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ABSTRACT OF DISSERTATION  

 

EFFECT OF ERGOT ALKALOIDS ON BOVINE FOREGUT VASCULATURE, 
NUTRIENT ABSORPTION, AND EPITHELIAL BARRIER FUNCTION 

 

 Ergot alkaloids present in endophyte-infected (E+) tall fescue are thought to be 
the causative agent of fescue toxicosis, a syndrome affecting cattle in the eastern United 
States. Many of the observed signs of fescue toxicosis are thought to be attributed to 
peripheral vasoconstriction; however, there are data indicating that ergot alkaloids can 
alter blood flow to the gut. An experiment was conducted using right ruminal artery and 
vein collected from heifers shortly after slaughter. Vessels were mounted in a multi-
myograph to determine the vasoconstrictive potentials of ergot alkaloids present in E+ 
tall fescue. Results indicated ergot alkaloids have the potential to induce vasoconstriction 
of foregut vasculature. A second experiment was conducted to determine if the additional 
ergot alkaloids present in E+ tall fescue increase the vasoconstrictive response above that 
of ergovaline. Results indicated that ergovaline is the main alkaloid responsible for 
vasoconstriction in bovine vessels. A third study was performed to determine the effect of 
ergot alkaloids on ruminal epithelial blood flow in the washed rumen of steers exposed to 
E+ or endophyte-free (E-) tall fescue seed. Steers were dosed with seed followed by a 
washed rumen experiment with differing levels of ergovaline incubated in the rumen. 
Results indicated that E+ tall fescue seed treatment reduced ruminal epithelial blood 
flow. Additionally, incubating ergovaline in the rumen during the washed rumen further 
decreased epithelial blood flow and volatile fatty acid (VFA) absorption. A final study 
was conducted to determine the acute effects of ergot alkaloids on isolated rumen 
epithelial absorptive and barrier functions and the potential for ruminal ergovaline 
absorption. Results indicate that acute exposure to ergot alkaloids does not alter the 
absorptive or barrier function of rumen epithelium and ergovaline is absorbed from the 
rumen. Data from this series of experiments have shown that ergot alkaloids from E+ tall 
fescue can induce vasoconstriction of blood vessels in the foregut of cattle, reduce blood 
flow to the rumen epithelium, and decrease VFA absorption. The decrease in nutrient 
absorption could contribute to the observed symptoms of fescue toxicosis, including 
depressed growth rates and general unthriftiness.  

Keywords: tall fescue, fescue toxicosis, vasoconstriction, epithelial blood flow, VFA 
absorption
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CHAPTER 1. INTRODUCTION 
 

Tall fescue (Lolium arundinaceum) is a common cool season forage grown in the 

eastern United States. The many positive agronomic qualities have made tall fescue very 

popular with beef cattle producers; although the negative effects on cattle are well 

documented (Hoveland et al., 1983; Schmidt et al., 1982; Strickland et al., 1993). The 

association of a fungal endophyte (Neotyphodium coenophialum) with tall fescue results 

in the production of numerous ergot alkaloids (Lyons et al., 1986), which are implicated 

in causing vasoconstriction and is thought to lead to many of the observed signs of fescue 

toxicosis (Strickland et al., 2011). Most research has focused on the constriction of 

peripheral vasculature such as the caudal artery (Aiken et al., 2007; Aiken et al., 2009), 

the dorsal pedal vein (Solomons et al., 1989), and the saphenous vein (Klotz et al., 2006; 

Klotz et al., 2008; Klotz et al., 2010). However, limited data have shown that ergot 

alkaloids from endophyte-infected (E+) tall fescue could decrease blood flow to portions 

of the gastrointestinal tract (Rhodes et al., 1991). Most studies have focused on 

ergovaline alone as the main causative agent of vasoconstriction; however other ergot 

alkaloids present in E+ tall fescue can induce vasoconstriction (Klotz et al., 2007; Klotz 

et al., 2010). The combination of ergot alkaloids present in E+ tall fescue could 

negatively impact the vasculature of the bovine foregut, reducing blood flow to the 

absorptive surface of an organ where approximately 45% of the digestible energy of 

cattle is absorbed (Kristensen et al., 2005). A reduction in blood flow to the rumen of 

cattle could potentially reduce nutrient absorption and could contribute to the signs of 

fescue toxicosis including reduced growth rate and general unthriftiness; but could be 
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dependent on the potential for ergovaline and other ergot alkaloids to cross the rumen 

epithelium. Additionally, ergot alkaloids could negatively impact the rumen epithelium 

directly by altering the absorptive and barrier functions of the epithelium.  
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CHAPTER 2. A REVIEW OF THE LITERATURE 
 

 

Introduction 

 Forages are an important component of beef production in the United States as 

they are utilized in all segments of the industry from cow-calf production to finishing. 

Tall fescue (Lolium arundinaceam) plays an important role in the U.S. beef industry due 

to its popularity as a cool season grass in the eastern United States. Many factors 

compromise the productive potential of systems utilizing tall fescue, including reduced 

animal performance with endophyte-infected varieties and reduced forage production 

with endophyte-free varieties. The syndrome commonly referred to as fescue toxicosis is 

one of the greatest factors limiting the productivity and efficiency of beef production in 

the eastern half of the United States and the beef industry as a whole. Tall fescue has 

been extensively studied to determine the agronomic characteristics and the effects on 

cattle; however, few advances if any have been made in alleviating the syndrome in 

cattle.  

Tall Fescue Agronomic Qualities  

Tall fescue is a cool season grass that is prevalent in pastures of the eastern 

United States. One of the most popular cultivars, ‘Kentucky 31’ was released in 1942 

(Fergus and Buckner, 1972) and has since been incorporated into about 14 million 

hectares (35 million acres) of pasture land (Buckner and Bush, 1979). This grass was 

preferred by farmers due to its positive agronomic characteristic compared to other 

forages (Thompson et al., 2001); however, it was quickly noticed that cattle grazing tall 
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fescue displayed poor performance (Stuedemann and Hoveland, 1988). The anomaly seen 

in cattle grazing tall fescue was termed fescue toxicosis and has since been associated 

with the presence of an endophytic fungus (Neotyphodium coenophialum) present in the 

intercellular spaces of fescue plants (Bacon et al., 1977). The endophyte was found in tall 

fescue pastures in Georgia on which cattle displayed symptoms of fescue toxicosis 

whereas the endophyte was not present or present at low levels (0 – 50% infection) in 

pastures housing cattle that showed no symptoms of fescue toxicosis (Bacon et al., 1977). 

The correlation of the endophyte presence and fescue toxicosis has also been observed in 

cattle fed endophyte-infected fescue hay or seed while steers fed non-infected hay or seed 

appeared normal (Schmidt et al., 1982).  

The persistence and widespread use of endophyte-infected tall fescue is thought to 

be attributed to the positive benefits the endophyte provides for the plant. In a greenhouse 

study, Arachevaleta et al. (1989) showed that only 75% of endophyte-free tall fescue 

plants survived during severe drought stress while all endophyte-infected plants survived 

and displayed greater regrowth after harvest. It has also been shown that endophyte-

infected tall fescue in plots had a smaller reduction in tiller density than endophyte-free 

plots under drought stress and recovered fully after irrigation (West et al., 1993). This 

increased density was also observed the following year which was reported to be a 

relatively wet year. In addition to drought tolerance, the endophyte has been shown to 

increase the reproductive capacity of tall fescue. Infected tall fescue was shown to have 

44 % filled seed heads while uninfected tall fescue had only 19% filled seeds (Clay, 

1987). It has been hypothesized that this could lead to a gradual shift from a mixed 
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population of endophyte-infected and endophyte-free stands to one that is predominantly 

infected over time (Pedersen et al., 1990).  

The endophyte present in tall fescue has also been shown to provide insect 

resistance to the plant. Extracts of endophyte-infected tall fescue were shown to act as 

feeding deterrents for Argentine stem weevils (Listronotus bonariensis (Kuschel)) and 

seems to be similar to endophyte-infected ryegrass (Prestidge et al., 1985). Tall fescue 

infected with the endophyte also reduces larval weight and increases the length of the 

larval stage of fall armyworm (Spodoptera frugiperda) but survival was not affected 

(Clay et al., 1985). Additionally, the presence of the endophyte in tall fescue plants (or 

extracts of the plants) has been shown to reduce feeding by the oat bird cherry aphid 

(Rhopalosiphum padi L.), greenbug (Schisaphis graminum Rondani), and large milkweed 

bug (Oncopeltus fasciatus Dallas) in laboratory and greenhouse experiments (Siegel et 

al., 1985).  

In addition to insect resistant properties, the endophyte presence in tall fescue is 

also related to nematode resistance. Pedersen et al. (1988) demonstrated that growing 

endophyte-infected tall fescue in nematode-containing soil in a greenhouse resulted in 

lower levels of spiral (Helicotylenchus dihystera) and stubby root (Paratrichodorus 

minor) nematodes in the soil. Soil populations of Pratylenchus scrineri and 

Tylenchorhynchus acutus were lower in plots containing endophyte-infected tall fescue 

than endophyte-free plots (West et al., 1988) in Arkansas. It is thought that resistance to 

nematodes could contribute to the drought tolerant properties of endophyte-infected tall 

fescue due to less predation on roots and greater root growth.  
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It is clear that the endophyte and the tall fescue plant display a positive 

mutualistic relationship that allows the plant and endophyte to thrive in good conditions 

and survive in poor conditions. However, along with the benefits of drought tolerance, 

insect resistance, and plant regrowth, negative effects on mammals consuming 

endophyte-infected tall fescue are costly to the animal and the producer.  

Fescue Toxicosis Syndrome in Beef Cattle 

 Classic fescue toxicosis symptoms are generally categorized into two categories: 

1) fescue foot and 2) summer slump, which are predominant at low and high ambient 

temperatures respectively. Fescue foot is described as a dry gangrene of mainly the tail 

and rear legs with associated discoloration and hair loss on the distal tail (Jacobson et al., 

1963). Sloughing of the hoof, loss of the limb between the hoof and dewclaw, and 

necrosis of the ear tips has also been noted (Hemken et al., 1984; Strickland et al., 1993). 

It is likely that fescue foot is caused by alterations in the blood flow to the extremities 

and is exhibited in cold ambient temperatures. Summer slump or summer syndrome is 

characterized by depressed average daily gain, decreased feed intake, increased 

salivation, inability to tolerate heat, elevated body temperature, increased respiration rate, 

rough hair coats, and the animals seek shade or wet spots (Hemken et al., 1984; Hoveland 

et al., 1983). Summer syndrome is more problematic for cattle producers than fescue foot 

due to frequent and prolonged heat stress conditions in the southeast United States as 

compared to extended low ambient temperatures necessary to result in tissue necrosis 

associated with fescue foot. Other symptoms commonly associated with fescue toxicosis 

include reduced conception rate, lower milk production, and necrosis of mesenteric fat 

(Hoveland et al., 1983). It seems that many of the symptoms associated with fescue 
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toxicosis can be attributed to constriction of the peripheral vasculature and concomitant 

reduction in blood flow. Vasoconstriction would prevent proper heat dissipation resulting 

in increased core body temperatures and respiration rate. Improper blood flow to the 

extremities during cold stress could result in inadequate warming of the tissues resulting 

in the clinical signs associated with fescue foot. 

 One of the best indicators of fescue toxicosis is a reduction in serum prolactin. 

Depressed serum prolactin in cattle has been well documented (Brown et al., 2009; 

Hurley et al., 1980; Thompson et al., 1987). Rats treated with an extract of endophyte-

infected seed also display lowered serum prolactin (Porter et al., 1985). Concentrations of 

prolactin have also been shown to be reduced in the pituitary of steers grazing endophyte 

infected tall fescue (Schillo et al., 1988). This is likely synonymous with the inhibition of 

prolactin gene expression in rat prolactotrophs treated with ergocryptine (Maurer, 1981). 

It appears that ergot alkaloids bind to D2 receptors that are negatively coupled to 

adenylate cyclase (Lamberts and Macleod, 1990) resulting in a decrease in cAMP. It has 

been shown that increasing cAMP increases prolactin gene expression and this is 

inhibited by ergocryptine (Maurer, 1981). 

Causative Agent 

 Since the discovery of the negative effects of grazing tall fescue were 

documented, researchers have worked to find the causative agent(s). As discussed above, 

it is likely that the compounds produced by the endophyte, and the causative agents of 

fescue toxicosis, would cause vasoconstriction. Constriction of the peripheral vasculature 

could be accomplished by these compounds through binding to either adrenergic, 
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serotonergic, or dopaminergic receptors. Several different compounds have been studied 

in association with fescue toxicosis and include several types of alkaloids. 

Three types of alkaloids are found in tall fescue: diazaphenanthrene, pyrrolizidine, 

and the ergot alkaloids (Bush and Burrus, 1988). The main alkaloid in the 

diazaphenanthrene group is perloline (Figure 2.1) which has been shown to decrease 

apparent cellulose digestibility and raise body temperatures of sheep (Boling et al., 1975). 

However, perloline production has been observed in fescue not infected with an 

endophyte (Strahan et al., 1987).  

The most common pyrrolizidine alkaloids are N-acetylloline, and N-formylloline 

(Figure 2.2). The presence of these pyrrolizidine alkaloids have been shown to be 

associated with the presence of the endophyte in the fescue plant (Bush et al., 1982; 

Strahan et al., 1987). In an experiment using various extraction techniques, a methanol 

extract was shown to inhibit insect feeding and increase mortality of insects (Johnson et 

al., 1985). The methanol extract possessed a much higher concentration of N-acetyl- and 

N-formylloline than the hexane and ethyl acetate extracts also tested.  

Most fescue toxicosis research conducted in the 1980’s and 1990’s measured the 

concentration of the loline alkaloids in the seed or grass consumed by the animals. 

Research conducted at the University of Kentucky using tall fescue seed with a high level 

of N-acetyl and N-formylloline and a control diet of orchardgrass hay showed that feed 

intake was lowest with the high level of alkaloids, highest with the orchardgrass, and 

intermediate with the low level of loline alkaloids (Jackson et al., 1984). Rectal 

temperature, respiration rate, and body weight change also seemed to follow the same 
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patterns seen for intake. The results from this study could indicate that loline alkaloids 

are the causative agent of many of the symptoms of fescue toxicosis; however this 

assumption is flawed due to the lack of data regarding other toxins that may have been 

present. The more correct interpretation may be that the level of endophyte infection is 

responsible for differences in observed fescue toxicosis symptoms. It is still unclear if 

loline alkaloids are partially or fully responsible for the fescue toxicosis syndrome. For 

example, in vitro data indicate that N-acetylloline has no vasoconstrictive activity in 

peripheral tissue (Klotz et al., 2008) indicating that the loline alkaloids are likely not 

responsible for the symptoms of fescue toxicosis caused by vasoconstriction of peripheral 

vasculature. Additionally, pyrrolizidine alkaloids were also shown to have no binding 

affinity for D2 receptors (Larson et al., 1999). 

Ergot alkaloids have been proposed to be the primary causative agents of fescue 

toxicosis because of similar symptoms seen in the human ailment ergotism, which is 

characterized as a loss of peripheral sensation, edema, loss of affected tissue, 

hallucinations, twitches, and spasms (Haarmann et al., 2009). It has been demonstrated 

that ergot alkaloids are produced by N. coenophialum in association with fescue (Lyons 

et al., 1986) when cultured in vitro (Porter et al., 1979). There are two classes of ergot 

alkaloids known to be present in endophyte infected tall fescue: ergopeptides (Figure 

2.3a-e) and ergolines (Figure 2.3f-g). 

 Ergot alkaloids have been demonstrated to bind to D2 receptors with varying 

degrees of affinity (Larson et al., 1999; Larson et al., 1995). In one study, inhibition of 

radioligand [3H]YM-09151-2 binding by dopamine and several ergot alkaloids was 

measured and KI values were calculated to estimate the concentration at which 50% of 
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maximum binding occurs (Larson et al., 1999). Ergovaline, ergotamine, and ergocryptine 

displayed lower KI values (<10 nM) than the two ergoline alkaloids ergonovine and 

ergine (366 and 748 nM respectively). The KI for dopamine was 1,828 nM. A lower KI 

indicates greater binding affinities of ergonovine and ergine for the D2 receptor than 

dopamine. 

 No single alkaloid has been implicated as the causative agent for fescue toxicosis 

and it is likely that the observed symptoms are caused by an additive or synergistic 

mechanism of several alkaloids. However, data collected thus far provide strong evidence 

for the ergot alkaloids to be the main compounds responsible for fescue toxicosis. 

Metabolism, Absorption, and Excretion of Ergot Alkaloids 

Information regarding the metabolism of ergot alkaloids by ruminants is a vital 

component to determining the etiology of fescue toxicosis.  The complexity of ruminant 

digestion exposes these compounds to a number of enzymes and digestive processes. 

 Several studies have been conducted to determine the ruminal contribution to 

ergot alkaloid metabolism. A rat bioassay was used to determine if tall fescue seed lost 

potency if incubated in rumen fluid (Westendorf et al., 1992). Incubating the endophyte-

infected fescue seed in rumen fluid improved average daily gain of rats but not to the 

level of rats fed non-endophyte infected seed. Incubation also had no effect on final 

weight or average daily intake. The results suggested that the toxic compounds in tall 

fescue seed were not completely metabolized by rumen microbes.  

  More recent studies have shown that ergot alkaloids are fairly stable in the rumen 

environment. Stuedemann et al. (1998) showed that ergot alkaloid concentrations 
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increased in the supernatant of rumen fluid after in vitro incubation for 24 hours 

compared to incubation in autoclaved rumen fluid. Another study showed that greater 

amounts of ergovaline were released from fescue clippings incubated with viable rumen 

fluid compared to autoclaved rumen fluid (Ayers et al., 2009). The same study showed 

that lysergic acid concentrations also increased after 48 hours of incubation suggesting 

that it is also somewhat stable in the rumen environment or is produced as a metabolite of 

the breakdown of other ergot alkaloids. Ruminal ergovaline concentrations have been 

shown to increase from 0 to 3 days after commencing treatments in sheep fed tall fescue 

straw and seed (De Lorme et al., 2007). Ergovaline concentrations in the rumen fluid 

continued to increase as length of treatment increased to 28 days. Lysergic acid increased 

from day 0 to day 3 but rumen concentrations were not different at day 28 compared to 

day 3.  

 A study using sheep fed fescue straw and seed showed that only 35% of the 

ergovaline consumed was accounted for while 248% of the lysergic acid consumed was 

accounted for (De Lorme et al., 2007). This suggests that some ergot alkaloids are 

converted to lysergic acid. The low level of ergovaline excretion may not necessarily be 

due to metabolism or conversion to lysergic acid or other compounds. Ergovaline, but not 

lysergic acid, has been shown to accumulate in blood vessels with high affinity (Klotz et 

al., 2009) and ergot alkaloids have been found in subcutaneous fat of steers grazing 

endophyte infected tall fescue (Realini et al., 2005). 

 In vivo data regarding absorption of ergot alkaloids in ruminants is nonexistent. 

Studies using parabiotic chambers have shown that lysergic acid crosses the ruminal and 

omasal mucosa to a greater extent than other ergot alkaloids (Ayers et al., 2009; Hill et 
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al., 2001). Ergonovine displayed a similar transport potential to ergotamine and 

ergocryptine (Hill et al., 2001) while ergovaline was not transported across the ruminal or 

omasal mucosa of sheep (Ayers et al., 2009). However the concentration of ergovaline in 

the mucosal chamber was only between 1 and 2 ng/mL while ruminal ergovaline 

concentrations in vivo have been reported to be at least 4.6 ng/mL (De Lorme et al., 

2007). It is likely that ergovaline would be absorbed similarly to the other ergopeptine 

alkaloids when present at physiological concentrations or at least concentrations similar 

to the other ergopeptides studied. In vitro measures have shown that ergovaline can cross 

Caco-2 cells (human intestinal cells) at a rate of about 7.5 ng/cm2·min (Shappell and 

Smith, 2005), which was similar to the rate of ergotamine flux across sheep omasum in a 

parabiotic chamber (Hill et al., 2001).  

 Through the inclusion of sodium azide to stop cellular metabolism and active 

transport in the parabiotic chamber, Hill et al. (2001) attempted to discern the active 

transport contribution of ergot alkaloid absorption from the rumen. Ergot alkaloid 

movement to the serosal chamber was inhibited only after 240 minutes of incubation. It is 

unclear from this experiment if active transport contributes to the absorption of ergot 

alkaloids. If there is an active transport mechanism for ergot alkaloid absorption, an 

adaptation period may increase the presence or activity of associated transporters 

resulting in an increased proportion of ergot alkaloid absorbed with extended 

consumption.  

 Absorption of ergotamine has been studied in humans due to the positive effects 

on the treatment of migraines. Ergotamine bioavailability is considered low and is 

apparently better absorbed when administered rectally (Tfelt-Hansen and Koehler, 2008). 
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The inclusion of caffeine with ergotamine also increases ergotamine bioavailability by 

increasing its solubility (Schmidt and Fanchamps, 1974). 

 The main excretory route for absorbed ergot alkaloids appears to be urine with 

some excreted via bile (Stuedemann et al., 1998). Ergot alkaloids have been observed in 

urine of cattle 12 hours after switching to an endophyte-infected pasture and were 

undetectable in urine 96 hours after switching from an endophyte-infected pasture to an 

uninfected pasture (Stuedemann et al., 1998). It was later reported in sheep that 

ergovaline was not excreted via urine and about 55% of the lysergic acid excreted was 

recovered in urine (De Lorme et al., 2007).  

 Fescue toxicosis is a complex syndrome affecting beef cattle. Multiple body 

systems are affected by the toxins produced by the endophyte-plant interaction. It seems 

likely that ergot alkaloids contribute significantly to the observed signs of fescue 

toxicosis in cattle. It is not abundantly clear which specific ergot alkaloid(s) is the 

causative agent of the syndrome. 

Ergot Alkaloid Vasoactivity  

 Many of the fescue toxicosis symptoms have traditionally been thought to be 

caused by peripheral vasoconstriction and a concomitant reduction in blood flow to the 

skin and extremities. In vivo and in vitro demonstrations of vasoconstriction caused by 

ergot alkaloids common to endophyte-infected tall fescue are abundant.  

Rhodes et al. (1991) used radiolabeled microspheres to show that blood flow to 

some core body tissues including kidney, duodenum and colon is decreased in steers 

consuming endophyte-infected tall fescue seed. Vasoconstriction was also observed using 
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Doppler ultrasonography in the caudal artery of heifers four hours after consuming 

endophyte-infected tall fescue seed (Aiken et al., 2007). Another study showed reduced 

caudal artery luminal area 27 or 51 hours after heifers began consuming either 0.39 or 

0.79 µg ergovaline/kg BW (Aiken et al., 2009). Cattle consuming endophyte-infected tall 

fescue also display a 50% reduction in blood flow to the skin over the ribs (Rhodes et al., 

1991) which is characteristic of the thermoregulatory symptoms associated with fescue 

toxicosis. 

The use of in vitro techniques allows researchers to measure vasoactivity of 

specific compounds on isolated vasculature from both peripheral and core body tissues. 

Solomons et al. (1989) demonstrated that ergotamine, ergosine, and agroclavine induce a 

contractile response while a mixture of loline alkaloids did not induce vasoconstriction. 

Additionally, ergotamine induced a greater response than both ergosine and agroclavine. 

Another ergot alkaloid, lysergic acid amide was shown to induce a contractile response in 

bovine lateral saphenous vein and dorsal metatarsal artery in a myograph (Oliver et al., 

1993). It was also shown that the artery and vein respond differently, as the lateral 

saphenous veins were more sensitive than the dorsal metatarsal artery. Dyer (1993) 

utilized uterine and umbilical arteries and showed that ergovaline can induce a 

vasoconstrictive response in core body vasculature. Ergovaline has also been shown to 

induce a large vasoconstrictive response in the bovine lateral saphenous vein and is more 

potent than lysergic acid (Klotz et al., 2007; Klotz et al., 2006). These results led to the 

hypothesis that ergopeptines (e.g. ergovaline, etc.) are more potent vasoconstrictors than 

the ergoline alkaloids (e.g. lysergic acid, etc.). However it was later proven that 
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ergonovine possesses a vasoconstrictive potential similar to ergocornine, another 

ergopeptine (Klotz et al., 2010).  

Limited work has been conducted to determine the specific receptors involved in 

the vasoconstriction observed in peripheral and core body vasculature. Dyer (1993) 

demonstrated that vasoconstriction of uterine and umbilical arteries could be drastically 

reduced by ketanserin, a 5-HT2A receptor antagonist. A study using rat and guinea pig 

arteries showed that ergovaline appears to induce most of its vasoactivity through 5-HT2A 

and 5-HT1B/1D receptors and potentially α1-adrenergic receptors (Schoning et al., 2001). 

The specific receptors involved in inducing vasoconstriction will likely vary depending 

on the tissue type and receptor population present on the plasma membrane. Klotz et al. 

(2012) used agonists of various 5-HT receptors as a measure of the contribution to 

vasoconstriction of the lateral saphenous vein in cattle. Greater responses were observed 

for 5-HT2 and 5-HT2A agonists than 5-HT2B, 5-HT1B, and 5-HT7. Additionally, α2-

adrenergic receptors are present in bovine lateral saphenous veins and when stimulated 

can induce a vasconstrictive response (Oliver et al., 1998).  

It is clear that ergot alkaloids from endophyte-infected tall fescue can induce 

vasoconstriction of peripheral and core vasculature and it is likely that this contributes 

significantly to the fescue toxicosis syndrome. The effect of reduced blood flow to certain 

tissues is likely variable. A reduction in blood flow to the skin will likely reduce heat 

dissipation and potentially make animals more prone to heat stress while a reduction in 

blood flow to the gastrointestinal tract could alter nutrient absorption and thereby reduce 

animal performance.  
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Ergot Alkaloids Effect on the Gastrointestinal Tract 

The gastrointestinal tract of cattle is the first organ system to encounter the toxins 

present in endophyte-infected tall fescue, and could potentially be negatively affected by 

these toxins. The functions of the gastrointestinal tract including digestion, absorption, 

and immunological (barrier function), serve and protect every other body system. A 

disruption in any function of the gastrointestinal tract can have severe effects on the 

productivity and health of the animal.  

The effects of the endophyte present in tall fescue on digestibility have been 

extensively studied with varied results. Many studies have shown that endophyte-infected 

tall fescue seed can reduce DM and OM digestibility in cattle (Aldrich et al., 1993b) as 

well as DM, OM, NDF, and cellulose digestibility in sheep (Hannah et al., 1990). 

Additional studies utilizing sheep and steers fed fescue hay with or without the endophyte 

have also shown decreases in DM digestibility (Aldrich et al., 1993a) and DM, OM, CP, 

and ADF digestibility (Matthews et al., 2005). Another study feeding endophyte-infected 

or endophyte-free fescue straw to sheep showed no differences in DM, ADF, or CP 

digestibility (De Lorme et al., 2007). Many of the differences observed in published data 

regarding digestibility is likely due to variation in toxin levels, species, and diet 

differences.  

An alteration in digestibility by ergot alkaloids could be due to several factors 

including microbial fermentation inhibition and decreases in gastrointestinal tract 

motility. Direct studies on the effects of ergot alkaloids on microbial populations are 

limited; however, studies have shown indirectly that endophyte-infected tall fescue does 

not alter ruminal fermentation. Volatile fatty acid concentrations have been shown to 

16 
 



 

increase with the inclusion of endophyte-infected tall fescue seed (Hannah et al., 1990), 

but when the decrease in ruminal liquid volume is considered, it is likely that VFA 

production was unchanged. Ruminal pH and ammonia (Aldrich et al., 1993a; De Lorme 

et al., 2007) are not affected by the endophyte. Additionally, methane production was 

reported to be similar in cattle grazing endophyte-free and endophyte-infected tall fescue 

pastures (Pavao-Zuckerman et al., 1999). Taken together, it is unlikely that the toxins 

produced by endophyte-infected tall fescue significantly alter the microbial environment 

in the rumen. 

Gastrointestinal tract motility could be altered by ergot alkaloids present in tall 

fescue. McLeay and Smith (2006) reported an inhibition of A and B cyclical contraction 

and an increase in the tonus (baseline) of the reticulorumen smooth muscle after 

intravenous injection of ergotamine and ergovaline in sheep. Another study showed that 

intravenous injection of ergotamine reduced the frequency of reticular contraction and 

increased the baseline in sheep (Poole et al., 2009). This study also showed that in vitro 

incubation of reticular wall strips with ergotamine or ergovaline increased tonic 

contractions.  

Blood flow to the gastrointestinal tract is important for nutrient absorption and 

tissue health. Rhodes et al. (1991) using radiolabeled microspheres showed that cattle 

consuming endophyte-infected tall fescue seed and hay at a high ambient temperature had 

reduced blood flow to the duodenum and colon. However, Harmon et al. (1991) reported 

no effect of endophyte-infected tall fescue consumption on portal vein blood flow. These 

divergent results could be due to differences in ambient temperature or level of 

intoxication. Currently, there is a lack of data that explores the vasoconstrictive potential 
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of specific ergot alkaloids on gut vasculature, which could encounter higher alkaloid 

concentrations due to absorption, and their vasoactivity could alter nutrient absorption. 

Ergot alkaloid induced vasoconstriction of gut vasculature and a corresponding reduction 

in blood flow could cause a decrease in nutrient absorption and concomitantly cause the 

economically damaging symptom of depressed growth in cattle consuming tall fescue. 

Harmon et al. (1991) is the only report to date on the effect of fescue toxicosis on nutrient 

absorption and it was reported that endophyte-infected tall fescue consumption was 

related to a decrease in portal acetate flux.  

 Another major function of the gastrointestinal tract is to act as a barrier separating 

the outer environment from the blood and the rest of the body. The digestive tract 

including the rumen has been shown to contain harmful compounds such as pathogenic 

bacteria (Nagaraja et al., 2005; Narayanan et al., 2002), endotoxins (Nagaraja et al., 

1978), lipopolysaccharides (Zebeli and Ametaj, 2009), and biogenic amines such as 

histamine (Irwin et al., 1979). These compounds are also associated with laminitis 

(Nocek, 1997), liver abscesses (Tadepalli et al., 2009), and acute interstitial pneumonia 

(Loneragan et al., 2001). A disruption in the barrier function of the gastrointestinal tract 

of cattle can lead to an increased incidence of these conditions, causing decreased 

productivity or death. While there is no direct indication that ergot alkaloids or other 

components of endophyte-infected tall fescue could alter the barrier function of the 

bovine gastrointestinal tract, several reports indicate that tight junction function in the gut 

could be altered. Ergocristine, an ergopeptine alkaloid present in tall fescue, has been 

shown to cause a decrease in transepithelial electrical resistance in cultured porcine brain 

endothelial cells (Mulac et al., 2012), indicating a disruption of the blood-brain barrier. 
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Additionally, steers grazing endophyte-infected tall fescue were shown to have a greater 

acute-phase protein response, including haptoglobin and TNF-α, to a lipopolysaccharide 

challenge than steers grazing uninfected-tall fescue (Filipov et al., 2000). While there was 

no difference in basal levels of haptoglobin and TNF-α, an increased responsiveness to a 

lipopolysaccharide challenge could indicate that steers have greater sensitivity due to 

prior exposure to inflammatory compounds passing through the gastrointestinal tract.  

 It is possible that ergot alkaloids present in endophyte-infected tall fescue could 

have significant effects on the gastrointestinal tract of cattle. Alterations in the function of 

the gastrointestinal tract could lead to several of the observed symptoms of fescue 

toxicosis including depressed growth and intake. Additionally, the health of these animals 

could be greatly compromised by reductions in the barrier function of the gastrointestinal 

tract. More research is need to determine the specific effects of ergot alkaloids on the 

function of the gastrointestinal tract under controlled experimental conditions with a 

standardized fescue treatment protocol.  

In Vitro Measures of Nutrient Flux and Epithelial Permeability 

In vitro measures of nutrient flux and epithelial permeability provide many 

advantages over in vivo methods, including removal of microbial metabolism and inter-

conversion of nutrients, decreased expense, and high throughput. Using in vitro methods 

also allows the manipulation of conditions, such as chemical concentrations, that is 

difficult in live animals. It should also be noted that in vitro methods only provide partial 

information and do not always directly apply to live animal physiology. There are also in 

vivo experimental models such as the washed reticulorumen to study absorption of 
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nutrients. These methods will likely provide a more accurate measure of true nutrient flux 

in contrast to the in vitro Ussing chamber model. 

One of the most commonly used in vitro tools for measuring in vitro nutrient flux 

and epithelium permeability is the Ussing chamber. This chamber was originally 

designed to study ion transport across the frog skin (Lindemann, 2001; Ussing, 1949). 

The use of the chamber and isolated tissue allows the relatively easy use of radioactive 

isotopes of ions. The unique capability of the Ussing chamber is the ability to set the 

electrical difference across the epithelium. When the potential difference across the 

epithelium is set to zero there is no electrical driving force for the movement of ions 

across the epithelium, and movement of ion is solely due to active transport.  

The Ussing chamber has been modified to be used with a multitude of epithelial 

tissues including small intestine (Clarke, 2009), large intestine (Polentarutti et al., 1999), 

rumen (Sehested et al., 1996a), cell cultures (Grasset et al., 1984), lung epithelium 

(Fischer and Clauss, 1990), nasal mucosa (Wheatley et al., 1988) and many other tissues 

from many species.  

Epithelial permeability or barrier function can be measured in many ways. Flux of 

macromolecules that are not actively absorbed by the epithelium of interest provides one 

measure of gut permeability. Flux of molecules that are not metabolized or actively 

transported such as mannitol (Penner et al., 2010), Cr-EDTA (Schweigel et al., 2005), 

and inulin (Wheatley et al., 1988) can be measured easily by using radioactive isotopes or 

fluorescent molecules such as fluorescein 5(6)-isocyanate (Klevenhusen et al., 2013). 

When an increase in macromolecule flux across isolated epithelium is observed, it is 
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likely that the barrier function, and specifically tight junctions, is weakened. Another 

measure of barrier function is electrical conductance or resistance of the epithelium 

(Wilson et al., 2012). Conductance is the ease with which electrical current passes 

through the tissue or simply passive ion transport across the epithelium. The passive 

movement of ions (mainly Na+) is related to the tightness of cell to cell junctions 

similarly to macromolecule movement.  

 In vitro measures of gastrointestinal tract function can provide valuable 

information in a setting that allows for the control of conditions that is not always 

possible in the living animal. The use of these in vitro methods in combination with in 

vivo techniques can lead to valuable data and information on the physiology of the 

gastrointestinal tract of animals under specific treatments. 

 Fescue toxicosis is a complex syndrome in beef cattle that has not yet been 

completely characterized. This syndrome results in a large annual loss in productivity in 

the beef industry of the United States. The effect of the toxins present in tall fescue 

potential alters the function of the bovine gastrointestinal tract leading to several of the 

observed symptoms of fescue toxicosis. The objectives of the research presented here 

were: 1) to determine the effect of ergot alkaloids on bovine ruminal vasculature; 2) to 

determine if ergot alkaloids alter blood flow to the absorptive surface of the bovine 

reticulorumen and nutrient absorption from the washed reticulorumen; 3) to determine if 

ergot alkaloids have a direct on effect on the isolated ruminal epithelium absorptive and 

barrier functions; and 4) determine if ergovaline, one of the main causative agents of 

fescue toxicosis, can be transported across the rumen epithelium. 
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Figure2.1. Chemical structure of perloline, a diazaphenanthrene alkaloid 

 

 

 

Figure2.2. Chemical structure of pyrrolizidine alkaloids loline (a), N-formylloline (b), 

and N-acetylloline. 

 

 

N

N

O

OCH3

OCH3

a. b. c.  

N

O

N

CH3

H

H

H

H

N

O

N

CH3

C
O

H

H

H

H

N

O

N

CH3

C
O

CH3

H

H

H

22 
 



 

Figure 2.3. Chemical structures of ergot alkaloids a) ergocornine, b) ergovaline, c) 

ergocryptine, d) ergocristine, e) ergotamine, f) ergonovine, and g) lysergic acid. 
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CHAPTER 3: EFFECT OF ERGOT ALKALOIDS ON CONTRACTILITY OF 
BOVINE RIGHT RUMINAL ARTERY AND VEIN1 

 

Introduction 

The association of Neotyphodium coenophialum with tall fescue (Lolium 

arundinaceum) results in the production of numerous ergot alkaloids (Lyons et al., 1986). 

Ergot alkaloids have been implicated in causing vasoconstriction, which is a source of 

clinical symptoms of the fescue toxicosis syndrome (Strickland et al., 2011). Prior 

research has mainly focused on constriction of peripheral vasculature like the caudal 

artery (Aiken et al., 2007), saphenous vein (Klotz et al., 2006) and the dorsal pedal vein 

(Solomons et al., 1989). There is a paucity of data addressing the effects of ergot 

alkaloids on vasculature supporting core body tissues. Rhodes et al. (1991) is the only 

study that has addressed this. Using labeled microspheres, they reported a reduction in 

blood flow to the duodenum, colon, and kidney of cattle consuming endophyte-infected 

tall fescue at high ambient temperatures.  

Westendorf et al. (1992), Moyer et al. (1993), and De Lorme et al. (2007) all 

assert that the rumen is the primary site of alkaloid liberation, degradation and possibly 

absorption. Bovine ruminal tissue has been shown to have a capacity to absorb ergot 

alkaloids (Ayers et al., 2009). Using sheep, Westendorf et al. (1993) demonstrated that 

only 50 to 60% of ingested alkaloids are recovered in abomasal contents. The fraction of 

alkaloids disappearing in the reticulorumen likely represents both microbial degradation 

and absorption. It is hypothesized that absorption of ergot alkaloids combined with the 

1 Published with permission from the Journal of Animal Science 
Foote, A.P., D.L. Harmon, J.R. Strickland, L.P. Bush, and J.L. Klotz. 2011. Effect of ergot alkaloids on 
contractility of bovine right ruminal artery and vein. J. Anim. Sci. 89: 2944-2949. 
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tendency of ergopeptine alkaloids to bioaccumulate in vascular tissue (Klotz et al., 2009) 

could result in vasoconstriction and a concomitant reduction in blood flow. Klotz et al. 

(2011) recently developed a ruminal artery and vein bioassay designed to evaluate the 

response different toxicants elicit. Therefore, the objective of this study was to determine 

if ergoline and ergopeptine alkaloids (Figure 3.1) would elicit a vasoactive response in 

bovine ruminal artery and vein preparations in vitro. 

Materials and Methods 

Methods used with live animals in this study were approved by the University of 

Kentucky Institutional Animal Care and Use Committee. 

Animals and Tissues 

 Predominantly Angus-bred heifers (n = 10; BW = 498 ± 9 kg) were utilized in this 

study. Heifers were fed a basal diet consisting of cotton seed hulls, soybean hulls, corn, 

and soybean meal (41.9, 31.4, 21.45, and 5.25% of diet on an as-fed basis, respectively). 

The nutrient composition of the diet was 9.9% CP and 58.0% NDF on a DM basis. 

Heifers were fed this diet for a minimum of 232 days. 

Sections of right ruminal artery and vein were collected from the ventral coronary 

groove of the rumen shortly after each animal was stunned by captive bolt, 

exsanguinated, and eviscerated at the University of Kentucky abattoir. Tissues were 

immersed in a modified Krebs-Henseleit oxygenated buffer (95% O2 + 5% CO2; pH = 

7.4; mM composition = D-glucose, 11.1; MgSO4, 1.2; KH2PO4, 1.2; KCl, 4.7; NaCl, 

118.1; CaCl2, 3.4; and NaHCO3, 24.9; Sigma Chemical Co., St. Louis, MO) and placed 

on ice for transport to the laboratory. 
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Artery and vein were separated, cleaned of excessive fat and connective tissue, 

sliced into 2- to 3-mm cross sections, and examined under a dissecting microscope (Stemi 

2000-C, Carl Zeiss Inc., Oberkochen, Germany) at 12.5× magnification to ensure 

structural integrity of the vessel. Dimensions of the blood vessels were recorded 

(Axiovision, version 20, Carl Zeiss Inc.) to ensure the segment size was consistent. 

Vessel segments were then mounted on luminal supports in a tissue bath (DMT610M 

Multichamber myograph, Danish Myo Technologies, Atlanta, GA.) containing 5 mL of 

continuously gassed (95% O2 + 5% CO2) modified Krebs-Henseleit buffer at 37˚C. The 

buffer used for transport was further modified for tissue incubation by adding 

desipramine (3 × 10-5 M; D3900 Sigma Chemical Co.) and propranolol (1 × 10-6 M; 

P0844, Sigma Chemical Co.) to inactivate neuronal reuptake of catecholamines and to 

block β-adrenergic receptors, respectively. Tissue samples were equilibrated to a resting 

tension of 1.0 g for ruminal artery and 0.5g for ruminal vein for 90 min with buffer 

replacement at 15 min intervals, as validated by Klotz et al. (2011). Vessels were then 

exposed to KCl (120 mM) to ensure tissue viability and to provide a reference for 

normalization of contractile responses.  

Concentration Responses of Ergot Alkaloids 

Stock standards of ergovaline tartrate (≥ 93% purity, supplied by F. T. Smith, 

Auburn University, Auburn, AL), ergotamine D-tartrate (≥ 97% purity, #45510, Fluka, 

Sigma Chemical Co.), α-ergocryptine (99% purity, E5625, Sigma Chemical Co.), and 

ergocristine (05-9034-17, Research Plus, Inc., Barnegat, NJ) were prepared in 100% 

methanol. D-lysergic acid hydrate (95% purity, Acros Organics, Geel, Belgium) was 

prepared in 80% (vol/vol) methanol that contained 1.2 × 10-4 M acetic acid. Ergonovine 
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maleate (100% purity, E6500, Sigma Chemical Co.) was prepared in H2O. Ergocornine 

(>95% purity, E131, Sigma Chemical Co.) was prepared in dimethyl sulfoxide. Standards 

were prepared in a concentration of 2 × 10-2 M and added in 25-µL aliquots to achieve a 

concentration of 1 × 10-4 M in the tissue bath. This kept concentration of vehicle below 

0.5% in the incubation buffer. Serial dilutions of 2 × 10-2 M stock alkaloid standards were 

prepared  to achieve the desired treatment concentrations ranging from 1 × 10-11 M to 1 × 

10-4 M in the myograph baths, except for ergotamine, which was prepared at 2 × 10-3 M 

with a maximum concentration in the incubation buffer of 1 × 10-5 M. 

Data Collection and Analysis 

 Isometric contractile responses to KCl, lysergic acid, ergonovine, ergocristine, 

ergocryptine, ergocornine, ergotamine, or ergovaline were digitized and recorded as 

grams of tension using a Powerlab/8sp and Chart software (version 7.1; ADInstruments, 

Colorado Springs, CO). The maximum tension observed for the 9-min incubation period 

after the addition of a treatment was recorded and corrected for baseline tension 

measured just before the addition of the 120 mM KCl reference addition. Values were 

normalized as a percentage of the contractile response induced by the KCl reference 

addition to compensate for differing responses due to tissue size and animal variation. 

Contractile response data are presented as percentage means ± SEM of the maximum 

contractile effect induced by 120 mM KCl. Alkaloid potency was calculated from the 

concentration response data using GraphPad Prism 5 (GraphPad Software Inc., La Jolla, 

CA) and is presented as the molar concentration of the alkaloids producing 50% of the 

maximum response (EC50). This analysis utilized a sigmoidal concentration response 

curve that used a three parameter equation: 
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where top and bottom are the plateaus in the units of percentage of 120 mM KCl 

contractile response. The maximum contractile response observed for each alkaloid is 

defined as Emax. Contractile responses were only considered valid responses if the mean 

for a given concentration was greater than the lowest contractile response. 

Statistical Analysis 

 Contractile response data of ruminal artery and veins exposed to ergot alkaloids 

were analyzed as a completely randomized design using the mixed model procedure 

(SAS Inst. Inc., Cary, NC). Terms of the model included alkaloid, concentration, vessel, 

and all interactions. For the comparison of Emax and EC50 data, the interaction of alkaloid 

× vessel and effect of vessel were not significant (P = 0.18 and 0.23, respectively); 

therefore, these terms were removed from the model and the Emax and EC50 data were 

analyzed separately for artery and vein. Following analysis of variance, pair-wise 

comparisons of least square means (± SEM) were conducted using LSD if the probability 

of a greater F-statistic was significant for the tested effect. 

Results and Discussion 

Exposure of ruminal artery and vein segments to ergot alkaloids resulted in an 

interaction between alkaloid, concentration, and vessel type (artery or vein) for the 

contractile response data (P < 0.0001). Concentration response curves for the ruminal 

artery are shown in Figure 3.2. Contractile responses were first observed for ergovaline 

(P = 0.016) and ergotamine (P = 0.019) at 10-6 M concentration. Ergonovine (P =0.04), 

 

y = bottom +
top − bottom( )

1+10 log EC50 −x( )( )
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ergocornine (P = 0.002), and ergocryptine (P = 0.014) did not cause an arterial 

contraction until exposure to the 10-5 M dose, and ergocristine did not elicit a response 

until the 10-4 M addition (P = 0.042).  Studies measuring the effect of ergot alkaloids on 

bovine arteries have been limited; however, in vitro contractile responses have been 

reported for lysergamide in bovine metatarsal artery (Oliver et al., 1993) and ergovaline 

in bovine uterine artery (Dyer, 1993). Both studies demonstrated that the ergot alkaloids 

tested caused significant vasoconstriction. Consumption of ergot alkaloids from 

endophyte-infected tall fescue was also shown to induce in vivo vasoconstriction of the 

caudal artery in heifers within either 4 h (Aiken et al., 2007) or 27 h (Aiken et al., 2009) 

of initial consumption. 

The EC50 for the ruminal artery (Table 3.1) were similar for all alkaloids except 

ergotamine, which was greater (P = 0.0107), indicating that ergotamine is least potent at 

stimulating ruminal artery contraction. However, ergotamine exposure may still be a 

significant risk to foregut blood flow as the other ergot alkaloids tested here if 

bioaccumulation (Klotz et al., 2009) or metabolism affect target tissue concentrations in 

vivo. The Emax (Table 3.1) was greatest for ergovaline and least for ergocristine. Previous 

studies have led to the theory that ergopeptines (i.e. ergovaline) have a greater 

vasoconstrictive activity than the ergoline alkaloid lysergic acid (Klotz et al., 2007; Klotz 

et al., 2006). However more recent studies have reported that the ergoline alkaloid, 

ergonovine, has an Emax equal to or greater than some ergopeptine alkaloids (Klotz et al., 

2010). The ruminal artery data from the present study indicate a similar trend where 

ergonovine possessed an Emax similar to ergotamine, ergocornine, and ergocryptine, and a 

greater response than ergocristine (Table 3.1).  
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Concentration response curves for ruminal vein are shown in Figure 3.3. 

Exposure of the ruminal vein to ergovaline, ergotamine, ergocryptine, and ergocristine 

induced contractile responses, whereas ergonovine (P = 0.094) only produced a slight 

response at the 10-4 concentration. Ergocornine (P = 0.156) and lysergic acid (P = 

0.5692) did not produce a contractile response. The smallest alkaloid concentration where 

a response was observed was 10-6 M for ergovaline (P = 0.009) and ergotamine (P = 

0.017), 10-5 M for ergocryptine (P = 0.029), 10-4 M and ergocristine (P = 0.005). The 

EC50 for alkaloids tested in the ruminal vein (Table 3.1) were similar (P = 0.205) for 

alkaloids eliciting a contractile response. Ergovaline had the greatest Emax for the ruminal 

vein (P < 0.0001; Table 3.1) but did not differ from ergotamine (P = 0.205). Ergotamine 

also did not differ from ergocryptine (P = 0.133) or ergocristine (P = 0.249). Similar 

alkaloid profiling studies using the bovine lateral saphenous vein model indicated that 

ergocryptine and ergocristine had similar Emax values (Klotz et al., 2010) and venous data 

presented in the current study follows the same pattern of the previous report with similar 

contractile responses to ergocryptine and ergocristine. Responses of the ruminal vein to 

ergotamine and ergovaline indicates (similar Emax values) another similarity of the 

ruminal vein to the peripheral vasculature model (Klotz et al., 2007). The lack of a 

response from lysergic acid, ergonovine, and ergocornine has not been previously 

reported and differs from what was reported for peripheral vasculature (Klotz et al., 2006; 

Klotz et al., 2010). Ergonovine has been shown to have a greater Emax than ergocryptine 

and ergocristine in peripheral vasculature (Klotz et al., 2010). This may be a result of the 

difference in functions of tissue that peripheral and core vasculature serve. 
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Ergovaline induced a greater contractile response in the ruminal artery than in the 

ruminal vein (P < 0.0001) but ergocryptine (P = 0.218), ergocristine (P = 0.425), and 

ergotamine (P = 0.162) produced similar responses in both vessel types. In contrast, a 

previous study comparing the response of bovine lateral saphenous vein and dorsal 

metatarsal artery with lysergamide showed that the vein was more sensitive to the ergot 

alkaloid than the artery (Oliver et al., 1993). These opposing results could be due to 

differences in the alkaloids tested or a difference in peripheral versus core vasculature.  

Earlier reports have led to the development of a hypothesis that ergopeptines that 

are similar at the R1 position (Figure 3.1C) but differ at the R2 position will result in a 

similar contractile responses in the multimyograph bioassay (Klotz et al., 2010). This 

hypothesis was supported by findings that ergopeptines that share an R1 methyl group 

(ergovaline and ergotamine) resulted in similar contractile responses in the lateral 

saphenous vein (Klotz et al., 2007). The hypothesis was further substantiated when 

ergopeptines with an isopropyl R1 group resulted in similar contractile responses in the 

lateral saphenous vein (Klotz et al., 2010). Results in the current study for ergot alkaloids 

that have a methyl R1 group (ergovaline and ergotamine) produced similar contractile 

responses in ruminal vein, but not in the ruminal artery. Similarities were also seen 

between ergocristine and ergocryptine (isopropyl R1) in the ruminal vein, but the 

contractile response was different from ergocornine, which also has an isopropyl R1. The 

difference between the methyl and isopropyl R1 also wasn’t observed in the ruminal vein 

indicated by similar contractile responses for ergocristine, ergocryptine and ergotamine. 

These apparent differences in responses between ruminal and peripheral vessels could be 

the result of different receptor populations present on the various blood vessels combined 
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with the fairly promiscuous binding of ergot alkaloids with the different biogenic amine 

receptors (Weber, 1980). 

In the current study, lysergic acid failed to induce a significant contractile 

response in the ruminal artery or vein. Lysergic acid has been previously reported to 

cause a contractile response in lateral saphenous vein but only at the 10-4 M level, which 

represents a supra-physiological concentration (Klotz et al., 2006) that a grazing animal 

would likely never encounter. The previous report from Klotz et al. (2006) combined 

with data presented in the current study demonstrating a lack of response in ruminal 

vasculature indicate that lysergic acid does not exert a direct vasoconstrictive effect on 

bovine tissues.  

The data presented in this study show that ergot alkaloids have the potential to 

induce vasoconstriction of bovine right ruminal artery and vein. Constriction of foregut 

vasculature could significantly reduce blood flow to or from the rumen of cattle 

consuming endophyte-infected tall fescue. A reduction in blood flow could result in 

decreased absorption rates of vital nutrients and fermentative end products. Diminished 

nutrient absorption could contribute to the reduced growth rates and poor performance 

observed in cattle grazing endophyte-infected tall fescue. Knowing this, it is critical that 

future research be directed at determining the primary site(s) and mechanisms of ergot 

alkaloid absorption. 
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Table 3.1. The EC50 (M) and Emax (% of KCl maximum) means and SE for ergot alkaloids in the right ruminal artery and vein 
bioassay1,2,3 

 Ruminal Artery  Ruminal Vein 

Alkaloid EC50  Emax  EC50 Emax 

Lysergic Acid n/a4  n/a  n/a n/a 

Ergonovine 1.1 × 10-5b  ± 4.4 × 10-6 (10)  20.8cd ± 2.7  n/a n/a 

Ergocornine 1.2 × 10-5b  ± 4.4 × 10-6 (10)  24.8bc ± 2.7  n/a n/a 

Ergocryptine 8.6 × 10-6b  ± 4.4 × 10-6 (10)  22.0bcd ± 2.7  1.7 × 10-5a  ± 3.9 × 10-5 (7) 17.2b.. ±  2.7 

Ergocristine 1.2 × 10-5b  ± 4.9 × 10-6 (8)  15.5d ± 2.7  1.2 × 10-4a  ± 4.7 × 10-5 (5) 18.6b.. ±  2.7 

Ergotamine5 3.0 × 10-5a  ± 4.6 × 10-6 (9)  28.7b ± 2.7  2.0 × 10-5a  ± 5.2 × 10-5 (4) 23.2ab ±  2.9 

Ergovaline 5.6 × 10-6b  ± 4.4 × 10-6 (10)  70.1a ± 2.7  2.0 × 10-6a  ± 3.5 × 10-5 (9) 29.3a.. ±  2.7 

a-dMeans within column containing different superscripts differ (P < 0.05) 
1EC50 = measure of the potency of an alkaloid, expressed as the molar concentration required to produce 50% of the maximum 
contractile response. Emax = maximal contractile response observed, expressed as a percentage of the 120 mM KCl reference addition 
response. 
2Some data did not fit a sigmoidal curve preventing the calculation of EC50 values for some data. This resulted in variable numbers of 
experimental replicates which are denoted in parenthetical values following each SEM for EC50 values. 
3For Emax values n = 10 except ergotamine (n = 9) and lysergic acid (n = 9) 
4n/a = no contractile response was measured for these vessels in response to these ergot alkaloids (P > 0.05) 
5Ergotamine was only soluble at 2 × 10-3 M resulting in a maximum concentration in the incubation buffer of 1 × 10-5 M. 
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Figure 3.1. Chemical structure of ergot alkaloids: A) D-lysergic acid and B) ergonovine 

which are both examples of ergoline alkaloids present in Neotyphodium coenophialum 

infected tall fescue (Lolium arundinaceum). C) Generalized structure of ergopeptine 

alkaloids indicating the variable R1 and R2 sites. Common R1 groups are methyl 

(ergotamine, ergovaline, and α-ergosine) and isopropyl (ergocristine, ergocornine, and α-

ergocryptine). Common R2 groups are isopropyl (ergovaline and ergocornine), isobutyl 

(α-ergosine and α-ergocryptine), and methyl benzyl (ergotamine and ergocristine). 

 

 

 

A. 

B. 

C. 
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Figure 3.2. Contractile responses of right ruminal artery preparations to A) increasing 

concentrations of ergocornine (ERO),  ergocryptine (ERP), and ergocristine (ERS); B)  

ergotamine (ERT) and ergovaline (ERV); and C) ergonovine (ERN) and lysergic acid 

(LSA); (n = 10 each).  Effects of alkaloid, concentration, and alkaloid × concentration 

were significant (P < 0.05); however, LSA failed to induce a contractile response. 

Regression lines represent the fitting of data to a sigmoidal concentration response curve 

with the following 3-parameter equation: y = bottom + [(top – bottom) / (1 + 10(LogEC
50

-

x))], where top and bottom are the plateaus in the units of percent of 120 mM KCl 

contractile response and EC50 is the molar concentration of the alkaloid producing 50% 

of the maximum response. Missing regression lines indicate data could not be fit to the 

concentration response model. 

 

36 
 



 

Figure 3.3. Contractile responses of right ruminal vein preparations to A) increasing 

concentrations of ergocornine (ERO),  ergocryptine (ERP), and ergocristine (ERS); B)  

ergotamine (ERT) and ergovaline (ERV); and C) ergonovine (ERN) and lysergic acid 

(LSA; n = 10 each except ERT and LSA n = 9 each).  Effects of alkaloid, concentration, 

and alkaloid × concentration were significant (P < 0.05), however ERO and LSA failed 

to induce a contractile response. ERN induced only a slight response (P = 0.094). 

Regression lines represent the fitting of data to a sigmoidal concentration response curve 

with the following 3-parameter equation: y = bottom + [(top – bottom) / (1 + 10(LogEC
50

-

x))], where top and bottom are the plateaus in the units of percent of 120 mM KCl 

contractile response and EC50 is the molar concentration of the alkaloid producing 50% 

of the maximum response. Missing regression lines indicate data could not be fit to the 

concentration response model. 
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CHAPTER 4: CONSTRICTION OF BOVINE VASCULATURE CAUSED BY 
ENDOPHYTE-INFECTED TALL FESCUE SEED EXTRACT IS SIMILAR TO PURE 

ERGOVALINE1 
 

Introduction 

  The association of endophyte-infected tall fescue consumption with vasoconstriction is 

well documented. Aiken et al. (2007) using color Doppler ultrasonography, demonstrated that 

heifers consuming endophyte-infected tall fescue seed displayed a smaller caudal artery area. 

Also, decreased blood flow to the skin as well as some core body tissues such as the duodenum 

(Rhodes et al., 1991) has been observed using labeled microspheres. Ergot alkaloids have long 

been implicated as the causative agents of vasoconstriction and likely contribute to most of the 

observed symptoms of the fescue toxicosis syndrome (Strickland et al., 2011). Most studies 

related to fescue toxicosis and vasoconstriction have focused on ergovaline alone; however, in 

vitro studies have shown that ergot alkaloids other than ergovaline including ergonovine, 

ergotamine, ergocristine, ergocryptine, and ergocornine can induce contractile responses in 

bovine lateral saphenous vein (Klotz et al., 2007; 2010). Preliminary results (Figure 4.1) showed 

that an extract of endophyte-infected tall fescue seed (E+EXT) serially diluted based on 

ergovaline concentration induced a greater contractile response in ruminal artery and vein 

preparations in vitro compared with pure ergovaline. Findings from this experiment led to the 

development of a hypothesis that the presence of ergot alkaloids other than ergovaline in the 

extract are responsible for the increased contractile response. The objective of the current 

1 Published with permission from the Journal of Animal Science 
Foote, A.P., D.L. Harmon, K.R. Brown, J.R. Strickland, K.R. McLeod, L.P. Bush, and J.L. Klotz. 2012 Constriction 
of bovine vasculature caused by endophyte-infected tall fescue seed extract is similar to pure ergovaline. J. Anim. 
Sci. 90: 1603-1609. 
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experiment was to determine if the greater contractility produced by the extract is attributed to 

the presence of the other ergot alkaloids. This was accomplished by using the bovine lateral 

saphenous vein bioassay to represent peripheral vasculature and the right ruminal artery and vein 

bioassay to represent core vasculature, to compare E+EXT with an endophyte-free tall fescue 

seed extract (E-EXT), ergovaline alone, and a mixture of commercially available ergot alkaloids 

(ALK) mixed to mimic the E+EXT alkaloid concentrations.  

Materials and Methods 

Animals and Tissues 

Animal protocols in this study were approved by the University of Kentucky Institutional 

Animal Care and Use Committee. 

 Exp. 1. Angus-cross open heifers (n = 10; BW = 498 ± 9 kg) were utilized in an initial 

test of E+EXT vasoactivity. Handling of heifers prior to slaughter was described previously by 

Foote et al. (2011). Heifers were fed a basal diet consisting of cotton seed hulls, soybean hulls, 

corn, and soybean meal (41.9, 31.4, 21.45, and 5.25% of diet on an as-fed basis, respectively). 

Sections of right ruminal artery and vein were collected from the ventral coronary groove of the 

rumen shortly after each animal was stunned by captive bolt, exsanguinated, and eviscerated at 

the University of Kentucky abattoir as described by Klotz et al. (2011). All tissues were placed in 

a modified Krebs-Henseleit oxygenated buffer (95% O2 + 5% CO2; pH = 7.4; mM composition = 

D-glucose, 11.1; MgSO4, 1.2; KH2PO4, 1.2; KCl, 4.7; NaCl, 118.1; CaCl2, 3.4; and NaHCO3, 

24.9; Sigma Chemical Co., St. Louis, MO) and placed on ice for transport to the laboratory.  

Vessels were cleaned of excess connective tissue and fat, cut into 2- to 3-mm segments 

and examined under a dissecting microscope (Stemi 2000-C, Carl Zeiss Inc., Oberkochen, 
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Germany) at 12.5× magnification to ensure structural integrity of the vessel. Dimensions of 

blood vessel segments were recorded (Axiovision, version 20, Carl Zeiss Inc.) to ensure that size 

was consistent. Vessel segments were mounted on luminal supports in a tissue bath (DMT610M 

Multichamber myograph, Danish Myo Technologies, Atlanta, GA.) containing 5 mL of 

continuously gassed (95% O2 + 5% CO2) modified Krebs-Henseleit buffer at 37˚C. The buffer 

used for transport was further modified for tissue incubation by adding desipramine (3 × 10-5 M; 

D3900 Sigma Chemical Co.) and propranolol (1 × 10-6 M; P0844, Sigma Chemical Co.) to 

inactivate neuronal reuptake of catecholamines and to block β-adrenergic receptors, respectively. 

Ruminal veins and arteries were equilibrated to 0.5 and 1.0 g of resting tension, respectively, for 

90 min with buffer replaced every 15 min. Ruminal arteries and veins were then exposed to the 

reference compound, 120 mM KCl before beginning the addition of treatments. 

 Exp. 2. Holstein steers (n = 6; BW = 498 ± 28 kg) were fed a mixed-grain diet for a 

minimum of 30 d before slaughter to minimize the influence of endophyte-infected tall fescue 

alkaloids in the diet. In addition to ruminal vessels, sections of the cranial branch of the lateral 

saphenous veins (2 to 3 cm) were collected as described by Klotz et al. (2006). Ruminal vessels 

were handled as described above for Exp. 1, and the saphenous veins were equilibrated to 1.0 g 

of resting tension for 90 min with buffer replaced every 15 min. and 0.1 mM norepinephrine for 

saphenous vein before beginning the addition of treatments. 

Preparation of Extracts 

 For preparation of the crude fescue seed extracts, ground endophyte-free or endophyte-

infected tall fescue seed was packed in columns and the void volume was filled with 80% 

ethanol. Seed was allowed to steep for 12 h after the solvent front cleared the seed, followed by 

elution of the column with 80% ethanol. Ethanol was evaporated from the eluate and the 
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remaining residue was freeze-dried and ground under liquid N. To further purify the extract, 300 

g of extract was suspended in 150 mL of H2O and shaken for 5 min. A hexane liquid-liquid 

extraction was performed a total of 6 times by shaking 900 mL of hexane for 5 min with the 

hexane phase discarded. Chloroform (900 mL) was then added to the aqueous phase and shaken 

for 5 min a total of 6 times discarding the aqueous phase each time. Chloroform was removed by 

rotary evaporator under vacuum (Yamato Scientific America Inc., Santa Clara, CA). The residue 

was solublized in 50 mL of 80% methanol to generate final stock extracts. Three separate 

purified extracts were used in these experiments: an E+EXT for Exp.1, an E+EXT for Exp. 2, 

and an E-EXT for Exp. 2. The concentrations of all ergot alkaloids were not quantified but were 

identified in the E+EXT for Exp.1. 

Analysis of Treatments  

 Quantitative determination of ergovaline concentration in E+EXT for Exp. 1 was 

conducted using HPLC with fluorescence detection as described in Aiken et al. (2009) with the 

modifications described in Koontz et al. (2012). Quantitative determination of ergot alkaloid 

levels in the E+EXT, E-EXT, and ALK for Exp. 2 was conducted as follows.  Stock solutions of 

test samples were diluted in 80:20 methanol:water at 1:100,000 for ergovaline and ergovalinine, 

1:1,000 for ergotamine and ergotaminine, and lysergic acid and its epimer, and 1:30 for 

ergonovine, ergocornine and ergocorninine, α-ergocryptine and α-ergocryptinine, and 

ergocristine and ergocristinine for ultra-performance liquid chromatography/tandem mass 

spectrometry quantitative analysis using an Acquity UPLC-TQD (Waters Inc., Milford, MA).  

Five microliters of diluted test sample was injected (full loop mode) onto an Acquity UPLC BEH 

column (C18, 1.7 mm particle size, 2.1 x 100 mm; Waters Inc.) for reverse-phase separation of 

the ergot alkaloids.  Separation was accomplished with a linear binary gradient using water with 

42 
 



 

0.04% NH4OH (eluent A) and acetonitrile with 0.04% NH4OH (eluent B) and a constant flow of 

0.5 mL per minute.  Gradient program conditions were as follows:  initial to 0.6 min, 100% 

eluent A; at 6.0 min, 10% eluent A/90% eluent B; at 6.1 to 8.5 min, 100% eluent B; at 8.6 to 10 

min, 100% eluent A.  Detection was accomplished by running the triple-quad mass detector 

(Waters Inc.) in the MS-MS mode following positive electrospray ionization (see Table 4.1 for 

parameters).  Concentrations of each alkaloid were determined using an external calibration 

curve with 6 points and an internal standard (methysergide, 5.0 fmol on column).  The 

calibration curves were linear (R2 > 0.97) within a range of 5 to 250 fmol.  Area under the curve 

values for both the “ine” and “inine” epimers were summed for quantitation because 

interconversion of the epimers readily occurs in solution.  Five femtomoles on column was 

established as the lower limit of quantitation for the ergot alkaloids. Concentrations of the 

measured ergot alkaloids are presented in Table 4.2. 

Preparation of Treatments 

Stock standards of ergovaline tartrate (≥ 93% purity, supplied by F. T. Smith, Auburn 

University, Auburn, AL) for the ergovaline treatment were prepared in 100% methanol. The 

ALK treatment was prepared by dissolving ergovaline, ergotamine D-tartrate (≥ 97% purity, 

#45510, Fluka, Sigma Chemical Co.), ergocornine (>95% purity, E131, Sigma Chemical Co.), α-

ergocryptine (99% purity, E5625, Sigma Chemical Co.), ergocristine (05-9034-17, Research 

Plus, Inc., Barnegat, NJ), D-lysergic acid hydrate (95% purity, Acros Organics, Geel, Belgium), 

and ergonovine maleate (100% purity, E6500, Sigma Chemical Co.) in 80% methanol. The 

alkaloid concentrations of the ALK treatment were based on what was quantified in the E+EXT 

before to the start of the myograph experiments and was made to have as similar of an ergot 

alkaloid profile as the E+EXT as possible (Table 4.2). Working treatments were added in 25-µL 
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aliquots to the tissue bath, keeping the organic solvent concentration less than 0.5% in the 

incubation buffer. Serial dilutions of the stocks were performed to achieve the desired treatment 

concentrations, ranging from 1 × 10-11 M ergovaline to 1 × 10-4 M for ergovaline alone, 5.89 × 

10-11 M to 5.89 × 10-6 M ergovaline for the ALK treatment and 3.24 × 10-11 M to 3.24 × 10-6 M 

ergovaline for the  E+EXT treatment in the myograph baths. The E-EXT was serially diluted in a 

manner equivalent to the E+EXT dilutions (1:10; vol/vol) with the only difference being the 

extract, thus controlling for and allowing the evaluation of the potential vasoactivity from the 

non-ergot alkaloid components of the extract.  

Data collection and Analysis 

 Grams of tension of induced isometric contractions were recorded and digitized using a 

Powerlab/8sp and Chart software (version 7.1, ADInstruments, Colorado Springs, CO). The 

maximum observed tension for the 9-min incubation period after treatment addition was 

recorded and corrected for baseline tension. Baseline tension was measured immediately before 

the addition of the reference compound. Contractile responses for the treatments were 

normalized to the contractile response induced by a reference compound (120 mM KCl for the 

ruminal artery and vein and 0.1 mM norepinephrine for the saphenous vein) and are presented as 

percentage means ± SEM. To measure potency of treatments, an EC50 was calculated for the 

saphenous vein data using GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA). This 

analysis utilized a sigmoidal concentration response curve with a variable slope: 
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where B is the bottom plateau, T is the top plateau (Emax), and S is the Hill slope. Analysis of 

ruminal artery and vein data used a 3-parameter equation similar to the one above, but with the 

Hill slope set to 1. 

Statistical Analysis 

 For both experiments, the experimental unit was the animal with 2 duplicates from each 

animal analyzed for each treatment. Data for Exp. 1 were analyzed as a completely randomized 

design using a mixed model (SAS Inst. Inc., Cary, NC). Fixed variables in the model included 

treatment, concentration, and treatment × concentration. Unlike Exp. 1, concentrations of 

ergovaline between treatments for Exp. 2 varied; therefore, the individual concentration response 

points were not compared. Parameters from the lines describing the data for the ALK, E+EXT, 

and ergovaline treatments (EC50, Hill slope, Emax) and the data for E-EXT were analyzed as a 

completely randomized design as described for Exp. 1. An ANOVA was conducted followed by 

pair-wise comparisons of least square means using LSD when the probability of a greater F-

statistic was significant (P < 0.05) for the tested effect. 

 

Results and Discussion 

Exp. 1 

Experiment 1 was conducted to determine if the extract generated for use in in vivo 

experiments produced an expected contractile response associated with ergot alkaloids. Results 

using a right ruminal artery and vein bioassay are shown in Figure 4.1. There was an interaction 

of ergovaline and E+EXT treatments and concentration of treatments (P = 0.045) for the ruminal 

artery. For the ruminal vein, there was an effect of concentration (P < 0.0001) but no effect of 

treatment (P = 0.14) or interaction (P = 0.16). The E+EXT induced a greater response than 
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ergovaline (47.9% versus 30.6% of KCl maximum response) in the ruminal artery at 10-6 M 

ergovaline (P = 0.018). The extract appeared to produce a greater response than ergovaline 

treatment for the ruminal vein at the 10-7 M ergovaline level (17.5% versus 9.6% of KCl 

maximum response), although there was not an interaction of treatment and concentration. The 

10-6 M ergovaline E+EXT failed to produce a ruminal vein response. The inclusion of a 120-mM 

KCl reference compound after the 10-6 M addition of E+EXT produced a contractile response, 

indicating that the vessels were viable and E+EXT was not lethal to the ruminal vein. Failure to 

respond to a greater concentration of agonist could indicate a tachyphylactic response to ergot 

alkaloids by the ruminal vein. The results from Exp. 1 with the bovine right ruminal artery 

indicated that either 1) the chemical nature of the extract in general contributes to a greater 

observed contractile response compared with identical concentrations of pure ergovaline or 2) 

that other alkaloids are present in the extract and contribute to the overall contractile response. 

The latter explanation is supported by previous studies using in vitro bioassays that have shown 

that other ergot alkaloids produced by the endophyte are vasoactive at varying potencies and 

efficacies (Foote et al., 2011; Klotz et al., 2010).  

Exp. 2 

 The E+EXT had a lower calculated Emax compared with ergovaline (P < 0.0001) and 

ALK was intermediate to the other treatments (Table 4.3) for the saphenous vein. The lower Emax 

for the E+EXT resulted in a reduced EC50 for E+EXT compared with ALK or ergovaline (P = 

0.008). Although the Hill slopes for the E+EXT were greater (P = 0.006) than the ALK and 

ergovaline slopes, this difference likely has no physiological relevance. Looking at the graphical 

representation of the data (Figure 4.2A) the observed contractile responses all follow the same 

basic line, regardless of treatment. Even though the extrapolated Emax is different for these 
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treatments, the data suggest that ergovaline is mostly responsible for the local vasoconstriction of 

peripheral vasculature.  

The E+EXT treatment also displayed a similar trend for a decreased EC50 compared with 

ALK and ergovaline in the ruminal vein bioassays (Table 4.3); however it should be noted that 

only 1 or 2 concentrations of the treatments tested resulted in a response in the ruminal artery 

and vein bioassays, and therefore interpretation of the EC50 data for the ruminal vessels is 

tenuous. Graphical representation of the ruminal artery (Figure 4.2B) and ruminal vein (Figure 

4.2C) data shows that there is likely no difference in the response to increasing concentrations 

for these 3 treatments. The results from this experiment differ from the results of Exp. 1 (Figure 

4.1). Differences in the results could be related to the ruminal arteries being less responsive in 

Exp. 2 compared with Exp. 1. For Exp. 2, the maximum contractile response of the saphenous 

vein to ergovaline (91.2% of norepinephrine response; Figure 4.2A) was greater than a previous 

report where the maximal response was about 70% of the maximum norepinephrine contractile 

response (Klotz et al., 2007). Conversely, ergovaline induced a smaller response by the ruminal 

artery (30.6 % of KCl response; Figure 4.2B) than a previous study (Foote et al., 2011). 

Maximum contractile response to E+EXT in the ruminal artery was slightly greater for Exp. 1 

(29.2 % of KCl response) than Exp. 2 (20.6 % of KCl response). The results for the ruminal vein 

in response to the addition of 1×10-6 M ergovaline (24.4 % of KCl; Figure 4.2C) were also 

similar to a previous report (29.3 % of KCl response; Foote et al., 2011). Results were also 

similar for response of the ruminal vein to E+EXT in both Exp. 1 (17.5 % of KCl response at 

1×10-7 M ergovaline) and Exp. 2 (18.5 % of KCl response). 

The observed differences in responsiveness could result from inherent differences in the 

cattle used for the 2 experiments; Exp. 1 used Angus-cross heifers, where Exp. 2 utilized 
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Holstein steers. Previous studies have shown that breed can influence susceptibility to fescue 

toxicosis. Browning (2004) showed that Hereford steers grazing endophyte-infected tall fescue 

pasture gained less than Senepol steers on the same pasture, and studies with mice have shown 

that animals can be selected for resistance or susceptibility to fescue toxicosis (Hohenboken and 

Blodgett, 1997). Heifers from Exp. 1 also had been fed a finishing diet consisting of 

predominantly cottonseed hulls, soybean hulls and soybean meal (Foote et al., 2011), whereas 

steers in Exp. 2 had been previously used for several experiments and consumed fescue hay, 

fescue pasture, as well as a corn based diet. It is also possible that vessels from heifers could 

respond differently to ergot alkaloids than steers. In vivo data in rat mesenteric arterioles indicate 

that females are more sensitive to certain catecholamines than males (Altura, 1972) and it is 

possible that ergot alkaloids, which bind some of the same receptors as catecholamines (Larson 

et al., 1999; Schoning et al., 2001), could also induce variable contractile responses between 

steers and heifers. 

To test the possibility that the extraction process included a compound that is vasoactive 

in this bioassay and not one of the measured ergot alkaloids, an extract of endophyte-free tall 

fescue seed was titrated in the saphenous vein and ruminal artery and vein bioassays (Figure 

4.3). The E-EXT failed to induce a contractile response in the saphenous vein (P > 0.11), ruminal 

artery (P > 0.3), and the ruminal vein (P > 0.3). 

Klotz et al. (2008) has shown that there is no effect of the combination of lysergic acid 

and ergovaline and only the effect of ergovaline was observed in lateral saphenous veins of 

heifers. Additionally, lysergic acid has also been shown to have no vasoactive effect on ruminal 

artery or vein in vitro (Foote et al., 2011) and only a slight effect at 10-4 M lysergic acid in the 

saphenous vein bioassay (Klotz et al., 2006), which is a super-physiological concentration. Other 
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alkaloids produced by the endophyte and tall fescue symbiont have varying degrees of 

effectiveness and potency on bovine vasculature in vitro. Vasoconstrictive response to 

ergonovine is greatest in the saphenous vein (Klotz et al., 2010), moderate in the ruminal artery, 

and almost nonexistent in the ruminal vein (Foote et al., 2011). In contrast, other ergot alkaloids, 

such as ergotamine, ergocristine, and ergocryptine, have also been shown to induce contraction 

in all 3 vessel types (Foote et al., 2011; Klotz et al., 2010). The combined concentration of ergot 

alkaloids other than ergovaline is 9.6 × 10-8 M and 1.6 × 10-7 M for the E+EXT and ALK 

respectively. Previous work with the saphenous vein bioassay showed a slight response to 

ergocryptine, ergocristine, and ergonovine at 1.0 × 10-7 M (Klotz et al., 2010); however, the 

ruminal artery and vein bioassays required a greater concentration to elicit a contractile response. 

Foote et al. (2011) showed that the ruminal vein would respond to ergotamine at 1.0 × 10-6 M 

and to ergocryptine, ergocornine, ergonovine, and ergocristine at 1.0 × 10-5 M. Results of this 

study indicate that combinations of alkaloids similar to those present in tall fescue may not 

intensify the contractile response induced by ergovaline at the local level. 

These data indicate that there is a differential response of peripheral vasculature and core 

vasculature to ergot alkaloids. Data from the ruminal artery and vein in Exp. 2 showed 

similarities to the results in Exp. 1, with the response to E+EXT appearing to be greater than the 

contractile response to ergovaline; however, statistical differences could not be assessed. The 

saphenous vein data in Exp. 2 indicates that the addition of ergot alkaloids other than ergovaline 

has no additional vasoconstrictive effect above that of ergovaline. It appears that the additional 

non-ergovaline ergot alkaloids could be more important with respect to vasoconstriction of core 

vasculature.  
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Conclusions 

Data from these experiments indicate that an extract of endophyte-infected tall fescue 

seed is capable of inducing a contractile response similar to a mixture of ergot alkaloids and 

ergovaline alone. The results support ergovaline as being primarily responsible for 

vasoconstriction, especially in the peripheral vasculature. 
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Table 4.1. Parameters for tandem mass spectroscopy quantitative analysis of ergot 
alkaloids.1 

Alkaloid 
Retention 
time, min2 Transition, m/z 

Cone 
voltage, v 

Collision 
energy, v 

Dwell 
time, s 

Ergovaline 3.93; 4.67 534.35 > 223.12 38.0 34.0 0.036 

Ergotamine 4.24; 5.02 582.29 > 223.11 30.0 34.0 0.036 

Ergocornine 4.56; 5.23 562.29 > 223.12 30.0 34.0 0.036 

α-Ergocryptine 4.72; 5.41 576.29 > 223.12 32.0 38.0 0.036 

Lysergic Acid 1.85; 2.05 269.16 >   43.94 38.0 24.0 0.328 

Ergocristine 4.77; 5.48 610.29 > 223.12 30.0 34.0 0.036 

Ergonovine3 2.95 326.16 > 223.08 38.0 28.0 0.036 

1Additional transitions used to verify peak identity (transitions were used for both 
epimers).  Ergovaline = 534.35 > 268.14, 223.12, 207.98, 43.93; Ergotamine = 582.29 > 
223.11, 208.04, 191.74, 180.11, 43.93; Ergocornine = 562.29 > 305.15, 268.13, 223.11, 
208.04, 43.93; α-Ergocryptine = 576.29 > 268.14, 223.12, 208.05, 180.18, 43.93; 
Lysergic Acid = 269.16 > 254.08, 207.95, 197.04, 181.98, 43.93; Ergocristine = 610.29 > 
268.13, 223.12, 208.05, 180.12, 43.93; Ergonovine = 223.08, 208.01, 197.03, 180.20, 
44.00. 
2First value = “ine” form; Second value = “inine” form (epimer). 
3No epimer form found. 
 

 

 

51 
 



 

Table 4.2. Concentration of ergot alkaloids in the endophyte-infected tall fescue seed 
extract (E+EXT) and ergot alkaloid mixture (ALK) used in Exp. 2 as measured by ultra-
performance liquid chromatography / tandem mass spectrometry.1 

 Concentration, M 

Alkaloid E+EXT ALK E-EXT 

Ergovaline 3.2 × 10-6 5.9 × 10-6 ND2 

Ergotamine 4.3 × 10-8 1.1 × 10-7 7.5 × 10-11 

Ergocornine 4.0 × 10-8 1.0 × 10-9 1.3 × 10-13 

α-Ergocryptine 2.0 × 10-9 1.0 × 10-8 2.6 × 10-12 

Lysergic Acid 9.0 × 10-9 1.1 × 10-8 ND 

Ergocristine 2.0 × 10-9 2.8 × 10-8 6.5 × 10-12 

Ergonovine 1.5 × 10-10 1.4 × 10-10 ND 

1Values represent the working concentrations of the ergot alkaloids present in the 
myograph chamber at the greatest treatment concentration.  
2ND = Not detectible 
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Table 4.3. Experiment 2: the EC50, Hill slope, and Emax least square means (± SEM) for an ergot alkaloid mixture (ALK), endophyte-
infected tall fescue seed extract (E+EXT), and pure ergovaline in bovine lateral saphenous vein and EC50 for the treatments in the right 
ruminal vein and artery.1 

 Saphenous vein  Ruminal vein  Ruminal artery 

Treatment log EC50 Hill slope Emax  log EC50  log EC50 

ALK -5.91 ± 0.17a 0.51 ± 0.04b 86.14 ± 4.02b  -5.87 ± 0.15a  -5.17 ± 0.30a 

E+EXT -6.48 ± 0.17b 0.69 ± 0.04a 61.51 ± 4.02c  -6.99 ± 0.15b  -5.69 ± 0.19a 

Ergovaline -5.62 ± 0.17a 0.51 ± 0.04b 105.70 ± 4.02a  -6.22 ± 0.15a  -5.37 ± 0.18a 
a, bmeans within column with differing superscripts differ (P < 0.01) 
1log EC50 = measure of potency of a treatment, expressed as the log of the molar concentration of ergovaline required to induce 50% 
of the maximal contractile response for each treatment; Emax = Maximal contractile response extrapolated by the model used to fit the 
data, expressed as percentage of 0.1 mM norepinephrine contractile response 
 

 

 

 
 



 

Figure 4.1. Experiment 1: contractile response of bovine right ruminal artery (A) and 

vein (B) to increasing concentrations of ergovaline and an endophyte-infected tall fescue 

seed extract (E+EXT; n = 10 for each treatment) standardized to ergovaline 

concentration. The contractile response was dependent upon both treatment and 

concentration (P = 0.0045) for the right ruminal artery; however for the ruminal vein, the 

effect of concentration was significant (P < 0.0001) but effect of treatment (P = 0.139) 

and the interaction (P = 0.16) were not significant. Nonlinear regression lines represent 

the fitting of data to a sigmoidal concentration response curve. Missing regression lines 

indicate data could not be fit to the concentration response model. 
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Figure 4.2. Experiment 2: contractile response of bovine lateral saphenous vein (A), right 

ruminal artery (B), and right ruminal vein (C) to ergovaline, an endophyte-infected tall 

fescue seed extract (E+EXT) standardized to ergovaline concentration, and a mixture of 

ergot alkaloids (ALK; n = 6 each) that reflects the alkaloid profile of E+EXT. Regression 

lines represent the fitting of data to a sigmoidal concentration response curve. 
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Figure 4.3. Experiment 2: contractile response of bovine lateral saphenous vein, ruminal 

artery, and ruminal vein to an endophyte-free tall fescue seed extract (E-EXT). The E-

EXT was serially diluted from the stock concentration and additions of the E-EXT were 

added in order of increasing concentration (stock is addition 6). Saphenous vein data is 

normalized to the contractile response to 0.1 mM norepinephrine and the ruminal artery 

and vein are normalized to the contractile response to 120 mM KCl. The E-EXT failed to 

induce a contractile response in any of vessels used in these bioassays (P > 0.11). 
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CHAPTER 5: ERGOT ALKALOIDS FROM ENDOPHYTE-INFECTED TALL 
FESCUE DECREASE RETICULORUMINAL EPITHELIAL BLOOD FLOW 

AND VOLATILE FATTY ACID ABSORPTION FROM THE WASHED 
RETICULORUMEN1 

 

Introduction 

 Ergot alkaloids produced by endophyte-infected (Neotyphodium coenophialum) 

tall fescue (E+; Lolium arundinaceum) are known to induce vasoconstriction of 

peripheral vasculature both in vitro (Klotz et al., 2007; Klotz et al., 2010) and in vivo 

(Aiken et al., 2007; Aiken et al., 2009). It has also been shown that blood flow to internal 

organs including portions of the gut could be reduced in cattle consuming E+ seed 

(Rhodes et al., 1991). Additionally, heat stress can reduce gut blood flow (Bell et al., 

1983) and exacerbate fescue toxicosis signs. Ergot alkaloids have been shown to induce 

vasoconstriction of ruminal vessels in vitro (Foote et al., 2011), and ergovaline is thought 

to be the main causative agent of the vasoconstriction in these vessels (Foote et al., 2012). 

Blood flow to the absorptive surface of the gut is required for absorption of nutrients and 

a decrease in the blood flow reduces the absorption of nutrients by reducing the trans-

epithelial gradient (Dobson, 1984). It is possible that ergot alkaloids could alter blood 

flow to the absorptive surface of the gut of cattle and therefore decrease VFA absorption, 

contributing to some of the signs of fescue toxicosis including decreased growth rate 

(Strickland et al., 2011) due to the significant contribution of VFA to the caloric 

requirements of cattle (Bergman, 1990). The effect of ergot alkaloids on gut physiology 

has not been extensively studied. Feeding E+ hay has been shown to have little effect on 

1This chapter has been submitted and is in review with the Journal of Animal Science 
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portal nutrient flux (Harmon et al., 1991), although the steers were likely not receiving 

adequate levels of ergot alkaloids to induce toxicosis. The purpose of this experiment was 

to determine the effect of ergot alkaloids on reticuloruminal epithelial blood flow and 

VFA absorption from the washed reticulorumen of steers receiving E+ or endophyte-free 

(E-) tall fescue seed in the presence of increasing levels of ergot alkaloids in steers 

housed at thermoneutral (TN) and heat stress (HS) conditions.  

Materials and Methods 

 All protocols in this study were approved by the University of Kentucky 

Institutional Animal Care and Use Committee. 

Preparation of Tall Fescue Seed Extract  

Ergovaline and ergovalinine were extracted from ‘Kentucky 31’ tall fescue seed 

as described previously (Foote et al., 2012). A crude extract was prepared using 80% 

ethanol. The residue of the eluent was dried and then reconstituted in water and mixed 

(600 g of extract and 300 mL of H2O). The crude extract residue was mixed with hexane 

(1.8 L) for 10 min. The aqueous and hexane fractions were allowed to separate for 2 h 

followed by separation of the fractions. The aqueous fraction was re-extracted with 

hexane 2 additional times (3 total), and the aqueous fractions were combined. The ergot 

alkaloids remained in the aqueous fraction. The aqueous fraction was then mixed with 

chloroform (1.8 L) for 10 min and allowed to separate for 2 h. The ergot alkaloids were 

extracted into the chloroform phase (performed a total of 3 times). The chloroform 

fractions were combined and evaporated using a rotary evaporator (Yamato Scientific 

America Inc., Santa Clara, CA). The residue was solubilized in 80% methanol. The final 

extract was analyzed by HPLC with fluorescence detection as previously described 
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(Aiken et al., 2009; Koontz et al., 2012). The ergovaline concentration used in this 

experiment is the combined concentration of ergovaline and ergovalinine.  

Animals and Treatments 

  Experiment 1. Eight ruminally cannulated Holstein steers (Bos taurus; BW = 255 

± 1.3 kg) were used in a randomized complete block incomplete-crossover design 

experiment. Steers were paired by weight and housed in individual pens in a climate 

controlled barn. During the experiment steers were pair-fed alfalfa cubes (Medicago 

sativa; 19.1 % CP, 36.6 % ADF, 46.4 % NDF on a DM basis) once daily at 0800 to 

control for any effect of feed intake on response variables in this experiment. Intake was 

limited to 1.5 × NEm (NRC, 2000), and steers were given ad libitum access to water. The 

ambient temperature was controlled to provide either a TN (22°C) or HS (32°C) 

environment. These temperatures have been previously shown to stress Holstein steers as 

indicated by increased respiration rate, core temperature, and skin temperature (Koontz et 

al., 2012). 

Treatments were applied in a split plot design with seed as the whole plot 

treatment and buffer applied during the washed rumen portion of the experiment as the 

subplot treatment. One steer from each pair was assigned to receive an E+ seed treatment 

(‘Kentucky 31’ tall fescue seed; 4.45 ppm ergovaline/ergovalinine) and the other steer 

was assigned to receive an E- seed treatment (‘Kentucky 32’ tall fescue seed; 0.0 ppm 

ergovaline/ergovalinine). Seed treatments began one day earlier for the E+ steers than the 

E- steers due to pair feeding. Seed was ground to pass a 2-mm screen and dosed 

ruminally 2× daily at 15 µg of ergovaline · kg BW-1·d-1 for 7 days at ambient TN and at 
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HS conditions. Temperature treatments were run in consecutive periods as the TN and 

HS could not be conducted simultaneously.  

On day 8, a washed reticulorumen experiment was conducted. At 0700 steers 

were weighed, and a jugular catheter was placed. A serum sample was collected for 

prolactin analysis, and a plasma sample was collected for background deuterium oxide 

(D2O) concentrations. Rumen contents were removed through the cannula with the 

assistance of a vacuum, weighed, sampled for DM analysis (AOAC, 1990), and the 

container was covered with straw and placed in a 40°C water bath or a 40°C forced-draft 

oven. The rumen was washed with 10 kg of warm tap water followed by 3 rinses of warm 

saline (0.9 % NaCl; 10 kg saline/rinse). Buffers (15 kg, 40°C) were incubated in the 

rumen in a sequence of 3 buffer treatments (Figure 5.1) that were each separated into 

equilibration and sampling buffers. The 3 buffer treatments were control buffer 

containing only the extract vehicle (CON; methanol), 1× EXT (15 µg ergovaline · kg 

BW-1), and a 3× EXT (45 µg ergovaline · kg BW-1). The buffer sequence was held 

constant so that the CON treatment would always be incubated before the extract-

containing buffer and be affected by potential carry-over effects of the extract incubation. 

A separate experiment was conducted to determine the effect of time on changes in blood 

flow and nutrient absorption. The buffer composition has been previously described 

(Kristensen and Harmon, 2004) and is shown in Table 5.1. The sampling buffer was 

identical to the equilibration buffer except for the addition of Cr-EDTA and D2O (3, 6 

and 9 g D2O for CON, 1× EXT and 3× EXT buffers respectively). All buffers were 

mixed by infusing a gas mixture (75% CO2:25% N2) continuously into the ventral rumen 

during incubation. A sampling catheter was also placed in the ventral rumen to allow 
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buffer sample collection. Between buffer treatments the rumen was rinsed with 10 kg of 

warm 0.9% saline. All buffers and saline rinses were weighed before and after incubation 

in the rumen. At the completion of a washed rumen experiment, rumen contents were 

replaced and steers were fed. 

Rumen buffer samples (~17 mL) were collected at 0, 5, 10, 15, 20 and 30 min 

during incubation of a sampling buffer. Blood samples (~15 mL) were collected via 

jugular catheter at 5, 15, and 30 min into heparinized syringes during incubation of each 

sampling buffer. All samples were immediately placed on ice (~1°C). At the conclusion 

of the experiment, blood was centrifuged at 5,000 × g at 4°C for 15 min, and buffer 

samples were centrifuged at 4,000 × g at 20°C for 10 min. Plasma was collected and 

stored at -20°C. An aliquot of ruminal buffer supernatant (4 mL) was stored at 4°C for 

Cr-EDTA analysis by atomic absorption spectroscopy (AAnalyst 200, Perkin Elmer Inc., 

Waltham, MA). For VFA analysis, 0.2 mL of the internal standard 2-ethyl butyrate 

(Acros Organics, Geel, Belgium) was added to 2 mL of buffer supernatant, vortexed, and 

combined with 0.2 mL of a 50% (w/v) meta-phosphoric acid solution. The sample was 

thoroughly mixed and frozen at -20°C. At analysis, samples were thawed and centrifuged 

at 21,000 × g for 20-min and, VFA concentrations were analyzed by GC with a flame 

ionization detector (Agilent HP6890 Plus GC with Agilent 7683 Series Injector and Auto 

Sampler; Agilent Technologies, Santa Clara, CA) using a Supelco 25326 Nukol Fused 

Silica Capillary Column (15 m × 0.53 mm × 0.5 µM film thickness; Sigma/Supelco, 

Bellefonte, PA).  

Ruminal buffer sample aliquots (0.5 mL) and plasma sample aliquots (0.5 mL) 

were filtered through 10 kDa spin filters (Spin-X UF, Corning Inc., Corning, NY) at 
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10,000 × g at 32°C for 20 min. The D2O was quantified by high temperature conversion 

elemental analysis-isotope ratio mass spectrometry (Finnigan Delta V Plus, Thermo 

Scientific, Bremen, Germany; Storm, et al., 2011). Serum samples were collected after 

spinning blood samples at 3,000 × g for 15 min. Serum bovine prolactin was measured by 

RIA using previously described methods (Bernard et al., 1993). 

Experiment 2. Four ruminally cannulated Holstein steers (BW = 294 ± 7.4 kg) 

from Exp. 1 were housed as described in Exp. 1. Experiment 2 was conducted exactly as 

Exp. 1 with the exception of the washed rumen portion of the experiment. Briefly, steers 

were paired by BW and assigned to either the E+ or E- seed treatment and pair-fed alfalfa 

cubes at 1.5× NEm for 7 d at TN and HS conditions followed by a washed rumen 

experiment on day 8 of each period. Seed treatments were then switched and the 

experiment was repeated. The CON buffer was incubated in place of the 1× EXT and 3× 

EXT buffer treatments to test the possibility of time confounding the effect of buffer 

treatment on the measured parameters during the washed rumen experiment. 

Model Derivation and Calculations  

A model developed by Storm et al. (2011) was used to calculate ruminal liquid 

passage rate, physiological water influx into the rumen, and residual water in the rumen 

prior to introduction of the buffer. Calculation of these parameters was conducted as 

described in Storm et al. (2011) except that the Solver add-in of Excel (Microsoft Corp., 

Redmond, WA) was utilized. These parameters were estimated for each individual buffer 

incubation (n = 72 for Exp. 1 and n = 48 for Exp. 2). A local solution was found for every 

data set. The model was set to minimize the residual sum of squares and was also visually 

assessed using a residual plot.  
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Ruminal liquid volume, pool of metabolites, ruminal flux of metabolites, and 

ruminal clearance were calculated as described in Storm et al. (2011). Briefly, the volume 

of liquid in the rumen was calculated at each sampling time point, and using the 

measured concentration of VFA and D2O at the corresponding time point, a ruminal pool 

of VFA and D2O was calculated at each time point. Ruminal flux of VFA and D2O were 

determined by calculating the change in pool size and correcting for physiological influx 

and passage out of the rumen in the liquid as: 

 

where Q is pool size (mmol), t is sampling time point, FLiq,Δt is liquid flow rate out of the 

rumen (L/h), and FLiq,Δt is flow of physiological water into the rumen. Ruminal clearance 

of D2O was calculated as the ruminal flux of D2O relative to the concentration difference 

of the ruminal liquid and blood as: 

 

where Cru is concentration of metabolite in the ruminal buffer (mmol/L) and CA is 

concentration of metabolite in arterial blood. Additionally, to determine the association of 

blood flow to the absorptive surface of the reticulorumen and VFA absorption, efficiency 

of VFA absorption was calculated as VFA flux (mmol/h) / Ruminal epithelial blood flow 

(L/h). 
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Statistical Analysis  

Data for feed intake were analyzed as a randomized complete block design using 

the mixed model procedure of SAS 9.3 (SAS Inst. Inc., Cary, NC). The model included 

fixed effects of day, temperature, and day × temperature. Because steers were pair-fed, 

only DMI data from the steers receiving E+ seed treatment were analyzed as intake was 

equal for steers receiving E- seed. Data from the TN and HS portions of the experiment 

for serum prolactin, rumen content analysis, reticuloruminal epithelial blood flow, and 

VFA flux were analyzed separately due to unequal variances as tested using Bartlett’s 

test (P < 0.01). Serum prolactin data were analyzed as a randomized complete block 

design using mixed model procedure of SAS. Fixed effects included day, seed, and day × 

seed and random effects included crossover period. Data from the TN and HS portions of 

the experiment were analyzed separately for the washed rumen portion of the experiment. 

Data from the washed rumen portion of the experiment including blood flow and VFA 

flux were analyzed as a randomized complete block split plot with a whole plot factorial 

using the mixed model procedure of SAS. The whole plot factors included seed treatment 

and crossover period and the sub-plot factor was the buffer treatment. Analysis of 

variance was conducted followed by pair-wise comparisons of least square means using 

LSD when the probability of a greater F-statistic was significant (P < 0.05).  

Results and Discussion 

Induction of Fescue Toxicosis 

 Endophyte-infected tall fescue seed was dosed so that steers received 0.015 mg of 

ergovaline · kg BW-1· d-1. This dose of ergovaline provided as ground seed introduced 

via a ruminal cannula has been previously reported to sufficiently induce fescue toxicosis 
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based on reduced intake, greater respiration rates at HS conditions, and reduced heart 

rates compared to steers consuming E- seed (Koontz et al., 2012).  

Alfalfa cubes were offered at 1.5× NEm, and the steers receiving the E- seed 

treatment were fed the same amount as the paired E+ steers (Figure 5.2). Under TN 

conditions, DMI did not decline over the 7-d feeding period, although there was a 

numerical decrease from about 1.5 to 1.2 × NEm. When steers were housed in heat stress 

conditions (approximately 30°C), voluntary feed intake was reduced to 0.7 × NEm (P = 

0.018 for temperature × seed treatment). Given the pair-fed design of this experiment, it 

is not possible to determine that the E+ tall fescue seed caused a decrease in feed DMI. 

However, depressed intake was one of the first signs of fescue toxicosis to be described 

and was thought to contribute to the decreased growth rate of cattle on tall fescue 

pastures (Strickland et al., 1993). The impact of toxic tall fescue on intake can be variable 

depending on the ambient temperature, as steers receiving an E+ seed treatment displayed 

decreased intake compared to steers receiving E- seed when housed at 32°C, but not 

when steers were housed at 22°C (Koontz et al., 2012). It is unlikely that any factors 

other than the E+ resulted in the large reduction in intake observed in this study.  

 The wet weight of ruminal contents on a BW basis (Table 5.2) tended to be 

greater for  E+ than E- steers (P = 0.12) at TN conditions. Dry matter percentage (P = 

0.03) and the dry ruminal contents on a BW basis (P < 0.01) were also greater in E+ 

steers at TN. Steers housed in HS conditions and receiving E+ seed had  greater wet 

weights (Table 5.2; P = 0.03), greater dry ruminal content weight (P < 0.01), and a 50% 

greater DM percentage (P < 0.01). Steers receiving E- seed were pair fed to receive the 

same amount of feed daily as steers receiving E+ seed, but the rate of DMI (kg/h) was not 
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controlled as steers were fed once daily. It is likely that E- steers had a greater rate of 

DMI as has been previously reported in steers at TN conditions (Koontz et al., 2012). 

These data could indicate a difference in the particulate or liquid passage rates of steers 

consuming toxic tall fescue compared to steers receiving E- seed. Data from the model 

used to estimate liquid passage rate during the washed rumen experiment indicated there 

was no difference in liquid passage rate between steers receiving E+ and E- at either TN 

or HS (P > 0.40, data not shown); however, this estimate is not necessarily consistent 

with measures in the fed state. Ergot alkaloids have been shown to reduce cyclical 

contractions of reticuloruminal smooth muscle in sheep (McLeay and Smith, 2006; Poole 

et al., 2009), which could lead to a decrease in passage rate and DMI. It is also possible 

that a difference in water intake could exist between the 2 groups of cattle, as water 

intake was not measured in the current experiment. Previous research has shown that 

water intake is not affected by tall fescue seed consumption in steers (Aldrich et al., 

1993b) or sheep (Hannah et al., 1990).  

 At TN, serum prolactin concentrations were affected by seed treatment (P = 

0.002; Figure 5.3A). There was also an effect of day (P = 0.03) but no interaction of seed 

treatment × day (P = 0.52) on serum prolactin. Steers receiving E+ seed had lower 

prolactin concentrations on d-0 and d-8 than E- steers; however, prolactin concentration 

decreased by 46% in E+ steers from day 0 to day 8 and by 18 % in E- steers. At HS 

conditions, there was an interaction of seed treatment × day (P = 0.02) on serum prolactin 

concentrations, indicating that steers receiving the E+ seed treatment had a greater 

reduction (92%) in serum prolactin concentration than steers receiving the E- seed 

treatment (66%). Prolactin concentration is a common indicator of fescue toxicosis, as 
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ergot alkaloids are potent dopamine receptor (D2) agonists (Larson et al., 1999; Larson et 

al., 1995; Strickland et al., 2011). Binding of an agonist to the D2 receptors on the surface 

of the lactotrophs in the pituitary causes a decrease in prolactin production and release by 

several mechanisms (Lamberts and Macleod, 1990). High ambient temperatures have 

been shown to increase prolactin concentrations in Holstein steers by both increasing 

secretion rates and decreasing metabolic clearance rates (Smith et al., 1977). Feed 

restriction of heifers housed at TN conditions has been shown to have no effect on 

circulating prolactin concentrations (Ronchi et al., 2001). Another study has reported no 

difference in prolactin concentrations of Holstein steers fed E- seed at TN and HS 

conditions (Aldrich et al., 1993b). Taken together, DMI and prolactin data presented here 

indicate that the steers receiving the E+ seed treatment were suffering from the fescue 

toxicosis syndrome. 

Washed Rumen Model Variables 

 The rate constant for liquid passage out of the rumen (Table 5.3) was constrained 

to be greater than or equal to 0.0 %/h. The liquid passage rate range was slightly larger 

than that reported by Storm et al. (2011). Due to the large variation and range of 

estimates, these parameters were estimated individually for each combination of steer, 

buffer, seed treatment, and temperature.  The influx of physiological water flowing into 

the rumen was never negative, indicating that there was a net movement of water into the 

rumen through saliva production or movement across the rumen epithelium. The range of 

predicted physiological water influx (Table 5.3) was smaller than that reported by Storm 

et al. (2011), but the values were within the range previously reported (Storm et al., 
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2011). The volume of water present in the rumen prior to introduction of the buffer, or 

residual water, was similar to the values reported by Storm et al. (2011).  

Reticuloruminal Epithelial Blood Flow 

 Reticuloruminal clearance of D2O was used as an estimate of reticuloruminal 

epithelial blood flow. At TN (Figure 5.4A), steers receiving E+ seed had lower 

reticuloruminal epithelial blood flow than steers receiving E- seed (20.0 L/h versus 28.4 

L/h; P < 0.038 for the interaction) during the incubation of CON buffer treatment. This 

decrease in blood flow appeared similar at HS conditions (Figure 5.4B; 24.0 L/h for E+ 

steers versus 31.2 L/h for E- steers, SEM = 3.9), however, these values were not different 

(P = 0.21) largely because of increased variability during heat stress. When ergot 

alkaloids were introduced into the washed rumen of steers at TN (Figure 5.4A) at either 

the 1× EXT or the 3× EXT level, there was a large decrease in reticuloruminal epithelial 

blood flow (P < 0.038) to approximately 10 L/h for both E+ and E- steers. The same 

effect was seen at HS (Figure 5.4B). The lack of a further decrease in ruminal epithelial 

blood flow at the 3x EXT level could indicate that the maximum effect was achieved 

with the lower ergot level present in the 1× EXT incubation. 

The baseline blood flow measurement of 28.4 L/h for E- TN steers in this 

experiment is lower than that reported in lactating Holstein cows (Storm et al., 2011) 

where reticuloruminal epithelial blood flow was reported to range from 48 to 92 L/h 

depending on the diet and buffer treatment. The use of D2O to estimate epithelial blood 

flow is unique in that it only estimates blood flow to the epithelium that is in contact with 

the buffer and directly involved in absorption at the time of measurement. Storm et al. 

(2011) used 30 kg of buffer where the current experiment used 15 kg of buffer. It is likely 
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that the surface area of the reticulorumen exposed to the buffer is greater with the greater 

mass of buffer. Additionally, Storm et al. (2011) utilized 565-kg lactating cows, where 

255-kg steers were used in the current experiment. When reticuloruminal epithelial blood 

flow is expressed per kg BW, the results are similar (0.11 and 0.08 L of blood flow / kg 

BW for steers and cows, respectively). Portal blood flow calculated by dilution of para-

aminohippurate has been shown to be much greater in lactating cows than either heifers 

or steers (Huntington et al., 1989). Gut blood flow appears to be linked to level of intake 

and not sex or production state.  

 Ergot alkaloids, including ergovaline, as well as an endophyte-infected tall fescue 

seed extract have been shown to induce vasoconstriction of ruminal arteries and veins in 

vitro (Foote et al., 2012; Foote et al., 2011). Rhodes et al. (1991) also showed that blood 

flow to some gut tissues including the duodenum could be reduced by exposure to ergot 

alkaloids using labeled microspheres. Constriction and dilation of blood vessels is the 

most important factor in regulation of blood flow (Levick, 2010). The concentration of 

ergovaline in the ruminally incubated buffer was approximately 4.7 × 10-7 M (± 6.8×10-9) 

for the 1× EXT and 1.4 ×10-6 M (±1.6×10-8) for the 3× EXT incubation. The least 

concentration of ergovaline shown to induce vasoconstriction in ruminal arteries and 

veins in vitro was 10-6 M ergovaline (Foote et al., 2011), which is essentially equal to the 

initial concentration of ergovaline in the ruminal buffer during the 3× EXT treatment but 

greater than the 1× EXT initial buffer concentration. In ruminal veins, a tall fescue seed 

extract was shown in one study to induce vasoconstriction at 10-7 M (normalized to 

ergovaline concentration), whereas in another study vasoconstriction was not observed 

until a 10-6 M ergovaline (Foote et al., 2012). From the data presented here it is not 
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possible to infer that ergovaline is absorbed from the washed rumen and induces a local 

vasoconstriction, however, it is noteworthy that a concentration of ergovaline that is on 

the low end of concentrations known to induce vasoconstriction of ruminal vessels in 

vitro can alter blood flow in vivo (Foote et al., 2012; Foote et al., 2011).  

VFA Flux 

 Steers receiving E+ seed under TN conditions in Exp. 1 (Table 5.4) tended to 

have lower rates of total VFA flux (P = 0.10), acetate flux (P = 0.13), butyrate flux (P = 

0.07), and isovalerate flux (P = 0.05). This follows the trend seen with blood flow that 

steers receiving E+ seed had lower blood flow than steers receiving E- seed. Seed 

treatment had no effect on VFA flux when steers were housed in HS conditions (P > 

0.40; Table 5.4). When ergot alkaloids were included in the ruminally incubated buffer at 

TN, flux of total VFA, acetate, propionate, and butyrate were decreased (P < 0.01), and 

isovalerate tended to be less (P = 0.13); however, valerate flux was not affected by the 

addition of the extract to the buffer compared with the CON treatment (P = 0.17). Under 

HS conditions, addition of ergot alkaloids at both the 1× EXT and the 3× EXT 

concentrations caused a decrease in total VFA, acetate, propionate, butyrate, and valerate 

(P < 0.01) and tended to decrease isovalerate flux (P = 0.08).  

The flux values observed in the current study are similar to the values reported for 

net portal flux in a similar experiment using lactating cows (Storm et al., 2011) when 

adjusted for BW. The flux rates reported here were also less than the absorption rates 

from a washed reticulorumen of Holstein steers (Kristensen and Harmon, 2004); 

however, the absorption rate did not account for passage out of the rumen with liquid as 

was done in the data presented here. When looking at portal blood flux of VFA the data 
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from Kristensen and Harmon (2004) was similar to the data presented here; although the 

portal flux data was slightly greater, which could be due to the contribution of omasal and 

hindgut absorption in the portal flux measurement. 

The effect of fescue toxicosis and ergot alkaloids on nutrient absorption has been 

largely unstudied. The one study that attempted to look at endophyte-infected tall fescue 

and nutrient absorption showed that other than a slight decrease in net portal acetate flux 

in steers receiving E+ hay; there was no effect on nutrient absorption (Harmon et al., 

1991). The tall fescue hay used by Harmon et al. (1991) had a measured ergovaline 

concentration of 134 ppb, and the steers consumed an average of 5.26 kg DM/d, resulting 

in a total intake of approximately 0.7 mg of ergovaline/d. This dose is much less than the 

dose used in the experiment presented here and by Koontz et al. (2012), which is about 4 

mg ergovaline/d.  Additionally, there was no reported difference in prolactin 

concentration between the E+ and E- groups by Harmon et al. (1991), indicating that 

those steers might not have been experiencing fescue toxicosis.  

A disruption in absorption of VFA could have large negative impacts on 

production of cattle. It is estimated that the three predominant VFA, acetate, propionate, 

and butyrate account for 45% of DE intake in ruminants (Kristensen et al., 2005), most of 

which are absorbed from the rumen. Propionate is thought to provide 43 to 77% of the 

glucose carbon in cattle (McLeod et al., 2006). It is clear that VFA contribute 

significantly to the energy supply as well as providing most of the carbon needed for 

production in ruminants. A decrease in the absorption of VFA from the rumen could 

severely depress cattle performance. One of the most common signs of fescue toxicosis is 

depressed growth of cattle, and this could potentially be attributed in part to a decrease in 
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ruminal VFA absorption. Decreasing VFA absorption in the rumen could lead to greater 

interconversions of the VFA by microbes and a greater loss of carbon through methane 

production, which could further contribute to inefficiency of production. It is possible 

that the observed decrease in VFA absorption in response to ergot alkaloid exposure 

could be an important cause of clinical signs the fescue toxicosis syndrome.   

Relationship Between Epithelial Blood Flow and VFA Flux 

 Absorption of nutrients from the gut is limited by several factors, including 

mixing of the contents allowing presentation of the nutrient to the absorptive surface, 

permeability of the nutrient, and removal with blood from the serosal side of the 

epithelium (Dobson, 1984). Storm et al. (2011) reported a correlation coefficient for 

ruminal disappearance of propionate and epithelial blood flow of 0.56, indicating that 

blood flow to the absorptive surface of the rumen has a large effect on VFA absorption. 

Storm et al. (2011) showed that reticuloruminal epithelium and ruminal vein blood flow 

are dynamic and responsive to nutrients (specifically fermentative end products) present 

in the lumen of the rumen.  

 In the current study, efficiency of VFA absorption was calculated by expressing 

VFA absorption (mmol/h) relative to epithelial blood flow (L/h) resulting in the units of 

mmol of VFA absorbed/L of epithelial blood flow. Steers receiving E+ seed under TN 

conditions tended to have a greater amount of propionate absorbed per unit of blood flow 

(Table 5.5; P = 0.08). Including ergot alkaloids from an E+ tall fescue seed extract in the 

ruminal buffer increased the efficiency of butyrate absorption at TN (P = 0.02) as well as 

isovalerate (P < 0.01). There was a seed treatment × buffer interaction (P = 0.03) for 

valerate absorption efficiency under TN conditions. This indicates that steers receiving E- 
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seed, including the 1× EXT in the ruminally incubated buffer increased valerate 

absorption efficiency compared to CON and the 3× measuring intermediate. For the 

steers receiving E+ seed, inclusion of the 1× EXT and the 3× EXT increased valerate 

absorption efficiency, but the 1× EXT and the 3× EXT were not different (P = 0.32). 

 When steers were housed under HS conditions, propionate absorption efficiency 

was increased with the inclusion of the 1× EXT (P = 0.04). The increase was greater in 

steers receiving the E- seed treatment (P = 0.07 for the interaction). Butyrate absorption 

efficiency in steers housed in HS conditions was higher during the incubation of the 1× 

EXT treatment compared to the CON incubation and the 3× EXT was intermediate (P = 

0.02). The tendency for an interaction of seed treatment × buffer treatment for butyrate 

absorption efficiency at HS (P = 0.10) indicates that the effect of the extract was more 

evident in steers receiving E- seed. There was a seed treatment × buffer treatment 

interaction for valerate absorption efficiency at HS (P = 0.03). Steers receiving E- seed 

had greater valerate absorption efficiency during the 1× EXT and the 3× EXT incubation 

than the CON incubation, but the 1× EXT and 3× EXT values were not different. Steer 

receiving E+ seed showed increased valerate absorption efficiency during the 1× EXT 

incubation, but it returned to values similar to CON during the 3× EXT incubation (Seed 

× Buffer P = 0.03). Additionally, the increase in valerate absorption efficiency in 

response to ergot alkaloids incubated ruminally was greater in steers receiving E- seed 

(Seed × Buffer P = 0.03). Isovalerate absorption efficiency in steers housed in HS 

conditions followed a similar trend to that of valerate absorption efficiency with a seed 

treatment × buffer treatment interaction (P = 0.01). For the HS portion of the experiment, 

it is apparent that VFA absorption efficiency is more responsive to ergot alkaloids in 
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steers receiving E- seed than steers receiving E+ seed, which could indicate an acute 

response to ergot alkaloids. 

 The effects of ergot alkaloids on VFA absorption efficiency observed in this 

experiment were only observed for VFA that have the potential to be metabolized by 

ruminal epithelium (propionate, butyrate, valerate, and isovalerate). These VFA are also 

larger, more lipophilic molecules than acetate. This increase in absorption efficiency 

could be due to either an alteration in epithelial metabolism, an alteration in the barrier 

function of the ruminal epithelium, or potentially through mechanisms related to 

transporters involved in VFA absorption. It is likely that the ergot alkaloids are increasing 

the epithelial metabolism of VFA, which leads to a greater concentration gradient across 

the rumen epithelium. This would lead to a greater amount of VFA removed from the 

rumen per unit of blood flow. It is also possible that the decrease in blood flow reduces 

the oxygen flowing to the epithelium causing a decrease in metabolic activity of the 

epithelial cells, and this decrease in epithelial metabolism of VFA could result in 

increased VFA absorption efficiency. However, it is likely that if there was a decrease in 

epithelial metabolism, there would be a decrease in the concentration gradient leading to 

a decrease in flux. Additionally, ergocristine has been shown to alter barrier function of 

porcine brain endothelial cells (Mulac et al., 2012). This effect was not seen with 

ergometrine (also known as ergonovine) or ergotamine and took more than 4 h of 

incubation for the effect to be observed. It is possible that ergot alkaloids present in E+ 

tall fescue seed extract could alter the barrier function of the rumen epithelium, which 

could in turn increase permeability of VFA. However, it is likely that if barrier function 

was greatly altered that the increase in VFA absorption efficiency would be more evident 
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for acetate, which has the lowest permeability. Additionally, a disruption of the ruminal 

barrier function could allow the translocation of microbes and endotoxins into the 

ruminal tissue and portal blood. Microbes entering the portal circulation have been shown 

to cause liver abscesses (Tadepalli et al., 2009), which is related to decreased growth and 

feed efficiency (Brink et al., 1990). Ergot alkaloids present in E+ tall fescue appear to 

alter VFA epithelial metabolism or disrupt the barrier function of the gut, which could 

contributing to the observed signs of fescue toxicosis such as depressed growth.  

Experiment 2 

 Experiment 2 was conducted because the order of buffer treatment administration 

could not be randomized in Exp. 1, and it was necessary to rule out the possibility that 

blood flow and VFA flux change over the duration of the washed rumen portion of the 

experiment. Blood flow values were less for steers receiving the E- seed in Exp. 2 (Figure 

5.5) than Exp. 1; however, blood flow measures for steers receiving the E+ seed 

treatment were similar in both experiments. It is not clear why these measures were less 

for only the E- steers during Exp. 2, but it is not likely that the buffer treatments are 

responsible for this difference. There was a statistical interaction for seed treatment × 

buffer (P = 0.045) at TN (Figure 5.5A), although this was due to an increase in blood 

flow for E- steers during the third buffer incubation and was not the severe decrease in 

blood flow that was observed in Exp. 1 with the addition of ergot alkaloids in the buffer. 

Reticuloruminal epithelial blood flow in steers housed in HS conditions did not change 

during the three CON buffer sequences (effect of buffer P = 0.18). The data from Exp. 2 

indicate that the effect of the buffer treatment observed in Exp. 1 was due to the addition 

of the ergot alkaloids from the E+ tall fescue seed and not due to time.  
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Flux of VFA from the washed rumen in Exp. 2 (Table 5.6) was lower for E- steers 

than in Exp. 1, which was similar to the blood flow measures for Exp. 2. Overall there 

was no effect of buffer on VFA flux at TN conditions with the exception of valerate flux 

(P < 0.03), which indicates an increase in valerate flux during the second and third buffer 

sequences. There was a seed × buffer interaction (P = 0.03) for isovalerate flux at TN 

conditions, due to an increase in isovalerate flux for E+ treated steers during buffer 

sequence 2 compared to buffer 1 and 3 of the E+ treated steers. Additionally, there was 

no difference in VFA flux between the different buffers in steers housed at HS conditions 

(P > 0.11). There was an increase in the SEM in Exp. 2 compared to Exp. 1 for VFA flux 

values, which was likely due to the reduction in the number of animals used. This 

increase in variation could reduce to power to detect differences in flux measurements; 

however, flux of VFA did not follow the same trends as observed in Exp. 1. In Exp. 1 

buffer treatment decreased VFA flux by 30 to 50%. There was no effect of buffer 

treatment on VFA flux in Exp. 2 (P > 0.11) with the exception of an increase in valerate 

flux at TN (P = 0.03), which indicates the effects of the buffer treatments observed in 

Exp. 1 are due solely to the inclusion of the tall fescue seed extract. At HS conditions 

there was an effect of seed treatment on total VFA, acetate, propionate, and butyrate flux 

(P < 0.03) and a tendency for isovalerate flux (P = 0.05) indicating that E- treated steers 

had greater flux rates than steers receiving E+ seed. This was not seen in Exp. 1 or in the 

TN portions of the experiment, but was likely due to E+ steers having lower flux rates 

than observed in Exp. 1 for HS conditions and greater variation in the data. 

It is clear from these data that ergot alkaloids present in E+ seed and E+ seed 

extract are responsible for the reduction in epithelial blood flow and VFA absorption. It is 
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likely that ergot alkaloids incubated in the rumen cause a local vasoconstriction and 

decrease blood flow to the absorptive surface of the bovine rumen; however, ruminal 

absorption of ergot alkaloids, especially ergopeptine alkaloids such as ergovaline is not 

definitive and not extensively studied. Lysergic acid, lysergol, ergonovine, ergotamine, 

and ergocryptine were shown to cross ruminal epithelium in a parabiotic chamber (Hill et 

al., 2001). Another study incubated ergovaline on the mucosal side of a parabiotic 

chamber with ruminal epithelium mounted and showed that ergovaline could not be 

measured on the serosal side of the chamber after 4 h of incubation (Ayers et al., 2009). 

This study incubated ergovaline in the mucosal buffer at a concentration of about 2 

ng/mL. The interpretation of these data is limited because it is likely that if ergovaline 

crossed the epithelium, then it would be well below the limit of detection. In Hill et al. 

(2001), only 2% of ergotamine and 1.5% of ergocryptine was accounted for in serosal 

buffer. If ergovaline, which is similar in structure to ergotamine and ergocryptine, has a 

similar transport capacity there would only be a concentration of about 0.04 ng 

ergovaline/mL in the serosal side of the parabiotic chamber, which is well below the 

detection limit of more sensitive HPLC-MS based analytical methods (Smith et al., 

2009). Due to the relatively rapid onset of physiological response observed in the 

experiment present here, it is likely that ergovaline is crossing the ruminal epithelium in 

the washed rumen model, inducing local vasoconstriction, and in turn reducing blood 

flow to the absorptive surface of the rumen. It is also possible that the ergot alkaloids 

could bind receptors on the ruminal epithelial cells and induce signaling pathways that 

alter blood flow and other effects on the gut. 
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Conclusions 

 Ergot alkaloids from tall fescue seed and a tall fescue seed extract induce at least 

a 50% reduction in blood flow to the absorptive surface of the reticulorumen of cattle 

housed in thermoneutral and heat stress conditions. Additionally, ergot alkaloids cause a 

reduction in VFA absorption from a washed reticulorumen that is likely related to the 

reduction in blood flow to the absorptive surface of the foregut. The depression of 

nutrient absorption related to toxic tall fescue exposure could contribute to the common 

signs of fescue toxicosis such as decreased growth and performance.
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Table 5.1. Chemical composition of the buffer incubated in the washed reticulorumen1 
(mmol/kg). 

Item  Content 
NaHCO3  24.0 
NaOH  95.0 
KHCO3  30.0 
K2HPO4  2.0 
CaCl2  1.5 
MgCl2  1.5 
Acetic Acid  72.0 
Propionic Acid  30.0 
Butyric Acid  12.0 
Isovaleric Acid  2.0 
Valeric Acid  1.3 

1The buffer was mixed and agitated by gas (75% CO2:25%N2). 
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Table 5.2. Ruminal content weight and DM of steers that have received endophyte-
infected (E+) or endophyte-free (E-) tall fescue seed for 7 d at thermoneutral (22°C) and 
heat stress (30°C). 

  Seed Treatment    

Item  E+1 E-1  SEM 
(n = 6) P-value 

Thermoneutral       
 Rumen Content,  
  kg/100 kg BW  13.52 11.85  0.76 0.12 

 DM, %  14.73 10.38  1.60 0.03 
 Dry Contents,  
  kg/100 kg BW  2.01 1.24  0.16 <0.01 

Heat Stress       

 Rumen Content,  
  kg/100 kg BW  15.39 11.95  1.35 0.03 

 DM, %  14.33 7.23  1.40 <0.01 
 Dry Contents,  
  kg/100 kg BW  2.21 0.80  0.37 <0.01 

1Steers receiving E+ seed treatment received 15 µg of ergovaline · kg BW-1·d-1 from 
‘Kentucky 31’ tall fescue seed and the E- seed treatment received an equal amount of 
‘Kentucky 32’ tall fescue seed with 0.0 ppm ergovaline. 
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Table 5.3. Variables estimated by the model utilizing Cr-EDTA concentrations and 
buffer weights using the methods described by Storm et al. (2011). 

  Estimate   
Parameter  Minimum Maximum  SEM 
Experiment 1 (n = 72)      
 Rate constant for passage, %/h  0.00 41.98  1.33 
 Physiological water influx, L/h  0.12 5.44  0.16 
 Ruminal water residues, L  0.01 3.39  0.09 
Experiment 2 (n = 48)      
 Rate constant for passage, %/h  0.00 29.54  1.17 
 Physiological water influx, L/h  0.10 4.81  0.17 
 Ruminal water residues, L  0.03 2.05  0.09 
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Table 5.4. Experiment 1. Flux of VFA (mmol/h) from the washed reticulorumen of steers receiving endophyte-infected (E+) or 
endophyte-free (E-) tall fescue seed twice daily housed at thermoneutral (22°C) and heat stress (30°C) conditions for 7 d. Volatile 
fatty acid flux was measured using a sequential buffer sequence with a control buffer (CON), a buffer containing 15 µg ergovaline/kg 
BW (1× EXT), and a buffer containing 45 µg ergovaline/kg BW (3× EXT).  

 E-1  E+1  P-value 

Item Control 1× EXT 3× EXT 
 

Control 1× EXT 3× EXT 
SEM 

(n = 6) Seed Buffer 
Seed × 
Buffer 

Thermoneutral            
 Total VFA 565.8 370.4 344.8  526.0 254.5 239.1 65.02 0.10 <0.01 0.81 
 Acetate 320.6 201.7 221.4  314.8 128.2 134.9 42.19 0.13 <0.01 0.61 
 Propionate 177.3 88.6 75.4  152.2 86.6 67.4 19.42 0.47 <0.01 0.83 
 Butyrate 57.5 39.8 37.4  48.2 32.0 28.4 5.60 0.07 <0.01 0.99 
 Valerate 5.9 5.5 5.6  6.1 4.0 4.8 0.58 0.18 0.17 0.40 
 Isovalerate 6.5 4.6 5.0  4.8 3.7 3.9 0.74 0.05 0.13 0.85 

Heat Stress            
 Total VFA 473.9 304.5 307.7  441.2 297.4 227.9 69.05 0.63 <0.01 0.76 
 Acetate 263.7 162.5 179.6  264.2 178.9 122.5 40.90 0.77 <0.01 0.50 
 Propionate 141.2 95.9 82.0  122.6 78.3 64.6 21.47 0.50 <0.01 0.99 
 Butyrate 54.4 35.8 34.9  42.1 31.0 30.1 7.04 0.40 <0.01 0.67 
 Valerate 8.6 5.5 6.0  6.6 5.5 5.8 0.98 0.59 <0.01 0.13 
 Isovalerate 6.1 4.8 5.2  5.7 3.8 4.8 0.97 0.62 0.08 0.87 

1Steers receiving E+ seed treatment received 15 µg of ergovaline · kg BW-1·d-1 from ‘Kentucky 31’ tall fescue seed and the E- seed 
treatment received an equal amount of ‘Kentucky 32’ tall fescue seed with 0.0 ppm ergovaline. 
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Table 5.5. Efficiency of VFA absorption (mmol VFA absorbed / L blood flow) from the washed reticulorumen of steers receiving 
endophyte-infected (E+) or endophyte-free (E-) tall fescue seed twice daily housed at thermoneutral (22°C) and heat stress (30°C) 
conditions for 7 d.1 

 E-2  E+2  P-value 

Item Control3 1× EXT 3× EXT 
 

Control 1× EXT 3× EXT 
SEM 

(n = 6) Seed Buffer 
Seed × 
Buffer 

Thermoneutral            
 Total VFA 19.5 37.6 25.9  27.4 30.5 26.5 4.81 0.90 0.11 0.33 
 Acetate 11.1 20.6 16.6  16.5 15.6 14.9 3.39 0.88 0.46 0.32 
 Propionate 6.1 5.7 5.5  7.9 8.1 7.5 1.61 0.08 0.93 0.98 
 Butyrate 2.0 3.3 2.9  2.5 3.7 3.2 0.42 0.26 0.02 0.95 
 Valerate 0.2 0.6 0.5  0.3 0.5 0.5 0.05 0.68 <0.01 0.03 
 Isovalerate 0.2 0.5 0.4  0.3 0.5 0.4 0.06 0.90 <0.01 0.84 

Heat Stress            
 Total VFA 15.3 29.6 26.4  21.1 23.2 14.0 5.40 0.49 0.14 0.10 
 Acetate 8.5 15.5 15.6  12.6 13.8 7.9 3.35 0.63 0.34 0.13 
 Propionate 4.5 9.6 7.0  5.9 6.4 3.9 1.61 0.42 0.04 0.07 
 Butyrate 1.8 3.5 2.9  2.0 2.3 1.7 0.50 0.24 0.02 0.10 
 Valerate 0.3CD 0.5A 0.5AB  0.3D 0.4BC 0.3D 0.04 0.07 <0.01 0.03 
 Isovalerate 0.2C 0.5A 0.4AB  0.3BC 0.2C 0.3C 0.05 0.08 0.03 0.01 

1VFA absorption efficiency (mmol VFA absorbed / L blood flow) = VFA absorption rate (mmol/h) / epithelial blood flow (L/h) 
2Steers receiving E+ seed treatment received 15 µg of ergovaline · kg BW-1·d-1 from ‘Kentucky 31’ tall fescue seed and the E- seed 
treatment received an equal amount of ‘Kentucky 32’ tall fescue seed with 0.0 ppm ergovaline. 
3Blood flow and VFA flux was measured using a sequential buffer sequence with a control buffer, a buffer containing 15 µg 
ergovaline/kg BW (1× EXT), and a buffer containing 45 µg ergovaline/kg BW (3× EXT). 

AMeans within row with uncommon superscript differ (P < 0.05) 

 
 



 

84 

Table 5.6. Experiment 2. Flux of VFA (mmol/h) from the washed reticulorumen of steers receiving endophyte-infected (E+) or 
endophyte-free (E-) tall fescue seed twice daily housed at thermoneutral (22°C) and heat stress (30°C) conditions for 7 d.  

 E-1  E+1  P-value 

Item 
Buffer 

12 
Buffer 

2 
Buffer 

3 
 Buffer 

1 
Buffer 

2 
Buffer 

3 
SEM 

(n = 4) Seed Buffer 
Seed × 
Buffer 

Thermoneutral            
 Total VFA 464.1 335.8 501.4  531.5 624.0 347.0 127.68 0.62 0.80 0.20 
 Acetate 278.8 181.9 300.4  320.2 378.5 199.1 85.60 0.58 0.83 0.25 
 Propionate 127.8 99.8 136.8  148.9 166.0 96.2 32.31 0.69 0.65 0.14 
 Butyrate 47.5 43.2 50.5  51.0 63.9 39.6 10.61 0.73 0.58 0.19 
 Valerate 5.0 6.5 7.4  6.1 8.1 6.7 0.85 0.54 0.03 0.15 
 Isovalerate 5.0AB 4.4AB 6.2AB  5.3B 7.6A 5.5B 0.97 0.47 0.41 0.03 

Heat Stress            
 Total VFA 460.1 508.2 569.3  338.7 370.2 270.8 86.33 0.62 0.11 0.54 
 Acetate 267.2 302.0 327.1  204.0 207.5 159.2 55.48 0.03 0.94 0.64 
 Propionate 132.9 134.3 164.8  90.9 110.0 71.8 21.63 0.01 0.89 0.29 
 Butyrate 48.3 56.8 61.6  34.1 41.0 29.2 9.13 0.02 0.71 0.56 
 Valerate 5.5 8.1 7.3  5.7 6.6 6.0 1.12 0.34 0.32 0.72 
 Isovalerate 6.2 7.0 8.5  4.1 5.1 4.6 1.46 0.05 0.62 0.76 

AMeans within row with uncommon superscript differ (P < 0.05) 
1Steers receiving E+ seed treatment received 15 µg of ergovaline · kg BW-1·d-1 from ‘Kentucky 31’ tall fescue seed and the E- seed 
treatment received an equal amount of ‘Kentucky 32’ tall fescue seed with 0.0 ppm ergovaline. 

2Buffers incubated contained only the excipient. Buffer 1 was the first incubation time followed by Buffer 2 and then Buffer 3. 

 
 



 

 

Figure 5.1. Experimental design and sampling timeline of the washed rumen experiment 

conducted on d 8 of Exp. 1. Experiment  2 was identical to Exp. 1 with the exception of 

incubating 3 sequences of the control buffer. The control buffer contained only the 

excipient. The 1× EXT contained 15 µg ergovaline/kg BW and the 3× EXT contained 15 

µg ergovaline/kg BW. Ergovaline was supplied as an extract of endophyte-infected tall 

fescue seed. 
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Figure 5.2. Feed intake of steers on d 1 and d 7 of receiving endophyte-infected (E+) tall 

fescue seed twice daily (15 µg ergovaline/kg BW total) when housed at thermoneutral 

(TN; 22°C) and heat stress (HS; 30°C) conditions. Intake was restricted to 1.5 × NEm. 

Bars with differing letters differ (P = 0.018 for temperature × day interaction). 
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Figure 5.3. Serum prolactin concentration in steers on d 0 and d 8 of receiving 

endophyte-infected (E+) tall fescue seed twice daily (15 µg ergovaline/kg BW total) 

when housed at A) thermoneutral (TN; 22°C) and B) heat stress (HS; 30°C) conditions. 

Effect of day (P = 0.03 at TN); Effect of seed treatment (P = 0.002 for TN); Day × seed 

treatment (P = 0.52 for TN;). Bars with differing letters differ P = 0.02 for day × seed 

treatment at HS. 
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Figure 5.4. Experiment 1. Reticuloruminal epithelial blood flow measure by clearance of 

deuterium oxide from the washed reticulorumen of steers receiving endophyte-infected 

(E+) tall fescue seed twice daily (15 µg ergovaline/kg BW total) when housed at A) 

thermoneutral (TN; 22°C) and B) heat stress (HS; 30°C) conditions for 7 d. Blood flow 

was observed in the presence of a control buffer (Extract Level 0), a buffer containing 15 

µg ergovaline/kg BW (Extract Level 1), and a buffer containing 45 µg ergovaline/kg BW 

(Extract Level 3). Bars without shared letters differ (P = 0.038 for TN; P = 0.005 for HS) 
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Figure 5.5. Experiment 2. Reticuloruminal epithelial blood flow measure by clearance of 

deuterium oxide from the washed reticulorumen of steers receiving endophyte-infected 

(E+) tall fescue seed twice daily (15 µg ergovaline/kg BW total) when housed at A) 

thermoneutral (TN; 22°C) and B) heat stress (HS; 30°C) conditions for 7 d. Blood flow 

was observed in the presence of three consecutive incubations of a control buffer. The 

control buffer contained only the excipient and is identical to the control buffer used in 

Exp. 1. Bars without shared letters differ (A. Seed treatment × buffer treatment P = 

0.045). For HS (B.) effect of seed treatment P = 0.25, effect of buffer treatment P = 0.18, 

seed treatment × buffer treatment P = 0.23. 

 

 
Copyright © Andrew P. Foote 2013
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CHAPTER 6: ACUTE EXPOSURE TO ERGOT ALKALOIDS FROM 
ENDOPHYTE-INFECTED TALL FESCUE DOES NOT ALTER ABSORPTIVE 

OR BARRIER FUNCTION OF THE ISOLATED RUMINAL EPITHELIUM 
 

Introduction  

Ergot alkaloids such as ergovaline are synthesized by the endophyte 

(Neotyphodium coenophialum) present in tall fescue (Lolium arundinaceum) and are 

thought to be the main causative agents of fescue toxicosis in beef cattle (Strickland et 

al., 2011). Rhodes et al. (1991) used radio-labeled microspheres and reported that 

consumption of endophyte-infected tall fescue reduced blood flow to the gut of cattle. 

Supporting the findings of Rhodes et al. (1991), endophyte-infected tall fescue seed 

extract (EXT) has been reported to cause constriction of the ruminal artery and veins 

(Foote et al., 2012) and a follow up experiment reported a large reduction in epithelial 

blood flow to the washed reticulorumen of steers (Foote et al., submitted).  However, 

variability in the response to endophyte infected tall fescue is evident as Harmon et al. 

(1991) showed a minor effect of fescue toxicosis on nutrient flux across or blood flow to 

splanchnic tissues.   

Along with the reduced epithelial blood flow, a marked reduction in VFA flux 

across the washed rumen was observed (Foote et al., submitted). Additionally, a greater 

quantity of propionate, butyrate, and valerate were absorbed across the washed reticulo-

rumen wall per unit of blood flowing to the reticulo-rumen. This indicates that ergot 

alkaloids may have a direct effect on the rumen epithelial cells that causes an increase in 

VFA absorption per unit of blood flow. The objectives of this experiment were to 1) 
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determine the effect of acute exposure to ergot alkaloids on total, facilitated, and passive 

VFA flux across the isolated bovine rumen epithelium, 2) determine the effect of acute 

ergot alkaloid exposure on isolated rumen epithelial barrier function, and 3) determine 

the flux of ergovaline, a principal alkaloid present in the tall fescue seed extract, across 

the rumen epithelium. 

Materials and Methods 

 Methods used with live animals were reviewed and approved by the University of 

Saskatchewan Animal Research Ethics Board prior to beginning the study (protocol no. 

20100021).  

Preparation and Analysis of Tall Fescue Seed Extract  

At the University of Kentucky, an extract of ‘3rd Millennium’ tall fescue seed was 

isolated as previously described (Foote et al., submitted). The tall fescue seed extract was 

analyzed using a Waters Acquity UPLC-TQD (Waters, Inc., Milford, MA) with a sample 

manager. The sample manager was maintained at 4°C. An Acquity UPLC BEH (C18, 2.1 

× 150 mm, 1.7 µm, Waters Inc.) column was used to perform chromatographic 

separation.  Chromatographic separation was conducted at 75°C and the mobile phase 

was delivered at a constant flow rate of 0.5 mL/min using a 2-µL full loop injection. The 

binary mobile phase consisted of 5 mM ammonium carbonate (pH = 10.12, adjusted with 

ammonium hydroxide; mobile phase A) and acetonitrile (mobile phase B). The tall fescue 

seed extract was injected (2 µL) into the initial gradient conditions of 100% mobile phase 

A and 0% mobile phase B, which were maintained for 2 min following injection. Mobile 

phase B was increased at a linear rate to 95% over the next 6.4 min to 
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chromatographically resolve all of the ergot alkaloids. After the 6.4-min separation run, 

mobile phase B was held constant for an additional 3.1 min to flush the LC column. 

Mobile phase A increased at a linear rate to 100% over the next 0.05 min and held 

constant for an additional 1.45 min to allow for column re-equilibration in preparation for 

the next analysis. The total run time from one injection to the subsequent injection was 13 

min, while data acquisition occurred from 2 to 8.4 min post injection. A tandem-

quadrupole MS (Quattro Premier equipped with a Z-spray ion source, Waters Inc.) was 

coupled to the UPLC system. The mass spectrometer atmospheric pressure ionization was 

operated in positive electrospray ionization. The capillary voltage was 0.50 kV, and the 

source and desolvation temperatures were set at 150 and 400°C, respectively. The cone 

and desolvation gas flows were set at 125 and 800 L/h, respectively. Collision gas (argon) 

flow and pressure were set at 0.15 mL/min and 3.50 × 10-3 mbar, respectively. The MS 

tune was run in multiple reaction-monitoring mode with an automated dwell time. Six 

different scan functions were acquired simultaneously, corresponding to each of the 

molecular ions for the analytes. Chromatograms from selected reaction monitoring were 

used for quantification of the ergot alkaloids. 

The extract contained the following ergot alkaloids (mg/mL): ergovaline (3.934), 

lysergic acid (0.084), ergocornine (0.056), ergotamine (0.040), ergocryptine (0.011), and 

ergocristine (0.008). The extract was diluted with 80% methanol into 2 concentrations 

(10 and 50 µg ergovaline/mL), and aliquots were stored in silanized amber vials at -20°C. 

The diluted extract was then shipped on dry ice to the University of Saskatchewan and 

stored at -20°C until it was used. 
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Animals and Tissue Collection  

 Six Holstein steers (BW = 107.9 ± 7.3 kg) were fed a mixed ration (Table 6.1) ad 

libitum for 23 to 30 d prior to slaughter. One steer a day was killed to collect tissue for 

Ussing chamber experiments. Steers were killed by captive bolt stunning, pithing, and 

exsanguination. The abdominal cavity was opened and a 100-cm2 section of the caudal 

dorsal sac of the rumen was removed. The submucosal tissues were carefully removed 

and the epithelium was placed in an oxygenated buffer (pH 7.4 at 38˚C) for transport to 

the laboratory (Table 6.2).  

 The epithelium was sectioned and mounted between two halves of an Ussing 

chamber with an exposed surface area of 3.14 cm2 (used for acetate, butyrate, and 

ergovaline flux experiments; University of Leipzig, Germany) or 1.43 cm2 (used in inulin 

flux measurements; Physiologic Instruments, San Diego, CA). A silicon rubber ring was 

placed on both sides of the epithelium section to protect the edge of the tissue from 

damage. For acetate and butyrate flux experiments, the tissues mounted in the chambers 

were bathed on each side with 15 mL of buffer (Table 6.2) that was mixed using a gas-lift 

system using 95% O2/5% CO2, except for the bicarbonate-free buffer which was gassed 

with 100% O2. For inulin flux experiments, the tissues were bathed on each side with 10 

mL of buffer that was mixed by a gas-lift system using 95% O2/5% CO2. For ergovaline 

flux experiments, the tissues mounted in the chambers were bathed on each side with 11 

mL of buffer that was mixed by a gas-lift system using 95% O2/5% CO2. All buffers were 

maintained at 38.5°C. The chemical composition of the buffers (Table 6.2) were designed 

to determine total VFA flux (Total) without inhibition (i.e. the buffer contained HCO3
- 

and did not contain Cl- or NO3
-) and bicarbonate-independent nitrate insensitive VFA 
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flux (Passive) by inducing maximal inhibition (i.e. addition of Cl- and NO3
- and absence 

of HCO3
-) (Aschenbach et al., 2009; Penner et al., 2009; Sehested et al., 1996b). 

Facilitated VFA flux was calculated as the difference between Total and Passive flux. In 

all cases, the pH of the mucosal (6.2) and serosal (7.4) buffers were set to mimic the pH 

of rumen contents and blood, respectively.  

Electrophysiology 

Tissues were incubated under short-circuit conditions by passing current through 

the tissue to clamp the potential difference to 0 millivolt (mV).  Potential difference and 

short-circuit current were measured using a computer-controlled voltage clamp device 

(VCC MC6 Multichannel Voltage/Current Clamp, Physiologic Instruments, San Diego, 

CA was used for inulin flux) connected to electrodes (Physiologic Instruments) via agar 

bridges (3% agar in 3 M KCl). The current required to clamp the transepithelial potential 

difference to 0 mV is equivalent to the short-circuit current (Isc) but in the opposite 

direction. Pulses of current were applied every 10 s for the measurement of transepithelial 

conductance (Gt). For tissues used to measure VFA and ergovaline flux, the procedure for 

short-circuit conditions were the same except a different voltage clamp device (Ing. – 

Büro für Mess- und Datentechnik, Aachen, Germany) was used and different electrodes 

voltage-sensing (Argenthal electrodes for voltage measurements; Mettler Toledo, Urdorf, 

Switzerland), and current passing electrodes (Pt-PtCl electrodes (Free University of 

Berlin, Germany) connected via NaCl bridges for passing current). 

Acetate and Butyrate Flux Experiments 

After mounting, tissues were provided 30 min to allow tissue conductance (Gt) 

and short-circuit current (Isc) to stabilize. After at least 10 min of stabilization, tissues 
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were blocked based on Gt. Within block, chambers were randomly assigned to a 

treatment so that each treatment was present in each block and each treatment was 

duplicated within buffer type. Treatments included control (Con; 75 µL of 80% 

methanol), low EXT (75 µL of a 10 µg ergovaline/mL to yield a final concentration of 50 

ng ergovaline/mL), and high EXT (75 µL of a 50 µg ergovaline/mL to yield a final 

concentration of 250 ng/mL). The volume of the treatment addition was designed to keep 

the volume of organic solvent at 0.5% of the total volume. The High EXT treatment 

concentration was equal to that used by Foote et al. (Submitted) and showed reduced 

epithelial blood flow and VFA absorption from the washed reticulorumen of steers. The 

low EXT treatment was meant to provide a more physiological concentration of 

ergovaline. Treatments were added to the mucosal buffer after the 30-min stabilization 

period and the chambers were allowed to equilibrate for 15 min prior to the addition of 

radioisotopes. A stock solution with 720 mM acetate and 720 mM butyrate was spiked 

with 3H-acetate (37 kBq/µL; Perkin Elmer, Waltham, MA, NET003005) and 14C-butyrate 

(3.7 kBq/mL; Moravek Biochemicals and Radiochemicals, Brea, CA, # MC-319) and 

523 µL was added to the mucosal buffer to achieve a final concentration of 25 mM 

acetate and 25 mM butyrate with 100 kBq 3H and 74 kBq of 14C. The radioisotopes were 

allowed to equilibrate for 45 min (Sehested et al., 1996a). Mucosal buffer samples (100 

µL) were collected at the end of the equilibration period and at the end of the experiment. 

Serosal buffer samples (500 µL) were taken at the end of the equilibration period and 

every 30 min for 2 h resulting in 4 flux periods. Samples were placed in scintillation vials 

with 5 mL of scintillation cocktail and read on a Multi-Purpose Scintillation Counter 
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(model LS6500, Beckman Coulter, Mississauga, ON, Canada). Flux was calculated as 

described previously (Clarke, 2009; Wilson et al., 2012), and is as follows: 

 

where V is the volume of the buffer (mL), S is dpm/mL of buffer samples taken at the 

beginning (S1) and end (S2) of the flux period, dilution is the dilution factor after 

replacing the sample volume, specific activity is the activity of the isotope (dpm/µmole) 

on the mucosal side, surface area is the exposed area of the rumen epithelium (cm2), and 

time is the length of duration of the flux period (h).  

Inulin and Ergovaline Flux Experiments 

 Tissues were equilibrated, blocked, and assigned to treatments as described 

above. For the inulin flux experiment, treatments included control (50 µL of 80% 

methanol), Low EXT (50 µL of a 10 µg ergovaline/mL to yield a final concentration of 

50 ng ergovaline/mL), and High EXT (50 µL of a 50 µg ergovaline/mL to yield a final 

concentration of 250 ng/mL). For the ergovaline flux experiments, treatments included 

Con (55 µL of 80% methanol), Low EXT (55 µL of a 10 µg ergovaline/mL to yield a 

final concentration of 50 ng ergovaline/mL), and High EXT (55 µL of a 50 µg 

ergovaline/mL to yield a final concentration of 250 ng/mL). Treatments were added to 

the mucosal buffer after the 30 min equilibration period and the chambers were allowed 

to equilibrate for 15 min prior to the addition of 3H-inulin (74 kBq; Perkin Elmer) to the 

mucosal buffer and allowed to equilibrate for 45 min. No radioactivity was added to 

chambers designated for the ergovaline flux experiments. For the inulin flux experiments, 

mucosal buffer samples (100 µL) were collected at the end of the equilibration period and 
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at the end of the experiment. Serosal buffer samples (500 µL) were taken at the end of the 

equilibration period and every 1 h for 3 h resulting in 3 flux periods. Samples were 

placed in scintillation vials with 5 mL of scintillation cocktail and read on a Multi-

Purpose Scintillation Counter (model LS6500, Beckman Coulter). Inulin flux was 

calculated as described above. Samples were collected from the mucosal and serosal (500 

µL from each) buffers for the ergovaline flux chambers at the same time and placed in 

silanized amber vials and stored at -20°C. Buffer samples designated for ergovaline 

analysis were shipped on dry ice to the University of Kentucky for analysis at the USDA-

ARS, Forage-Animal Production Research Unit laboratory.  

 Buffer samples for ergovaline analysis were transferred to a 4-mL clear 

disposable borosilicate glass tube (12 × 75 mm; Fisher Scientific) and evaporated for 90 

min at 60°C using a CentriVap Console (LABCONCO, Kansas City, MO).  The residue 

was reconstituted in 500 uL of 80:20 MeOH:H2O containing the analytical internal 

standard methysergide (200 fmol or 70.7 pg on column) and vortexed for 30 s.  Each tube 

was centrifuged at 2000 × g with a CR422 swinging bucket rotor (Jouan, Inc., 

Winchester, VA, USA) for 10 min at 4°C.  The supernatant (350 uL) was transferred to 

deactivated amber screw-top autosampler vial (Waters Inc.).  A subsample of the 

supernatant was used for a dilution; 100 µL of the supernatant was combined with 900 

µL of the 80:20 MeOH:H2O containing the analytical internal standard methysergide for 

a 1:10 dilution.  Ergovaline was analyzed as described above for the tall fescue seed 

extract. Ergovaline flux was calculated using the method described above with the 

substitution of concentration of ergovaline on the mucosal side for specific activity on the 

mucosal side.  
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Statistical Analysis 

 Data were analyzed as a completely randomized design using mixed procedure 

(SAS 9.3; SAS Institute Inc., Cary, NC). The model included the fixed effects of 

treatment, flux period, and treatment × flux period. Flux period was included as a 

repeated measure using an autoregressive covariance structure. When the F-test was 

significant (P < 0.05), pair-wise comparisons were conducted using LSD. Data are 

presented as least square means ± SEM. 

Results and Discussion 

Volatile Fatty Acid Flux 

 There were no EXT treatment × flux period interactions for total, passive, or 

facilitated acetate flux (P = 0.25, 0.79, and 0.33, respectively) or total, passive, and 

facilitated butyrate flux (P = 0.82, 0.99, and 0.87, respectively). Therefore, only data for 

main effects of treatment and flux period are presented (Tables 6.3 and 6.4). 

Total, passive, and facilitated acetate flux across the isolated bovine rumen 

epithelium was not affected by acute exposure to a tall fescue seed extract (P = 0.69, 

0.85, and 0.82, respectively; Table 6.3). Butyrate flux across the isolated rumen 

epithelium was not affected by acute exposure to ergot alkaloids (P = 0.96, 0.51, and 

0.63, for total, passive, and facilitated, respectively; Table 6.3).  

 Flux period had no effect on total or passive acetate flux (P = 0.27 and 0.46, 

respectively; Table 6.4). There was a tendency (P = 0.08) for higher facilitated acetate 

flux during the first flux period. Total and passive butyrate flux decreased after the 

second period (P < 0.01) and total flux decreased further during the fourth period.  
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 Consumption of ergot alkaloids from wild-type endophyte-infected tall fescue has 

previously been shown to decrease portal flux of acetate in steers (Harmon et al., 1991) 

even though portal blood flow was not affected. Additionally, a slight reduction in total 

VFA, acetate, butyrate, and isovalerate flux from a washed reticulorumen of steers 

consuming endophyte-infected tall fescue seed housed at thermoneutral conditions has 

been reported (Foote et al., submitted). Acute exposure to ergot alkaloids by incubating 

an extract of endophyte-infected tall fescue seed in a washed reticulorumen caused a 

large reduction in VFA flux as well as blood flow to the epithelium and efficiency of 

VFA absorption (mmol VFA absorbed per unit of blood flow to the absorptive surface) 

from the washed reticulorumen was reported to increase with acute exposure to ergot 

alkaloids (Foote et al., submitted). This effect of ergot alkaloids was more pronounced 

with longer chain VFA such as butyrate. It was therefore thought that several factors 

could be contributing to the increase in VFA flux efficiency in response to ergot alkaloids 

including 1) an increase in specific absorption pathways (facilitated or passive VFA flux) 

or 2) an increase in epithelial metabolism. Results presented in this current experiment 

clearly show that acute exposure of rumen epithelium to ergot alkaloids has no effect on 

the absorptive pathways, either facilitated or passive, of bovine rumen epithelium. It is 

likely that the results previously observed for VFA absorption and absorption efficiency 

are due to alterations in blood flow and epithelial metabolism of VFA.  

Barrier Function and Electrophysiology  

 Rumen epithelium barrier function was assessed by the mucosal to serosal flux of 

inulin and Gt. The barrier function of rumen epithelium is thought to be attributed to the 

tight junctions in the stratum granulosum (Graham and Simmons, 2005). Tissue 
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conductance and the movement of hydrophilic macromolecules that are not transported 

transcellularly can be used as measures of barrier function. There was no treatment × flux 

period interaction for inulin flux (P = 0.84, data not shown); therefore only the data for 

main effects are presented (Table 6.5). The mucosal to serosal flux of inulin was not 

affected by the addition of alkaloids (P = 0.16) or flux period (P = 0.74). Flux of inulin in 

this experiment was much lower than mannitol flux across isolated sheep rumen (Penner 

et al., 2010) but similar to Cr-EDTA flux across isolated sheep rumen (Schweigel et al., 

2005), likely due to similar molecular weights of inulin and Cr-EDTA (approximately 

375 and 340 Da, respectively) which is higher than mannitol (approximately 180 Da).  

 Tissue conductance was analyzed separately for each experiment. There were no 

treatment × flux period interactions for Gt in the inulin flux experiment (P = 0.31) or 

ergovaline flux experiment (P = 0.61); therefore only data for the main effects are 

presented (Tables 6.5 and 6.6). The average Gt ranged from 1.63 to 3.36 mS/cm2 and 

there was no effect of ergovaline treatment on Gt (P > 0.17; Tables 6.5 and 6.6). In all 

experiments there was an increase in Gt over time (P < 0.01; Tables 6.5 and 6.6). As there 

were no treatment × flux period interactions, this was not an effect of the treatments, but 

simply a natural occurrence in the in vitro system. 

Ergocristine has been shown to reduce barrier function of an in vitro blood-brain 

barrier model with an apical concentration of at least 5 µM (compared to the 0.09 and 

0.47 µM concentrations used in the current study), as measured by electrical resistance 

and sucrose permeability (Mulac et al., 2012). The structure of ergocristine is similar to 

ergovaline with the same basic tricyclic peptide group that only differs at two points 

(Foote et al., 2011; Klotz et al., 2010) and has similar inhibition constants for dopamine 
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receptors (Larson et al., 1995; Lew et al., 1977). Based on in vitro studies (Foote et al., 

2011; Klotz et al., 2010), it seems that ergocristine and ergovaline differ in their ability to 

elicit a vasoconstrictive response which is likely indicative of differences in membrane 

receptor binding; therefore, effects induced by ergocristine might not be representative of 

the potential of ergovaline to induce responses.  

There were no treatment × flux period interactions for Isc in the inulin flux 

experiment (P > 0.99; Table 6.5) or ergovaline flux experiment (P = 0.67; Table 6.6); 

therefore only data for the main effects are presented. There was no effect of in vitro 

treatment on Isc (Tables 6.5 and 6.6; P > 0.09). Short-circuit current increased after the 

first flux period in the ergovaline flux experiment (P < 0.01). While Isc plateaued after the 

first flux period in the total VFA flux experiment, it continued to increase in the 

ergovaline flux experiment. Short-circuit current decreased after the first flux period in 

the inulin flux experiment (P = 0.01). 

Ergovaline Flux 

 Ergovaline was not detected in the serosal buffer of the Low EXT treatment at 

any time point. Ergovaline was detected, but not quantifiable, in the serosal buffer of the 

High EXT treatment at the end of the second flux period (1 out of 12 chambers), the end 

of the third flux period (7 out of 12 chambers), and the end of the fourth flux period (3 

out of 12 chambers). Ergovaline was never detected in the serosal buffer of the High EXT 

treatment for one chamber. Using the values for the lower limit of detection (0.6117 

ng/mL) and the lower limit of quantification (1.0572 ng/mL) of ergovaline, a minimum 

and maximum mucosal to serosal flux rate for ergovaline was estimated. Minimum 

ergovaline flux is estimated as 0.25 ± 0.10 ng/(cm2 ∙ h) and the maximum ergovaline flux 
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rate is estimated to be 0.44 ± 0.17 ng/(cm2 ∙ h). This is equivalent to 0.47 and 0.83 

pmol/(cm2 ∙ h). Using the liquid volume (35 L) from the rumen contents of steers 

receiving endophyte-infected tall fescue seed (Foote et al., submitted), an approximation 

of the surface area exposed to rumen fluid containing ergovaline (calculated as half the 

surface area of a sphere with a volume of 35 L) is 2600 cm2. This would translate to a 

potential ruminal absorptive capacity of 15 to 27 µg of ergovaline a day (29 to 52 nmol of 

ergovaline). This represents less than 1% of the ergovaline consumed (approximately 4.4 

mg) by steers in a previous study (Foote et al., In Press).  

This is the first known report to show that ergovaline crosses the bovine rumen 

epithelium. Ayers et al. (2009) showed that ergovaline did not cross bovine rumen 

epithelium isolated in a parabiotic chamber; however, the concentration used in their 

experiment may have resulted in serosal concentrations below the limit of detection. The 

estimation of flux rates presented here are significantly lower than those reported for 

ergotamine transport across ovine rumen and omasum tissue (Hill et al., 2001) as well as 

ergovaline movement across Caco-2 cells (Shappell and Smith, 2005). The differences 

could be due to the much higher concentrations used in the previous studies (30.5 mM 

ergotamine and 22 µM ergovaline) compared to the more physiological concentrations 

(0.47 µM ergovaline) in the current study. 

 Data presented here show that acute exposure to ergovaline from wild-type 

endophyte-infected tall fescue has no effect on the absorptive function or the barrier 

function of the isolated bovine rumen epithelium. Previous reports displaying reduced 

VFA absorption from the washed rumen in response to acute ergot alkaloid exposure is 

likely due to reduced blood flow to the absorptive surface of the rumen. Results also 

102 
 



 

show that ergovaline can potentially be absorbed across the rumen epithelium, although 

at a very slow rate. 
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Table 6.1. Composition and nutrient content of diet fed to steers prior to in vitro 
experiments. 

Item % DM 
Diet Composition, % DM 

  Barley Silage 49.6 
 Barley Grain 42.0 
 Vitamin - Mineral Pellet1 8.4 

  Nutrient Composition, % 
DM 

  DM (%) 47.3 
 Ash (%) 3.2 
 CP 13.6 
 ME (Mcal/kg) 2.4 
 NDF 33.9 
 ADF 20.6 
 Starch 31.7 
 EE 3.0 
1Contains (% of DM) Soybean Meal (57.15), ground barley grain (23.73), Dynamate 
(10.73; Mosaic Feed Ingredients, South Riverview, FL), ground limestone (5.51), trace 
mineral salt (2.47), Na-selenite (0.18), Vitamin ADE premix (0.08), Potassium chloride 
(0.07), MgO (0.04), MnO2 (0.04). 
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Table 6.2. Chemical composition of the Ussing chamber buffers. 

  
Inulin Flux 

Buffer1 
 Bicarbonate 

Containing 
 

Bicarbonate-Free 
Item Serosal Mucosal  Serosal Mucosal  Serosal Mucosal 

CaCl2 1.0 1.0  - -  - - 
Ca-gluconate - -  1.0 1.0  1.0 1.0 
MgCl2 1.3 1.3  - -  - - 
Mg-gluconate - -  1.3 1.3  1.3 1.3 
NaCl 15.6 15.6  - -  - - 
Na-gluconate - -  50.6 50.6  69.6 34.6 
KCl 5.5 5.5  - -  - - 
K-gluconate - -  5.5 5.5  5.5 5.5 
NaH2PO4 0.6 0.6  0.6 0.6  0.6 0.6 
Na2HPO4 2.4 2.4  2.4 2.4  2.4 2.4 
Acetic Acid 10.0 10.0  - -  - - 
Na-Acetate 12.1 12.1  - -  - - 
L-Glutamine 1.0 1.0  1.0 1.0  1.0 1.0 
HEPES-free acid 10.0 10.0  10.0 10.0  10.0 10.0 
Na-Propionate 9.1 9.1  - -  - - 
Na-Butyrate 3.9 3.9  - -  - - 
NaOH 10.0 10.0  - -  - - 
NaHCO3 24.0 24.0  24.0 24.0  - - 
Glucose - -  10.0 10.0  10.0 10.0 
Acetazolamide - -  - -  0.1 0.1 
Na-nitrate - -  - -  - 40.0 
Gluconic Acid - 20.0  - 20.0  - 1.0 
Inulin - 1.0  - -  - - 
Mannitol 120.0 99.0  110.0 90.0  120.0 109.0 
Penicillin G, mg/L 60.0 60.0  60.0 60.0  60.0 60.0 
Kanamycin, mg/L 100.0 100.0  100.0 100.0  100.0 100.0 
Flurocytosine, 
mg/L 50.0 50.0 

 
50.0 50.0 

 
50.0 50.0 

pH 7.4 6.2  7.4 6.2  7.4 6.2 
1The inulin flux buffers were also used for the ergovaline flux experiments. The inulin 
flux serosal buffer, without antibiotics was used as the buffer for transporting the tissue to 
the laboratory. 

105 
 



 

Table 6.3. Effect of acute exposure to ergot alkaloids on total, passive, and facilitated 
acetate and butyrate flux (µmol/(cm2 ·h)) across the isolated bovine rumen epithelium. 

  
Treatment1 

  Item 
 

Control Low EXT High EXT SEM2 P-value3 
Acetate Flux       
 Total  1.37 1.28 1.35 0.08 0.69 
 Passive  0.48 0.48 0.53 0.09 0.85 
 Facilitated  0.79 0.72 0.76 0.09 0.82 
       
Butyrate Flux       
 Total  2.53 2.49 2.55 0.17 0.96 
 Passive  1.54 1.46 1.34 0.12 0.51 
 Facilitated  0.98 1.03 1.22 0.18 0.63 
1Control = 80% methanol (0.5% of the buffer volume), Low EXT = 50 ng ergovaline/mL, 
High EXT = 250 ng ergovaline/mL 
2Standard Error of the Mean, n = 48 
3Probability of a greater F statistic for the main effect of treatment 
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Table 6.4. Effect of time on total, passive, and facilitated acetate and butyrate flux 
(µmol/(cm2 ·h)) across the isolated bovine rumen epithelium. 

  Flux Period1 
  Item  1 2 3 4 SEM2 P-value3 

Acetate Flux        
 Total  1.40 1.27 1.31 1.34 0.07 0.27 
 Passive  0.45 0.49 0.55 0.49 0.07 0.46 
 Facilitated  0.89 0.75 0.64 0.74 0.08 0.08 
        
Butyrate Flux        
 Total  2.76 2.66 2.46 2.21 0.12 <0.01 
 Passive  1.61 1.52 1.38 1.27 0.08 <0.01 
 Facilitated  1.16 1.14 1.08 0.93 0.13 0.41 
1Flux Period is the 30 min blocks of time in which flux of acetate and butyrate were 
measured 
2Standard Error of the Mean, n = 36 
3Probability of a greater F statistic for the main effect of flux period 
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Table 6.5. Effect of acute exposure to ergot alkaloids and time of incubation on inulin flux (nmol/(cm2 ·h)), tissue conductance (Gt, 
mS/cm2), short-circuit current (Isc; µEq/(cm2 · h) of isolated bovine rumen epithelium. 

  
Treatment1 

  
 Flux Period3 

  
Item 

 
Control 

Low 
EXT 

High 
EXT SEM2 P-value 

 
1 2 3 SEM4 P-value 

Inulin Flux  6.27 5.80 6.97 0.43 0.16  6.32 6.16 6.57 0.40 0.74 
Gt  2.41 2.67 2.27 0.42 0.79  2.09 2.45 2.81 0.25 <0.01 
Isc  -0.017 -0.017 -0.020 0.008 0.94  -0.015 -0.022 -0.017 0.005 0.01 

1Control = 80% methanol (0.5% of the buffer volume), Low EXT = 50 ng ergovaline/mL, High EXT = 250 ng ergovaline/mL 
2Standard Error of the Mean, n = 36 
3Flux Period is the 1 h blocks of time in which flux of inulin was measured 
4Standard Error of the Mean, n = 36 
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Table 6.6. Effect of acute exposure to ergot alkaloids on the tissue conductance (Gt, mS/cm2) and short-circuit current (Isc; µEq/(cm2 · 
h) of isolated bovine rumen epithelium during the ergovaline flux experiments. 

  
Treatment1 

  
 Flux Period3   

Item 
 

Control 
Low 
EXT 

High 
EXT SEM2 P-value 

 
1 2 3 SEM4 P-value 

Gt  1.63 1.68 1.82 0.44 0.89  1.53 1.71 1.90 0.25 <0.01 
Isc  0.34 0.25 0.15 0.06 0.09  0.20 0.24 0.30 0.04 <0.01 
1Control = 80% methanol (0.5% of the buffer volume), Low EXT = 50 ng ergovaline/mL, High EXT = 250 ng ergovaline/mL 
2Standard Error of the Mean, n = 33 
3Flux Period is the 1 h blocks of time in which electrophysiology was measured 
4Standard Error of the Mean, n = 35 
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CHAPTER 7: SUMMARY AND CONCLUSIONS 
 

 Tall fescue is a cool season perennial grass that is well suited to grow in the 

transition zone of the eastern United States and is very popular with livestock producers. 

Cool season forages, tall fescue specifically, provides a timely flush of forage for cow-

calf operations that utilize either a fall or spring calving system. Tall fescue can also be 

easily utilized for a backgrounding operation where additional body weight is added to 

calves before they are shipped to western feedlots. The main limiting factor for beef 

operations in the eastern United States that utilize tall fescue is the presence of the wild-

type endophytic fungus that produces ergot alkaloids, which are thought to be responsible 

for the poor performance of cattle grazed on tall fescue pastures, particularly in hot 

weather.  

 For decades, it has been thought that the source of many of the observed signs of 

fescue toxicosis was peripheral vasoconstriction. There is limited published data showing 

that core body vasculature, including gastrointestinal vasculature, is also affected by the 

toxins present in tall fescue. This observation has led to the hypothesis that ergot 

alkaloids could have negative effects on foregut vasculature and result in a concomitant 

reduction in nutrient absorption, contributing to the reduced growth observed in cattle 

consuming tall fescue. 

 The first part of this series of experiments was designed to characterize the effect 

of a variety of ergot alkaloids, including ergoline and ergopeptine alkaloids, on the 

bovine right ruminal artery and vein. Vessels were isolated shortly after slaughter and a 
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multimyograph system was used to characterize the response of ruminal vasculature to 

increasing concentrations of ergot alkaloids. Results from this experiment showed that 

most ergot alkaloids induce a vasconstrictive response in ruminal arteries and veins. 

Ergovaline induced the greatest response in the arteries, and the response to ergovaline 

and ergotamine was the greatest in the ruminal veins. Data from this first experiment 

indicates that ergot alkaloids, especially ergopeptine alkaloids, can induce 

vasoconstriction of bovine foregut vasculature indicating these toxins can potentially 

affect nutrient absorption.   

 The second portion of this series of experiments consisted of two experiments; the 

first showed that a tall fescue seed extract induced a greater vasocontrictive response than 

pure ergovaline. It was therefore hypothesized that the additional ergot alkaloids present 

in the tall fescue seed extract could contribute to the increased vasoactivity compared to 

pure ergovaline. A follow-up experiment was conducted using ruminal artery and vein, as 

well as lateral saphenous veins (a peripheral vasculature model). Treatments included 

pure ergovaline, a tall fescue seed extract, a mixture of commercially available ergot 

alkaloids that mimicked the extract, and an extract of endophyte-free tall fescue seed. 

Results showed that there was no difference in the response of the saphenous vein, 

ruminal artery, or ruminal vein to the endophyte-infected tall fescue seed, pure 

ergovaline, or a mixture of ergot alkaloids. These data were contradictory to the previous 

experiment that showed an increased response to the seed extract compared to pure 

ergovaline. However, the data from the ruminal vessels appeared to trend toward a 

greater response to the extract than ergovaline alone, but the overall maximum response 

was smaller than the previous experiment. This reduced maximum response could have 
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resulted from the prior exposure of the animals to toxic tall fescue. The reduced response 

could have hindered the ability to distinguish true differences in the vasoactivity of the 

treatments. Nonetheless, it was clear from these studies that the main agent for local 

vasoconstriction is ergovaline.  

 Having clearly demonstrated that ergot alkaloids induce vasoconstriction of 

bovine foregut vasculature, the next step of this series of experiments was to determine if 

the observed in vitro vasoconstriction results in reduced blood flow and nutrient 

absorption in vivo. A washed reticulorumen experiment was conducted in steers exposed 

to either E+ or E- seed and reticuloruminal epithelial blood flow and VFA absorption 

were measured in the presence of increasing ergot alkaloids. When ergot alkaloids were 

introduced into the washed rumen, there was a large decrease in blood flow and VFA 

absorption. One of the most interesting findings was that at thermoneutral temperatures, 

steers receiving the endophyte-infected seed had reduced epithelial blood flow but there 

was no difference in VFA absorption. Exploring this further, VFA absorption efficiency 

was calculated (mmol VFA absorbed per unit of blood flow). This showed that ergot 

alkaloids present in the buffer caused an increase in VFA absorption efficiency, 

especially butyrate and valerate. This finding could be due to direct effect of ergot 

alkaloids on the rumen epithelium function. The increase absorptive efficiency could be 

the result of alterations in VFA absorptive pathways or epithelial metabolism.  

 The final experiment in this series was designed to determine the effect of ergot 

alkaloids on the absorptive and barrier functions of the isolated rumen epithelium as well 

as flux of ergovaline across the isolated rumen epithelium. Utilizing rumen epithelium 

mounted in Ussing chambers, this experiment showed that there was no effect of acute 
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exposure to ergot alkaloids on the flux of acetate and butyrate. Additionally, there was no 

effect on barrier function measured by inulin flux or tissue conductance. It was also 

shown that ergovaline can cross the rumen epithelium, albeit at a slow rate. It was 

estimated that this slow flux rate would result in about 1% of the ergovaline consumed 

being absorbed from the rumen.  

 It is clear from this series of experiments that ergot alkaloids could have severe 

negative effects on bovine foregut function. It is possible that if only 1% of the consumed 

ergovaline is absorbed from the rumen then other absorption sites probably make greater 

contributions to alkaloid absorption. However, the primary site(s) for alkaloid absorption 

and the vascular concentrations of alkaloids that are achieved remains elusive.  Long term 

exposure to ergot alkaloids, specifically ergovaline, could result in the accumulation of 

ergot alkaloids in the vasculature tissue and eventually result in concentrations high 

enough to induce vasoconstriction. A small vasoconstrictive response can result in a large 

reduction in blood flow and nutrient absorption, as vessel diameter is exponentially 

related to blood flow (by a factor of 4). 

 It is also possible that ergot alkaloids present in the lumen of the reticulorumen 

could have effects on blood flow without being absorbed. Ergot alkaloids could bind to 

receptors present on the apical membrane of epithelial cells and initiate a signaling 

cascade that causes alterations in vasculature.  

Based on the in vivo data from the washed reticulorumen experiment, it is 

apparent that ergot alkaloids present in the ruminal lumen can induce changes in blood 

flow to the absorptive surface of the rumen, which results in reduced VFA absorption. 

114 
 



 

 One of the most severe fescue toxicosis symptoms is the reduced growth rate of 

cattle. A reduction in growth results in a reduced profit margin for producers. It is 

apparent based on the results presented herein that the toxins present in endophyte-

infected tall fescue can alter nutrient absorption from the foregut of cattle, which likely 

contributes to the reduced growth rate in cattle suffering from fescue toxicosis. This 

series of experiments contributes to the body of literature that describes the toxicosis 

syndrome associated with tall fescue; a necessary first step in alleviating the syndrome 

and in turn increasing the productivity of the beef industry in the United States.  
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