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INFLUENCE OF RIPARIAN BUFFER MANAGEMENT  
STRATEGIES ON SOIL PROPERTIES 

 
The Kentucky Division of Water indicates that agriculture is responsible for 55% of the 
Commonwealth’s assessed streams not supporting their designated uses. Riparian 
buffers reduce nonpoint source pollution in agroecosystems by storing and cycling 
nutrients, stabilizing streambanks, increasing infiltration, and storing water. Specific 
information regarding riparian buffer management is needed for land managers to 
maximize buffer effectiveness at reducing agricultural contaminants impairing water 
quality.  

 
Baseline soil properties (texture, pH, C and nutrients) of the riparian buffer surrounding 
a tributary of Cane Run Creek in Fayette County, KY were characterized prior to 
imposing three mowing regimes (intense, moderate, and no mow treatments) and one 
native grass regime. Measurements were made along parallel transects located 2-m and 
8-m distances from the stream. Root biomass, aggregate distribution, and saturated 
hydraulic conductivity were measured along the 2-m transect in two consecutive years 
following treatment establishment. The 2-m transect soils had the highest C, pH, Ca, Zn, 
and sand content. The 8-m transect had the highest P, K, Mg, and clay content. 
Semivariogram analysis of C content indicated slight to moderate spatial dependency 
along the 2m transect and moderate to strong spatial dependency along the 8m 
transect. Root biomass increased with decreased mowing frequency at the surface 
depth after one year; the native grass treatment had significantly less root biomass in 
both years compared to mowing treatments. There was no significant treatment effect 
on aggregate size distribution at the surface depth in either year. Mean weight diameter 
and large macroaggregates decreased from 2011 to 2012. Vegetation treatment had no 
statistically significant effect on water stable aggregates or saturated hydraulic 
conductivity. Experimental semivariograms provided evidence of spatial structure at 
multiple scales in root biomass, aggregates, and soil C. Spatial variability occurred over a 
shorter lag distance in 2012 than 2011, suggesting an effect of imposed treatments 
slowly developing over time. 
  



 
 

This study provides important insights on riparian buffer soil properties, soil sampling 
strategies to detect spatial variability in riparian buffers, and length of time needed to 
assess effects of vegetation management regimes on riparian root biomass, soil 
aggregates, and hydraulic conductivity. 
 
 

 
KEYWORDS:  Riparian Zone Management, Spatial Variability, Soil Aggregates, 

Vegetation Management, Water Quality Protection 
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Chapter One 

Riparian Buffers in the Agricultural Landscape: An Overview 

 

Background 

  Kentucky has over 90,000 miles (144,841 km) of streams and rivers, much of 

which intersect Kentucky’s 14 million acres (5,665,600 ha) of farmland (KEEC, 2010; 

USDA-NASS, 2011). Production agriculture is an integral component of Kentucky’s 

economy; agricultural cash receipts totaled more than $4.4 billion in 2010 (USDA-NASS, 

2011). However, agricultural practices are ranked as the number one cause of the 

state’s impaired streams not supporting their designated uses (KEEC, 2010). 

  Sediment, pathogens, and nutrients are components of nonpoint source (NPS) 

pollution and have been associated with crop and livestock enterprises (KEEC, 2010; 

USEPA, 2009; Wilcock, 2008). Streamside grazing and unrestricted livestock access to 

streams can result in significant pollutant loads to streams over time (Sharpley and 

West, 2008). The demand for global food supplies, accompanied by rising commodity 

prices, will likely result in an increase in crop production acres and an accompanying 

increased likelihood of NPS pollution. Furthermore, agriculture  has been identified as a 

major source of excessive nutrients in the Mississippi River basin, contributing to 

hypoxic conditions in the Gulf of Mexico (USEPA, 2011). These issues emphasize the 

need for strategies to reduce agricultural NPS. 
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 In  1994 the Kentucky General Assembly passed the Kentucky Agriculture Water 

Quality Act (KAWQA) to provide guidance to agriculture and silviculture industries for 

pollution prevention and protection of the waters of the Commonwealth through the 

use of Best Management Practices (BMPs) (KEPPC, 2008). The KAWQA includes BMPs in 

the areas of silviculture, livestock, crops, pesticides and fertilizers, farmstead, and 

streams and other water bodies. Within these areas are recommended conservation 

practices such as riparian area protection, filter strips, and grassed waterways, yet 

specific implementation and management strategies are vague. Aboveground 

vegetation and root systems of riparian areas can intercept sediment, pathogens, and 

nutrients before they reach a water body; nevertheless, specific guidelines for riparian 

vegetation maintenance to maximize pollutant reduction remain unclear. Land 

managers need information to best utilize these conservation practices that will lead to 

reduced agricultural NPS pollution.   

Riparian Buffers Defined 

 Riparian buffers (interchangeably referred to as riparian zones and riparian 

areas) are a subset of conservation buffers that broadly includes grassed waterways, 

filter strips, and vegetative barriers. Riparian buffers are three-dimensional zones of 

direct interaction between terrestrial and aquatic ecosystems (Gregory et al., 1991) and 

separate upland land uses from an intermittent or permanent water body, including 

areas associated with groundwater recharge. Subject to disturbances from upland and 

fluvial processes because of their prominent transition location, riparian buffers can be 

characterized as diverse plant communities that encompass ground and surface water 
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interactions in soils subjected to fluctuating water levels. These buffers play a key role in 

landscapes by providing ecosystem services such as NPS pollution control, water storage 

and flood reduction, nutrient storage and cycling, streambank stability, and wildlife 

habitat (English et al., 2004). Accomplishing any of the listed riparian functions depends 

on the type of vegetation, buffer dimensions, and maintenance (USDA-NRCS, 2005).  

Vegetation 

 Plant communities enhance riparian buffers by regulating water temperature, 

reducing erosive forces on stream banks, and contributing carbon to the ecosystem. 

Vegetated streamside buffers provide foliage and stems that increase surface 

roughness, as well as a dense network of roots that bind riparian substrates for 

increased streambank resistance to erosion, with root exudates playing a role in soil 

cohesion (Kiley and Schneider, 2005; Wynn et al., 2004). Additionally, riparian plants 

take up nutrients and contribute soil organic C needed to promote denitrification, two 

processes important in reducing nutrient losses to adjacent water bodies. 

 Riparian buffer vegetation may be naturally occurring or planted by a land 

manager. Riparian vegetation varies widely, may consist of woody (trees and shrubs) or 

herbaceous (grasses and forbs) plants, and can be manipulated easily through selection 

and management. Woody plants have larger, taller stems than herbaceous plants, and 

woody litter tends to decompose more slowly than herbaceous litter, with large debris 

from woody plants taking decades or more to decompose.  

 Trees and shrubs provide perennial root systems that stabilize stream banks and 

provide long-term nutrient storage while herbaceous, warm-season grasses have a high 
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stem density and an annual root system that provides large amounts of organic matter 

to the soil (Schultz et al., 1997). Kiley and Schneider (2005) found a significant positive 

correlation between root biomass in the top 30-cm of soil and herbaceous plant density, 

and Wynn et al. (2004) found that herbaceous buffers had greater root length density 

than forested buffers.  

 Switchgrass (Panicum virgatum) is a native warm-season grass often 

recommended for the grass zone in riparian buffers. Switchgrass has dense, stiff stems 

that slow surface runoff and promote infiltration prior to the runoff reaching a stream. 

Cool-season grasses such as fescue (Festuca arundinacea) are not recommended for 

riparian buffers that experience overland flow because their stems do not remain 

upright under surface runoff; in addition, they produce eight times less root mass than 

native grasses (Schultz et al., 1997). Other research (Lowrance et al., 2002), however, 

has shown that cool-season grass filters have twice as much carbon in the upper 20 

inches of soil compared to  switchgrass, with corresponding higher rates of 

denitrification. Additionally, Self-Davis et al. (2003) found fescue to have greater 

infiltration and lower runoff compared to native warm-season grasses. This may indicate 

that native warm-season grasses are more effective at slowing overland flow, while 

cool-season grass filters might be more effective at below-ground processes.  

 Native grass strips increase infiltration rates and microbial activity and might be 

more effective at providing deeper soil carbon contents over longer periods than cool-

season grasses such as fescue (Lowrance et al., 2002; Schultz et al., 1997). Compared to 

alfalfa (Medicago sativa) and smooth brome (Bromus inermis), switchgrass produced 
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the highest level of root surface area after three growing seasons (Kelly et al., 2007), 

with root surface area remaining constant during May-August, and increasing 

significantly in September during one of those growing seasons. 

Dimensions and Spatial Considerations 

 Typical design recommendations for conservation buffers such as filter strips 

consist of a uniform buffer width along a field margin to capture uniform surface runoff 

(Dosskey et al., 2011). Riparian buffer width plays a role in determining specific benefits. 

For example, wide buffers (> 160 feet) tend to be more efficient in removing nitrogen 

from water, whereas narrow buffers (<160 feet) may not remove significant amounts of 

nitrogen (Mayer, 2005). There are conflicting recommendations for buffer width. Schultz 

et al. (1997) recommend buffers of at least 66 feet, while other research has shown that 

the most effective buffers are at least 100 feet wide and composed of native forest 

(Wenger and Fowler, 2000).  

 The United States Department of Agriculture Natural Resources Conservation 

Service (USDA-NRCS) promotes the use of three zones when establishing and 

maintaining riparian buffers, with zone width determined by stream order. Stream order 

is a hierarchical system for classifying streams in which the smallest channels (which 

may only carry wet-weather flows and be otherwise dry) are designated first order; a 

second order stream is formed by the junction of two first order streams, a third order 

stream is formed by two second order streams, and so on (Strahler, 1952). For first 

through third order streams, Zone 1 is an undisturbed forested (80% hard mast trees) 

area that begins at the top of the stream bank and continues up gradient for about 15 
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feet. Zone 2 begins at the ending edge of Zone 1, and continues away from the stream 

for a width of 35-165 feet, with a wider Zone 2 as stream order increases. Zone 2 is 

often a managed forest area. The widths of Zones 1 and 2 are measured horizontally on 

a line perpendicular to the water body. Zone 3 is considered the runoff control zone, 

providing the primary sediment retention function for the buffer. Zone 3 is 

approximately 20 feet wide and is managed in permanent grass/legume/forb cover by 

mowing or rotational livestock grazing (USDA-NRCS, 2005). For first through third order 

streams, the USDA-NRCS prescription for riparian buffers recommends a minimum of 70 

feet between the water body and the adjacent upland land use.  

 Spatial variability in the landscape needs consideration when prescribing 

conservation buffers, specifically in riparian areas where disturbances from upland and 

fluvial processes may influence soil properties. Characterizing soil properties along 

riparian areas may aid in prescribing appropriate conservation practices at appropriate 

scales. Variable-width buffers would place wider buffers in field locations where 

concentrated runoff occurs, providing the opportunity for enhanced treatment of the 

runoff load (Dosskey et al., 2005).  

 Geographical patchiness of natural ecological phenomena as reported by 

Legendre (1993), the concept that nature is neither uniformly nor randomly distributed, 

is likely applicable to riparian areas. Elements in nature closer to one another may tend 

to present a greater degree of likeness than those farther apart (Fernandes et al., 2011). 

Furthermore, spatial autocorrelation suggests that elements closer together in an 

ecosystem tend to be influenced by the same processes, unlike those farther away. The 
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spatial component can be described by a mathematical function such as a 

semivariogram, which allows for the study of autocorrelation as a function of distance. 

Predicting values of a variable from known values at other sampling points is possible if 

the spatial positions are known and the values are autocorrelated (Legendre and Fortin, 

1989).  

Maintenance  

 Restoring and managing vegetation in riparian buffers is widely recommended to 

protect water resources in agricultural settings (English et al., 2004; NRC, 2002; Schultz 

et al., 1997; USDA-NRCS, 2000). However, riparian buffer maintenance is a multi-faceted 

issue, with respect to aesthetics, loss of agriculturally productive land, colonization by 

invasive species, and buffer function in terms of regulating nutrient and contaminant 

flow from adjacent lands. While some programs recommend mowing buffers for weed 

control during initial establishment (Schultz et al., 1997), others indicate that mowing 

and periodic burning can reduce infiltration rates over a longer period (Schacht et al., 

1996). Periodic removal of above-ground biomass has been recommended to maximize 

nutrient uptake from the soil and runoff water (Kelly et al., 2007; Schultz et al., 1997). 

Hefting et al. (2005) found that mowing herbaceous sites in Europe removed up to 93% 

of nitrogen taken up each year by grasses; the addition of a fast-growing woody species 

(e.g. cottonwood) to herbaceous buffer systems can reduce phosphorus in riparian 

buffer soils when periodically harvested (Kelly et al., 2007). 

  Little research is available on the effects of mowing riparian buffers on soil 

physical, chemical, or biological properties, although studies have shown varying results 
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of mowing effects on below-ground biomass in non-riparian landscape positions 

(Dickinson and Polwart, 1982; Kitchen et al., 2009; Todd et al., 1992). Mowing and 

imposed compacting forces (e.g. equipment used in the moist conditions of riparian 

buffers) have been shown to significantly increase bulk density (Carrow, 1980), 

especially in wheel tracks (Flannagan and Bartlett, 1961) in turf grass studies. Other 

research has focused on groundwater nitrate removal in mowed riparian zones (Addy et 

al., 1999), although the study area was not representative of large contiguous mowed 

areas. 

 Kentucky landowners employ various strategies in riparian buffer maintenance. 

Some landowners regularly mow riparian buffers to achieve a tidy appearance, while 

others view riparian buffer mowing as a burdensome task that falls behind income-

producing activities on the priority list. Still others may manage riparian areas as part of 

pastures, allowing livestock access for grazing. Aesthetic characteristics of buffers 

should be considered in addition to their effectiveness at providing ecosystem services. 

Riparian buffers impact the visual appearance of agricultural landscapes by contrasting 

with row crops and livestock pastures (Lovell and Sullivan, 2006). Naturalized riparian 

buffers that have an unkempt appearance are not widely accepted in agricultural 

settings. Farmers and rural landowners often associate the clean or neat appearance of 

the farm as a measure of the farmer’s work ethic (Lovell and Sullivan, 2006).  

 Some landowners express concern about taking land out of production, 

especially during times of high-value commodities, even though studies have shown 

conservation buffers are cost-effective in terms of environmental benefits returned for 
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investment (Helmers et al., 2006; Lovell and Sullivan, 2006). Still others may participate 

in government-sponsored conservation programs that allow seasonal grazing or 

harvesting of buffer vegetation. The KAWQA recommends restricting livestock access to 

streams and maintaining grass on these restricted areas, but no specific maintenance 

recommendations are provided (KEPPC, 2008). Furthermore, following the USDA-NRCS 

riparian buffer prescription could take much land out of production, when considering 

the 70-ft (21.3-m) minimum buffer along water bodies. 

 Cost-share opportunities exist to create or enhance conservation buffers on 

farms;   costs for establishing and maintaining buffers influence the willingness of 

landowners to implement these practices (Lovell and Sullivan, 2006). The Conservation 

Reserve Program (CRP), the Conservation Reserve Enhancement Program (CREP), 

Conservation Security Program, and the Environmental Quality Incentives Program 

(EQIP) are examples of federal conservation programs that pay producers either 

through cost-share dollars or annual rental payments to convert highly erodible and 

environmentally-sensitive land into riparian areas. These programs are administered by 

the Farm Service Agency (FSA) and the NRCS (Buckloh et al., 2004). State and local cost-

share programs are also available in Kentucky through local conservation districts and 

the Kentucky Soil and Water Conservation Commission. The National Conservation 

Buffer Initiative, launched in 1997 under the leadership of the USDA-NRCS, had a goal of 

2 million miles (3.2 million km) on private land by 2002, and an economic evaluation of 

implementing the initiative showed buffer programs to be cost-effective in terms of 

economic and environmental benefits (Helmers et al., 2006). Dosskey et al. (2005) 
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suggest that precision conservation (e.g. site-specific filter strips) may cost more to 

implement but has a greater water quality benefit. 

Riparian Buffer Function and Assessment 

 Soil water passes through riparian buffers before entering streams, and riparian 

vegetation may significantly modify the amount of dissolved nutrients entering streams 

by plant uptake (Gregory et al., 1991). Conservation buffers have been shown to 

increase infiltration rates (Bharati et al., 2002), remove sediment and nutrients from 

surface runoff (Lowrance et al., 2002), and increase soil organic matter. Efficacy of 

riparian buffers may also be tied to soil quality.  

 Assessing overall conservation buffer effectiveness can be complex and in situ 

data on specific ecosystem services provided by riparian buffers is lacking (Jones et al., 

2010). Measuring indicators of ecosystem services (e.g. water and nutrient cycling, soil 

stability) along riparian landscape gradients by identifying specific soil and vegetative 

properties that measure or indicate desirable buffer behaviors is important. Lowrance et 

al. (2002) suggest that a buffer’s ability to reduce NPS pollutants could be indirectly 

assessed over time by measuring aggregate structure, infiltration rate, soil carbon and 

microbial biomass, and denitrification rates.  

Soil Aggregates 

 Soil particles are bound together by soil organic matter into aggregates. Soil 

aggregate formation is influenced by biotic (e.g. microbial activity, root exudates, etc.) 

and abiotic factors (e.g. clay content), and aggregates can be classified into the following 

size orders: clay micro-structures (<2 µm diameter); microaggregates (2-250 µm 
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diameter); and macroaggregates (>250 µm diameter) (Carter, 2004). The aggregate 

hierarchy concept proposed by Tisdall and Oades (1982) suggested that aggregates form 

in sequence such that primary particles and silt-sized aggregates are bound together 

into stable microaggregates (20-250 µm) which in turn are bound together into 

macroaggregates (>250 µm). This concept further suggests that microaggregates are 

held together by persistent binding agents while macroaggregates are held together by 

more transient binding agents (i.e. root exudates), leaving macroaggregates subject to 

stability or vulnerable to destruction as a result of agricultural management techniques 

that affect root development.  

 Aggregates are significant features of soil structure (Babel et al., 1995), and their 

size and distribution determine the pore space geometry of the soil matrix. 

Subsequently, soil aggregates highly influence hydraulic conductivity as water 

movement through soil is primarily a function of pore size and distribution (Ehlers et al., 

1995).   

Infiltration and Hydraulic Conductivity 

 Infiltration is the entry of water into the soil surface, and maximizing infiltration 

of runoff water is expected to decrease the export of soluble pollutants (Helmers et al., 

2006) by allowing sediments to deposit on the ground surface prior to reaching surface 

waters. Soils with a high infiltration capacity are likely to have a greater sediment 

trapping capability in addition to reducing the release of soluble pollutants to nearby 

waterways. Hydraulic conductivity is the measure of a soil’s ability to transmit water 

through pores (Klute and Dirksen, 1986) and is directly related to pore geometry and 
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organization. The saturated hydraulic conductivity (Ksat) describes the maximum 

capacity of soils to conduct water and can be calculated from infiltration flow rates 

measured in the field based on Wooding’s (1968) work. The hydraulic conductivity of 

soils is heavily influenced by soil texture and structure, with sandy soils generally having 

higher saturated conductivities than finer-textured soils. In a study sizing filter strips for 

effectiveness, Dosskey et al. (2011) reported a fine sandy loam soil able to trap nearly 

100% of sediment in runoff while a silty clay loam soil was only able to trap 35% of 

runoff sediment.  

 Vegetated buffers improve soil quality in the riparian zone and may be effective 

in reducing NPS pollution in agroecosystems by increasing infiltration (Bharati et al., 

2002) as plant stems slow overland flow. Vegetation type can influence infiltration of 

surface runoff by variations in stem density, amount of litter, and, subsequently, degree 

of roughness, yet Dosskey et al. (2010) report differing evidence from the literature as 

to the superiority of forested buffers versus grass buffers to increase soil porosity. Trees 

generally grow larger and more widely spaced than herbaceous plants; woody plants 

generally produce larger roots that decompose more slowly than the smaller, yet more 

numerous, shorter-lived roots of herbaceous vegetation. Soil permeability is increased 

by root growth and decay and burrowing by macroinvertebrates grazing on roots and 

litter (Dosskey et al., 2010), thus creating large pores that enhance water movement. 

Soils in naturalized areas have shown increased water infiltration rates as a result of 

accumulation and on-site decomposition of leaves and associated increases in 

earthworm and macroarthropod activity (Millward et al., 2011).   
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Roots 

 Information regarding the impact of aboveground management on root systems 

of riparian vegetation is limited. Researchers have reported variability in root density 

and root biomass in herbaceous versus forested riparian areas (Piercy and Wynn, 2008; 

Wynn et al., 2004) and in a multi-species agricultural riparian buffer (Tufekcioglu et al., 

1998), but these studies did not focus on specific vegetation management techniques. 

Studies investigating the effects of aboveground vegetation removal on root systems 

(whether by mowing, grazing, or burning)  have been predominantly focused in upland 

prairie or pasture systems (Johnson and Matchett, 2001; Kitchen et al., 2009; Todd et 

al., 1992), or simulated field conditions (Neigebauer et al., 2000) and report mixed 

results. Annual mowing has been reported to have no net effect on total root biomass, 

although it did significantly increase root biomass in the upper 10-cm compared to 

unmowed treatments (Kitchen et al., 2009). Todd et al. (1992) reported decreased live 

root biomass after two years of mowing treatments while others reported an increase in 

below-ground biomass in the second year of mowing (Dickinson and Polwart, 1982). 

Neigebauer et al. (2000) investigated the effects of mowing heights on the roots of 

wildflower (black-eyed Susan [Rudbeckia hirta L.]) sod and found that mowing 

significantly reduced total root biomass, while total depth of rooting increased linearly 

with mowing height. Chaieb et al. (1996) report that increased cuttings of perennial 

grasses resulted in a more superficial root system, concentrated in the upper 15-cm of 

soil, and found little difference in root systems of non-mowed plots and those mowed 

once. Although Kitchen et al. (2009) reported an increase in root biomass in the upper 
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10-cm of an annually mowed (with clippings removed) prairie, they reported a decrease 

in root biomass in a similar prairie that also received a prescribed burn treatment; 

mowing concentrated roots in the upper 20-cm in both burned and unburned prairie. 

Multiple studies have reported significant fire and mowing interaction effects on roots 

(Benning and Seastedt, 1997; Johnson and Matchett, 2001; Kitchen et al., 2009). Grazing 

studies have shown decreases in root growth with grazing pressure (Johnson and 

Matchett, 2001), no inhibition of root growth (McNaughton et al., 1998), and both 

positive and negative root responses to grazing (Milchunas and Lauenroth, 1993). Other 

grazing studies have shown more below-ground plant material under light pasture 

grazing (15-25% usage) (Johnston, 1961) and greater soil organic carbon under low 

grazing pressure (Franzluebbers and Stuedemann, 2010) compared to ungrazed 

pastures. In contrast, Johnston (1961) showed decreased root production with 

increased vegetation removal in a companion greenhouse clipping study. 

Research Objectives 

 Specific information on riparian buffer maintenance is needed for agricultural 

producers to maximize the potential benefits to water quality through the utilization of 

riparian buffers. The goals of this study are: 1) to characterize baseline soil physical and 

chemical properties of a riparian buffer in grassland management prior to implementing 

vegetation management strategies; 2) to explore and assess spatial processes in a 

riparian buffer; and 3) to evaluate the influence of mowing and vegetation management 

strategies on root biomass, soil aggregate size distribution and stability, hydraulic 

conductivity, and soil carbon in this riparian buffer. This research includes exploration of 
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spatial variability within the buffer and how this variability may influence management 

strategies to maximize buffer efficacy.  

 The dissertation is organized as the presentation of specific research objectives 

in two chapters as follows: 

1) Spatial Variability of Soil Properties in a Central Kentucky Riparian Buffer 

2) Riparian Buffer Management Influences on Roots, Soil Structural Properties, and 

Hydraulic Conductivity 
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Chapter Two 

Spatial Variability of Soil Properties in a Central Kentucky Riparian Buffer 

 

Introduction  

Kentucky has over 6,985 miles (11,241 km) of impaired waters (KEEC, 2010), and 

nonpoint source (NPS) pollution is the leading source of impairment. The Kentucky 

Division of Water indicates that agriculture, a form of NPS, is responsible for 55% of 

assessed streams not supporting their designated uses (KEEC, 2010). NPS pollution is 

difficult to regulate, but state laws provide guidance to specific activities that may 

create NPS pollution. The Kentucky Agriculture Water Quality Act (KAWQA) was passed 

in 1994 to reduce NPS pollution from agriculture and silviculture through the use of Best 

Management Practices (BMPs) (KEPPC, 2008). Suggested BMPs for agriculture in the 

KAWQA include riparian zone protection, filter strips, and grassed waterways. 

Riparian zones are three-dimensional zones of direct interaction between 

terrestrial and aquatic ecosystems (Gregory et al., 1991). Because of their prominent 

transition location, riparian zones are subject to disturbances from upland and fluvial 

processes. By providing ecosystem services such as control of NPS pollution, water 

storage and flood reduction, nutrient storage and cycling, streambank stability, and 

wildlife habitat (English et al., 2004), riparian zones play a key role in landscapes. Soil 

water passes through riparian zones before entering streams, and riparian vegetation 

may significantly modify the amount of dissolved nutrients entering streams by plant 

uptake (Gregory et al., 1991).  
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Conservation buffers (including riparian buffer zones, filter strips, etc.) can 

increase infiltration rates (Bharati et al., 2002), remove sediment and nutrients from 

surface runoff (Lowrance et al., 2002), and increase soil organic matter. Vegetated 

streamside buffers provide foliage and stems that increase surface roughness, and a 

dense network of roots that bind riparian substrates, which increases streambank 

resistance to erosion (Kiley and Schneider, 2005). Vegetated buffers improve soil quality 

in the riparian zone and may be effective in reducing NPS pollution in agroecosystems 

by increasing infiltration (Bharati et al., 2002). 

Assessing overall conservation buffer effectiveness can be complex; therefore, 

identifying specific soil and vegetative properties that measure or indicate desirable 

buffer behaviors is important. One desirable riparian buffer behavior is the capacity to 

infiltrate runoff water. Maximizing infiltration is expected to decrease the export of 

soluble pollutants (Helmers et al., 2006). Soils with a high water infiltration capacity are 

likely to have enhanced sediment trapping capability in addition to reducing the release 

of soluble pollutants to nearby waterways. The hydraulic conductivity of soils is most 

directly related to soil texture and structure, with sandy soils generally having higher 

saturated conductivities than finer-textured soils. In a study sizing filter strips for 

effectiveness, a filter strip situated on a fine sandy loam soil trapped nearly 100% of 

sediment in runoff while a filter strip on silty clay loam soil only trapped 35% of runoff 

sediment, which was attributed to the finer textured soil experiencing less infiltration 

and thus fewer fine particles deposited in the filter strip (Dosskey et al., 2011). Efficacy 

of riparian buffers may also be tied to soil quality, with infiltration rate, aggregate 
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structure, and soil carbon serving as indicators of a buffer’s ability to reduce nonpoint 

source pollution (Lowrance et al., 2002).  

Spatial variability in the landscape may be important when prescribing 

conservation buffers, specifically in riparian areas where disturbances from upland and 

fluvial processes can influence soil properties. Geographical patchiness of natural 

ecological phenomena as described by Legendre (1993) is likely applicable to riparian 

areas; nature is neither uniformly nor randomly distributed, but elements closer to one 

another tend to present a greater degree of likeness (Fernandes et al., 2011; Legendre 

and Fortin, 1989). Spatial autocorrelation suggests that elements closer together in an 

ecosystem tend to be influenced by the same processes as opposed to those farther 

away and can be described by a mathematical function such as a semivariogram. 

Further, predicting values of a variable from known values at other sampling points is 

possible if the spatial positions are known and the values are autocorrelated (Legendre 

and Fortin, 1989). Typical design recommendations for conservation buffers such as 

filter strips consist of uniform buffer width along a field margin to capture surface 

runoff, although Dosskey et al. (2011) suggest that variable width buffers may be more 

effective at intercepting concentrated flows. Understanding the range over which 

spatial structure exists among riparian buffer soil properties will aid in developing design 

recommendations for riparian buffers. 

Specific information about riparian buffer maintenance is needed for agricultural 

producers to maximize the potential benefits to water quality from using riparian 

buffers. The purpose of this study was to characterize baseline soil physical and 
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chemical properties prior to implementing vegetation management strategies in a 

riparian buffer. This characterization includes exploring spatial processes within the 

buffer, how these processes are linked to one another, and how spatial variation may 

influence management strategies to maximize buffer efficacy. While other researchers 

have employed traditional statistics to describe the spatial distribution of riparian soil 

properties (Blazejewski et al., 2009; Kang and Lin, 2009), few have utilized 

semivariogram analysis to describe riparian soil variability, making this study a novel 

approach to riparian buffer assessment and management. 

Methods  

Field 

The study site is at the University of Kentucky Agriculture Experiment Station, 

near Lexington, KY (N 38°07'23.98", W 84°29'50.04"). The site is a riparian buffer of an 

unnamed tributary to the Cane Run Creek. Soils are classified as fine, mixed, active, 

mesic Fluvaquentic Endoaquolls and mapped as Lanton silty clay loam (dunning) series 

with fine-textured alluvium parent material derived from limestone (USDA-NRCS, 2011). 

Sections of the stream were channelized for agricultural purposes in the 1970s and the 

surrounding buffer was maintained as mowed grassland until 2010 (Calvert, 2011). The 

stream is not incised and thus can access the floodplain during high flow events. The 

streambanks display little evidence of erosion and the channel bed material is 

predominantly limestone bedrock. At the time of sampling, the riparian buffer consisted 

of mixed grassland vegetation (e.g. fescue [Festuca arundinaceae], bluegrass [Poa 

pratensis], broadleaf weeds) mowed every four to six weeks during the growing season. 
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For this study, parallel transects were established south of the stream at 2-m and 8-m 

distances from top-of-bank along a 650-m straightened stream section (Figures 2.1a and 

2.1b).   

One soil core was collected every 10-m (avoiding an improved stream crossing 

and a channelized drainageway) along each transect in July 2010 using an ATV-mounted 

hydraulic soil corer with 5-cm diameter (Giddings Machine Company, Windsor, CO). 

Cores were divided into 10-cm depth increments, up to a maximum sampling depth of 

70-cm. For the purposes of this study, sampling locations are numbered 1-40, with 

location 1 situated at the most downstream location and location 40 at the most 

upstream location. 

Soil Physical and Chemical Properties 

Soil texture was determined using the micropipette method (Burt et al., 1993; 

Miller and Miller, 1987).  Soil pH was analyzed in 1M KCl (SPAC, 2000b) and nutrient 

content (P, K, Ca, Mg, and Zn) was determined using Mehlich III extraction (SPAC, 2000a; 

SPAC, 2000c). Soil organic carbon was determined via LECO combustion (Nelson and 

Sommers, 1996) and is reported as % C.  

Statistical Analysis 

Means of soil chemical and physical properties were compared for differences 

between transects and among depths using the LSMEANS statement in the GLM 

procedure in SAS 9.2 (SAS, 2010). Least squares means were used to compare means 

among depths due to missing data from some sampling locations. Spearman correlation  
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Figure 2.1a. University of Kentucky Agriculture Experiment Station study site in Fayette 
County, Kentucky (inset). Blue dots indicate transect located 2-m from top-of-bank and 
red dots indicate transect located 8-m from top-of-bank. 

 
 
 

 
Figure 2.1b. Detail of sampling strategy. 
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analysis was used to examine relationships between transects and among depths. 

Analyses were conducted at the α = 0.05 significance level. 

To identify and describe spatial structure that may be present along the buffer 

transects, experimental semivariograms were computed using SGeMS software 

 (http://sgems.sourceforge.net/). The solver function in Microsoft Excel was used to fit 

range, sill, and nugget parameters for semivariogram models. Spherical semivariogram 

models were fit using the equations  

 

 

for spherical models, where h=lag distance, Co=nugget, C=structural component, 

Co+C=sill, and a=range (Legendre and Fortin, 1989; Nielsen and Wendroth, 2003).  

Results and Discussion 

Soils in the 2-m transect fall into the loam, sandy loam, and silt loam textural 

classes. Soils in the 8-m transect fall into the clay, clay loam, loam, sandy loam, silt loam, 

and silty clay textural classes. When considering all depths, soils in the 2-m transect 

sampling locations had greater sand content and lower clay content than soils in the 8-

m transect (Table 2.1). Greater sand content in the transect nearer the stream (2-m) 

may be a result of sediment from flooding, or a remnant of sediments deposited during 

the channelization of this stream segment. The greater sand content may result in soils 

along the 2-m transect having higher saturated hydraulic conductivities than the finer-

textured soils in the 8-m transect. A closer examination of each sampling depth  

http://sgems.sourceforge.net/
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Table 2.1. Soil physical properties. Values reported as least squares means; n = number 
of samples. For the same property different letters indicate significant differences 
(P<0.05). *Transect measurements compared among all samples at 2-m and 8-m, 
respectively. 

Depth n % Sand % Silt % Clay 
2-m transect     

0-10 cm 40 35.40 50.18 14.43 
10-20 cm 40 34.86 49.48 15.65 
20-30 cm 36 32.52 52.58 14.90 
30-40 cm 29 32.99 51.76 15.26 
40-50 cm 18 34.44 50.03 15.53 
50-60 cm 4 36.65 46.82 16.52 
60-70 cm 1 25.55 59.04 15.41 

8-m transect     
0-10 cm 40 29.83 51.84 18.33 

10-20 cm 40 30.30 51.39 18.30 
20-30 cm 40 29.75 52.20 18.05 
30-40 cm 38 29.02 52.87 18.11 
40-50 cm 27 32.71 48.77 18.52 
50-60 cm 13 32.09 51.37 16.54 
60-70 cm 4 38.13 44.99 16.88 

     
All depths*     

2 m 168 35.19a 50.17 14.64a 
8 m 202 31.84b 50.33 17.83b 
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indicated the 2-m transect had greater sand content than the 8-m transect at all depths 

except 60-70 cm (Table 2.1). Considering that this stream segment was straightened, it 

is possible that the sampling at the 60-70 cm depth along the 8-m transect location may 

have encountered historical stream channel material that would likely have a higher 

sand content than native soils. Sand and silt content followed an opposing pattern at all 

depths for both the 2-m and 8-m transects (Figures 2.2 and 2.3, 2.5 and 2.6, 

respectively), such that as sand increased silt decreased, and vice versa in a somewhat 

erratic pattern across the sampling locations. Surface (0-10 cm) clay content in the 2-m 

transect ranged from 10-15% over most sampling locations without dramatic variation 

(Figure 2.4) while clay content in the 8-m transect ranged from 15-25% over most of the 

sampling locations, except for a spike at location 21 (Figure 2.7). Clay content in both 

the 2-m and 8-m transects displayed more variation with depth than at the surface; 

subsurface clay content in the 2-m transect was in the 10-20% range while clay content 

in the 8-m transect remained in the 15-25% range (Figures 2.4 and 2.7). There was no 

significant difference in silt content between transects (Table 2.1). 

 Spearman correlation coefficients were examined to detect relationships in sand, 

silt, and clay contents between transects and among depths. No consistent significant 

correlations were found (Appendix, Table A). 

Soil pH in the 2-m transect did not show a consistent trend by depth (Table 2.2), 

but there was a trend in the 8-m transect of increasing pH with increasing depth. Both 

transect locations showed increasing levels of Ca with depth, which is likely driving soil 

pH and is attributable to limestone parent material.  A lower pH in the upper depths of  
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Figure 2.2.  Sand content (%) along transect 2-m from stream, in 10-cm depth 
increments. Sampling location at 0 equals most downstream location of sampling. Gaps 
in the data indicate a restrictive layer preventing sample collection. 
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Figure 2.3.  Silt content (%) along transect 2-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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Figure 2.4.  Clay content (%) along transect 2-m from stream, in 10-cm depth 
increments. Sampling location at 0 equals most downstream location of sampling. Gaps 
in the data indicate a restrictive layer preventing sample collection. 
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Figure 2.5.  Sand content (%) along transect 8-m from stream, in 10-cm depth 
increments. Sampling location at 0 equals most downstream location of sampling. Gaps 
in the data indicate a restrictive layer preventing sample collection. 
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Figure 2.6.  Silt content (%) along transect 8-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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Figure 2.7.  Clay content (%) along transect 8-m from stream, in 10-cm depth 
increments. Sampling location at 0 equals most downstream location of sampling. Gaps 
in the data indicate a restrictive layer preventing sample collection. 
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Table 2.2. Soil chemical properties. Values reported as least squares means; n = number 
of samples. For the same property different letters indicate significant differences 
(P<0.05). *Transect measurements compared among all samples at 2-m and 8-m, 
respectively. 

Depth 
 

n % C pH 
P     

mg kg-1 
K     

mg kg-1 
Ca  

mg kg-1 
Mg  

mg kg-1 
Zn  

mg kg-1 
2-m transect         

  0-10 cm 40 4.93a 6.2a 225a 237a 5031a 169a 5.73a 

10-20 cm 40 2.37b 6.27a,b 212b 131b 5058a 115b 2.58b 
20-30 cm 37 1.95c 6.34b,c 212b 108b,c 5179a 110b 1.78c 

30-40 cm 30 1.81c,d 6.43c 216a,b 101c 5871b 118b 1.72c 

40-50 cm 18 1.44d 6.44c 219a,b 91c 5414a,b 115b 1.65c 

50-60 cm 4 1.34c,d 6.28a,c 218a,b 98b,c 5093a,b 115b 1.55b,c 
60-70 cm 1 1.54b,c,d 6a,b 211a,b 141a,b,c 6046a,b 167a 1.13b,c 
8-m transect         

  0-10 cm 40 4.14a 5.59a 239a 304a 3903a 180a 4.38a 
10-20 cm 40 1.9b 5.54a 244a 176b 3887a 139b 1.74b 

20-30 cm 40 1.59c 5.6a 240a 126c 4054a 134b 1.23c 

30-40 cm 38 1.22d 5.72b 231a,b 106c,d 4367b 134b 1.26c 

40-50 cm 27 1.07d 5.81b 216b 132c 4769c 146b 1.42b,c 
50-60 cm 13 0.94d 6.06c 211b 84c,d 5265d 140b 0.95c 

60-70 cm 4 0.85d 6.38c 234a,b 34d 5453d 117b 1.22b,c 
         
All*         
2 m 170 2.15a 6.36a 217a 112a 5463a 124a 2.39a 
8 m 202 1.81b 5.8b 233b 150b 4467b 142b 1.76b 
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the 8-m transect could be influenced by higher C content in the upper 30-cm, although 

this trend is not reflected in the 2-m transect. Overall, the 2-m transect locations had a 

significantly higher soil pH and greater C content than the 8-m transect locations, which 

suggests that soil pH is not determined by organic matter in this sampling area but 

instead driven by parent material.  

The 2-m transect locations had lower P, K, and Mg but higher Ca and Zn than the 

8-m transect. K, Mg, and Zn concentrations were greatest in the surface depths for both 

transects. Soils in both transects contain P and K levels sufficient for establishing 

vegetation for riparian buffers and filter strips (UK-CES, 2012); this characterization also 

provides an inventory of the potential nutrient load entering streams from sloughing 

stream banks. 

Soil P values along the 2-m transect exhibited few distinct spatial patterns with 

two exceptions: 1) the 10-20 cm depth had a slight increase in soil P at sampling 

locations 25-28 and the 20-30 cm depth had a dramatic decrease in soil P at sampling 

locations 18-21 (Table 2.2, Figure 2.8). Soil P values along the 8-m transect had a greater 

range and exhibited a more pronounced large scale pattern than the 2-m transect. 

Sampling locations 4-5 and 15-18 had a spike in soil P at all depths (Table 2.2, Figure 

2.9), possibly a concentration from weathered phosphatic limestone parent material or 

depositional area of P-rich sediments. 

Both transects showed a decreasing trend of K with depth. The mean surface soil 

K value along the 2-m transect was 237 mg kg-1 with wide spatial variation (Table 2.2, 
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Figure 2.8. Soil P (mg kg-1) along transect 2-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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Figure 2.9. Soil P (mg kg-1) along transect 8-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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Figure 2.10). Depths below 20-cm exhibited little spatial variation. Surface soil K values 

along the 8-m transect showed spatial variation similar to that in the 2-m transect 

(Figure 2.11). Soil K transformations can be very complex; soil K can be in solution or 

exchangeable, but more often may be in the mineral form or fixed to soil mineral 

particles (Helmke and Sparks, 1996). Soil moisture conditions play a role in K availability, 

with soil wetness associated with less available K (Chen et al., 1987; Winzeler et al., 

2008) although the opposite is apparent in this case, considering the visually observed 

seasonal wet soil conditions in locations 33-35. Increased soil K in these locations may 

simply be K associated with alluvial soil minerals.  

Percent C significantly decreased with depth to the 20-30 cm depth along the 2-

m transect and to the 30-40 cm depth along the 8-m transect (Table 2.2). When 

considering all depths and all locations, soils along the 2-m transect location had 

significantly greater C content than soils along the 8-m transect location.  A simple 

visualization of the surface depth (0-10 cm) C content along both transects reveals a 

spatial relationship between the two transects (Figure 2.12). The C content in both 

transects follow a similar pattern of variation in locations 1-8 (Figures 2.12, 2.13, and 

2.14, 0-10 cm depth only) and in locations 19-24, such that as C content increased or 

decreased in the 2-m transect so did the C content in the 8-m transect, with the 

magnitude of C content generally being higher in the 2-m transect. The same 

relationship is shown in locations 33-40, although the magnitude of C content was 
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Figure 2.10. Soil K (mg kg-1) along transect 2-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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Figure 2.11. Soil K (mg kg-1) along transect 8-m from stream, in 10-cm depth increments. 
Sampling location at 0 equals most downstream location of sampling. Gaps in the data 
indicate a restrictive layer preventing sample collection. 
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        Figure 2.12.  Soil carbon (%) at 0-10cm depth along both the 2-m and 8-m transects. 
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Figure 2.13.  Soil carbon (%) along transect 2-m from stream, in 10-cm depth 
increments. Sampling location at 0 equals most downstream location of sampling. Gaps 
in the data indicate a restrictive layer preventing sample collection. 
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Figure 2.14.  Soil carbon (%) along transect 8-m from stream, in 10-cm depth 
increments. Sampling location at 0 equals most downstream location of sampling. Gaps 
in the data indicate a restrictive layer preventing sample collection. 
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higher in the 8-m transect. This higher C content in the 8-m transect at locations 33-40 

may be a result of wetter soils at the 8-m transect than at the 2-m transect, as observed 

during field sampling. The soils in this area of the study site tend to have standing water 

longer after rain events than the other sampled locations. The wetter soils in the 8-m 

transect could have decreased decomposition rates compared to the 2-m soils, resulting 

in C accumulation. Locations 9-18 and 24-32 appear to have opposing trends in C 

content, with the 8-m transect having noticeably lower C content than the 2-m transect 

except at locations 11 and 12. Locations 12 and 13 are separated by an improved 

equipment crossing, although there is no indication of this feature influencing soil C. 

Locations 25-32 have a steeper slope between the two transects than in other locations 

and a convex landform, possibly attributing to increased drainage and subsequently a 

lower water content, increased soil respiration, or both, at the 8-m location and a lack 

of accumulation of soil C (Abnee et al., 2004; Gessler et al., 2000). In addition, the 2-m 

transect at locations 25-32 tend to be locations of flooding debris deposition. These 

results concur with observations made by Blazejewski et al. (2009), who suggest that 

geomorphic processes such as flooding and deposition significantly influence soil C 

distribution in first- through fourth-order stream riparian areas.  

Spatial patterns in C content at the subsurface sampling depths are less distinct 

than the surface depth along the 2-m transect and generally reflect lower soil C content 

(Figure 2.13). Subsurface C along the 8-m transect reflects the pattern of the surface C, 

with a noticeable decrease at locations 17-28 (Figure 2.14).  Spearman correlation 
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coefficients were examined to detect C content relationships between transects and 

among depths. No consistent significant correlations were found (Appendix, Table A). 

Semivariogram analysis focused on soil C because it is a soil property that can be 

influenced by management and may be an indicator of riparian buffer function 

(Lowrance et al., 2002). Experimental semivariograms of percent C were calculated for 

both transects to a maximum depth of 40-cm (no significant difference in C content was 

shown below this depth). A semivariogram is a depiction of the average of squared 

differences between observations separated by a given lag distance. In this case, the 

semivariogram depicts the average variance in percent C of pairs of observations 

separated by a lag distance of 10-m. Semivariogram models consist of three 

components: 1) the nugget variance, which is the extrapolated intercept at lag = 0; 2) a 

structural component, which when added to the nugget variance makes up the sill or 

total semivariance; and 3) the range, the distance over which spatial dependence is 

observed for the spherical model chosen here. 

The spatial dependence of percent C between the two transects and among 

depths is shown in Table 2.3. The nugget:sill ratio was calculated to express the nugget 

semivariance as a percentage of the total semivariance (Cambardella et al., 1994). This 

value was used to define classes of spatial dependence, similar to those described in 

Cambardella et al. (1994), with the addition of one class as follows: if ratio was ≤ 25, the 

relationship was considered to have strong spatial dependency; if ratio was between 25 

and 50, the relationship was considered to have moderate spatial dependency; if the 

ratio was between 50 and 75, the relationship was considered to have slight spatial  
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1 Nugget = Nugget semivariance/total semivariance x 100. 
2 Spatial classes: Strong = strong spatial dependency (%Nugget<25); Moderate = moderate spatial 
dependency (%Nugget 25-50); Slight = slight spatial dependency (50-75); Weak = weak spatial dependency 
(%Nugget>75). 
3 Spatial classes (Cambardella et al., 1994): Strong = strong spatial dependency (%Nugget<25); Moderate = 
moderate spatial dependency (%Nugget 25-75); Weak = weak spatial dependency (%Nugget>75). 

 

 

 

 

 

 

 

Table 2.3. Parameters for % carbon semivariogram models.   

    Semivariance       Spatial class3 

Depth Model Nugget Total 
Range 

(m) 
Nugget1 

(%) 
Spatial 
class2 

(Cambardella et al., 
1994) 

2-m 
transect        

0-10 cm Spherical 1.10 1.58 70.01 69.21 Slight Moderate 
10-20 cm Spherical 0.25 0.36 32.82 68.86 Slight Moderate 
20-30 cm Spherical 0.06 0.22 62.52 25.65 Moderate Moderate 
30-40 cm  Nugget 0.78 0.78 -- -- -- -- 
        
8-m 
transect        

0-10 cm Spherical 0.46 1.23 129.83 37.76 Moderate Moderate 
10-20 cm Spherical 0.06 0.98 140.70 5.76 Strong Strong 
20-30 cm Spherical 0.00 0.81 133.80 0.00 Strong Strong 
30-40 cm Spherical 0.18 0.60 150.86 29.37 Moderate Moderate 
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dependency; and if the ratio was >75, the relationship was considered to have weak 

spatial dependency.  

Semivariogram models shown here for C content in the 2-m transect indicate 

spatial structure in the upper 30-cm, but ranges vary (Table 2.3, Figure 2.15). The 

surface depth (0-10cm) indicates spatial structure to a range of 70-m (Figure 2.15a), 

meaning that samples taken within 70-m of each other show similar percent C content. 

This range drops to 33-m at the 10-20 cm depth (Figure 2.15b), then increases to 63-m 

at the 20-30 cm depth (Figure 2.15c). Carbon content measurements separated by 

distances shorter than these ranges are considered to be related spatially. The 30-40 cm 

depth variogram model showed a pure nugget effect (Figure 2.15d), indicating strong 

variability even over very short distances although the raw data show little variation 

over the sampling distance compared to the surface layer (Figure 2.13); the 

semivariance at the shorter lag distance is as large as the larger scale variance. The 

sampling distance employed in this study likely exceeded that required to detect spatial 

dependence in soil C at this depth. Fluctuations of range among depths at the 2-m 

transect may be a result of extrinsic variability caused by deposition of flood materials 

containing C. Our spatial classes show slight spatial dependence in the 0-10 cm and 10-

20 cm depths, but moderate dependence at the 20-30 cm depth. Comparatively, 

Cambardella et al. (1994) would have classified all three models to have moderate 

spatial dependence.  

Semivariogram models for the 8-m transect indicate moderate or strong spatial 

structure in percent C for all depths (Table 2.3, Figure 2.16), with ranges of 130-150 m. 
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Figure 2.15. Semivariograms for percent C along 2-m transect. 
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Figure 2.16. Semivariograms for percent C along 8-m transect. 
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Graphs of the raw data reflect these moderate to strong spatial relationships in soil C 

along the 8-m transect (Figure 2.14). These results suggest that riparian buffer soil C 

content farther from the stream is less variable and has a stronger spatial relationship 

than that closer to the water body. The ranges found for the 8-m transect are similar to 

those reported by Cambardella et al. (1994) for total organic carbon in two crop fields. 

If soil carbon content is considered an indirect assessment of soil quality, and 

subsequently soil quality as an indicator of a buffer’s ability to reduce nonpoint source 

pollution (Lowrance et al., 2002), a buffer’s ability to reduce nonpoint source pollution 

would be easier to predict at a distance of 8-m from the stream than at 2-m distance 

from the stream based on soil C distributions. In addition, microscale investigations of 

landform (concave, convex) and slope influences on soil moisture and soil C dynamics in 

riparian buffers may also contribute to assessing buffer function in regulating pollutants, 

reflecting Dosskey et al.’s (2005) suggestion that precision conservation (site-specific 

filter strips, etc.) may have a greater water quality benefit but with an increased 

implementation cost. 

Conclusions 

Soils along the 2-m transect location differed significantly from the soils along 

the 8-m transect. The 2-m transect soils had greater C content, higher pH, higher Ca and 

Zn, lower P, K, and Mg, greater sand content, and lower clay content than soils along the 

8-m transect location. Some of these differences (C and sand content) are likely a direct 

result of flooding and debris deposition from the stream while others may simply reflect 

inherent soil variation. This characterization of riparian buffer soil properties provides 
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insight into the potential nutrient loading of Central Kentucky streams as a result of 

future sediment loss from sloughing stream banks. 

The utilization of semivariogram analysis to describe soil C variability provided 

explicit information about the range of spatial autocorrelation in this riparian 

environment. Differences in soil C spatial variation between the two transects indicate 

that soil properties closer to the water body may be more variable than those further 

from the stream. Spatial relationships of soil C were stronger along the 8-m transect 

than along the 2-m transect, suggesting that managing for soil C farther from the stream 

would be less intensive than managing closer to the stream. If soil C is used as an 

indicator of buffer function, management intensity to maximize buffer efficacy may vary 

depending on distance from the stream. Uniform buffer function as a result of 

landscape management cannot be expected if underlying conditions are influencing soil 

properties. This relationship proposes a choice for riparian buffer managers: 1) retain 

more land area for production activities but increase the maintenance intensity for a 2-

m wide buffer or, 2) reduce land area for production activities and reduce the 

maintenance intensity for an 8-m wide buffer. 

Establishing baseline soil characteristics, including spatial variability, in riparian 

areas is an important first step in the process of determining how above-ground 

management techniques affect soil physical and chemical properties. Further study of 

these management strategies and their subsequent impact on soil properties will aid in 

assessing buffer efficacy and the development of site-specific conservation strategies. 

 
Copyright © Amanda Abnee Gumbert 2013 
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Chapter Three 

Riparian Buffer Management Influences on Roots, Soil Structural Properties, and 

Hydraulic Conductivity 

 

Introduction 

Approximately 55% of Kentucky’s impaired stream miles do not support their 

designated uses due to agriculture (KEEC, 2010). Farmers have been encouraged to use 

conservation buffers such as riparian areas, grassed waterways, filter strips, and 

vegetative barriers as effective means to control agricultural nonpoint source (NPS) 

pollution for years (Helmers et al., 2006; Schultz et al., 1997; USDA-NRCS, 2000; USDA-

NRCS, 2005). However, farmers have been reluctant to remove land from production 

because of potential income loss. Government-sponsored conservation programs have 

attempted to compensate agricultural producers for lost income and incentivize the 

implementation of conservation buffers (KEPPC, 2008; USDA-NRCS, 2000), but the 

aesthetics and perceptions of unkempt areas on the farm are still a challenge to 

widespread adoption (Lovell and Sullivan, 2006). 

The United States Department of Agriculture (USDA) defines conservation 

buffers as strips of vegetation placed in the landscape to influence ecological processes 

and provide various goods and services (Bentrup, 2008); “conservation buffer” is a 

broad term that includes riparian areas, grassed waterways, filter strips, vegetative 

barriers, windbreaks, shelterbelts, and wildlife corridors (Bentrup, 2008; Helmers et al., 

2006). Riparian areas can be maintained as conservation buffers in the agricultural 
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landscape; they play a key role on the farm because they serve as a transition zone 

between terrestrial and aquatic ecosystems. Soil water passes through riparian areas 

before reaching streams and riparian vegetation, by uptake, may significantly modify 

the amount of dissolved nutrients entering streams (Gregory et al., 1991). Further, 

vegetation in the riparian zone may reduce NPS pollution in agroecosystems and 

improve soil quality by increasing infiltration (Bharati et al., 2002), removing sediment 

and nutrients from surface runoff (Lowrance et al., 2002), and increasing soil organic 

matter.  

The goal of incorporating conservation buffers into agricultural landscapes is to 

improve ecosystem health (Lovell and Sullivan, 2006), but assessing overall conservation 

buffer effectiveness can be complex when buffers are located in transitional areas 

subject to disturbance. Upland and fluvial disturbances include surface and subsurface 

water movement (Dosskey et al., 2010), water table fluctuations, erosion and deposition 

of sediments (Wynn and Mostaghimi, 2006), and changes in vegetation as a result of 

these disturbances (Dosskey et al., 2010; Gregory et al., 1991; Helmers et al., 2006). 

Therefore, identifying specific soil and/or vegetative properties that measure or indicate 

desirable buffer behaviors is important. Lowrance et al. (2002) suggested that a buffer’s 

ability to reduce NPS pollutants could be indirectly assessed with time by measuring 

infiltration rate, aggregate structure, and soil carbon. 

Maximizing infiltration of runoff water is expected to decrease the export of 

soluble and adsorbed pollutants (Helmers et al., 2006) by allowing uptake by vegetation 

and deposition of sediments prior to reaching surface waters. Soils with a high 
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infiltration capacity are likely to have a greater sediment trapping capability in addition 

to reducing the release of soluble pollutants to nearby waterways. Soils in naturalized 

areas have shown increased water infiltration rates because of accumulation and on-site 

decomposition of leaves and associated increases in earthworm and macroarthropod 

activity (Millward et al., 2011). In addition, soil permeability is increased by root growth 

and decay and burrowing by macroinvertebrates grazing on roots and litter (Dosskey et 

al., 2010), thus creating large pores that enhance water movement. 

 Hydraulic conductivity is a measure of soil’s ability to transmit water (Klute and 

Dirksen, 1986) and is directly related to pore geometry and organization, which in turn is 

influenced by soil texture and structure (Ehlers et al., 1995). Soil particles are bound 

together by soil organic matter into aggregates that provide soil its structure; soil 

structure is heavily influenced by tillage, traffic (equipment and animal), and soil biology 

(Oades, 1993). Soil biology has been identified as the driving force of the evolution and 

maintenance of soil structure (Dick, 1992), and increased microbial activity in soil and 

related soil aggregate stability may indicate the potential for soil water infiltration, soil 

sustainability, and soil and ecosystem functions (Paudel et al., 2011).  

Plant communities enhance riparian zones by regulating water temperature 

(English et al., 2004), reducing erosive forces on stream banks (Wynn et al., 2004) by 

reducing flow velocities (Helmers et al., 2006), and contributing carbon to the 

ecosystem (Dosskey et al., 2010). Vegetated streamside buffers provide foliage and 

stems that increase surface roughness and a dense network of roots that bind riparian 

substrates to increase streambank resistance to erosion (Kiley and Schneider, 2005; 
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Wynn et al., 2004). Veum et al. (2012), in a 10-year study, demonstrated that vegetated 

filter strips induced positive changes to soil carbon and aggregate stability compared to 

no-till row crop production. 

Information about the impact of aboveground management on root systems of 

riparian vegetation is limited. Studies investigating the effects of aboveground 

vegetation removal (whether by mowing, grazing, or burning) on root systems have 

predominantly focused on upland prairie or pasture systems (Johnson and Matchett, 

2001; Kitchen et al., 2009; Todd et al., 1992), or simulated field conditions (Neigebauer 

et al., 2000) and report mixed results. Annual mowing has been reported to have no net 

effect on total root biomass, although it did significantly increase root biomass in the 

upper 10 cm compared to unmowed treatments (Kitchen et al., 2009). Todd et al. (1992) 

reported decreased live root biomass under mowing treatments while Dickinson and 

Polwart (1982) reported an increase in below-ground biomass in the second year of 

mowing. Considering that mowing is a typical riparian buffer management strategy 

utilized by Kentucky land managers, research is needed to understand the effects of 

mowing on riparian buffer plant communities.  

The type of vegetation established in riparian zones can influence overall 

function (Schultz et al., 1997).  Switchgrass (Panicum virgatum) is a native warm-season 

grass often recommended for the grass zone in riparian buffers. It has dense, stiff stems 

that slow surface runoff and promote infiltration. Cool-season grasses such as fescue 

(Festuca arundinacea) are not recommended for riparian buffers that experience 

overland flow because their stems do not remain upright under surface runoff and they 
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produce eight times less root mass than native grasses (Schultz et al., 1997). However, 

other research (Lowrance et al., 2002) has shown that cool-season grass filters have 

twice as much carbon in the upper 20 inches (50.8 cm) of soil as switchgrass, with 

corresponding higher rates of denitrification. Additionally, Self-Davis et al. (2003) found 

fescue to have greater infiltration and lower runoff compared to native warm-season 

grasses. This may indicate that native warm-season grasses are more effective at 

slowing overland flow, but cool-season grass filters might be more effective at below-

ground processes. Native grass strips increase infiltration rates and microbial activity, 

and might be more effective at providing soil carbon deeper in the soil profile over 

longer periods than cool-season grasses such as fescue (Lowrance et al., 2002; Schultz et 

al., 1997).  

At present we do not fully understand the interaction between management of 

above-ground plants and below-ground processes in riparian buffers. Specifically, study 

is needed to assess how above-ground treatment affects root biomass, the size and 

stability of soil aggregates, and related hydraulic conductivity. These attributes may 

influence riparian buffer function and effectiveness in trapping nutrients from surface 

runoff. Specific information on establishing and maintaining riparian buffers will assist 

agricultural producers in maximizing the potential for water quality protection by using 

riparian buffers. The purpose of this study was to assess root biomass, soil aggregate 

size distribution, water-stable aggregates, hydraulic conductivity, and soil carbon in a 

riparian buffer after imposing vegetation management variables that included three 

mowing regimes and one native grass regime. 



 

54 
 

Methods 

Field 

The study site is at the University of Kentucky Agriculture Experiment Station, 

near Lexington, KY (N 38°07'23.98", W 84°29'50.04") (Figure 3.1a). The site is a riparian 

zone of an unnamed tributary to the Cane Run Creek. Normal annual precipitation for 

Fayette County (Lexington, KY) is 124-cm (Priddy, 2012); annual precipitation for the 

duration of this study ranged from 102-166 cm (Table 3.1), including the wettest year on 

record for Kentucky (2011) (Priddy, 2012). Soils are classified as fine, mixed, active, 

mesic Fluvaquentic Endoaquolls and mapped as Lanton silty clay loam (dunning) series 

with fine-textured alluvium parent material derived from limestone (USDA-NRCS, 2011) 

(Figure 3.1b). Sections of the stream were channelized for agricultural purposes in the 

1970s and the surrounding buffer was maintained as mowed grassland (Calvert, 2011) 

until research plots were established in July 2010. The stream is not incised and thus can 

access the floodplain during high flow events. The streambanks display little evidence of 

erosion and the channel bed material is predominantly bedrock. Prior to establishing the 

treatment plots, the riparian zone consisted of mixed grassland vegetation (e.g. fescue 

[Festuca arundinaceae], bluegrass [Poa pratensis], broadleaf weeds) mowed every four 

to six weeks.  

The treatment plots measured approximately 10-m x 15-m, with the 10-m 

distance parallel to the stream. The experiment design consisted of ten replications of  
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Figure 3.1a. University of Kentucky Agriculture Experiment Station study site in Fayette 
County, Kentucky (inset). Numbers indicate individual plots. 
 

 

Figure 3.1b. Aerial view of study site with soil series detail. 
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Table 3.1. Rainfall totals (cm) for Fayette County, KY. 

 
2010 2011 2012 

 January 7.59 5.16 9.45 
 February 4.47 17.68 6.38 
 March 3.20 12.42 11.02 
 April 7.90 33.71 5.00 
 May 24.97 14.81 8.81 
 June 10.87 5.89 3.15 
 July 20.47 8.89 14.99 
 August 3.30 10.31 3.05 
 September 1.65 16.38 16.66 
 October 3.07 12.32 3.07 
 November 11.53 18.69 3.38 
 December 5.79 9.37 16.87 
 Total 104.83 165.63 101.83 
 Data reported at KY Mesonet station for Fayette County, http://kymesonet.org, accessed December 31, 2012. 
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four treatments in a repeating pattern to consider spatial variation along the length of 

the stream. Plot treatments were: 1) intensive mowing (mowed to 15-cm (6-inch) height 

every four weeks during the growing season); 2) moderate mowing (mowed to 15-cm 

(6-inch) height twice during the growing season); 3) no mow; and 4) native grass 

transition. Plots receiving mowing treatments were mowed with a 1.8-m (6-foot) mower 

attached to a 29,828-watt (40-horse power) tractor perpendicular to the stream to 

avoid influencing adjacent treatment plots. Native grass transition plots received 

glyphosate herbicide treatment in Fall 2010 and Spring 2011 to eliminate existing 

vegetation, and drill-seeded with a native grass-forb mixture (Roundstone Native Seed, 

Upton, KY) in June 2011. The native grass-forb mixture contained the following species: 

big bluestem (Andropogon gerardii), Indiangrass (Sorghastrum nutans), switchgrass 

(Panicum virgatum), partridge pea (Cassia fasciculata), Illinois bundleflower 

(Desmanthus illinoensis), black-eyed Susan (Rudbeckia hirta), and purple coneflower 

(Echinacea purpurea). Native grass plots were mowed once post-planting (May 2012) to 

reduce weed pressure. Four undisturbed plots located upstream of the study site served 

as a control. In this case, the term undisturbed is used to describe a riparian area 

receiving no mowing treatment with some trees present. Undisturbed plots were of the 

same dimensions as treatment plots, dominated by mixed grassland vegetation at the 2-

m distance from the stream and shaded by mature trees adjacent to the stream 

channel. 

A sampling transect located 2-m from top-of-bank was established along all plot 

locations. Soil samples were collected in May-June 2011 and May-June 2012 at 1, 3, 5, 7, 
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and 9 m locations along the 2-m transect (Figure 3.2) within each plot using a JMC 

Environmentalist’s Sub-Soil Probe Sampling System. Soil cores measuring 2-cm diameter 

were collected to a depth of 30-cm, divided into 10-cm increments, and stored at 3°C 

until processed for root biomass.  

Soil surface infiltration was measured along the 2-m transect at the 5-m location 

(center) within each plot using a tension infiltrometer (Soil Measurement Systems, ND). 

Sampling locations were prepared by inserting a 20-cm PVC ring into the soil surface, 

removing all above-ground vegetation inside the ring with clippers, placing a piece of 

polyamide membrane (31-µm mesh opening) fabric over the soil surface, and applying a 

layer of fine sand (119-µm) evenly spread over the surface of the membrane to create 

an even contact surface (Figure 3.3). Flow-rate measurements were taken at -10 cm, -5 

cm, and -1 cm tensions until steady-state conditions were reached. These sets of flow-

rate measurements were used to calculate saturated hydraulic conductivity (Ksat) using 

Wooding’s (1968) equation for approximating steady-state unconfined infiltration rates 

into soil from a circular interface with radius r: 

Q=πr2K[1+(4/πrα)]   

where Q is water flux (in cubic length units per time), K is hydraulic conductivity (length 

units per time), and α is a constant from the expression by Gardner (1958): 

 K(ψ)= Ksat exp(αψ) 

where Ksat is the saturated hydraulic conductivity and is a constant fitted to the K(ψ) 

data pairs. Using two soil water potentials (ψ1 and ψ2), steady state infiltration fluxes  
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Figure 3.2. Study plots. Example plot layout is shown with detailed within-plot sampling 
scheme (inset). 
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Figure 3.3. Infiltration data collection. (Clockwise from top left) Removing vegetation 
from the surface; applying a layer of fine sand to create an even contact surface; and 
tension infiltrometer in use. 
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Q(ψ1 ) and Q(ψ2) are measured, resulting in the following two equations with two 

unknowns: 

 Q(ψ1)= πr2Ksat exp(α ψ1) [1+(4/πrα)]   

and 

 Q(ψ2)= πr2Ksat exp(α ψ2) [1+(4/πrα)]  . 

From these equations, α was determined by the following equation: 

 α = (ln[Q(ψ2)/Q(ψ1)])/(ψ2-ψ1) , 

and a value for α was determined for each pair of soil water potentials and water flux 

measurements. Respective coefficients for K(ψ1 ) and K(ψ2) were calculated by using α 

values in the equation: 

 K(ψ1/2)= Q(ψ1/2)/ (πr2 [1+(4/πrα)])  . 

Values for Ksat were determined by the following equation: 

 Ksat= K(ψ1/2)/exp(α ψ1/2)  . 

Laboratory 

Roots were manually picked from each soil sample for 15 minutes, rinsed twice 

with deionized water, weighed, dried at 60°C for 24 hours, and weighed again to 

determine root biomass as described by Gift et al. (2010). Following root extraction, soil 

samples were air dried at room temperature (24°C) for approximately 5 days. Air dried 

soil was separated to determine aggregate size distribution by placing samples in a nest 

of sieves with openings of 4 mm, 2 mm, 1 mm, 0.25 mm, and 0.053 mm. Sieves were 

shaken at an amplitude of 2.5 cm for 1 minute. Mean weight diameter (MWD) was 

calculated by the methods described in Kemper and Rosenau (1986) using the equation  
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where Zi is the mean diameter of each size fraction and wi is the proportion of the total 

sample weight occurring in the corresponding size fraction. 

After samples were sieved and weighed, one-half of each aggregate class size 

was combined to create a representative sample for chemical and physical property 

evaluation. Soil texture was determined using the micropipette method (Burt et al., 

1993; Miller and Miller, 1987). Soil organic carbon was determined via LECO combustion 

(Nelson and Sommers, 1996) and is reported as % C. Wet aggregate stability was 

determined from 1-2 mm-size aggregates using the wet sieving procedure (Kemper and 

Rosenau, 1986). 

Statistical Analysis 

 The Shapiro-Wilk test indicated a normal distribution of surface soil C prior to 

treatment implementation; therefore, subsequent statistical analyses were performed 

using original data sets without transformation with the exception of Ksat, which was log-

transformed to simplify reporting. Analysis of variance (ANOVA) was conducted using 

the mixed procedure in SAS (Cary, NC) to determine statistical differences in response 

variables as a result of imposed treatments with year, depth, and treatment as main 

effects. An autoregressive covariance structure of sections was used in the ANOVA to 

account for underlying correlation considering that plots were organized in a linear 

repeating pattern. Each section contained one plot of each treatment in sequence, 

beginning with the most downstream plot. Means were compared among treatments 
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and depths using the LSMEANS statement in the mixed procedure (SAS, 2010). 

Spearman correlation coefficients were used to examine relationships between 

response variables by treatment. Statistical differences were considered significant at    

α = 0.15.  

 Spatial relationships of response variables were examined using the 

experimental semivariogram 

 

where Aixi  denotes observation Ai at location xi and N(h) denotes the number of 

observation pairs in lag class h (Wendroth et al., 2011). 

Results and Discussion 

This study examined root biomass, soil aggregate size distribution, aggregate 

stability, hydraulic conductivity, and soil C after imposing three mowing regimes and 

one native grass regime on a riparian buffer. The native grass treatment had no 

established above-ground vegetation at the time of sampling in 2011 due to the 

transition from existing grassland vegetation to a native grass-forb mix; above-ground 

vegetation was present in the native grass treatment plots by July 2011. Significance 

was determined at α = 0.15 rather than α = 0.05 because the risk of failure to detect real 

differences was greater than the risks associated with detecting differences that did not 

occur (Type II error) (Carmer and Walker, 1988). Failing to detect real differences in a 

conservation practice study such as the riparian buffers examined here could translate 
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to a failure to utilize effective management strategies to protect water quality, whereas 

detecting differences that really do not occur will have minimal negative consequences. 

Root Biomass 

Root biomass values are reported as means from 32.4 cm3 soil sample volume. 

Root biomass was compared among all treatments for both years of this study. With 

one exception, for both years and all treatments, root biomass was significantly greater 

(p<0.15) in surface soil samples (0-10 cm) than sub-surface depths (10-20 cm and 20-30 

cm) (Table 3.2). These results are consistent with other studies reporting root biomass 

concentrated in the upper soil profile in riparian systems (Gift et al., 2010; Kiley and 

Schneider, 2005; Wynn et al., 2004). Wynn et al. (2004) reported significantly greater 

root length density (calculated as total length of all roots within a unit soil volume) in 

the top 30-cm of herbaceous buffers compared to forested buffers, but a greater root 

volume ratio (total volume of roots per unit soil volume) below 15-cm depth in forested 

buffers. The undisturbed sites in this study may be exhibiting characteristics of both 

herbaceous and forested buffers because both types of vegetation are present in these 

sites. 

 There were no statistically significant differences (p<0.15) in root biomass among 

imposed treatments below the 10-cm depth (Table 3.2) two years after treatment 

imposition; therefore, further discussion of root biomass will focus on the 0-10 cm 

sampling depth. After one year of treatment (2011), root biomass in intense mow, 

moderate mow, and no mow treatments were not significantly different (p<0.15) 

although the trend indicated an increase in root biomass with decreased mowing  
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Table 3.2. Dry root biomass for all study soils by treatment and depth. Std err = 
Standard error of the mean; n = number of samples. Values followed by a different 
lowercase letter within columns and depths are significantly different at α = 0.15. 

Treatment 
 

n 
Mean  

(mg cm-3) 
Std Err Mean  

(mg cm-3) 
Std Err 

(0-10 cm)  2011 2012 
Intense Mow 50  8.32bc 0.65     6.68bc 0.43 
Moderate Mow 50 8.66c 0.78    8.15c 0.67 
No Mow 50 9.12c 0.94     6.10ab 0.49 
Native Grass 50 6.96a 0.71   4.57a 0.72 
Undisturbed 20  6.78ab 0.90 10.88d   1.61 

(10-20 cm)  
    Intense Mow 50 0.92a 0.13   1.37a 0.41 

Moderate Mow 50 1.18a 0.23   0.99a 0.14 
No Mow 50 0.82a 0.12   0.79a 0.16 
Native Grass 50 0.57a 0.09   1.09a 0.32 
Undisturbed 20 3.51b 0.52 13.14b 3.74 

(20-30 cm)  
    Intense Mow 44 0.27a 0.07  0.33a 0.07 

Moderate Mow 43 0.76a 0.29  0.36a 0.06 
No Mow 48 0.26a 0.06  0.29a 0.05 
Native Grass 49 0.20a 0.05  0.20a 0.04 
Undisturbed 20 2.36b 0.41  5.61b 1.30 
 

     

 

 

 

 

 

 

 



 

66 
 

frequency (Table 3.2, Figure 3.4). In 2012, the undisturbed sites had statistically greater 

(p<0.15) root biomass than all treatments (Table 3.2, Figure 3.4). For all imposed 

treatments, root biomass was greater in 2011 than 2012, with the intense mow, no 

mow and native grass transition treatments having significantly (p<0.15) less root 

biomass in 2012 (Figure 3.4).   

The native grass treatment had less root biomass than all other imposed 

treatments in both years. Considering that native grass transition plots were planted  

with warm season grasses and forbs, two factors likely contributed to lower root 

biomass in these plots compared to the other mowing treatments: 1) native grass plots 

had been recently established (June 2011); and 2) root systems in the native plots were 

not in the same growth phase in 2012 compared to the other imposed treatments, 

which were dominated by cool season grasses and weeds.  

Researchers have reported mixed results from the influence of mowing or 

clipping on root biomass. Kitchen et al. (2009) reported mowing significantly increased 

root biomass in the upper 10-cm of unburned tallgrass prairie compared to unmowed 

treatments, with little impact to roots in lower depths and no net effect on total root 

biomass. Todd et al. (1992) report decreased live root biomass of native grasses under 

mowing treatments to a height of 5-cm at 3-week and 6-week intervals; others report 

an increase in below-ground biomass of European lawn grasses in the second year of 

intense mowing (Dickinson and Polwart, 1982) similar to the intense mowing treatment 

in the present study. In a pasture study on Vancouver Island, Canada, Ziter and 

MacDougall (2013) reported a burst of short-lived roots in the upper 20-cm after 



 

67 
 

 

 

Figure 3.4. Root biomass at 0-10 cm depth by treatment. Treatments: 1=Intense Mow; 
2=Moderate Mow; 3=No Mow; 4=Native Grass Transition; 5=Undisturbed. Standard 
error bars at 95% confidence intervals. Asterisks denote significant differences (p<0.15) 
between years within treatment.  
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clipping grasses to 5-cm (clippings removed); roots subsequently died during the 

remainder of the growing season and would have gone unnoticed without continuous 

sampling. 

 Although root biomass in the no mow treatment was significantly greater than 

the undisturbed site after one year of treatment (Table 3.2, Figure 3.4), the following 

year (2012) root biomass in the undisturbed site was statistically greater than (p<0.15) 

any mowing treatments. Chaieb et al. (1996) reported increased cuttings of perennial 

grasses resulted in a more superficial root system, concentrated in the upper 15-cm of 

soil, and found little difference in root systems of non-mowed plots and those mowed 

once. Although Kitchen et al. (2009) reported an increase in root biomass in the upper 

10-cm of an annually mowed (with clippings removed) prairie, they reported a decrease 

in root biomass in a similar prairie that also received a prescribed burn treatment; 

mowing resulted in a concentration of roots in the upper 20-cm in both burned and 

unburned prairie.  

 Clippings were not removed from mowing treatments in the present study, but 

vegetation harvesting may play a role in root response to mowing. In a greenhouse 

clipping study, Johnston (1961) showed that as more aboveground vegetation was 

removed root growth correspondingly decreased; Neigebauer et al. (2000) found total 

rooting depth increasing linearly with increasing mowing height in a wildflower sod 

production study, with mowing (plant material removed) significantly reducing total 

root biomass. Dickinson and Polwart (1982) imply that terminating mowing affects 

grasslands in two ways: 1) less mowing depletes underground reserves previously 
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stored in grass tillers and rhizomes as a means of recovery from defoliation, favoring an 

environment more suitable to forbs than grasses; and 2) surface accumulations of litter 

from unmown aboveground growth (and subsequent local shading) also favors forbs 

over grasses. This may explain the significant decrease in root biomass in the no mow 

treatments from 2011 to 2012; the lack of mowing may be inducing a successional 

transition from a grass dominated plant community to a forb-dominated community. 

Due to the size and orientation of the study area, plots were mowed in a 

repetitive pattern perpendicular to the stream to avoid adjacent plots receiving a 

different mowing treatment. Visual observation indicated grass clippings of the intense 

mow treatments were consistently deposited in the same locations. This repetitive 

deposition of mowed material could have resulted in some areas of matted grass that 

was not clipped during the next mowing event. Furthermore, mowing and imposed 

compacting forces (e.g. equipment) have been shown to significantly increase bulk 

density (Carrow, 1980), especially in wheel tracks of turf grass studies (Flannagan and 

Bartlett, 1961). In crop fields, root growth has been shown to proliferate in the planted 

row, but be restricted by compaction within wheel-trafficked areas (Barnes et al., 1971). 

Compacted surface soils can restrict root growth (Carrow, 1980), decrease infiltration, 

and increase runoff (Barnes et al., 1971; Batey, 2009). In the present study, wheel traffic 

was not a consideration due to the mowing pattern (tractor was backed in and pulled 

forward so that the 2-m transect never received the heavy wheel traffic of the front of 

the tractor), but future studies may want to consider compaction effects on root 

biomass. 
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Seasonal differences in root biomass were not considered in this study, but may 

play an important role in assessing root systems in riparian buffers. Tufekcioglu et al. 

(1998) reported maximum live fine root biomass from August to October and minimum 

live fine root biomass in May in a multispecies buffer in Iowa. Kiley and Schneider (2005) 

found maximum root biomass during August in a forested buffer in New York. Root 

samples in this study were collected in late May-early June, and consequently may not 

have captured a representation of maximum root biomass.  

Aggregates 

 Soil aggregation studies often look at long-term (more than six years) pasture or 

row crop land uses (Barto et al., 2010; Franzluebbers et al., 2000; Six et al., 2000) but 

changes in soil aggregate size class distribution can occur rapidly in restored stream 

corridors and quantifying these changes will be important in assessing stream 

restoration success (Handayani et al., 2008).  

Soil aggregate size distribution and stability were compared among all 

treatments for both years of this study. Vegetation treatment had no statistically 

significant effect on MWD of soil aggregates at the 0-10 cm depth in 2011, although the 

trend indicated an increase in MWD with decreasing mowing intensity (Table 3.3, Figure 

3.5); this trend was not evident in 2012 (Figure 3.6). MWD was significantly greater 

(p<0.15) under the no mow treatment compared to the intense mow treatment at the 

10-20 cm depth in 2011; no other statistically significant differences occurred among 

treatments in the 10-20 cm depth for either treatment years. In contrast, Barto et al. 

(2010) found an increase in MWD with increasing land use intensity; specifically,  



 

71 
 

Table 3.3. Mean weight diameter of aggregates for all study soils by treatment and 
depth. Std err = Standard error of the mean; CV = Coefficient of variation (%); n = 
number of samples. Values within columns and depths followed by a different 
lowercase letter are significantly different at α = 0.15. 

Treatment n Mean 
(mm) 

Std Err CV Mean 
(mm) 

Std Err CV 

(0-10 cm)    2011     2012   
Intense Mow 50 5.76 0.22 27.0 4.90 0.15 21.9 
Moderate Mow 50 5.64 0.23 28.3 4.72 0.09 13.7 
No Mow 50 6.12 0.19 21.4 4.64 0.08 12.3 
Native Grass 50 6.22 0.21 24.2 4.85 0.15 22.6 
Undisturbed 20 6.27 0.29 20.4 4.52 0.06 6.4 

(10-20 cm)  
      Intense Mow 50 7.13a 0.20 20.2 5.94 0.17 19.9 

Moderate Mow 50   7.64ab 0.19 17.8 5.99 0.15 17.9 
No Mow 50 7.81b 0.18 16.2 6.09 0.13 15.4 
Native Grass 50  7.79ab 0.22 20.4 6.00 0.15 17.7 
Undisturbed 20  7.12ab 0.43 27.0 5.03 0.07 6.3 

(20-30 cm)  
      Intense Mow 44 7.74a 0.21 19.1 7.01b 0.25 23.4 

Moderate Mow 43 7.94a 0.27 23.6 8.50c 1.45 113 
No Mow 48 8.60b 0.22 18.1 7.17b 0.22 21.1 
Native Grass 49  8.32ab 0.25 20.8 7.08b 0.19 19.0 
Undisturbed 20  8.24ab 0.37 20.1 5.24a 0.15 12.6 
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Figure 3.5. Mean weight diameter (MWD) of soil aggregates after one year of treatment 
(2011). Standard error bars at 95% confidence intervals. 
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Figure 3.6. Mean weight diameter (MWD) of soil aggregates after two years of 
treatment (2012). Standard error bars at 95% confidence intervals. 
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mowing had a positive effect on MWD. In 2012, treatment had no statistically significant 

effect on MWD of soil aggregates at any sampled depth with one exception: at the 20-

30 cm depth, the moderate mow treatment had a significantly higher (p<0.15) MWD 

than the other imposed treatments (Table 3.3). 

Considering all treatments and both years, MWD significantly (p<0.15) increased 

with depth (Table 3.3), which is consistent with other studies (Franzluebbers et al., 

2000; Sainju, 2006), and may be attributed to a slight increase in clay content with 

depth (Table 3.4). Considering all treatments and all depths, MWD in 2011 was 

significantly higher (p<0.15) than 2012. This response was not expected. Samples 

obtained in 2011 were collected following an extremely wet spring (Table 3.1). Some 

compaction of soil cores may have occurred during sample collection, resulting in 

artificially high MWD measurements. For all treatments in both study years, MWD fell 

within the 1-10 mm diameter range needed for crop growth (Tisdall and Oades, 1982). 

This range of aggregation provides sufficient pore space for infiltration and drainage, 

while retaining enough water for plant growth.  

Comparing MWD values among studies is difficult due to various sieve sizes 

researchers may select for aggregate separation. Therefore, aggregates are often 

examined in three size classes: large macroaggregates (>2 mm), small macroaggregates 

(0.25-2 mm), and microaggregates (<0.25 mm) (Handayani et al., 2008; Kong et al., 

2005; Six et al., 2004). Considering all depths and all treatments, large macroaggregates 

significantly decreased (p<0.15) from 2011 to 2012 while small macroaggregates 

significantly increased (p<0.15) (Table 3.5). Large macroaggregates increased with depth  
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Table 3.4. General soil properties of the study site (n = number of samples).  

  n % C % Sand % Silt % Clay 
Depth  

    0-10 cm 40 4.9 35.4 50.2 14.4 
10-20 cm 40 2.4 34.9 49.5 15.7 
20-30 cm 37 2.0 32.5 52.6 14.9 
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Table 3.5. Percentage of aggregate size classes reported by treatment, year, and depth. 
                      

Treatment 

 
Intense Mow Moderate Mow No Mow Native Grass Undisturbed 

  2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 
Soil depth (cm) 

         
 

% Large macroaggregates (>2mm)     
0-10 62.7 47.4 62.3 45.2 66.0 45.0 67.2 48.6 69.5 41.0 

10-20 73.6 59.0 76.9 58.7 78.1 60.1 77.5 59.5 75.2 40.0 
20-30 77.7 68.1 77.4 80.3 85.9 71.0 80.1 69.7 82.3 43.2 

           
 

% Small macroaggregates (0.25-2.00mm)     
0-10 32.6 41.3 32.4 43.8 29.6 44.3 28.7 42.0 27.2 47.3 

10-20 23.0 34.5 19.9 34.5 19.2 33.9 19.5 34.4 21.6 48.1 
20-30 19.0 27.4 18.6 26.4 15.7 25.1 17.1 26.0 15.4 45.0 

           
 

% Microaggregates (<0.25mm)     
0-10 4.5 10.0 4.8 10.8 3.9 10.6 4.1 9.2 2.4 12.2 

10-20 2.9 6.4 2.9 6.6 2.4 5.8 2.6 5.9 2.1 12.1 
20-30 3.0 4.3 3.8 4.6 2.6 3.7 2.5 4.2 1.7 10.6 
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in both years for all treatments, while small macroaggregates decreased with depth for 

all treatments. In 2011, the no mow treatment had significantly more (p<0.15) large 

macroaggregates than the intense and moderate mow treatments; the no mow 

treatment also had greater root biomass in the 0-10 cm depth in 2011 than both the 

intense and moderate mow treatments (Table 3.2), although the difference was not 

statistically significant.  The native grass treatment had significantly more (p<0.15) large 

macroaggregates than the intense mow treatment in 2011. There were no statistically 

significant treatment effects on large macroaggregates in 2012. In 2011, the intense 

mow treatment had significantly more (p<0.15) small macroaggregates than the no 

mow and native grass treatments, and the moderate mow treatment had significantly 

more (p<0.15) small macroaggregates than the no mow treatment. There were no 

treatment effects on small macroaggregates in 2012.  

Macroaggregate stability increases under pasture due to the presence of roots 

and hyphae, both of which may persist in the soil for years (Tisdall and Oades, 1982). For 

all treatments in both years, there was a larger proportion of macroaggregates than 

microaggregates. The mixed results seen in 2011 and lack of treatment effect seen in 

2011 on large and small macroaggregates may be attributed to the historical grassland 

conditions in the study area providing adequate roots and hyphae that protect 

macroaggregates from disintegration regardless of imposed mowing treatment. The 

decrease in large macroaggregates from 2011 to 2012 may be the result of higher 

rainfall in 2011 (Table 3.1) causing wet soil conditions during sampling, and subsequent 

compaction creating an artificially large amount of large macroaggregates in 2011.  
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Six et al. (2004) suggest that macroaggregate turnover may occur as frequently 

as every five to twenty-seven days in agroecosystems because of seasonal dynamics; a 

representative quantity of macroaggregates may be difficult to capture with annual 

sampling.  The aggregate class distributions for 2012 are close to the range reported by 

Handayani et al. (2011) for a nearby fescue pasture, although the percentage of large 

macroaggregates for both years of the present study is greater at all depths than the 

pasture study, suggesting that this riparian buffer may be reaching a maximum 

aggregation level. 

A modification to the aggregate hierarchy concept presented by Tisdall and 

Oades (1982) suggests that transient binding agents holding together macroaggregates 

form a nucleus inside which microaggregates form (Oades, 1984); the transient binding 

agents subsequently decompose, leaving behind a microaggregate within a 

macroaggregate. Regardless of the mechanism or hierarchy of aggregate formation, 

both concepts support the importance of microaggregate formation. For all treatments 

and both years, microaggregates represented the smallest class size fraction and 

generally decreased with depth.  

Considering all depths, microaggregates significantly increased (p<0.15) from 

2011 to 2012 within all treatments (Table 3.5). In 2011, the moderate mow treatment 

contained significantly more (p<0.15) microaggregates than the no mow and native 

grass treatments. In 2012, the moderate mow treatment had significantly more (p<0.15) 

microaggregates than any other imposed treatment; all treatments contained 

significantly (p<0.15) fewer microaggregates than the undisturbed treatment. According 
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to Oades’ (1984) concept, this result indicates that the moderate mow treatment may 

have fewer transient binding agents (roots); however, this is not reflected by 

significantly lower root biomass in the moderate mow treatment (Table 3.2, Figure 3.5). 

In this case, microaggregate distribution is likely more a result of inherent mineral soil 

characteristics than imposed treatments. 

The ability of soil aggregates to resist destruction by the disruptive force of 

water in the soil matrix may be an indication of the soil’s ability to resist erosion. The 

proportion of water stable aggregates (WSA) has been associated with reduced soil 

disturbance and perennial vegetation and  suggests the potential for soil water 

infiltration, soil sustainability, and soil and ecosystem functions (Paudel et al., 2011). 

Two years after establishment, imposed treatments had no significant effect on WSA at 

the 0-10 cm or 10-20 cm depths (Table 3.6). At the 20-30 cm depth, there was no 

imposed treatment effect on WSA in 2011, but in 2012 the no mow treatment had 

significantly lower WSA than the native grass treatment. The lack of treatment influence 

reflected in WSA is not surprising considering the high percentage of WSA in all sampled 

soils. The study site was historically (30+ years) mowed grassland, which has likely 

contributed to stable conditions creating high concentrations of WSA. In both study 

years, the WSA content was at least 95% in the surface soils and no less than 85% in the 

10-20 cm depth. Other studies sampling to a depth of 20-cm have reported 78.4 and 

78.3% WSA for grass buffers and agroforestry buffers, respectively (Paudel et al., 2011), 

and 84 and 85% for tall fescue pasture and hayed hybrid bermudagrass, respectively 

(Franzluebbers et al., 2000). Barto et al. (2010) also found a high abundance of WSA  
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Table 3.6. Percentage of water stable aggregates for all study soils by treatment and 
depth. Std err = Standard error of the mean; CV = Coefficient of variation; n = number of 
samples. Values within columns and depths followed by a different lowercase letter are 
significantly different at α = 0.15. 
                  

Treatment n Mean 
(%) 

Std 
Err 

CV   Mean 
(%) 

Std 
Err 

CV 

(0-10 cm) 
 

  2011      2012   
Intense Mow 10 97.8 0.4 1.4  95.3 1.0 3.4 
Moderate Mow 10 97.4 0.4 1.2  96.2 0.7 2.4 
No Mow 10 97.5 0.4 1.4  95.2 1.0 3.2 
Native Grass 10 98.3 0.3 0.9  96.4 0.7 2.1 
Undisturbed 4 98.2 0.4 0.9  95.1 2.4 5.0 

(10-20 cm) 
        Intense Mow 10 92.5 0.9 3.1  85.0 4.4 16.3 

Moderate Mow 10 89.2 2.7 9.5  87.1 1.6 5.7 
No Mow 10 90.8 1.5 5.3  86.6 2.1 7.6 
Native Grass 10 89.6 3.0 9.4  88.9 2.1 7.4 
Undisturbed 4 87.8 3.8 8.6  89.6 3.2 7.1 

(20-30 cm) 
        Intense Mow 10 86.9b 2.3 8.0  78.8ab 6.8 24.3 

Moderate Mow 10 86.1b 2.6 8.9  79.6ab 3.3 13.2 
No Mow 10 88.4b 2.2 7.0  76.0a 2.9 12.1 
Native Grass 10 88.0b 2.9 9.9  83.9b 4.0 14.9 
Undisturbed 4 80.7a 6.9 17.2   77.9ab 5.8 15.0 
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(92%) in grassland soils of varying land use intensities, and Veum et al. (2012) 

demonstrated that vegetated filter strips induced positive changes to aggregate stability 

in a 10-year study. 

All of the imposed treatments appear to maintain adequate soil aggregation for 

plant growth, infiltration, and drainage, indicating no negative consequences of reduced 

management (e.g. less frequent mowing) on soil structure in the short term. 

Hydraulic Conductivity 

The saturated hydraulic conductivity (Ksat) describes the maximum capacity of 

soils to conduct water and is primarily a function of pore size and distribution as 

influenced by soil structure (Ehlers et al., 1995; Lauren et al., 1988). Some researchers 

(Anderson et al., 2009; Bharati et al., 2002) have used field-based methods to measure 

infiltration (rings or permeameters) while others (Kumar et al., 2008; Zeleke and Si, 

2005) employed laboratory-based soil core methods to determine hydraulic 

conductivity. Field methods were utilized in this study for multiple reasons: 1) the study 

site was easily accessible for field measurements; 2) core extraction can result in soil 

disturbance; and 3) disk permeameters have shown similar results to soil cores (White 

et al., 1992).  

Ksat within treatments were not significantly different between 2011 and 2012; 

although no change in Ksat was seen from year 1 to year 2 following treatment, the data 

indicate consistency in field methodology over two sampling seasons. In 2011, the 

intense mow and no mow treatments had significantly higher (p<0.15) Ksat than the 

native grass treatment (Figure 3.7). The intense mow treatment had a higher Ksat than  
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Figure 3.7. Saturated hydraulic conductivity by treatment. Treatments: 1=Intense Mow; 
2=Moderate Mow; 3=No Mow; 4=Native Grass Transition; 5=Undisturbed. Standard 
error bars at 95% confidence intervals. 
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the no mow in 2011, but the two were nearly the same in 2012. This contrasts with 

results reported by Schacht et al. (1996), who found mowing treatments applied every 

fourth year reduced infiltration rates in a Nebraska grassland study. The moderate mow 

treatment had lower Ksat than the intense mow and no mow treatments both years. Ksat 

was nearly identical for the native grass transition treatment and the undisturbed 

treatment for both years. 

Ksat values found in this study ranged 3.32-3.81 cm day-1 and were higher than 

those reported in other conservation buffer studies (data scaled and transformed). 

Comparatively, two Missouri studies reported Ksat values in agroforestry and grassed 

buffers in the 0.88-2.17 and 0.91-2.14 cm day-1 range, respectively (Anderson et al., 

2009; Kumar et al., 2008), five years or more after establishment. Bharati et al. (2002) 

reported infiltration values of 3.05 cm day-1 and 2.86 cm day-1 for silver maple and grass 

filters, respectively, in a multi-species buffer after six growing seasons. 

The lack of significant differences in Ksat among treatments is likely due to the 

immature age of imposed treatments and the previous management of the study site. 

Multi-species buffers have been shown to increase infiltration capacity by as much as 

five times compared to cultivated crop fields and pastures, but this was six growing 

seasons following establishment (Bharati et al., 2002). In contrast, Anderson et al. 

(2009) found no significant difference among Ksat rates for row crop, grass buffer, or 

agroforestry buffer after six years of treatment, suggesting significant changes in soil 

properties affecting infiltration may take long periods to develop. As previously stated, 

Ksat values found in this study were higher than those reported by Bharati et al. (2002), 
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Kumar et al. (2008), and Anderson et al. (2009). This phenomenon presents two possible 

explanations: 1) the field method used in this study overestimated Ksat rates; or 2) 

previous management has created an environment of relatively high Ksat rates and 

considerable time must pass before a treatment effect is discerned.   

While Ksat did not respond significantly to treatment implementation, neither did 

MWD, macroaggregates, or WSA, all of which influence hydraulic conductivity. 

Considering Lowrance et al. (2002)’s suggestion that infiltration may be a means of 

assessing riparian buffer function, and no adverse effect to Ksat was shown as a result of 

reduced management intensity or native grass transition treatment, this study indicates 

that practices other than routine mowing maintain riparian function in the short term. 

Soil Carbon 

 Plant roots contribute carbon to riparian ecosystems (Dosskey et al., 2010) and 

soil organic carbon plays a key role in regulating denitrification (Tiedje, 1994). Based on 

a factor analysis of agricultural soils, Shukla et al. (2006) suggested that soil organic 

carbon should be used to monitor soil quality. Soil organic carbon (soil C) was measured 

in years one and two following treatment implementation (Table 3.7). In 2011, no 

treatment effects are seen in the 0-10 cm or 10-20 cm depth. In the 20-30 cm depth, the 

moderate mow treatment had significantly higher (p<0.15) soil C than the other 

imposed treatments. In 2012, soil C in the 0-10 cm depth increased with mowing 

intensity, with the intense mow treatment having significantly higher (p<0.15) soil C 

than the other mowing treatments; the native grass treatment had statistically similar 

(p<0.15) soil C as the intense mow treatment. The 2012 results support the findings of  
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Table 3.7. Soil carbon for all study soils by treatment and depth. Std err = Standard error 
of the mean; n = number of samples. Differences between years for given treatment 
and depth are reflected by p-value. Values followed by a different lowercase letter 
within columns and depths are significantly different at α = 0.15. 

Treatment 
n 

Mean 
(%) Std Err 

  Mean 
(%) Std Err p-value 

(0-10 cm) 
 

2011 
 

2012 
 Intense Mow 50 4.23 0.36 

 
5.22c 0.20 0.0022 

Moderate Mow 50 4.05 0.40 
 

4.73b 0.14 0.0342 
No Mow 50 3.93 0.31 

 
4.36a 0.23 0.1707 

Native Grass 50 4.23 0.28 
 

 4.84bc 0.13 0.0567 
Undisturbed 20 4.10 0.12 

 
4.44ab 0.08 0.5058 

(10-20 cm) 
       Intense Mow 50 2.08 0.20 

 
2.14 0.12 0.8649 

Moderate Mow 50 2.02 0.15 
 

2.05 0.13 0.9225 
No Mow 50 2.07 0.14 

 
2.18 0.21 0.7342 

Native Grass 50 1.95 0.07 
 

2.15 0.07 0.5169 
Undisturbed 20 2.48 0.15 

 
2.50 0.02 0.9885 

(20-30 cm) 
       Intense Mow 44 1.96a 0.39 

 
1.79 0.17 0.6023 

Moderate Mow 43 2.45b 0.46 
 

1.56 0.13 0.0056 
No Mow 48 2.08a 0.35 

 
1.72 0.14 0.2698 

Native Grass 49 1.89a 0.35 
 

1.73 0.06 0.6052 
Undisturbed 20  1.89ab 0.10   2.09 0.05 0.7899 
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Ziter and MacDougall (2013), who saw a burst of root growth as a response to 

defoliation of pasture grasses. Although the long-term effects of defoliation on soil C 

were not measured, they reported root and shoot tissue production, mortality, and 

chemistry trends that would increase soil C in the short term in response to clipping. 

Shahzad et al. (2012), however, saw no difference in soil C among clipped, unclipped, 

and bare soil treatments although they did find clipping reduced C mineralization among 

seven grass species in a container study.  

There were no significant treatment effects on soil C below 10-cm in 2012. Soil C 

increased from 2011 to 2012 in both the 0-10 cm and 10-20 cm depths; the increase was 

significant (p<0.15) at the surface depth in the intense mow, moderate mow, and native 

grass treatments. This increase in soil C over the short term may be a result of root 

growth and subsequent mortality stimulated by mowing. Soil C decreased from 2011 to 

2012 in the 20-30 cm depth; the decrease was significant (p<0.15) in the moderate mow 

treatment. 

Interactions 

 The relationships between soil properties were investigated by treatment in the 

0-10 cm depth using Spearman correlation coefficients (Table 3.8). There was a 

significantly (p<0.15) negative correlation between MWD and root biomass in both the 

moderate and no mow treatments, as well as a significantly (p<0.15) negative 

correlation between WSA and root biomass in the intense mow treatment. A 

significantly (p<0.15) negative correlation was found between MWD and soil C in the 

moderate mow and native grass treatments.  
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Table 3.8. Correlation matrix for 0-10 cm depth after two years of treatment (2012). 

    Roots MWD WSA Ksat C 

 
Roots 

 
0.18 -0.52* 0.20 0.13 

 
MWD 0.18 

 
-0.27 -0.48 -0.17 

Intense Mow WSA -0.52* -0.27 
 

-0.24 0.00 

 
Ksat 0.20 -0.48 -0.24 

 
0.45 

  C 0.13 -0.17 0.00 0.45   

 
Roots 

 
  -0.29* -0.28 -0.21 0.18 

 
MWD   -0.29* 

 
0.35 -0.15 -0.48* 

Moderate Mow WSA -0.28 0.35 
 

0.38 0.19 

 
Ksat -0.21 -0.15 0.38 

 
-0.21 

  C 0.18   -0.48* 0.19 -0.21   

 
Roots 

 
 -0.22* 0.27 0.31 0.05 

 
MWD  -0.22* 

 
-0.33 -0.43 -0.07 

No Mow WSA 0.27 -0.33 
 

0.33 0.40 

 
Ksat 0.31 -0.43 0.33 

 
0.05 

  C 0.05 -0.07 0.40 0.05   

 
Roots 

 
-0.15 -0.14 -0.16    0.35* 

 
MWD -0.15 

 
0.15    0.65*  -0.28* 

Native Grass WSA -0.14 0.15 
 

-0.05   0.50* 

 
Ksat -0.16   0.65* -0.05 

 
 -0.54* 

  C   0.35*  -0.28*   0.50*  -0.54*   

 
Roots 

 
0.16 -0.40 -0.80 0.01 

 
MWD 0.16 

 
0.40 0.80 -0.33 

Undisturbed WSA -0.40 0.40 
 

0.20    1.00* 

 
Ksat -0.80 0.80 0.20 

 
0.20 

  C 0.01 -0.33 1.00* 0.20   
*Correlation is significant at 0.15 level; Roots=root biomass (mg cm-3); MWD=mean 
weight diameter (mm); WSA=water stable aggregates (%); Ksat (cm day-1); C=carbon (%). 
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These negative relationships are somewhat surprising considering the well 

documented connection of soil biology (e.g. roots, hyphae, and organic matter) to soil 

structure (Carter, 2004; Oades, 1993; Six et al., 2004; Tisdall and Oades, 1982). Other 

researchers (Barto et al., 2010) have reported no organic C effect on MWD.  

In contrast to the mowing treatments, root biomass correlated significantly 

(p<0.15) with soil C in the native grass transition treatment. Because roots are a key 

mechanism for building soil C, it is expected that root biomass and soil C would have a 

strong positive relationship, as seen by Gift et al. (2010), regardless of treatment. Ksat 

correlated positively (p<0.15) with MWD but negatively (p<0.15) with soil C in the native 

grass transition treatments. Ksat was not significantly correlated with root biomass in any 

imposed treatment, which matches a similar study by Halabuk (2006) investigating wet 

meadow vegetation influences on Ksat, although preferential flow through macropores is 

often attributed to root activity (Dosskey et al., 2010). Soil C in the native grass 

treatment was positively correlated (p<0.15) with WSA. In the undisturbed sites soil C 

and WSA were strongly correlated (p<0.15), an indication that soil C may be the driving 

factor of aggregate stability in the undisturbed sites. Veum et al. (2012) also found WSA 

moderately correlated with soil C in the surface layer of vegetated filter strips and no-till 

corn-soybean production. 

Spatial Variability 

The spatial variability in the study area was investigated to identify potential soil 

property responses to imposed treatments that were undetectable in the overall 

comparison of means. Furthermore, this is an additional effort to more clearly define 
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spatial relationships described in Chapter 2. Root biomass along the sampling transect at 

all depths is shown for 2011 and 2012 (Figures 3.8a, 3.8b, 3.9a, and 3.9b). Root biomass 

is higher in the surface depth (0-10 cm) than the other depths during both treatment 

years, as was seen in the previous comparison of means. No obvious treatment 

response is evident in the raw data for either treatment years at any depth.  

Experimental semivariograms of root biomass were calculated from 200 data points 

taken at 2-m sampling intervals for each treatment year (Figures 3.10, 3.11, and 3.12). 

Similar cycles of semivariance occur in the 0-10 cm depth for both treatment years, such 

that cycles of increasing semivariance occur at lag distances of approximately 1-35 m 

and 35-60 m, followed by cycles of decreasing semivariance at lag distances of 60-90 m 

and 90-130 m (Figure 3.10). Beyond a lag distance of 130-m the semivariance cycles 

differ between the treatment years. This indicates that spatial variability occurs at a 

range of approximately 30-40 m, which corresponds to one nest (one plot of each 

experimental treatment) of experimental plots. Semivariance at the 10-20 and 20-30 cm 

depths is an order of magnitude lower than the 0-10 cm depth for both treatment years. 

This is likely attributable to the sharp decrease in overall root biomass at depths below 

10-cm. Both treatment years exhibit similar cycles of semivariance at the 10-20 cm 

depth up to the 115-m lag distance, with one cycle occurring at approximately 1-80 m 

and another at 80-115 m; cycles beyond the 115-m lag distance differ for the two 

treatment years (Figure 3.11). Semivariance occurred at a lower magnitude in 2011 than 

2012. The cycles suggest that spatial variability occurs at both long (80-m) and short (35-

m) ranges. The long ranges may be indicative of underlying topography while the short 
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Figure 3.8a. Raw root biomass after one year of treatment (2011). Five original data points are shown per plot. Beginning at 0-m, 
each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that from left to right, 
the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.8b. Mean root biomass after one year of treatment (2011). Data points represent one treatment plot. Beginning at 0-m, 
each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that from left to right, 
the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.9a. Raw root biomass after two years of treatment (2012). Five original data points are shown per plot. Beginning at 0-m, 
each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that from left to right, 
the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.9b. Mean root biomass after two years of treatment (2012). Data points represent one treatment plot. Beginning at 0-m, 
each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that from left to right, 
the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.10. Experimental semivariograms for root biomass for both treatment years, 0-10 cm depth. 
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Figure 3.11. Experimental semivariograms for root biomass for both treatment years, 10-20 cm depth. 
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Figure 3.12. Experimental semivariograms for root biomass for both treatment years, 20-30 cm depth. 
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ranges may be indicative of imposed management. At the 20-30 cm depth, 2011 data 

show cycles of increasing semivariance at approximate lag distances of 1-60 m, 60-130 

m, and 130-195 m. The 2012 data indicate overall less variability than 2011, with shorter 

cycles of semivariance at a lower magnitude than 2011. These data indicate a spatial 

variability range of approximately 60-m at the 20-30 m depth. 

MWD at all sampling depths is shown for 2011 and 2012 (Figures 3.13a, 3.13b, 

3.14a, and 3.14b). All depths have a similar spatial pattern, but no obvious treatment 

response is manifested in MWD. Experimental semivariograms of MWD were calculated 

from 200 data points taken at 2-m sampling intervals for each treatment year (Figures 

3.15, 3.16, and 3.17). At the surface depth (0-10 cm), the nugget variance, represented 

by the point at which the semivariogram crosses the y-axis, is low for both treatment 

years (Figure 3.15), indicating low local variation compared to the overall variation in  

MWD. Multiple scales of variation are evident in 2011. The first small plateau at a lag 

distance of approximately 35-m indicates small scale variation while the second plateau 

at a lag distance of approximately 115-m represents a larger scale variation. Multiple 

scales of variation are also evident in 2012, but at a smaller magnitude. The depicted 

variation indicates spatial processes over the distance of the experimental plots and a 

further indication that the variation in MWD does not randomly occur. A similar pattern 

of variation occurred in the 10-20 cm depth (Figure 3.16) in 2011, but not in 2012. The 

20-30 cm depth indicates more variation in 2012 than 2011 (Figure 3.17), which is 

opposite the trends in the other sampling depths. Furthermore, cycles in semivariance 
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Figure 3.13a. Raw mean weight diameter after one year of treatment (2011). Five original data points are shown per plot. Beginning 
at 0-m, each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that from left to 
right, the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.13b. Average mean weight diameter after one year of treatment (2011). Data points represent one treatment plot. 
Beginning at 0-m, each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that 
from left to right, the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.14a. Raw mean weight diameter after two years of treatment (2012). Five original data points are shown per plot. Beginning 
at 0-m, each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that from left to 
right, the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.14b. Average mean weight diameter after two years of treatment (2012). Data points represent one treatment plot. 
Beginning at 0-m, each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that 
from left to right, the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.15. Experimental semivariograms for MWD for both treatment years, 0-10 cm depth. 
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Figure 3.16. Experimental semivariograms for MWD for both treatment years, 10-20 cm depth. 
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Figure 3.17. Experimental semivariograms for MWD for both treatment years, 20-30 cm depth. 
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at this depth suggest spatial variability occurs at shorter ranges than the upper two 

sampling depths. 

Ksat measurements are shown for both treatment years (Figure 3.18). 

Experimental semivariograms of Ksat were calculated from 38 data points for 2011 and 

40 data points for 2012, each taken at 10-m sampling intervals (Figure 3.19). Ksat showed 

no evidence of spatial structure for either treatment years. Because the driving forces of 

hydraulic conductivity (soil structure and subsequent pore geometry) can vary over 

space and time, it is not surprising that Ksat can be highly variable. Bormann and 

Klaassen (2008) found Ksat to vary seasonally and with land use, and Zeleke and Si (2005) 

found nested scales of variability in Ksat along a north-south transect in glacial sandy 

loam soil in Saskatchewan, Canada.  

Soil C content is shown for all sampling depths for both treatment years (Figures 

3.20a, 3.20b, 3.21a, and 3.21b). Experimental semivariograms of soil C were calculated 

from 200 data points taken at 2-m sampling intervals for each treatment year (Figures 

3.22, 3.23, and 3.24). Elevated levels of soil C at the 20-30 cm depth occurred at the 

180-m and 260-300 m sampling distances in 2011 (Figure 3.20b). Field observations of 

vegetative cover (data not shown) indicate grass debris and storm debris cover ranging 

from 5-65% in 2011; these elevated soil C levels in the subsurface do not occur in 2012, 

although similar debris deposition was observed. Alluvial deposition has been shown to 

create C-rich buried soil layers (Blazejewski et al., 2009; Cambardella et al., 1994) and 

this C could be an important factor in riparian processes such as denitrification. 

Considering that the data are inconsistent from 2011 to 2012, however, the elevated  
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Figure 3.18. Ksat for both treatment years (2011 and 2012). Beginning at 0-m, each 40-m distance increment (denoted by vertical 
gridlines) represents one sequence of treatments, such that from left to right, the sequence repeats intense mow, moderate mow, 
no mow, and native grass. 
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Figure 3.19. Experimental semivariograms for Ksat for both treatment years. 
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Figure 3.20a. Raw soil carbon after one year of treatment (2011). Five original data points are shown per plot. Beginning at 0-m, 
each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that from left to right, 
the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.20b. Mean soil carbon after one year of treatment (2011). Data points represent one treatment plot. Beginning at 0-m, each 
40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that from left to right, the 
sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.21a. Raw soil carbon after two years of treatment (2012). Five original data points are shown per plot. Beginning at 0-m, 
each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that from left to right, 
the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.21b. Mean soil carbon after two years of treatment (2012). Data points represent one treatment plot. Beginning at 0-m, 
each 40-m distance increment (denoted by vertical gridlines) represents one sequence of treatments, such that from left to right, 
the sequence repeats intense mow, moderate mow, no mow, and native grass. 
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Figure 3.22. Experimental semivariograms for soil C for both treatment years, 0-10 cm depth. 
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Figure 3.23. Experimental semivariograms for soil C for both treatment years, 10-20 cm depth. 
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Figure 3.24. Experimental semivariograms for soil C for both treatment years, 20-30 cm depth.
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subsurface soil C could be a result of sample contamination from surface-deposited 

flooding debris. 

Spatial variability of soil C at the 0-10 cm depth occurred at a range of 

approximately 100-m in 2011; in 2012, spatial variability of soil C occurred at ranges of 

approximately 15-20 m as well as 40-100 m (Figure 3.22). Spatial variability in surface 

soil C has been found at similar ranges (> 100-m) by other researchers, although their 

work did not specifically focus on riparian soils (Cambardella et al., 1994; Zeleke and Si, 

2005); they attributed soil C variability to large-scale processes such as topography and 

soil morphology. The smaller scale variability found in 2012 may be evidence of the 

imposed treatments. At the 10-20 cm depth, spatial variability of soil C occurred at a 

range of 15-20 m in both sampling years (Figure 3.23). At the 20-30 cm depth, spatial 

variability of soil C occurred at multiple ranges (15-20 m and 60-m) in 2011 but occurred 

predominantly at a range of 15-20 m in 2012 (Figure 3.24).  

Roots, MWD, and soil C exhibited multiple scales of spatial variability. It was 

generally observed that these parameters had smaller scales of variability in 2012 than 

2011. The occurrence of spatial variability over shorter lag distances in 2012 compared 

to 2011 suggested that an effect of imposed treatments may be developing over time.  

Studies investigating the spatial distribution of riparian buffer soil properties are 

limited, making it difficult to compare the results of this study to those of other 

researchers. From a study of Rhode Island streams, Blazejewski et al. (2009) suggested 

that flooding and deposition play a significant role in riparian buffer subsoil C spatial 

distribution, especially those associated with alluvial deposits in first- through fourth-
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order streams.  Their study, however, sampled buried A horizons up to 4-m in glacial 

outwash soils. An Iranian study investigated a 92 km2 catchment with multiple 

landforms and found clear spatial patterns in WSA, C, and MWD (Mohammadi and 

Motaghian, 2011) with close spatial relationships between WSA and MWD. The Iranian 

study, however, investigated soil properties on a much larger scale and did not focus 

exclusively on riparian buffers. 

Conclusions 

This study was performed to assess the influence of vegetation management 

strategies on root biomass, soil aggregates, hydraulic conductivity, and soil carbon in a 

riparian buffer. The application of this assessment would be developing riparian buffer 

management recommendations for land managers. While treatment effects are not 

strongly supported after two years of implementation, no negative effects to the 

measured parameters are shown in the data as a result of reduced mowing frequency. 

Furthermore, the transition from existing grassland vegetation to native grasses using 

conventional herbicide methods reduced root biomass during the study period, but did 

not significantly affect soil aggregates or hydraulic conductivity. On the basis of 

maintaining consistent root biomass, the moderate mow treatment appears to be the 

best management choice. Although soil aggregate and hydraulic conductivity data do 

not provide sufficient evidence for a management choice, carbon data indicate that 

managing riparian areas may impact carbon levels over the short term.   

Spatial variability within the study site may be an important factor influencing 

riparian buffer soil properties. Experimental semivariograms provided evidence of 
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spatial structure in root biomass, soil aggregates, and soil C; these parameters do not 

occur randomly across the study site. Spatial variability occurred at multiple scales for 

each parameter. The variability occurred over a shorter lag distance in 2012 than 2011, 

suggesting an effect of imposed treatments slowly developing over time. This 

information should be considered in the experiment design of future studies that assess 

the influences of management strategies on ecosystem properties in this riparian buffer. 

The dynamic nature of riparian ecosystems and the natural complexity of soils, 

coupled with contradictions in the literature regarding land use effects on soil 

properties, make it difficult to establish concrete relationships for vegetation 

management influences on riparian buffer soils. Furthermore, considerable changes in 

soil properties may take long periods to develop, and the treatments established in this 

study may require additional time to exhibit significant differences. Parameters 

measured and sampling timing may not have been sensitive enough to detect changes 

on the temporal microscale. Longer-term study of this riparian buffer is needed to 

provide additional information for more specific management strategy development. 
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Chapter Four 

Summary of Conclusions 

 

Current Study 

This study was developed to: 1) characterize baseline soil physical and chemical 

properties prior to implementing vegetation management strategies in a riparian buffer; 

2) explore and assess spatial processes in a riparian buffer; 3) evaluate the influence of 

mowing and vegetation management strategies on root biomass, soil aggregate size 

distribution and stability, hydraulic conductivity, and soil carbon. Landowners and land 

managers need straightforward maintenance recommendations to maximize riparian 

buffer function in the agricultural landscape. The results of this study are a step toward 

these recommendations. 

Soil characteristics along the 2-m transect location differed significantly from the 

soils along the 8-m transect. The utilization of semivariogram analysis to describe soil 

carbon variability provided explicit information about the range of spatial 

autocorrelation in this riparian environment. Differences in spatial variation between 

the two transects indicate that soil properties closer to the water body may be more 

variable than those further from the stream. Spatial relationships of soil carbon were 

stronger along the 8-m transect than along the 2-m transect, suggesting that managing 

for soil carbon farther from the stream would be less intensive than managing closer to 

the stream because larger land areas could be similarly managed with the same 

expected outcome. This relationship proposes a choice for riparian buffer managers:    
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1) retain more land area for production activities but increase the maintenance intensity 

for a 2-m wide buffer; or 2) reduce land area for production activities and reduce the 

maintenance intensity for an 8-m wide buffer. In addition, this characterization of 

riparian buffer soil properties provides insight into the potential nutrient loading of 

Central Kentucky streams as a result of future sediment loss from sloughing stream 

banks. 

It was difficult to demonstrate the effect of vegetation management strategies 

on soil properties after only two years of implementation. However, carbon data 

indicate that managing riparian areas may alter carbon levels over the short term. There 

were no negative effects such as reduced hydraulic conductivity or loss of aggregate 

structure or stability evident as a result of reduced mowing frequency or native grass 

transition.  Longer-term study of this riparian buffer is needed to provide additional 

information for more specific vegetation management strategy development.  

Spatial variability within the study site may be an important factor influencing 

riparian buffer soil properties. Experimental semivariograms provided evidence of 

spatial structure in root biomass, soil aggregates, and soil C, indicating that these 

parameters do not occur randomly across the study site. Spatial variability occurred at 

multiple scales for each parameter. The variability occurred over a shorter lag distance 

in 2012 than 2011, suggesting an effect of imposed treatments developing over time. 

This information should be considered in the experiment design of future studies that 

assess the influences of management strategies on ecosystem properties in this riparian 

buffer. 
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It is important to note that extrapolation of the relationships found in this study 

should be limited to similar riparian environments. The stable streambank and 

accessible floodplain conditions in this study site likely influenced the results; these 

findings may not be applicable in watersheds where incised channels and inaccessible 

floodplains characterize the stream systems. 

Future Work 

This work, as well as the established experimental site, is a solid building block 

for future riparian buffer research. Two additional studies have developed as a result of 

the current study: 1) a project investigating water quality in the stream as a result of 

imposed treatments; and 2) a study examining denitrification potential within the 

riparian buffer as a result of imposed treatments. 

Future investigations in the established treatment plots of this study could 

include root biomass, soil aggregate distribution and stability, and infiltration studies 

along the 8-m transect in addition to the 2-m transect. Coupling root biomass, soil 

structure, and infiltration data from the 8-m transect with the existing spatial 

relationships found in this study would provide additional information for landowners to 

develop management strategies for desired riparian buffer function. 

Bulk density was not measured in this study, but should be considered in future 

research involving mowing in riparian areas. For studies that may examine the 8-m 

transect, considerations should be made for wheel traffic and clipping deposition 

because mowing patterns may influence the soil and plant characteristics at this 

location. 
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Another consideration for future work should be larger plot size. The 

experimental semivariograms developed in this study indicated that spatial 

autocorrelation exists at a greater range than that of the plot width (10-m) established 

in this study. Therefore, plots could have been larger to aid in the ease of mowing and 

maintenance and better reflect actual practices employed by land managers. 

Hydrologic characteristics of the riparian buffer should be examined in future 

studies. Monitoring the water table could provide useful information in relation to plant 

characteristics, such as root growth dynamics as a function of water table fluctuations. 

The roots in this study were concentrated in the upper 10-cm, which was consistent 

with other riparian buffer studies. One could surmise this phenomenon is a result of 

adequate water and no need for roots to mine deeper in the soil profile for water or 

nutrients. Further research may address water quality implications of superficial root 

systems, and how superficial root systems may affect soil carbon and subsequently 

denitrification potential in riparian buffers. 

Further analysis of the vegetation communities of this study will be conducted, 

and may provide insight into the response of plant types to mowing treatments. This 

type of analysis over a longer period (> 5 years) would provide data comparable to that 

from other riparian buffer studies establishing native grasses. 

Agricultural nonpoint source pollution continues to threaten water resources. 

The utilization and management of riparian buffers has great potential to reduce water 

pollution and provide ecosystem services beyond the realm of this study. In addition to 

longer-term research, educational and policy-driven opportunities are needed to 
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communicate the benefits of riparian buffers as well as motivate land managers to 

utilize them effectively. Riparian buffers play a key role in agroecosystem functions. 
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Appendix. Correlation matrix by depth and transect. 2-m x 8-m comparison in bold. *Correlation significant at p<0.05. 

 
  2-m transect 8-m transect 

  
0-10 cm 10-20 cm 20-30 cm 30-40 cm 40-50 cm 0-10 cm 10-20 cm 20-30 cm 30-40 cm 40-50 cm 

Ca
rb

on
 

2-m 
    

  
     0-10 cm 1.00 

   
  

     10-20 cm 0.21 1.00 
  

  
     20-30 cm 0.13 0.54* 1.00 

 
  

     30-40 cm -0.12 -0.14 -0.18 1.00   
     40-50 cm -0.10 0.18 0.10 0.71* 1.00 
     8-m 

    
  

     0-10 cm -0.08   0.34* 0.34 0.06   0.60* 1.00 
    10-20 cm -0.12 0.22 0.15   0.56* 0.45 0.67* 1.00 

   20-30 cm 0.20   0.33* 0.28 0.27 0.06 0.60* 0.77* 1.00 
  30-40 cm -0.02 0.05 0.25 -0.10  -0.55* 0.39* 0.49* 0.67* 1.00 

 40-50 cm -0.29 0.00 0.04 -0.08 -0.08 -0.14 0.07 -0.13 0.29 1.00 

Sa
nd

 

2-m 
    

  
     0-10 cm 1.00 

   
  

     10-20 cm 0.72* 1.00 
  

  
     20-30 cm 0.17 0.51* 1.00 

 
  

     30-40 cm 0.26 0.09 0.16 1.00   
     40-50 cm -0.10 -0.26 -0.13 0.69* 1.00 
     8-m 

    
  

     0-10 cm -0.07 -0.02 -0.12 0.09  0.45* 1.00 
    10-20 cm 0.30   0.33* 0.10 -0.14 -0.11 0.39* 1.00 

   20-30 cm -0.09 -0.01 -0.13 -0.23 -0.08 0.33* 0.51* 1.00 
  30-40 cm -0.13 -0.01 -0.12 -0.25 0.17 0.27 -0.22 0.34* 1.00 

 40-50 cm -0.22 -0.04 -0.40  -0.45*  -0.57* -0.05 -0.38 -0.34 0.13 1.00 
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Appendix. cont. Correlation matrix by depth and transect. 2-m x 8-m comparison in bold. *Correlation significant at p<0.05. 
    2-m transect 8-m transect 

  
0-10 cm 10-20 cm 20-30 cm 30-40 cm 40-50 cm 0-10 cm 10-20 cm 20-30 cm 30-40 cm 40-50 cm 

Si
lt 

2-m 
    

  
     0-10 cm 1.00 

   
  

     10-20 cm 0.64* 1.00 
  

  
     20-30 cm 0.20 0.40* 1.00 

 
  

     30-40 cm 0.29 0.06 0.28 1.00   
     40-50 cm -0.24 -0.33 -0.09 0.66* 1.00 
     8-m 

    
  

     0-10 cm 0.11 -0.05  0.02 0.12  0.34 1.00 
    10-20 cm   0.34*    0.37*  0.23 -0.30   -0.51* 0.28 1.00 

   20-30 cm 0.07  0.12 -0.10 -0.18 -0.37 0.08 0.57* 1.00 
  30-40 cm -0.09 -0.11 -0.29  0.11  0.32 -0.10 -0.49* 0.02 1.00 

 40-50 cm -0.08  0.18   -0.46* -0.34 -0.41 -0.03 -0.30 -0.29 0.32 1.00 

Cl
ay

 

2-m 
    

  
     0-10 cm 1.00 

   
  

     10-20 cm   0.38* 1.00 
  

  
     20-30 cm -0.22 -0.08 1.00 

 
  

     30-40 cm -0.15 -0.13 0.27 1.00   
     40-50 cm -0.15 -0.22 0.00 0.40 1.00 
     8-m 

    
  

     0-10 cm 0.08  0.10  0.04 -0.14  -0.47* 1.00 
    10-20 cm 0.24  0.20 -0.11   -0.55*  -0.70* 0.38* 1.00 

   20-30 cm 0.23 -0.03  0.11 -0.15 -0.45 -0.07 0.43* 1.00 
  30-40 cm -0.13 0.01  0.08 -0.15 0.49 -0.20 -0.21 0.25 1.00 

 40-50 cm 0.27 -0.28 -0.23  0.17 0.22 0.02 -0.50* -0.12 0.09 1.00 
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