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ABSTRACT OF DISSERTATION 

 

 
MULTISTATE MARKOV CHAINS AND THEIR APPLICATION TO THE 

BIOLOGICALLY RESILIENT ADULTS IN NUEROLOGICAL STUDIES COHORT 

Dementia is increasingly recognized as a major and growing threat to public 
health worldwide, and there is a critical need for prevention and treatment strategies. 
However, it is necessary that appropriate methodologies are used in the identification of 
risk factors. The purpose of this dissertation research was to develop further the body of 
literature featuring Markov chains as an analytic tool for data derived from longitudinal 
studies of aging and dementia.  

Data drawn from 649 participants in the University of Kentucky’s Alzheimer’s 
Disease Center’s (UK ADC) Biologically Resilient Adults in Neurological Studies 
(BRAiNS) cohort, which was established in 1989 and follows adults age 60 years and 
older who are cognitively normal at baseline to death, were used to  conduct three 
studies. The first study, “Mild cognitive impairment: Statistical models of transition using 
longitudinal clinical data,” shows that mild cognitive impairment is a stable clinical entity 
when a rigorous definition is applied. The second study, “Self-reported head injury and 
risk of cognitive impairment and Alzheimer’s-type pathology in a longitudinal study of 
aging and dementia,” shows that when the competing risk of death is properly accounted 
for, self-reported head injury is a clear risk factor for late-life dementia and is associated 
with increased beta-amyloid deposition in the brain. The third study, “Incorporating 
prior-state dependence among random effects and beta coefficients improves multistate 
Markov chain model fit,” shows that the effect of risk factors, like age, may not be 
constant over time and may be altered based on the subject’s cognitive state and that 
model fit is significantly improved when this is taken into account. 

 

KEYWORDS: Markov chain, longitudinal analysis, dementia, head injury, mild 
cognitive impairment  
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CHAPTER ONE 
 

Introduction 

Although commonly used to refer to a disease state, the term “dementia” does not 

refer to a disease at all but rather a syndrome characterized by memory loss and impaired 

activities of daily living (ADLs).1 Multiple neurological diseases can result in dementia, 

the most common of which is late onset, or sporadic, Alzheimer’s disease (AD), which is 

estimated to account for 60 to 80 percent of dementia cases.2  AD is characterized 

clinically by the appearance of deficits in memory, thinking, and ADLs, which are 

common to all dementing illnesses. AD is defined pathologically by the presence of beta-

amyloid (neuritic plaques) and tau (neurofibrillary tangles) pathology, which can only be 

determined by autopsy evaluation; current pathological diagnostic criteria describe levels 

of AD associated changes without regard to clinical phenotype,3 since AD pathology has 

been found in non-demented individuals at autopsy.4,5  

While clinical onset of AD usually occurs after age 65, it is now thought that AD 

begins as long as decades earlier; it is estimated that latent AD exists in approximately 

21% of persons over age 50.6 Prevalence of AD is currently estimated at 5.4 million 

cases, and the Alzheimer’s Association reports that by 2050 that an estimated 16 million 

Americans will have AD.7 Given current costs associated with the care and treatment of 

AD, in 2050 the cost of AD will reach 1.1 trillion dollars.7 At this time, there are no 

effective treatments or prophylactics for AD. 

The term “Mild Cognitive Impairment” (MCI) first appeared in the Global 

Deterioration Scale (GDS),8 a tool for the clinical staging of dementia, to describe 

individuals with subjective memory complaints and objective memory impairments, but 
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without ADL impairment, i.e., without dementia.9 Individuals diagnosed with MCI may 

progress to dementia, remain MCI until death, and in some instances have been reported 

to recover to a normal cognitive state.9-15 For this reason, whether MCI represents an 

early stage of dementia or unique clinical syndrome that is an independent risk factor for 

developing dementia remains controversial despite evidence of AD neuropathology in 

persons carrying a diagnosis of MCI at the time of death.16,17 Back transitions—recovery 

from a worse cognitive state to a better one—are likely heterogeneous in origin and may 

be explained by misclassification of either the MCI or normal state, inter-study and inter-

clinician differences in application of diagnostic criteria, within-patient variability due to 

medical illness or psychosocial factors, or resistance to cognitive decline due to cognitive 

reserve.18-21    

There has been considerable effort to refine diagnostic criteria, separate MCI into 

amnestic and non-amnestic subtypes, and identify the underlying etiologies of MCI.10,22-25 

Diagnosis of MCI due to AD, for example, may include assessment of biomarkers to 

determine underlying etiology.25 Prevalence of MCI is estimated at between 3% and 19% 

of adults over age 65.9 

The disease processes that lead to dementia are, in general, continuous, but it is 

not possible to observe individuals continuously over the many years necessary for 

dementia to occur. Rather, longitudinal studies of aging and dementia typically assess 

individuals’ cognitive and physical status annually, thus producing discrete rather than 

continuous units of observation. At each assessment, the clinical status of the 

individual—normal cognition, MCI, or dementia—may be determined. Additionally, 

individuals may die or dropout of the study before a dementia occurs. 
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Familiar modeling tools, such as survival analysis, may be an intuitive choice for 

the analysis of these longitudinal data, but they have significant limitations. Traditional 

survival analysis methods, while capable of handling censored data, generally assume 

that the censoring mechanism is independent of the outcome of interest.  However, in 

prospective cohort studies that enroll cognitively normal older participants and follow 

them over time with the goal of observing incident dementias, the censoring mechanism 

is never independent of the outcome of interest. Volunteers for such studies, which often 

require considerable time and effort from participants and may include invasive study 

procedures, are often healthier, more affluent, and better educated than their peers who do 

not enroll in such studies. Many participants will die without ever becoming demented, 

even when dementing brain diseases are present.  Moreover, participants who do begin to 

show signs of cognitive impairment may be more likely to drop out of the study before a 

dementia can be observed.  

Even when survival analysis techniques that do account for competing risks are 

employed, however, these methods are still limited in the sense that they do not allow for 

multiple outcomes of interest. Markov processes, however, have proven to be useful 

alternatives for modeling data from such longitudinal studies. The Markov chain models 

the probability of transition between any two temporally adjacent assessments, here 

called the “prior state” and the “current state,” versus remaining in or returning to a “base 

state.” Multistate Markov chains offer two principal advantages over traditional survival 

analysis:  (1) they are capable of handling intervening clinical states between normal 

cognition and dementia, and (2) they always account for competing risks.  
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Kryscio et al. (2006) carried out the first application of a multistate Markov chain 

to the study of incident dementia. Results based on data from the Biologically Resilient 

Adults in Neurological Studies (BRAiNS) cohort, a longitudinal study of aging and 

cognition at the University of Kentucky Alzheimer’s Disease Center (UK ADC), 

demonstrated that well established risk factors for dementia (i.e., age, education, family 

history of dementia, apolipoprotein ε-4 status) were also risk factors for transitions from 

normal cognition to transient MCI states.26 Kryscio et al.’s model was developed further 

by Salazar et al. (2007), who incorporated a shared random effect to account for the 

correlations among observations arising from the same participant.27  

Other applications of the Markov model in incident dementia research include 

Tyas et al. (2007), whose examination of data from the Nun Study suggested that factors 

that increase dementia risk do so by predisposing individuals to MCI rather than 

dementia directly.28 The Nun Study, unlike the BRAiNS cohort, includes participants 

who were already demented at enrollment. Yu et al. (2009) evaluated the effect of 

excluding these baseline dementias from the likelihood and concluded that doing so 

introduces significant bias into the results.29 Yu et al. (2010) derived absorption statistics 

for the model, i.e., the overall relative risk of absorption between competing absorbing 

states and the mean and variance of the number of assessments required before an 

individual with a particular risk factor profile reaches an absorbing state.30 Finally, Song 

et al. (2011), in an application to the Einstein Aging Study, studied the effect of including 

a scaling parameter, dependent on the prior observed state, with the subject-specific 

random effect.31 
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Each of the aforementioned applications of the Markov chain included MCI states 

that were defined solely by an individual’s performance on one or more cognitive tests; 

such MCI states are inherently unstable.32 MCI states defined by clinical criteria, 

however, are possible and would likely engender fewer back transitions to normal.10,24 

The purpose of this dissertation is to use multistate Markov models to assess the 

influence of risk factors on transitions from normal cognition to test-based and clinical 

forms of MCI, dementia, or death without dementia in a group of participants drawn from 

the BRAiNS longitudinal cohort.  

The chapters that follow present studies into the nature of test-based and clinical 

MCI states, self-reported head injury as a risk factor for MCI and dementia, and the 

influence of prior states in the chain through the incorporation of a prior state-dependent 

scaling parameter with the shared random effect and specifying the effect of age as prior-

state dependent. In Chapter Two, “Mild cognitive impairment: statistical models of 

transition using longitudinal clinical data,” earlier research that applied Markov models to 

longitudinal data from the BRAiNS cohort is expanded by including a clinically 

determined, quasi-absorbing MCI state as a state in the model. The major finding from 

this study is that in the BRAiNS cohort, once an individual has entered the clinically 

determined MCI state they do not back transition to less impaired states, i.e., it is a true 

disease state.  

Results presented in Chapter Three, “Self-reported head injury and risk of late-life 

impairment and AD pathology in an AD Center cohort” support previous findings that 

individuals who report a history head injury have an increased risks of cognitive 

impairment, dementia, and death without dementia. This study, the first to assess 
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neuropathological data from an observational study in relation to head injury status, also 

reveals an unexpected increase in AD-type pathology among men who reported head 

injuries, despite those injuries taking place many years before death.  

Chapter Four, “Prior-state dependence among random effects and beta 

coefficients significantly improves multistate Markov chain model fit” begins the process 

of exploring back transitions among test-based MCI states and normal cognition as a 

function of modeling strategy and state definitions. Major findings, limitations, and future 

research problems are discussed in Chapter Five, the conclusion to the dissertation.  
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CHAPTER TWO 

Mild cognitive impairment: statistical models of transition using longitudinal 

clinical data 

Abstract 

Mild cognitive impairment (MCI) refers to the clinical state between normal cognition 

and probable Alzheimer’s disease (AD), but persons diagnosed with MCI may progress 

to non-AD forms of dementia, remain MCI until death, or recover to normal cognition.  

Risk factors for these various clinical changes, which we term “transitions,” may provide 

targets for therapeutic interventions.  Therefore it is useful to develop new approaches to 

assess risk factors for these transitions.  Markov models have been used to investigate the 

transient nature of MCI represented by amnestic single-domain and mixed MCI states, 

where mixed MCI comprised all other MCI subtypes based on cognitive assessments.  

The purpose of this study is to expand this risk model by including a clinically 

determined MCI state as an outcome. Analyses show that several common risk factors 

play different roles in effecting transitions to MCI and dementia. Notably, APOE-4 

increases the risk of transition to clinical MCI but does not affect the risk for a final 

transition to dementia, and baseline hypertension decreases the risk of transition to 

dementia from clinical MCI. 

Introduction 

Mild cognitive impairment (MCI) often refers to the clinical condition between 

normal cognition and probable Alzheimer’s disease (AD).  However, persons diagnosed 

with MCI may progress to non-AD forms of dementia, remain MCI until death, and in 

some instances recover to a normal cognitive state.10,11,32 There has been considerable 
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effort to refine diagnostic criteria, separate MCI into amnestic and non-amnestic 

subtypes, and identify the underlying etiologies of MCI.10,22,23 However, whether MCI is 

a true precursor to dementia remains controversial13,33-35 despite evidence of AD 

neuropathology in amnestic MCI.16,17 This is due in part to the description of ‘back 

transitions’ (i.e., recovery to normal cognition) that have been reported in longitudinal 

studies.15,32,35,36 Although the long-term prognosis for such cases is unclear, patients with 

a Clinical Dementia Rating (CDR) global score of 0.5 often have AD pathology at 

autopsy regardless of back transitions to CDR global scores of 0.37 Back transitions are 

likely heterogeneous in origin and may be explained by misclassification of either the 

MCI or normal state, inter-clinician differences in application of diagnostic criteria, 

within-patient variability due to medical illness or psychosocial factors, or resistance to 

cognitive decline due to cognitive reserve.18-21    

In a previous study we investigated MCI as defined by cognitive test performance 

alone. Here, we have added a clinical consensus-based MCI state as defined by the 

Second International Work Group on MCI10 and operationalized by the National 

Alzheimer’s Coordinating Center (NACC).24,38 We now have sufficient data on this MCI 

state to assess it as risk factor for dementia. The purpose of this study is to describe our 

statistical model of longitudinal data in the context of studying MCI risks and to update 

our prior research with additional cognitive assessments and clinical diagnoses from a 

large longitudinal sample.  Over 54% of the sample subjects now have a terminating 

event (i.e., we have 35 additional dementias and 69 additional deaths) compared to the 

36% in the previous study.  These additional events provide increased power to detect 
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potential risks for transition including age, gender, education, APOE-4, family history of 

dementing illness, and baseline hypertension.   

Methods 

Subjects 

Subjects in the current study are from the Biologically Resilient Adults in 

Neurological Studies (BRAiNS) at the University of Kentucky’s Alzheimer’s Disease 

Center (UK ADC), a longitudinal cohort of 1,030 individuals with ongoing recruitment 

established in 1989.39,40 Participants consent to extensive annual cognitive and clinical 

examinations as well as brain donation upon death. Exclusion criteria include age less 

than 60 years, active infectious diseases, neurological disorders, psychiatric disorders, 

disabling medical disorders, and dementing illness. Subjects included in the current study 

(n=554) comprise those included in the previous report.26 All subjects were cognitively 

intact at study entry. All research activities were approved by the University of Kentucky 

Institutional Review Board. Each participant gave written informed consent. 

 Cognitive Assessments 

Annual cognitive test-based assessments taken on a cohort of initially cognitively 

normal subjects participating in the BRAiNS project are used to classify subjects into one 

of three states: normal, test-based amnestic MCI (aMCITB), or test-based mixed MCI 

(mMCITB) (Table 2.1). Classification of aMCITB and mMCITB has been described 

previously.26,41 Briefly, a classification of aMCITB results from a poor score (as defined 

below) on at least one measure of episodic memory measure (Table 2.1). A classification 

of mMCITB requires a poor score on at least one measure of language or executive 

function (Table 2.1) regardless of the aMCITB classification status. A poor score is 
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defined as at least 1.5 standard deviations (SD) below the age-adjusted mean, which is 

consistent with the Second International Working Group on MCI criteria;10 normative 

values were derived from the baseline evaluations of the entire normal cohort.  

Classification into clinical consensus-based MCI (MCICC) results from a diagnosis of 

MCI, which is determined according to the consensus guidelines on MCI developed by 

the Second International Working Group on MCI.10 A diagnosis of MCI requires: 

1. a cognitive complaint by the subject or informant, or evidence for longitudinal 

decline on cognitive test performance (at least 1.5 SD decline); 

2. generally intact global cognition; 

3. no or minimal functional impairment; 

4. not demented by DSM-IV criteria. 

Additionally, MCICC is restricted to those individuals for whom a neurodegenerative 

etiology is suspected. The NACC diagnostic criteria designate patients with cognitive 

impairments but without a presumed degenerative etiology as “Cognitive impairment, not 

MCI”.24 Diagnosis of MCICC is based on a consensus team review by the examining 

physicians, neuropsychologists, and the clinical research assistant administering the 

protocol.15 This MCICC designation is equivalent in most respects to the new “MCI-Core 

Clinical Criteria” as defined by the National Institute on Aging-Alzheimer’s Association 

Workgroup on Diagnostic Guidelines for Alzheimer’s Disease.25 The primary difference 

is that the new criteria allow the cognitive complaint in number one above to come from 

a skilled clinician rather than only the patient or informant. A dementia classification also 

results from a clinical consensus diagnosis of dementia (most often AD), which may be 

based on the dementia criteria of Diagnostic and Statistical Manual of Mental Disorders 
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Fourth Edition (DSM-IV),1  criteria of the Joint Working Group of the National Institute 

of the Neurologic and Communication Disorders and Stroke-AD and Related Disorders 

(NINCDS-ADRDA),42 NINDS-AIREN criteria for vascular dementia,43 and the 2005 

Dementia with Lewy bodies (DLB) Consortium revised criteria.44 A diagnosis of MCICC 

or dementia supersedes a classification of normal cognition, aMCITB or mMCITB in our 

model.  

Between their annual assessments subjects may die or become demented, and 

these states are treated as completely absorbing competing states. MCICC is treated as a 

quasi-absorbing state, as subjects do not move backward to a transient state (i.e., normal 

cognition, aMCITB, or mMCITB), but they may become demented or die. 

For 19 subjects, review of the longitudinal record revealed apparent back 

transitions from MCICC to normal: nine subjects were diagnosed with MCICC, reverted to 

normal, and then reconverted to MCICC, three of whom eventually became demented; six 

subjects had a single diagnosis of MCICC between several diagnoses of normal cognition 

on either side; and four subjects had a single diagnosis of MCICC at their initial evaluation 

following the UK ADC’s implementation of the NACC Uniform Data Set (UDS) 

cognitive and clinical testing protocol24,45 with all subsequent evaluations classified as 

normal. Review of each subject’s complete study history revealed in all cases that the 

apparent back transitions were the result of underlying medical conditions, conflicting 

data from informants, or misclassification. Given that there are differences in the medical 

comorbidities (e.g., hypothyroidism, B12 deficiency) that can mimic MCICC in both 

research and general clinic settings (cf., Reference 15), ‘treatable’ cases of MCICC were 

not considered to reflect neurodegenerative conditions.  Similarly, a single diagnosis of 
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‘normal’ in the midst of many years of MCICC diagnoses appears to reflect a temporary 

resolution of a neurodegenerative condition and so strains credulity. Therefore, in light of 

the available evidence, the six normal to MCICC to normal cases and the four MCICC to 

normal cases were reclassified as never having MCICC, though they still might be 

classified aMCITB or mMCITB, and the nine MCICC to normal to MCICC were reclassified 

as MCICC at every assessment after the first diagnosis of MCICC. 

Statistical Analysis 

The conditional distribution of the cognitive status at any assessment given the 

status at the prior assessment is assumed to have the Markov property. That is, the status 

at the current assessment depends only on the status at the prior assessment46 and 

possibly other risk factors. A multi-state Markov chain with three transient states (normal 

cognition, aMCITB, and mMCITB), one quasi-absorbing state (MCICC), and two absorbing 

states (death and dementia) was used to model the probability of maintaining the current 

state or moving to a different state at the next assessment (Figure 1). The Markov chain 

models the log-odds of transition between any two temporally adjacent assessments, here 

called the ‘prior state’ and the ‘current state,’ versus remaining in or returning to a ‘base 

state’ with a series of four random effects polytomous logistic regression models (i.e., 

one model for each transient state and one model for the quasi-absorbing state, MCIcc). 

The base state is normal cognition while a participant’s prior state is normal 

cognition, aMCITB, or mMCITB; once a participant has moved into MCICC the base state 

then becomes MCICC. The model is additive, which means in practice that although we 

assume the risk factors are independent of the prior state (i.e., the effect of sex, for 

example, is the same whether the prior state is normal cognition, aMCITB, or mMCITB; 
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there is no interaction between the covariates and the prior state), the estimated risk factor 

beta coefficients may depend on the base state. That is, the effect of sex, for example, 

may vary with respect to a base state of normal cognition versus a base state of MCICC. 

To account for within-subject correlations a normally distributed shared random effect 

due to Salazar et al. (2007)27 was included in the model using PROC NLMIXED in SAS 

9.2®. The Quasi-Newton method is used to maximize the likelihood function, which due 

to the presence of the shared random effect is an integral approximated by an adaptive 

Gaussian quadrature with one quadrature point.47,48 Transitions to MCICC and dementia 

states are assumed to have occurred on the date of assessment as modeling assumptions 

do not permit the inclusion of interval censoring-type approaches. The model ignores any 

transitions among the transient states between regularly scheduled assessments. Statistical 

significance was set at α = 0.05. 

 Covariates 

Covariates of interest include age at assessment (centered at 78, the sample 

median), sex (1 = female, 0 = male), education (two levels: ≤ 12 years, >12 years), 

presence (1) or absence (0) of any copies of the APOE-4 allele, presence (1) or absence 

(0) of family history of dementing illness among first degree relatives, and presence (1) 

or absence (0) of hypertension at study entry. Hypertension status at entry was derived 

from participant responses to the question, “Have you ever been told by a doctor or nurse 

that you have high blood pressure?” Use of medications was also recorded; however, 

reported use of an anti-hypertensive medication did not supersede a participant’s 

response of ‘No’ since anti-hypertensives are used to treat other illnesses. Also included 

as covariates (when the base state is normal cognition) are two indicator variables for (1 
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= yes, 0 = no) aMCITB and mMCITB; normal cognition is the reference category. Race 

was not included as a covariate because almost all of the included subjects (99%) are 

Caucasian.  

Results 

Study participants contribute an average of 10.8 annual assessments (median = 10 

assessments, mode = 10 assessments) with the average time between assessments at 

approximately 13 months (Table 2.2). Approximately 87% of subjects who reported 

hypertension at baseline also reported taking at least one anti-hypertensive medication, 

whereas 15% of those who reported no history of hypertension reported taking at least 

one anti-hypertensive medication.    

 One-step transitions 

Table 2.3 enumerates the one-step transitions associated with each arrow in 

Figure 2.1. The majority of transitions from aMCITB, which requires a poor score on a 

test of episodic memory, are back to normal cognition at the next visit (59.3%), and only 

4.4% are transitions to MCICC or dementia. Mixed MCI (mMCITB), which requires a poor 

score on a test of executive function or language, appears more predictive of underlying 

impairment with 43.8% remaining mMCITB and 7.1% transitioning to MCICC or dementia 

at the next visit. Entry into MCICC is a clear risk factor for transition to dementia since the 

majority of the transitions into the dementia state come from MCICC when compared to 

transitions into dementia from the other states. As previously stated, recovery from 

MCICC does not occur. We note that 13 of the 16 subjects who were MCICC and died 

without a dementia diagnosis have been autopsied. Of these, five had AD-type pathology 

insufficient for an AD diagnosis, two had mixed AD and vascular pathology, two had 
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mixed vascular pathology (one with Lewy bodies and one with hippocampal sclerosis), 

two had hippocampal sclerosis, one had Parkinson’s disease, and one had no 

histopathologic substrate for dementia (see also Reference 5). 

Risk Factors 

A number of risk factors alter the probability of transition to an MCI state 

(Table2.4). Older age increases the risk of movement into aMCITB (p = 0.0006) and 

mMCITB (p < 0.0001).  In addition, 12 years or less of education predicts transition to 

mMCITB (p = 0.0001) but not aMCITB. Family history of dementia ‘protects’ against 

transitions to mMCITB (p = 0.011), and female sex is protective against entry into aMCITB 

(p = 0.013). Classification as mMCITB at the prior assessment is predictive of remaining 

mMCITB rather than returning to normal at the next assessment (p < 0.0001). 

Demographic risk factors for transition to the MCICC state (versus remaining in or 

returning to a normal state) are older age (p < 0.0001), presence of at least one APOE-4 

allele (p = 0.0053), and high school education (12 years) or less (p = 0.007). 

Classification as either aMCITB or mMCITB at the prior assessment also increases the risk 

of transition to MCICC (p = 0.0041 for aMCITB, p < 0.0001 for mMCITB).  

In the absence of MCICC, risk factors for dementia include older age (p < 0.0001) 

and the presence of at least one APOE-4 allele (p = 0.0057) (Table 2.4).  A classification 

as mMCITB (p <0.0001) but not aMCITB at the prior assessment also increases the risk of 

transition to dementia at the next visit. Risk factors for transition to death without 

dementia include older age (p < 0.0001) and self-reported hypertension at study entry (p 

= 0.018).  
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Participants in this sample who transitioned from MCICC to dementia (n = 34) did 

so in an average of 2.5 ± 1.5 years (median = 2.2 years), and those who transitioned from 

MCICC to death without an intervening dementia (n = 16) did so in an average of 2.7 ± 

1.7 years (median = 3.4 years).  Those cases that remain in the MCICC state (n = 50) have 

carried the diagnosis for an average of 4.1 ± 2.4 years (median = 4.2 years). Once a 

transition to MCICC has occurred, only history of hypertension at study entry appears to 

influence further transitions to dementia, or death without dementia, versus remaining in 

the MCICC state (Table 2.5). A participant who reported baseline hypertension is more 

likely to remain MCICC (p = 0.037) than to convert to dementia at the next visit: the 

yearly transition rate to dementia for those with hypertension at baseline is approximately 

4.2% and 12.6% for those without hypertension at baseline. 

Discussion 

The addition of the MCICC state to the multi-state Markov chain confirms the 

utility of cognitive testing in predicting true underlying cognitive impairment. Entry into 

aMCITB and particularly mMCITB, both of which are determined solely by poor 

performance on cognitive assessment, increases the risk of a diagnosis of MCICC at the 

next visit versus returning to normal. These results highlight the importance of objective 

criteria in MCI diagnosis and emphasize the role of cognitive testing, particularly of 

language and executive function, in early detection. Notably, poor performance limited to 

tests of episodic memory (aMCITB) in this population can resolve to normal performance 

at the next annual assessment as much as 60% of the time and progress to MCIcc just 3% 

of the time (Table 2.3). Poor performance on tests of language and executive function is 

somewhat more stable, returning to normal performance at the next annual assessment 
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33% of the time. While there is no question that MCITB predicts MCIcc, these findings 

emphasize that clinicians who primarily rely on cognitive testing should obtain 

longitudinal follow-up before a diagnosis of MCI is given to the patient.50  

These findings reflect a novel analysis of risk factors for MCI and dementia based 

on the current NACC UDS criteria that are used across AD Centers in the United States24 

and so represent a standardized diagnostic system in contrast to earlier analyses of MCI 

risk factors.50,51 Further, the comparison of two different sets of MCI criteria (MCICC vs. 

MCITB) provides differing risk factors that could be of clinical use in patient care.  This is 

best highlighted in our group’s earlier comparison of patients diagnosed with MCI in a 

clinical research (i.e., the UK ADC BRAiNS cohort) as well as a memory clinic setting 

where only 9% of patients in the memory clinic had non-neurodegenerative causes for 

cognitive decline in contrast to 31% of the research clinic cases.15  

Risk factors for one-step transitions into MCICC include age, low education, prior 

classification as either aMCITB or mMCITB, and the presence of at least one APOE-4 

allele. APOE-4 is a known risk factor for AD, and although results for MCI have been 

mixed, a recent study of a nationally representative sample reported that APOE-4 was a 

reliable predictor of MCI versus normal cognition,52 and data from the Religious Orders 

Study reveal a 1.4 fold increased risk of MCI in persons with an APOE-4 allele.53 

It is clear that once an individual has transitioned to MCICC the risk of dementia 

increases dramatically. In this sample, 38.5% of individuals with MCICC have 

transitioned to dementia (at an estimated overall rate of 12.6% per year) compared to 

11.8% of individuals with no history of MCICC (at an estimated overall rate of 0.16% per 

year).  However, common risk factors for dementia (i.e., age, sex, education, family 
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history, and APOE-4) do not predict whether an individual will remain in MCICC or 

transition to dementia, or death without dementia, at the next visit. Similar results have 

been reported in studies that have examined risk factors for progression of cognitive 

impairment. Tschanz et al. (2011)54 noted in the Cache County cohort that while female 

sex and age at onset were predictive of decline in Mini-Mental State Exam (MMSE) 

scores, education was not related to rate of MMSE decline, and APOE-4 was related to 

earlier onset of impairment but not rate of MMSE decline. Fleisher et al. (2007)55 

reported that although APOE-4 did predict conversion from amnestic MCI to AD over a 

36-month interval, it did not improve the predictive accuracy of their model (which 

included only neuropsychological test scores). 

Participants who reported hypertension at baseline were significantly less likely to 

transition from MCICC to dementia at the next visit, which may indicate a primarily 

vascular rather than an AD or mixed AD and vascular etiology for MCICC in these 

patients. Several studies have shown brain white matter changes are associated with 

cognitive decline in aging56,57 and that vascular changes exacerbate the cognitive decline 

associated with AD.58,59 Hoffman and colleagues (2009)60 reported that autopsied 

subjects who took anti-hypertensive medications had significantly less Alzheimer-type 

pathology than either those with no history of hypertension or those with hypertension 

not treated by medication. However, the differences in risks for treated and untreated 

hypertension could not be assessed here due to the small number of cases of untreated 

hypertension in the sample.  

As with aMCITB, mMCITB, and MCICC, older age increases the probability of a 

transition to a dementia state. Baseline hypertension plays no role in transitions to 
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aMCITB, mMCITB, MCICC, or dementia (in the absence of MCICC), predicting only 

transitions to death (modeled as a competing risk for dementia). This result agrees with 

our previous research41 even after four additional years of follow-up, as well as with the 

results of a recent meta-analysis, which found no increased risk of incidence of AD for 

either persons with hypertension or those taking anti-hypertensive medications.61 We 

note that hypertension is a time-dependent risk factor as the participant’s status may 

change during the course of follow-up. Availability of these time-dependent data is 

limited for many of the subjects in this sample; the study protocol did not call for annual 

assessment of health history until the implementation of the UDS in 2005. 

All forms of MCI, and dementia as well, reflect a heterogeneous (and not 

completely understood) group of diseases including AD, hippocampal sclerosis, dementia 

with Lewy bodies, and vascular dementia.5,62 This heterogeneity may help explain the 

lack of significant predictors, other than baseline hypertension, from MCICC to dementia. 

We currently lack sufficient sample size to study these dementias as separate entities, but 

we have recently initiated work that will facilitate future research on which factors 

influence transitions into dementia subtypes. Similarly, MCICC is treated as a single entity 

here despite its well-documented heterogeneity63 because we lack sufficient sample size 

to study the individual subtypes, and it is quite possible that risk factors for transitions to 

each subtype are different.  

Limitations of the current study include that the final outcome for the many of the 

included subjects is unknown as they continue to be followed longitudinally. Additional 

follow-up may change the results observed here, though they have face validity. The 

generalizability of the results is also somewhat limited due to the sample’s demographic 
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and geographic homogeneity, which would not be replicated in a population-based 

sample, and the nature of the longitudinal study, which requires brain donation at death. 

The volunteers are highly motivated and highly educated, and the frequency of both 

family history of dementia and APOE-4 is higher than what would be observed in the 

general population. Biomarker data (i.e., blood, cerebrospinal fluid, and neuroimaging) 

are for the most part unavailable on these subjects, and studies that have investigated risk 

factors for transition from clinical MCI to dementia have largely been focused on 

biomarkers.64,65 Obtaining biomarkers is extremely expensive, however, and it has been 

reported that longitudinal neuropsychological testing data provides as good or better 

accuracy in predicting which clinical MCI cases will convert versus remain stable.66 

Nevertheless, the recently published criteria for the diagnosis of MCI due to AD make 

extensive use of biomarker data,25 and this modeling technique will allow us to 

incorporate these data as they become available in the future. 

Finally, a large portion of this University of Kentucky-based longitudinal cohort 

was not included in this study (n = 476). The decision to exclude all subjects not in the 

original study (see Reference 26) was due to the fact that the model’s power to detect 

risks is based on the number of events in the sample, not the number of subjects. The 

excluded subjects, who are relatively recent recruits with about four assessments on 

average, are unable to contribute events due to this abbreviated follow-up. Potential 

differences between included and excluded participants were assessed using standard 

parametric two-group comparisons. Included and excluded subjects compare favorably 

on distribution of sex, family history, APOE-4, history of hypertension at baseline, and 

time between assessments (data not shown). Although the excluded subjects were slightly 
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older at baseline the effect size is small (Cohen’s d = -0.05). Excluded subjects also have 

lower education (χ2 = 8.8, 2 df, p = 0.01). That the excluded subjects are slightly older 

and less educated reflects that recruitment goals were changed in 2005 in order to enroll 

older participants with lower education, and all of the included subjects in the present 

model were recruited prior to 2005. 

Grant Support 

This research was partially funded with support from the following grants to the 

University of Kentucky’s Center on Aging: R01 AG038651-01A1 and P30 AG028383 

from the National Institute on Aging, as well as a grant to the University of Kentucky’s 

Center for Clinical and Translational Science, UL1RR033173, from the National Center 

for Research Resources.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



22 
 

Table 2.1. Criteria for state classification 
 
State Definition 
Normal 
cognition 

No cognitive test score more than 1.5 standard deviations (SD) below 
the age-adjusted mean; absence of MCICC or Dementia  (see below) 

Test-based 
amnestic MCI 
(aMCITB) 

At least one score more than 1.5 SD below the age-adjusted mean on 
the following measures of episodic memory: Wechsler Logical 
Memory, Benton Visual Retention Test (number correct or number of 
errors), a word list (Consortium to Establish a Registry in Alzheimer’s 
Disease word list or California Verbal Learning Test ), total learning 
score, delayed recall score, savings score, the maximum recalled minus 
delayed recall score 

Test-based 
mixed MCI 
(mMCITB) 

At least one score more than 1.5 SD below the age-adjusted mean on 
the following measures of language and executive function: phonemic 
or category verbal fluency, Boston Naming Test (15-item), Trail 
Making Tests A or B 

Clinical 
consensus-
based MCI 
(MCICC) 

A cognitive complaint by the subject or informant, or evidence for 
longitudinal decline on cognitive test performance (at least 1.5 SD 
decline); generally intact global cognition; no or minimal functional 
impairment; not demented by DSM-IV criteria; neurodegenerative 
etiology suspected 

Dementia 

Meets DSM-IV criteria for dementia; or NINCDS/ARDRA criteria for 
possible or probable AD; or NINDS-AIREN criteria for possible or 
probable vascular dementia; or DLB Consortium criteria for Lewy 
body disease 
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Table 2.2. BRAiNS subject characteristics (n = 554) 
 
Characteristic Summary 
Age at entry, y (mean ± SD) 72.7 ± 7.8 
Female, % 64.3 
Family history of dementia, % 41.3 
At least one APOE-4 allele, % 30.0 
> 12 years of education, % 88.1 
History of hypertension at entry, % 36.6 
Hypertension treated with medication, % 86.5 
Number of assessments (mean ± SD) 10.8 ± 4.5 
Time between assessments, y (mean ± 
SD) 

1.1 ± 0.4 
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Table 2.3. One-step transition matrix (number of assessments [% of prior visit state]) 
 

Prior visit 

Current visit 

Normal 
Amnestic  

MCITB 

Mixed 
 MCITB 

Clinical 
Consensus

MCI 
Dementia Death 

Normal 2192 
(68.3) 

478 
 (14.9) 

385  
(12.0) 

34  
(1.1) 

19  
(0.6) 

100 
 (3.1) 

Amnestic MCITB 448 
(59.3) 

148  
(19.6) 

108 
 (14.3) 

23  
(3.1) 

10 
 (1.3) 

18  
(2.4) 

Mixed MCITB 341 
(33.0) 

88  
(8.5) 

453 
 (43.8) 

47  
(4.5) 

27  
(2.6) 

79  
(7.6) 

Clinical Consensus 
MCI 

   101  
(66.9) 

34  
(22.5) 

16  
(10.6) 
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Table 2.4. Estimated odds ratios and 95% confidence intervals for one-step transitions to test-based amnestic MCI 
(aMCITB), test-based mixed MCI (mMCITB), or clinical consensus MCI (MCICC) versus the base state of normal 
cognition (bolding denotes statistical significance).  
 

Risk factor* 
aMCITB 

vs. Normal 
mMCITB  

vs. Normal 
MCICC  

vs. Normal 
Age 1.02 (1.01 – 1.04) 1.07 (1.05 – 1.08) 1.12 (1.09 – 1.15) 
Female sex (vs. male) 0.77 (0.62 – 0.95) 1.01 (0.82 – 1.24) 0.71 (0.46 – 1.09) 
Family history of dementia (yes vs. no) 0.81 (0.65 – 1.00) 0.76 (0.62 – 0.94) 1.04 (0.66 – 1.64) 
≥ one APOE-4 allele (vs. none) 1.04 (0.83 – 1.31) 1.12 (0.89 – 1.40) 1.89 (1.21 – 2.95) 
≤12 years of education (vs. >12 years) 1.24 (0.89 – 1.74) 1.79 (1.33 – 2.42) 2.20 (1.24 – 3.91) 
History of hypertension (yes vs. no) 0.95 (0.76 – 1.18) 1.04 (0.84 – 1.28) 0.79 (0.42 – 1.49) 
aMCITB at prior assessment (vs. normal) 1.15 (0.91 – 1.45) 1.00 (0.77 – 1.29) 2.28 (1.30 – 4.00) 
mMCITB at prior assessment (vs. normal) 0.76 (0.57 – 1.02) 4.51 (3.63 – 5.61) 4.80 (2.94 – 7.81) 
*As risk factors do not depend on the prior state, covariate effects are the same regardless of whether transitions occur 
from a prior state of normal cognition, aMCITB, or mMCITB. 
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Table 2.5. Estimated odds ratios and 95% confidence intervals for one-step transitions to 
dementia or death without dementia versus the base state of normal cognition or clinical 
consensus MCI (MCICC) (bolding denotes statistical significance).  
Risk factors* (Normal is base state; no 
history of MCIcc) 

Dementia  
vs. Normal 

Death  
vs. Normal 

Age 1.19 (1.14 – 1.24) 1.18 (1.15 – 1.21) 
Female sex (vs. male) 1.87 (0.95 – 3.68) 0.68 (0.49 – 0.95) 
Family history of dementia (yes vs. no) 1.66 (0.92 – 3.01) 0.82 (0.57 – 1.17) 
≥ one APOE-4 allele (vs. none) 2.33 (1.28 – 4.23) 0.97 (0.67 – 1.42) 
≤12 years of education (vs. >12 years) 0.75 (0.26 – 2.18) 1.33 (0.80 – 2.22) 
History of hypertension (yes vs. no) 0.79 (0.42 – 1.49) 1.49 (1.07 – 2.08) 
aMCITB at prior assessment (vs. normal) 1.85 (0.82 – 4.21) 0.64 (0.38 – 1.08) 
mMCITB at prior assessment (vs. normal) 4.90 (2.58 – 9.30) 2.67 (1.88 – 3.79) 

Risk factors (MCICC is base state) 
Dementia  
vs. MCICC 

Death  
vs. MCICC 

Age 1.05 (0.98 – 1.13) 1.03 (0.94 – 1.13) 
Female sex (vs. male) 1.75 (0.67 – 4.56) 1.15 (0.65 – 3.76) 
Family history of dementia (yes vs. no) 2.88 (0.95 – 8.72) 0.68 (0.15 – 3.03) 
≥ one APOE-4 allele (vs. none) 0.69 (0.22 – 2.16) 2.33 (0.61 – 8.90) 
≤12 years of education (vs. >12 years) 0.97 (0.27 – 3.46) 0.55 (0.10 – 2.99) 
History of hypertension (yes vs. no) 0.30 (0.10 – 0.93) 0.70 (0.20 – 2.47) 
*As risk factors depend only on the base state, covariate effects are in the top half of the 
table are the same whether transitions occur from a prior state of normal cognition, 
aMCITB, or mMCITB.   
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Figure 2.1. Flow diagram of transitions possible between subject visits. Normal 
cognition is the base state for transitions made from normal cognition, test-based 
amnestic MCI, and test-based mixed MCI; clinical MCI is the base state otherwise.  
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CHAPTER THREE 
 

Self-reported head injury and risk of cognitive impairment and Alzheimer’s-type 

pathology in a longitudinal study of aging and dementia 

 

Abstract 

Longitudinal studies of premorbid head injury and Alzheimer’s-type (AD) clinical 

dementia to date have been largely limited to antemortem clinical data. In the current 

study, clinical and neuropathological data from participants in a longitudinal study of 

aging and cognition (N = 649) were evaluated for the long-term clinical effects of self-

reported head injury using a multi-state Markov chain, a statistical model capable of 

handling intervening cognitive states between normal cognition and dementia, as well as 

competing risks for dementia (i.e., death without dementia and dropout without 

dementia). The effect of self-reported head injury on clinical state depends on age at 

assessment: for a one-year increase in age, the OR for transition to clinically diagnosed 

Mild Cognitive Impairment (MCICC ) for participants with a history of head injury is 1.21 

(95% CI: 1.15 – 3.56). Similarly, for a one-year increase in age, the OR for transition 

from MCICC to dementia for participants with head injury history is 1.34 (95% CI: 1.11 – 

1.61). We also find that self-reported head injury, without respect to age at assessment, is 

a significant risk for transition from a clinically unimpaired state to death ( 	= 1.54, 

95% CI: 1.12 – 2.13). These results support prior work identifying earlier onset and 

increased risk of cognitive impairment with head injury as well as increased risk of 

mortality associated with a history of head injury. Since over one-third of the cohort has 

come to autopsy (n = 238), we examined plaque and tangle counts from the neocortical 
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and medial temporal areas to determine whether a history of head injury is associated 

with increased AD-type pathological burden. The odds of having AD pathology sufficient 

for an AD diagnosis is significantly increased for men with a history of head injury ( = 

1.47, 95% CI: 1.03 – 2.09) but not for women ( = 1.18, 95% CI: 0.83 – 1.68), and 

MANCOVA shows that men with head injury by history have significantly higher mean 

diffuse and neuritic plaque counts in the neocortex and entorhinal cortex compared to 

men without. 

Introduction 

The factors that contribute to late-onset Alzheimer’s disease (AD) are at present 

incompletely understood, but the evidence strongly suggests they include genetics.67 

Apolipoprotein-E (APOE) ε4 alters beta-amyloid deposition in the brain such that even a 

single copy dramatically increases the risk of AD.  AD commonly occurs, however, in 

individuals without the ε4 allele. A meta-analysis of AD study populations reports an 

estimated 41% of AD cases (range 23-64%) are APOE-ε4 negative.68 Further, genetic 

risks may be modified by environmental factors. Non-genetic risk factors that have been 

reported include, but are not limited to, head trauma,69-71 cardiovascular disease and 

related risk factors,72 and education.73,74 These risk factors suggest possible therapeutic or 

preventive strategies.  

Since the first investigation into the association between head injury and 

dementia,75 the literature has been limited from the standpoint that none of the 

epidemiological studies of head injury and AD-type clinical dementia have used autopsy-

confirmed diagnosis of AD or examined neuropathological data. This is significant 

because an estimated 20-30% of cases clinically diagnosed with AD have dementia due 
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to another cause,76 and conversely, approximately 80% of individuals 

neuropathologically diagnosed with AD also have additional pathologies.77 The purpose 

of the current study is to re-examine the association between self-reported head injury, 

risk of clinical dementia, and AD pathology using data from participants with detailed 

longitudinal cognitive assessments, as well as a subset of participants with textured 

neuropathologic data, and statistical tools capable of handling competing dementia risks.  

Background 

Autopsy-based studies of head trauma have reported increases in the number of 

beta-amyloid precursor protein (βAPP) positive neurons in cases of isolated severe head 

injury compared to age-matched controls.78 Long-term increases in tau and beta-amyloid 

pathology have been noted in patients with a history of a single head injury sustained 

between 1 and 47 years prior to death.79 Both acute and chronic axonal injury, including 

accumulation of proteins associated with neurodegenerative disease, has been observed in 

individuals with a history of head injury.80-82  However, the etiological links have not 

been solidly established in terms of how the brain trauma manifests neuropathologically. 

Studies of chronic traumatic encephalopathy (CTE) have involved autopsy 

series.83 CTE implies a history of repeated brain injury and is a progressive illness 

characterized by deficits in motor skills, cognition, and increased psychiatric symptoms 

such as depression, irritability, and aggression.84 CTE pathology is marked by increased 

tau pathology, and in some cases, TAR DNA-binding protein 4383 with or without diffuse 

beta-amyloid deposits.85 Thus, CTE has both clinical and neuropathological overlap with 

AD, but the two are also distinct diseases in terms of the severity, anatomical distribution, 

and other manifestations of brain pathology. 
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Epidemiological studies have yielded conflicting evidence. A meta-analysis of 15 

case-control studies found that although there was an overall increased odds of AD for 

those with a history of head injury with loss of consciousness (LOC) prior to the onset of 

AD (pooled odds ratio [ ] = 1.58 [95% CI: 1.21-2.06]), the odds of AD was increased 

for men (  = 2.29 [95% CI: 1.47-3.58]) but not for women (  = 0.91 [95% CI: 0.56-

1.47]).69 However, the severity of these injuries was not considered in the meta-analysis, 

and AD diagnosis was not autopsy-confirmed. Again, the imperfect concordance between 

clinical and pathological diagnoses may play a significant role. For example, in the case 

of diabetes and AD, studies that rely only on a clinical diagnosis of AD have reported 

findings largely opposite from those that consider the pathological diagnosis.67 

 Results from cohort studies have also been inconsistent (Table 3.1). Two large, 

prospective studies—The Rotterdam Study86  and The Adult Changes in Thought 

Study87—found no increased risk of dementia or AD associated with past head injury. 

Data from the smaller Betula study, by contrast, did reveal an increased AD risk for those 

participants with self-reported mild head injury but only for APOE-ε4 carriers.88 

 Retrospective cohort studies have tended to report that head injury is an 

independent risk factor for AD or decreases time to dementia onset. Plassman et al. 

(2000) reviewed military medical records and compared men with a history of closed 

head injury to those with an unrelated condition.70  Dementia, and AD specifically, was 

associated with both moderate and severe, but not mild, injury.  Retrospective review of 

medical records from Olmsted County, Minnesota residents who were treated for head 

trauma and were over age 40 years at the time of their last medical assessment showed no 

increased risk of AD or all-cause dementia.89 When time to onset was used as the 
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outcome, however, persons with head trauma developed AD a median eight years earlier 

than expected when compared to the age-based incidence of AD in the total county 

population.90 Similarly, a prospective cohort study of Manhattan residents found that 

after five years of follow-up, history of head injury with LOC within the preceding 30 

years was associated with earlier onset of AD, and the effect was stronger for those 

reporting a LOC of at least five minutes.71  

Methods 

Subjects 

Subjects of this study are volunteers from Biologically Resilient Adults in 

Neurological Studies (BRAiNS) at the University of Kentucky’s Alzheimer’s Disease 

Center, a longitudinal cohort of over 1,100 individuals established in 1989 with ongoing 

recruitment.40 The cohort comprises a convenience sample of older adults (age ≥ 60 

years) from central Kentucky.  Exclusion criteria for the BRAiNS cohort include 

prevalent neurological, psychiatric, and disabling medical disorders, as well as prevalent 

dementing illness (see Reference 40 for a detailed listing and explanation of recruitment 

and procedures). Subjects included in the current analysis (n = 649) were enrolled 

between 1989 and 2004, evaluated at least two times, and had APOE genotyping 

available. Participants are given annual cognitive and clinical assessments and donate 

their brains upon death. Participants who died and came to autopsy in the current study 

were included in a subset analysis. Of these, 17 cases were excluded because quantitative 

neuropathology data were unavailable. An additional 15 were excluded due to the 

presence of diffuse Lewy body disease, leaving 238/270 for study. All enrollees were 

cognitively normal at study entry, and all research activities were approved by the 
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University of Kentucky Institutional Review Board. Each participant provided written 

informed consent.  

Statistical Analysis 

Multistate Markov Chain  

To test the hypothesis that self-reported history of head injury promotes transition 

to impaired cognition, a multistate Markov chain was fit to the data. Multistate Markov 

chains are attractive for modeling cognitive decline,26,27,30,31,41,91 and they allow for the 

inclusion of competing risks for the outcome of interest (all-cause dementia) as 

participants who die or drop out before dementia onset may bias analyses.92,93 

Participants were classified into states at each assessment: (1) normal cognition, 

(2) test-based amnestic mild cognitive impairment (aMCITB), (3) test-based mixed MCI 

(mMCITB), (4) clinical consensus-based MCI (MCICC), (5) dementia (all-cause), (6) drop-

out without dementia, and (7) death without dementia. The classification method has 

been described in detail previously.26,91 Briefly, normal cognition represents the absence 

of any impairments on testing as well as the absence of any clinical diagnosis of MCI or 

dementia; test-based MCI indicates at least one observed score of at least 1.5 standard 

deviations below the expected score for age based on the performance of the entire 

normal cohort at baseline on tests of episodic memory (aMCITB) or language and 

executive function (mMCI TB); clinical consensus-based MCI (MCICC) indicates a 

diagnosis of MCI based on criteria used by the National Alzheimer’s Coordinating 

Center’s Uniform Data Set;24 and dementia indicates a clinical diagnosis of dementia 

based on DSM-IV criteria. 
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A multistate Markov chain with four transient states (normal cognition, aMCITB, 

mMCITB, and MCICC) and three absorbing states (death, dementia, and drop-out) was 

used (Figure 1). An individual may move freely among the transient states, but once an 

absorbing state is reached that individual’s follow-up ends for the purposes of the 

analysis; here records are truncated at the date of diagnosis. The model estimates the log-

odds of a one-step transition between any two adjacent assessments, here called the ‘prior 

state’ and the ‘current state,’ versus remaining in or returning to a ‘base state’ with a 

series of four polytomous logistic regression models (i.e., one model for each transient 

state). 

To account for within-subject correlation, random intercepts were included in the 

model as described in Abner et al. (2012)91 via PROC NLMIXED in SAS/STAT 9.3®.48 

Observed transitions are assumed to have occurred on the date of diagnosis, and the 

model ignores any transitions among the transient states between regularly scheduled 

assessments. A modified backwards selection procedure was used to fit the model (see 

Appendix A). Predictor variables stayed in the model only if they significantly affected 

any one-step transition probability.  

Risk Factors 

Presence or absence of a history of head injury was derived from participant 

responses to the intake interview questions, “Have you ever been knocked unconscious? 

If yes, how long were you unconscious, when did it happen, and how did it happen?” 

Participants who reported LOC of any duration, as well as participants who reported a 

diagnosis of concussion without LOC, were coded as positive for history of head injury. 

Where head injury was reported, approximate age at injury, LOC duration (< 5’, ≥ 5’), 
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and external cause of the injury were recorded. Participants who described their LOC as 

“a few moments,” “a few minutes,” “momentarily,” or whose LOC duration was not 

described (n = 6) were coded as < 5’.  

Additional injury data were derived from interviews conducted longitudinally by 

study clinicians. Thus, head injury was treated as a time-varying factor. Two-way 

interactions between head injury and sex as well as age were tested for inclusion in the 

model.95 A two-way interaction between head injury and APOE-ε4 could be not 

evaluated due to sample size limitations.  

Other risk factors of interest include age at assessment (centered at 79 years), sex, 

education (≤ 12 years, >12 years), APOE-ε4 carrier status (at least one ε4 allele vs. no ε4 

alleles), family history of dementia (first-degree relatives only), baseline hypertension 

(self-report), and baseline smoking history (never, 0 – 10 pack-years, 10 – 20 pack-years, 

20+ pack-years).  

Generalized Linear Regression 

Multivariate analysis of covariance (MANCOVA) was used to test the hypothesis 

that self-reported history of head injury leads to increased mean AD-type pathology in 

the neocortex and medial temporal lobe, both of which have been identified as sites with 

increased βAPP-positive neurons following head injury.78,95 MANCOVAs estimating the 

effect of head injury on mean diffuse (DPs) and neuritic plaque counts (NPs) as well as 

mean neurofibrillary tangle counts (NFTs) in the neocortex (frontal, temporal, parietal, 

and occipital regions) and medial temporal lobe (entorhinal cortex, amygdala, 

hippocampus CA1, and subiculum) were fit using PROC GLM in SAS/STAT 9.3®. 

Logistic regression was used to test the hypothesis that head injury increases the odds of 
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AD-positive pathology. All models included age at death and indicators for APOE-ε4 

status, male sex, presence of at least mild cerebral amyloid angiopathy (CAA) (which is 

associated with increased numbers of amyloid plaques), and whether clinical dementia 

was observed before death. Two-way interactions between head injury and age at death, 

APOE-ε4, and sex were also tested. Statistical significance for all analyses was set at α = 

0.05. 

Pathological Assessments 

AD-positive pathology refers to cases with Braak stage V or VI and with 

moderate or severely dense neuritic amyloid plaques according to CERAD criteria.96 

Neuropathological counting metrics and methods were exactly as described 

previously.62,97 

Results 

Clinical Data 
 

Study participants contributed an average of 10.4 longitudinal assessments 

(median = 10 assessments, range = 2-22 assessments), with the average time between 

assessments at approximately 13 months (Table 3.2). During the study period, 386 

(59.5%) participants transitioned to aMCITB at least one time, 398 (61.3%) transitioned to 

mMCITB at least one time, 129 (19.9%) transitioned to MCICC, 109 (16.8%) transitioned 

to dementia, 234 (36.1%) died without dementia, and 92 (14.2%) left the study without 

dementia. 

The majority of transitions from aMCITB are back to normal cognition at the next 

visit (57.6%), and only 3.7% are transitions to MCICC or dementia. Mixed MCI 

(mMCITB) appears more predictive of underlying disease with 45.7% remaining mMCITB 
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and 7.7% transitioning to MCICC or dementia at the next visit (Table 3.3). Participants 

who transitioned to dementia required an average of 10.4 ± 4.4 steps to do so (Table 3.4). 

The observed number of steps required for death without a dementia (9.8 ± 4.4) or 

dropout without a dementia (9.3 ± 4.5) underscores the importance of accounting for 

these competing events in modeling dementia risks.  

Self-reported head injury occurred in one-quarter the sample (166/649, 25.6%). 

Men (83/234, 35.5%) reported a significantly higher proportion of head injury than 

women (83/415, 20.0%): χ2 = 18.81, 1 df, p < 0.0001). The majority of head injuries 

reported were listed as having occurred prior to the baseline assessment (156/166, 

94.0%). In all but four cases, the head injury preceded the first diagnosis of dementia by 

at least 10 years. Most participants reported only a single instance of head injury, but 

some participants reported two (n = 15) or more (n = 3) instances. Men in this cohort tend 

to have reported injuries that result in LOC of at least five minutes more frequently than 

women (Table 3.5), though the difference is not statistically significant (31.3% vs. 

21.7%: χ2 = 1.98, 1 df, p = 0.16). When the external cause of the injury (Table 3.5) is 

taken into account, however, men do have significantly increased odds of LOC of at least 

five minutes compared to women (  = 2.55, 95% CI: 1.1 – 5.9). 

The interaction between head injury and sex was not significant and was not 

retained (see Table 3.6 for final fitted model). Head injury, without respect to age, was a 

significant risk for the one-step transition from a transient state to death without dementia 

( = 1.54, 95% CI: 1.12 – 2.13). The interaction between head injury and age was 

significant for the one-step transitions from normal cognition, aMCITB, or mMCITB to 

MCICC (p = 0.017) and the one-step transition from MCICC to dementia (p = 0.0069). For 
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a one-year increase in age, the  for transition from normal cognition, aMCITB, or 

mMCITB to MCICC for participants with a history of head injury is 1.21 (95% CI: 1.15 – 

3.56). Similarly, for a one-year increase in age, the  for transition from MCICC to 

dementia for participants with a history of head injury is 1.34 (95% CI: 1.11 – 1.61).  

Multistate Markov model results may also be used to estimate the expected 

number of one-step transitions required to reach the absorbing states.30 Table 3.7 shows 

the predicted number of one-step transitions a cognitively intact participant with a 

particular clinical profile would require before becoming demented or dying. Self-

reported head injury, in the absence of other risk factors, decreases the time to an 

eventual dementia by roughly 6 months. The risk factors presented here decrease the time 

to dementia in an additive fashion, and it is important to note that in all cases the 

predicted number of transitions to death without dementia and dropout without dementia 

(data not shown) are significantly reduced compared to time to dementia, which again 

underscores the necessity of accounting for these competing risks.  

 Finally, two sensitivity analyses were conducted to assess the effect of (1) 

excluding participants whose head injuries occurred after baseline (n = 10) and (2) 

excluding participants whose head injuries occurred less than 10 years prior to their first 

diagnosis of clinical dementia (n = 4). All three models produced a similar fit (to two 

decimal places), and conclusions did not change.  

Pathological Data 

Of the 238 included participants, 70 (29.4%) reported a history of head injury (36 

males [33% of autopsied men] and 34 females [26% of autopsied women]) (Table 3.8). 

The odds of having AD pathology sufficient for an AD diagnosis is significantly 
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increased for men with a history of head injury ( = 1.47, 95% CI: 1.03 – 2.09) but not 

for women ( = 1.18, 95% CI: 0.83 – 1.68).  

In the neocortex, men with a history of head injury have higher mean parietal and 

occipital DPs, and all neocortical areas show more NPs, than men without (p<0.05; 

Figure 3.3). Women with a history of head injury do not have significantly higher 

neocortical DPs or NPs than women (or men) without head injury (Figure 3.3). 

Additional analyses were performed to determine if age at injury or source of injury 

mitigated the observed sex by head injury interaction; the conclusions did not change 

(data not shown).  Mean neocortical NFTs were not associated with head injury history 

(data not shown).  

 Pathological burden in the medial temporal structures, except for the entorhinal 

cortex, was unaffected by history of head injury. Again, men who reported a history of 

head injury had significantly increased DPs (20.6 ± 2.3 vs. 13.4 ± 1.8, p = 0.0072) and 

NPs (3.8 ± 0.7 vs. 1.6 ± 0.6, p = 0.013) in the entorhinal cortex compared to men who did 

not. NFTs in the entorhinal cortex were unaffected (data not shown).  

Discussion 

 Clinical and neuropathological data from participants in a longitudinal study of 

aging and cognition (N = 649) were analyzed to assess the effects of self-reported head 

injury. Our results support prior work identifying increased risk of cognitive 

impairment97 and earlier onset of clinical dementia with head injury,71,89 as well as 

increased risk of mortality associated with a history of head injury.87  Although the six-

month reduction in time to dementia onset we report is much less than the eight years in 

the Olmstead County study,89 differences in study design, population, head injury case 
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definition, and clinical diagnosis could account for the discrepancy. We also found 

unexpected correlation between head injury, gender, and increased AD neuropathologic 

changes. 

The effect of head injury on dementia risk may be modified not only by age at 

injury and severity of injury (or injuries) but also by other factors including gender and 

APOE-ε4 status.94 We note that while a single injury of sufficient severity can increase 

the risk of manifesting clinical dementia, it does not necessarily follow that these events 

lead to the specific features of AD. In experimental studies (i.e., animal studies), 

however, evidence of long-term neurodegeneration was observed after a single head 

injury, and accelerated beta-amyloid peptide deposition and cognitive impairment was 

observed after repeated mild head injury.98 Thus, animal models have provided 

hypothesized mechanistic links between head injury and AD, and autopsy-based case 

series of head injury have also suggested a link between head injury and AD-promoting 

and AD-type pathology.79,82,99,100 

Detailed pathological data were available on over one-third of the study 

participants. History of self-reported head injury was associated with increased levels of 

amyloid plaque deposition in the neocortex and entorhinal cortex, as well as increased 

odds of AD pathology for men but not women, which supports prior clinical studies. 

Fleminger and colleagues (2003)69 posited that women may be protected from the 

deleterious effects of head injury by the presence of female sex hormones. Indeed, the 

women who came to autopsy in the current study were more likely to report two 

instances of LOC (6/34 vs. 1/36, p = 0.027, Fisher’s Exact test) and were more likely to 

have sustained a head injury after age 55 (16/34 vs. 7/36, p = 0.030, Fisher’s Exact test). 
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If AD pathology were more affected by more recent or frequent LOC, it should follow 

that the women and not the men would have elevated plaque counts in association with 

exposure to head injury.  

An alternative explanation is that male gender may be a proxy for severity, 

repetition, poor reporting, and particular mechanisms (e.g., contact sports) of brain injury. 

Men in our study tended to report injuries that led to LOC ≥ 5 minutes more often than 

women, which suggests that their injuries may have been more severe overall. Plassman 

and colleagues (2000) found increased risk of both all-cause dementia and AD for 

veterans with moderate and severe injuries but not mild injuries,70 and Schofield and 

colleagues (1997) found an increased risk of AD for participants who reported head 

injuries with LOC ≥ 5 minutes but not for < 5 minutes.71 Of the 36 autopsied men with a 

history of head injury, 13 (36%) reported sports and recreation as source of the injury, 

nine of which were identified as football or boxing. It may be that while the participant 

reported only one or two instances of head injury where LOC occurred, multiple 

instances of injury were actually experienced without LOC. Chronic effects of head 

injury may be due to lifetime cumulative exposure rather than an acute single event.101 

Recent data reveal an increased risk of AD for retired American football players, who are 

assumed to have been exposed to repeated blows to the head, relative to the general US 

population ( 	= 3.29, 95% CI: 1.55 – 7.95).102 

We note that for both genders, reported head trauma is usually quite remote even 

from study enrollment, in some cases occurring in infancy; however, these injuries could 

still affect the brain chronically.79 In addition to the influence of recall bias implicit to the 

study design, we note that participants in the current study are highly educated compared 
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to their peers nationally, with 65.7% having at least a Bachelor’s degree vs. 24.5% of 

those over age 60 years nationally.103 If, as Moretti and colleagues (2012) suggest, 

cognitive reserve is the best predictor of cognitive outcome and decline following head 

injury97, the participants in this study may have been less vulnerable to its effects. 

As for the neuropathology, head injury severity occurs along a spectrum, and 

coding such injuries dichotomously obscures relevant information.104 Recovery (and 

wound repair capacity of an individual) may also be graded on a continuum, and all these 

factors may influence the long-term sequelae of the injury.104 Future studies of head 

injury as a risk for dementia and AD should consider collecting detailed data on severity, 

anatomical location, post-traumatic amnesia, and receipt of treatment if possible. 

Despite the limitations inherent in the data, multiple studies have found that even 

a single reported occurrence of head injury is associated with increased risk of incident 

dementia years or decades later. Although such knowledge may not be useful to those 

individuals for whom head injury is not a modifiable risk factor (i.e., having already 

sustained one), it does underscore the necessity of taking proper precautions for those 

involved in professions and recreational activities where head injury is common. 
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Table 3.1. Summary of cohort studies of head injury and dementia 
 

Study Type* N Effect Estimate(s) for Dementia Risk Exposure Assessment 
Head 
Injury 

Prevalence 
Limitations 

Rotterdam 
Study (Mehta 
et al., 1999) 

P 6,645  = 0.8, 95% CI: 0.4-1.9 
Self-report to study 
physician 

12.0% 

2 years of follow-up, 
inclusion of younger 
adults (≤ 60 years), dx 
not autopsy-confirmed 

Adult 
Changes in 
Thought  
(Dams-
O'Connor et 
al., 2012) 

P 4,225 
Age at injury <25:  = 1.02, 95% CI: 0.87-1.20 
Age at injury 25-54:  = 1.04, 95% CI: 0.78-1.38
Age at injury 55+:  = 1.06, 95% CI: 0.81-1.39 

Self-report via 
structured interview 
by study personnel 

15.9% 
Dx not autopsy-
confirmed  

Plassman et 
al.  
(2000)  

R 1,776 
Mild injury:  = 0.76 95% CI: 0.18-3.29 
Moderate injury:  = 2.32, 95% CI: 1.04-5.17 
Severe injury:  = 4.51, 95% CI: 1.77-11.47  

Review of military 
medical records 
between 1944-1945 

n/a 

Head trauma sustained 
outside military service 
not accounted for, dx 
not autopsy confirmed 

Williams et 
al.  
(1991) ; 
Nemetz et al. 
(1999) 

R 1,283  = 1.2, 95% CI: 0.8-1.7; median onset 
shortened by 8 years (p = 0.0015) 

Review of Mayo 
Clinic medical records 
for cases with 
traumatic brain injury 
diagnosed between 
1935-1984 

n/a 

Head trauma not 
requiring hospital visit 
not captured, dx based 
on medical records not 
clinical interview, dx 
not autopsy- confirmed 

Sundstrӧm et 
al.  
(2007)  

P 543 
Without APOE-ε4:  = 0.9 (95% CI: 0.4-1.8) 
With APOE-ε4:  = 5.2 (95% CI: 2.0-14.0) 

Affirmative response 
to questionnaire item 
“have you ever 
suffered a head injury 
which required 
medical care?” 

13.1% 
Inclusion of younger 
adults (≤ 60 years), dx 
not autopsy-confirmed 

WHICAP 
(Schofield et 
al., 1997) 

P 271 
LOC <5 min:  = 1.7, 95% CI: 0.4-7.5 
LOC ≥5 min:  = 11.2, 95% CI: 2.3-59.8 

Self-report via 
structured risk factor 
interview at baseline 
and during a one-time 
physician interview 

10.0% 

Few participants with 
head injury in the 
sample (n = 27), dx not 
autopsy- confirmed 

*P = prospective, R = retrospective 
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Table 3.2. Characteristics of included participants from the BRAiNS cohort (n = 649); participants were enrolled in the study 
between 1989 and 2004. 
 
Characteristic Summary 
Age at entry, y (mean ± SD) 72.9 ± 7.4 
Female, % 63.9 
Family history of dementia, % 38.7 
At least one APOE-4 allele, % 30.4 
> 12 years of education, % 86.9 
History of hypertension at entry, % 38.2 
Smoking history at entry, %  
   Never smoked 49.2 
   >0 – 10 pack-years 10.3 
   10 – 20 pack-years 8.3 
   More than 20 pack-years 32.2 
History of head injury, % 25.6 
Number of assessments (mean ± SD) 10.3 ± 4.7 
Time between assessments, y (mean ± SD) 1.1 ± 0.3 
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Table 3.3. One-step transition matrix (number of assessments [% of prior visit state]); total subjects = 649 

Prior state 

Current state 

Normal 
Amnestic 

MCITB 

Mixed 
 MCITB 

MCICC Dementia Dropout Death

Normal 
2634 
(69.1) 

524 
(13.8) 

464 
(12.2) 

40  
(1.1) 

15 
(0.4) 

33 
(0.9) 

101 
(2.7) 

Amnestic MCITB 
497 

(57.6) 
172  

(19.9) 
129 

(15.0) 
23 

(2.7) 
9  

(1.0) 
13  

(1.5) 
20 

(2.3) 

Mixed MCITB 
404 

(30.7) 
97 

(7.4) 
601 

(45.7) 
66 

(5.0) 
35 

(2.7) 
30 

(2.3) 
80 

(6.2) 

MCICC 
   154 

(61.4) 
50  

(19.9) 
16 

(6.4) 
31 

(12.4)
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Table 3.4. Mean number of assessments made given last observed state and history of head injury 
 

 
All Subjects  

(N = 649) 
Head Injury 

(N = 166) 
No Head Injury  

(N = 483) 

Last Observed 
State 

n 
Assessments
(mean ± SD) 

n 
Assessments 
(mean ± SD) 

n 
Assessments 
(mean ± SD) 

Normal 
 

139 12.2 ± 4.0 28 12.8 ± 4.6 111 12.1 ± 3.9 

Amnestic 
MCITB 

 

7 12.3 ± 3.0 2 11.5 ± 0.7 5 12.6 ± 3.6 

Mixed 
 MCITB 

 

36 12.3 ± 5.2 7 10.4 ± 4.0 29 12.7 ± 5.4 

MCICC 

 
32 12.2 ± 4.0 9 14.3 ± 4.9 23 11.3 ± 3.4 

Dementia 
 

109 10.4 ± 4.4 27 10.1 ± 4.8 82 10.5 ± 4.3 

Dropout 
without 
dementia 
 

92 9.3 ± 4.5 21 9.4 ± 4.7 71 9.3 ± 4.5 

Death 
 without 
dementia 

234 9.8 ± 4.4 72 9.7 ± 4.1 162 9.8 ± 4.5 
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Table 3.5. Reported sources of head injury by gender and loss of consciousness (LOC)*  
 

Source 
Men Women Total 

LOC < 5’ LOC ≥ 5’ LOC < 5’ LOC ≥ 5’ LOC < 5’ LOC ≥ 5’ 
Sports and 
recreation 

22 7 9 2 31 9 

Automobile 
accident 

9 10 22 8 31 18 

Fall 7 5 15 7 22 12 
Interpersonal 
violence 

5 2 2 0 7 2 

Other blow to the 
head** 

8 2 7 0 15 2 

Not described 8 1 12 2 20 3 
*Cell entries reflect number of unique participants reporting the source; **e.g., being struck by falling objects, striking head on 
ceilings or walls 
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Table 3.6. Multistate Markov chain results for risk factors affecting transitions from 
transient states (T: normal cognition, aMCITB, or mMCITB) 

Parameter Risk Comparison 
Odds 
Ratio 

95% Confidence 
Interval 

p 

T → aMCITB    
    Age 1-year difference 1.03 1.02-1.04 <0.0001
    Sex Female vs. Male 0.79 0.66-0.93 0.0056
    Prior = aMCITB aMCITB vs. Normal 1.27 1.03-1.58 0.0277
    Prior = mMCITB mMCITB vs. Normal 0.77 0.59-1.01 0.0561
T → mMCITB    
    Age 1-year difference 1.07 1.06-1.09 <0.0001
    Education ≤ 12 years vs. > 12 years 1.70 1.38-2.10 <0.0001
    Prior = aMCITB aMCITB vs. Normal 1.06 0.84-1.34 0.6473
    Prior = mMCITB mMCITB vs. Normal 4.78 3.93-5.81 <0.0001
T → MCICC    
    Family History Present vs. Absent 1.42 1.11-1.83 0.0063
    APOE-ε4 Present vs. Absent 1.85 1.27-2.69 0.0014

      Age*Head Injury 
1-year difference in age when 
head injury is present 

1.21 1.15-3.56 0.0173

    Prior = aMCITB aMCITB vs. Normal 2.20 1.29-3.75 0.0038
    Prior = mMCITB mMCITB vs. Normal 5.86 3.81-9.00 <0.0001
T → Dementia    
    Age 1-year difference 1.18 1.13-1.23 <0.0001
    APOE-ε4 Present vs. Absent 2.58 1.52-4.38 0.0005
    Prior = aMCITB aMCITB vs. Normal 2.24 0.97-5.17 0.0596
    Prior = mMCITB mMCITB vs. Normal 7.65 4.08-14.34 <0.0001
T → Death     
    Age  1-year difference 1.19 1.16-1.22 <0.0001
    <1 – 10 pack-years <1 – 10 pack-years vs. Never 

smoked 
1.16 0.68-1.96 0.5914

    10 – 20 pack-years 10 – 20 pack-years vs. Never 
smoked 

1.20 0.65-2.22 0.5566

    ≥20 pack-years ≥20 pack-years vs. Never 
smoked 

2.05 1.49-2.83 <0.001

    Hypertension Present vs. Absent 1.46 1.08-1.96 0.0133
    Head Injury Present vs. Absent 1.54 1.12-2.13 0.0089
    Prior = aMCITB aMCITB vs. Normal 0.72 0.43-1.19 0.1980
    Prior = mMCITB mMCITB vs. Normal 2.60 1.85-3.64 <0.0001
T → Dropout    
    Age 1-year difference 1.06 1.02-1.09 0.0008
    Hypertension Present vs. Absent 1.90 1.20-3.00 0.0060
    Prior = aMCITB aMCITB vs. Normal 1.49 0.77-2.89 0.2324
    Prior = mMCITB mMCITB vs. Normal 1.98 1.77-2.22 <0.0001
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Table 3.6 Continued 

Parameter Risk Comparison 
Odds 
Ratio 

95% Confidence 
Interval 

p 

MCICC → Dementia     
   <1 – 10 pack-years <1 – 10 pack-years vs. Never 

smoked 
0.28 0.08-0.94 0.0388

    10 – 20 pack-years 10 – 20 pack-years vs. Never 
smoked 

0.27 0.07-1.09 0.0654

    ≥20 pack-years ≥20 pack-years vs. Never 
smoked 

0.31 0.13-0.71 0.0054

    Age*Head Injury 1-year difference in age when 
head injury is present 

1.34 1.11-1.61 0.0069

MCICC → Death  
    Age 1-year difference 1.12 1.04-1.20 0.0023
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 

50 
 

Table 3.7. Head injury appears to lead at-risk individuals to transition into a dementia 
state faster than individuals without history of head injury. Shown are the average 
numbers of visits required for eventual transitions from cognitively normal to the 
absorbing states of dementia or death. 
 
Age Risk Factor Profile Dementia Death 

65 

None 13.8 3.3 
APOE-ε4 only 12.6 2.9 
Head injury only 13.3 3.1 
APOE-ε4 + Head injury 12.4 2.8 
APOE- ε4 + Head injury + Hx HTN + Hx ≥ 20 pack-
years smoking 

10.4 2.3 

85 

None 4.0 1.1 
APOE-ε4 only 3.5 0.9 
Head injury only 3.4 0.9 
APOE-ε4 + Head injury 3.0 0.7 
APOE- ε4 + Head injury + Hx HTN + Hx ≥ 20 pack-
years smoking 

2.4 0.5 
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Table 3.8. Characteristics of autopsied participants from the BRAiNS cohort by gender 
and history of lifetime head injury (n = 238) 
 
Sex Head 

Injury 
N Final 

MMSE* 
Age at death* APOE-ε4+ CAA+ 

Men 
Yes 36 26.4 ± 4.5 84.4 ± 6.9 22.2% 63.9% 
No 61 25.8 ± 4.3 86.9 ± 7.0 39.3% 54.1% 

Women 
Yes 34 27.5 ± 3.5 86.0 ± 8.0 20.6% 48.4% 
No 107 24.4 ± 7.7 87.1 ± 7.5 28.0% 52.3% 

*Results presented are mean ± SD 
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Figure 3.1. Participant flow diagram 
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Figure 3.2. Flow diagram of transitions possible between subject visits. Normal 
cognition is the base state for transitions made from normal cognition, test-based 
amnestic MCI, and test-based mixed MCI; clinical MCI is the base state otherwise.  
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5
4
 

Figure 3.3. Estimated mean number of diffuse and neuritic neocortical plaque counts by region; whiskers are SEM (n = 238). 
The final MANCOVA models included main effects for age at death, clinical dementia status, APOE-ε4, CAA, and an 
interaction term and main effects for head injury (HI) and male gender.  
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CHAPTER FOUR 

Incorporating prior-state dependence among random effects and beta coefficients 

improves multistate Markov chain model fit: Application to the Biologically 

Resilient Adults in Neurological Studies cohort 

 

Abstract 

Identifying risk factors that promote specific transitions, perhaps especially back 

transitions, is desirable because they might suggest avenues for intervention. However, it 

is important to establish that such risk factors are not an artifact of methodology or 

misclassification. The current study represents the first portion of a larger project 

investigating the nature of back transitions, which occur when an individual moves from 

a more cognitively impaired state to a less cognitively impaired state. Longitudinal 

clinical data from 649 participants in the BRAiNS cohort were used to investigate the 

scaling of subject-specific random effects based on the prior observed state as described 

in Song et al. (2011), who used data from the Einstein Aging Study (EAS), which has 

more subjects than the BRAiNS dataset but less follow-up per subject. Where the 833 

EAS subjects contributed 2,152 transitions, the 649 BRAiNS subjects contributed 6,240 

transitions. We evaluated four multistate Markov chain models –two models specified the 

effect of age as dependent on the prior state and two models included prior-state 

dependent scaling parameters—in order to investigate the influence of model architecture 

on model fit and parameter estimation. Both strategies improved fit as determined by 

likelihood ratio tests, although at a cost of extra parameters, which is a concern for 

models that already tend to have a high number of parameters that must be estimated as 
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more parameters require more data. Finally, this study provides evidence that the 

magnitude of the effect of age on study outcomes, like dropout, changes as clinical status 

changes. While increasing age does not appear to lead cognitively normal individuals to 

discontinue their study participation, increasing age does promote dropout among 

participants with non-amnestic memory impairments. For these participants, a one-year 

increase in age produces an odds ratio for dropping out of 1.08 (95% CI: 1.03-1.14). 

 

Introduction 

Alzheimer’s disease (AD) is thought to follow a chronic disease course with a 

lengthy preclinical phase that begins years before the onset of observable clinical 

symptoms.105 This preclinical phase is followed by a period of clinically detectable but 

relatively subtle cognitive impairment that is unaccompanied by functional impairment 

termed mild cognitive impairment (MCI) that typically lasts for several years.31 

Evaluation of risk factors for incident AD then, as well as estimation of disease 

progression rates through and/or including MCI, require a period of observation also 

lasting many years. Prospective cohort designs with multiple annual or biennial 

evaluations are a natural choice for such studies. 

While the course of AD is a continuous process, it is observed discretely over the 

study period. At each study visit a participant may be classified by where he or she falls 

along the continuum—for example, as cognitively normal, MCI, or demented. Multistate 

Markov chains (see Table 1 for definition of terms) are useful for modeling the 

movement of participants through transient states (normal cognition and forms of MCI) 

to absorbing states (dementia or death)26,27,30,31,91 and can identify risk factors for each 
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specific one-step transition defined in the data (see Figure 4.1). A first-order Markov 

chain estimates the probability of transition between clinical states at any two temporally 

adjacent assessments, here called the “prior state” and the “current state,” versus 

remaining in or returning to a “base state.” States may be either transient, where 

movement out of the state is permitted, or absorbing, where no further movement is 

permitted once a subject has entered the state.  

In addition to allowing for non-linear trajectories, analysis of longitudinal clinical 

data generally requires some method of addressing within-subject correlation among 

observations arising from the same subject. A normally distributed shared random effect 

(i.e., all observations from the same participant share a common random effect) due to 

Salazar et al. (2007)27 was used in prior applications of the multistate Markov chain to 

data from the Biologically Resilient Adults in Neurological Studies (BRAiNS) cohort.91  

It has been observed, however, that the inclusion of this shared random effect 

does not appreciably improve the fit of the model over a fixed effects only model.31 Song 

and colleagues (2011) proposed including prior state-dependent scaling parameters with 

the shared random effect to adjust for the variance of the random effects given the last 

observed state.31  Their model comprised four states: transient states normal cognition 

and memory impairment and absorbing states dementia and death. The purpose of this 

investigation is to evaluate the effect prior state-dependence—implemented through the 

scaling parameter and through specification of the effect of age as prior-state 

dependent—on model fit and parameter estimation when applied to the BRAiNS data. 

Methods 

Subjects 
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Subjects in this study are drawn from research volunteers in the BRAiNS cohort 

at the University of Kentucky’s Alzheimer’s Disease Center, a longitudinal cohort of 

approximately 1,100 individuals at least 60 years of age at study entry, established in 

1989 with ongoing recruitment.40 Exclusion criteria for the BRAiNS cohort include 

prevalent neurological disorders, psychiatric disorders, disabling medical disorders, and 

prevalent dementing illness (see Reference 40 for a detailed listing). Subjects included in 

the current analysis (n = 649) were all enrolled between 1989 and 2004, were evaluated at 

least two times, and had APOE genotyping available. Participants are given detailed 

annual cognitive and clinical assessments and donate their brains upon death. Annual 

assessments have been described in detail previously.40  All enrollees were clinically 

cognitively normal at study entry, and all research activities were approved by the 

University of Kentucky Institutional Review Board. Each participant provided written 

informed consent.  

States 

Participants were classified into states at each assessment: (1) normal cognition, 

(2) test-based amnestic mild cognitive impairment (aMCITB), (3) test-based mixed MCI 

(mMCITB), (4) clinical consensus-based MCI (MCICC), (5) dementia (all-cause), (6) drop-

out without dementia, and (7) death without dementia. The classification method has 

been described in detail previously.26,91 Briefly, normal cognition represents the absence 

of any impairments on testing as well as the absence of any clinical diagnosis of MCI or 

dementia; amnestic and mixed MCI are neuropsychological test-based and indicate at 

least one observed component score of at least 1.5 standard deviations below the 

expected score for age based on the performance of those members of the cohort assessed 
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as cognitively normal at baseline on tests of episodic memory (amnestic MCI) or 

language and executive function (mixed MCI)—mixed MCI supersedes amnestic MCI; 

clinical consensus-based MCI indicates a medical diagnosis of MCI based on criteria 

used by the National Alzheimer’s Coordinating Center’s Uniform Data Set;24 and 

dementia indicates a clinical diagnosis of dementia based on Diagnostic and Statistical 

Manual-IV (DSM-IV) criteria.1 In this cohort, back transitions from clinical MCI to 

normal cognition or test-based MCI were small in number (n = 19) and were judged to be 

the result of medical conditions (which preclude the diagnosis of clinical MCI based on 

our operational definition) or diagnostic misclassification. Such events were coded as 

described in Abner et al. (2012).91  

Model 

Let Yi = (yit1
, …, yitni

) be the vector representing the observed states (see Figure 

4.1) for the ith subject at the tni ordered assessments. Assuming the Markov property 

holds, we find the joint distribution of this vector by conditioning on yi1: f(yi|yi1) = f 

(yi2|yi1)·f (yi3|yi1, yi2) · · ·f(yitni|yi1, yi2, … ,yitni−1
), which can be simplified as f(yi|yi1) = f 

(yi2|yi1)·f (yi3| yi2) · · ·f(yitni|yitni−1
). Each term in the product is a one-step transition 

probability of moving from state s, the prior state, to state v, the current state. To simplify 

notation we define this probability, psv, as f (yiv|yis) = pyis,yiv = psv. 

The goal is to construct a model for these one-step transition probabilities, which 

may depend on covariates, some of which may be time-dependent, as well as random 

effects. To this end, let the prior state s be a transient state (i.e., normal [1], amnestic MCI 

[2], mixed MCI [3], or clinical MCI [4]) observed for subject i at the prior assessment and 

v be the state observed for subject i at the current assessment (v = 1, .., 7).   
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We assume the log-odds of transition may be modeled as  

        log[psv( |xiv, ui)/ps1( |xiv,ui)] = αsv + v
Txiv + ui1,  if s ∈ {1, 2, 3}, and 

        log[p4v( |xiv, ui)/p44( |xiv,ui)] = α4v + v
Txiv + ui2,  if s = 4 and v ≥ 4.        (1) 

Here  is the vector of alpha intercepts and beta coefficients when normal (state 1) is the 

base state,  is the vector of alpha intercepts and beta coefficients when clinical MCI 

(state 4) is the base state, xiv is the vector of covariates for the ith subject observed at the 

current visit, and ui = (ui1, ui2) is the vector of random effects for the ith subject. We 

assume ui is independently and identically distributed as bivariate normal: N2(0, ), where 

0 = (0, 0)T and   = 
1 1, 2

1, 2 2

var( ) cov( )

cov( ) var( )
i i i

i i i

u u u

u u u

 
 
 

. Given seven defined states (see Figure 

4.1), and  
7

sv iv i
1

| , 1
v

p


 θ x u  for any s ∈ {1, 2, 3}, we have  

psv( |xiv,ui) = exp{αsv + v
Txiv + ui1}/[1 + Σexp{αsh + h

Txih + ui1}] (2) 

where h = [2,…, 7] and “exp” indicates the term in braces is an exponent with Euler’s 

number as its base, and  

                       ps1( |xi1,ui) = 1/[1 + Σexp{αsh + βh
Txih + ui1}]                (3) 

Equations similar to (2) and (3) hold for p4v( |xiv,ui) and p44( |xi4,ui) respectively, where 

the sum is over h = 5,..,7. Given = ( ,	 ), the complete vector of alpha intercepts and 

beta coefficients, , i( | ) = sv ivp  x u  

    1/[1 + Σexp{αsh + βh
Txih + ui1}, if s ∈ {1, 2, 3}] and v = 1  

    exp{αsv + v
Txiv + ui1}/[1 + Σexp{αsh + h

Txih + ui1}], if s ∈ {1, 2, 3} and v > 1  

    1/[1 + Σexp{α4h + βh
Txih + ui2}], if s = 4 and v = 4 

    exp{α4v + v
Txiv + ui2}/[1 + Σexp{α4h + h

Txih + ui2}], if s = 4 and v > 4  
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 When the base state is normal (i.e., state 1), it is clear that larger values of ui1 lead to 

larger values for psv and smaller values for ps1 (see Equations 2 and 3) .  Thus, larger 

values of ui1 are associated with subjects who are more likely to make transitions away 

from the base state (here normal cognition). Because transitions from clinical MCI to 

normal do not occur here, a subject-specific random effect ui2 is needed when considering 

transitions from clinical MCI to dementia, death, or dropout. As with ui1, larger values of 

ui2 are associated with subjects who are more likely to make transitions away from the 

base state, clinical MCI. The random effects may be—but are not necessarily—correlated 

because they represent the same individual’s tendency to make transitions.  

Given yiti, the contribution of subject i to the likelihood can be expressed as 

follows: 

                              
,i (t-1) i t ii

it i
1

(  | , )
in

y y
t

p


 x u                         (4)  

where ni is the number of ordered observations for subject i. The marginal likelihood for 

the ith subject can be written as: 

,( 1)

2
1

( | , )d ( )
i

i t it ii i

n

y y it i i
t

p F




 x u u


              (5) 

where 2 represents the support for the bivariate normal distribution of ui, and F is its 

cumulative distribution function. When this integral is evaluated for all N subjects under 

study, the likelihood function is expressed as  

N

1

( | , )
i

L


 x u ,( 1)

2
1

( | , )d ( )
i

i t it ii i

n

y y it i i
t

p F




 x u u


 (6) 

This model can be implemented with PROC NLMIXED in SAS®, which uses an 

adaptive Gaussian quadrature to approximate the bivariate integral.  
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Song et al. (2011) propose that the model be revised such that the subject specific 

random effect is scaled based on the prior observed state:31 for example,  

log[psv(θ*|xiv,u i)|ps1(θ*|xiv,ui)] = α*sv + β*v
Txiv + λsui1, where θ* represents the vector of 

alpha intercepts and beta coefficients when normal (state 1) is the base state and the 

random effects are scaled based on the prior state. The scaling parameters, λ, improve the 

fit of the model by adjusting for the magnitude of the variance of the shared random 

effects as a function of the prior state. In other words, without the scaling parameter a 

subject’s tendency to make transitions to and away from the normal state is assumed to 

be constant regardless of the prior observed state, which may not be the case.  A unique λs 

is associated with transitions from each non-absorbing state si, in this case normal (s = 1), 

amnestic MCI (s = 2), mixed MCI (s = 3), and clinical MCI (s = 4). To avoid 

identifiability problems, λ1 is set equal to 1, and λ 2, λ 3, and λ 4 must be estimated.  

To assess the impact of the scaling parameter on model fit and beta parameter 

estimation, four proposed models were fit to the data: 

(1) Model 1: beta coefficients depend only on base state and current state; no scaling 

parameter: 

log[psv(θ|xiv,ui)/ps1(θ|xiv,ui)] = αsv + v
Txiv + ui1, where s ∈ {1, 2, 3}, and 

log[p4v( |xiv,ui)/p44( |xiv,ui)] = α4v + v
Txiv + ui2 , where s = 4 and v ≥ 4; 

(2) Model 2: beta coefficients depend only on base state and current state; scaling 

parameter: 

log[psv(θ*|xiv,u i)|ps1(θ*|xi,ui)] = α*sv + *v
Txiv + λsui1, where s ∈ {1, 2, 3}, and  

log[p4v( *|xiv,u i)|p44( *|xi,ui)] = α*4v + *v
Txiv + λ4ui2, where s = 4 and v ≥ 4; 



63 
 

(3) Model 3: Beta coefficients for age depends on prior state while all other beta 

coefficients depend only on current state; no scaling parameter: 

log[psv(θ|xiv,ui)|ps1(θ|xi,ui)] = αsv + β ∗ageiv + v
Txiv + ui1, where s ∈ {1, 2, 3}, and 

log[p4v( |xiv,ui)/p44( |xiv,ui)] = α4v + β *ageiv + v
Txiv + ui2, where s = 4 and v ≥ 4; 

(4) Model 4: Beta coefficients for age depends on prior state while all other beta 

coefficients depend only on base and current states; scaling parameter: 

log[psv(θ*|xiv,ui)|ps1(θ*|xi,ui)] = α*sv + β∗ *ageiv + β*v
Txiv + λsui1, where s ∈ {1, 2, 

3}, and 

log[p4v( *|xiv,ui)|p44( *|xi,ui)] = α*4v + β
∗

*ageiv + *v
Txiv + λ4ui2 , where s = 4 and 

v ≥ 4. 

Models 3 and 4, where the effect of age depends on the prior state, are motivated by the 

idea that if model fit can be improved by scaling the random effects based on the prior 

state, it might also be improved by making at least one of the beta coefficients depend on 

the prior state. Since the four models are nested, differences in fit between models can be 

assessed with likelihood ratio (LR) tests. 

Participant characteristics included in the model as independent variables are age 

at assessment, sex, years of education, APOE-ε4 status (present vs. absent), which are 

associated with risk of dementia,67,74,106,107 and self-reported baseline hypertension 

(present vs. absent), which is associated with risk of mortality.41 Statistical significance 

was set at α=0.05. 

Results 
 

The 649 BRAiNS participants in the current study (Table 4.2) made a total of 

6,240 one-step transitions (Table 4.2), including 433 terminating events (i.e., a transition 
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to an absorbing state), and were followed for 6,719 person-years. Among the transient 

states, the majority of transitions from amnestic MCI are back to normal cognition at the 

next visit (57.6%), and only 3.7% are transitions to clinical MCI or dementia. Mixed MCI 

appears more predictive of underlying disease with 45.7% remaining mixed MCI and 

7.7% transitioning to clinical MCI or dementia at the next visit (Table 4.3). Subjects who 

make transitions out of clinical MCI to an absorbing state do so in relatively few 

assessments, with 38.1% (44/118) reaching an absorbing state in one transition, and 

60.1% (71/118) reaching an absorbing state in two transitions.  

Model Convergence 
 

The simplest of the proposed models, Model 1, did not reach achieve convergence 

as specified. Efforts to achieve convergence included specifying initial parameter 

estimates based on results from a fixed effects only model, removing predictors to 

decrease the number of parameters being estimated, increasing the maximum number of 

iterations PROC NLMIXED attempts before terminating the likelihood optimization 

algorithm to 2000, and increasing the sample size with 246 additional subjects from the 

BRAiNS cohort. Given that an earlier version of the model that used only a single 

random effect to account for within-subject correlations without regard to the base state 

successfully converged,91 it would appear that convergence was most likely not achieved  

due to the inclusion of the base state-dependent random effects. Results from models that 

almost achieved convergence suggested that ui1 and ui2 were only weakly correlated 

(cov[u1,u2] ≈ -0.111) and that the estimated variance of ui2 was close to zero  (S 2 ≈ 

0.0197).  
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To investigate further the behavior of ui1 and ui2,the proposed likelihood function 

was split into two independent components where the first component modeled 

log[psv(θ|xiv,ui1)/ps1(θ|xiv,ui1)] = αsv + v
Txiv + ui1, where s ∈ {1, 2, 3}, and the second 

component modeled log[p4v( |xiv,ui2)/p44( |xiv,ui2)] = α4v + v
Txiv + ui2 , where s = 4 and v 

≥ 4. Note that this assumes ui1 and ui2 are independent (i.e., cov[ui1,ui2] = 0), and ui1 ~  

N(0, ) and ui2 ~  N(0, ). Random effect estimates produced by the latter model 

suggest that ui2 is unnecessary, with estimates for all subjects being zero or near zero 

depending on the number of specified quadrature points. Thus, ui2 and λ4 were taken to be 

zero for all subjects in all models. Since the lack of model convergence was due to the 

inclusion of ui2, its elimination allowed the full likelihood to be used rather than the split 

likelihood.  The results below were derived from the following models: 

(1) Model 1*: beta coefficients depend only on base state and current state; no scaling 

parameter: 

log[psv(θ|xiv,ui1)/ps1(θ|xiv,ui1)] = αsv + v
Txiv + ui1, where s ∈ {1, 2, 3}, and 

log[p4v( |xiv,ui1)/p44( |xiv,ui1)] = α4v + v
Txiv  , where s = 4 and v ≥ 4; 

(2) Model 2*: beta coefficients depend only on base state and current state; scaling 

parameter: 

log[psv(θ*|xiv,ui1)|ps1(θ*|xi,ui1)] = α*sv + v
Txiv + λsui1, where s ∈ {1, 2, 3}, and  

log[p4v( *|xiv,u i1)|p44( *|xi,ui1)] = α*4v + *v
Txiv, where s = 4 and v ≥ 4; 

(3) Model 3*: beta coefficients for age depends on prior state while all other beta 

coefficients depend only on current state; no scaling parameter: 

log[psv(θ|xiv,ui1)|ps1(θ|xi,ui1)] = αsv + β ∗ageiv + v
Txiv + ui1, where s ∈ {1, 2, 3}, 

and,  
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log[p4v( |xiv,ui1)/p44( |xiv,ui1)] = α4v + β  *ageiv + v
Txiv, where s = 4 and v ≥ 4; 

(4) Model 4*: beta coefficients for age depends on prior state while all other beta 

coefficients depend only on base and current states; scaling parameter: 

log[psv(θ*|xiv,ui1)|ps1(θ*|xi,ui1)] = α*sv + β∗ *ageiv + β*v
Txiv + λsui1, where s ∈ {1, 2, 

3}, and 

log[p4v( *|xiv,ui1)|p44( *|xi,ui1)] = α*4v + β
∗

*ageiv + *v
Txiv, where s = 4 and v ≥ 4. 

 
Model Comparisons 

Full Models 

There was perfect concordance between the nested full models regarding which 

parameters were significant predictors of transition, but while the beta coefficient and 

standard error estimates are stable in general, a small number of beta parameters vary 

dramatically (i.e., greater than 20% in magnitude) between the models with and without 

scaling parameters  (Tables 4.4 and 4.5). For Models 1* and 2*, percent change in beta 

parameter estimates ranges from -237.17 to 102.96 (median = 0.26), while percent 

change in standard errors ranges from -1.85 to 94.62 (median = 0). For Models 3* and 4*, 

percent change in beta parameter estimates ranges from -96.18 to 135.19 (median = 

0.34), while percent change in standard errors ranges from -10.67 to 8.91 (median = 0). 

 The addition of the scaling parameters to the subject-specific random effects does 

significantly improve fit (Table 4.6). Model 2* fits the data significantly better than 

Model 1* (LR test = 6, df = 2, p = 0.0497), and Model 4* fits the data significantly better 

than Model 3* (LR test = 6, df = 2, p = 0.0497). Model 4* has the best fit overall, as it is 

also significantly better than Model 2* (LR test = 22, df = 12, p = 0.038). 
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Reduced Models 

The full models were reduced using a modified backward selection procedure: all 

beta parameters with p-values higher than prespecified cut-points (0.25 at stage 1, 0.15 at 

stage 2, 0.10 at stage 3) were removed from the models and a LR test was conducted. If 

the reduced model fit as well as the full model, the reduced model was accepted. The next 

cut-point was used to further reduce the model, and the process was repeated until all beta 

parameters left in the model were significant at the 0.10 level. At this point the traditional 

backward selection procedure was used on the remaining beta parameters. 

As with the full models, fit in the reduced models is significantly improved with 

the addition of scaling parameters to the subject-specific random effects (Table 4.7). 

Here, Model 2* does not fit the data significantly better than Model 1* (LR test = 3, df = 

3, p = 0.40), but Model 4* still fits the data significantly better than Model 3* (LR test = 

6, df = 2, p = 0.0497). Model 4* again has the best fit overall, as it is also significantly 

better than Model 2* (LR test = 23, df = 10, p = 0.011). 

Reduced Models 1*and 2* agree on the significance of almost all beta parameters 

with the exception of education for transitions made from a transient state (normal, 

amnestic MCI, or mixed MCI) to dropout (Table 4.8). Percent change in parameters 

between Models 1* and 2* ranges from -46.14 to 26.71 (median = 0.00), and percent 

change in standard errors ranges from -3.57 to 274.77 (median = 0.19). Likewise, reduced 

Models 3* and 4* agree on the significance of all beta parameters with the exception of 

age for transitions made from mixed MCI to amnestic MCI (Table 4.9).  Percent change 

in parameters ranges from -21.64 to 14.73 (median = -0.11), and percent change in 

standard errors ranges from -3.57 to 5.54 (median = 0.12). 
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Prior state dependence 

Scaling Parameters 

In Model 2*, where the beta coefficients do not depend on the prior state, the 

effect of the amnestic state-dependent scaling parameter, λ2, is to reduce the magnitude of 

the subject-specific random effect, ui1, by about 38%. This speaks to the tendency of 

subjects in this dataset to return to the normal state following transitions to amnestic 

MCI, as 57.6% of all transitions from amnestic MCI (prior state) are to normal at the next 

assessment (current state). The effect of λ3, which scales ui1 for transitions made from 

mixed MCI, is to increase the magnitude of ui by about 9%. This speaks to the tendency 

of these subjects to continue to make transitions away from normal after entry into mixed 

MCI, as only 30.7% of such transitions are back to the normal state at the next 

assessment. In Model 4*, where the beta coefficients for age depend on the prior state, λ2 

and λ3 have similar but reduced estimates compared to Model 2*. Unlike in Model 2*, 

where λ3 increases the magnitude of ui1, here λ3 decreases the magnitude of ui1 by about 

8%. This suggests that treating the effect of age as prior-state dependent explains an 

additional portion of the variance accounted for by the random effects in Model 2*. 

Beta Parameters  

Results from Model 4* (Table 4.9) show that a one-year increase in age leads to a 

10.8% (95% CI: 5.9% –15.9%) increase in odds of transition to clinical MCI when the 

prior state is normal and to a 16.3% (95% CI: 11.5%-21.2%) increase in odds when the 

prior state is mixed MCI. More saliently, a one-year increase in age has no effect on the 

odds of dropping out when the prior state is normal but increases the odds of dropping 

out by 8.4% (95% CI: 2.8%-14.3%) when the prior state is mixed MCI. Other 
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explanatory variables may also be better specified as prior-state dependent, and more 

research is needed to determine which methods work best and in what circumstances 

since specifying prior-state dependence necessarily increases the number of parameters 

being estimated. 

Discussion 

Longitudinal clinical data from 649 participants in the UK ADC BRAiNS cohort 

were used to investigate the scaling of subject-specific random effects and the 

incorporation of beta parameters dependent on the prior observed state in a multistate 

Markov chain. We evaluated four models describing the timing and sequence of elderly 

participants’ transitions in relation to seven states: normal cognition, amnestic MCI (test-

based), mixed MCI (test-based), clinical MCI (diagnosis-based), dementia, death without 

dementia, and dropout without dementia. Two models specified the effect of age as 

independent of the prior state and two models included prior-state dependent scaling 

parameters. Previous applications of the multistate Markov chain to studies of aging and 

dementia have treated the effect of risk factors as both independent of26,27,30,91 and 

dependent on31 the prior state, although in the latter case this dependence was 

implemented through using the age at the prior visit to predict the current state. Results 

from the current study support treating the effect of age as prior-state dependent, which 

makes intuitive sense as well as producing a better fitting model.  

Achieving model convergence was a substantial difficulty in this study. There are 

several issues that could account for the lack of convergence, but two are most likely: 1) 

inadequate sample size, and 2) a misspecified model. Although the simplest model still 

failed to converge as initially specified with an increased sample size, the number of 
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subjects making transitions from a prior state of clinical MCI only increased from 118 to 

142. It might be the case that far more subjects are needed in order to estimate the 

random effects covariance matrix.  However, model misspecification is also plausible. 

PROC NLMIXED currently requires any random effect to be distributed normally and 

multiple random effects to be distributed as multivariate normal. While a normal 

distribution appears a reasonable choice for ui1, this is perhaps not the case for ui2. 

Further, while subject-specific effects may be meaningful in explaining an individual’s 

movement within the transition matrix prior to entering the clinical MCI state, they may 

be much less important thereafter. That is, once an individual has entered into a 

symptomatic clinical state, the effect of the disease is relatively uniform across 

individuals given their risk factors, and the random effect ui2 is truly unnecessary. More 

data are needed to answer these questions. 

When interpreting the prior-state dependent scaling parameter estimates, we 

should ask: (1) is the scaling parameter different from zero, and (2) is the scaling 

parameter different from one?  The first question is addressed by examining the 

associated p-value. Scaling parameters that are not different from zero should be 

removed, along with their random effects, from the model. Second, is the estimated 

scaling parameter different from one? This question is answered by examining the 

confidence interval around the estimate. If the scaling parameter is not different from 

one, as is the case here with λ3 in both Models 2* and 4*, then whether the extra 

parameter is necessary must be examined.  

While Song et al. found that the prior-state dependent scaling parameters improve 

model fit as determined by Akaike’s Information Criteria (AIC),108 only very modest 
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improvements in AIC were observed here.  The discrepancy may be partially explained 

by important differences in the models and datasets: Song et al. used data from the 

Einstein Aging Study (EAS), which has more subjects than the BRAiNS dataset but less 

follow-up per subject. Where the 833 EAS subjects contributed 2,152 transitions, the 649 

BRAiNS subjects contributed 6,240 transitions. Further, the EAS subjects experienced 

148 terminating events (i.e., dementia or death without dementia) while the BRAiNS 

subjects experienced 433 terminating events. The most important difference, however, is 

likely the complexity of the models. The EAS model has two transient and two absorbing 

states, while our model has four transient and three absorbing states. Where adding 

scaling parameters to the EAS model resulted in only one additional parameter, here it 

adds two. Finally, the improvement in fit reported by Song et al. was a 1.8% reduction in 

AIC. Thus, even in the simpler model, the relative improvement in AIC was small.  

We note, however, that expecting the AIC to decrease by adding parameters to the 

model is somewhat counterintuitive. Since AIC estimates model fit by adding a penalty 

of 2k to -2log-likelihood, where k is the number of model parameters, improving fit by 

adding parameters to the model will necessarily require that such improvements outweigh 

the penalty. Here, the addition of the two scaling parameters did significantly improve 

model fit as measured by LR tests, and the AIC did decrease in absolute terms despite the 

four-point penalty from the additional parameters. 

 Overall, specifying the effect of age as prior-state dependent had the most impact 

on model fit. Where adding the two random effects scaling parameters led to a six-point 

reduction in -2log-likelihood in Model 2* vs. Model 1* (Table 4.6), adding 12 parameters 

to make age prior-state dependent leads to a 22-point reduction in the -2log-likelihood in 
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Model 3* vs. Model 1*. When both the prior-state dependent scaling parameters and 

prior-state dependent beta coefficients for age are implemented (i.e., Model 4*), both -

2LogL and AIC are improved despite the addition of 14 parameters compared to Model 

1*.    

In the final reduced models, parameter estimates and standard errors were 

relatively stable between the models with and without random effect scaling parameters. 

The majority of parameter estimates were within 10%: 86.5% for Models 1* and 2*, 

91.7% for Models 3* and 4*. Likewise, the majority of standard error estimates were 

within 5%: 89.2% for Models 1* and 2*, 95.8% for Models 3* and 4. Of the four models 

investigated, Model 4*, where the effect of age depends on the prior state and there are 

scaling parameters for the random effects, is preferred.  

In addition to the criteria used to define clinical states, neuropsychological test 

data engender specific considerations.  Neuropsychological tests are typically 

administered to participants in longitudinal cohort studies to track cognitive performance 

over time. Measurements taken on the same participant over time may induce a learning 

effect, some study visits may be missed, and participants may drop out of the study or die 

before the clinical onset of dementia would be observed. Selection bias is an additional 

concern since participants in longitudinal studies, particularly those requiring brain 

donation upon death and/or invasive clinical procedures such as lumbar puncture, are 

inherently different from the general population. However, these issues are beyond the 

scope of this paper. 

 It is also important to note that individual performance over time need not be 

linear. Although increasing age is generally associated with some degree of decline in 
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cognitive performance,109 observed performance need not decline monotonically. 

Increased familiarity and practice due to repeated exposure to the instruments may lead to 

improving scores for many years before declines are observed.110 In addition to practice 

effects, cognitive performance may be influenced by transient comorbid medical 

conditions as well as psychosocial issues such as stress, anxiety, grief, and depression.15 

Thus, it is not unusual for a participant to back transition, i.e., appear cognitively 

impaired, even seriously so, at a given assessment and then unimpaired at the next 

assessment.  

Identifying risk factors that promote specific transitions, perhaps especially back 

transitions, is desirable because they might suggest avenues for intervention. However, it 

is important to establish that such risk factors are not an artifact of methodology or 

misclassification. In the current study, for example, classification into the test-based MCI 

states, amnestic and mixed, requires only a single poor score from among multiple tests. 

If the number of poor scores required for impairment was increased from one to two, or 

the definition of poor score changed from 1.5 SDs below the expected score to 2.0 SDs 

below the expected score, this would presumably affect the pattern of transitions 

observed and perhaps the associated risk factors.  

 The current study will serve as the basis for a larger project examining the 

influence of four factors on modeling back transitions from more impaired to less 

impaired states: (1) the effect subject-specific random effect scaling parameters, (2) the 

effect of prior-state dependent beta coefficients, (3) the effect of altering the definition of 

the test-based states to include at least two poor scores, and (4) the effect of altering the 

cut-point for impairment on the neuropsychological tests such that repeated 
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administrations are accounted for not only by the subject specific random effects but also 

by adjusting for practice effects. While sample size within the BRAiNS cohort is limited, 

data from five similar longitudinal cohorts will be soon be available for analysis via the 

NIA-funded study “Role of Impaired Cognitive States & Risk Factors in Conversion to 

Mixed Dementias” (R01AG038651-01A1).  
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Table 4.1. Summary of terms used to describe a multistate Markov chain 

Term Definition 

One-step 
transition 

 
Movement between or within states over two temporally adjacent 
assessments 
 

Current state 

 
The latter of two temporally adjacent states, e.g., state observed at 
time j 
 

Prior state 

 
The earlier of two temporally adjacent states, e.g., state observed at 
time j -1 
 

First-order 

 
A Markov chain that meets the assumption that the probability of 
observing the current state (j) depends on the prior state (j-1) and 
not, for example, the (j-2) or (j-3) state 
 

Transient state 
 
Any state from which a transition is possible 
 

Absorbing state 
 
Any state from which a transition is not possible 
 

Base state 

 
A transient state that has been designated as the reference category 
in a model 
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Table 4.2. Characteristics of included participants from the BRAiNS cohort (N=649); 
participants were enrolled in the study between 1989 and 2004. 
 
Characteristic Summary 
Age at entry, y (mean ± SD) 72.9 ± 7.4 
Age group, n (%)  

60 – 69 214 (33.0) 
70 – 79 307 (47.3) 
80 – 89  118 (18.2) 
≥ 90 10 (1.5) 

Female, % 63.9 
At least one APOE-4 allele, % 30.4 
Years of education, y (mean ± SD) 15.9 ± 2.5 
Education level, n (%)  

≤ 12 (High school or less) 85 (13.1) 
13 – 16 (College) 340 (52.4) 
≥ 17 (More than college) 224 (34.5) 

History of hypertension at entry, % 38.2 
Number of assessments (mean ± SD) 10.3 ± 4.7 
Time between assessments, y (mean ± SD) 1.1 ± 0.3 
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Table 4.3. Observed one-step transition matrix (number of assessments [% of prior visit 
state]); total subjects = 649. 

Prior state 

Current state 

Normal 
Amnestic 

MCI 

Mixed
 MCI 

Clinical 
MCI 

Dementia Dropout Death 

Normal 
2634 
(69.1) 

524 
(13.8) 

464 
(12.2) 

40  
(1.1) 

15 
(0.4) 

33 
(0.9) 

101 
(2.7) 

Amnestic 
MCI 

497 
(57.6) 

172 
(19.9) 

129 
(15.0) 

23 
(2.7) 

9  
(1.0) 

13  
(1.5) 

20 
(2.3) 

Mixed MCI 
404 

(30.7) 
97 

(7.4) 
601 

(45.7) 
66 

(5.0) 
35 

(2.7) 
30 

(2.3) 
80 

(6.2) 

Clinical MCI 
   154 

(61.4) 
50  

(19.9) 
16 

(6.4) 
31 

(12.4) 
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Table 4.4. Full model fit comparison: all beta coefficients are independent of the prior state (T: normal cognition, amnestic 
MCI, or mixed MCI). 

Parameter 

No scaling parameters 
(Model 1*) 

Scaling parameters 
(Model 2*) Estimate

 % 
Change  

SE  
% 

Change Estimate SE p Estimate SE p 

T → Amnestic MCI         

Intercept (prior=normal) -0.213 0.398 0.59 -0.211 0.394 0.59 -0.94 -1.01 

Intercept (prior=amnestic) 0.00728 0.399 0.99 0.0691 0.395 0.86  849.18 -1.00 

Intercept (prior=mixed) -0.513 0.397 0.20 -0.553 0.395 0.16 7.80 -0.50 

Age (1-yr increment) 0.0285 0.00666 <0.0001 0.0285 0.00663 <0.0001 0.00 -0.45 

Sex (F vs. M) -0.268 0.108 0.013 -0.275 0.106 0.010 2.61 -1.85 

Baseline hypertension (Y vs. N) -0.0756 0.107 0.48 -0.0615 0.106 0.56 -18.65 -0.93 

APOE-ε4 (Y vs. N) -0.0756 0.114 0.51 -0.0839 0.113 0.46 10.98 -0.88 

Education (1-yr increment) -0.0608 0.0226 0.0073 -0.0608 0.0224 0.0067 0.00 -0.88 

T → Mixed MCI         

Intercept (prior=normal) 0.954 0.369 0.01 0.986 0.371 0.0081 3.35 0.54 

Intercept (prior=amnestic) 0.983 0.373 0.0087 1.0623 0.374 0.0047 8.07 0.27 

Intercept (prior=mixed) 2.441 0.359 <0.0001 2.434 0.362 <0.0001 -0.29 0.84 

Age (1-yr increment) 0.0748 0.00637 <0.0001 0.0756 0.00647 <0.0001 1.07 1.57 

Sex (F vs. M) -0.0135 0.104 0.90 -0.0274 0.105 0.79 102.96 0.96 

Baseline hypertension (Y vs. N) 0.0875 0.101 0.39 0.106 0.102 0.30 21.14 0.99 

APOE-ε4 (Y vs. N) 0.0724 0.108 0.50 0.0614 0.110 0.58 -15.19 1.85 

Education (1-yr increment) -0.157 0.0212 <0.0001 -0.159 0.0213 <0.0001 1.27 0.47 

T → Clinical MCI         

Intercept (prior=normal) -2.533 0.721 0.0005 -2.502 0.722 0.0006 -1.22 0.14 

Intercept (prior=amnestic) -1.786 0.725 0.014 -1.743 0.726 0.017 -2.41 0.14 

Intercept (prior=mixed) -0.840 0.695 0.23 -0.864 0.697 0.22 2.86 0.29 

Age (1-yr increment) 0.133 0.0140 <0.0001 0.134 0.0141 <0.0001 0.75 0.71 

Sex (F vs. M) -0.274 0.203 0.18 -0.276 0.203 0.17 0.73 0.00 
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Table 4.4. Continued 

Parameter 

No scaling parameters 
(Model 1*) 

Scaling parameters 
(Model 2*) 

Estimate
 % 

Change  

SE  
% 

Change 
Estimate SE p Estimate SE p   

Baseline hypertension (Y vs. N) 0.0210 0.203 0.92 0.0229 0.204 0.91 9.05 0.49 

APOE-ε4 (Y vs. N) 0.604 0.205 0.0033 0.584 0.206 0.0047 -3.31 0.49 

Education (1-yr increment) -0.0991 0.0411 0.016 -0.0995 0.0412 0.016 0.40 0.24 

T → Dementia         

Intercept (prior=normal) -3.520 1.0113 0.0005 -3.524 1.0124 0.0005 0.11 0.11 

Intercept (prior=amnestic) -2.782 1.0246 0.0068 -2.752 1.0234 0.0073 -1.08 -0.12 

Intercept (prior=mixed) -1.546 0.973 0.11 -1.603 0.975 0.10 3.69 0.21 

Age (1-yr increment) 0.164 0.0201 <0.0001 0.164 0.0202 <0.0001 0.00 0.50 

Sex (F vs. M) 0.385 0.316 0.22 0.371 0.615 0.24 -3.64 94.62 

Baseline hypertension (Y vs. N) -0.423 0.309 0.17 -0.389 0.308 0.208 -8.04 -0.32 

APOE-ε4 (Y vs. N) 0.985 0.283 0.0005 0.981 0.283 0.0006 -0.41 0.00 

Education (1-yr increment) -0.135 0.0577 0.019 -0.134 0.0578 0.021 -0.74 0.17 

T → Death         

Intercept (prior=normal) -2.551 0.623 <0.0001 -2.502 0.6230 <0.0001 -1.92 0.00 

Intercept (prior=amnestic) -2.890 0.647 <0.0001 -2.840 0.647 <0.0001 -1.73 0.00 

Intercept (prior=mixed) -1.608 0.609 0.0084 -1.607 0.610 0.0086 -0.06 0.16 

Age (1-yr increment) 0.173 0.0120 <0.0001 0.174 0.0121 <0.0001 0.58 0.83 

Sex (F vs. M) -0.408 0.171 0.017 -0.440 0.171 0.010 7.84 0.00 

Baseline hypertension (Y vs. N) 0.380 0.166 0.023 0.406 0.167 0.015 6.84 0.60 

APOE-ε4 (Y vs. N) -0.107 0.193 0.58 -0.103 0.194 0.60 -3.74 0.52 

Education (1-yr increment) -0.0427 0.0351 0.23 -0.0443 0.0352 0.209 3.75 0.28 

T → Dropout         

Intercept (prior=normal) -1.938 0.883 0.029 -1.967 0.884 0.026 1.50 0.11 

Intercept (prior=amnestic) -1.562 0.901 0.084 -1.503 0.900 0.095 -3.78 -0.11 

Intercept (prior=mixed) -0.805 0.853 0.346 -0.829 0.854 0.33 2.98 0.12 
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Table 4.4. Continued 

Parameter 

No scaling parameters 
(Model 1*) 

Scaling parameters 
(Model 2*) Estimate

 % 
Change  

SE  
% 

Change Estimate SE p Estimate SE p 

Age (1-yr increment) 0.0598 0.0166 0.0003 0.0599 0.0166 0.0003 0.17 0.00 

Sex (F vs. M) -0.0485 0.261 0.85 -0.0529 0.261 0.84 9.07 0.00 

Baseline hypertension (Y vs. N) 0.648 0.243 0.0078 0.656 0.242 0.007 1.23 -0.41 

APOE-ε4 (Y vs. N) 0.144 0.265 0.59 0.115 0.266 0.67 -20.14 0.38 

Education (1-yr increment) -0.155 0.0510 0.0025 -0.154 0.0510 0.0027 -0.65 0.00 

Clinical MCI → Dementia         

Intercept (prior=clinical MCI) -2.893 1.174 0.014 -2.909 1.173 0.013 0.55 -0.09 

Age (1-yr increment) 0.0296 0.0264 0.26 0.0299 0.0264 0.26 1.01 0.00 

Sex (F vs. M) 0.832 0.362 0.022 0.820 0.361 0.84 -1.44 -0.28 

Baseline hypertension (Y vs. N) -0.347 0.361 0.34 -0.311 0.360 0.387 -10.37 -0.28 

APOE-ε4 (Y vs. N) 0.751 0.360 0.038 0.741 0.360 0.040 -1.33 0.00 

Education (1-yr increment) 0.0593 0.0670 0.38 0.0604 0.0670 0.37 1.85 0.00 

Clinical MCI → Death         

Intercept (prior= clinical MCI) -4.503 1.502 0.0028 -4.542 1.503 0.0026 0.87 0.07 

Age (1-yr increment) 0.0777 0.0351 0.027 0.0779 0.0351 0.027 0.26 0.00 

Sex (F vs. M) 0.595 0.444 0.18 0.593 0.443 0.182 -0.34 -0.23 

Baseline hypertension (Y vs. N) 0.404 0.410 0.33 0.380 0.410 0.35 -5.94 0.00 

APOE-ε4 (Y vs. N) 0.280 0.451 0.54 0.269 0.451 0.551 -3.93 0.00 

Education (1-yr increment) 0.110 0.0835 0.19 0.114 0.0835 0.17 3.64 0.00 

Clinical MCI → Dropout         

Intercept (prior=clinical MCI) -2.124 1.584 0.18 -2.160 1.589 0.17 1.69 0.32 

Age (1-yr increment) 0.0287 0.0458 0.53 0.0289 0.0459 0.53 0.70 0.22 

Sex (F vs. M) -0.196 0.543 0.72 -0.210 0.545 0.70 7.14 0.37 

Baseline hypertension (Y vs. N) -0.920 0.662 0.16 -0.924 0.664 0.17 0.43 0.30 

APOE-ε4 (Y vs. N) 0.204 0.580 0.73 0.194 0.582 0.74 -4.90 0.34 

Education (1-yr increment) -0.00113 0.0932 0.99 0.00155 0.0934 0.99 -237.17 0.21 
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Table 4.4. Continued 

Parameter 

No scaling parameters 
(Model 1*) 

Scaling parameters 
(Model 2*) Estimate

 % 
Change  

SE  
% 

Change Estimate SE p Estimate SE p 

Scaling Parameters         

Prior=amnestic MCI 1.00 0.00 -- 0.619 0.172 0.0004 -- -- 

Prior=mixed MCI 1.00 0.00 -- 1.142 0.213 <0.0001 -- -- 
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Table 4.5. Full model fit comparison: age depends on prior state, all other beta coefficients are independent of the prior state. 

Parameter 

No scaling parameters 
(Model 3*) 

Scaling parameters 
(Model 4*) Estimate

 % 
Change  

SE  
% 

Change Estimate SE p Estimate SE p 

T → Amnestic MCI         

Intercept (prior=normal) -0.259 0.398 0.52 -0.241 0.395 0.54 -6.95 -0.75 

Intercept (prior=amnestic) -0.0368 0.399 0.93 0.0309 0.396 0.94 -183.97 -0.75 

Intercept (prior=mixed) -0.564 0.397 0.16 -0.572 0.394 0.15 1.42 -0.76 
Age (1-yr increment, 
prior=normal) 

0.0330 0.00781 <0.0001 0.0346 0.00802 <0.0001 4.85 2.69 
Age (1-yr increment,  
prior=amnestic MCI) 

0.0345 0.0136 0.011 0.0272 0.0132 0.040 -21.16 -2.94 
Age (1-yr increment, prior=mixed 
MCI) 

-0.00131 0.0160 0.94 -0.00005 0.0165 1.00 -96.18 3.13 

Sex (F vs. M) -0.268 0.108 0.013 -0.270 0.106 0.011 0.75 -1.85 

Baseline hypertension (Y vs. N) -0.0736 0.107 0.49 -0.0690 0.106 0.52 -6.25 -0.93 

APOE-ε4 (Y vs. N) -0.0772 0.114 0.50 -0.0722 0.114 0.53 -6.48 0.00 

Education (1-yr increment) -0.0577 0.0226 0.01 -0.0585 0.0224 0.0093 1.39 -0.88 

T → Mixed MCI         

Intercept (prior=normal) 0.920 0.368 0.013 0.938 0.370 0.012 1.96 0.54 

Intercept (prior=amnestic) 0.958 0.373 0.010 1.0246 0.374 0.0063 6.95 0.27 

Intercept (prior=mixed) 2.433 0.359 <0.0001 2.426 0.359 <0.0001 -0.29 0.00 
Age (1-yr increment, 
prior=normal) 

0.0855 0.00822 <0.001 0.0872 0.00844 <0.0001 
1.99 2.68 

Age (1-yr increment,  
prior=amnestic MCI) 

0.0756 0.0151 <0.0001 0.0675 0.0149 <0.0001 
-10.71 -1.32 

Age (1-yr increment, prior=mixed 
MCI) 

0.0580 0.0101 <0.0001 0.0595 0.0110 <0.0001 
2.59 8.91 

Sex (F vs. M) -0.0158 0.105 0.88 -0.0207 0.104 0.84 31.01 -0.95 

Baseline hypertension (Y vs. N) 0.0901 0.101 0.37 0.096 0.102 0.34 6.55 0.99 

APOE-ε4 (Y vs. N) 0.0691 0.108 0.52 0.0739 0.109 0.50 6.95 0.93 

Education (1-yr increment) -0.155 0.0211 <0.0001 -0.156 0.0213 <0.0001 0.65 0.95 
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Table 4.5. Continued 

Parameter 

No scaling parameters 
(Model 3*) 

Scaling parameters 
(Model 4*) Estimate

 % 
Change  

SE  
% 

Change Estimate SE p Estimate SE p 

T → Clinical MCI         

Intercept (prior=normal) -2.436 0.721 0.0008 -2.429 0.722 0.0008 -0.29 0.14 

Intercept (prior=amnestic) -1.725 0.732 0.0019 -1.675 0.732 0.022 -2.90 0.00 

Intercept (prior=mixed) -1.0188 0.702 0.15 -1.0324 0.702 0.14 1.33 0.00 
Age (1-yr increment,  
prior=normal) 

0.102 0.0228 <0.001 0.104 0.0230 <0.0001 1.96 0.88 
Age (1-yr increment,  
prior=amnestic MCI) 

0.116 0.0320 0.0003 0.108 0.0318 0.0007 -6.90 -0.62 
Age (1-yr increment,  
prior=mixed MCI) 

0.154 0.0212 <0.0001 0.155 0.0218 <0.0001 0.65 2.83 

Sex (F vs. M) -0.255 0.204 0.21 -0.264 0.203 0.19 3.53 -0.49 

Baseline hypertension (Y vs. N) -0.00540 0.204 0.98 -0.0127 0.204 0.95 135.19 0.00 

APOE-ε4 (Y vs. N) 0.608 0.205 0.0032 0.617 0.206 0.0028 1.48 0.49 

Education (1-yr increment) -0.0992 0.0412 0.016 -0.0990 0.0412 0.017 -0.20 0.00 

T → Dementia         

Intercept (prior=normal) -3.796 1.0445 0.0003 -3.789 1.0464 0.0003 -0.18 0.18 

Intercept (prior=amnestic) -3.0532 1.0918 0.0053 -2.982 1.0900 0.0064 -2.33 -0.16 

Intercept (prior=mixed) -1.612 0.976 0.10 -1.630 0.977 0.096 1.12 0.10 
Age (1-yr increment, 
prior=normal) 

0.186 0.0374 <0.0001 0.189 0.0375 <0.0001 
1.61 0.27 

Age (1-yr increment,  
prior=amnestic MCI) 

0.194 0.0535 0.0003 0.184 0.0530 0.0006 
-5.15 -0.93 

Age (1-yr increment,  
prior=mixed MCI) 

0.138 0.0268 <0.0001 0.140 0.0273 <0.0001 
1.45 1.87 

Sex (F vs. M) 0.367 0.315 0.24 0.357 0.315 0.26 -2.72 0.00 

Baseline hypertension (Y vs. N) -0.375 0.307 0.22 -0.388 0.309 0.21 3.47 0.65 

APOE-ε4 (Y vs. N) 1.010 0.282 0.0004 1.0253 0.283 0.0003 1.51 0.35 

Education (1-yr increment) -0.126 0.0580 0.030 -0.126 0.0581 0.030 0.00 0.17 

 



 

 
 

8
4
 

Table 4.5. Continued 

Parameter 

No scaling parameters 
(Model 3*) 

Scaling parameters 
(Model 4*) Estimate

 % 
Change  

SE  
% 

Change Estimate SE p Estimate SE p 

T → Death         

Intercept (prior=normal) -2.611 0.626 <0.0001 -2.579 0.628 <0.0001 -1.23 0.32 

Intercept (prior=amnestic) -2.638 0.655 <0.0001 -2.576 0.656 <0.0001 -2.35 0.15 

Intercept (prior=mixed) -1.595 0.613 0.0095 -1.612 0.614 0.0089 1.07 0.16 
Age (1-yr increment, 
prior=normal) 

0.187 0.0160 <0.0001 0.188 0.0162 <0.0001 
0.53 1.25 

Age (1-yr increment,  
prior = amnestic MCI) 

0.123 0.0345 0.0004 0.116 0.0343 0.0008 
-5.69 -0.58 

Age (1-yr increment,  
prior=mixed MCI) 

0.162 0.0200 <0.0001 0.165 0.0207 <0.0001 
1.85 3.50 

Sex (F vs. M) -0.422 0.171 0.014 -0.426 0.171 0.013 0.95 0.00 

Baseline hypertension (Y vs. N) 0.386 0.166 0.020 0.406 0.167 0.015 5.18 0.60 

APOE-ε4 (Y vs. N) -0.110 0.193 0.57 -0.104 0.194 0.59 -5.45 0.52 

Education (1-yr increment) -0.0424 0.0351 0.23 -0.0440 0.0353 0.21 3.77 0.57 

T → Dropout         

Intercept (prior=normal) -2.0515 0.885 0.021 -2.0521 0.886 0.021 0.03 0.11 

Intercept (prior=amnestic) -1.625 0.905 0.073 -1.561 0.904 0.085 -3.94 -0.11 

Intercept (prior=mixed) -0.911 0.856 0.29 -0.927 0.857 0.28 1.76 0.12 
Age (1-yr increment,  
prior=normal) 

0.0180 0.0251 0.47 0.0193 0.0253 0.46 
7.22 0.79 

Age (1-yr increment,  
prior=amnestic MCI) 

0.0925 0.0403 0.022 0.0838 0.0398 0.036 
-9.41 -10.67 

Age (1-yr increment,  
prior=mixed MCI) 

0.0821 0.0271 0.0025 0.0836 0.0274 0.0024 
1.83 1.11 

Sex (F vs. M) -0.0483 0.261 0.85 -0.0459 0.261 0.86 -4.97 0.00 

Baseline hypertension (Y vs. N) 0.614 0.243 0.012 0.605 0.243 0.013 -1.47 0.00 

APOE-ε4 (Y vs. N) 0.121 0.267 0.65 0.130 0.267 0.63 7.44 0.00 

Education (1-yr increment) -0.151 0.0510 0.0032 -0.151 0.0510 0.0032 0.00 0.00 
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Table 4.5. Continued 

Parameter 

No scaling parameters 
(Model 3*) 

Scaling parameters 
(Model 4*) Estimate

 % 
Change  

SE  
% 

Change Estimate SE p Estimate SE p 

Clinical MCI → Dementia         

Intercept (prior=clinical MCI) -2.941 1.176 0.013 -2.935 1.175 0.013 -0.20 -0.09 

Age (1-yr increment) 0.0300 0.0264 0.26 0.0300 0.0264 0.26 0.00 0.00 

Sex (F vs. M) 0.829 0.361 0.022 0.829 0.361 0.022 0.00 0.00 

Baseline hypertension (Y vs. N) -0.295 0.359 0.41 -0.295 0.359 0.41 0.00 0.00 

APOE-ε4 (Y vs. N) 0.750 0.360 0.037 0.749 0.360 0.038 -0.13 0.00 

Education (1-yr increment) 0.0612 0.0671 0.36 0.0609 0.0671 0.36 -0.49 0.00 

Clinical MCI → Death         

Intercept (prior=clinical MCI) -4.611 1.511 0.0024 -4.601 1.510 0.0024 -0.22 -0.07 

Age (1-yr increment) 0.0781 0.0352 0.027 0.0781 0.0352 0.027 0.00 0.00 

Sex (F vs. M) 0.594 0.444 0.18 0.594 0.444 0.18 0.00 0.00 

Baseline hypertension (Y vs. N) 0.371 0.412 0.37 0.371 0.412 0.37 0.00 0.00 

APOE-ε4 (Y vs. N) 0.270 0.453 0.55 0.268 0.453 0.55 -0.74 0.00 

Education (1-yr increment) 0.118 0.0834 0.16 0.117 0.0839 0.16 -0.85 0.60 

Clinical MCI → Dropout         

Intercept (prior=clinical MCI) -2.204 1.593 0.17 -2.199 1.592 0.17 -0.23 -0.06 

Age (1-yr increment) 0.0293 0.0459 0.52 0.0294 0.0459 0.52 0.34 0.00 

Sex (F vs. M) -0.207 0.545 0.71 -0.212 0.545 0.70 2.42 0.00 

Baseline hypertension (Y vs. N) -0.919 0.663 0.17 -0.924 0.664 0.16 0.54 0.15 

APOE-ε4 (Y vs. N) 0.196 0.582 0.74 0.193 0.582 0.74 -1.53 0.00 

Education (1-yr increment) 0.00389 0.0936 0.97 0.00379 0.0936 0.97 -2.57 0.00 

Scaling Parameters         

Prior = amnestic MCI 1.00 0.00 -- 0.568 0.173 0.0011 -- -- 

Prior = mixed MCI 1.00 0.00 -- 1.00520 0.218 <0.0001 -- -- 
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Table 4.6. Full model characteristics. 

 
Betas independent of 

prior state 
Beta for age depends on 

prior state 

Fit statistics 

No scaling 
parameters
(Model 1*) 

Scaling 
parameters
(Model 2*) 

No scaling 
parameters 
(Model 3*) 

Scaling 
parameters
(Model 4*) 

-2LogL 13303 13297 13281 13275 
AIC 13437 13435 13439 13437 
AICC 13439 13437 13441 13439 
BIC 13737 13744 13792 13800 
Parameters 67 69 79 81 
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Table 4.7. Reduced model characteristics. 

 
Betas independent of 

prior state 
Beta for age depends on 

prior state 

Fit statistics 

No scaling 
parameters
(Model 1*) 

Scaling 
parameters
(Model 2*) 

No scaling 
parameters 
(Model 3*) 

Scaling 
parameters
(Model 4*) 

-2LogL 13333 13330 13313 13307 
AIC 13407 13410 13409 13407 
AICC 13407 13410 13409 13408 
BIC 13573 13589 13624 13631 
Parameters 37 40 48 50 
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Table 4.8. Reduced model fit comparison: all beta coefficients are independent of the prior state (T: normal cognition, 
amnestic MCI, or mixed MCI). 
 

Parameter 

No scaling parameters 
(Model 1*) 

Scaling parameters 
(Model 2*) Estimate

 % 
Change  

SE  
% Change Estimate SE p Estimate SE p 

T → Amnestic MCI         

Intercept (prior = normal) -1.266 0.0826 <0.0001 -1.283 0.0824 <0.0001 1.34 -0.24 

Intercept (prior = amnestic) -1.0484 0.112 <0.0001 -0.992 0.108 <0.0001 -5.38 -3.57 

Intercept (prior = mixed) -1.562 0.136 <0.0001 -1.584 0.141 <0.0001 1.41 3.68 

Age (1-yr increment) 0.0294 0.00666 <0.0001 0.0286 0.00659 <0.0001 -2.72 -1.05 

Sex (F vs. M) -0.211 0.0885 0.018 -0.203 0.0876 0.021 -3.79 -1.02 

T → Mixed MCI         

Intercept (prior = normal) 0.308 0.264 0.25 0.329 0.267 0.22 6.82 1.14 

Intercept (prior = amnestic) 0.322 0.278 0.25 0.408 0.280 0.15 26.71 0.72 

Intercept (prior = mixed) 1.788 0.263 <0.0001 1.803 0.267 <0.0001 0.84 1.52 

Age (1-yr increment) 0.0744 0.00636 <0.0001 0.0740 0.00643 <0.0001 -0.54 1.10 

Education (1-yr increment) -0.114 0.0164 <0.0001 -0.116 0.0165 <0.0001 1.75 0.61 

T → Clinical MCI         

Intercept (prior = normal) -4.272 0.187 <0.0001 -4.287 0.187 <0.0001 0.35 0.00 

Intercept (prior = amnestic) -3.538 0.237 <0.0001 -3.496 0.236 <0.0001 -1.19 -0.42 

Intercept (prior = mixed) -2.574 0.176 <0.0001 -2.600 0.179 <0.0001 1.01 1.70 

Age (1-yr increment) 0.133 0.0140 <0.0001 0.133 0.0141 <0.0001 0.00 0.71 

APOE-ε4 (Y vs. N) 0.607 0.190 0.0015 0.617 0.190 0.0012 1.65 0.00 

T → Dementia         

Intercept (prior = normal) -5.520 0.309 <0.0001 -5.538 0.311 <0.0001 0.33 0.65 

Intercept (prior = amnestic) -4.751 0.378 <0.0001 -4.713 0.378 <0.0001 -0.80 0.00 

Intercept (prior = mixed) -3.529 0.260 <0.0001 -3.523 0.261 <0.0001 -0.17 0.38 

Age (1-yr increment) 0.165 0.0206 <0.0001 0.165 0.0207 <0.0001 0.00 0.49 

APOE-ε4 (Y vs. N) 0.939 0.270 0.0005 0.919 0.271 0.0007 -2.13 0.37 
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Table 4.8. Continued 

Parameter 

No scaling parameters 
(Model 1*) 

Scaling parameters 
(Model 2*) Estimate

 % 
Change  

SE  
% Change Estimate SE p Estimate SE p 

T → Death         

Intercept (prior = normal) -3.257 0.165 <0.0001 -3.280 0.165 <0.0001 0.71 0.00 

Intercept (prior = amnestic) -3.599 0.262 <0.0001 -3.573 0.260 <0.0001 -0.72 -0.76 

Intercept (prior = mixed) -2.320 0.189 <0.0001 -2.354 0.192 <0.0001 1.47 1.59 

Age (1-yr increment) 0.174 0.0120 <0.0001 0.174 0.0120 <0.0001 0.00 0.00 

Sex (F vs. M) -0.399 0.153 0.0092 -0.382 0.153 0.013 -4.26 0.00 

Baseline hypertension (Y vs. N) 0.369 0.151 0.015 0.375 0.151 0.013 1.63 0.00 

T → Dropout         

Intercept (prior = normal) -4.412 0.214 <0.0001 -2.865 0.802 0.0004 -35.06 274.77 

Intercept (prior = amnestic) -4.0203 0.308 <0.0001 -2.369 0.825 0.0042 -41.07 167.86 

Intercept (prior = mixed) -3.190 0.232 <0.0001 -1.718 0.770 0.026 -46.14 231.90 

Age (1-yr increment) 0.0566 0.0166 0.0007 0.0580 0.0165 0.0005 2.47 -0.60 

Baseline hypertension  (Y vs. N) 0.637 0.234 0.0067 0.630 0.233 0.0070 -1.10 -0.43 

Education  
(1-yr increment) 

-- -- -- -0.0972 0.0489 0.047 -- -- 

Clinical MCI → Dementia         

Intercept (prior = clinical MCI) -1.566 0.273 <0.0001 -1.559 0.272 <0.0001 -0.45 -0.37 

Sex (F vs. M) 0.741 0.335 0.028 0.728 0.335 0.030 -1.75 0.00 

Clinical MCI → Death         

Intercept (prior = clinical MCI) -2.148 0.341 <0.0001 -2.210 0.349 <0.0001 2.89 2.35 

Age (1-yr increment) 0.0772 0.0338 0.023 0.0823 0.0343 0.017 6.61 1.48 

Clinical MCI → Dropout         

Intercept (prior = clinical MCI) -2.263 0.263 <0.0001 -2.263 0.262 <0.0001 0.00 -0.38 

Scaling Parameters         

Prior = amnestic MCI 1.00 0.00 -- 0.619 0.175 0.0004 -- -- 

Prior = mixed MCI 1.00 0.00 -- 1.0860 0.212 <0.0001 -- -- 
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Table 4.9. Reduced model fit comparison: age depends on prior state, all other beta coefficients are independent of the prior 
state (T: normal cognition, amnestic MCI, or mixed MCI). 

Parameter 

No scaling parameters 
(Model 3*) 

Scaling parameters 
(Model 4*) Estimate

 % 
Change  

SE  
% Change Estimate SE p Estimate SE p 

T → Amnestic MCI         

Intercept (prior=normal) -1.276 0.0819 <0.0001 -1.271 0.0833 <0.0001 -0.39 1.71 

Intercept (prior=amnestic) -1.0479 0.112 <0.0001 -0.990 0.108 <0.0001 -5.53 -3.57 

Intercept (prior=mixed) -1.546 0.136 <0.0001 -1.553 0.141 <0.0001 0.45 3.68 

Age (1-yr increment, 
prior=normal) 

0.0329 0.00767 <0.0001 0.0346 0.00789 <0.0001 5.17 2.87 

Age (1-yr increment,  
prior=amnestic MCI) 

0.0342 0.0135 0.011 0.0268 0.0132 0.043 -21.64 -2.22 

Age (1-yr increment,  
prior=mixed MCI) 

0.0913 0.0406 0.025 -- -- -- -- -- 

Sex (F vs. M) -0.204 0.0882 0.021 -0.202 0.0879 0.022 -0.98 -0.34 

T → Mixed MCI           

Intercept (prior=normal) 0.355 0.266 0.18 0.356 0.267 0.18 0.28 0.38 

Intercept (prior=amnestic) 0.387 0.280 0.17 0.444 0.279 0.11 14.73 -0.36 

Intercept (prior=mixed) 1.888 0.264 <0.0001 1.878 0.264 <0.0001 -0.53 0.00 

Age (1-yr increment, 
prior=normal) 

0.0839 0.00810 <0.0001 0.0859 0.00833 <0.0001 2.38 2.84 

Age (1-yr increment,  
prior=amnestic MCI) 

0.0739 0.0151 <0.0001 0.0655 0.0148 <0.0001 -11.37 -1.99 

Age (1-yr increment,  
prior=mixed MCI) 

0.0566 0.00921 <0.0001 0.0565 0.00972 <0.0001 -0.18 5.54 

Education (1-yr increment) -0.118 0.0165 <0.0001 -0.117 0.0165 <0.0001 -0.85 0.00 
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Table 4.9. continued 

Parameter 

No scaling parameters 
(Model 3*) 

Scaling parameters 
(Model 4*) Estimate

 % 
Change  

SE  
% Change Estimate SE p Estimate SE p 

T → Clinical MCI         

Intercept (prior=normal) -4.178 0.184 <0.0001 -4.193 0.186 <0.0001 0.36 1.09 

Intercept (prior=amnestic) -3.504 0.254 <0.0001 -3.419 0.249 <0.0001 -2.43 -1.97 

Intercept (prior=mixed) -2.726 0.205 <0.0001 -2.726 0.208 <0.0001 0.00 1.46 

Age (1-yr increment, 
prior=normal) 

0.100 0.0225 <0.0001 0.103 0.0229 <0.0001 3.00 1.78 

Age (1-yr increment,  
prior=amnestic MCI) 

0.117 0.0327 0.0004 0.107 0.0320 0.0009 -8.55 -2.14 

Age (1-yr increment,  
prior=mixed MCI) 

0.152 0.0209 <0.0001 0.151 0.0212 <0.0001 -0.66 1.44 

APOE-ε4 (Y vs. N) 0.604 0.191 0.0016 0.608 0.191 0.0015 0.66 0.00 

T → Dementia         

Intercept (prior=normal) -5.620 0.365 <0.0001 -5.629 0.369 <0.0001 0.16 1.10 

Intercept (prior=amnestic) -5.107 0.550 <0.0001 -5.0157 0.541 <0.0001 -1.79 -1.64 

Intercept (prior=mixed) -3.380 0.268 <0.0001 -3.386 0.271 <0.0001 0.18 1.12 

Age (1-yr increment, 
prior=normal) 

0.186 0.0376 <0.0001 0.190 0.0379 <0.0001 2.15 0.80 

Age (1-yr increment,  
prior=amnestic MCI) 

0.215 0.0578 0.0002 0.203 0.0569 0.0004 -5.58 -1.56 

Age (1-yr increment,  
prior=mixed MCI) 

0.134 0.0269 <0.0001 0.134 0.0272 <0.0001 0.00 1.12 

APOE-ε4 (Y vs. N) 0.926 0.271 0.007 0.925 0.271 0.0007 -0.11 0.00 
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Table 4.9. continued 

Parameter 

No scaling parameters 
(Model 3*) 

Scaling parameters 
(Model 4*) Estimate

 % 
Change  

SE  
% Change Estimate SE p Estimate SE p 

T → Death         

Intercept (prior = normal) -3.322 0.176 <0.0001 -3.324 0.178 <0.0001 0.06 1.14 

Intercept (prior = amnestic) -3.393 0.284 <0.0001 -3.310 0.279 <0.0001 -2.45 -1.76 

Intercept (prior = mixed) -2.296 0.212 <0.0001 -2.323 0.217 <0.0001 1.18 2.36 

Age (1-yr increment,  
prior = normal) 

0.186 0.0159 <0.0001 0.188 0.0161 <0.0001 1.08 1.26 

Age (1-yr increment,  
prior = amnestic MCI) 

0.125 0.0350 0.0004 0.115 0.0343 0.0008 -8.00 -2.00 

Age (1-yr increment,  
prior = mixed MCI) 

0.162 0.0196 <0.0001 0.163 0.0200 <0.0001 0.62 2.04 

Sex (F vs. M) -0.390 0.153 0.011 -0.380 0.153 0.013 -2.56 0.00 

Baseline hypertension (Y vs. N) 0.362 0.151 0.017 0.358 0.151 0.018 -1.10 0.00 

T → Dropout         

Intercept (prior = normal) -2.930 0.803 0.0003 -2.946 0.804 0.0003 0.55 0.12 

Intercept (prior = amnestic) -2.475 0.833 0.0031 -2.428 0.834 0.0037 -1.90 0.12 

Intercept (prior = mixed) -1.710 0.776 0.028 -1.754 0.778 0.024 2.57 0.26 

Age (1-yr increment,  
prior = amnestic MCI) 

0.0913 0.0406 0.025 0.0829 0.0402 0.040 -9.20 -0.99 

Age (1-yr increment,  
prior = mixed MCI) 

0.0795 0.0265 0.0028 0.0805 0.0270 0.0029 1.26 1.89 

Baseline hypertension (Y vs. N) 0.618 0.234 0.0083 0.606 0.234 0.010 -1.94 0.00 

Education (1-yr increment) -0.0990 0.0489 0.043 -0.0973 0.0490 0.047 -1.72 0.20 

Clinical MCI → Dementia         

Intercept (prior = clinical MCI) -1.556 0.271 <0.0001 -1.555 0.272 <0.0001 -0.06 0.37 

Sex (F vs. M) 0.728 0.334 0.030 0.729 0.335 0.030 0.14 0.30 
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Table 4.9. continued 

Parameter 

No scaling parameters 
(Model 3*) 

Scaling parameters 
(Model 4*) Estimate

 % 
Change  

SE  
% Change Estimate SE p Estimate SE p 

Clinical MCI → Death         

Intercept (prior = clinical MCI) -2.177 0.345 <0.0001 -2.175 0.344 <0.0001 -0.09 -0.29 

Age (1-yr increment) 0.0795 0.0340 0.020 0.0794 0.0340 0.020 -0.13 0.00 

Clinical MCI → Dropout         

Intercept (prior = clinical MCI) -2.277 0.264 <0.0001 -2.261 0.262 <0.0001 -0.70 -0.76 

Scaling Parameters         

Prior = amnestic MCI 1.00 0.00 -- 0.552 0.173 <0.0001 -- -- 

Prior = mixed MCI 1.00 0.00 -- 0.917 0.212 <0.0001 -- -- 
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Figure 4.1. Diagram of one-step transitions possible between adjacent subject visits in the 
Biologically Resilient Adults in Neurological Studies (BRAiNS) cohort study. Double-headed 
arrows indicate back transitions are possible from more impaired to less impaired states. 
Dementia, dropout, and death are absorbing states. 
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CHAPTER FIVE 

Conclusion 
 

Summary 

Dementia is increasingly recognized as a major and growing threat to public 

health worldwide,111 and there is a critical need for prevention and treatment strategies. 

However, it is necessary that appropriate methodologies are used in the identification of 

risk factors. The purpose of this dissertation research was to develop further the body of 

literature featuring Markov chains as an analytic tool for data derived from longitudinal 

studies of aging and dementia. Data drawn from the University of Kentucky’s 

Alzheimer’s Disease Center’s (UK ADC) Biologically Resilient Adults in Neurological 

Studies (BRAiNS) cohort, which was established in 1989 and follows adults age 60 years 

and older who are cognitively normal at baseline to death, were used to  conduct three 

studies: (1) “Mild cognitive impairment: Statistical models of transition using 

longitudinal clinical data,” (2) “Self-reported head injury and risk of cognitive 

impairment and Alzheimer’s-type pathology in a longitudinal study of aging and 

dementia, ” and (3) “Incorporating prior-state dependence among random effects and beta 

coefficients improves multistate Markov chain model fit.” The major findings from these 

studies are summarized below. 

Chapter Two examined risk factors associated with both cognitive test-based and 

clinically determined forms of mild cognitive impairment (MCI). MCI has existed as a 

clinical diagnosis only since 2004.10 These initial criteria were independent of suspected 

etiology, which meant that forms of cognitive impairment due treatable (e.g., depression) 

and untreatable (e.g., Alzheimer’s disease) causes of MCI were considered the same 
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diagnostic entity.  This conflation of etiologies, along with the tendency of large 

observational studies to determine MCI based on only a single measure of cognition, such 

as the Mini-Mental State Examination, led to the perception that MCI is unstable and that 

recovery to normal cognition frequently occurs. It was demonstrated in Chapter Two, 

however, when a suspected neurodegenerative etiology is included in the MCI criteria, 

and adequate follow-up is available to characterize the trajectory of participants, MCI is 

in fact quite stable. Apparent recoveries to normal cognition are due to misclassification 

or underlying medical conditions.  

Other important findings from this chapter concern the role of test-based 

cognitive impairments in predicting future clinical states. Although test-based amnestic 

impairments (i.e., episodic memory) in this study were highly transient in nature, with 

almost 60% returning to normal cognition at the next assessment, they were still 

predictive of clinically determined impairment (  for clinical MCI = 2.3 [95% CI: 1.3-

4.0]). More striking, however, was the association between non-amnestic impairments  

(i.e., language, attention, or executive function) and clinical impairment (  for clinical 

MCI = 4.8 [95% CI: 2.9-7.8] and  for dementia = 4.9 [95% CI: 2.6-9.3]. The bottom 

line is that there are clinically significant cognitive impairments that can be detected at 

least one year before the criteria for a clinical diagnosis are met. While those impairments 

will often not be followed by a clinical impairment within one year, and thus should 

not—especially in the absence of longitudinal evidence of impairment—be used as the 

basis for a diagnosis by clinicians, they do place individuals at an increased risk of 

eventual MCI and dementia. 
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Chapter Three represents the first application of a Markov chain to analysis of 

self-reported head injury as a risk factor for cognitive impairment, dementia, and death, 

as well as the first study to incorporate both longitudinal observational and 

neuropathological data. This study confirmed that head injury is a risk factor for both 

dementia and death, and this was the first study to show that head injury is also a risk 

factor for MCI. Additionally, the inclusion of neuropathological data in the analysis shed 

some light on earlier findings from case-control studies that suggested that only men are 

at increased risk of dementia following a head injury. Among the subset of participants 

who came to autopsy, men with a history of head injury had significantly increased 

numbers of mean diffuse and neuritic plaques in both the neocortical and medial temporal 

areas. There was no observable difference between women with a history of head injury 

and women without.   

While Fleminger and colleages (2003) suggested that women may be offered 

protection against head injury by the presence of female sex hormones,69 the BRAiNS 

data suggest that men and women of this generation may have qualitatively different head 

injury exposures. Men in this study tended to have injuries that resulted in longer periods 

of unconsciousness. Moreover, men in this study also tended to participate in activities—

like boxing, football, and military service—that could lead to repeated blows to the head 

that do not result in loss of consciousness. Despite growing evidence that it is cumulative 

lifetime exposure that determines chronic effects,101 studies of head injury are typically 

focused on only the most severe injuries, i.e., those resulting a loss of consciousness or, 

in many cases, the subset of those injuries requiring medical attention. Thus, perhaps it is 

not sex hormones that protected the women included in earlier studies but rather the 
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tendency of men to sustain more severe and/or frequent injuries. Severity of injury was 

not considered in Fleminger et al.’s analysis.  

Chapter Four shifted focus from risk factors for MCI and dementia to Markov 

model mechanics. Markov chains are rather complex, and there are many possibilities as 

to how they may be constructed. Song et al. (2011) proposed scaling the subject-specific 

random effects based on the observed prior state and demonstrated that the addition of 

these scaling parameters improved model fit as measured by Akaike’s information 

criterion.31  These prior-state dependent scaling parameters, along with prior-state 

dependent beta coefficients, were evaluated in an application to the data from the 

BRAiNS cohort. Major findings from this study include the confirmation that scaling the 

random effects based on the prior state does improve model fit, as measured by 

likelihood ratio tests, along with the finding that treating the effect of age as prior-state 

dependent not only improves model fit but also reveals previously hidden associations. 

When the effect of age is independent of the prior state, it has no significant effect on a 

participant’s probability of dropping out of the study. However, when the effect of age 

depends on the prior state, participants with a non-amnestic impairment at the previous 

assessment are more likely to drop out with older age: a one-year increase in age raises 

the odds of dropping out by 8% (95% CI: 3%-14%).  

Strengths and Limitations 

 Markov chains are an underutilized tool in the analysis of data from longitudinal 

studies of aged volunteers since death is always a competing risk93 for any outcome of 

interest. Although they have the advantages of flexibility (i.e., the number of transient 



99 
 

and absorbing states can vary), handling correlated observations, as well as handling 

multiple outcomes and competing risks, they can be quite complicated to implement as 

no “off-the-shelf” software is available. A fair amount of technical knowledge is 

necessary to program the analysis within procedures like PROC NLMIXED, and there is 

little guidance available in the literature on how best to fit these models, which can have 

easily over 100 parameters in a full model evaluating multiple risk factors. Other 

limitations of the Markov model include sensitivity to sparse cells, which can limit the 

evaluation of interaction terms, and the need for mature datasets where most participants 

have reached an absorbing state. 

 A major strength of this dissertation is that the data were drawn from a large, 

clinically well characterized cohort with lengthy (mean 10.3±4.7 assessments) follow-up. 

Adequate follow-up helps reduce misclassification errors, as demonstrated in Chapter 

Two, as well as mitigates the sparse cell problems that can limit the utility of Markov 

chain analyses. At the same time, however, it is crucial to note that the participants in the 

BRAiNS cohort are not representative of the general population of individuals age 60 

years and older. Study volunteers are highly educated compared to their peers nationally, 

and thus the generalizability of the results may be limited. However, the concept of 

cognitive reserve would imply that these participants are less susceptible to risk factors 

that would affect their peers. Thus, risk factors identified in the studies of this dissertation 

should also affect the general population of aged individuals, whose brains may be less 

able to compensate for neuropathological insults. 

 Furthermore, despite the large sample there still were not enough participants with 

dementia to separate the dementia state into etiologically determined categories. 
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Although most cases of dementia in any older population will involve Alzheimer’s 

disease, up to 40% may be due to some other cause entirely.7 In addition, multiple 

pathologies may be present, especially as participants reach their mid-80s. Thus, 

information about risk factors for specific dementing diseases is inevitably lost when all 

dementias are treated as being the same.   

 Other limitations include the possibility of uncontrolled confounding and effect 

modification. Again, because of the sparse cell problem, the ability to test interactions 

terms was somewhat limited.  Furthermore, despite the prospective cohort design, data on 

time-varying comorbidities and measurements—such as blood pressure—are limited, and 

key social and lifestyle factors, such as characterization of time devoted to hobbies (e.g., 

reading, travelling, music) as well as diet and exercise routines are not available.  

 Finally, the addition of the dropout state to the Markov chain is a strength of this 

dissertation. Prior applications of the Markov chain to the BRAiNS cohort excluded 

participants who dropped out of the study, as was done in Chapter Two. The inclusion of 

the dropout state in Chapters Three and Four makes more efficient use of the cohort data 

and provides a method of identifying risk factors that may aid in refining participant 

retention efforts.  

Future Research 

There are several avenues for future research suggested by the studies in this 

dissertation. First, additional research into Markov chain model fitting is needed. As 

mentioned above, there is nothing in the literature to provide guidance about how best to 

fit these models. Since fitting the models is expensive in terms of time and computational 
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resources, particularly when random effects are included, methods are needed that clearly 

demonstrate the advantages and disadvantages of various selection algorithms.  

In Chapter Two, it is posited that a clinical diagnosis of MCI is a semi-absorbing 

state from which participants do not recover. While that may be the case at the UK ADC, 

it is not necessarily true for all patients in all study populations. Additional data are 

needed to evaluate the true stability of the clinical MCI diagnosis, and more importantly, 

to evaluate its utility as a clinical entity distinct from dementia.  

The study of head injury as a risk factor for AD remains underdeveloped, and 

neuropathological data obtained from participants in other longitudinal observational 

studies need to be evaluated. In addition, prospective studies, such as those being 

conducted at all 29 federally funded Alzheimer’s Disease Centers, should be collecting 

more detailed data about such injuries. Currently, ADCs are only required to determine 

whether a head injury with a loss of consciousness (LOC) has occurred, and if so whether 

it lasted more or less than five minutes, and whether there are chronic effects.24 These 

data should be expanded to capture, at minimum, the age at injury, the estimated length 

of LOC, and whether medical treatment was obtained immediately following the injury.  

As mentioned in Chapter Four, additional research into the transient states in the 

Markov chain is necessary. There is a strong association between the test-based 

impairments that determine the transient states in the Markov chain and risk of future 

clinical impairment, despite the heavy back flow of participants from these states to 

normal cognition. The criteria that determine these states are somewhat arbitrary, 

however, and additional research is needed to determine the influence of cutpoints for 
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impairment (currently set at 1.5. standard deviations below the expected mean score for 

age) and the number of poor scores necessary to be classified as impaired (currently only 

one is needed) on the back transition rate.   

Finally, as noted above, there is a critical need for studies with enough 

participants and follow-up to examine risk factors and cognitive profiles for mixed 

dementias, i.e., dementias resulting from multiple brain diseases. For example, of the 

autopsied participants in the current study, 20/81 (24.7%) of individuals with a 

pathological diagnosis of AD also had either Lewy body disease, hippocampal sclerosis, 

or cerebrovascular disease sufficient to cause dementia. There are clear implications here 

for clinical trials, which are likely to enroll participants with mixed pathologies while 

working under the assumption that only AD is present.  
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Appendix A. Model selection strategy 

To fit the model to the data, a modified backward selection algorithm was used due to the 
large number of parameters in the full models (e.g., p = 129 in Chapter 3). First, the full 
model was fit. Next all parameters with a p-value greater than or equal to 0.25 were 
removed and the model was refit; baseline smoking, which was specified in the model as 
three indicator variables, was only removed when all three levels of smoking had p-
values at or above the cutoff.  

The reduced model was compared to the full model with a likelihood ratio (LR) test. If 
the LR test had a p-value > 0.05, the reduced model was accepted. This process was 
repeated until all parameters remaining in the model were significant at the α = 0.10 
level. At this point, predictor variables were removed one at a time based on the highest 
p-value until all remaining predictors were significant at the α = 0.05 level. 

Table A.1. Chapter 3 model fitting iteration history. 

Model Parameters  -2 Log-L 
α to stay 
in next 
model 

LR (current vs. 
previous model) 

p 

Full 129 13326 0.25 -- -- 
Reduced 1 92 13341 0.20 15 0.99 
Reduced 2 78 13350 0.15 9 0.83 
Reduced 3 74 13357 0.10 7 0.14 
Reduced 4 67 13368 -- 11 0.14 
Final 47 13409 -- 41 0.037 
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