham R, Peterson M, Murphy GP. Circulating 
levels of interleukin-6 in patients with hormone refractory prostate cancer. The Prostate 
1999,41:127-133. 

138. Nakashima J, Tachibana M, Horiguchi Y, Oya M, Ohigashi T, Asakura H, et al. Serum 
interleukin 6 as a prognostic factor in patients with prostate cancer. Clinical cancer 
research : an official journal of the American Association for Cancer Research 
2000,6:2702-2706. 

139. Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-alpha 
correlate with clinicopathological features and patient survival in patients with prostate 
cancer. British journal of cancer 2004,90:2312-2316. 

140. Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT, Thompson TC. Elevated 
levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with 
metastatic prostatic carcinoma. The Journal of urology 1999,161:182-187. 

141. Bouraoui Y, Ricote M, Garcia-Tunon I, Rodriguez-Berriguete G, Touffehi M, Rais NB, 
et al. Pro-inflammatory cytokines and prostate-specific antigen in hyperplasia and human 
prostate cancer. Cancer detection and prevention 2008,32:23-32. 

142. Azevedo A, Cunha V, Teixeira AL, Medeiros R. IL-6/IL-6R as a potential key signaling 
pathway in prostate cancer development. World journal of clinical oncology 2011,2:384-
396. 

143. Chun JY, Nadiminty N, Dutt S, Lou W, Yang JC, Kung HJ, et al. Interleukin-6 regulates 
androgen synthesis in prostate cancer cells. Clinical cancer research : an official journal 
of the American Association for Cancer Research 2009,15:4815-4822. 

144. Tsui KH, Lin YF, Chen YH, Chang PL, Juang HH. Mechanisms by which interleukin-6 
regulates prostate-specific antigen gene expression in prostate LNCaP carcinoma cells. 
Journal of andrology 2011,32:383-393. 

145. Lou W, Ni Z, Dyer K, Tweardy DJ, Gao AC. Interleukin-6 induces prostate cancer cell 
growth accompanied by activation of stat3 signaling pathway. The Prostate 2000,42:239-
242. 

146. Qiu Y, Robinson D, Pretlow TG, Kung HJ. Etk/Bmx, a tyrosine kinase with a pleckstrin-
homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in 
interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proceedings 
of the National Academy of Sciences of the United States of America 1998,95:3644-3649. 

147. Hobisch A, Ramoner R, Fuchs D, Godoy-Tundidor S, Bartsch G, Klocker H, et al. 
Prostate cancer cells (LNCaP) generated after long-term interleukin 6 (IL-6) treatment 
express IL-6 and acquire an IL-6 partially resistant phenotype. Clinical cancer research : 
an official journal of the American Association for Cancer Research 2001,7:2941-2948. 

148. Chung TD, Yu JJ, Spiotto MT, Bartkowski M, Simons JW. Characterization of the role 
of IL-6 in the progression of prostate cancer. The Prostate 1999,38:199-207. 



 

119 
 

149. Mori S, Murakami-Mori K, Bonavida B. Dexamethasone enhances expression of 
membrane and soluble interleukin-6 receptors by prostate carcinoma cell lines. 
Anticancer research 1998,18:4403-4408. 

150. Spiotto MT, Chung TD. STAT3 mediates IL-6-induced neuroendocrine differentiation in 
prostate cancer cells. The Prostate 2000,42:186-195. 

151. Larsen L, Ropke C. Suppressors of cytokine signalling: SOCS. APMIS : acta pathologica, 
microbiologica, et immunologica Scandinavica 2002,110:833-844. 

152. Culig Z, Puhr M. Interleukin-6: A multifunctional targetable cytokine in human prostate 
cancer. Molecular and cellular endocrinology 2011. 

153. Wallner L, Dai J, Escara-Wilke J, Zhang J, Yao Z, Lu Y, et al. Inhibition of interleukin-6 
with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of 
androgen-dependent prostate cancer to an androgen-independent phenotype in 
orchiectomized mice. Cancer research 2006,66:3087-3095. 

154. Karkera J, Steiner H, Li W, Skradski V, Moser PL, Riethdorf S, et al. The anti-
interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in 
prostate cancer patients from a phase I study. The Prostate 2011,71:1455-1465. 

155. Singh RK, Sudhakar A, Lokeshwar BL. Role of Chemokines and Chemokine Receptors 
in Prostate Cancer Development and Progression. Journal of cancer science & therapy 
2010,2:89-94. 

156. Culig Z. Cytokine disbalance in common human cancers. Biochimica et biophysica acta 
2011,1813:308-314. 

157. Vlahopoulos S, Boldogh I, Casola A, Brasier AR. Nuclear factor-kappaB-dependent 
induction of interleukin-8 gene expression by tumor necrosis factor alpha: evidence for 
an antioxidant sensitive activating pathway distinct from nuclear translocation. Blood 
1999,94:1878-1889. 

158. Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI. Structure and functional expression 
of a human interleukin-8 receptor. Science 1991,253:1278-1280. 

159. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clinical cancer research : an 
official journal of the American Association for Cancer Research 2008,14:6735-6741. 

160. Shamaladevi N, Lyn DA, Escudero DO, Lokeshwar BL. CXC receptor-1 silencing 
inhibits androgen-independent prostate cancer. Cancer research 2009,69:8265-8274. 

161. Uehara H, Troncoso P, Johnston D, Bucana CD, Dinney C, Dong Z, et al. Expression of 
interleukin-8 gene in radical prostatectomy specimens is associated with advanced 
pathologic stage. The Prostate 2005,64:40-49. 

162. Gladson CL, Welch DR. New insights into the role of CXCR4 in prostate cancer 
metastasis. Cancer biology & therapy 2008,7:1849-1851. 

163. Seaton A, Scullin P, Maxwell PJ, Wilson C, Pettigrew J, Gallagher R, et al. Interleukin-8 
signaling promotes androgen-independent proliferation of prostate cancer cells via 
induction of androgen receptor expression and activation. Carcinogenesis 2008,29:1148-
1156. 

164. Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y, et al. Interleukin-8 is a 
molecular determinant of androgen independence and progression in prostate cancer. 
Cancer research 2007,67:6854-6862. 

165. Xu Y, Josson S, Fang F, Oberley TD, St Clair DK, Wan XS, et al. RelB enhances 
prostate cancer growth: implications for the role of the nuclear factor-kappaB alternative 
pathway in tumorigenicity. Cancer research 2009,69:3267-3271. 

166. Caruso DJ, Carmack AJ, Lokeshwar VB, Duncan RC, Soloway MS, Lokeshwar BL. 
Osteopontin and interleukin-8 expression is independently associated with prostate 
cancer recurrence. Clinical cancer research : an official journal of the American 
Association for Cancer Research 2008,14:4111-4118. 



 

120 
 

167. Wilson C, Wilson T, Johnston PG, Longley DB, Waugh DJ. Interleukin-8 signaling 
attenuates TRAIL- and chemotherapy-induced apoptosis through transcriptional 
regulation of c-FLIP in prostate cancer cells. Molecular cancer therapeutics 
2008,7:2649-2661. 

168. Seaton A, Maxwell PJ, Hill A, Gallagher R, Pettigrew J, Wilson RH, et al. Inhibition of 
constitutive and cxc-chemokine-induced NF-kappaB activity potentiates ansamycin-
based HSP90-inhibitor cytotoxicity in castrate-resistant prostate cancer cells. British 
journal of cancer 2009,101:1620-1629. 

169. Singh RK, Lokeshwar BL. Depletion of intrinsic expression of Interleukin-8 in prostate 
cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of 
chemotherapeutic drugs. Molecular cancer 2009,8:57. 

170. Gahan JC, Gosalbez M, Yates T, Young EE, Escudero DO, Chi A, et al. Chemokine and 
chemokine receptor expression in kidney tumors: molecular profiling of histological 
subtypes and association with metastasis. The Journal of urology 2012,187:827-833. 

171. Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, et al. The 
chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in 
developing spinal cord by arresting their migration. Cell 2002,110:373-383. 

172. Pelus LM, Fukuda S. Peripheral blood stem cell mobilization: the CXCR2 ligand 
GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment 
properties. Experimental hematology 2006,34:1010-1020. 

173. Singh RK, Lokeshwar BL. The IL-8-regulated chemokine receptor CXCR7 stimulates 
EGFR signaling to promote prostate cancer growth. Cancer research 2011,71:3268-3277. 

174. Gannon PO, Godin-Ethier J, Hassler M, Delvoye N, Aversa M, Poisson AO, et al. 
Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human 
prostate cancer. PloS one 2010,5:e12107. 

175. Wilson C, Purcell C, Seaton A, Oladipo O, Maxwell PJ, O'Sullivan JM, et al. 
Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in 
metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of 
nuclear factor-kappaB transcription and evasion of apoptosis. The Journal of 
pharmacology and experimental therapeutics 2008,327:746-759. 

176. Xu Y, Fang F, St Clair DK, St Clair WH. Inverse relationship between PSA and IL-8 in 
prostate cancer: an insight into a NF-kappaB-mediated mechanism. PloS one 
2012,7:e32905. 

177. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and 
cancer: how are they linked? Free radical biology & medicine 2010,49:1603-1616. 

178. Deorukhkar A, Krishnan S. Targeting inflammatory pathways for tumor 
radiosensitization. Biochemical pharmacology 2010,80:1904-1914. 

179. Josson S, Xu Y, Fang F, Dhar SK, St Clair DK, St Clair WH. RelB regulates manganese 
superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. 
Oncogene 2006,25:1554-1559. 

180. Xu Y, Fang F, St Clair DK, Sompol P, Josson S, St Clair WH. SN52, a novel nuclear 
factor-kappaB inhibitor, blocks nuclear import of RelB:p52 dimer and sensitizes prostate 
cancer cells to ionizing radiation. Molecular cancer therapeutics 2008,7:2367-2376. 

181. Xu Y, Fang F, St Clair DK, Josson S, Sompol P, Spasojevic I, et al. Suppression of RelB-
mediated manganese superoxide dismutase expression reveals a primary mechanism for 
radiosensitization effect of 1alpha,25-dihydroxyvitamin D(3) in prostate cancer cells. 
Molecular cancer therapeutics 2007,6:2048-2056. 

182. Bemelmans MH, van Tits LJ, Buurman WA. Tumor necrosis factor: function, release and 
clearance. Critical reviews in immunology 1996,16:1-11. 

183. Mocellin S, Rossi CR, Pilati P, Nitti D. Tumor necrosis factor, cancer and anticancer 
therapy. Cytokine & growth factor reviews 2005,16:35-53. 



 

121 
 

184. Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, et al. Molecular 
cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 
1990,61:351-359. 

185. Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerzy R, et al. A receptor for 
tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 
1990,248:1019-1023. 

186. Flores MB, Rocha GZ, Damas-Souza DM, Osorio-Costa F, Dias MM, Ropelle ER, et al. 
Obesity-Induced Increase in Tumor Necrosis Factor-alpha Leads to Development of 
Colon Cancer in Mice. Gastroenterology 2012. 

187. Arnott CH, Scott KA, Moore RJ, Robinson SC, Thompson RG, Balkwill FR. Expression 
of both TNF-alpha receptor subtypes is essential for optimal skin tumour development. 
Oncogene 2004,23:1902-1910. 

188. Rzymski P, Opala T, Wilczak M, Wozniak J, Sajdak S. Serum tumor necrosis factor 
alpha receptors p55/p75 ratio and ovarian cancer detection. International journal of 
gynaecology and obstetrics: the official organ of the International Federation of 
Gynaecology and Obstetrics 2005,88:292-298. 

189. Lejeune FJ. Clinical use of TNF revisited: improving penetration of anti-cancer agents by 
increasing vascular permeability. The Journal of clinical investigation 2002,110:433-435. 

190. Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nature reviews. 
Immunology 2002,2:364-371. 

191. Sands BE, Anderson FH, Bernstein CN, Chey WY, Feagan BG, Fedorak RN, et al. 
Infliximab maintenance therapy for fistulizing Crohn's disease. The New England journal 
of medicine 2004,350:876-885. 

192. Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist 
mechanisms of action: a comprehensive review. Pharmacology & therapeutics 
2008,117:244-279. 

193. Balkwill F. Tumour necrosis factor and cancer. Nature reviews. Cancer 2009,9:361-371. 
194. Balkwill F. TNF-alpha in promotion and progression of cancer. Cancer metastasis 

reviews 2006,25:409-416. 
195. Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine & growth factor 

reviews 2002,13:135-141. 
196. Mechergui YB, Ben Jemaa A, Mezigh C, Fraile B, Ben Rais N, Paniagua R, et al. The 

profile of prostate epithelial cytokines and its impact on sera prostate specific antigen 
levels. Inflammation 2009,32:202-210. 

197. Nakashima J, Tachibana M, Ueno M, Miyajima A, Baba S, Murai M. Association 
between tumor necrosis factor in serum and cachexia in patients with prostate cancer. 
Clinical cancer research : an official journal of the American Association for Cancer 
Research 1998,4:1743-1748. 

198. Pfitzenmaier J, Vessella R, Higano CS, Noteboom JL, Wallace D, Jr., Corey E. Elevation 
of cytokine levels in cachectic patients with prostate carcinoma. Cancer 2003,97:1211-
1216. 

199. Argiles JM, Busquets S, Toledo M, Lopez-Soriano FJ. The role of cytokines in cancer 
cachexia. Current opinion in supportive and palliative care 2009,3:263-268. 

200. Alvarez B, Quinn LS, Busquets S, Quiles MT, Lopez-Soriano FJ, Argiles JM. Tumor 
necrosis factor-alpha exerts interleukin-6-dependent and -independent effects on cultured 
skeletal muscle cells. Biochimica et biophysica acta 2002,1542:66-72. 

201. Carbo N, Busquets S, van Royen M, Alvarez B, Lopez-Soriano FJ, Argiles JM. TNF-
alpha is involved in activating DNA fragmentation in skeletal muscle. British journal of 
cancer 2002,86:1012-1016. 

202. Tisdale MJ. Mechanisms of cancer cachexia. Physiological reviews 2009,89:381-410. 



 

122 
 

203. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. "Re-
educating" tumor-associated macrophages by targeting NF-kappaB. The Journal of 
experimental medicine 2008,205:1261-1268. 

204. Mizokami A, Gotoh A, Yamada H, Keller ET, Matsumoto T. Tumor necrosis factor-
alpha represses androgen sensitivity in the LNCaP prostate cancer cell line. The Journal 
of urology 2000,164:800-805. 

205. Ko S, Shi L, Kim S, Song CS, Chatterjee B. Interplay of nuclear factor-kappaB and B-
myb in the negative regulation of androgen receptor expression by tumor necrosis factor 
alpha. Molecular endocrinology 2008,22:273-286. 

206. Domingo-Domenech J, Mellado B, Ferrer B, Truan D, Codony-Servat J, Sauleda S, et al. 
Activation of nuclear factor-kappaB in human prostate carcinogenesis and association to 
biochemical relapse. British journal of cancer 2005,93:1285-1294. 

207. Li F, Sethi G. Targeting transcription factor NF-kappaB to overcome chemoresistance 
and radioresistance in cancer therapy. Biochimica et biophysica acta 2010,1805:167-180. 

208. Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. 
Nature reviews. Drug discovery 2009,8:33-40. 

209. Yan L, Anderson GM, DeWitte M, Nakada MT. Therapeutic potential of cytokine and 
chemokine antagonists in cancer therapy. European journal of cancer 2006,42:793-802. 

210. Xu Y, Fang F, Sun Y, St Clair DK, St Clair WH. RelB-dependent differential 
radiosensitization effect of STI571 on prostate cancer cells. Molecular cancer 
therapeutics 2010,9:803-812. 

211. Drabsch Y, Ten Dijke P. TGF-beta signalling and its role in cancer progression and 
metastasis. Cancer metastasis reviews 2012. 

212. Meulmeester E, Ten Dijke P. The dynamic roles of TGF-beta in cancer. The Journal of 
pathology 2011,223:205-218. 

213. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the 
nucleus. Cell 2003,113:685-700. 

214. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and 
Hyde of cancer. Nature reviews. Cancer 2006,6:506-520. 

215. Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, et al. Inhibition of 
TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of 
metastatic cancer progression. The Journal of clinical investigation 2007,117:1305-1313. 

216. Biswas S, Trobridge P, Romero-Gallo J, Billheimer D, Myeroff LL, Willson JK, et al. 
Mutational inactivation of TGFBR2 in microsatellite unstable colon cancer arises from 
the cooperation of genomic instability and the clonal outgrowth of transforming growth 
factor beta resistant cells. Genes, chromosomes & cancer 2008,47:95-106. 

217. Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, et al. 
Mutational inactivation of transforming growth factor beta receptor type II in 
microsatellite stable colon cancers. Cancer research 1999,59:320-324. 

218. Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE. Genetic 
alterations of the transforming growth factor beta receptor genes in pancreatic and biliary 
adenocarcinomas. Cancer research 1998,58:5329-5332. 

219. Govinden R, Bhoola KD. Genealogy, expression, and cellular function of transforming 
growth factor-beta. Pharmacology & therapeutics 2003,98:257-265. 

220. Bierie B, Moses HL. TGF-beta and cancer. Cytokine & growth factor reviews 
2006,17:29-40. 

221. Pu H, Collazo J, Jones E, Gayheart D, Sakamoto S, Vogt A, et al. Dysfunctional 
transforming growth factor-beta receptor II accelerates prostate tumorigenesis in the 
TRAMP mouse model. Cancer research 2009,69:7366-7374. 



 

123 
 

222. Robson H, Anderson E, James RD, Schofield PF. Transforming growth factor beta 1 
expression in human colorectal tumours: an independent prognostic marker in a subgroup 
of poor prognosis patients. British journal of cancer 1996,74:753-758. 

223. Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A. Transforming growth 
factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in 
prostate cancer. The Prostate 1998,37:19-29. 

224. Jones E, Pu H, Kyprianou N. Targeting TGF-beta in prostate cancer: therapeutic 
possibilities during tumor progression. Expert opinion on therapeutic targets 
2009,13:227-234. 

225. Morton DM, Barrack ER. Modulation of transforming growth factor beta 1 effects on 
prostate cancer cell proliferation by growth factors and extracellular matrix. Cancer 
research 1995,55:2596-2602. 

226. Shariat SF, Shalev M, Menesses-Diaz A, Kim IY, Kattan MW, Wheeler TM, et al. 
Preoperative plasma levels of transforming growth factor beta(1) (TGF-beta(1)) strongly 
predict progression in patients undergoing radical prostatectomy. Journal of clinical 
oncology : official journal of the American Society of Clinical Oncology 2001,19:2856-
2864. 

227. Wolff JM, Fandel TH, Borchers H, Jakse G. Serum concentrations of transforming 
growth factor-beta 1 in patients with benign and malignant prostatic diseases. Anticancer 
research 1999,19:2657-2659. 

228. Ivanovic V, Melman A, Davis-Joseph B, Valcic M, Geliebter J. Elevated plasma levels of 
TGF-beta 1 in patients with invasive prostate cancer. Nature medicine 1995,1:282-284. 

229. Perry KT, Anthony CT, Case T, Steiner MS. Transforming growth factor beta as a 
clinical biomarker for prostate cancer. Urology 1997,49:151-155. 

230. Kawada M, Inoue H, Arakawa M, Ikeda D. Transforming growth factor-beta1 modulates 
tumor-stromal cell interactions of prostate cancer through insulin-like growth factor-I. 
Anticancer research 2008,28:721-730. 

231. Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, et al. Transforming growth factor-
beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic 
collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. 
Oncogene 2003,22:4314-4332. 

232. Zhu ML, Kyprianou N. Androgen receptor and growth factor signaling cross-talk in 
prostate cancer cells. Endocrine-related cancer 2008,15:841-849. 

233. Kang HY, Lin HK, Hu YC, Yeh S, Huang KE, Chang C. From transforming growth 
factor-beta signaling to androgen action: identification of Smad3 as an androgen receptor 
coregulator in prostate cancer cells. Proceedings of the National Academy of Sciences of 
the United States of America 2001,98:3018-3023. 

234. Kakehi Y, Oka H, Mitsumori K, Itoh N, Ogawa O, Yoshida O. Elevation of serum 
transforming growth factor-beta1 Level in patients with metastatic prostate cancer. 
Urologic oncology 1996,2:131-135. 

235. Steuber T, O'Brien MF, Lilja H. Serum markers for prostate cancer: a rational approach 
to the literature. European urology 2008,54:31-40. 

236. Bensalah K, Lotan Y, Karam JA, Shariat SF. New circulating biomarkers for prostate 
cancer. Prostate cancer and prostatic diseases 2008,11:112-120. 

237. Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth 
factor-beta 1. Molecular endocrinology 1996,10:1077-1083. 

238. Gonzalez-Ramos M, Mora I, de Frutos S, Garesse R, Rodriguez-Puyol M, Olmos G, et al. 
Intracellular redox equilibrium is essential for the constitutive expression of AP-1 
dependent genes in resting cells: studies on TGF-beta1 regulation. The international 
journal of biochemistry & cell biology 2012,44:963-971. 



 

124 
 

239. Wang D, Lu S, Dong Z. Regulation of TGF-beta1 gene transcription in human prostate 
cancer cells by nitric oxide. The Prostate 2007,67:1825-1833. 

240. Michaeloudes C, Sukkar MB, Khorasani NM, Bhavsar PK, Chung KF. TGF-beta 
regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth 
muscle cells. American journal of physiology. Lung cellular and molecular physiology 
2011,300:L295-304. 

241. Boudreau HE, Casterline BW, Rada B, Korzeniowska A, Leto TL. Nox4 involvement in 
TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and 
migration of breast epithelial cells. Free radical biology & medicine 2012. 

242. Tobar N, Guerrero J, Smith PC, Martinez J. NOX4-dependent ROS production by 
stromal mammary cells modulates epithelial MCF-7 cell migration. British journal of 
cancer 2010,103:1040-1047. 

243. Byun HO, Jung HJ, Seo YH, Lee YK, Hwang SC, Seong Hwang E, et al. GSK3 
inactivation is involved in mitochondrial complex IV defect in transforming growth 
factor (TGF) beta1-induced senescence. Experimental cell research 2012. 

244. Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a 
specific therapeutic target? International journal of radiation oncology, biology, physics 
2000,47:277-290. 

245. Anscher MS, Thrasher B, Rabbani Z, Teicher B, Vujaskovic Z. Antitransforming growth 
factor-beta antibody 1D11 ameliorates normal tissue damage caused by high-dose 
radiation. International journal of radiation oncology, biology, physics 2006,65:876-881. 

246. Flanders KC, Major CD, Arabshahi A, Aburime EE, Okada MH, Fujii M, et al. 
Interference with transforming growth factor-beta/ Smad3 signaling results in accelerated 
healing of wounds in previously irradiated skin. The American journal of pathology 
2003,163:2247-2257. 

247. Rabbani ZN, Anscher MS, Zhang X, Chen L, Samulski TV, Li CY, et al. Soluble 
TGFbeta type II receptor gene therapy ameliorates acute radiation-induced pulmonary 
injury in rats. International journal of radiation oncology, biology, physics 2003,57:563-
572. 

248. Anscher MS. Targeting the TGF-beta1 pathway to prevent normal tissue injury after 
cancer therapy. The oncologist 2010,15:350-359. 

249. Flechsig P, Dadrich M, Bickelhaupt S, Jenne J, Hauser K, Timke C, et al. LY2109761 
Attenuates Radiation-Induced Pulmonary Murine Fibrosis via Reversal of TGF-beta and 
BMP-Associated Proinflammatory and Proangiogenic Signals. Clinical cancer research : 
an official journal of the American Association for Cancer Research 2012. 

250. Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD, et al. 
Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo 
transforming growth factor beta induced epithelial to mesenchymal transition. Cancer 
research 2007,67:8662-8670. 

251. Bouquet F, Pal A, Pilones KA, Demaria S, Hann B, Akhurst RJ, et al. TGFbeta1 
inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor 
control by radiation in vivo. Clinical cancer research : an official journal of the 
American Association for Cancer Research 2011,17:6754-6765. 

252. Zhang M, Kleber S, Rohrich M, Timke C, Han N, Tuettenberg J, et al. Blockade of TGF-
beta signaling by the TGFbetaR-I kinase inhibitor LY2109761 enhances radiation 
response and prolongs survival in glioblastoma. Cancer research 2011,71:7155-7167. 

253. Hardee ME, Marciscano AE, Medina-Ramirez CM, Zagzag D, Narayana A, Lonning S, 
et al. Resistance of glioblastoma initiating cells to radiation mediated by the tumor 
microenvironment can be abolished by inhibiting transforming growth factor-beta 
(TGFbeta). Cancer research 2012. 



 

125 
 

254. Wiegman EM, Blaese MA, Loeffler H, Coppes RP, Rodemann HP. TGFbeta-1 dependent 
fast stimulation of ATM and p53 phosphorylation following exposure to ionizing 
radiation does not involve TGFbeta-receptor I signalling. Radiotherapy and oncology : 
journal of the European Society for Therapeutic Radiology and Oncology 2007,83:289-
295. 

255. Schirmer MA, Brockmoller J, Rave-Frank M, Virsik P, Wilken B, Kuhnle E, et al. A 
putatively functional haplotype in the gene encoding transforming growth factor beta-1 as 
a potential biomarker for radiosensitivity. International journal of radiation oncology, 
biology, physics 2011,79:866-874. 

256. Andarawewa KL, Paupert J, Pal A, Barcellos-Hoff MH. New rationales for using 
TGFbeta inhibitors in radiotherapy. International journal of radiation biology 
2007,83:803-811. 

257. Balk SP, Ko YJ, Bubley GJ. Biology of prostate-specific antigen. Journal of clinical 
oncology : official journal of the American Society of Clinical Oncology 2003,21:383-
391. 

258. Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen and prostate cancer: prediction, 
detection and monitoring. Nature reviews. Cancer 2008,8:268-278. 

259. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. 
Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 
ng per milliliter. The New England journal of medicine 2004,350:2239-2246. 

260. Barcellos-Hoff MH. The potential influence of radiation-induced microenvironments in 
neoplastic progression. Journal of mammary gland biology and neoplasia 1998,3:165-
175. 

261. Neta R. Modulation with cytokines of radiation injury: suggested mechanisms of action. 
Environmental health perspectives 1997,105 Suppl 6:1463-1465. 

262. Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology 
meets molecular pathology. Nature reviews. Cancer 2006,6:702-713. 

263. Sherman ML, Datta R, Hallahan DE, Weichselbaum RR, Kufe DW. Regulation of tumor 
necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells 
and peripheral blood monocytes. The Journal of clinical investigation 1991,87:1794-
1797. 

264. Ao X, Zhao L, Davis MA, Lubman DM, Lawrence TS, Kong FM. Radiation produces 
differential changes in cytokine profiles in radiation lung fibrosis sensitive and resistant 
mice. Journal of hematology & oncology 2009,2:6. 

265. Linard C, Ropenga A, Vozenin-Brotons MC, Chapel A, Mathe D. Abdominal irradiation 
increases inflammatory cytokine expression and activates NF-kappaB in rat ileal 
muscularis layer. American journal of physiology. Gastrointestinal and liver physiology 
2003,285:G556-565. 

266. Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B inflammatory 
bowel disease. Gut 1998,42:477-484. 

267. Chiurchiu V, Maccarrone M. Chronic inflammatory disorders and their redox control: 
from molecular mechanisms to therapeutic opportunities. Antioxidants & redox signaling 
2011,15:2605-2641. 

268. Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old 
challenges. Genes & development 2010,24:1967-2000. 

269. Strom SS, Kamat AM, Gruschkus SK, Gu Y, Wen S, Cheung MR, et al. Influence of 
obesity on biochemical and clinical failure after external-beam radiotherapy for localized 
prostate cancer. Cancer 2006,107:631-639. 

270. Lin DL, Whitney MC, Yao Z, Keller ET. Interleukin-6 induces androgen responsiveness 
in prostate cancer cells through up-regulation of androgen receptor expression. Clinical 



 

126 
 

cancer research : an official journal of the American Association for Cancer Research 
2001,7:1773-1781. 

271. Jain G, Cronauer MV, Schrader M, Moller P, Marienfeld RB. NF-kappaB signaling in 
prostate cancer: a promising therapeutic target? World journal of urology 2012,30:303-
310. 

272. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer 
development and progression. Nature reviews. Immunology 2005,5:749-759. 

273. Hosoki A, Yonekura S, Zhao QL, Wei ZL, Takasaki I, Tabuchi Y, et al. Mitochondria-
targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress 
response in HeLa cells. Journal of radiation research 2012,53:58-71. 

274. Gougelet A, Mansuy A, Blay JY, Alberti L, Vermot-Desroches C. Lymphoma and 
myeloma cell resistance to cytotoxic agents and ionizing radiations is not affected by 
exposure to anti-IL-6 antibody. PloS one 2009,4:e8026. 

275. Son YO, Hitron JA, Wang X, Chang Q, Pan J, Zhang Z, et al. Cr(VI) induces 
mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen 
species-mediated p53 activation in JB6 Cl41 cells. Toxicology and applied pharmacology 
2010,245:226-235. 

276. Zhang Z, Wang X, Cheng S, Sun L, Son YO, Yao H, et al. Reactive oxygen species 
mediate arsenic induced cell transformation and tumorigenesis through Wnt/beta-catenin 
pathway in human colorectal adenocarcinoma DLD1 cells. Toxicology and applied 
pharmacology 2011,256:114-121. 

277. Wan XS, Zhou Z, Kennedy AR. Adaptation of the dichlorofluorescein assay for detection 
of radiation-induced oxidative stress in cultured cells. Radiation research 2003,160:622-
630. 

278. Cui XL, Douglas JG. Arachidonic acid activates c-jun N-terminal kinase through 
NADPH oxidase in rabbit proximal tubular epithelial cells. Proc Natl Acad Sci U S A 
1997,94:3771-3776. 

279. Wong GH. Protective roles of cytokines against radiation: induction of mitochondrial 
MnSOD. Biochimica et biophysica acta 1995,1271:205-209. 

280. Lopes CO, Callera F. Three-dimensional conformal radiotherapy in prostate cancer 
patients: rise in interleukin 6 (IL-6) but not IL-2, IL-4, IL-5, tumor necrosis factor-alpha, 
MIP-1-alpha, and LIF levels. International journal of radiation oncology, biology, 
physics 2012,82:1385-1388. 

281. Dubost JJ, Rolhion C, Tchirkov A, Bertrand S, Chassagne J, Dosgilbert A, et al. 
Interleukin-6-producing cells in a human glioblastoma cell line are not affected by 
ionizing radiation. Journal of neuro-oncology 2002,56:29-34. 

282. Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a 
molecular hub for signaling pathways in gliomas. Molecular cancer research : MCR 
2008,6:675-684. 

283. Yin ZJ, Jin FG, Liu TG, Fu EQ, Xie YH, Sun RL. Overexpression of STAT3 potentiates 
growth, survival, and radioresistance of non-small-cell lung cancer (NSCLC) cells. The 
Journal of surgical research 2011,171:675-683. 

284. Wang D, Montgomery RB, Schmidt LJ, Mostaghel EA, Huang H, Nelson PS, et al. 
Reduced tumor necrosis factor receptor-associated death domain expression is associated 
with prostate cancer progression. Cancer research 2009,69:9448-9456. 

285. Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, et al. NF-kappaB regulates 
androgen receptor expression and prostate cancer growth. The American journal of 
pathology 2009,175:489-499. 

286. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species 
promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP 
kinase phosphatases. Cell 2005,120:649-661. 



 

127 
 

287. Arnold RS, He J, Remo A, Ritsick D, Yin-Goen Q, Lambeth JD, et al. Nox1 expression 
determines cellular reactive oxygen and modulates c-fos-induced growth factor, 
interleukin-8, and Cav-1. American Journal of Pathology 2007,171:2021-2032. 

288. Mozes T, Barath I, Gornicsar K, Grosz A, Gondocs C, Szephalmi P, et al. Deviations in 
circulating TNFalpha levels and TNFalpha production by mononuclear cells in healthy 
human populations. Mediators of inflammation 2011,2011:972609. 

289. Hall EJ. The bystander effect. Health physics 2003,85:31-35. 
290. Shang Y, Myers M, Brown M. Formation of the androgen receptor transcription complex. 

Molecular cell 2002,9:601-610. 
291. van Bokhoven A, Varella-Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, et al. 

Molecular characterization of human prostate carcinoma cell lines. Prostate 2003,57:205-
225. 

292. Werny DM, Thompson T, Saraiya M, Freedman D, Kottiri BJ, German RR, et al. Obesity 
is negatively associated with prostate-specific antigen in U.S. men, 2001-2004. Cancer 
epidemiology, biomarkers & prevention : a publication of the American Association for 
Cancer Research, cosponsored by the American Society of Preventive Oncology 
2007,16:70-76. 

293. Charles KA, Kulbe H, Soper R, Escorcio-Correia M, Lawrence T, Schultheis A, et al. 
The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer 
in mice and humans. The Journal of clinical investigation 2009,119:3011-3023. 

294. Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR, et al. The PSA(-/lo) prostate cancer 
cell population harbors self-renewing long-term tumor-propagating cells that resist 
castration. Cell stem cell 2012,10:556-569. 

295. Kim J, Coetzee GA. Prostate specific antigen gene regulation by androgen receptor. 
Journal of cellular biochemistry 2004,93:233-241. 

296. Lessard L, Begin LR, Gleave ME, Mes-Masson AM, Saad F. Nuclear localisation of 
nuclear factor-kappaB transcription factors in prostate cancer: an immunohistochemical 
study. British journal of cancer 2005,93:1019-1023. 

297. Sun Y, St Clair DK, Fang F, Warren GW, Rangnekar VM, Crooks PA, et al. The 
radiosensitization effect of parthenolide in prostate cancer cells is mediated by nuclear 
factor-kappaB inhibition and enhanced by the presence of PTEN. Molecular cancer 
therapeutics 2007,6:2477-2486. 

298. Nicewander WA, Rodgers JL. Thirteen ways to look at the correlation coefficient. The 
American Statistician 1988,42:59–66. 

299. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative 
genomic profiling of human prostate cancer. Cancer cell 2010,18:11-22. 

300. Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL. Gene expression 
profiling predicts clinical outcome of prostate cancer. The Journal of clinical 
investigation 2004,113:913-923. 

301. Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, et al. Tumor 
immunobiological differences in prostate cancer between African-American and 
European-American men. Cancer research 2008,68:927-936. 

302. Bittner M. Expression Project for Oncology (expO). In: International Genomics 
Consortium.; 2005. 

303. Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. 
Nature reviews. Molecular cell biology 2007,8:49-62. 

304. Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F, et al. Oestrogen 
signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nature 
cell biology 2007,9:470-478. 



 

128 
 

305. Vogel CF, Sciullo E, Li W, Wong P, Lazennec G, Matsumura F. RelB, a new partner of 
aryl hydrocarbon receptor-mediated transcription. Molecular endocrinology 
2007,21:2941-2955. 

306. Barry MJ. Screening for prostate cancer--the controversy that refuses to die. The New 
England journal of medicine 2009,360:1351-1354. 

307. Leibovici D, Spiess PE, Agarwal PK, Tu SM, Pettaway CA, Hitzhusen K, et al. Prostate 
cancer progression in the presence of undetectable or low serum prostate-specific antigen 
level. Cancer 2007,109:198-204. 

308. Attard G, Richards J, de Bono JS. New strategies in metastatic prostate cancer: targeting 
the androgen receptor signaling pathway. Clinical cancer research : an official journal of 
the American Association for Cancer Research 2011,17:1649-1657. 

309. Haile S, Lal A, Myung JK, Sadar MD. FUS/TLS is a co-activator of androgen receptor in 
prostate cancer cells. PloS one 2011,6:e24197. 

310. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocrine reviews 
2004,25:276-308. 

311. Niu Y, Altuwaijri S, Lai KP, Wu CT, Ricke WA, Messing EM, et al. Androgen receptor 
is a tumor suppressor and proliferator in prostate cancer. Proceedings of the National 
Academy of Sciences of the United States of America 2008,105:12182-12187. 

312. Nadiminty N, Lou W, Sun M, Chen J, Yue J, Kung HJ, et al. Aberrant activation of the 
androgen receptor by NF-kappaB2/p52 in prostate cancer cells. Cancer research 
2010,70:3309-3319. 

313. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ, Jr., Sledge GW, Jr. Constitutive 
activation of NF-kappaB during progression of breast cancer to hormone-independent 
growth. Molecular and cellular biology 1997,17:3629-3639. 

314. Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, et al. Aberrant 
nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. The Journal 
of clinical investigation 1997,100:2952-2960. 

315. Rochefort H, Platet N, Hayashido Y, Derocq D, Lucas A, Cunat S, et al. Estrogen 
receptor mediated inhibition of cancer cell invasion and motility: an overview. The 
Journal of steroid biochemistry and molecular biology 1998,65:163-168. 

316. Tateishi Y, Sasabe E, Ueta E, Yamamoto T. Ionizing irradiation induces apoptotic 
damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide 
generation. Biochemical and biophysical research communications 2008,366:301-307. 

317. Chen Q, Chai YC, Mazumder S, Jiang C, Macklis RM, Chisolm GM, et al. The late 
increase in intracellular free radical oxygen species during apoptosis is associated with 
cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell death and 
differentiation 2003,10:323-334. 

318. Liu Q, He X, Liu Y, Du B, Wang X, Zhang W, et al. NADPH oxidase-mediated 
generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell 
death. Biochemical and biophysical research communications 2008,377:775-779. 

319. Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, et al. Radiation-
induced cell signaling: inside-out and outside-in. Molecular cancer therapeutics 
2007,6:789-801. 

320. Bromfield GP, Meng A, Warde P, Bristow RG. Cell death in irradiated prostate epithelial 
cells: role of apoptotic and clonogenic cell kill. Prostate cancer and prostatic diseases 
2003,6:73-85. 

321. Greenberger JS, Epperly MW. Review. Antioxidant gene therapeutic approaches to 
normal tissue radioprotection and tumor radiosensitization. In vivo 2007,21:141-146. 

322. Hunter NR, Valdecanas D, Liao Z, Milas L, Thames HD, Mason KA. Mitigation and 
Treatment of Radiation-Induced Thoracic Injury With a Cyclooxygenase-2 Inhibitor, 
Celecoxib. International journal of radiation oncology, biology, physics 2012. 



 

129 
 

323. Kang SK, Rabbani ZN, Folz RJ, Golson ML, Huang H, Yu D, et al. Overexpression of 
extracellular superoxide dismutase protects mice from radiation-induced lung injury. 
International journal of radiation oncology, biology, physics 2003,57:1056-1066. 

324. Zhang S, Song C, Zhou J, Xie L, Meng X, Liu P, et al. Amelioration of radiation-induced 
skin injury by adenovirus-mediated heme oxygenase-1 (HO-1) overexpression in rats. 
Radiation oncology 2012,7:4. 

325. Ping X, Junqing J, Junfeng J, Enjin J. Radioprotective effects of troxerutin against 
gamma irradiation in mice liver. International journal of radiation biology 2012. 

326. Zhou J, Du Y. Acquisition of Resistance of Pancreatic Cancer Cells to 2-
Methoxyestradiol Is Associated with the Upregulation of Manganese Superoxide 
Dismutase. Molecular cancer research : MCR 2012. 

327. Salama S, Diaz-Arrastia C, Patel D, Botting S, Hatch S. 2-Methoxyestradiol, an 
endogenous estrogen metabolite, sensitizes radioresistant MCF-7/FIR breast cancer cells 
through multiple mechanisms. International journal of radiation oncology, biology, 
physics 2011,80:231-239. 

328. Epperly MW, Osipov AN, Martin I, Kawai KK, Borisenko GG, Tyurina YY, et al. 
Ascorbate as a "redox sensor" and protector against irradiation-induced oxidative stress in 
32D CL 3 hematopoietic cells and subclones overexpressing human manganese 
superoxide dismutase. International journal of radiation oncology, biology, physics 
2004,58:851-861. 

329. Chiu HW, Chen YA, Ho SY, Wang YJ. Arsenic trioxide enhances the radiation 
sensitivity of androgen-dependent and -independent human prostate cancer cells. PloS 
one 2012,7:e31579. 

330. Husbeck B, Peehl DM, Knox SJ. Redox modulation of human prostate carcinoma cells 
by selenite increases radiation-induced cell killing. Free radical biology & medicine 
2005,38:50-57. 

331. Mehrotra S, Pecaut MJ, Freeman TL, Crapo JD, Rizvi A, Luo-Owen X, et al. Analysis of 
a Metalloporphyrin Antioxidant Mimetic (MnTE-2-PyP) as a Radiomitigator: Prostate 
Tumor and Immune Status. Technology in cancer research & treatment 2012. 

332. Moeller BJ, Dewhirst MW. Raising the bar: how HIF-1 helps determine tumor 
radiosensitivity. Cell cycle 2004,3:1107-1110. 

333. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular 
radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. 
Cancer cell 2004,5:429-441. 

334. Xu L, Yang D, Wang S, Tang W, Liu M, Davis M, et al. (-)-Gossypol enhances response 
to radiation therapy and results in tumor regression of human prostate cancer. Molecular 
cancer therapeutics 2005,4:197-205. 

335. Fisher CJ, Goswami PC. Mitochondria-targeted antioxidant enzyme activity regulates 
radioresistance in human pancreatic cancer cells. Cancer biology & therapy 2008,7:1271-
1279. 

336. Corda S, Laplace C, Vicaut E, Duranteau J. Rapid reactive oxygen species production by 
mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by 
ceramide. American journal of respiratory cell and molecular biology 2001,24:762-768. 

337. Shoji Y, Uedono Y, Ishikura H, Takeyama N, Tanaka T. DNA damage induced by 
tumour necrosis factor-alpha in L929 cells is mediated by mitochondrial oxygen radical 
formation. Immunology 1995,84:543-548. 

338. Mariappan N, Elks CM, Fink B, Francis J. TNF-induced mitochondrial damage: a link 
between mitochondrial complex I activity and left ventricular dysfunction. Free radical 
biology & medicine 2009,46:462-470. 



 

130 
 

339. Kim JJ, Lee SB, Park JK, Yoo YD. TNF-alpha-induced ROS production triggering 
apoptosis is directly linked to Romo1 and Bcl-X(L). Cell death and differentiation 
2010,17:1420-1434. 

340. Li JM, Fan LM, Christie MR, Shah AM. Acute tumor necrosis factor alpha signaling via 
NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and 
binding to TRAF4. Molecular and cellular biology 2005,25:2320-2330. 

341. Kim YS, Morgan MJ, Choksi S, Liu ZG. TNF-induced activation of the Nox1 NADPH 
oxidase and its role in the induction of necrotic cell death. Molecular cell 2007,26:675-
687. 

342. Oakley FD, Abbott D, Li Q, Engelhardt JF. Signaling components of redox active 
endosomes: the redoxosomes. Antioxidants & redox signaling 2009,11:1313-1333. 

343. Lu L, Tang D, Wang L, Huang LQ, Jiang GS, Xiao XY, et al. Gambogic acid inhibits 
TNF-alpha-induced invasion of human prostate cancer PC3 cells in vitro through 
PI3K/Akt and NF-kappaB signaling pathways. Acta pharmacologica Sinica 2012,33:531-
541. 

344. Murley JS, Kataoka Y, Baker KL, Diamond AM, Morgan WF, Grdina DJ. Manganese 
superoxide dismutase (SOD2)-mediated delayed radioprotection induced by the free thiol 
form of amifostine and tumor necrosis factor alpha. Radiation research 2007,167:465-
474. 

345. Chendil D, Ranga RS, Meigooni D, Sathishkumar S, Ahmed MM. Curcumin confers 
radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 2004,23:1599-1607. 

346. Kimura K, Bowen C, Spiegel S, Gelmann EP. Tumor necrosis factor-alpha sensitizes 
prostate cancer cells to gamma-irradiation-induced apoptosis. Cancer research 
1999,59:1606-1614. 

347. Kim MH, Minton AZ, Agrawal V. C/EBPbeta regulates metastatic gene expression and 
confers TNF-alpha resistance to prostate cancer cells. The Prostate 2009,69:1435-1447. 

348. Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS, et al. Assessing 
prostate cancer risk: results from the Prostate Cancer Prevention Trial. Journal of the 
National Cancer Institute 2006,98:529-534. 

349. Loeb S, Gonzalez CM, Roehl KA, Han M, Antenor JA, Yap RL, et al. Pathological 
characteristics of prostate cancer detected through prostate specific antigen based 
screening. The Journal of urology 2006,175:902-906. 

350. Basch E, Oliver TK, Vickers A, Thompson I, Kantoff P, Parnes H, et al. Screening for 
prostate cancer with prostate-specific antigen testing: American Society of Clinical 
Oncology Provisional Clinical Opinion. Journal of clinical oncology : official journal of 
the American Society of Clinical Oncology 2012,30:3020-3025. 

351. Thompson IM, Jr., Tangen CM. Prostate cancer--uncertainty and a way forward. The 
New England journal of medicine 2012,367:270-271. 

352. Thompson IM, Ankerst DP. The benefits of risk assessment tools for prostate cancer. 
European urology 2012,61:662-663. 

353. Catalona WJ, Richie JP, deKernion JB, Ahmann FR, Ratliff TL, Dalkin BL, et al. 
Comparison of prostate specific antigen concentration versus prostate specific antigen 
density in the early detection of prostate cancer: receiver operating characteristic curves. 
The Journal of urology 1994,152:2031-2036. 

354. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation 
statement. Annals of internal medicine 2008,149:185-191. 

355. Lim LS, Sherin K. Screening for prostate cancer in U.S. men ACPM position statement 
on preventive practice. American journal of preventive medicine 2008,34:164-170. 

356. Greene KL, Albertsen PC, Babaian RJ, Carter HB, Gann PH, Han M, et al. Prostate 
specific antigen best practice statement: 2009 update. The Journal of urology 
2013,189:S2-S11. 



 

131 
 

357. Ciavarra RP, Brown RR, Holterman DA, Garrett M, Glass WF, 2nd, Wright GL, Jr., et al. 
Impact of the tumor microenvironment on host infiltrating cells and the efficacy of flt3-
ligand combination immunotherapy evaluated in a treatment model of mouse prostate 
cancer. Cancer immunology, immunotherapy : CII 2003,52:535-545. 

 

 
  



 

132 
 

VITA 

 
Lu Miao 

 
        Place of Birth: Jiangsu, People’s Republic of China 

 
Education 
 
Ph.D. student, Toxicology, University of Kentucky, Lexington, KY, 08/2007 to present. 
 
M.S. Institute of Biotechnology, College of Sciences, Northeastern University, Shenyang, 
China, 09/2005-06/2007. 
 
B.S. Biology, College of Sciences, Northeastern University, Shenyang, China, 09/2001-
06/2005. 
 
 
Professional Experiences 
 
Research Assistant: 2007-Present 
University of Kentucky, Lexington, KY                      
 
Temporary Lab Volunteer: June 2011                
The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, 
University Health Network, Toronto, Ontario, Canada. 
 
Teaching and Research Assistant: 2005-2007 
Northeastern University, Shenyang, China                                                                  
 
Honors & Awards 
 
2013. Mar. Poster Award, Markey Cancer Research Day, University of Kentucky 
2011. Aug: EPSCA Scholarship, I São Paulo Advanced School on Redox Processes in 
Biomedicine, Brazil 
2007-2008: Research Challenge Trust Fund Fellowship, University of Kentucky 
2006-2007: Excellent Graduate Student Award, Northeastern University 
2003-2004: Excellent Undergraduate Student Award, Northeastern University  
  
Publications 
 
Miao L, Holley AK, Zeng Z, Wang C, St Clair DK, St Clair WH. Tumor necrosis factor 
alpha dependent redox signaling suppresses prostate specific antigen level by activating 
the RelB and androgen receptor axis. (under review) 
 



 

133 
 

Miao L, Holley AK, Zhao YM, St Clair WH, St Clair DK. Redox-mediated and ionizing 
radiation-induced inflammatory mediators in prostate cancer development and treatment. 
Antioxidant and Redox signaling, 2013 (accepted) 
 
Holley AK, Miao L, St Clair WH, St Clair DK. The central role of superoxide 
dismutases in radiation therapy. Antioxidant and Redox signaling, 2013 (under revision). 
 
Dhar SK, Zhang JY, Gal J, Xu Y, Miao L, Lynn B, Zhu HN, St Clair DK, Kasarskis E. 
FUsed in Sarcoma (FUS) variant in ALS disregulates Manganese Superoxide Dismutase 
(MnSOD): An insight into FUS mediated ALS pathogenesis. Antioxidant and Redox 
signaling, 2013 (in press)  
 
Zhao Y, Miriyala S, Mitov M, Miao L, Schnell D, Dhar S, Sultana R, Butterfield DA and 
St. Clair DK. Redox based protein identification of doxorubicin-mediated cardiac injury 
in mice. (in manuscript) 
 
Dhar SK, Bakthavatchalu V, Miao L, Chen J, Zhu HN, St Clair DK. The nitration of 
DNA polymerase gamma (pol γ) that activates autophagy responses is a novel 
mechanism by which UVB induces skin cancer. (in manuscript) 
 
Sun CX, Hao JJ, Wang J, Miao L. et al. Responses of photosynthetic physiological 
characteristics of two transgenic cotton (Gossypium hirsutum L.) varieties to CO2 
concentration. Acta Ecologica Sinica, 2:2010 (in Chinese) 
 
Miao L, St Clair DK. Gene regulation of superoxide dismutases: implication in diseases. 
Free Radical Biology and Medicine, 47(4): 344-56, 2009 
 
Sun CX, Qi H, Hao JJ, Miao L. et al. Single leaves photosynthetic characteristics of two 
insect-resistent transgenic cotton (Gossypium hirsutum L.) varieties in response to light. 
Photosynthetica,47(3): 399-408, 2009 
 
Sun CX, Chen ZH, Miao L, Niu HJ. Lignin Content and Its Activity of Key Metabolic 
Enzymes in Transgenic Cotton. Journal of Northeastern University (Natural Science), 
28(6), 2007 (in Chinese)  
 
Sun CX, Qi H, Sun JQ, Zhang LL, Miao L. Photosynthetic characteristics of transgenic 
Bt cotton and transgenic Bt-CpTI cotton at seedling stage. Acta Agronomica Sinica, 
33(3), 469-475, 2007 (in Chinese) 
 
Sun CX, Zhang LL, Wu Q, Miao L, et al. Nitrogen metabolism of transgenic Bt cotton 
and transgenic Bt-CpTI cotton at seedling stage. Chinese Journal of Applied Ecology, 
26[357]: 187-191, 2007 (in Chinese) 
 
Miao L, Sun CX, Geng L, et al. Studies on lignin content and its key metabolic enzymes 
in transgenic cottons at seedling stage. China Biotechnology, 26(Sl): 143-147, 2006 (in 
Chinese) 



 

134 
 

 
Sun CX, Zhang YL, Miao L, et al. Effects of planting of transgenic Bt crops on nutrients 
in soils. Chinese Journal of Applied Ecology, 17(5): 43-46, 2006 (in Chinese) 
 
Presentations and Abstracts 
Miao L, Holley AK, Zeng Z, Wang C, St Clair DK, St Clair WH. Tumor necrosis factor 
alpha dependent redox signaling suppresses prostate specific antigen level by activating 
the RelB and androgen receptor axis. Presented and Awarded at Cancer Research Day, 
Markey Cancer Center, University of Kentucky, 2013 (poster) 

Zhao Y, Miriyala S, Mitov M, Miao L, Schnell D, Dhar S, Sultana R, Butterfield DA and 
St. Clair DK. Redox based protein identification of doxorubicin-mediated cardiac injury 
in mice. Presented at Cancer Research Day, Markey Cancer Center, University of 
Kentucky, 2013 (poster) 

Dhar SK, Bakthavatchalu V, Miao L, Chen J, Zhu HN, St Clair DK. The nitration of 
DNA polymerase gamma (pol γ) that activates autophagy responses is a novel 
mechanism by which UVB induces skin cancer. AACR, Washington, DC, 2013. (poster) 

Miao L, Aaron HK, St Clair DK, St Clair WH. Tumor necrosis factor alpha (TNFα) 
dependent changes in prostate specific antigen (PSA) reveal a novel mechanism for redox 
signaling Presented at the 19th annual meeting of SFRBM (Society of Free Radical 
Biology and Medicine), San Diego, 2012. (poster) 

Miao L, Aaron HK, St Clair DK, St Clair WH. Redox-mediated RelB-dependent 
regulation of Prostate Specific Antigen (PSA) gene expression in prostate cancer. 
Presented at the 18th annual meeting of SFRBM (Society of Free Radical Biology and 
Medicine), Atlanta, 2011. (poster) 

Miao L, Aaron HK, St Clair DK, St Clair WH. Redox-mediated RelB-dependent 
regulation of Prostate Specific Antigen (PSA) gene expression in prostate cancer. I São 
Paulo Advanced School on Redox Processes in Biomedicine, Brazil, 2011. (poster) 

Miao L, Fang F, Xu Y, St Clair DK, St Clair WH. RelB-dependent differential regulation 
of interleukin-8 and Prostate specific antigen in Prostate Cancer. Presented at Cancer 
Research Day, Markey Cancer Center, University of Kentucky, 2011. (poster) 

Miao L, Fang F, Xu Y, St Clair DK, St Clair WH. RelB-dependent differential regulation 
of interleukin-8 and Prostate specific antigen in Prostate Cancer. Presented at the 17th 
annual meeting of SFRBM (Society of Free Radical Biology and Medicine), Orlando, 
2010. (poster) 

 


	REDOX-REGULATED RELB-AR AXIS MEDIATES PROSTATE SPECIFIC ANTIGEN EXPRESSION: INSIGHT IN PROSTATE CANCER RESPONSE TO RADIATION THERAPY
	Recommended Citation

	TITLE
	ABSTRACT
	APPROVAL PAGE
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER ONE: Introduction
	Radiation in prostate cancer treatment
	Reactive oxygen species and prostate cancer
	Radiation therapy induced inflammatory mediator secretion
	Research objectives
	CHAPTER TWO: IR-generated TNF-a regulates the redox-dependent RelB-mediated PSA suppression
	Introduction
	Materials and Methods
	Results
	Discussion
	CHAPTER THREE: RelB-AR axis medites PSA suppression in advanced prostate cancer: significance in PSA dependent clinical applications
	Introduction
	Materials and Methods
	Results
	Discussion
	CHAPTER FOUR: Discussion and Summary
	Versatile partnership between radiation therapy and ROS elevation: insight in prostate cancer radioresistance
	IR-induced TNF-a functions as a sustained source of ROS, activates RelB-mediated noncanonical NF-kB pathways and has implication in PCa radioresistance
	Debate about PSA test in PCa clinical practice
	Summary
	Appendix: List of abbreviations
	REFERENCES
	VITA

