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ABSTRACT OF DISSERTATION 
  

CELLULAR AND MOLECULAR ASPECTS OF THE INTERACTION BETWEEN 
MAIZE AND THE ANTHRACNOSE PATHOGEN Colletotrichum graminicola 

 

Maize anthracnose, caused by the fungus Colletotrichum graminicola, is an 
economically important species contributing to major yield losses. C. graminicola 
is a hemibiotroph; initially it invades its host while it is alive, and then it switches 
to destructive necrotrophic growth and the host is killed. Establishment of 
compatible interactions by biotrophic pathogens is usually associated with 
suppression of host defenses and cell death, while necrotrophic pathogens 
typically secrete phytotoxic compounds and induce cell death. To understand the 
relationship of hemibiotrophy in C. graminicola to biotrophy and necrotrophy, I 
compared a compatible and an incompatible interaction, utilizing a non-
pathogenic mutant strain that is very similar to the wild type in vitro. I developed 
an assay to visualize in detail living fungal and host cells during pathogenic and 
nonpathogenic interactions. My results provided evidence that C. graminicola 
produces diffusible substances during colonization that predispose nearby living 
host cells for fungal invasion. My observations further suggested that the mutant 
is nonpathogenic because it fails to produce these substances. To explore the 
possibility that the C. graminicola mutant is impaired in the production and/or 
secretion of one or more secondary metabolites (SM), I characterized the range 
of SM-associated genes in C. graminicola. C. graminicola has a large and 
diverse repetoire of these genes, indicating significant capacity for the production 
of SM. I then characterized the global expression of fungal genes during different 
developmental phases in both compatible and incompatible interactions. I found 
that SM-associated genes are expressed during early and late stages of maize 
infection. Secreted proteins and putative effectors were overrepresented among 
differentially regulated predicted gene products. There were relatively few 
differences in expression between the mutant and wild type, suggesting that 
differences between them may relate to post-transcriptional events. The 
transcriptional analysis indicated that the mutant was defective very early in 
biotrophy. This study indicates that biotrophy and necrotrophy coexist in this 
pathosystem in different cells, and that arrays of differentially regulated and 
locally expressed genes are involved in maintaining this balance.  Understanding 
the nature of induced susceptibility may lead to new therapeutic targets for 
management of this damaging disease.  



KEYWORDS: hemibiotroph, anthracnose, non-pathogenic,secondary metabolite, 
transcriptome. 
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Chapter 1 

Colletotrichum graminicola as a pathogen of maize (Zea mays) 
 

Colletotrichum graminicola is a plant-pathogenic Ascomycete that infects maize 

roots, stalks, leaves, ears, and kernels(Warren & Nicholson, 1975) . On leaves 

and stalks, infection results in a disease known as anthracnose, with 

anthracnose stalk rot (ASR) causing the most damage. The first report of C. 

graminicola causing a severe disease on maize stalks in the United States (U.S.) 

was in Ohio in 1963 (Williams, 1963). Prior to that time, the pathogen had been 

encountered only occasionally on maize in the U.S., causing a relatively minor 

leaf blight (Sprague, 1950). C. graminicola was widespread in maize fields in the 

U.S. by the early 1970s (Poneleit et al., 1972, Nicholson R. L, 1976). The first 

anthracnose stalk rot epidemic reported in the U.S. occurred on the sweet corn 

variety Jubilee in Indiana in 1972, where more than 50% of the plants were 

severely infected (Warren et al., 1973). Severe outbreaks were also reported in 

dent corn in Maryland and in Kentucky, in 1971 and 1972, respectively (Morgan, 

1971, Wheeler et al., 1972).  C. graminicola is now considered a major pathogen 

throughout the U.S. corn belt that can reduce yields by up to 40% (Bergstrom & 

Nicholson, 1999), resulting in annual losses of more than 1 billion dollars in the 

U.S. alone (Frey et al., 2011). The impact of this pathogen is likely to continue to 

increase, due to the growing demand for maize for animal feed, food, and 

ethanol worldwide (Bergstrom & Nicholson, 1999). 

Limitations in maize production due to anthracnose leaf blight (ALB) are caused 

by reduction of the total photosynthetic area, leading to premature leaf 

senescence and reduced grain fill (Ali et al., 1987). In the ASR phase, the 

pathogen causes damage to vascular tissues, limiting the amount of water and 

nutrients that are supplied to the kernels. The most severe symptoms of ASR are 

premature plant death and lodging, produced by breakage of the lower 

internodes that can complicate the harvesting process (Cota et al., 2012, 

Bergstrom & Nicholson, 1999).  
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Control of maize anthracnose is based on the use of cultivars resistant to ALB 

and ASR, but the mechanisms that mediate resistance are not known (Muimba-

Kankolongo & Bergstrom, 2011, Balint-Kurti, 2009, Cota et al., 2012). Yield 

reduction due to ASR is highly dependent on environmental conditions, which 

has made genetic studies and identification of reliable traits associated with 

disease resistance difficult (Callaway et al., 1992, Balint-Kurti, 2009). The 

anthracnose resistance locus Rcg1 (resistance to C. graminicola 1), was recently 

cloned and characterized. The locus contains two leucine-rich repeat type R-

genes (NBS-LRR), both of which are required for resistance (Broglie, 2006). 

Maize hybrids carrying this resistance locus showed no difference in yield in the 

absence of the disease; however yields increased by 13% after infection with C. 

graminicola, compared with near-isogenic maize hybrids lacking the gene (Frey 

et al., 2011).  Commercial hybrids containing the Rcg1 locus should soon be 

available to growers from Pioneer Hi-bred. However, it is not known how durable 

the trait will prove to be in the field.  Qualitative resistance to other Colletotrichum 

pathogens (e.g. the sorghum anthracnose pathogen C. sublineola) is notoriously 

unstable (Ali & Warren, 1992, Casela et al., 1992). 

Insights into the Colletotrichum graminicola lifestyle 
Most members of the genus Colletotrichum are intracellular hemibiotrophic 

pathogens.  This means that they initially colonize their host biotrophically, with 

the fungus apparently obtaining nutrients from plant cells that remain alive, and 

then they switch to necrotrophy, in which the fungus feeds from dead cells and 

symptoms develop (Mendgen & Hahn, 2002, Wharton et al., 2001, Wharton & 

Julian, 1996, Latunde-Dada et al., 1996). When C. graminicola spores land on 

the plant surface, they germinate and produce an appressorium that becomes 

melanized, facilitating the accumulation of turgor pressure that allows the fungus 

to penetrate the plant tissue (Latunde-Dada, 2001, Takano et al., 1995, 

Rasmussen & Hanau, 1989). Initial penetration occurs through an appressorial 

pore from which a penetration peg emerges (Politis & Wheeler, 1973). During 

penetration, the host plasma membrane becomes expanded and invaginated, 

and invasive intracellular primary hyphae are formed in the host cells, while the 
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host cytoplasm remains alive and intact (Bergstrom & Nicholson, 1999). After 

approximately 48 hours, C. graminicola switches to necrotrophy, characterized 

by extensive colonization and maceration of plant tissue, and development of 

thin, secondary hyphae that are in direct contact with the host cytoplasm, and 

which are believed to be responsible for the secretion of large amounts of cell 

wall degrading enzymes (CWDE) (Venard & Vaillancourt, 2007a, Mims & 

Vaillancourt, 2002, O'Connell et al., 2012). The mechanisms involved in 

establishment of a compatible C. graminicola-maize interaction, and further 

progression to necrotrophy, are not understood (Krijger et al., 2008, Horbach et 

al., 2009, Thon et al., 2002). Current hypotheses are based on more detailed 

studies performed with biotrophic and necrotrophic fungal pathogens.  

Evidence indicates that biotrophic plant pathogens normally secrete a limited 

variety and quantity of CWDE and secondary metabolites (Spanu et al., 2010, 

Kamper et al., 2006), and that they suppress cell death and host defense 

responses in order to obtain the energy they require from living plant cells 

(Doehlemann et al., 2009, Djamei et al., 2011, Doehlemann et al., 2008). In 

contrast, many necrotrophic plant pathogens take advantage of plant defense 

responses to enhance their pathogenicity, and induce cell death by secreting a 

wide variety of phytotoxic secondary metabolites (Amselem et al., 2011, Cessna 

et al., 2000, Baker et al., 2006, Rolke et al., 2004). There are multiple 

morphological similarities between the early stages of infection of maize by C. 

graminicola, and the interaction of plants with obligate biotrophs, suggesting that 

they could share some early infection strategies (Münch et al., 2008, O’Connell & 

Panstruga, 2006b). During penetration by obligate biotrophs like Uromyces 

appendiculatus and Blumeria graminis, the host plasma membrane is also 

invaginated and a specialized structure called a haustorium develops (Hardwick 

et al., 1971, Bushnell et al., 1967). Haustoria are responsible for the secretion of 

molecules that suppress host defense responses, reprogram host metabolism, 

and allow the establishment of a compatible interaction (Lyngkjær et al., 2001, 

Godfrey et al., 2009).  They are also responsible for nutrient uptake from the 

host, evidenced by the haustorial expression of sugar and amino acid 
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transporters (O’Connell & Panstruga, 2006a, Jakupović et al., 2006, Struck et al., 

2002). An interface that separates the fungal cell wall from the host plasma 

membrane, called the extrahaustorial matrix, seems to be important for mediation 

of the exchange of signals and nutrients between pathogen and host 

(Doehlemann et al., 2008, Struck et al., 1998). An interfacial matrix was also 

observed in the C. lindemuthianum-bean interaction, and was found to contain 

proteins with potential roles in protection from host defense responses (Perfect et 

al., 1998b). However, an interfacial matrix does not seem to be present in the C. 

graminicola-maize interaction (Mims & Vaillancourt, 2002). 

It has been suggested that, as with obligate biotrophs, the host plant does not 

recognize or respond to Colletotrichum during the early, biotrophic stages of 

infection (Perfect et al., 1999). Because members of this genus can be cultured 

and transformed (Mathur, 1950, Tu, 1985), this led to the idea that the transient 

biotrophic phase could be used as an experimentally tractable model to elucidate 

the events that led to the establishment plant interactions by obligate biotrophs 

(Perfect et al., 1999). However, more recent studies of different members of this 

genus show that the host plant does recognize and respond to the fungus, 

sometimes even before penetration occurs (Stephenson et al., 2000, Vargas et 

al., 2012, O'Connell et al., 2012). The recently sequenced C. graminicola and C. 

higginsianum(Hahn et al., 1997) genomes contain a large number of predicted 

genes associated with secondary metabolism and carbohydrate-active enzymes 

(CAZy), including CWDE (O'Connell et al., 2012). These characteristics are more 

similar to necrotrophic than to biotrophic plant pathogens (Kamper et al., 2006, 

Amselem et al., 2011, Spanu et al., 2010).  

In contrast to biotrophs, ultrastructural characterization of the infection process of 

plants by necrotrophic pathogens is limited. It is believed that for many 

necrotrophs, e.g. the ascomycete Botrytis cinerea, secretion of a large amount of 

CWDE is more important than turgor pressure to breach the host cuticle 

(Gourgues et al., 2004, Tenberge, 2007). Shortly after infection of broad bean 

cells by B. cinerea, epidermal cell walls become extensively vacuolated, Golgi 

vesicles proliferate, the tonoplast disintegrates, and the cytoplasm collapses 
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(Mansfield & Richardson, 1981). Although extensive colonization is not observed 

at these early stages of infection, cytoplasm disorganization and proliferation of 

organelles was observed in cells adjacent to the initial invaded cells, an 

indication that host cells are killed in advance of fungal penetration.  

 

The complexity of hemibiotrophy 
Most of the information that is now available regarding a plant interaction with an 

intracellular hemibiotrophic fungus comes from studies of the Magnaporthe 

oryzae-rice pathosystem (Kankanala et al., 2007, Dean et al., 2005). M. oryzae 

initially colonizes rice biotrophically, developing a thin primary hypha that 

enlarges to become a bulbous invasive hypha, then branches to fill the first 

invaded cell before moving to the adjacent cells (Koga, 2004). Each new invaded 

cell is initially colonized biotrophically by thin intracellular hyphae, filled, and then 

dies after the fungus moves to the next cell (Kankanala et al., 2007). Microarray 

analysis of the invasive biotrophic hyphae determined that they were enriched in 

transcripts encoding putative secreted proteins, most of which were not 

expressed in vitro or in incompatible interactions, suggesting that these are 

secreted effector proteins required for the establishment of compatibility in this 

pathosystem (Mosquera et al., 2009a). Among these predicted effectors, four 

were further characterized as biotrophy-associated-secreted (BAS) proteins, and 

were 61- to 100-fold induced in invasive hyphae, when compared with mycelium 

grown in vitro. Fluorescent-labeling experiments indicated that two of these BAS 

proteins accumulated in the biotrophic interfacial complex (BIC), a pathogen-

induced structure that is observed on every invasive hyphae that grows into a 

new cell (Mosquera et al., 2009a, Khang et al., 2010). Further analysis of these 

BAS proteins determined that only effector proteins that accumulated in the BIC 

were later observed in the plant cytoplasm, suggesting that this structure was 

associated with translocation of rice blast effectors into the plant cytoplasm 

(Khang et al., 2010).  A structure similar to the BIC has not been described in any 

of the detailed cytological studies involving Colletotrichum-plant interactions 

(Wharton & Julian, 1996, Mims & Vaillancourt, 2002, O'Connell et al., 1985). 
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However, recent immunolabelling experiments associated putative secreted 

effectors of C. higginsianum with electron-opaque projections that extended from 

the biotrophic hyphae, between the fungal cell wall and the host plasma 

membrane (Kleemann et al., 2012).  The authors proposed that appressoria and 

invasive primary hyphae both play important roles in the secretion of effectors 

required to establish a compatible interaction, and to induce host cell death and 

produce symptoms.  

Factors Involved in Hemibiotrophy in Colletotrichum 
Screening of an expressed sequence tag (EST) library derived from nitrogen-

starved mycelium of C. gloeosporioides resulted in the identification of CgDN3, a 

gene predicted to encode a small secreted protein that is required for the 

successful establishment of this pathogen on Stylosanthes guianensis leaves 

(Stephenson et al., 2000). Expression of CgDN3 was strongly induced in vitro 

under nitrogen starvation conditions, but was not detected in spores or 

appressoria. During infection, the CgDN3 transcript accumulated in infection 

vesicles and was also observed to a lesser extent in invasive hyphae. CgDN3 

knockout mutants were not affected in sporulation, germination or appressorium 

formation, and they grew faster that the wild type in vitro. However, they failed to 

penetrate or form primary infection hyphae, and they rapidly induced localized 

cell death. The authors suggest that CgDN3 encodes a putative effector required 

to overcome plant defense responses, including production of reactive oxygen 

species.  

Recently, homologs of CgDN3 were identified in the genomes of C. orbiculare 

(Yoshino et al., 2012) and C. higginsianum (Kleemann et al., 2012). Both 

suppressed cell death induced by necrosis-inducing effectors when they were 

transiently expressed in Nicotiana benthamiana leaves. A screen for C. 

orbiculare proteins that induced cell death in N. benthamiana led to the 

identification of NIS1, a secreted protein that is produced by primary hyphae. The 

authors concluded that cell death induced by NIS1 was mediated by interaction 

with the plant heat shock protein 90 (Hsp90), known to be important in R-gene 
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mediated HR-response (Zhang et al., 2010). Interestingly, the CgDN3 homolog in 

C. orbiculare, CoDN3, suppressed cell death induced by NIS1, supporting a role 

for this effector as a suppressor of HR. Transcriptome profiling of C. 

higginsianum infecting Arabidopsis thaliana revealed “waves” of putative effector 

genes expressed at different times during plant infection (Kleemann et al., 2012). 

A homolog of CgDN3, ChEC3, was expressed in the appressorial pore prior to 

penetration and in early invasive hyphae (Kleemann et al., 2012). Similar to 

observations with C. orbiculare, ChEC3 suppressed cell death induced by 

necrosis-inducing proteins in N. benthamiana. Additionally, a group of genes 

encoding putative necrosis-inducing effectors were identified, and analysis of 

some of these genes suggests that they are expressed during the switch to 

necrotrophy in C. higginsianum.  

Interestingly, ChEC3 was not detected in appressoria formed on synthetic 

surfaces.  Although in vitro and in planta appressoria are morphologically 

identical, plant signals must be involved in triggering the expression of this 

pathogenicity factor. Several recent studies have compared fungal gene 

expression in vitro versus in vivo, and they confirm that in vitro conditions induce 

different subsets of genes from those induced in planta (Mosquera et al., 2009b, 

O'Connell et al., 2012).  Thus, some of the genes identified in previous 

screenings using in vitro conditions might not be relevant during growth in planta.  

Effectors, in particular, frequently appear to be plant-induced. 

A few factors that are required for the establishment of progression of 

intracellular infection hyphae from cell to cell, and formation of necrotrophic 

hyphae, in Colletotrichum-plant infections have also been identified. Several 

studies have tested the hypothesis that nitrogen starvation mimics in planta 

conditions and induces expression of fungal genes that are involved in different 

stages of pathogenicity (Talbot et al., 1993, Ackerveken et al., 1994). In the 

absence of the preferred sources of nitrogen (glutamine and ammonium), the 

major positive regulator AreA mediates activation of genes involved in utilization 

of secondary sources of nitrogen (Kudla et al., 1990). Deletion of the AreA gene 

in C. lindemuthianum resulted in a mutant that was unable to produce symptoms 
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(Pellier et al., 2003). A closer examination of the infection process of the mutant 

determined that it was comparable to the wild type during initial penetration and 

colonization stages, but rarely produced secondary hyphae. The authors 

proposed that C. lindemuthianum encounters nitrogen starvation conditions very 

early during the infection of bean leaves and might be unable to utilize secondary 

sources of nitrogen to sustain the extensive growth that occurs during the 

necrotrophic phase. Additionally, it has been suggested that nitrogen starvation 

might act as a cue to trigger the expression of pathogenicity-associated genes, 

as has been reported for avr9 from C. fulvum (Pérez-García et al., 2001)  and 

mpg1 from M. oryzae (Talbot et al., 1993), and AreA could be involved in sensing 

the nitrogen signal and activating these genes.  

Deletion of the AreA ortholog in C. coccodes produced mutants that were 

impaired in ammonium secretion and significantly less virulent on tomato fruits 

(Alkan et al., 2008). Secretion of ammonium by C. coccodes during the 

colonization of tomato fruits is associated with modulation of salicylic acid and 

jasmonic acid-mediated defense pathways, production of reactive oxygen 

species, and induction of programmed cell death during symptom development 

(Alkan et al., 2011, Alkan et al., 2009). Production of ammonium is also important 

for modulation of pH and establishment of an alkaline environment suitable for 

secretion and function of the extracellular CWDE pectate lyase, required for 

tissue maceration and symptom development by C. gloeosporioides in avocado 

fruits (Kramer-Haimovich et al., 2006).  

A Colletotrichum pathogenicity related (Cpr1) gene was identified by random 

mutagenesis using a restriction enzyme-mediated integration approach in C. 

graminicola (Thon et al., 2000) . This mutation was characterized as an insertion 

in the 3’UTR of a gene similar to Spc3, which encodes one of the four essential 

components of the signal peptidase complex in S. cerevisiae, involved in 

processing of signal peptides from polypeptides across the endoplasmic 

reticulum (ER) membrane (Fang et al., 1996, Meyer & Hartmann, 1997, Fang et 

al., 1997). The cpr1 mutant was comparable to the wild type in various conditions 

in vitro that were tested, but it was completely non-pathogenic to maize stalks 
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and leaves (Thon et al., 2002). A cytological characterization of this mutant in 

intact maize leaves indicated that it was indistinguishable from the wild type 

during spore germination, appressorium formation, and penetration. However, 

similar to the AreA mutant of C. lindemuthianum mentioned above, the cpr1 

mutant remained confined to the first colonized cells, did not develop secondary 

hyphae, and never caused symptoms (Mims & Vaillancourt, 2002). The authors 

proposed that the cpr1 mutant might be impaired in the secretion of one or more 

compounds required for establishment of biotrophy and the switch to necrotrophy 

(Thon et al., 2002). 

A GAL-4-like transcription factor required for pathogenicity of C. lindemuthianum 

was identified by random mutagenesis (Dufresne et al., 2000). A mutation in the 

CLTA1 (C. lindemuthianum transcriptional activator 1) gene produced mutants 

that were able to penetrate bean leaves, but then rapidly induced localized cell 

death and were unable to switch to necrotrophy. CLTA1 is predicted to be a 

member of the zinc cluster family of transcriptional activators, which are 

associated with control of acetate and nitrate utilization pathways in fungi (Todd 

et al., 1997, Yuan et al., 1991). It is proposed that CLTA1 is important in the 

regulation of nutritional changes that the fungus undergoes in the transition from 

biotrophy to necrotrophy. 

Agrobaterium tumefaciens-mediated transformation mutagenesis was used to 

identify C. higginsianum genes required for compatibility with Arabidopsis (Huser 

et al., 2009). The authors identified 40 mutants with defects in pathogenicity, 

including five that were comparable to the wild type in penetration, infection and 

induction of host defense responses, but did not cause symptoms and rarely 

colonized beyond the first epidermal cell. Interestingly, in all five cases, the first 

invaded cell retained its ability to plasmolyze even 7 days after inoculation, and 

the authors suggested that these mutants were able to establish and sustain a 

biotrophic interaction, but were unable to switch to necrotrophy.  Two of these 

mutations were in a gene predicted to encode an importin-β2 subunit-containing 

protein. In yeast and mammals, this family of proteins act as chaperones 

mediating the translocation of ribosomal proteins, and of nuclear localization 
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signal (NLS)-containing proteins into the nucleus (Nachury, 2001, Harel, 2004).  

This protein family plays an important role in gene regulation in response to 

extracellular signals (Yashiroda, 2003).  

To identify putative effectors involved in the switch to necrotrophy, a cDNA library 

was constructed from Canadian lentil (Lens culinaris), 48 to 56 hours after 

infection (hpi) with C. truncatum, when the first secondary hyphae were observed 

(Bhadauria et al., 2011). Of the 121 putative secreted protein genes that were 

identified, sixty-three were predicted to encode extracellular hydrolytic enzymes 

(CWDE), involved in host cell wall and protein degradation and fungal access to 

nutrients. Thirty-six had predicted transmembrane domains targeting them to the 

host plasma membrane or cell wall. This group included MFS-transporters, a 

superoxide dismutase, an HSP70, three glycoproteins similar to CIH1 from C. 

lindemuthianum (Perfect et al., 1998a), two lysine-motif (LysM)-domain 

containing proteins,  and a chitin deacetylase. LysM domain proteins and chitin 

deacetylase are proposed to be involved in protection from host chitinases 

(Bolton et al., 2008, El Gueddari et al., 2002a). Eleven genes were predicted to 

encode small, cysteine-rich, secreted proteins with similarities to other predicted 

fungal effectors, but no known function. Another group of 11 genes with 

similarities to other known fungal proteins with various functions, including 

proteins involved in ROS detoxification, nitrogen metabolism and a Nudix 

hydrolase. 

The Nudix hydrolase, CtNUDIX, is the most recently characterized secreted 

protein from C. truncatum (Bhadauria et al., 2012). This protein contains a Nudix 

domain, associated with “housecleaning functions”  involving hydrolysis of 

different substrates including nucleoside triphosphates damaged as a result of 

oxidative stress in Saccharomyces cerevisiae (McLennan, 2006, Bessman et al., 

1996). Although the role of these enzymes is not known in plant pathogenic 

fungi, one of the best characterized Nudix hydrolases in S. cerevisiae, Ysa1, is 

differentially expressed in response to environmental stress (Gasch et al., 2000). 

Ysa1 is involved in regulation of levels of ADP-ribose, and it is proposed to play a 

regulatory role in metabolism and the ability of cells to protect against oxidative 
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stress (Gasch et al., 2000, Tong et al., 2009). Recently, Avr3b, a nudix-

containing secreted effector from Phytophthora sojae, was transiently expressed 

in N. benthamiana, where it increased susceptibility to P. sojae and P. parasitica. 

It was proposed that Avr3b is involved in suppression of pathogen-triggered ROS 

accumulation (Dong et al., 2011).  

Expression of CtNUDIX peaked at 44 hpi during late biotrophic growth. It was 

proposed that C. truncatum specifically uses it to induce cell death during the 

switch to necrotrophy. Overexpression of CtNudix in C. truncatum induced 

localized host cell death and loss of pathogenicity, and the authors propose this 

could be the result of a premature induction of cell death during biotrophy.  

Localization studies in N. benthamiana indicated that the protein is located in the 

plant plasma membrane, suggesting that it might alter integrity of host cells by 

affecting stability of the host plasma membrane. The authors also determined 

that orthologs of this Nudix effector were present in other hemibiotrophic 

pathogens including C. higginsianum, M. oryzae, C. graminicola and P. infestans, 

but absent in biotrophic and necrotrophic pathogens, suggesting that it might be 

important specifically for this lifestyle. 

Various factors seem to affect the ability of hemibiotrophic Colletotrichum species 

to establish biotrophic infections and to transition to necrotrophy.  A number of 

proteins involved in fungal responses to environmental signals and metabolism, 

as well as regulation, synthesis and secretion of compounds potentially involved 

in suppression of host defense responses and cell death have been 

characterized. Hemibiotrophy in Colletotrichum species is associated with the 

secretion of different groups of plant-induced effectors. Some produced before 

penetration and during biotrophy appear to suppress plant defense responses 

and cell death and allow for establishment of biotrophic hyphae, while others 

induced during and after the transition to necrotrophy apparently induce host cell 

death. It appears that fungal metabolism must be reprogrammed by various 

regulators during the transition. Hemibiotrophy is a complex developmental 

process that does not depend on any single factor, but rather requires the 
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interaction of many fungal and plant components, controlled by a variety of host 

and pathogen regulatory pathways.  

 

Other C. graminicola genes required for pathogenicity 
C. graminicola, like other Colletotrichum fungi, produces melanized appressoria 

that are required for efficient penetration of the host epidermal cell walls. Ninety 

percent of the cell wall in most fungi is composed of polysaccharides, mostly 

cellulose, consisting of polymers of D-glucose, and chitin, comprised of N-

acetylglucosamine polymers (Bartnicki-Garcia, 1968). Chitin is synthesized by 

the enzyme chitin synthase, and inhibitors of this enzyme are used as treatments 

for fungal diseases in humans (Debono & Gordee, 1994). Deletion of the 

CgChsV chitin synthase gene in C. graminicola resulted in mutants with multiple 

morphological defects, including unusual vegetative growth and distorted 

appressoria. Mutants were unable to penetrate or grow inside plant cells. 

Appressorial morphology and functionality also depend on the ability of the 

fungus to synthesize melanin, a polyketide derived from tetrahydroxyaphtalene 

(Finch et al., 2012).  Melanin confers the ability of the appressorium to 

accumulate and focus the high turgor pressures that are necessary for initial 

penetration of the host surface (Howard et al., 1991, Money & Howard, 1996). C. 

graminicola melanin-deficient mutants initiated appressorial formation normally, 

but they were significantly reduced in their ability to penetrate and produce 

symptoms in maize leaves, thus melanin is required for full virulence in this 

fungus (Rasmussen & Hanau, 1989).  

Secondary metabolism (SM) products, including melanin, are required at different 

stages of pathogen development in vitro and in planta (Takano et al., 1995, 

Money & Howard, 1996, Talbot et al., 1993, Baker et al., 2006). The role in 

pathogenicity of the Ppt1 gene, which encodes a major regulator of SM key 

enzymes, Sfp-type 4′phosphopantetheinyl transferase (PPTase), was tested in C. 

graminicola (Horbach et al., 2009). PPTases are involved in post-translational 

modification of key enzymes involved in synthesis of secondary metabolites. 
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They activate conserved serine residues in the acyl carrier protein (ACP) domain 

of polyketide synthases (PKSs) and the peptidyl-carrier-protein (PCP) domain of 

non-ribosomal peptide synthases (NRPSs) (Lambalot et al., 1996).  Targeted 

deletion of Ppt1 in C. graminicola produced mutants that had multiple defects in 

sporulation, produced non-melanized, non-functional appressoria, had high 

sensitivity to oxidative stress, and an inability to synthesize some secondary 

metabolites (Horbach et al., 2009). When inoculated into wounded maize leaves, 

ppt1 mutants grew at rates comparable to the wild type, apparently developing 

both wide primary and narrow secondary hyphae, but they were unable to form 

acervuli or induce symptoms. The authors concluded that, although Ppt1 was not 

required for growth in planta, synthesis of one or more SM-derived phytotoxins 

during colonization of maize is required to induce symptom development and 

allow sporulation (C. graminicola only produces acervuli on dead tissue). 

 

Fungal Gene Expression Associated with Pathogenicity in C. graminicola 
Tang and collaborators used laser capture microdissection to analyze the 

expression of C. graminicola genes during biotrophic colonization of maize stalks 

(Tang et al., 2006) . Using microarrays, they compared expression of the fungal 

genes in vitro with fungal genes expressed in parenchyma cells containing 

biotrophic hyphae in stalks 2 dpi. Twenty-two percent of the 267 fungal genes 

induced specifically in planta were predicted to encode secreted proteins. The 

authors suggest that these proteins could be involved in the establishment of a 

compatible interaction with the host. The most highly expressed genes in planta 

were predicted to encode two secreted phytases (Wyss et al., 1999). Phytases 

are acid phosphatases and are involved in conversion of organic forms of 

phosphorous, including phosphorylated compounds, to available inorganic 

phosphate (Abelson, 1999). Phytases could be induced as a result of an 

environment poor in phosphorous, and could enable the fungus to obtain 

phosphate from plant compounds for its growth (Mullaney et al., 2000) (Mueller 

et al., 2008). However, the precise role of phytases in the infection of maize by C. 

graminicola is not yet understood.  



14 
 

Krijger and collaborators used a method called yeast signal sequence trapping 

(YSST) to identify 103 genes encoding proteins secreted into culture media 

containing corn cell wall and leaf extracts (Krijger et al., 2008).  These authors 

were able to demonstrate that most of these genes were also induced during 

growth in planta. The genes included a laccase that was constitutively induced at 

all stages of infection, two serine proteases and one peptidase induced during 

biotrophic and necrotrophic stages, and a hydrophobin and a glucanase induced 

during necrotrophy. Twenty-six secreted protein genes lacked homology to other 

sequenced genes, and they were induced at different stages of pathogen growth.  

Four genes predicted to encode cysteine-rich proteins were also induced in 

planta, two of them during biotrophy and two during necrotrophy. The roles of 

these proteins in establishment of the compatible interaction were not tested and 

remain unknown. 

Another analysis described plant and fungal genes that were expressed during 

the first stages of colonization of maize leaves by C. graminicola. Thirteen fungal 

expressed sequence tags (ESTs) were identified, including genes associated 

with secondary metabolism, protein transport and cellular reprogramming, 

differentiation, and protein degradation. Genes associated with pathogen 

recognition, signal transduction, defense responses, protein turnover and carbon 

metabolism were expressed by maize during early infection (Sugui & Deising, 

2002).  Once again, the precise roles of these genes in the infection process are 

unknown.   

A recent study used suppressive subtractive hybridization (SSH) to identify plant 

and fungal genes expressed during biotrophic and necrotrophic infection of 

maize leaves by C. graminicola (Vargas et al., 2012). Among the 657 sequenced 

clones, 50 corresponded to C. graminicola genes. Ten of these encoded proteins 

predicted to be secreted that could be important for pathogenicity (Ellis et al., 

2009), including a hypothetical protein previously identified by Krijger and 

collaborators (Krijger et al., 2008).  Two hundred and sixteen plant genes were 

differentially regulated during plant colonization, including genes associated with 

cell cycle, defense responses, and metabolism. Genes involved in signaling and 
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transport were significantly induced 48 hpi compared to 72 hpi, which the authors 

proposed is associated with reprogramming of host cells during the switch to 

necrotrophy. The study also evaluated the expression of several previously 

characterized plant defense associated genes including PR1, PR5, PR4, a 

chitinase, and a serine protease inhibitor (Muthukrishnan et al., 2001, Wu et al., 

1994, Morris et al., 1998, Torregrosa et al., 2004). Expression of these genes 

was induced during biotrophic growth at 48 hpi, demonstrating that C. 

graminicola does not suppress defense responses during biotrophy like an 

obligate biotrophic pathogen (Doehlemann et al., 2008). These results were 

supported by observations indicating lignin deposition and accumulation of 

phytoalexins before the switch to necrotrophy.     

These studies confirm that the biotrophic and necrotrophic phases of C. 

graminicola are highly complex and involve large shifts in gene expression. 

Some of the structural aspects of biotrophy resemble obligate biotrophs on a 

superficial level, and like obligate biotrophs, hemibiotrophic Colletotrichum fungi 

produce large numbers of secreted effectors during biotrophy that seem to be 

important for manipulating host metabolism and for suppressing some defense 

responses and host cell death. However, plant defenses seem to be induced 

during the biotrophic phase of growth, and it is still unknown how the pathogen 

neutralizes these defenses and how they compare in compatible and 

incompatible interactions.  

 

Maize defense responses against C. graminicola 
In a review published in 1999 by Bergstrom and Nicholson, it was noted that little 

is known about host factors involved in resistance or susceptibility of maize to C. 

graminicola. Although a few factors associated with resistance responses have 

been identified, their precise role in the disease interaction is unclear (Muimba-

Kankolongo & Bergstrom, 2011, Balint-Kurti, 2009).  

A recent study evaluated development of C. graminicola in stalks of resistant and 

susceptible maize inbreds and hybrids (Muimba-Kankolongo & Bergstrom, 2011). 
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Reduction of symptoms in resistant lines was associated with a delay in spore 

germination, appresoria formation, penetration, maceration of vascular tissues 

(72 to 96 hpi compared to 48 hpi in susceptible cultivars) and limitation of 

pathogen growth determined as fungal biomass detected in the inoculated stalks. 

The authors propose that mediation of resistance and susceptibility could be the 

result of the maize plant producing factors that limit (in resistant) or induce (in 

susceptible) fungal growth (Stoessl, 1983). 

Defense-associated compounds that are known to be produced in maize upon 

fungal attack include zealexins, kauralexins, monorden and monocillins. 

Kauralexins, a class of diterpenoid phytoalexins, were induced by infection with 

Rhizopus microsporus, Fusarium graminearum and C. graminicola, as well as in 

response to external applications of jasmonic acid and ethylene (Schmelz et al., 

2011).  In in vitro experiments, kauralexins affected feeding preferences of the 

European corn borer Ostrinia nubilalis, and growth of C. graminicola (Schmelz et 

al., 2011). Zealexins, a type of phytoalexin, were detected in maize stalks upon 

inoculation with the maize pathogens F. graminearum, Ustilago maydis and 

Cochliobolus heterostrophus, as well as non-maize pathogens including 

Aspergillus flavus, Aspergillus sojae, and C. sublineola (Huffaker et al., 2011). 

Interestingly, among the seven assayed fungi, only C. graminicola failed to 

induce zealexin production in maize stalks. Zealexins exhibited antifungal activity 

in vitro, in some cases at lower concentrations than those found in infected maize 

tissue, but activity against C. graminicola was not tested. 

Oxylipins, a class of polyunsaturated fatty acids, are involved in plant defense 

where they are believed to act as signaling molecules or as antimicrobial 

compounds (Kachroo & Kachroo, 2009). Most of them are synthesized via the 

lipooxygenase (LOX) pathway, which oxygenates polyunsaturated fatty acids. 

Analysis of the maize genome revealed the presence of twelve LOX genes, and 

expression of most of these  is induced by pathogen attack (Kolomiets, 2004). 

However, few of these have been characterized. ZmLOX3 is induced after 

infection by Aspergillus flavus and Fusarium verticilloides (Wilson, 2001). This 

gene was found to be downregulated in maize lines resistant to aflatoxin 



17 
 

contamination, and the authors propose that products of this pathway could act 

as signaling molecules to induce aflatoxin production in Aspergillus flavus 

(Kolomiets, 2004). In fact, fungal oxylipins can act as hormone precursors to 

regulate sexual and asexual development (Champe & el-Zayat, 1989). Deletion 

of fungal oxylipin biosynthetic genes affected mycotoxin production in A. nidulans 

and pathogenicity of A. flavus on peanut seeds (Tsitsigiannis & Keller, 2006). 

Furthermore, it was recently proposed that plant-derived oxylipins could be used 

by pathogens to mediate their sporulation and mycotoxin biosynthesis 

(Christensen & Kolomiets, 2008). ZmLOX1 (Kim et al., 2003) and ZmLOX10 

(Nemchenko et al., 2006) were induced after wounding and external application 

of jasmonic acid (JA), which is a type of oxylipin (Kachroo & Kachroo, 2009). 

ZmLOX10 was also induced upon external application of salicylic acid (SA), 

abscisic acid (ABA), and inoculation with Cochliobolus carbonum, suggesting 

that it plays a role in maize responses against necrotrophs (Nemchenko et al., 

2006). Recently, maize mutants lacking the ZmLOX10 gene were shown to be 

more resistant to A. flavus and C. graminicola, and the authors propose the 

possibility that fungi developed the ability to utilize LOX pathway-derived 

compounds to promote pathogenicity (Christensen & Kolomiets, 2008).  

Monorden and monocillins I, II and III were recently identified in maize stalks 

inoculated with C. graminicola (Wicklow et al., 2009). Monorden, also known as 

radiciol, is a fungal secondary metabolite first identified in the Ascomycete 

Monosporium sp, isolated from soil samples in Africa in 1953 (Delmotte & 

Delmotte-Plaquee, 1953). Monocillins are intermediates in the radicicol 

biosynthetic pathway (Zhou et al., 2010). In vitro analyses demonstrated their 

antifungal activity against maize stalk-rot and foliar pathogens (Wicklow et al., 

2009). Monorden inhibits heat-shock protein 90 by competition with ATP for the 

binding site required for activation of Hsp90 (Roe et al., 1999), suggesting that it 

can inhibit not only other fungi, but also plant Hsp90, interfering with mediation of 

defense responses. Wicklow and collaborators propose that C. graminicola 

secretes monorden and monocillins during early penetration and biotrophic 

stages of maize infection to suppress basal defense responses.  
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The availability of genome sequences for Z. mays and C. graminicola, and 

numerous fungal insertional mutants in our lab that are interrupted at different 

phases of hemibiotrophic development, make the economically important 

anthracnose disease interaction a useful model for exploration of the complexity 

of hemibiotrophy. Although many different approaches have been utilized to 

reveal aspects required for successful establishment of biotrophy and a transition 

to necrotrophy, the factors the regulate this complex lifestyle remain largely 

unknown. Development of a standardized assay to observe the cytology of the 

infection process at different stages of living wild type and mutant pathogen 

development in living host tissues would provide a useful tool to study this 

pathosystem in detail.  In chapter 2 of this dissertation, I will describe such an 

assay, and the evidence it revealed for the induction of susceptibility in maize by 

C. graminicola. 
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Chapter 2 

Evidence for a diffusible factor that induces susceptibility in the 
Colletotrichum/maize disease interaction 

 

Introduction 
The fungal genus Colletotrichum includes more than than 600 species that infect 

a wide variety of plant hosts (Farr & Rossmann, 2013).Within this group, C. 

graminicola, causal agent of anthracnose leaf blight (ALB) and anthracnose stalk 

rot (ASR) of maize is classified as one of the most economically important 

species, contributing to yield losses of up to 1 billion dollars in the United States 

alone in 2011(Bergstrom & Nicholson, 1999, Warren & Nicholson, 1975, Frey et 

al., 2011). C. graminicola is an intracellular hemibiotrophic pathogen. It begins 

the infection process as a biotroph, with primary invasive hyphae that are 

separated from the living host cytoplasm by a membrane. It then switches to 

necrotrophy, which is marked by the collapse of host cells, production of 

secondary invasive hyphae that are no longer enclosed by a membrane, and 

development of anthracnose symptoms (Venard & Vaillancourt, 2007a, Mims & 

Vaillancourt, 2002, Wharton et al., 2001, Bergstrom & Nicholson, 1999). 

The mechanisms involved in establishment of a successful C. graminicola-maize 

biotrophic interaction and further progression to necrotrophy are poorly 

understood (Krijger et al., 2008, Horbach et al., 2009, Thon et al., 2002). 

Obligately biotrophic plant pathogens reprogram host cells, and suppress cell 

death and host defense responses in order to obtain the energy they require from 

living plant cells (Doehlemann et al., 2008, Eichmann et al., 2004, Doehlemann 

et al., 2009). In contrast, many necrotrophs take advantage of plant defense 

responses to enhance their pathogenicity and to induce cell death by the 

secretion of phytotoxic secondary metabolites (SM) (Rolke et al., 2004, Cessna 

et al., 2000, Amselem et al., 2011, Govrin & Levine, 2002).  
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The question arises as to whether the hemibiotrophic Colletotrichum fungi 

suppress cell death like obligate biotrophs do, or induce cell death like 

necrotrophs.  The limited evidence in the literature suggests that they do both, 

first suppressing, and then later inducing cell death.  For example, CgDN3, a 

small secreted protein that suppresses the hypersensitive response (HR), is 

required for establishment of C. gloeosporioides infection in Stylosanthes 

guianensis (Stephenson et al., 2000). Orthologs of CgDN3 were recently 

identified in C. orbiculare and C. higginsianum, and they suppressed cell death 

caused by exposure to fungal inducers of host cell necrosis (Yoshino et al., 2012, 

Wharton et al., 2001) The genome of C. graminicola encodes several orthologs 

of these necrosis inducers, though it does not appear to contain an ortholog of 

CgDN3 (Wharton et al., 2001).  Nonetheless, it seems reasonable to assume that 

C. graminicola behaves similarly to its Colletotrichum relatives, suppressing cell 

death during penetration and establishment of biotrophy, and then inducing (or at 

least not suppressing) cell death later, at the transition to necrotrophy.  Both 

processes are likely to be regulated by secreted compounds (including proteins 

and/or secondary metabolites), the production of which is tightly regulated to 

provide the correct function at the appropriate time and place during the 

interaction.   

In a previous study designed to discover fungal genes required for the 

establishment of a compatible C. graminicola-maize interaction, a restriction-

enzyme mediated insertional (REMI) mutagenesis approach was utilized (Thon 

et al., 2000). This resulted in identification of a gene required for pathogenicity to 

maize stalks and leaves known as Colletotrichum Pathogenicity Related 1 (Cpr1) 

(Thon et al., 2000). The predicted CPR1 protein is similar to the microsomal 

eukaryotic peptidase subunit Spc3p from Saccharomyces cerevisiae (E= 1e-22), 

one of the two essential components of the yeast signal peptidase complex 

(SPC) (Thon et al., 2002). The eukaryotic SPC is responsible for the processing 

of signal peptides as polypeptides cross the endoplasmic reticulum (ER) 

membrane (Fang et al., 1997, Meyer & Hartmann, 1997), the first step in protein 

transport and secretion (Zimmermann et al., 2006). Thus, it is anticipated that 
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CPR1 has a role in protein transport and secretion in C. graminicola. The REMI 

insertion occurred in the 3’UTR of the Cpr1 gene, and resulted in a leaky 

mutation in which expression was significantly reduced, but not completely 

eliminated in culture (Thon et al., 2002). The cpr1 mutant was normal, other than 

a slight reduction in growth rate, when compared to the wild type (WT) in vitro 

(Thon et al., 2002). Moreover, there were apparently no significant differences 

between the mutant and WT strains up to 48 hours post inoculation (hpi) in maize 

leaves (Mims & Vaillancourt, 2002).  However, by 72 hpi the WT had entered the 

necrotrophic phase of growth, characterized by the presence of thin, secondary 

hyphae, collapse of maize cells, and the appearance of the first small lesions. In 

contrast, hyphae of the cpr1 mutant remained confined to a few cells, and there 

was no widespread tissue collapse or symptom development (Mims & 

Vaillancourt, 2002). Based on these observations, it was hypothesized that the 

cpr1 mutant was altered in the secretion of compounds involved in biotrophic 

colonization and/or the switch to necrotrophy, but not required for initial 

penetration, or for growth in vitro (Thon et al., 2002, Mims & Vaillancourt, 2002).  

I propose two possibilities that could explain the behavior of the cpr1 mutant.  

The first possibility is that the mutant fails to produce one or more substances 

that promote susceptibility during early infection.  An alternative possibility is that 

the mutant produces inducers of defense and host cell death at an inappropriate 

time and place, that is, early during the infection process.  

My first goal was to characterize and compare the phenotypes of the cpr1 mutant 

and WT strain when inoculated on detached maize leaf sheaths. Initially 

developed by Sakamoto in 1950 (Sakamoto, 1950), similar detached leaf sheath 

assays have been extensively used to study plant-pathogen interactions.  These 

assays provide a unique advantage because they facilitate detailed microscopic 

observations of living host and pathogen tissues, interacting in unfixed samples 

(Koga, 1994). Use of the optically clear leaf sheaths allowed unprecedented 

observation of details of the process of infection and colonization of rice by 

Magnaporthe oryzae (Koga, 2004, Kankanala et al., 2007, Takahashi et al., 

1999), and of sorghum by C. sublineola (Wharton & Julian, 1996, Wharton et al., 
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2001). Use of leaf sheath assays has made possible the recent development of 

novel concepts in M. oryzae effector biology (Mosquera et al., 2009b, Khang et 

al., 2010). It has been reported that fungal penetration and colonization events 

are more synchronous in leaf sheaths than in leaf blades (Koga, 1994, Mosquera 

et al., 2009b, Berruyer et al., 2006). I used maize leaf sheath assays to test the 

hypothesis that cpr1 is altered in the production of compounds that (a) suppress 

defense responses and promote compatibility (like a biotroph), or (b) induce host 

defense responses and cell death (like a necrotroph).  To address this question, I 

conducted co-inoculation experiments. The observation that challenging a plant 

with a compatible pathogen can compromise resistance and lead to infection by 

a normally incompatible pathogen was first made by Tsuchiya and Hirata in 1973 

(Tsuchiya & Hirata, 1973). This phenomenon, which has been observed with 

compatible and incompatible strains of powdery mildew and rust fungi, is known 

as induced susceptibility (Ouchi et al., 1974b, Kunoh et al., 1990, Lyngkjær & 

Carver, 1999a, Olesen et al., 2003). Observations have been reported in other 

pathosystems in which inoculation with an incompatible strain has generated 

resistance against a normally pathogenic strain (Kunoh et al., 1990, Freeman & 

Rodriguez, 1993, Ouchi et al., 1976a).  This phenomenon is known as localized 

induced resistance. 

I predicted that if the cpr1 mutant is failing to secrete factors normally involved in 

suppression of maize defense responses and cell death during establishment of 

biotrophy, co-inoculation with the WT strain would allow the cpr1 mutant to grow 

(induced susceptibility). On the other hand, if the cpr1 mutant is inappropriately 

producing inducers of defense responses and cell death, co-inoculation with the 

mutant would prevent the WT C. graminicola from colonizing (localized induced 

resistance).  

Materials and Methods 

Fungal strains, fungal transformation, and spore suspensions 

All fungal strains used in this study are listed in Table 2.1. C. graminicola strain 

M1.001 (a.k.a. M2) was the WT (Forgey, 1978). A strain of M1.001 expressing 
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modified red-fluorescent protein (mRFP) was obtained by using a polyethylene 

glycol-mediated transformation protocol (Thon et al., 2000).  M1.001 protoplasts 

were transformed with 3 µg of EcoRI-linearized pCA56, a plasmid containing the 

mRFP1 gene under the control of the TOXA promoter from Pyrenophora tritici-

repentis, and the hygromycin B phosphotransferase gene from Escherichia coli 

as a selectable marker (Andrie et al., 2005). Five different transformants were 

recovered and tested for pathogenicity. All behaved similarly in planta, and the 

strain with the strongest and most consistent fluorescence was chosen for 

subsequent analysis. The cpr1 mutant strain was derived from M1.001 by REMI 

mutagenesis (Thon et al., 2000).  The complemented cpr1 mutant strain was 

produced by transformation of the cpr1 mutant with a 3.6 kb DNA fragment 

containing the WT Cpr1 gene (Thon et al., 2002). Fluorescent strains cpr1-

ZsGreen and CgSl1-GFP1, the latter derived from CgSl1, a C. sublineola strain 

pathogenic to sorghum but nonpathogenic on maize, were previously described 

(Venard & Vaillancourt, 2007a). All strains were routinely grown on potato 

dextrose agar (PDA, Difco) and maintained at 23°C under continuous 

illumination. For plant inoculations, falcate spores were harvested and prepared 

as described (Venard & Vaillancourt, 2007a). Spore suspensions were adjusted 

to a final concentration of 5 x 105 spores/ml, unless stated otherwise. For 

experiments involving heat-killed spores, spore suspensions were boiled in 1.5 

ml Eppendorf tubes for 5 min, then washed once by centrifugation, and 

resuspended in fresh sterile water. Heat-inactivated spores were produced by 

incubating the spore suspensions at 50°C for 10 min, and rinsed as described 

above (Bell & Presley, 1969). 

Plant growth  

The maize inbred Mo940 was used for this study. Mo940 is highly susceptible to 

ALB (Warren & Nicholson, 1975, Nicholson R. L, 1976) and was used previously 

to characterize the growth and pathogenicity of the M1001, cpr1 mutant and 

Cpr1-C complemented strains in intact leaves (Thon et al., 2002). Plants were 

grown in the greenhouse in 3.8 x 21 cm Containers (Super SC-10 UV stabilized 

Stuewe & Sons, Inc. Oregon, USA), in a mixture of three parts Pro-Mix BX 
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(Premiere Horticulture, Ltd, Riviere du Loup, PQ, Canada) and two parts sterile 

topsoil. The plants were grown to the V4 stage under 14 hours of light. The 

seedlings were watered daily to saturation and fertilized two to three times per 

week with a solution of 150 ppm of Peters 20-10-20 (Scotts-Sierra Horticultural 

Product Co., Marysville, OH), beginning one week after seedling emergence.  

Leaf sheath inoculations 

Leaf sheaths from the second leaf of V3 maize seedlings were used. The plants 

were cut at the soil line and the tissue was processed and inoculated 

immediately, using the protocol described by Kankanala and collaborators 

(Kankanala et al., 2007), with the following modifications. Sheath pieces were cut 

into 5 cm segments, unfolded gently to expose the inner epidermal layer, and 

inoculated with 20 µl of a spore suspension. The inoculation drop was placed on 

the epidermis directly above the midrib, where it remained until observation. 

Inoculated sheaths were suspended horizontally in a Petri plate containing 

moistened filter paper (Whatman No.1) and incubated at 23°C with continuous 

illumination. For co-inoculation experiments using mixed spore suspensions, 

equivalent amounts of each individual suspension were combined prior to 

inoculation, and 20 µl of the mixture was inoculated as previously described. For 

co-inoculation experiments in which the spore drops were separated, 10-µl drops 

of each spore suspension were inoculated on the leaf sheath at a distance of 

approximately 250 mm apart. I determined that the average length of a maize 

epidermal cell was 309 ± 20 µm, by using the measure function in the AxioVision 

software (V4.8) to measure 11 epidermal cells on each of 15 leaf sheaths (165 

cells). I multiplied this average by the number of cells between the inoculation 

drops on 20 sheaths at 24 hpi to determine the average distance between the 

drops. Individual inoculated leaf sheaths were prepared and observed under the 

microscope at various time points up to 72 hpi, as described below.    

Paraquat and freeze injury experiments 

The herbicide paraquat (1,1'dimethyl-4,4'-bipyridinium ion) was used to induce 

systemic cell death in maize leaf sheaths. Equivalent volumes of a paraquat 
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stock solution (10mM) and a spore suspension were either combined before 

inoculation, or co-inoculated as separate drops approximately 250 mm apart.  

For freeze-injury experiments, a metallic rod (3 mm diameter) dipped in liquid 

nitrogen was used to produce a localized injury in the center of the unfolded 

sheath, and a 10 µl drop of inoculum was immediately applied either to the same 

location, or to a location approximately 250 mm from the freeze-treated spot.  

Fungal colonization was assessed at 24 and 60 hpi. 

Timed experiments 

Ten-microliter drops of mutant spore suspensions were inoculated on maize leaf 

sheaths. At 0, 12, 24, or 36 hpi, a 10 µl drop of a WT spore suspension (or a drop 

of water as a control) was added at a distance of approximately 2.5 mm from the 

mutant inoculum drop. Control sheaths that were detached at time 0 were co-

inoculated at 0, 12, 24, or 36 hours after detachment simultaneously with the 

mutant and WT (or water controls). All treatments were observed 60 h after the 

WT inoculum was added.   

Spore concentration experiments 

Three different inoculum concentrations (5 x 105, 1 x 105, and 5 x 104 spores/ml) 

of the WT and mutant strains were co-inoculated on maize leaf sheaths in all 

possible combinations. Fungal colonization was evaluated at 60 hpi.  

Light microscopy and staining 
Leaf sheaths were rinsed gently with deionized water in order to remove any 

superficial growth, and trimmed before observation, using the method described 

in (Kankanala et al., 2007). Sheath pieces were mounted on slides under cover 

slips with the intact epidermal surface uppermost.  

To detect the presence of H2O2, 3,3"-diaminobenzidine (DAB) staining was 

performed (Orozco-Cardenas & Ryan, 1999) with a few modifications. Non-

trimmed leaf sheaths were stained for 8 hours in a DAB solution (1mg/ml), pH 

3.8, at 25˚C under constant light. Sheaths where cleared in 96% boiling ethanol 
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for 5 minutes and then transferred to fresh 96% ethanol for 4 hours. Samples 

were mounted in 50% glycerol for observation.  

Plant cell viability was evaluated by plasmolyzing with a solution of 0.75 M 

sucrose (Kankanala et al., 2007), or by using the viability dye neutral red. Leaf 

sheaths were stained for 1 hour in a neutral red solution (0.01%, 0.85M KNO3), 

pH 7.5 (Stadelmann & Kinzel, 1972). Metabolically active cells plasmolyzed and 

accumulated neutral red inside the vacuole (Wharton & Julian, 1996). Fungal 

hyphae inside leaf sheaths were stained with lactophenol-trypan blue (Tong et 

al., 2009). 

Epifluorescence and confocal laser scanning microscopy 

Epifluorescence microscopy was conducted by using an Axioplan2 microscope 

(Carl Zeiss Microimaging, Inc., Thornwood, NY) equipped with Chroma filter sets 

for GFP and DsRed (Chroma Technology Corp, Rockingham, Vt). Micrographs 

were obtained using an Axiocam MR monochromatic digital camera and the 

AxioVision software version 4.8. Software and filter parameters were as 

described by Tsai and collaborators (Tsai et al., 2005). 

Confocal laser scanning micrographs were acquired on a TCS SP2-AOBS 

microscope (Leica Microsystems, Bannockburn, Ill.). To visualize and image 

GFP, it was excited at 488nm, and dsRed was excited at 543nm, using 

helium/neon lasers. Emission conditions and filters are described in detail in 

(Goodin et al., 2002).  

Assessment of fungal growth and development in planta 

Growth and development of fungal strains in maize leaf sheaths was routinely 

assessed at 20, 48 and 60 hpi, unless noted otherwise. More than 1,000 infected 

leaf sheaths were observed for this study. For statistical comparisons of the 

developmental timelines for the various strains in planta, 100 individual infection 

sites were evaluated on each of ten individual sheaths for each strain at 18, 24 

and 48 hpi (a total of 1000 infection sites per time point per strain). To statistically 

compare the relative degree of colonization by the strains, the number of host 

cells colonized from each of 20 successful penetration sites was measured for 10 
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individual leaf sheaths (a total of 200 sites for each strain) at 48 hpi for the 

M1.001, WT-mRFP, and Cpr1-C strains, and at 60 hpi for the cpr1 mutant and 

cpr1-Zsgreen strains. To quantify colonization by the cpr1 mutant in the co-

inoculation experiments, the number of host cells colonized from each of 20 

successful penetration sites was determined on 10 individual leaf sheaths (a total 

of 200 sites) at 60 hpi. All experiments for statistical analyses were repeated at 

least twice. 

Statistical Analysis 

Differences among treatments were assessed using analysis of variance with 

SAS statistical package version 9.3 (SAS Institute Inc). Since many groups were 

compared, one-way analysis of variance was used, and if significant effects were 

detected, multiple comparisons of means were performed using Tukey and least 

significant difference (LSD) methods. Results were expressed as means with 

their corresponding standard deviations, and differences among or between 

means were considered to be significant if the probability, p≤0.05. 

Results 

The cpr1 mutant strain germinated and penetrated maize epidermal cells as 

efficiently as the WT, but penetration was delayed   
The percentage of spores that germinated to produce appressoria and primary 

infection hyphae over time in maize sheaths was measured for each strain. 

Development of the fluorescently-tagged strains did not differ statistically in this 

respect from the unlabeled parental strains, and the complemented cpr1 strain 

containing an ectopic copy of the full-length Cpr1 gene (Thon et al., 2002) was 

not statistically different from the WT strain (Figure 2.1). At 12 hpi, the cpr1 

mutant strain had a slight, but significant, delay in germination when compared 

with the WT (Figure 2.1). However, germination of the mutant was not reduced in 

comparison with the WT-mRFP or Cpr1-C strains (Figure 2.1). By 24 hpi, 41% of 

the WT appressoria had progressed to the production of invasive primary 

infection hyphae. At the same time point, 93% of the cpr1 mutant spores had 

produced appressoria, but less than 5% of these had produced visible infection 
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hyphae (Figure 2.1).  At 48 hpi, 36% of the cpr1 mutant infection sites had 

progressed to the production of invasive primary hyphae, which is not statistically 

different from the rates of colonization achieved by the WT 24 h earlier (Figure 

2.1). It could not be determined if the WT had initiated additional infections 

between 24 and 48 hpi, due to the extensive tissue colonization at that point from 

the original sites. 

Inoculation of detached maize leaf sheaths with the CgSl1-GFP nonpathogen 

strain resulted in the production of appressoria by 24 hpi, but these appressoria 

only rarely (< 1%) produced primary infection hyphae within 48 hpi, and these 

rare hyphae never grew beyond the initially infected cell, even up to 96 hpi (not 

shown).  

The mutant did not establish a normal biotrophic infection, or progress to 

necrotrophy in leaf sheaths 

Inoculation of maize leaf sheaths with the WT, WT-mRFP, or Cpr1-C strains 

resulted in a visible water-soaked lesion at the inoculation site within 72 hpi 

(Figure 2.2A).  In contrast, inoculation with the cpr1 mutant, cpr1-Zsgreen, or 

CgSl1-GFP strains never resulted in the production of a visible lesion, even when 

the sheaths were retained for up to 96 hpi (Figure 2.2A). 

Sucrose plasmolysis and the viability stain neutral red were used to determine 

the status of the host cells during the process of pathogen infection. Twenty 

hours after inoculation, apparently mature melanized appressoria of the WT and 

the cpr1 mutant strains had formed on the inoculated tissue (Figure 2.2B). Host 

cells beneath and around these appressoria plasmolyzed and took up neutral red 

stain, indicating that they were alive. Forty-eight hours after inoculation, most WT 

infections had already entered and grown beyond one host cell via broad, 

branching hyphae, which narrowed when they passed across the apparently 

intact host cell walls (Figure 2.2B).  Nearly half of the successful infections 

(45.7%) had colonized at least three host cells beyond the point of infection, and 

nearly 5% of the infections had already colonized five cells beyond the infection 

point (Table 2.2). The average number of cells beyond the infection point 
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colonized by the WT at 48 hpi was 3.8. The WT-mRFP and the Cpr1-C strains 

did not differ significantly from the WT in this respect. Thirty-six percent of the 

cpr1 mutant appressoria had also entered host cells and produced primary 

infection hyphae by 48 hpi. However, even at 72 hpi, 96% of these mutant 

infections remained confined to a single host cell. The maximum number of cells 

beyond the infection site colonized by the mutant strains at 72 hpi was three, and 

less than 1% of the infection sites had progressed that far (Table 2.2). The 

average number of cells beyond the infection point colonized by the cpr1 mutant 

strain at 72 hpi was only 0.6. The average for the cpr1-Zsgreen strain was not 

significantly different. 

A combination of neutral red staining and plasmolysis confirmed that at least 

some of the host cells were alive at the time of invasion by either the WT or 

mutant strains (Figure 2.2B). Furthermore, most of the surrounding cells were 

also alive. Approximately 60 hours after inoculation, the centers of the WT 

colonies switched to necrotrophy, indicated by the appearance of thin, secondary 

hyphae, obvious tissue maceration and a lack of plasmolysis or staining of host 

cells (Figure 2.2B). The edges of the colony, however, remained biotrophic, 

indicated by the continued ability of newly invaded cells and cells beyond the 

colony borders to plasmolyze and take up the neutral red stain (Figure 2.2B). 

Leaf sheaths were routinely monitored up to 96 hpi, and on several occasions 

were retained for up to six days, but the cpr1 mutant never produced symptoms 

on the leaf sheaths. The nonpathogen C. sublineola strain produced appressoria 

normally on maize sheaths, but only very rarely produced visible infection 

hyphae.  Papillae could often be seen in the epidermal cells directly beneath the 

appressoria. The epidermal cells beneath and surrounding the appressoria 

appeared to be alive (See Figure 2.4N in this dissertation), while cells containing 

rare infection hyphae no longer plasmolyzed. 

Pattern of ROS accumulation differs in mutant interactions 
Plants respond to pathogen attack by accumulating ROS, especially H2O2 

(Vargas et al., 2012). I used DAB staining to detect H2O2 production in sheaths 
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inoculated with WT and mutant strains. Leaf sheaths were inoculated as 

described and stained for observation at 12, 24, and 48 hpi. DAB precipitates 

could be observed by 12 hpi.  The intensity of staining at this time was generally 

stronger in the WT than in the mutant inoculations (Fig 2.3 A,D). There was a 

noticeable increase in the amount of DAB staining by 24 hpi. Interestingly, a 

distinctive halo pattern was sometimes observed surrounding the penetration 

sites of the WT strain, but not the mutant strain, where a more diffuse 

accumulation of DAB-stained vesicles was typical (Figure 2.3 B,E). Forty-eight 

hours after inoculation, the halo pattern had disappeared, and very few 

precipitates could be detected in the WT-inoculated sheaths (Figure 2.3C). In 

contrast, an intense accumulation of DAB precipitates, especially in the cell walls 

of penetrated cells and within numerous vesicles beneath penetration sites, could 

be detected in the cpr1-mutant inoculated tissue (Figure 2.3F).  

The mutant strain and the nonpathogen C. sublineola strain complete their life 

cycles on killed maize sheath tissue 

To test the role of host cell viability and active host defenses, I inoculated freeze-

killed and paraquat-treated leaf sheaths. Freezing was used to induce localized 

tissue damage, while paraquat, which is translocated, induced systemic damage. 

Both treatments resulted in the loss of ability of the affected host cells to 

plasmolyze (not shown). Both treatments allowed colonization by the mutant 

cpr1-ZsGreen strain, and the nonpathogen Cgsl1-GFP (not shown). The type 

and degree of colonization by these strains did not differ noticeably from the WT-

mRFP strain. Colonization of damaged tissues was dramatically accelerated, 

with all three strains growing beyond the first invaded cell within just 24 hpi. By 

60 hpi, all three strains had extensively colonized the freeze-killed and paraquat-

treated tissues, and individual hyphae could no longer be easily distinguished. 

Freeze-killed tissue supported the formation of acervuli by all three strains, 

demonstrating that the cpr1 mutant strain and the nonpathogenic C. sublineola 

strain are capable of completing their entire life cycles on maize sheath tissue, in 

the presumed absence of active host responses.   
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Co-inoculation of leaf sheaths with the WT strain induced susceptibility to the 

cpr1 mutant 

After observing the growth of the mutant and WT strains separately, I tested the 

effect of co-inoculating the strains on living maize leaf sheaths. So that they 

could be distinguished within the host tissue, the AFP tagged strains were used 

for co-inoculations and all following experiments, unless stated otherwise. 

Behavior of these strains on maize leaf sheaths resembled the non-tagged 

parental strains. Seventy-two hours after inoculation, the WT-mRFP strain had 

colonized more than 6 cells, while the cpr1-ZsGreen remained as appressoria or 

confined in the first invaded epidermal cell (Figure 2.4 A-C). 

In experiments in which WT-mRFP and cpr1-ZsGreen spores were mixed in the 

same inoculation drop the latter was routinely observed growing beyond the first 

invaded cell, colonizing up to three cells by 60 hpi (not shown). After observing 

more than 100 co-inoculations, I concluded that the cpr1-ZsGreen strain only 

entered these additional cells when they were also colonized by the WT-mRFP, 

and no longer plasmolyzed. Co-inoculation with the mutant strain did not prevent 

the WT from colonizing maize normally (i.e. there was no evidence for localized 

induced resistance).  

I next co-inoculated the mutant and WT strain on the same leaf sheath, but with 

the drops of inoculum separated. The drops were placed as close to one another 

as possible without having them drawn together by water tension (Figure 2.4 D). I 

determined that this distance was approximately 2.5 mm. I discovered that this 

co-inoculation “at a distance” induced susceptibility of the maize tissues to the 

cpr1 mutant at 60 hpi. On average, about a third of the successful penetrations 

progressed from the initially infected cell to colonize two or more additional cells 

(Figure 2.4 E,F, Figure 2.5)  In control sheaths in which cpr1-ZsGreen spore 

drops were paired with drops of water, growth was similar to that observed 

previously, in the absence of co-inoculation (Figure 2.5).  Fewer than 5% of the 

mutant infections in these control inoculations grew beyond the first penetrated 

cell, even up to 72 hpi (Figure 2.5). Similar results were obtained when I used the 

untagged strains and the Cpr1-C strain in co-inoculations (not shown). 
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Plasmolysis (Figure 2.4 I-J) and vital staining (Figure 2.4 K-L) revealed that most 

of the host cells surrounding and between the WT and mutant colonies in the co-

inoculations were alive (Figure 2.4 G-L). A localized freeze injury made at a 

distance of 2.5 mm from the inoculation drop did not induce susceptibility to the 

mutant (not shown).   

Co-inoculations at a distance did not induce susceptibility to the nonpathogen 
When spores from the nonpathogen and WT-mRFP were mixed in the same 

inoculation drop, CgSl1-GFP routinely penetrated and colonized the maize cells 

(not shown).  However, as I had observed with the cpr1-Zsgreen strain 

previously, this only occurred when the cells had also been colonized by WT-

mRFP and didn’t plasmolyze. When spores from the nonpathogen and cpr1-

Zsgreen were mixed, both strains germinated and form appressoria, but neither 

strain colonized the tissue to a greater extent than the controls (not shown).  

To test interactions at a distance, I conducted triple-inoculation experiments, with 

spore suspensions of the nonpathogen, mutant, and WT strains inoculated at 

separate locations along the same leaf sheath (Figure 2.4 M-O). At 60 hpi, the 

growth of the nonpathogen was limited and indistinguishable from controls 

inoculated with drops of water on the sheaths (Figure 2.4 N). Rarely the 

nonpathogen produced a primary infection hypha, but in no case (N=50 sheaths) 

was it observed to grow beyond one cell (Figure 2.6). Growth of WT-mRFP in 

triple inoculations was normal, and induced susceptibility similar to that observed 

previously in the double inoculations was observed for the cpr1-Zsgreen strain 

(Figures 2.4 O and Figure 2.6). Co-inoculation of cpr1-ZsGreen and CgSl1-GFP1 

at a distance, in the absence of the WT, did not induce susceptibility to either 

strain (not shown).  

Induced susceptibility is dependent on distance, spore concentration, and timing 

of inoculation 
The induced compatibility effect diminished as the distance between the 

inoculum drops was increased (Table 2.3). When the WT and mutant are initially 

separated by a distance of 2.5 mm, 33.4% of the infection sites grew beyond the 
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second colonized cell, compared to only 4% in the control. However, when the 

distance between the drops was doubled or tripled, the growth of the cpr1 mutant 

was no longer different from the control.  

The induced susceptibility effect depended on the initial spore concentration of 

both strains. A five-fold reduction in the WT inoculum, or a ten-fold reduction in 

either strain, significantly reduced the growth of the cpr1 mutant in co-

inoculations (Table 2.4). 

Induced susceptibility was also affected by the amount of time that had elapsed 

between application of the mutant and WT inocula. The degree of colonization 

was significantly decreased when the mutant was alone for 12 h before the WT 

inoculum was added, and induced susceptibility was no longer observed when 

the time between inoculations was increased to 24 or 36 h (Figure 2.7). Control 

sheaths indicated that even by 96 hpi, the cpr1 mutant inoculated alone only 

rarely (<5%) grew beyond the initially colonized cell. 

Other mutant strains that are reduced in pathogenicity do not induce 

susceptibility to the cpr1 mutant; the WT does not induce susceptibility to these 

other mutant strains 
Several additional mutants of C. graminicola were tested for their effects in co-

inoculations at a distance.  A pyrimidine auxotrophic mutant (Rasmussen et al., 

1992), a melanin-deficient mutant (Rasmussen & Hanau, 1989) and several 

REMI mutants with unknown genetic defects, were tested (Thon et al., 2000).  All 

of these mutants were diminished in their ability to colonize leaf sheaths. By 60 

hpi, spores of M1.201 (Pyr-) failed to germinate on the surfaces of leaf sheaths, 

while REMI mutants 90-23 and 84-6 produced melanized appressoria but failed 

to penetrate the tissue. REMI mutant 80-37 only developed very short invasive 

hyphae, while 83-45 and 84-14 were able to produce primary infection hyphae of 

a normal size that, however, remained confined to the first invaded epidermal 

cell. The melanin-deficient mutant M1.502 produced non-melanized appressoria, 

but was eventually able to penetrate and colonize up to 2-3 epidermal cells by 60 

hpi.  The REMI mutant 9-4 was also delayed in penetration compared to the WT, 
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and colonized up to 2-3 cells by 60hpi. Both M1.502 and 9-4 mutants were visibly 

reduced in penetration efficiency and invasive growth rate compared with the 

WT. 

None of these mutants were able to induce susceptibility to the cpr1 mutant in 

co-inoculations at a distance, and the WT did not induce an increase in 

susceptibility to any of these mutants (not shown).  

Heat-killed spores do not induce susceptibility 

Previous studies have demonstrated that heat-killed or attenuated spores can 

still affect the outcome of subsequent pathogen inoculations (Bell & Presley, 

1969). My results demonstrated that killed or inactivated WT spores did not 

induce susceptibility, and did not differ from the water controls when used in co-

inoculation experiments with the cpr1 mutant (not shown). 

 

Discussion 
Secreted compounds play important roles in fungal development and in the 

successful establishment of fungal interactions with plants (Condon et al., 2013, 

Koeck et al., 2011, Djamei et al., 2011).  However, the mechanisms that regulate 

the production and secretion of these substances in planta are largely unknown.  

In this study, I used detached maize sheath assays to study the behavior of the 

nonpathogenic C. graminicola cpr1 mutant, which is predicted to be deficient in 

protein transport and secretion (Thon et al., 2002). The optically clear unfixed 

tissues, in which both the plant and pathogen were alive, allowed me to observe 

infection and colonization by both the mutant and the WT with unprecedented 

clarity (Mosquera et al., 2009b, Koga, 2004). Earlier studies using maize leaf 

blades and stalks (Mims & Vaillancourt, 2002, Thon et al., 2000, Thon et al., 

2002, Venard & Vaillancourt, 2007a) indicated that the cpr1 mutant resembled 

the WT during the first stages of infection and did not switch to necrotrophy; 

however, it had not previously been possible to observe the mutant in such 

detail.  
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When plant tissues are detached, they begin to senesce, and it is possible that 

assays using detached tissues will differ from those on the intact plant 

(Greenshields et al., 2007, Audenaert et al., 2002, Benito et al., 1998). 

Nevertheless, detached leaf assays are frequently used for plant pathological 

studies (Fukuoka et al., 2009, Benito et al., 1998, Audenaert et al., 2002, Khang 

et al., 2010).  C. graminicola infection and colonization of detached maize leaf 

sheaths closely resembled previous descriptions of the same isolate infecting 

intact leaf blades (Vargas et al., 2012). Appressoria were produced by 12 hpi, 

and melanized, mature appressoria were detected at 18-24 hpi. Thick, primary 

hyphae were observed by 48 hpi. These broad hyphae colonized up to five cells 

beyond the initial infection site, usually entering each new cell biotrophically, as 

evidenced by plasmolysis and vital staining assays. Colonized cells lost their 

ability to plasmolyze very quickly, usually before the hyphae entered the adjacent 

cell, indicating C. graminicola exists as a true biotroph only very briefly in these 

cells. The appearance of thin, secondary hyphae, marking the switch to 

necrotrophy, occurred at approximately 60 hpi, prior to obvious tissue collapse 

and lesion development, which occurred by 72 hpi.  It has sometimes been 

stated that the switch to necrotrophy in C. graminicola occurs synchronously at 

approximately 72 hpi (Sugui & Deising, 2002, Horbach et al., 2009, Vargas et al., 

2012). However, my observations indicated that growth of C. graminicola 

resembles instead the colonization of sorghum by C. sublineola in which host cell 

death and cell wall degradation was localized to the center of the colony, while 

the colony margins continued to expand biotrophically (Wharton et al., 2001). 

Thus, biotrophy and necrotrophy co-exist in C. graminicola colonies in planta. 

The similarity in timing and events with descriptions of the disease on intact 

tissues in the literature gives me confidence that the sheath assay provides a 

relevant view of the disease process.  Additionally, I note that the detached 

tissues continued to plasmolyze, and did not become susceptible to the cpr1 

mutant or to the nonpathogen C. sublineola, even when they had been detached 

for up to six days. This indicates that the cells remained alive for this period, and 

retained enough metabolic activity to express sufficient levels of resistance to 
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prevent growth by these strains. This differs from reports of detached leaf assays 

in Arabidopsis, where non-pathogens were able to infect the detached leaves 

(Greenshields et al., 2007). Overall, it is my opinion that the advantages of the 

detached maize leaf sheath assay outweigh any disadvantages.  

Germination and appressorial production were comparable in the mutant and WT 

strains. The mutant was slightly, but significantly, delayed in the formation of 

appressoria at 12 hpi when compared with the WT, but this small delay 

disappeared in comparisons with the fluorescently-labeled WT or complemented 

strains, both of which displayed normal pathogenicity. Major differences were 

seen in the timing of penetration and production of primary hyphae.  This process 

was delayed by about 24 hours in the mutant compared with the WT.  However, 

the efficiency of penetration did not appear to be negatively affected; 

approximately 40% of infection sites ultimately resulted in successful 

penetrations for both the WT and the mutant.  

The delay in penetration by the mutant could result from an inability to secrete 

compounds required during the early stages of colonization. Komura and 

collaborators (Komura et al., 1990) proposed that in powdery mildew, 

suppressors of host defenses were released at or before appressorial maturity. 

There is evidence that Colletotrichum appressoria also secrete effector proteins 

before penetration (Kleemann et al., 2008, Kleemann et al., 2012). At least seven 

C. higginsianum effector candidates (ChECs) are expressed in pre-penetration 

appressoria, and accumulate in the appressorial penetration pore during 

colonization of Arabidopsis leaves (Kleemann et al., 2012).  One of these 

effectors, ChEC3, was also induced in early primary invasive hyphae, and 

suppressed cell death induced by  necrosis-inducing proteins in N. benthamiana 

(Yoshino et al., 2012).  I did not observe evidence of localized cell death or 

cytoplasmic disorganization upon inoculation with the cpr1 mutant.  However, 

little is known about HR and the reaction of maize plants to incompatible 

pathogens (Buckner et al., 1998). 
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Once the mutant and WT entered the host cells, another major difference 

between them became evident.  The WT grew beyond the initially infected cell 

readily, progressing up to five cells beyond the infection point within 24 hours.  In 

contrast, the mutant only rarely escaped from the initially infected cell (<5% of the 

time), and never caused symptoms on leaf sheaths kept for up to 6 days. Thus, it 

appears that the mutant may have a defect in the ability to induce accessibility of 

adjacent cells. 

Various studies suggest that host cells can perceive fungal signals before 

penetration occurs (Kobayashi et al., 1990), and that these signals trigger plant 

defense responses, including the accumulation of ROS and the activation of 

pathogenicity-related (PR) genes (Kunoh et al., 1990, Yamaoka et al., 1994, 

Veneault-Fourrey et al., 2005). Perception of defense elicitors is thought to cause 

the host cell to become inaccessible to a nonpathogenic fungus (Chappell & 

Hahlbrock, 1984, Cervone et al., 1989, Bradley et al., 1992, Ouchi et al., 1974b, 

Ouchi et al., 1976a). Inaccessibility can be blocked by suppressors produced by 

a compatible pathogen, and co-inoculation with a compatible pathogen can 

enable colonization by a normally incompatible one (Komura et al., 1990, 

Yamaoka et al., 1994, Lyngkjaer et al., 2001). Most co-inoculation studies have 

been done with powdery mildew and rust fungi (Tsuchiya & Hirata, 1973, Ouchi 

et al., 1974b, Ouchi et al., 1974a, Ouchi et al., 1976a, Ouchi et al., 1976b, 

Yamaoka et al., 1994, Kunoh et al., 1989, Kunoh et al., 1990, Kunoh et al., 1988, 

Kunoh et al., 1985, Komura et al., 1990, Kobayashi et al., 1995, Kobayashi et al., 

1990, Olesen et al., 2003, Lyngkjaer et al., 2001, Lyngkjær & Carver, 2001, 

Lyngkjaer & Carver, 1999, Carver et al., 1999). Compatible interactions with the 

barley powdery mildew fungus Blumeria graminis f. sp hordei allowed infection by 

an otherwise incompatible pea powdery mildew, Erisyphe pisi (Kunoh et al., 

1985, Yamaoka et al., 1994, Kunoh et al., 1989, Kunoh et al., 1990, Kunoh et al., 

1988, Komura et al., 1990, Kobayashi et al., 1995, Kobayashi et al., 1990). 

Similar observations have been reported with cucumber (Ouchi et al., 1976b), 

wheat, and oat powdery mildews (Olesen et al., 2003), and with bean and 

cowpea rust fungi (Heath, 1983). This phenomenon has been named induced 
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susceptibility. The effect is generally localized, limited to the initially penetrated 

cell and up to three cells distant from the initial penetration site (Kunoh et al., 

1988, LyngkjÆR & Carver, 1999b, Kunoh et al., 1985, Kunoh et al., 1989, 

Komura et al., 1990, Yamaoka et al., 1994, Lyngkjaer & Carver, 1999, Lyngkjaer 

et al., 2001).  To our knowledge, only one study has reported a significant 

increase in susceptibility that extends as far as five cells, and none further 

(Heath, 1983). The substances responsible for induced susceptibility are 

unknown. 

I designed co-inoculation experiments to test two possible explanations for the 

behavior of the cpr1 mutant. The first hypothesis is that the WT C. graminicola 

secretes effectors to establish a compatible interaction with maize, and the 

mutant is unable to secrete these effectors.  If this was true, I expected that co-

inoculations of the mutant and WT would allow the mutant to grow. The second 

hypothesis is that the mutant inappropriately secretes elicitors of defense 

responses, which cause the neighboring cells to become inaccessible.  If this 

was true, I expected that co-inoculations of the mutant and WT would prevent the 

growth of the WT. I labeled each strain with different AFPs so that I would be 

able to distinguish between them during the co-inoculation procedure. 

I observed that when the WT and the cpr1 mutant were co-inoculated in the 

same location, both strains were able to grow. This established that the mutant 

did not induce inaccessibility to the WT strain. I noticed that the cpr1 mutant only 

entered cells that had already been colonized by the WT and that failed to 

plasmolyze.  I had previously observed that the mutant was capable of growing in 

and completing its life cycle on dead maize tissue.  The nonpathogen C. 

sublineola was also able to colonize dead maize sheath tissue, and it also grew 

when it was inoculated at the same site as the WT. Thus I could not eliminate the 

possibility that the mutant was growing in dead cells, rather than in cells that had 

been rendered accessible by WT effectors.  

I next co-inoculated the WT and mutant strains at different locations on the maize 

sheaths, separated by 8.5 ± 1.5 sheath epidermal cells, a distance of 
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approximately 2.5 mm.  I observed that these co-inoculations “at a distance” 

resulted in a significant increase in the growth of the cpr1 mutant at 60 hpi. Vital 

staining and plasmolysis assays indicated that both strains usually invaded cells 

biotrophically, and also that cells between and surrounding the two colonies were 

alive. This argued against the possibility that the WT was producing a diffusible 

toxin that was killing the host cells in advance and allowing the mutant to grow.  

This was also supported by my observation that the nonpathogen did not grow in 

co-inoculations “at a distance”. I concluded that the WT was producing or eliciting 

the production of one or more diffusible substances that induced susceptibility of 

the host cells.    

The induced susceptibility effect was observed consistently when the inoculum 

drops were separated by 8.5 ± 1.5 sheath epidermal cells. When I doubled or 

tripled the distance between the drops, the induced susceptibility effect 

disappeared. Thus, the inducing substance(s) has/have a limited ability for 

diffusion.  Nevertheless, to my knowledge the effective distance observed here 

(8.5 cells) is the highest ever reported. Experiments in which I varied the 

inoculum concentrations suggested that the induced compatibility phenomenon 

was dosage-dependent. Reductions of either the WT or the cpr1 mutant 

inoculums resulted in a decrease in the degree of induced susceptibility. These 

results were reinforced by my experiments with various other mutants of C. 

graminicola that all resulted in reductions in fungal biomass within the host 

tissue.  None of these mutants were able to induce susceptibility. A suppressor of 

plant defense responses isolated from Mycosphaerella pinodes spore 

germination fluids acts in a dose-dependent manner (Oku et al., 1977). Because 

reductions in cpr1 inoculum also reduce the effect, it suggests that the mutant 

may be secreting reduced amounts of the effectors.     

Most studies report that once a fungus is recognized by a plant cell, it is 

irreversibly reprogrammed towards accessibility or inaccessibility, and this state 

cannot by altered by successive inoculations (Kunoh et al., 1988, Kunoh et al., 

1989, Ouchi et al., 1976a, Ouchi et al., 1976b).  Application of the WT up to 12 

hours after inoculation with the cpr1 mutant still significantly increased the growth 
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of the mutant.  However, longer intervals failed to induce susceptibility, 

suggesting that the host had become irreversibly programmed for inaccessibility 

at that time. This indicates that the mutant is producing elicitors of defense, 

although possibly at reduced levels. My DAB staining results, which show 

significant staining at sites inoculated with the mutant, support this idea. The 

staining results suggest that the mutant is slower to elicit responses than the WT, 

and this may explain why full inaccessibility is not induced until 24 hours after the 

mutant has been applied to the tissue. An alternative possibility is that the mutant 

was unable to survive in the appressorial state beyond 24 hours without 

penetrating. This seems less likely, since it is known that Colletotrichum 

appressoria can survive for extended periods (Binyamini & Schiffmann-Nadel, 

1972, Zaitlin et al., 2000, Muirhead & Deverall, 1981). 

Suppression of defense responses by rusts and powdery mildews can induce 

local susceptibility to nonpathogenic species (Kunoh et al., 1985, Yamaoka et al., 

1994, Kunoh et al., 1989, Kunoh et al., 1990, Kunoh et al., 1988, Komura et al., 

1990, Kobayashi et al., 1995, Kobayashi et al., 1990). In my experiments, co-

inoculation with C. graminicola “at a distance”’ did not induce susceptibility to the 

closely related nonpathogen C. sublineola. This suggests that the diffusible 

inducing substance(s) do/does not override the normal detection and defense 

response to nonpathogens in maize.  

The nature of this diffusible inducer is unknown.  It could be a plant signal, and 

not of fungal origin at all.  It could also be a secreted fungal product. Numerous 

effector proteins (Perfect et al., 1998b, Bhadauria et al., 2011, Bhadauria et al., 

2012, Yoshino et al., 2012, Stephenson et al., 2000, Kleemann et al., 2012) and 

secondary metabolites (SM) (Rasmussen & Hanau, 1989, Takano et al., 1995, 

Horbach et al., 2009, O'Connell et al., 2012) are known to be produced during 

Colletotrichum disease interactions, including during the interaction between 

maize and C. graminicola. Laser capture microdissection (Tang et al., 2006), 

yeast signal sequence trapping (Krijger et al., 2008) and suppressive subtractive 

hybridization (Vargas et al., 2012), have been used to identify approximately 160 

C. graminicola genes expressed during the establishment of biotrophy and the 
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switch to necrotrophy, many of which are predicted to encode secreted proteins 

Various effector proteins have been demonstrated in M. oryzae to move several 

cells beyond the infection site (Khang et al., 2010). SM, many of which are 

secreted via membrane-bound transporters, have also been implicated in C. 

graminicola pathogenicity. Deletion of Ppt1,  a major activator of polyketide 

synthases and non-ribosomal peptide synthetases in C. graminicola, led to the 

hypothesis  that synthesis and secretion of one or more SM-derived compounds 

are required for pathogenicity (Horbach et al., 2009). The spore germination 

inhibitor mycosporin alanine (Leite & Nicholson, 1992), and the antifungal 

compounds monorden and monocillins I, II and III (Wicklow et al., 2009) identified 

in C. graminicola-infected stalks, are the only SM characterized from C. 

graminicola. Monorden inhibits heat-shock protein 90 (Hsp90) by competing with 

ATP for the binding site required for its activation (Roe et al., 1999). Monorden 

could potentially inhibit other fungi, and also the maize Hsp90.  Wicklow and his 

collaborators suggested that C. graminicola secretes monorden and monocillins 

during early penetration and biotrophic stages of maize infection to suppress 

basal defense responses.  

My observations, described in this chapter, lead me to hypothesize that C. 

graminicola secretes (a) suppressor (s) of host defense responses that diffuses 

beyond the borders of the fungal colony, and predispose cells to fungal invasion. 

The cpr1 mutant has a defect in one component of the signal peptidase, which is 

involved with protein transport through the ER. At least one previous study has 

directly implicated protein transport and secretion in pathogenicity. Lhs1 is a 

molecular chaperone that mediates import and proper folding of proteins in the 

ER in M. oryzae. Strains with deletions of lhs1 had severe defects in conidiation, 

ER protein translocation, and pathogenicity (Yi et al., 2009). M. oryzae lhs1 

mutants were able to penetrate rice leaf sheaths but they remained confined to 

the first colonized cell, which is similar to the phenotype of the cpr1 mutant in 

maize.  

The ortholog of Cpr1 in A. niger was dramatically up-regulated post-

transcriptionally during chemically-induced ER stress, as was LhsA, the ortholog 
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of Lhs1 (Guillemette et al., 2007, Tyson & Stirling, 2000). It would not be 

surprising if C. graminicola (and M. oryzae) experience ER stress during 

appressorial and biotrophic development, when the requirement for secreted 

proteins increases rapidly. I propose a model in which the disruption of cpr1 is 

associated with an inability of the mutant to adapt to ER stress, and results in a 

reduction in its ability to secrete diffusible substances that induce accessibility of 

host cells. Further characterization of this mutant could provide valuable 

information to help us understand the molecular mechanisms that the fungus 

utilizes to establish a compatible interaction with the plant. This could lead to the 

identification of targets that might be useful in the successful development of 

sustainable disease control strategies. 
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           Table 2. 1. Fungal strains used in this study 

 

Strain Parental strain Relevant phenotype Relevant citation 
M1.001 - Pathogenic to maize Forgey et al, 1978 

WT-mRFP M1.001 Transformed to exprpess RFP in planta. Pathogenicity normal This study 

cpr1mutant M1.001 

Nonpathogenic to maize. Obtained by REMI mutagenesis. 
Mutation in 3' UTR of the Spc3 otrhologous gene, encodes 

component of signal peptidase Thon et al, 2000 
cpr1-

Zsgreen cpr1mutant 
cpr1 mutant transformed to express ZsGreen fluorescent 

protein. Nonpathogenic to maize. 
Venard and 

Vaillancourt, 2007 
 

   

CgSl1-
GFP1 CgSl1 Pathogenic to sorghum but nonpathogenic to maize 

Venard and 
Vaillancourt, 2007 

M1502 
M5.002 Melanin-deficient, due to UV indced mutation in scytalone 

dehydrogenase gene 
Vaillancourt and 

Hanau, 1990 

M1201 

M2.001 

Pyrimidine biosynthetic mutant, due to a spontaneous mutation 
in orotate phosphoribosyl transferase gene. Nonpathogenic to 

maize. Spores don't germinate or adhere well on maize 
sheaths  Rasmussen et al, 1989 

90-23 M1.001 
Nonpathogenic to maize. Obtained by REMI mutagenesis. 

Specific mutation unknown. Thon et al, 2000 

9-4 M1.001 
Reduced in pathogenicity to maize. Obtained by REMI 

mutagenesis. Specific mutation unknown 
Thon et al, 2000, Thon 

et al, 2002 

80-37 M1.001 
Nonpathogenic to maize. Obtained by REMI mutagenesis. 

Specific mutation unknown. Thon et al, 2000 
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Table 2.1. (continued) 

Strain Parental strain Relevant phenotype Relevant citation 

83-45 M1.001 
Reduced in pathogenicity to maize. Obtained by REMI 

mutagenesis. Specific mutation unknown Thon et al, 2000 

84-14 M1.001 
Reduced in pathogenicity to maize. Obtained by REMI 

mutagenesis. Specific mutation unknown Thon et al, 2000 

84-6 M1.001 
Nonpathogenic to maize. Obtained by REMI mutagenesis. 

Specific mutation unknown Thon et al, 2000 
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Table 2. 2. Maximum number of cells colonized by the wild type (48 hpi) or 

cpr1 mutant strain (72 hpi) on maize leaf sheaths. 

 

  Maximum number of colonized cells (%) 
  1 cell 2 cells 3 cells 4 cells 5 cells 

WT 3.8  ± 4.1 30.1 ± 7.1 45.7 ± 7.4 15.4 ± 5.4 4.7 ± 4.6 
Cpr1 95.9 ± 3.7   3.5 ± 3.2 0.95 ±  2.0 0 0 
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Treatment No. cells Distance Infection sites 
beyond one cell Class 

D1 8.5 ± 1.5 2.6 ± 0.46 mm 33.5 ± 15 a 
D2 13.3 ± 2 4.1 ± 0.62 mm 8.2 ± 14 b 
D3 22.8 ± 4.9 7 ± 0.12 mm 9.9 ± 13 b 

Control N/A N/A 4.6 ± 4.2 b 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. 3. Growth of the cpr1 mutant in co-inoculations is affected by distance. 

Different treatments indicate numbers of cells and total distance separating both 

fungal colonies at the time of inoculation, and percentage of infection sites in 

which hyphae of the mutant colonized at least two cells. Treatments with different 

letters are different from each other with a significance of p <0.05. 
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Table 2. 4. Growth of the cpr1 mutant in co-inoculations is affected by inoculum 

concentration. Percentage of infection sites where hyphae of the mutant 

colonized at least two cells at different inoculum combinations. Treatments with 

asterisks (*) are different with a significance of p <0.05. 

 

  WT inoculum 
 Spore concentration 5 x 105 1 x 105 5 x 104 

cpr1 
mutant  

inoculum 

5 x 105 30.33 * 20.5* 7.33 
1 x 105 13.17 6.17 4.17 
5 x 104 14.5 7.71 3 
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Figure 2.1. Development of WT, cpr1 mutant, Cpr1-C, and AFP-tagged 

versions of the strains on maize leaf sheaths. Percentage of ungerminated, 

adhered spores (white bar), appressoria (light gray bar), and invasive primary 

hyphae (dark gray bar) 12, 24 and 48 hours post inoculation (hpi). Error bars 

represent standard deviation. 
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Figure 2.2. Phenotype of different strains on maize leaf sheaths. .A. 
Symptom development resulting from WT, cpr1 mutant, Cpr1-C, nonpathogen 
CgSl1 and mock-inoculation on maize leaf sheaths 96 hpi.  B. Phenotypes of 
the WT, and cpr1 mutant on maize leaf sheaths 20, 48 and 60 hpi. 
Plasmolysis and neutral red uptake were used to determine host cell viability. 
Cells that are still not colonized (asterisk) or are just being invaded (arrows) 
usually remained alive. AP = appressoria, BH= biotrophic hyphae, NH= 
necrotrophic hyphae. C. Penetration of living cells at the edges of a 
necrotrophic colony.  
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Figure 2.3. Pattern of ROS accumulation in maize leaf sheaths. A-C inoculated 
with WT or E-G inoculated with cpr1 mutant, determined by DAB staining. AP= 
appressoria, BH= biotrophic hyphae. Scale bars equal to 20 µm. 
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Figure 2.4. Leaf sheath co-inoculations. Schematic representation of A. leaf 

sheath inoculations and D, G-H, co-inoculations. B. Phenotype of WT-mRFP and 

C. cpr1-Zsgreen 72 hpi.  E. cpr1-mutant colonizing more than one cell in co-

inoculations with the WT. F Confocal image showing cpr1 mutant crossing plant 

cell walls in co-inoculations. I-J Plant cell viability near WT and K-L cpr1 fungal 

colonies in co-inoculation experiments 60 hpi. M-O. Triple inoculations with WT-

mRFP, cpr1-Zsgreen and non-pathogen CgSl1-GFP. N. Non-pathogen failed to 

penetrate maize tissue. Cells beneath appressoria still plasmolyze. O. The cpr1 

mutant colonizing more than one cell.  Cells  that are not yet colonized (asterisk) 

or are just being invaded (arrows) still plasmolyze and uptake neutral red. Scale 

bars equal to 50 µm, except in F, where it is equal to 20 µm. 
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Figure 2.5. Percentage of penetration sites in which the cpr1 mutant colonized 

two or more cells in co-inoculations. Co-inoculatsiation a distance from the WT 

(left) or water (right). Treatments with different letters are different gfrom each 

other with a significance of p (<0.05). Error bars represent standard deviations. 
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Figure 2.6. Average of the maximum number of colonized cells in triple 

inoculations. Cells colonized by  cpr1 mutant and the nonpathogen CgSl1. 

Treatments with different letters are different from each other (p <0.05). Error 

bars represent standard deviation. 
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 Figure 2.7. Growth of cpr1 in co-inoculations is affected by predisposition 

time. Percentage of of infections in which hyphae of cpr1 colonized at least 

two cells (white bars) is affected by the time it remains alone (predisposition 

time). WT inoculum was added 0, 12, 24 and 36 hours after mutant inoculum. 

In control sheaths, the mutant and WT strain (black bars), or cpr1 mutant and 

water (dark gray bars) were added simultaneously, 12, 24 and 36 hours after 

sheaths were detached. All treatments were evaluated 60 hours after addition 

of the WT. Treatments with different letters are significantly different from 

each other (p <0.05). 
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Chapter 3 

The Genomics of Secondary Metabolism in Colletotrichum 
 

The findings described in chapter 2 of this dissertation led me to propose the 

hypothesis that the cpr1 mutant is impaired in the secretion of one or more 

diffusible compounds required for establishment of compatibility and progression 

to necrotrophy in planta, but not for growth in vitro. Recent analyses of whole 

genome sequences from fungal plant pathogens with a variety of lifestyles has 

allowed identification of specific gene families that appear to be linked to these 

lifestyles (Kamper et al., 2006, Spanu et al., 2010, Amselem et al., 2011, Bölker 

et al., 2008). One striking observation was a dramatic increase in the number of 

genes associated with secondary metabolism in necrotrophs and hemibiotrophs 

versus biotrophs. Secondary metabolites (SM) often behave as toxins in 

necrotrophic disease interactions, inducing host cell death and necrosis 

(Markham & Hille, 2001). Examples include fumonisin B1,produced by different 

Fusarium species, (Chivasa et al., 2005), cercosporin produced by Cercospora 

nicotiniae (Choquer et al., 2005), and T-toxin, produced by Cochliobolus 

heterostrophus (Yang et al., 1996, Baker et al., 2006) among others. To further 

explore the possibility that the cpr1 mutant is defective in the production and/or 

secretion of one or more SM, I first identified and characterized the range of SM-

associated genes in C. graminicola. In this chapter, I report the annotation of 

genes with the potential to encode key SM enzymes in the genomes of two 

Collotrichum species, C. graminicola and C. higginsianum, and I also identify 

Colletotrichum-specific and species-specific SM-associated genes and gene 

clusters. The results show that each Colletotrichum species has the potential to 
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unusually large and divergent spectra of SM, some of which may be previously 

unknown bioactive molecules. 1 

 

Introduction 
The genome of the hemibiotrophic plant pathogen C. graminicola was recently 

sequenced by the Broad Institute, in collaboration with our laboratory, using 

Sanger and 454 pyrosequencing. The genome of a closely related Colletotrichum 

species, C. higginsianum was sequenced by the laboratory of Dr. Richard J. 

O’Connell at the Max Planck Institute, using 454 and Illumina technologies.  Both 

genomes are available on the Broad Colletotrichum Comparative Genomics 

Websitehttp://www.broadinstitute.org/annotation/genome/colletotrichum_group/M

ultiHome.html. C. higginsianum infects dicotyledonous plants of the Brassicaceae 

family, including the model plant Arabidopsis thaliana (Huser et al., 2009, 

O'Connell et al., 2004). My approach was to conduct a comparative study of the 

putative SM genes of both species, and to identify genus-specific SM genes that 

might be associated with the hemibiotrophic lifestyle of Colletotrichum, as well as 

species-specific genes that could be important in the specific interaction of each 

fungal species with its respective host. A precedent is provided by the ACE1 

gene in Magnaporthe oryzae, which lacks orthologs in all other sequenced fungi 

(Collemare et al., 2008a, Collemare & Lebrun, 2011).  ACE1 encodes a 

polyketide synthase that contributes to production of an avirulence factor 

required for avr-mediated resistance in rice cultivars that carry the Pi33 

resistance gene (Collemare et al., 2008b). 

The Colletotrichum genome sequences were analyzed by a research team led by 

our laboratory and by Dr. O’Connell (O'Connell et al., 2012). C. graminicola has a 

57.4-Mb genome distributed across 13 chromosomes, including 3 

                                                            
1 Some of the work reported in this chapter was included in O'Connell et al., 
2012, Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by 
genome and transcriptome analysis, Nature Genetics 44(9): 1060-1065 

http://www.broadinstitute.org/annotation/genome/colletotrichum_group/MultiHome.html
http://www.broadinstitute.org/annotation/genome/colletotrichum_group/MultiHome.html


 
 
 
 
 

57 
 

minichromosomes (>2kb), whereas C. higginsianum has a 49.3-Mb genome and 

12 chromosomes, including 2 minichromosomes. Annotation of both genomes 

indicated the presence of 12,600 protein-coding genes in C. graminicola, and 

16,172 protein-coding genes in C. higginsianum. The two predicted proteomes 

were analyzed by Dr. M. Thon by using Markov Clustering, which relies on 

similarity of the whole protein sequences to identify families of genes (Enright et 

al., 2002). 

Interestingly, the MCL analysis revealed that families of genes potentially 

associated with production of SM were significantly expanded in both 

Colletotrichum species when compared with other sequenced Ascomycetes 

(O'Connell et al., 2012). Fungi make four major groups of SM: polyketides 

produced by polyketide synthases (PKS); peptides produced by nonribosomal 

peptide synthases (NRPS); alkaloids produced by dimethylallyl tryptophan 

synthases (DMATS); and terpenes produced by terpene synthases (TS) (Keller 

et al., 2005). Recently, a fifth important class of fungal SM genes, PKS-NRPS 

hybrids with characteristics of both PKS and NRPS genes, was identified (Khaldi 

et al., 2008). PKSs and NRPSs are the most abundant classes of secondary 

metabolite biosynthetic genes in fungi (Keller et al., 2005, Khaldi et al., 2010). 

Products of SM genes are involved in multiple plant-pathogen interactions, and 

have a variety of functions including antibiosis, protection from stresses, and 

pathogenicity to animals and plants (Horbach et al., 2009). 

Colletotrichum species have been reported to produce a variety of SM, including 

flavones, peptides and terpenes, as well as DHN (1,8-dihydroxynaphthalene) 

melanin, which is essential for appressorium-mediated host penetration (Kubo et 

al., 1991, Muimba-Kankolongo & Bergstrom, 2011, Singh et al., 2010). Additional 

examples include the siderophore ferricrocin, isolated from C. gloeosporiodes, 

which has phytotoxic activity in grass cotyledons (Ohra, 1995), colletotrichins A, 

B and C from C. nicotianae, which produce symptoms resembling tobacco 

anthracnose when infiltrated in tobacco leaves (Goddard et al., 1976, Kimura et 
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al., 1977, Kimura et al., 1978, García-Pajón & Collado, 2003), and a 

tetrahydroxylated compound with antioxidant properties from C. gloeosporioides 

(Femenía-Ríos et al., 2006) . Although SM have not been described in C. 

higginsianum, several have been characterized in C. graminicola, including the 

antifungal compounds monorden and monicillins I, II, and III (Wicklow et al., 

2009), and mycosporine-alanine, a spore germination inhibitor (Leite & 

Nicholson, 1992). It was recently reported that deletion of Ppt1, a gene encoding 

a cofactor essential for the enzymatic function of all PKS and NRPS, resulted in 

decreased pathogenicity in C. graminicola, providing support for the idea that SM 

play an important role in the regulation of pathogenicity to maize (Horbach et al., 

2009). 

Materials and Methods 
The annotated genome sequences of C. graminicola and C. higginsianum were 

used to search for SM-associated genes. To improve the quality of the C. 

higginsianum genome assembly, it was re-annotated by Dr. Richard O’Connell 

and Dr. Michael Thon, using the Velvet assembler (Zerbino & Birney, 2008).  

This new version of the genome provided longer contigs and is referred to as the 

Velvet assembly. Candidate PKS and NRPS genes were initially identified by 

ortho-MCL analysis (performed by Dr. Thon) (Enright et al., 2002). This search 

relies on similarity of whole protein sequences to find families of genes. I 

conducted gene family searches using the Broad Institute’s Colletotrichum 

database, BLAST searches against the NCBI databases, and InterproScan 

analysis, to further characterize and verify putative PKS, NRPS, PKS-NRPS 

hybrid, DMAT, and TS genes. 

Annotation of secondary metabolism genes 

Despite the relatively high degree of variability among SM genes, there are some 

conserved characteristics of each group that facilitated their identification and 

characterization. 
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Polyketyde Synthases – PKSs 

PKS enzymes contain multiple domains, and the diversity of these domains 

defines the type and length of the polyketide that is synthesized (Keller et al., 

2005). All known polyketides require the presence of 3 essential domains, 

namely the ketoacyl synthase (KS); acyltransferase (AT); and acyl carrier protein 

(ACP) domains (Khosla et al., 1999). Some additional domains contribute to the 

reduction of the polyketide to various degrees, adding diversity to the final 

product. These additional domains are the ketoreductase (KS), dehydratase 

(DH), and enoylreductase (ER) domains (Gokhale et al., 1999, Fox & Howlett, 

2008). The highly conserved KS domain has been commonly used to infer 

ancestral relationships among PKS genes (Kroken et al., 2003b). Figures 3.1A 

and 3.1B outline the procedure that I used for analysis of KS domains in 

Colletotrichum PKS genes.  

 

Non-ribosomal Peptide Synthases - NRPSs 

NRPSs are large modular enzymes that catalyze the condensation of amino 

acids to form a nonribosomal peptide (Caboche et al., 2010). The diversity of 

products synthesized by these enzymes depends on the number of modules they 

contain (Caboche et al., 2010, Schwarzer & Marahiel, 2001). Each NPRS 

contains at least one module that includes an AMP-binding adenylation domain 

(A), a peptidyl carrier domain (T), and a condensation domain (C) (Brakhage & 

Schroeckh, 2011). The A domain recognizes and activates the residues, which 

are bound to the enzyme by the T domain, and finally the C domain condenses 

the peptide bond between the linked residues (Stachelhaus et al., 1999, Lautru & 

Challis, 2004). A single thioesterase domain (TE) is located at the end of the 

enzyme. The TE domain is responsible for releasing the synthesized peptide 

from the complex (Cosmina et al., 1993). Like PKSs, NRPSs can also have some 

additional domains that catalyze epimerization and N-methylations of the peptide 

(Konz & Marahiel, 1999).  These additional domains account for the tremendous 
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complexity and diversity of known nonribosomal peptides (Weber & Marahiel, 

2001). Figures 3.2A and 3.2B describe the process I used to analyze the NRPS 

genes of C. higginsianum and C. graminicola.  

PKS-NRPS hybrids 

Fungal PKS-NRPS hybrids were discovered a few years ago (Böhnert et al., 

2004, Kroken et al., 2003b, Schümann & Hertweck, 2007).  They are typically 

composed of a fungal type I PKS fused to a single NPRS module that can be 

either complete or truncated (Collemare et al., 2008b).  The NRPS portion is 

responsible for the formation of a peptide bond between a polyketide synthesized 

by the PKS portion, and a single amino acid (Sims & Schmidt, 2008).  Usually, 

the resulting product is a tetramic acid (Song et al., 2004, Bergmann et al., 

2007).  Tetramic acids were initially identified in the early twentieth century, and 

they are normally associated with antimicrobial and antiviral activities (Royles, 

1995). The criteria I used to classify PKS-NPRS hybrids were the presence of a 

complete KS domain, and at least one A, T or C domain. PKS-NRPS hybrids 

were re-annotated and confirmed by Dr. Marc Henri-Lebrun. 

 

DMATs 

DMATs synthesize a wide variety of SM using tryptophan as a starting point 

(Krupinski et al., 1976).  These products include alkaloids, compounds with 

powerful physiological activities (Tudzynski et al., 1999, Wang et al., 2004). The 

DMAT gene family encodes a group of enzymes that contain an aromatic 

prenyltransferase domain, responsible for the addition of prenyl groups during 

the first steps of alkaloid biosynthesis (Keller et al., 2005, Metzger et al., 2009).  I 

identified DMATs based on the presence of this conserved domain. 

Terpene synthases - TSs 

TSs are characterized by the presence of a prenyl synthase domain, which is 

responsible for the synthesis of terpenes from dimethylallyl diphosphates, 
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polymers of isopentyl units derived from the isoprenoid pathway (Tholl, 2006, 

Dairi, 2005). Terpenes have a wide variety of roles, including functions in 

defense, competition, and growth regulation (Greenhagen & Chappell, 2001). I 

identified TSs based on the presence of this conserved domain. 

Phylogenetic analysis of secondary metabolite genes 

Phylogenetic analyses of the Colletotrichum PKS, NRPS, TS, and DMATS 

predicted proteins were performed by using the software available on the 

phylogeny.fr website (http://www.phylogeny.fr/) (Dereeper et al., 2008, Dereeper 

et al., 2010). Amino acid sequences were aligned with Muscle (V3.7), and 

phylogenies were inferred by Maximum-likelihood using PhyML (V3.0). Trees 

were constructed using TreeDyn and statistical branch support was provided by 

a standard Likelihood Ratio Test, aLRT (Dereeper et al., 2008). Trees were 

constructed from the AMP binding adenylation domains from NRPS genes, and 

the ketoacyl synthase N-terminal and C-terminal domains from PKS genes. PKS-

NRPS, DMATS and TS were analyzed by aligning whole protein sequences. Due 

to the extreme length of the complete PKS-NRPS hybrid sequences, these 

proteins had to be analyzed by using different software. Alignments were made 

using Muscle (V3.8.3) (http://mobyle.pasteur.fr/) (Néron et al., 2009) and 

Maximum-Likelihood phylogenies were calculated using PhyML 3.0 

(http://www.atgc-montpellier.fr/) (Guindon et al., 2010). The tree was built as 

described for other SM genes. 

The relationships of the C. graminicola PKS and PKS-NRPS hybrids to 41 

previously identified PKSs and PKS-NRPS hybrids from 10 different 

Ascomycetes were evaluated. The KS domains of genes involved in the 

synthesis of PM-toxin (Didymella maydis) (Yun et al., 1998), alternapyrone 

(Alternaria solani) (Fujii et al., 2005), melanin (Colletotrichum lagenarium) 

(Takano et al., 1995), lovastatin (Aspergillus terreus) (Hendrickson et al., 1999, 

Kennedy et al., 1999), zearalenone (Giberella zeae) (Kim et al., 2005a, Kroken et 

al., 2003b), radicicol (Chaetomium chiversii, (Wang, 2008 #62) and Pochonia 

http://www.phylogeny.fr/
http://mobyle.pasteur.fr/
http://www.atgc-montpellier.fr/
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chlamydosporia, (Reeves et al., 2008)) fumonisin (Giberella moniliformis) 

(Proctor et al., 2003), cercosporin (Cercospora nicotiniae) (Choquer et al., 2005), 

T-toxin (Cochliobolus heterostrophus) (Yang et al., 1996, Baker et al., 2006), 

ACE1 (Magnaporthe oryzae) (Böhnert et al., 2004), and four more PKS-NRPS 

hybrids from M. oryzae (SYN2, SYN6, SYN7 and SYN8) (Böhnert et al., 2004), 

all characterized PKSs in C. heterostrophus (PKS3-PKS25) (Kroken et al., 

2003b), and 34 putative PKSs and 7 PKS-NRPS hybrids of C. graminicola, were 

included in the comparative analysis. 

Predicted secondary metabolite clusters 

The Secondary Metabolite Unknown Region Finder (SMURF)  (Khaldi et al., 

2010) has been used to predict clusters of genes associated with secondary 

metabolism in a wide range of fungi (von Döhren, 2009, Georgianna et al., 2010). 

This web-based program was applied to both Colletotrichum annotated genome 

assemblies.  SMURF was also applied to the most current annotated assemblies 

of several other sequenced fungi for comparisons. SMURF is available at 

http://www.jcvi.org/smurf. 

 

Results 

Manual curation indicated that initial MCL and Broad predictions of SM gene 

numbers were overestimated for both fungi, but especially for C. higginsianum 

MCL analysis predicted 52 putative PKSs and 16 putative NRPSs in C. 

graminicola, and 120 putative PKSs and 48 putative NRPSs in C. higginsianum. 

PKSs contain three essential conserved domains (KS, AT, ACP) and three 

optional conserved domains (KR, DH, ER). Manual checking of the initial MCL 

predictions revealed that four (8%) C. graminicola and 21 (18%) C. higginsianum 

predicted PKSs did not contain any of these conserved domains (Table 3.1). 

Additionally, 83 of the remaining predicted gene models in C. higginsianum, and 

8 in C. graminicola, contained only one or two of the three conserved domains. 

http://www.jcvi.org/smurf
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Probably due to the more fragmented nature of the C. higginsianum genome 

assembly (N50 contig = 6.15 Kb vs N50 = 228.96 Kb in C. graminicola), 43% of 

the 120 predicted C. higginsianum gene models were incomplete according to 

the BROAD institute annotation.  In contrast, none of the predicted C. 

graminicola gene models were truncated (Table 3.1).  

Phylogenetic analysis of the highly conserved KS domain from the PKS genes 

was performed using the 94 available complete KS N-terminal and C-terminal 

domains (O'Connell et al., 2012). This included 41 KS domains from C. 

graminicola, and 52 KS domains from C. higginsianum. Obviously truncated KS 

domains (<20 amino acids) were not included in the analysis (Figure 3.1). 

A phylogenetic tree based on the alignments revealed apparent PKS gene family 

expansion, especially in C. higginsianum. For example, genes CH063_0051 and 

CH063_01345 appeared to be paralogs, as did GLRG_03511 and GLRG_05714 

(Figure 3.3A). However, a more detailed examination revealed that many of 

these apparent clades of paralogous genes actually included fragments of PKS 

genes for which the initial predicted gene models were truncated or split. This 

was the case for CH063_14111 and CH063_06479, which could be aligned to 

one another and to a single predicted ORF in the Velvet assembly (Figure 3.3B). 

After identifying overlapping gene models and correcting them to the extent 

possible, I concluded that C. graminicola actually has 39 PKS genes, and C. 

higginsianum has 58 PKS genes.  Sixteen of these genes appear to be 

orthologous in the two species (Figure 3.4).  

Phylogenetic analysis was performed using the conserved AMP-binding domains 

from 7 and 26 putative NRPSs from C. graminicola and C. higginsianum 

respectively (Figure 3.5).  A total of 56 AMP binding domains were included in 

the analysis. Initial MCL and Broad predictions and the phylogenetic analysis 

suggested gene expansion of this family, especially in C. higginsianum. For 

example, CH063_15443, CH063_10658, CH063_02723, CH063_10344 and 

CH063_02723 appeared to form a clade of paralogous genes that was unique to 
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C. higginsianum (Figure 3.5A). However, closer inspection revealed that, similar 

to the case with the PKS genes, multiple A domains from C. higginsianum 

predicted to belong to different ORFs, were actually fragments of larger NRPS 

genes. For example, A domains from CH063_15485, CH063_10172, 

CH063_01270, CH063_01271, CH063_10216, CH063_12138 and 

CH063_05450, appear to be orthologs of the seven A domains of GLRG_00469 

(Figure 3.5B). Ultimately, I reannotated 23 C. higginsianum predicted gene 

models to form 9 NRPSs. Alignments to C. graminicola NRPS gene models, 

alignment to the Velvet assembly, and/or predictions of larger protein sequences 

by the FGNESH annotation program (http://linux1.softberry.com/berry.phtml), 

ultimately allowed consolidation of 32 of the 49 original gene models into 12 

NRPSs for C. higginsianum, and 7 NRPSs for C. graminicola. Construction of a 

new tree using these reannotated gene models allowed me to conclude that only 

one A domain found in C. graminicola (GLRG_08225) apparently is not shared 

with C. higginsianum, while seventeen A domains in C. higginsianum, predicted 

to belong to 5 NRPSs, are not shared with C. graminicola (Figure 3.6). 

Gene family searches using the Broad Institute Colletotrichum database, BLAST 

searches against the NCBI databases, and InterproScan analysis resulted in 

identification of 7 PKS-NRPS hybrids, 7 putative DMATs, and 14 TSs in C. 

graminicola. By using a parallel approach, 6 PKS-NRPS hybrids, 11 DMATs and 

17 TSs were found in C. higginsianum. 

Manual annotation of PKS-NRPS hybrids included evaluation for the presence of 

a KS domain and at least one NRPS A, T, or C domain. Phylogenetic analysis of 

whole protein sequences demonstrated that only two PKS-NRPS are found in 

both Colletotrichum species: GLRG_09715 is an ortholog of CH063_06174, and 

GLRG_11626 is an ortholog of CH063_05683. Four hybrids are found only in C. 

higginsianum, while 5 are present only in C. graminicola (Figure 3.7). 

The initial automated prediction of DMATs suggested the presence of 7 DMATs 

in C. graminicola and 11 in C. higginsianum. BROAD gene models predicted a 

http://linux1.softberry.com/berry.phtml
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truncated protein for CH063_11167 (missing the 5’end) and this gene was 

adjacent to CH063_15640 in the Velvet assembly. FGENESH predictions 

suggested a full-length DMAT encompassing both gene models. Alignment and 

phylogenetic analyses of whole protein sequences indicated that six DMAT 

proteins are shared between both species, one is found only in C. graminicola, 

and four are found only in C. higginsianum (Figure 3.8) 

Searches for prenyl synthase domains predicted 14 TSs for C. graminicola and 

18 for C. higginsianum. According to BROAD predictions, CH063_06400 and 

CH063_13385 were missing the 3’ end and the 5’ ends, respectively. FGENESH 

predicted a full-length TS encompassing both genes. Phylogenetic analysis of 31 

TSs demonstrated that nine of them are shared between the two Colletotrichum 

species (Figure 3.9). Five are only found in C. graminicola while nine are only 

found in C. higginsianum. 

A larger number of SM genes and SM clusters were predicted by SMURF for 

both Colletotrichum species than for other related sequenced fungi 

In fungi, enzymes required for the synthesis, modification, regulation and 

transport of SM products are typically physically associated in co-expressed 

gene clusters (Hull et al., 1989, Keller & Hohn, 1997, Tudzynski et al., 1999, 

Collemare et al., 2008b, Khaldi et al., 2008, Bok et al., 2006). I used a web-

based software program (SMURF) to identify predicted SM gene clusters in both 

Colletotrichum species. SMURF was applied to the less fragmented Velvet 

assembly for C. higginsianum, after it failed to predict any gene clusters in the 

original assembly. The first step in SM cluster prediction by SMURF relies on the 

identification of SM key enzymes or “backbone genes” (PKSs, NRPSs, PKS-

NRPS hybrids and DMATs) identified by the presence of the conserved domains 

described above (Khaldi et al., 2010). SMURF identified 60 potential backbone 

genes in C. graminicola and 79 in C. higginsianum.  For C. graminicola, 70% of 

SMURF-predicted backbone genes were included in potential SM gene clusters, 

compared with only 42% in C. higginsianum (Figure 3.10). SMURF predicted 42 
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SM clusters in C. graminicola, ranging from 2 to 24 genes (average 7) and 39 

clusters from the Velvet assembly of C. higginsianum, ranging from 2 to 19 

genes (average 8). SMURF identified a larger number of SM clusters in the two 

Colletotrichum species than in most other sequenced Ascomycete fungi (Figure 

3.11). Assuming that clusters in which at least 25% of the genes were 

orthologous are shared, only 12 of the predicted clusters were found in both 

species, and in six of these less than half of the genes were syntenous.  

Similarity of C. graminicola PKSs to some previously characterized fungal PKSs 

Several SM gene clusters containing PKSs or PKS-NRPS hybrids have been 

described and characterized in other fungal species (Collemare et al., 2008a, 

Baker et al., 2006, Proctor et al., 2003, Hendrickson et al., 1999). These gene 

clusters are responsible for production of a range of compounds with a variety of 

biological functions. Phylogenetic analysis was performed to determine the 

relationships among the complete KS domains from 34 C. graminicola PKSs, the 

KS domains from the seven C. graminicola PKS-NRPS hybrids, and 41 

additional KS domains from other fungal PKSs (Table 3.2). 

Two major clades resulted from the phylogenetic analysis (Figure 3.12). The first 

major clade contained ten C. graminicola PKSs that all lack the reducing 

domains KR, DH and ER, and are thus classified as nonreducing PKSs (nrPKS). 

This clade contained nrPKSs responsible for melanin biosynthesis in C. 

lagenarium (C_lagenarium_PKS1) (Takano et al., 1995) and C. heterostrophus 

(C_heterostrophus_PKS18) (Kroken et al., 2003a).GLRG_04203 appeared to be 

orthologous with these two PKSs, and thus is likely to be responsible for melanin 

production in C. graminicola. GLRG_08620 is closely related to CTB1, the nrPKS 

responsible for the synthesis of cercosporin in C. nicotiniae 

(C_nicotiniane_CTB1) (Choquer et al., 2005).  P_chlamydosporia_RADS2, which 

is involved in radicicol biosynthesis (Reeves et al., 2008), is orthologous to 

GLRG_11836. Interestingly, another C. graminicola nrPKS gene, GLRG_11778 

also grouped in this sub-clade, together with RADS2, the nrPKSs involved in 
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radicicol biosynthesis in C. chiversii (C_chiversii RADS2) (Wang et al., 2008) and 

G_zeae_PKS13, required for zearalenone biosynthesis in G. zeae (Kim et al., 

2005b). Another distinct sub-group within the reducing PKS clade contained 5 C. 

graminicola nrPKS, and three nrPKSs from C. heterostrophus, with only one pair 

(GLRG_09268 and C_heterostrophus_PKS21) that appears to be shared 

between the two species. 

The second major clade is composed of three sub-clades that included most of 

C. graminicola reducing PKSs (rPKSs), and a fourth sub-clade that contained the 

seven C. graminicola PKS-NRPS hybrids together with the rPKS GLRG_08212. 

The first sub-clade included two C. graminicola genes (GLRG_11770 and 

GLRG_11840), together with the rPKSs required for synthesis of zearalenone 

(G_zea_PKS4) (Kim et al., 2005b) and radicicol (C_chiversii_RADS1 and 

P_chlamydosporia_RADS1) (Wang et al., 2008, Reeves et al., 2008). Only two of 

the 13 C. graminicola rPKSs contained within the second sub-clade seemed to 

have characterized orthologs: GLRG_07171 and C_heterostrophus_PKS12; and 

GLRG_11435 and C_heterostrophus_PKS14.  

The third sub-clade contains six C. graminicola rPKSs. GLRG_10317 is 

orthologous to C_heterostrophus_PKS6 and to A_solani_alt5.  The latter is 

involved in the synthesis of alternapyranone in A. solani (Fujii et al., 2005). No 

orthologous C. graminicola rPKSs were identified for C_heterostrophus_PKS1 

and PKS2, which are responsible for the synthesis of T-toxin (Yang et al., 1996, 

Baker et al., 2006). Similarly, there were no C. graminicola orthologues of 

D_maydis_PKS1, required for the synthesis of PM-toxin in Didymella maydis 

(Yun et al., 1998). GLRG_09267 is orthologous to C. heterostrophus_PKS3, and 

both are related to A_terreus_lovF responsible for the synthesis of the diketide 

portion of lovastatin in Aspergillus terreus (Kennedy et al., 1999). Four of the five 

remaining C. graminicola rPKSs in the third sub-clade also had apparent 

orthologs in C. heterostrophus.  

All the C. graminicola PKS-NRPS hybrids grouped together in the fourth sub-
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clade. GLRG_11507 and GLRG_09715 are orthologs of M_oryzae_SYN6 and 

M_oryzae SYN8, respectively, both of which have been identified as PKS-NRPS 

hybrids (Böhnert et al., 2004). Two more C. graminicola hybrids, GLRG_11890 

and GLRG_11626 are orthologs of M_oryzae_SYN7, and also seem to be 

related to A_terreus_lovB, responsible for the cyclic nonaketide synthesis of 

lovastatin in A. terreus (Campbell & Vederas, 2010, Hendrickson et al., 1999). 

The two PKS-NRPS hybrids present in the ACE1 cluster in M. oryzae 

(M_oryzae_ACE1 and M_oryzae_SYN2) (Böhnert et al., 2004, Collemare et al., 

2008b), do not seem to have orthologs in C. graminicola or C. heterostrophus, 

although they do have orthologs in C. higginsianum (O'Connell et al., 2012). 

Three more PKS-NRPS hybrids (GLRG_09842, GLRG_07434 and 

GLRG_01037) and one C. graminicola rPKS (GLRG_08212) were not related to 

any of the other KS domains analyzed here.  

Two additional sub-clades included four CgrPKSs. GLRG_01860 is an ortholog 

of C_heterostrophus_PKS10; GLRG_10537 is an ortholog of 

C_heterostrophus_PKS25. Neither of these C. heterostrophus genes has been 

functionally characterized (Kroken et al., 2003b). 

C. graminicola cluster 38 is similar to the P. chlamydosporia radicicol cluster 

SMURF predictions indicated that three of the 42 SM clusters in C. graminicola, 

contain two PKSs: clusters 18, 35 and 38. Other known fungal SM clusters that 

include two PKSs are responsible for zearalenone, radicicol, T-toxin and 

lovastatin biosynthesis. My phylogenetic analysis indicated that the rPKS from 

cluster 38, GLRG_11840, is orthologous to the P. chlamydosporia and C. 

chiversii RADS1 genes, which are involved in radicicol production. The other 

PKS in cluster 38, nrPKS GLRG_11836, is orthologous to P. chlamydosporia 

RADS2 (Figure 3.12, clades A and B, sub-group 1). Comparisons of whole 

protein sequences suggest that four of the five genes in the SM gene cluster 

responsible for radicicol biosynthesis in C. chiversii exhibit a high degree of 

identity (62-72%) to genes in cluster 38 in C. graminicola (Table 3.3). The fifth 
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gene, radR, a transcription factor, seems to be missing from the C. graminicola 

cluster (Figure 3.13).  The radicicol biosynthesis cluster in P. chlamydosporia 

also lacks the radR gene, and genes in the P. chlamydosporia cluster also exhibit 

a high level of identity (43-65%) and synteny to the genes in cluster 38. 

C. higginsianum, seems to lack this cluster. Although all five genes in the cluster 

seem to have orthologs in C. higginsianum, with identity values between 32 and 

50%, these genes are scattered throughout the genome, and three of them were 

predicted by SMURF to be parts of three different clusters. 

C. graminicola cluster 18, orthologous to C. higginsianum cluster 10, is related to 

the cercosporin biosynthetic cluster of C. nicotiniae 

C. graminicola cluster 18 and C. higginsianum cluster 10 are the most highly 

conserved clusters among the two Colletotrichum species. Both clusters are the 

largest predicted for each species, containing 24 and 19 genes, respectively. 

Fifteen of the 24 predicted genes in cluster 18 have orthologs in cluster 10 

(GLRG_08610-GLRG_08624); other genes in the cluster have orthologs outside 

cluster 10.  Only GLRG_08616 lacks an ortholog in C. higginsianum (Figure 

3.14).  

According to my phylogenetic analysis, a C. nicotianae nrPKS (CTB1) required 

for the synthesis of the non-selective phytotoxin cercosporin is orthologous to 

GLRG_08620, one of two PKSs in C. graminicola cluster 18 (Figure 3.12, clade 

A, sub-group 1).  The cercosporin biosynthetic cluster consists of eight genes in 

C. nicotiniae (Chen et al., 2007). GLRG_08620 exhibits a high level of identity 

(54%) with CTB1. Furthermore, CH063_02506, the othologous C. higginsianum 

nrPKS in cluster 10 (Table 3.4), is also very similar to CTB1 (45% identity). 

Interestingly, four of the remaining seven genes in the C. nicotianae cercosporin 

cluster (CTB3, CTB3, CTB5, CTB8) also exhibit high levels of identity (47-55%) 

with genes in cluster 18. Levels of identity are a little lower with genes in C. 

higginsianum cluster 10 (ranging from 35-55%), but one additional cercosporin 

cluster gene, CTB4, has an ortholog in cluster 10 (51% identity).   
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Discussion 

Genome wide inventory of SM-associated genes in C. graminicola and C. 

higginsianum 

Automated predictions of SM-associated genes in C. graminicola and C. 

higginsianum indicated the presence of a surprisingly large number of these in 

both species, which could indicate that SM have an important role in 

Colletotrichum pathogenicity. The results of my more detailed manual analysis 

showed that, although the initial numbers were overestimated, both 

Colletotrichum species still have more SM genes than other closely related 

sequenced Ascomycetes (Spanu et al., 2010, Amselem et al., 2011, Collemare 

et al., 2008a, Dean et al., 2005). It is important to note that the numbers might 

still be inaccurate, especially for C. higginsianum. The more fragmented genome 

(N50 contig = 6.15 Kb, vs N50 =228.96 Kb from C. graminicola), combined with 

the large size and multi-domain structure of PKSs, NRPSs and PKS-NRPS 

hybrids, resulted in less accurate predictions for C. higginsianum than for C. 

graminicola. 

SM are usually low molecular weight molecules that are not essential for growth 

and survival of the producing organism in laboratory conditions, but become 

important for niche adaptation, and are associated with successful competition 

and toxic or inhibitory effects on other organisms (Shwab & Keller, 2008, Bölker 

et al., 2008). Large numbers of SM-associated genes are usually found in 

necrotrophic plant pathogens (Amselem et al., 2011), and SM are often 

implicated as phytotoxins with direct roles in pathogenicity (Daub, 1982, 

Gengenbach et al., 1973, Matthews et al., 1979, Scott-Craig et al., 1992). In 

contrast, biotrophy seems to be associated with a loss of SM genes, as observed 

in Blumeria graminis (Spanu et al., 2010) and Ustilago maydis (Kamper et al., 

2006, Bölker et al., 2008). Relatively little is known about the role of SM in 

hemibiotrophic plant pathogens (Böhnert et al., 2004, Collemare et al., 2008b). 

Until now, only a few SM produced by members the genus Colletotrichum have 
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been described, including the phytotoxins ferricrocin from C. gloeosporioides 

(Ohra, 1995), colletotrichins A, B and C from C. nicotinae (Goddard et al., 1976, 

Kimura et al., 1977, Kimura et al., 1978, García-Pajón & Collado, 2003), and two 

antimicrobial methylflavonols from C. dematium (Abou-Zaid et al., 1997). Another 

antimicrobial compound, colletotric acid from C. gloeosporioides, inhibited 

bacteria including Bacillus subtilis (Zou et al., 2000). SM that have been 

characterized in C. graminicola include the spore inhibitor mycosporine alanine 

(Leite & Nicholson, 1992) and the antifungal compounds monorden and 

monicillins I, II, and III, which inhibited the growth of some seed-infecting and 

stalk-rot pathogens (Wicklow et al., 2009). However, no specific Colletotrichum 

SM genes had been previously identified.  

SMURF predictions are incomplete 

The SM gene prediction software SMURF relies on common characteristics of 

SM synthesis in fungi in order to predict SM genes and gene clusters. Genes 

involved in the production of SM in fungi are commonly clustered and 

transcriptionally co-regulated (Hull et al., 1989, Proctor et al., 2003, Tudzynski et 

al., 1999). The complexity and diversity of SM is achieved by enzymes 

responsible for biosynthesis (backbones) and various combinations of modifying 

enzymes, responsible for further alterations to the initial product. Some of these 

modifying enzymes include oxidoreductases, P450 monooxygenases, methyl 

transferases, and esterases (Campbell & Vederas, 2010, Collemare et al., 

2008b, Fujii et al., 2005). Some clusters also include transcription factors and 

transporters, involved in regulation and translocation of the cluster product(s) 

(Shwab & Keller, 2008).  

SMURF predicted 42 SM clusters in C. graminicola and 39 in C. higginsianum. 

However, some clusters were left out of these predictions. Melanin (1,8-

dihydroxynaphthalene) is a SM required for appressorium-mediated host 

penetration in both Colletotrichum and Magnaporthe (Kubo & Furusawa, 1991). 

Based on similarities in gene content, order and orientation with the previously 
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characterized melanin biosynthetic clusters in C. orbiculare and Magnaporthe 

oryzae, our colleague Dr. Yasuyuki Kubo annotated the likely melanin clusters in 

C. graminicola and C. higginsianum (O'Connell et al., 2012). SMURF failed to 

predict either gene cluster. In all four fungi, five of the seven genes involved in 

melanin synthesis are physically associated in the melanin cluster.  These five 

genes include two C6zinc binuclear transcription factors (cmr1, cmr2), one 

reductase (t4hr1), one PKS (pks1) and one laccase-like multicopper oxidase 

(fet3). The other two necessary genes, which include a scytalone dehydratase 

(scd1) and a trihydrooxynaplthalene reductase (thr1), are located outside the 

cluster (Kubo et al., 1996, Perpetua et al., 1996). SMURF failed to predict the 

melanin cluster in either Colletotrichum species. SMURF is trained to identify 

clusters based on similarity to previously identified clusters in Aspergillus (Khaldi 

et al., 2010). In Aspergillus, all seven genes responsible for biosynthesis of 

melanin are physically clustered (Tsai et al., 1999). SMURF probably didn’t 

recognize the Colletotrichum melanin clusters because of the two genes located 

outside the clusters. 

Another cluster that SMURF missed was the carotenoid biosynthetic cluster, 

which was annotated in both Colletotrichum species by our colleague Dr. Robert 

Proctor, based on similarities to the Fusarium fujikori gene cluster 

(Linnemannstöns et al., 2002).  The carotenoid cluster is composed of four 

genes: a carotenoid dioxygenase, a phytoene synthase (a type of terpene 

synthase), a phytoene desaturase, and a rhodopsin. Carotenoids are terpenoid 

pigments synthesized by bacteria, fungi, and some insects (Moran & Jarvik, 

2010). The carotenoid clusters in C. graminicola and C. higginsianum are highly 

conserved, but in C. higginsianum the phytoene synthase and phytoene 

desaturase appear to be physically separated from the carotenoid dioxygenase 

and the rhodopsin (although it is difficult to be certain of that, given the relatively 

poor quality of the C. higginsianum assembly).  SMURF is not trained to 

recognize clusters that contain terpene synthase backbones.  
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Phylogenetic analyses of SM gene and gene cluster predictions provide relatively 

few insights into the classes of SM produced by the genus Colletotrichum 

There are a number of well-characterized fungal SM biosynthetic clusters, some 

of which are responsible for the synthesis of phytotoxins with important roles in 

plant disease (Rebordinos et al., 1996). Examples include T-toxin in Cochliobolus 

heterostrophus (Arntzen et al., 1973, Watrud et al., 1975, Turgeon & Baker, 

2007), HC-toxin in Cochliobolus carbonum (Scheffer & Ullstrup, 1965) and 

cercosporin in Cercospora sp. (Daub, 1982). Other SM such as the siderophores 

NPS6 (Lee et al., 2005, Oide et al., 2006) and sid1 (Tobiasen et al., 2007, 

Greenshields et al., 2007) from C. heterostrophus and Fusarium graminearum, 

respectively, are required for full virulence and resistance to oxidative stress. A 

phylogenetics approach was used to infer similarities between previously 

identified SM genes and gene clusters from ten different pathogenic 

Ascomycetes, and predicted SM genes and gene clusters in Colletotrichum.  

The alternapyrone biosynthesis cluster in Alternaria solani is composed of five 

genes: three cytochrome P450 monooxygenases, one FAD-dependent 

oxygenase/oxidase, and one PKS (Fujii et al., 2005). There were three 

Colletotrichum SM clusters containing three cytochrome P450 monooxygenases: 

clusters 23 and 27 from C. graminicola, and cluster 16 from C. higginsianum. C. 

graminicola clusters 23 and 27 include ten and 18 genes respectively, and only 

cluster 27 contains a PKS similar to that of the alternapyrone cluster. 

GLRG_10317, part of cluster 25, is an ortholog of A_solany_alt5, but none of the 

other genes in cluster 25 are shared with the atlernopyrone cluster.  C. 

higginsianum cluster 16 contains 13 genes and it contains a DMAT rather than a 

PKS as a backbone gene.  Thus, it does not appear that any of these clusters is 

related to the alternapyrone cluster, in spite of the presence of three cytochrome 

P450s.  

A DMAT-containing SM cluster is responsible for synthesis of ergot alkaloids in 

Claviceps purpurea, which causes ergot disease of wheat and barley (Tudzynski 



 
 
 
 
 

74 
 

et al., 1999). The cluster contains a DMAT (dmaW), and four putative NRPSs 

(lpsA1, lpsA2, lbsB, lpsC) and one cytochrome P450 monooxygenase (cloA) 

(Tudzynski et al., 2001, Schardl et al., 2013). Four C. graminicola clusters (13, 

14, 29, 33 and 39) and six C. higginsianum clusters (8, 13, 14, 29, 31 and 39) 

contain DMATs, however only two (cluster 33 of C. graminicola and cluster 8 in 

C. higginsianum) contain a second SM backbone enzyme, and in both cases this 

is a single NRPS.  Thus, there is little evidence that any of the DMAT-containing 

clusters in Colletotrichum produce a product similar to lysergic acid.  

Another SM-cluster that contains a DMAT, is the one responsible for the 

biosynthesis of siderodesmin, a non-host specific toxin involved in virulence of 

Lepthosphaeria maculans, the causal agent of blackleg disease(Gardiner et al., 

2004). This cluster contains 18 genes, including a DMAT (sirD), a PKS 

(LmPKS1) and an NRPS (sirP). GLRG_11574, a DMAT and GLRG_11575, a 

PKS from cluster 33 are 32 and 45% identical to sirD and LmPKS1, respectively. 

However, cluster 33 lacks an NRPS and is predicted to have only 10 genes, 

suggesting that this cluster is not related to the cluster from L. maculans. 

The C. graminicola PKS GLRG_08620 is orthologous to C_nicotiniae_CTB1 and 

PKS13 of C. higginsianum. Cercosporin, a light-induced phytotoxin, is produced 

by Cercospora species that infect maize, coffee, and soybeans (Chen et al., 

2007, Yamazaki et al., 1975). Upon illumination, cercosporin induces the 

production of reactive oxygen species (ROS), which destabilize host membrane 

lipids and proteins, leading to membrane breakdown and cell death (Daub & 

Ehrenshaft, 2000). Of the eight genes that comprise the cercosporin biosynthetic 

cluster in C. nicotiniae, four have orthologs in cluster 18 of C. graminicola and 

five in cluster 10 of C. higginsianum. Both of these clusters are the largest ones 

predicted by SMURF, and they are highly conserved in the two Colletotrichum 

species.  Additional modifying enzymes in both clusters, including five 

hypothetical proteins, two dehydrogenases, and an additional PKS in cluster 18 

(GLRG_08632), suggest that the product of these clusters is different from 
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cercosporin. Low levels of amino acid identity in SM clusters (35-55%) might be 

an indication that although the cluster enzymes catalyze similar reactions, the 

final products are quite different.  

There are four known fungal SMs that require the action of two PKSs for their 

synthesis: zearalenone (Kim et al., 2005b); T-toxin (Baker et al., 2006); lovastatin 

(Hendrickson et al., 1999, Kennedy et al., 1999); and radicicol (Wang et al., 

2008, Reeves et al., 2008). Four C. graminicola clusters (18, 21, 35 and 38) and 

13 C. higginsianum clusters (4, 6, 7, 10, 15, 18, 23, 27, 33, 34, 35, 36 and 38) 

were predicted to contain two PKSs. However, a closer examination of the 13 C. 

higginsianum clusters revealed that only six of them really contained two PKSs 

(cluster 4, 6, 7,15, 23 and 36). Five of the clusters (10, 18, 27, 35, 38) actually 

contained two truncated fragments of a single larger PKS, and two more (clusters 

33 and 34) contained fragments of a larger PKS-NRPS hybrid. Because of these 

ambiguities, further phylogenetic analysis for PKS and PKS-NRPS hybrid genes 

and gene clusters were performed using only C. graminicola predictions.  

Our colleague Dr. Robert Proctor first noticed a C. graminicola predicted cluster, 

cluster 38, was similar to the previously characterized SM clusters responsible 

for the production of zearalenone, radicicol or monorden in other fungi. 

Phylogenetic analysis indicated that the non-reducing PKS GLRG_11836 in 

cluster 38 is orthologous to C_chlamydosporia_RADS2, and the second reducing 

PKS, GLRG_11840, is orthologous to C_chlamydosporia_RADS1 and C. 

chiversii_RADS1.  The RADS cluster containing these PKSs is responsible for 

the biosynthesis of radicicol in these fungi (Wang et al., 2008, Reeves et al., 

2008). The RADS cluster in P. chlamydosporia is identical in gene content, order, 

and orientation with C. graminicola cluster 38, with identity levels of 58-67%.  

Levels of identity with the genes in the RADS cluster in C. chiversii are higher 

(62-72%), but gene content and order are different.  One gene (radR) is missing 

from cluster 38 and the other four genes are in a different order.  
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Radicicol, also known as monorden, is a SM with antifungal activity that was first 

isolated in 1953 from an Ascomycete fungus (Monosporium sp. nom. illegit.) 

found in soil samples (Delmotte & Delmotte-Plaquee, 1953). Interestingly, 

monorden and monocillins I, II and III, which are intermediates  in the 

biosynthesis of monorden (Zhou et al., 2010), were isolated from C. graminicola-

inoculated maize stalks, and in vitro analyses demonstrated their antifungal 

activity against other maize stalk-rot and foliar pathogens (Wicklow et al., 2009). 

Monorden inhibits heat-shock protein 90, by competition with ATP for the binding 

site required for activation of Hsp90 (Roe et al., 1999).This suggests it cannot 

only inhibit other fungi but also plant Hsp90, interfering with mediation of defense 

responses. Wicklow and collaborators suggested that during early penetration 

and biotrophic stages, C. graminicola could secrete these SM products in order 

to suppress basal defense responses.  It seems very likely that cluster 38 is 

responsible for production of monorden and monicillins I, II, and III by C. 

graminicola.  

There is a second cluster in C. graminicola, cluster 35 that also contains two PKS 

(GLRG_11770-11778). Phylogenetic analysis of their KS domains indicated 

these two PKSs are closely related to the two PKSs in cluster 38, and to the 

zearalenone and radicicol PKSs. GLRG_11778 is related to G_zeae_PKS13 and 

the RADS2 genes, and GLRG_11770 is related to G_zeae_PKS4 and the 

RADS1 genes. Phylogenetic analysis suggested that C. higginsianum lacks an 

ortholog of cluster 38, but that it has an ortholog of cluster 35.  The two clusters 

(35 and 38) may be paralogous clusters, and one of the paralogs has been lost 

or gained since the divergence of C. graminicola and C. higginsianum from a 

common ancestor.  Given the similarity of cluster 38 to the RADS cluster of the 

relatively distantly related C. chlamydosporia, it seems more likely that C. 

higginsianum has lost this cluster while C. graminicola has retained it.   

Another SM that requires two PKSs for its synthesis is the T-toxin from C. 

heterostrophus (Baker et al., 2006). C_heterostrophus_PKS1 is ortholog of 
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D_maydis_PKS1 (60% identical), the gene responsible for the synthesis of PM-

toxin in D. maydis (Yun et al., 1998). C. heterostrophus race T  is the causal 

agent of southern maize leaf blight in maize carrying the Texas male sterile 

(Tms) cytoplasm (Miller & Koeppe, 1971). PM-toxin is structurally similar to T-

toxin and also shows biological specificity towards maize with the Tms 

cytomplasm (Danko et al., 1984, Mehrabi et al., 2011). Seven genes in two loci 

(Tox1A and Tox1B) are known to be required for the biosynthesis of T-toxin in C. 

heterostrophus race T: the PKSs ChPKS1 and ChPKS2, and the 3-hydroacyl 

CoA dehydrogenase ChLAM1 in Tox1A; the decarboxylase ChDEC1, and the 

dehydrogenases ChRED1, ChRED2 and ChRED3 in Tox1B (Turgeon & Baker, 

2007). The C. graminicola PKS GLRG_03360 is related to these toxin-producing 

genes, but the C. graminicola gene is not predicted by SMURF to belong to a 

cluster. BLAST searches against the C. graminicola genome using the genes 

identified in ToxA and ToxB loci, indicated that none of the putative homologs in 

C. graminicola was predicted to be part of any SMURF predicted cluster.  

Six putative homologs of these seven C. heterostrophus genes can be identified 

in the C. graminicola genome, with identities ranging from 41 to 51%, but none of 

these genes was predicted as part of a cluster, and none of them was located 

near GLRG_03360. C_heterostrophus_PKS2 was not closely related to any of 

the C. graminicola PKSs or PKS-NRPS hybrids, and none of the C. graminicola 

clusters with two PKSs contain orthologs of any of the genes in the T-toxin SM 

cluster. Thus, there is no evidence from my study that C. graminicola produces a 

SM similar to T-toxin. 

Lovastatin is a SM synthesized by an Aspergillus terreus 18-gene cluster that 

also contains two PKSs, lovF and lovB (Kennedy et al., 1999, Hutchinson et al., 

2000, Auclair et al., 2001). Lovastatin interferes with cholesterol biosynthesis and 

has important pharmaceutical applications (Tobert et al., 1982, Tobert, 2003). C. 

graminicola does not have obvious orthologs of either lovF or lovB, but 

GLRG_09267 is related to lovF (40% identical) and the PKS-NRPS hybrids 
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GLRG_11890 and GLRG_11626 are related to lovB (50% identical). ACE1, a 

PKS-NRPS hybrid from M. oryzae, has been described as similar to LovB, with 

37% identity (Böhnert et al., 2004). The ACE1 cluster in M. oryzae is composed 

of 15 genes (Collemare et al., 2008b), and its product is an avirulence protein 

that confers Pi33-mediated resistance in rice (Berruyer et al., 2003, Vergne et al., 

2007). Analysis of expression patterns of the ACE1 PKS-NRPS hybrid indicated 

a strong induction of this gene during early stages of fungal penetration (Fudal et 

al., 2007). C. graminicola does not have orthologs of ACE1 or SYN2, another 

PKS-NRPS hybrid of M. oryzae found in the ACE1 cluster, but not required for 

avirulence in Pi33 cultivars (Collemare et al., 2008b).  However, C. higginsianum 

has orthologs of both the ACE1 (CH063_03067) and SYN2 

(CH063_03253/03254) clusters (O'Connell et al., 2012). Three more 

characterized PKS-NRPS hybrids of M. oryzae (SYN7, SYN6, SYN8) were 

included in my phylogenetic analysis. SYN8 and SYN6 are also induced at early 

stages of rice penetration, and expression of the latter was also detected in vitro 

(Collemare et al., 2008a). Deletion of ACE1, SYN2, or SYN6 did not affect 

pathogenicity of M. oryzae, and only ACE1 was required for resistance in Pi33 

cultivars. C. graminicola has two orthologs of SYN7: GLRG_11626 predicted as 

part of cluster 34 and GLRG_11890, predicted as part of cluster 39. 

GLRG_11507, part of cluster 31 and GLRG_09715, part of cluster 22, are 

orthologs of SYN6 and SYN8, respectively.  

Some C. graminicola NRPSs seemed to be related to other known fungal NRPS 

genes. A BLAST search identified GLRG_00469, an NRPS predicted as the 

backbone for cluster 2, as one of the first BLAST hits (58% identical) to ABA1 

from the yeast Aureobasidin pullulans. The reannotated C. higginisanum NRPS 2 

was 62% identical to ABA1.  A. pullulans is a saprophytic Ascomycete that 

produces aureobasidin, a SM with known antifungal activity against Candida 

albicans, Cryptococcus neoformans and Aspergillus sp., but with no toxicity to 

animals (Takesako et al., 1991, Takesako et al., 1993). The gene responsible for 
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the synthesis of this compound contains a single exon, and encodes a 1,200 kDa 

protein containing 9 ATC modules (Slightom et al., 2009). GLRG_00469 is also 

predicted to have a single exon, and encode a 982 kDa protein, that contains 

only 7 ATC modules. Other BLAST hits to ABA1 include SIMA from 

Tolypocladium niveum (Weber et al., 1994), NRPS3 from C. heterostrophus (Lee 

et al., 2005) and uncharacterized NRPSs from Trichoderma virens and M. 

oryzae. In T. niveum, SIMA encodes a cyclosporine synthetase that is 

responsible for the synthesis of cyclosporine, a commercial drug used to 

suppress the immune system (Borel & Gunn, 1986). Targeted deletion of NRPS3 

in C. heterostrophus did not affect the phenotype of the fungus in vivo or in 

planta (Lee et al., 2005). Although similar genes seem to be present in different 

Ascomycetes, the role of these in plant pathogenic fungi is still unknown. 

Overall, few similarities were observed among Colletotrichum SM-associated 

genes and previously characterized genes. PKSs and PKS-NRPS hybrids from 

C. graminicola were analyzed for similarities to other Ascomycete genes, and I 

determined that fifteen (44%) of the 34 analyzed PKSs and four (57%) of the 

seven PKS-NRPS hybrids seem to be unique to C. graminicola. Three PKS-

NRPS hybrids are shared with M. oryzae, whereas only two of them are shared 

with C. higginsianum. Twenty-nine percent of the PKS-NRPS hybrids, 45% of the 

PKSs, 64% of the TSs, 86% of the DMATS and 94% of the  AMP binding 

domains from NRPSs in C. graminicola appear to be shared with C. 

higginsianum. Only five (15%) of the analyzed PKSs in C. graminicola were not 

shared with any other fungus included in this study.  

 SM products are often associated with phytotoxicity induced by necrotrophic 

plant pathogens. SM such as monorden and the ACE1 gene product, have also 

been implicated in suppression or induction of resistance at early stages of 

fungal colonization.  My goal in this chapter was to identify the putative SM-

associated genes in C. graminicola, and to identify any SM with potential 

similarities to previously characterized SM that could be important in early stages 
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of penetration and establishment of a compatible interaction. Using this 

approach, I was able to identify a gene cluster that is probably responsible for 

production of monorden, a SM that has been proposed to suppress plant defense 

responses during early penetration events and during biotrophy (Reeves et al., 

2008, Wang et al., 2008, Wicklow et al., 2009). Particularly interesting was that 

the monorden cluster was not conserved in the closely related C. higginsianum, 

suggesting that it may be important specifically for C. graminicola on maize.   

Other than this highly conserved cluster, very few firm conclusions could be 

drawn due to the extreme diversity of the very large array of SM genes and gene 

clusters in both Colletotrichum species.  Thus, I next moved to use this 

information in an analysis of the expression of these genes during colonization of 

maize by C. graminicola to confirm the identities of co-regulated gene clusters, 

and to evaluate the potential role of SM at different stages of infection. 

Additionally I compared the transcriptome profiles of the WT and the cpr1 mutant 

during sheath infection to provide insights into the potential relevance of SM 

during appressorial development and biotrophy in the WT versus the mutant.  

These experiments are described in the next chapter of my dissertation. 
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Table 3. 1. Number of required conserved domains identified in each of the 

PKSs predicted by MCL analysis for both Colletotrichum species. The more 

fragmented genome of C. higginsianum is evidenced by the number of 

incomplete predicted proteins in each of these categories. C = Predicts a 

complete gene, I = Predicts an incomplete gene. 0/3= No required conserved 

domains. 1/3= One of three conserved domains. 2/3= Two required conserved 

domains. 3/3= All required conserved domains. 
 

 

0/3 1/3 2/3 3/3 

 

 

C I C I C I C I Total 

C. graminicola 4 0 4 0 4 0 40 0 52 

C. higginsianum 15 6 18 26 21 18 14 2 120 
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 Table 3.2. Details and accession numbers of previously sequenced PKSs and PKS-NRPSs used in this study. 

Gene name Assigned gene name Fungal species Secondary 
metabolite 

Accession  
number  

PKS1 D_maydis_PKS1 Didymella maydis PM-toxin AY495642     
ALT5 A_solani_ALT5 Alternaria solani Alternapyrone AB120221     
PKS1 C_lagenarium_PKS1 Colletotrichum lagenarium Melanin BAA18956     

LovB A_terreus_lovB Aspergillus terreus Lovastatin AAD39830 
   

 
LovF A_terreus_lovF  Aspergillus terreus Lovastatin AAD34559     

PKS13 G_zeae_PKS13 Gibberella zeae Zearalenone ABB90282     
PKS4 G_zeae_PKS4 Gibberella zeae Zearalenone ABB90283     

RADS1 C_chiversii_RADS1  Chaetomium chiversii Radicicol EU980390     
RADS2 C_chiversii_RADS2 Chaetomium chiversii Radicicol EU980390     
RADS1 P_chlamydosporia_RADS1 Pochonia chlamydosporia Radicicol ACD39770     
RADS2 P_chlamydosporia_RADS2 Pochonia chlamydosporia Radicicol ACD39770     
FUM1 G_moniliformis_FUM1 Gibberella moniliformis Fumonisin AF155773     

PKS1 C_heterostrophus_PKS1  
Cochliobolus 

heterostrophus T-toxin U68040     

PKS2 C_heterostrophus_PKS2  
Cochliobolus 

heterostrophus T-toxin AY495643     
CTB1 C_nicotiniane_CTB1 Cercospora nicotiniae Cercosporin AY649543     
ACE1 M_oryzae_ACE1 Magnaporthe oryzae ACE1 AJ704622     
SYN2 M_oryzae_SYN2 Magnaporthe oryzae N.A AJ704623     
SYN6 M_oryzae_SYN6 Magnaporthe oryzae N.A BN000505     
SYN7 M_oryzae_SYN7 Magnaporthe oryzae N.A BN000506     
SYN8 M_oryzae_SYN8 Magnaporthe oryzae N.A BN000507     

PKS3-PKS25 C_heterostrophus_PKS3-PKS25 
Cochliobolus 

heterostrophus N.A 
AY495643–
AY495666     
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Table 3. 3. Comparisons between the radicicol (RADS) biosynthesis cluster from C. chiversii, P. 

chlamydosporia and SMURF cluster 38 from C. graminicola. Percent identity between each RADS cluster 

gene and the first two BLAST(p) hits in the C. graminicola database is indicated. 

RADS cluster gene C. graminicola 
closest hits 

SMURF 
cluster 

P. chlamydosporia C. chiversii 

Identity (%) 

RadH GLRG_11837 38 67 72 

(Halogenase) GLRG_08626 18 51 53 

Rads2 GLRG_11836 38 58 62 

(nrPKS) GLRG_11778 35 37 38 

RadE GLRG_11838 38 60 65 

(MFS trasnporter) GLRG_06355 NC 43 44 

Rads1 GLRG_11840 38 63 68 

(Rpks) GLRG_11770 35 44 45 

RadP GLRG_11839 38 65 70 

(Cytochrome P450) GLRG_06496 NC 39 38 

RadR GLRG_05281 NC NC 25 

(Transcription factor) GLRG_10785 NC NC 7 
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Table 3.4. Comparisons between the CTB1 cercosporin biosynthetic cluster and Colletotrichum clusters.  

Each gene of  the C. nicotiniae cluster and first BLAST(p) hits in the Colletotrichum database. 
 

CTB1 cluster gene Predicted function Colletotrichum 
closest hits SMURF cluster  Identity (%) 

CTB1  nrPKS 
GLRG_08620 18 54 
CH063_02506 10 45 

CTB2 O-methyltransferase 
GLRG_08618 18 51 
CH063_07427 10 47 

CTB3 O-methyltransferase 
GLRG_08619 18 55 
CH063_11016 10 41 

CTB4 MFS-transporter 
GLRG_09290 NC 50 
CH063_00314 10 51 

CTB5 FAD-dependent 
oxidoreductase 

GLRG_11839 38 62 
CH063_02504 10 62 

CTB6 NADPH-dependent 
oxidoreductase 

GLRG_02545 NC 53 
CH063_07616 NC 55 

CTB7 FAD-dependent 
oxidoreductase 

GLRG_11528 NC 51 
CH063_00277 NC 51 

CTB8 Transcription factor 
GLRG_08617 18 47 
CH063_07428 10 35 
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Figure 3.1. Identification of KS domains.  A. C. higginsianum and B. C. 

graminicola predicted PKSs using the NCBI conserved domain database 

(CDD). Proteins with no conserved domains, lacking the KS domain, or 

containing a truncated version, were not utilized for phylogenetic 

analysis.  
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Figure 3.2. Identification of AMP-binding (A) domains. A. C. higginsianum 

and B. C. graminiciola predicted NRPSs using the NCBI conserved domain 

database (CDD). Proteins with no conserved domains, lacking the A domain 

or with truncated A domains were not included in the phylogenetic analysis. 
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Figure 3.3. Details of phylogenetic tree alignments suggesting expansion of 

PKS families in C. higginsianum. A. Genes CH063_01990 and 

CH063_08736 (arrows)are paralogs, as indicated by alignment and 

visualization using IGVbrowser (http://www.broadinstitute.org/igv/). B. 
Genes CH063_06479 and CH063_14111 (arrows) are truncated fragments 

of a larger ORF. 
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Figure 3.4. Phylogenetic analysis of PKSs from C. graminicola and C. 

higginsianum, based on alignment of the conserved KS domain. Sixteen 

putative orthologous PKSs were found between C. higginsianum and C. 

graminicola (blue boxes). Fragments of C. higginsianum PKSs were realigned 

and predicted to be part of a single ORF (orange boxes). 
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Figure 3.5. Details of phylogenetic tree alignments suggesting expansion 

of NRPS families in C. higginsianum. A.  A clade of putative paralogous 

genes in C. higginsianum, as indicated by alignment and visualization 

using IGVbrowser (http://www.broadinstitute.org/igv/). B. Predicted AMP 

binding domains from five C. higginsianum NRPSs appear to be orthologs 

of the seven A domains of GLRG_00469 (GLRG_004691A to 

GLRG_004697A), but could be fragments of a larger gene.  
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Figure 3.6. Phylogenetic tree based on alignment of AMP-binding 

domains from both Colletotrichum species. Putative orthologous AMP –

binding domains are color-coded in boxes. 
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Figure 3.7. Phylogenetic tree based on alignment of PKS-NRPS hybrid protein 

sequences from both Colletotrichum species. Putative orthologs are color-

coded in boxes. 
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Figure 3.8. Phylogenetic tree based on alignment of DMAT protein 

sequences from both Colletotrichum species. Putative orthologs are 

color-coded in boxes.  
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Figure 3.9. Phylogenetic tree based on alignment of terpene synthases 

protein sequences from both Colletotrichum species. Putative orthologs 

are color-coded in boxes. 
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Figure 3.10. Number and classes of backbone genes predicted by 

SMURF. Clusters for C. graminicola (light gray) and C. higginsianum (dark 

gray). 
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Figure 3.11. Total number of clusters predicted by SMURF in Colletotrichum 

and 8 more Ascomycetes 
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Figure 3.12. Phylogenetic analysis of amino acid sequences of KS domains 

from PKSs and PKS-NRPS hybrids from C. graminicola and 10 other 

Ascomycetes. 

 

Clade A. Sub-group 1. Non-reducing PKSs. 
Melanin, cercosporin, zearalenone, radicicol

Clade A. Sub-group2.  Non-reducing PKSs. 
No characterized genes

Clade B. Sub-group 1. Reducing PKSs. 
Zearalenone, radicicol

Clade B. Sub-group 2. Reducing PKSs. 
Fumonisin

Clade B. Sub-group 3. Reducing PKSs. 
Alternapyrone, T-toxin, lovastatin, PM-toxin

Clade B. Sub-group 4. Hybrids. 
Lovastatin, ACE1
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Figure 3.13. Comparisons between the radicicol (RADS) biosynthesis 

cluster from C. chiversii, P. chlamydosporia and SMURF cluster 38 from C. 

graminicola.  Microsynteny is indicated by gray bars. 
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Figure 3.14. Structure of C. graminicola cluster 18 and C. higginsianum 

cluster 10. Initial SMURF predictions were modified and only shared portion 

of the clusters is shown. All 15 genes are in the same scaffold in C. 

graminicola whereas C. higginsianum cluster was reconstructed from 4 

different scaffolds. Putative orthologs of genes of the cercosporin 

biosynthetic cluster are shown in red boxes. Microsynteny is indicated by 

gray bars. 
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Chapter 4 

Expression of potential pathogenicity determinants during compatible and 
incompatible interactions between C. graminicola and maize 

 

It has generally been assumed that hemibiotrophic pathogens behave initially like  

biotrophs, and then switch later to necrotrophic development (Koeck et al., 2011, 

Horbach et al., 2011). My findings in Chapter 3 indicated that the genome of C. 

graminicola encodes a large number of genes associated with secondary 

metabolism (SM), a feature that is typical of necrotrophic plant pathogens that 

secrete phytotoxic compounds to activate host defensive apoptotic pathways and 

kill plant cells in advance (Markham & Hille, 2001, Amselem et al., 2011).  Unlike 

necrotrophs though, C. graminicola does not kill host cells in advance, and each 

new cell is typically invaded while it is still alive. This behavior is more like a 

biotroph. Biotrophs suppress host defense responses by producing a range of 

secreted effectors that manipulate host defense pathways (Spanu et al., 2010, 

Doehlemann et al., 2009, Djamei et al., 2011). However, recent studies have 

indicated that C. graminicola induces maize defense responses even during early 

stages of colonization, which is more like a necrotroph (Vargas et al., 2012). 

Thus, the theory that C. graminicola behaves first as a biotroph, and then as a 

necrotroph, seems to oversimplify the true nature of this interaction. 

To better understand biotrophic versus necrotrophic development in C. 

graminicola, we conducted a transcriptome analysis of the pathogen during pre-

penetration, biotrophic colonization, and necrotrophic colonization stages of 

development in maize sheaths2. In this chapter, I have characterized the genes 

that were differentially expressed during these different phases, and I also used 

the data to validate co-regulation of predicted SM clusters, and to clarify potential 

                                                            
2 Some of the data included in this chapter were published in O'Connell et al., 2012, 
Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and 
transcriptome analysis. Nature Genetics 44 (9): 1060-1065 
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roles of secondary metabolism, especially during the early stages of penetration 

of C. graminicola.  I also compared the transcriptome of the pathogenic (WT) 

strain with that of a non-pathogenic mutant strain that is impaired in 

establishment of biotrophy and the switch to necrotrophy.   

Introduction 
Colletotrichum graminicola, the causal agent of anthracnose leaf blight and 

anthracnose stalk rot of maize, is a hemibiotroph. It grows initially as a biotroph, 

producing thick, primary hyphae that invade living host cells, and are separated 

from the host cytoplasm by a membrane.  Later, it switches to necrotrophic 

growth, producing thin, secondary hyphae that are no longer surrounded by a 

membrane (Mims & Vaillancourt, 2002, Venard & Vaillancourt, 2007a). 

Symptoms are produced only during the necrotrophic phase (Bergstrom & 

Nicholson, 1999, Münch et al., 2008). Biotrophic plant pathogens are known to 

reprogram host metabolism and suppress host defense responses in order to 

obtain nutrients from living plant cells (Kamper et al., 2006, Doehlemann et al., 

2008, Spanu et al., 2010). There is evidence that, during early infection stages, C 

graminicola avoids activation of plant defense by replacing the PAMP chitin with 

chitosan in the appressorial wall and in walls of primary hyphae. This may avoid 

recognition by plant chitinases (El Gueddari et al., 2002b). However, basal plant 

defense responses are activated during early stages of infection of maize leaves, 

when the fungus appears to be growing biotrophically (Vargas et al., 2012), 

suggesting that C. graminicola does not suppress host defense responses at this 

stage like a biotroph. Furthermore, I found that the C. graminicola genome 

encodes a very large number of enzymes associated with secondary metabolism 

(SM) (O'Connell et al., 2012), a feature normally associated with necrotrophic 

pathogens (Amselem et al., 2011, Bölker et al., 2008). These observations 

suggest that the interaction of maize with the hemibiotrophic C. graminicola 

pathogen does not precisely match the characteristics of either biotrophic or 

necrotrophic interactions.  
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I predicted 42 SM-clusters in the C. graminicola genome, based on gene content 

and sequence similarities to other identified SM-biosynthetic clusters (O'Connell 

et al., 2012, Khaldi et al., 2010), which suggests that this fungus has the potential 

to produce a wide variety of SM. However, only three SM have been identified in 

C. graminicola to date: melanin, required for appressorial maturation 

(Rasmussen & Hanau, 1989); the spore germination inhibitor mycosporin alanine 

(Leite & Nicholson, 1992); and the antifungal compounds monorden and 

monocillin (Wicklow et al., 2009). Several approaches have been used to identify 

C. graminicola genes that are expressed during growth in planta, including laser 

capture microdissection (Tang et al., 2006), yeast signal sequence trapping 

(Krijger et al., 2008) and suppressive subtractive hybridization (Vargas et al., 

2012). Approximately 170 fungal genes have been identified as a result of these 

studies, a very small number considering that the genome of C. graminicola is 

predicted to encode 12,006 proteins (O'Connell et al., 2012). Mutants of C. 

graminicola lacking Ppt1, a major activator of polyketide synthases (PKSs) and 

non-ribosomal peptide synthetases (NRPSs) (Lambalot et al., 1996) had multiple 

developmental defects and were non-pathogenic to maize leaves, suggesting 

that the synthesis and secretion of one or more SM-derived compounds is 

required for pathogenicity and for multiple stages of C. graminicola development 

(Horbach et al., 2009). However, few SM-key enzymes were identified in these 

expression studies, with the exception of a PKS involved in melanin biosynthesis 

(Sugui & Deising, 2002). Previous approaches utilized to characterize fungal 

genes expressed in planta have been limited in part because fungal transcripts 

are underrepresented in infected samples.  

Next generation sequencing (NGS) protocols can generate millions of reads, 

providing a much more comprehensive catalogue of fungal gene expression in 

infected plant tissues (Kawahara et al., 2012). We generated Illumina RNA-seq 

transcriptome data representing three stages of fungal infection of detached 

maize leaf sheaths: pre-penetration melanized appressoria; late biotrophic 
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development (when the fungus had colonized 3-4 cells beyond the infection site); 

and necrotrophy (when the fungus had begun to produce secondary hyphae). A 

preliminary analysis of the WT transcriptome data was published in (O'Connell et 

al., 2012). The data are available from the NCBI Gene Expression Omnibus 

under accession number GSE34632.  Here I have compared these data with a 

parallel set of RNA-seq data that was generated for the nonpathogenic cpr1 

mutant fungus during two stages of infection: pre-penetration melanized 

appressoria; and biotrophic development, in which approximately 95% of the 

successful penetration sites consisted of primary hyphae that were limited to the 

initially infected cell.   

I had several goals for the work described in this chapter.  First, I wanted to 

characterize in detail the fungal genes that were differentially regulated across all 

stages of development in order to compare these with genes that are reportedly 

expressed by biotrophs versus necrotrophs in planta.  This type of in-depth 

analysis had not been done previously. I was particularly interested in genes that 

encoded putative effectors (typically associated with biotrophy) and SM-

associated genes (typically associated with necrotrophy).  I anticipated that this 

would help to explain the nature of these shifts in C. graminicola. Second, I 

wanted to evaluate and validate the co-expression of SM-associated gene 

clusters in C. graminicola. In fungi, SM-associated genes are not only clustered, 

but also co-regulated (Chen et al., 2007, Proctor et al., 2003, Khaldi et al., 2008). 

Finally, I expected that comparisons of the mutant and WT transcriptomes would 

give additional clues about the nature of the mutation, and also might reveal 

genes that are expressed early in biotrophy, in the first infected cell, versus later, 

when the fungus has colonized several cells, most of which contain intercalary 

hyphae and have already died.  Since the mutant appeared to be defective 

specifically in the ability to move from the first cell into the adjacent cells, I hoped 

to identify candidate genes involved in this process.   
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Materials and Methods 

Plants and fungal strains 

The highly susceptible maize inbred Mo940 was used for this study. Plants were 

grown to the V3 stage in the greenhouse, with a 14-hour day length, in 3.8 x 21 

cm plastic Conetainers (Super SC-10 UV stabilized Stuewe & Sons, Inc. Oregon, 

USA), containing a mixture of three parts Pro-Mix BX (Premiere Horticulture, Ltd, 

Riviere du Loup, PQ, Canada) to two parts of sterile topsoil. Plants were watered 

daily to saturation and fertilized two to three times per week with a solution of 150 

ppm of Peters 20-10-20 (Scotts-Sierra Horticultural Products Co., Marysville, 

OH), beginning one week after germination.  

C. graminicola strain M1.001 was the WT strain (O'Connell et al., 2012). A 

mutant derived from M1.001 by restriction-enzyme mediated insertional 

mutagenesis (REMI) is nonpathogenic to maize stalks and leaves due to an 

insertion in the Cpr1 gene, which is predicted to encode one component of the 

microsomal signal peptidase (Thon et al., 2000, Thon et al., 2002, Mims & 

Vaillancourt, 2002). A complemented strain (Cpr1-C), generated by 

transformation of the mutant with a 3.6 kb fragment of genomic DNA containing 

the WT Cpr1 gene, is fully restored in pathogenicity and comparable to the WT 

strain both in vitro and in planta (Thon et al., 2002).  All fungal strains were 

routinely cultured on potato dextrose agar (PDA, Difco) at 23ºC under continuous 

light.  

Transcriptome profiling 

Sample preparation and RNA extraction 

C. graminicola falcate spores were harvested and inoculated on maize leaf 

sheaths as described in chapter 2 of this dissertation. Two 20-μl inoculum drops 

were applied to each leaf sheath, approximately 1 cm from either end, and the 

inoculated sheaths were incubated in a moist chamber at 23°C under continuous 

light. Sheaths with mature pre-penetration appressoria (AP, approximately 20 
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hpi); intracellular biotrophic hyphae, before symptoms or secondary hyphae were 

visible (BT, approximately 36 hpi); or necrotrophic hyphae, in which initial 

browning of the tissue and secondary hyphae were visible (NT, approximately 60 

hpi), were collected. The cpr1 mutant does not progress to the production of 

necrotrophic hyphae, and so only the AP and BT stages were collected for that 

strain. Each infected leaf sheath was inspected under the microscope to confirm 

the staging and to determine the extent of colonization.  For the BT and NT 

samples, each examined sheath was gently cleaned with a moistened sterile 

cotton swab to remove unattached spores and superficial mycelia. The process 

of trimming, cleaning, and examination did not take more than two minutes per 

sheath. Approximately six trimmed tissue pieces were pooled into a single 

microfuge tube, flash-frozen in liquid nitrogen, and maintained at -80°C until RNA 

extraction. 

Total RNA was extracted from the tissue pieces by crushing the frozen tissue 

followed by grinding in TRIzol (1 ml per 100 mg sample) (Invitrogen). To increase 

RNA yield, samples were incubated for 7 hours in isopropanol followed by 2 

hours in 100% ethanol, both incubated at -20 ºC. To obtain high quality RNA, 

samples were purified and treated with DNAse using the RNeasy Plant Mini Kit 

(Qiagen), according to the manufacturer’s protocol (Metz et al., 2006), and 

resuspended in 50µl of RNase free water. Extracts from approximately 30 leaf 

sheath pieces were pooled for each experimental repetition. RNA integrity 

number (RIN) and quantity were measured with an Agilent 2100 Bioanalyzer 

before sequencing.  

RNA sequencing 

Three-hundred μg of total RNA from three replicates of each treatment was 

submitted for sequencing to the Texas AgriLife Genomics and Bioinformatics 

Service Center (Texas A&M System). Fifteen C. graminicola libraries (3 WT-

developmental stages, 2 MT developmental stages, 3 biological replicates of 

each) were prepared by using the Illumina TruSeqTM RNA Sample Preparation 
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Kit and the manufacturer's instructions.  Data were generated from ten lanes of 

Illumina GAII sequencing, in two separate runs, with barcoding to multiplex 

biological replicates.  Read lengths were 76 bp (including 7 bp for the barcode 

adaptor). For the first run, eight lanes of a flowcell were used and lane five was 

spiked with 1% PhiX as a control. For the second run, in which additional data for 

the WT AP was obtained, two lanes were used. Data were processed using the 

Illumina software CASAVA-1.7.0 for base calling and de-multiplexing, and the 

final results were stored as individual files for each sample in FASTQ format. 

These data were subjected to a statistical reanalysis for this dissertation by 

Noushin Ghaffari, Scott Schwartz, and Charlie Johnson, of the Texas AgriLife 

Genomics and Bioinformatics Service Center.   

Alignment to reference genome and modeling 
Fungal reads were mapped to the reference C. graminicola genome with TopHat 

(Trapnell et al., 2009) by Stefan Amyotte. The counts per annotated gene per 

sample were obtained with the “coverageBed” function from the “BEDtools” suite 

and custom R scripts (O'Connell et al., 2012). Using the total number of reads 

that mapped to each annotated C. graminicola gene (for each sample), we 

examined differential expression across multiple comparisons using R (Team, 

2012). The comparisons we investigated are shown in Table 4.1, column 2.   

We used a “Mixed Effects” Generalized Linear Model (GLM) to account for 

biological replication, timepoint and genotype effects. The goal of the analysis 

was to identify the genes that showed the strongest experimental responses 

between time points and genotypes. The mixed-effect GLM allowed us to 

leverage data from all time points simultaneously, in a unified analysis 

framework. The GLM improves the statistical power and inference capabilities, 

and can protect against multiple testing as compared to the pairwise testing 

paradigm through a single “no effects” test, of the type used in (O'Connell et al., 

2012). On the other hand, pairwise comparisons can be derived from the GLM 

structure where warranted.    
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We used the GLM implemented in the R package, edgeR (version 3.0.8) 

(Robinson et al., 2010). The methods implemented in edgeR assume that the 

underlying distribution for the discrete count measures of the next generation 

sequencing (NGS) is negative binomial (NB). In conjunction with an internal, 

model-based normalization method, edgeR estimates mean and variance of the 

NB distribution for each gene (Dillies et al., 2012).  

Experimental analysis 

Using the GLM we examined main effects and interactions across fungal 

genotype, developmental phase, and time. The Genotype variable captures the 

WT versus MT effect. The Time variable represents the effect of time points 20, 

48, 60 hai: AP, BT, and NT. Therefore, our “Design_Variable”, which covers all 

the interactions between genotypes and time points, can be represented as the 

following equation: Design_Variable = Genotype*Time [http://www.clcbio.com]. 

The Design_Variable also included a coefficient for the MT-NT interaction, which 

does not exist in our dataset, so this column was manually removed. The final 

model includes four coefficients and their combinations. Each coefficient, or a 

combination of them, can produce a list of statistically significant genes for the 

comparisons that we were interested in.  Using this model, we first tested the 

hypothesis that a given gene was changing at all among any of the groups: we 

filtered out the genes that were not significantly different among any of the 

groups, represented by the above-mentioned four coefficients of the model. We 

started with 12,006 genes, and this initial filtering reduced the set to 2,778 genes.  

Additional Filtering 

The default filtering method of the edgeR package is called “cpm”, which stands 

for Counts Per Million. This method takes a matrix of read counts and calculates 

the cpm for each sample. The user specifies a threshold for a minimum number 

of samples that should have a certain number of counts per million. This cpm 

method does not take the existence of sample replicates into account, and 

sometimes passes through samples in which one or more of the replicates have 
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unacceptably low read counts (i.e., background noise). Samples with very low 

read counts cannot be subjected to a valid statistical analysis for significance.   

We developed a new filtering method that filters out genes based on the number 

of reads mapped to them individually, while considering the samples and their 

replicates. In this method, there were two levels of examination for each gene. In 

the first level, genes were retained if the total number of reads for all the 

replicates of at least one sample group was greater than 20. In the second level 

of filtering, the genes that didn’t pass the first step were retested. In this round, 

genes that did not have at least three sample groups with a minimum of 15 total 

reads in each were filtered out. This mechanism ensured that samples with very 

few reads did not pass filtering. Applying our filtering method to the fungal 

dataset changed the number of differentially expressed genes from 2778 to 

2442. The minimal number of reads for each step was determined empirically, to 

provide the best compromise between keeping reasonable genes and eliminating 

genes with too few reads for meaningful statistical analysis. When we examined 

the set of the filtered genes, we found that most of the excluded genes had very 

few, e.g. less than ten reads for all replicates of a sample, in most cases in more 

than one group.  

Normalization and statistical testing 

For the next step, we used the “DGEList” function of edgeR to create an object 

for each group. The DGEList object takes the table of counts and its grouping 

information as its minimum information. In our case, we had five groups: WT-AP, 

WT-BT, WT-NT, MT-AP and MT-BT. 

The DGEList object contains count data that are filtered and ready for 

normalization. The default normalization method of the edgeR package is 

Trimmed Mean of M values (TMM). The TMM method uses a sample as the 

reference, and it assumes that most genes are not differentially expressed. As 

the result of the normalization, scaling factors are calculated for each gene 

(Robinson & Oshlack, 2010). The edgeR package provides a function to 
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calculate the scaling factors called “calcNormFactors”. With this function, 

normalization factors that account for different library sizes will be added to the 

DGEList object. Dividing the counts by the normalization factors normalizes the 

read counts (Dillies et al., 2012).   

The edgeR package assumes that the underlying distribution for the RNASeq 

data is a negative binomial distribution. The dispersion for each gene needs to be 

estimated from the data. The package uses quantile-adjusted conditional 

maximum likelihood (qCML), and it is implemented within two functions, 

“estimateGLMCommonDisp” and “estimateGLMTagwiseDisp”. We decided to 

use “estimateGLMTagwiseDisp” because it estimates the dispersion for each 

gene individually, and the estimated value is more reliable for gene-by-gene 

comparisons. 

Finally, the statistical testing was done using the “glmFit” and “glmLRT” functions. 

These functions use the gene-by-gene dispersions that were estimated in the 

previous step, the count data, and the normalization factors, and also the 

comparison at hand. The comparison is specified through the coefficient of the 

GLM model, and the glmFit function fits the negative binomial GLM for each 

gene. The results can be classified as the group of differentially expressed genes 

(up or down regulated) using the “decideTestsDGE” function. This function 

contains a multiple testing procedure and therefore, provides options to correct 

for the multiple testing effect. The default is false discovery rate (FDR) (Benjamini 

& Hochberg, 1995). In order to generate a list of significant genes, each gene 

needs to be tested multiple times against different competing cases. This will 

increase the possibility of randomly selecting genes.  This is the multiple testing 

phenomenon. FDR is one way to correct for this issue. The FDR method adjusts 

the threshold so that the expected number of false positives will be acceptable 

with respect to the p-value and the total desired significant number of genes. It is 

one of the most popular and powerful statistical methods for p-value adjustment.  
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Heatmaps 

Heatmaps were built by using Genesis (Release 1.7.6) (Sturn et al., 2002), and 

represent log2-fold changes of a transcript in each of three fungal developmental 

stages, relative to the average expression across all stages. 

Quantitative RT-PCR 

RNA extraction from inoculated leaf sheaths 

Leaf sheaths were inoculated with WT and MT strains, incubated, trimmed, and 

flash-frozen for RNA extraction as described above. Additional treatments were 

also tested in the (q)RT-PCR experiments. Tissue inoculated with the Cpr1-C 

strain, and sheaths that were mock-inoculated with water, were also collected, 

trimmed, and frozen for RNA extraction as described, at 20, 36 and 60 hpi. 

RNA extraction from in vitro appressoria 

Appressoria of the WT, MT, and Cpr1-C strains were produced in vitro on 

polystyrene Petri dishes as described by Kleeman and collaborators (Kleemann 

et al., 2008), with some modifications. C. graminicola spores were collected and 

washed as previously described in chapter 2 of this dissertation, and 40 ml of a 

spore suspension at a concentration of 2 x 104 spores/ml was added to each 

Petri dish. Twenty hours later, each plate was inspected under the microscope to 

verify the presence of mature melanized appressoria. Appressoria were broken 

and scraped from the bottoms of ten Petri plates, using a sterile culture spreader, 

into a total of five ml of TRIzol. Appressoria collected from 40 Petri plates were 

combined into each replicate.  RNA purification, DNase treatment, and testing for 

RNA integrity and concentration were performed as described above. 

cDNA synthesis and cycling reactions 

The SuperScript II reverse transcriptase kit (Invitrogen) was used to synthesize 

the first strand of cDNA from 1 μg of DNase and RNase-treated total RNA in a 

volume of 20 μl. Primers were designed to amplify 100-200 bp fragments, using 

PrimerQuest (Integrated DNA Technologies) software. The reaction mix for real-
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time PCR contained 0.4 mM of each primer, 10μl of SYBR green PCR Master 

Mix (AppliedBiosystems), 5 μl of a 1:5 dilution of the cDNA product, and DEPC 

water to a final volume of 20 μl. Cycling conditions were as follows: 95°C for 10 

min, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 min. The 

reactions were carried out in fast 96-well reaction plates on the ABI 7900HT fast 

RT-PCR system (Applied Biosystems). Fungal transcript levels were normalized 

by using the fungal actin gene as an internal standard, and relative expression 

was calculated using the Pfaffl method (Pfaffl, 2001). Maize genes were 

normalized against the maize actin gene (Kankanala et al., 2007), and 

expression was calculated relative to mock-inoculated plants. 

Validation of RNA sequencing data 

To validate the RNAseq data, I used qRT-PCR to evaluate the expression levels 

of 34 C. graminicola transcripts encoding various secondary and primary 

metabolic proteins and house-keeping proteins.  

Functional annotation and gene ontology  

Nucleotide sequences similar to differentially expressed genes (P<0.05), were 

identified by BLASTx searches of the non-redundant database (E value 1E-3)of 

the Blast2go suite (Conesa & Götz, 2008). Functional characterization and gene 

ontology (GO) categories for cellular functions, cellular components, and 

biological processes, were also assigned using this platform. The GOSSIP 

function was utilized to determine GO term enrichment in different comparisons 

(Blüthgen et al., 2004). Manual annotation of specific genes was performed using 

BLAST searches against the NCBI databases and InterproScan analysis. 

Cellular localization of significantly expressed transcripts was predicted by using 

WoLF PSort (http://wolfpsort.org/) (Horton et al., 2007). Comparisons to C. 

higginsianum were performed by using the online Broad Institute Colletotrichum 

database(www.broadinstitute.org/annotation/genome/colletotrichum_group/Multih

ome.html). 

http://wolfpsort.org/
http://www.broadinstitute.org/annotation/genome/colletotrichum_group/Multihome.html
http://www.broadinstitute.org/annotation/genome/colletotrichum_group/Multihome.html
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Results 

Nearly all of the predicted C. graminicola genes are transcribed during host 

colonization by the WT 

A major advantage of the detached sheath assay for the transcriptome analysis 

was the ability to evaluate each infection site individually to confirm the stage of 

development. As I had observed previously (see chapter 2 for more details) there 

was no noticeable difference between the WT and MT strains in the timing or 

efficiency of appressorial production on maize sheaths at 24 hpi (Figures 4.1A 

and D). Thirty-six hours after inoculation, the WT had colonized 3-4 cells beyond 

the initial point of infection (Fig 4.1B), while the MT remained confined to the first 

invaded epidermal cell (Fig 4.1E). Sixty hours after inoculation, I observed thin 

secondary hyphae in the centers of the WT colonies, characteristic of the 

necrotrophic phase (Figure 4.1C). However, the MT still remained in the first 

invaded cell.  

Ninety percent of the predicted C. graminicola genes (10,810/12,006) were 

transcribed in planta during at least one phase of development by the WT 

(O'Connell et al., 2012). After applying the statistical model described in the 

Materials and Methods section, above, a total of 2,355 genes (20%) were 

identified as statistically differentially expressed. Of these, I selected 1,883 genes 

that had a log2 fold change ≥ 2. My primary interest was in the differentially 

expressed genes that were associated with the transitions from pre-penetration 

appressoria to biotrophy, and from biotrophy to necrotrophy. There were 672 

genes that were differentially expressed in appressoria versus biotrophy (WTAP-

WTBT), and 821 in biotrophy versus necrotrophy (WTBT-WTNT) (Table 4.1). 

One hundred and fifty three genes were differentially expressed in both 

comparisons. The expression levels of most of these increased progressively 

from the appressorial to the biotrophic to the necrotrophic phases (Figure 4.2). A 

few genes had the opposite pattern, progressively decreasing in expression from 

the appressorial to the biotrophic to the necrotrophic phases (Figure 4.2). Among 
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the genes that were differentially regulated in only one comparison, 367 were 

significantly higher in appressoria than biotrophy, and 486 were significantly 

higher during necrotrophy than biotrophy. Only nine genes were identified that 

were significantly more highly expressed during biotrophy than in either the 

appressorial or the necrotrophic phases (Figure 4.2). These included two MFS 

transporters, three oxidoreductases, one gene involved in cobalamin (vitamin 

B12) biosynthesis, and three hypothetical proteins lacking any conserved 

domains. Two of these have orthologs in other Colletotrichum fungi, but the third 

gene had no homology to other reported fungal sequences.  

For the MT, only two phases of development occurred in leaf sheaths 

(appressorial and biotrophy). Somewhat surprisingly, there were no significant 

differences in gene expression between the WT and MT appressoria, and only 

one gene was statistically differentially expressed in the MT fungus during the 

transition from appressoria to biotrophy (MTAP-MTBT). I also compared gene 

expression between WT biotrophy and MT biotrophy (WTBT-MTBT). A total of 

267 genes were differentially expressed in this comparison. 

Predicted secreted and plasma membrane-bound proteins are over-represented 

among differentially expressed genes during growth in planta 
The C. graminicola genome is predicted to encode 1,650 secreted proteins, 

accounting for 13.7% of the total predicted genes. Another 14% are predicted to 

encode proteins that localize to the plasma membrane (Figure 4.3A). Analysis of 

the predicted localization of proteins encoded by fungal transcripts that are 

differentially expressed in planta revealed that secreted proteins are over-

represented. In the WT, 36% and 33% of the transcripts that are differentially 

expressed in WTAP-WTBT, and in WTBT-WTNP, respectively, are predicted to 

encode secreted proteins (Figure 4.3B). Similarly, plasma-membrane associated 

proteins accounted for 23% and 19%, respectively, of these differentially 

expressed fungal transcripts. Among the 267 genes that are differentially 

expressed in the comparison of WTBT-MTBT, the degree of over-representation 
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was even higher, with 41% predicted to encode secreted proteins, and 26% 

predicted to encode plasma membrane proteins. 

Gene ontology analysis of differentially expressed genes 

I performed a functional annotation of differentially expressed transcripts by using 

Blast2GO (Conesa & Götz, 2008).  Gene ontology (GO) terms were applied to 

40%-67% of the differentially expressed transcripts (Table 4.2) in three GO 

categories: biological process (P); molecular function (F); and cellular component 

(C). Given that the number of transcripts in each of the comparisons varied, the 

cutoff in the annotation analysis also varied in each set, for both biological 

process and molecular function. Only GO categories that included at least 8% of 

the annotated sequences were analyzed.  

Genes that were differentially expressed in the appressoria to biotrophy (WTAP-

WTBT) comparison were associated with 22 GO terms that were significantly 

(P<0.05) overrepresented in appressoria-expressed genes (WTAP-

WTBT_down), relative to biotrophy-expressed genes (WTAP-WTBT_up). The 

molecular function category included genes associated with oxidoreductase 

activity, oxidation-reduction processes, monooxygenase and transferase activity, 

and binding to iron ion, heme, proteins, vitamins, amino acids, carboxylic acid, 

and amines (Figure 4.4). For the biological process category, there were genes 

associated with electron transport and metabolism of amines, organic acids, 

carboxylic acids, acyl-carrier protein, and cellular amino acids. For the cellular 

component category, genes encoding intracellular and cytoplasmic proteins were 

enriched. 

The transition to biotrophy was characterized by an overrepresentation of terms 

associated with hydrolase activity (Figure 4.5). Also, primary metabolism and 

transmembrane transport genes were enriched. Overall, biotrophy-expressed 

genes included more terms related to carbohydrate and protein metabolism and 

catabolism. In comparison with the appressoria-expressed genes, the biotrophy-

expressed genes were enriched for the extracellular region. 
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Relative to necrotrophy, biotrophy-expressed transcripts in the WT (WTBT-

WTNT_down) were enriched in 20 different GO terms, including oxidoreductase, 

cellular catabolism, peptide and phosphate hydrolytic activities, and vitamin 

metabolism (Figure 4.6). Two categories potentially associated with secondary 

metabolism, dimethylallyltransferase activity and alkaloid metabolism, were also 

overrepresented in this comparison. 

The necrotrophic stage in the WT was accompanied by a significant enrichment 

in terms related to hydrolase and glycosidase activities and cellulose binding 

(Figure 4.7). Consistent with this, genes encoding proteins associated with the 

extracellular region were overrepresented among necrotrophy-expressed 

transcripts. 

In the comparison of the mutant appressoria to mutant biotrophic phase, only a 

single gene was significantly differentially expressed.  This gene was not 

annotated by Blast2GO, but appears to encode a small, secreted hypothetical 

protein that is unique to C. graminicola according to NCBI Blast searches. The 

gene was more highly expressed during MT biotrophy. 

Most of the genes that were not annotated by Blast2GO are predicted to encode 

secreted proteins 

A total of 676 of the differently expressed genes (38%) were not assigned GO 

terms by Blast2GO (Table 4.2).  Among these non-annotated genes, 278 (41%) 

were predicted to encode secreted proteins (Figure 4.8A-B). Many fungal effector 

proteins are small (<300 aa), secreted, cysteine rich (>3% cys) hypothetical 

proteins, induced in planta and functioning to facilitate pathogen colonization 

(Kamper et al., 2006, O'Connell et al., 2012, De Wit et al., 2009, Rooney et al., 

2005). Forty-two of the non-annotated genes (6%) are predicted to encode small, 

cysteine rich, secreted putative effector proteins (Table 4.3). The smallest group 

of these putative fungal effectors (five) was found among the set of genes more 

highly expressed in necrotrophy versus biotrophy (WTBT-WTNT_up) (Figure 

4.8B, Table 4.3). The largest group (18) was found among genes that were more 
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highly expressed in biotrophy versus necrotrophy (WTBT-WTNT_down) (Figure 

4.8B, Table 4.3). Comparisons of the WT and MT during biotrophy revealed that 

five putative effectors were more highly expressed in the WT (WTBT-

MTBT_down), while two were more highly expressed in the mutant (WTBT-

MTBT_up) (Figure 4.8C). 

Twenty of the 676 non-annotated genes had previously been recognized in C. 

graminicola as predicted secreted proteins, including ten that had been identified 

as putative effectors (Krijger et al., 2008, Vargas et al., 2012) (Table 4.3). Four 

were similar to effectors identified in C. truncatum on lentil (Bhadauria et al., 

2011) and ten were similar to effectors previously reported from C. higginsianum 

on Arabidopsis (Kleemann et al., 2012) (Table 4.3). 

Most genes differentially expressed between WT biotrophy and MT biotrophy are 

also differentially expressed between WT appressoria and WT biotrophy 

Blast2GO analysis was applied to the group of genes that were differentially 

expressed in WT biotrophy relative to the biotrophy in the MT (WTBT-MTBT). 

Genes with a higher level of expression in the MT (WTBT-MTBT_up) relative to 

the WT were enriched in 3 GO terms: nucleotide binding, acyl carrier protein 

biosynthesis, and vitamin binding (Figure 4.9A). No significant enrichment in GO 

terms was identified among genes with higher levels of expression in WT 

biotrophy relative to MT biotrophy (WTBT-MTBT_down).  

I found that 224 (89%) of the 267 genes that were differentially expressed in the 

WTBT-MTBT comparison were also differentially expressed in the WTAP-WTBT 

comparison (Figure 4.9B). All of the genes that were significantly more highly 

expressed in biotrophy versus appressoria in the WT (WTAP-WTBT_up), were 

also significantly higher in the WT biotrophic phase compared with MT biotrophy 

(WTBT-MTBT_down) (Figure 4.10A). Similarly, all of the genes that had lower 

expression in biotrophy versus appressoria in the WT, also had lower expression 

in the WT biotrophic phase relative to MT biotrophy (WTBT-MTBT_up) (Figure 

4.10A). 



 
 
 
 
 

116 
 

Analysis of predicted cellular localization for the 43 genes that were unique to the 

WTBT-MTBT comparison did not suggest any obvious differences compared to 

the 224 genes that were shared (Figure 4.10B). No significant enrichment in GO 

terms was found for these 43 genes, compared to genes that are differentially 

expressed in the transition to biotrophy in the WT (WTAP-WTBT).  

Patterns of expression of predicted SM clusters 

Forty-two putative SM clusters were predicted by the SMURF program, based on 

identification of key SM enzymes and similarities of neighboring genes to other 

identified fungal clusters (see chapter 3 of this dissertation for details).  

Only four SMURF predicted clusters were obviously co-regulated, which I defined 

as having most or all of the genes in the cluster significantly differentially 

expressed, and with the same pattern of expression. These clusters will be 

discussed individually below. 

The C. graminicola PKS cluster 18 was predicted by SMURF to contain 24 genes 

(O'Connell et al., 2012). Fourteen of the genes were orthologous to genes in 

cluster 10 of C. higginsianum [15]. These genes in the C. higginsianum cluster 10 

were highly expressed, and co-regulated, during appressorial development in 

that fungus [15]. However, the orthologous genes in cluster 18 were expressed 

poorly, or not at all, in maize sheaths during all three phases of development 

[15]. I tested three of these genes (GLRG_08617, GLRG_08620, and 

GLRG_08621) by qRT-PCR, and I confirmed that expression was not detectable 

during any stage (not shown). The other ten genes that were predicted to belong 

to cluster 18 had orthologs in C. higginsianum, but these were scattered 

throughout the genome. Interestingly, 90% of these genes were expressed at a 

significantly higher level in appressoria relative to biotrophy (WTAP-

WTBT_down) (Figure 4.11A). Only one gene, a putative transcription factor, was 

not differentially expressed at any stage of fungal colonization analyzed (Figure 

4.11A).  
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All of the genes predicted to belong to PKS cluster 35 were significantly more 

highly expressed in pre-penetration appressoria compared with biotrophy 

(WTAP-WTBT_down) (Figure 4.11B). Eleven genes were predicted as part of the 

PKS-NRPS hybrid cluster 22. Nine of these were significantly induced during 

necrotrophy (WTBT-WTNT-up) (Figure 4.11C). Four of the five genes predicted 

as part of cluster 38 were also significantly induced in necrotrophy (WTBT-

WTNT_up) (Figure 4.11D). Only GLRG_11836, a putatative PKS, was not 

differentially expressed at any stage of fungal colonization.  

Only one gene from cluster 22 (GLRLG_09715, a PKS-NRPS hybrid) and one 

from cluster 35 (GLRG_11776, a putative salicylate hydroxylase) were 

significantly different in WT versus MT biotrophy. Five additional SM-associated 

genes were differentially expressed between the WT and mutant biotrophic 

stages: these included GLRG_08063 (cluster 15); GLRG_08212 (cluster 16); 

GLRG_09073 (cluster 20); GLRG_09837 (cluster 23); and GLRG_11503 (cluster 

31). 

RNA sequencing validation 

Thirty-four genes were selected to validate the RNA-sequencing results. Log2 

transcript fold-changes (AP vs BT, BT vs NT, AP vs NT) measured by both 

RNAseq and qRT-PCR were plotted to measure the correlation between gene 

expression profiles (Figure 4.12). A linear regression value of R2=0.84, and a 

slope of y=0.75, indicated that the data were consistent [15].  

Quantitative reverse transcriptase PCR analysis of selected genes 

The expression of selected genes was also evaluated by (q)RT-PCR. RNA 

isolated from mature appressoria induced on artificial surfaces (IV-AP) and leaf 

sheaths inoculated with the Cpr1-C strain were also included. The actin gene 

was utilized for normalization of CT values. This gene has been identified to be a 

good normalization factor in different RT-PCR experiments in other fungi, and in 

leaf sheath experiments (Kankanala et al., 2007, O'Connell et al., 2012, Balmer 
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et al., 2013). Each experiment was repeated twice.  Table 4.4 contains the 

average relative level of expression, standard deviation, and fold change of the 

averaged value for each gene in each comparison.  

Expression of Cpr1 was increased in all three strains in appressoria in planta 

relative to appressoria on artificial surfaces (IV-AP) (Figure 4.12). During 

biotrophy, expression was reduced in all three strains, and then it increased 

slightly during necrotrophy in the WT and Cpr1-C strains. Expression of Cpr1 in 

MT IV-AP was reduced 8-fold, compared with the WT and Cpr1-C strains, but 

surprisingly, levels of expression in planta for all three strains during AP and BT 

were similar. 

Expression of SM-associated genes in mutant versus WT 

Two genes from cluster 18, two from cluster 22, and two from cluster 35, were 

confirmed to be differentially expressed between WTAP and WTBT (Figure 4.14). 

Five of the six genes were more highly expressed in appressoria in planta, 

relative to IV-AP, in all three strains.  The exception was GLRG_08628, one of 

the cluster 18 genes. I was able to confirm that both genes in cluster 18 and both 

genes in cluster 35 are expressed at lower levels during biotrophy relative to 

appressoria (Figure 4.14). However, expression of genes in cluster 22, indicated 

in the RNAseq analysis to have higher expression in necrotrophy relative to 

biotrophy, was in fact higher during necrotrophy according to the (q)RT-PCR data 

(Figure 4.14). Expression of these SM-associated genes in the MT was 

comparable to the WT in all cases.  However, I observed a few differences 

between the Cpr1-C strain and the WT. For example, expression of the cluster 

35 genes in the Cpr1-C strain during biotrophy relative to necrotrophy was much 

lower, compared with the WT and mutant.    

Expression of effector proteins in mutant versus WT 

Expression of six putative effector proteins was evaluated by (q)RT-PCR. 

GLRG_06284 and GLRG_00201, homologs of two biotrophy-associated 
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secreted (BAS2 and BAS3) protein effectors in M. oryzae (Mosquera et al., 

2009b), and GLRG_07767 and GLRG_01192, homologs of two C. higginsianum 

effector candidates (Kleemann et al., 2012), were chosen for analysis.  In 

addition, the single gene that was differentially regulated in the MT during 

biotrophy relative to appressoria (GLRG_03688), and one of the most highly 

expressed putative fungal effector genes (GLRG_07776), were also tested. 

Expression of most of the putative effectors was higher in appressoria in planta 

versus in IV-AP in all three strains. The exceptions were GLRG_01192 and 

BAS2 (Figure 4.15) Expression levels of the BAS2 and BAS3 orthologs were 2-3 

fold higher in appressoria than during biotrophy. Additionally, expression of BAS3 

was 3-4 fold higher during biotrophy relative to necrotrophy. GLRG_07767, a 

predicted LysM containing protein, was progressively reduced in expression 

during biotrophy and necrotrophy. GLRG_07776, one of the most highly 

expressed fungal genes, was induced in planta. Expression of this gene was 

slightly reduced in biotrophy relative to appressoria, and expression in 

necrotrophy was reduced 2.2-fold compared with biotrophy. 

Expression patterns for most of the effector genes did not seem to differ much in 

the MT compared with the WT and Cpr1-C complemented strains. An exception 

was GLRG_01192, a predicted HR-inducing protein, which was 2-3-fold more 

highly expressed during biotrophy versus appressoria in the WT and Cpr1-C 

complemented strain, but appeared unchanged in the mutant. Expression of the 

putative small secreted effector GLRG_03688 was highly induced in the WT and 

Cpr1-C complemented strain, by 4.2 and 4.4-fold, respectively. In the MT, 

expression of this gene is reduced 3.3-fold in comparison with the WT. 

Comparison of GLRG_03688 with other sequenced Colletotrichum genomes, 

indicated that this gene is present only in the closely related sorghum pathogen 

C. sublineola.  
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Maize leaf sheaths respond differently to WT and cpr1 mutant infections 

Basal host defense responses to the MT and WT strains at different stages of 

infection were studied by evaluating expression of resistance genes by (q)RT-

PCR. The genes were chosen for the study based on reports in the literature of 

their response to C. graminicola or to biotrophic pathogens (van der Linde et al., 

2011, Vargas et al., 2012, Balmer et al., 2013, Doehlemann et al., 2008).  Levels 

of expression for genes in planta were normalized against RNA extracted from 

mock-inoculated leaf sheaths. 

Expression of the salicylic acid (SA)-associated genes PR1, PR3, and PR5; the 

jasmonic acid (JA)-induced Bowman-birk trypsin inhibitor (Bti); and a cell death 

inhibitor (Bi-1) (van der Linde et al., 2011) in WT, MT and Cpr1-C strain 

interactions, relative to mock-inoculated plants, is shown in Figure 4.16. Although 

in some cases there were significant differences in the values, overall patterns of 

relative expression of maize defense genes in response to the WT and the Cpr-1 

strains were similar. All the defense genes were highly expressed in response to 

appressoria, prior to penetration. Expression of PR3, Bti, and Bi1 was reduced 

during BT vs AP, while PR1 expression was increased, and PR5 was 

unchanged. During NT, expression of PR3 increased relative to BT, while PR1 

expression decreased, and expression of the rest of the genes was unchanged.   

Expression of maize defense genes in response to the MT versus the WT 

differed in several cases. In appressoria, expression of PR3, Bti, and Bi-1 was at 

least twice as high in plants that were responding to WT appressoria relative to 

the MT. Expression of PR3 was reduced during BT in the WT to approximately 

half of the expression level in the MT strain during BT.  
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Discussion 

”Waves” of fungal genes are differentially expressed across sequential stages of 

maize infection and colonization 
C. graminicola is a hemibiotroph, and various studies, including this dissertation, 

have described the process by which it infects and colonizes maize tissues 

(Politis & Wheeler, 1973, Mims & Vaillancourt, 2002, Venard & Vaillancourt, 

2007b). There are three recognizable phases of pathogenic development: 

appressoria that form on the surface prior to penetration; biotrophy, characterized 

by thick primary hyphae, surrounded by a membrane, that initially colonize living 

host cells; and necrotrophy, identified by production of narrow necrotrophic 

hyphae and concurrent degradation of host cell walls and development of 

symptoms. In this study, I identified and characterized 1,340 genes that are 

differentially expressed in “waves” across these three phases of development, 

including 193 genes that are expressed primarily or only in pre-penetration 

appressoria, and 608 that are expressed primarily or only during necrotrophy. 

Only nine genes were identified as biotrophic specific. I attribute the relatively low 

number of statistically significant biotrophy-specific genes to the fact that in C. 

graminicola, biotrophy consists of a mixture of cell types, including numerous 

pre-penetration appressoria, biotrophic primary hyphae entering living host cells, 

and intercalary primary hyphae that are occupying cells that are already dead or 

dying. Furthermore, necrotrophy is also a mixed culture, with necrotrophic 

hyphae produced in the center of the colony, but persistence of biotrophy at the 

colony edges. This lack of synchronicity would be expected to mute potential 

differences in gene expression across cell types. In C. higginsianum, which 

infects Arabidopsis, the biotrophic phase is limited to a single epidermal cell, and 

then there is a complete switch to necrotrophy (O'Connell et al., 2012). 

Production of primary hyphae from appressoria is also more synchronous and 

efficient in Arabidopsis, which does not seem to have germination self-inhibitors 

like C. gramincola does. Many more genes were statistically differentially 
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expressed in biotrophy in C. higginsianum, probably because of this relative 

synchronicity(O'Connell et al., 2012). 

Functional interpretation of the patterns of fungal gene expression during 

developmental transitions in planta 

Pre-penetration appressoria were highly active in expression of a unique set of 

genes, including some genes that would be expected to play roles in signaling or 

manipulating the host. Thus, functional annotation and significant enrichment 

analysis indicated that SM-associated and detoxification proteins seem to be 

important during appressorial stages.  GO terms related to monooxygenase 

activity, acyl carrier protein biosynthesis, phosphatentheine binding and amino 

acid binding, mostly described cytochrome P450s, PKSs and NRPSs. Iron ion 

binding and heme binding categories also included cytochrome P450s and 

peroxidases. Both of these classes of genes are associated with oxidation of 

potential toxic compounds (Meunier et al., 2004), and defense against plant 

ROS.  Deletion of a secreted peroxidase leads to an increase in H2O2 in 

appressoria of M oryzae infecting rice leaf sheaths, and delayed host 

colonization, but it did not prevent symptom development (Tanabe et al., 2011). 

Other GO terms enriched in appressoria-induced genes were amino acid 

biosynthetic processes and cellular amine metabolism. Genes in this category 

included an aminotransferase (GLRG_09800), ProDH (GLRG_07259) and 

P5CDH (GLRG_06830), all genes involved in proline degradation (Deuschle et 

al., 2004).  In plants, proline accumulation is linked to the synthesis of phenolic 

compounds, callose deposition and ROS accumulation (Shetty, 2004, Deuschle 

et al., 2004).  

During appressorial development, C. graminicola seems to encounter oxidative 

stress, possibly originating from the host, and an active detoxification system 

could be required for successful colonization. Recent studies have demonstrated 

that putative effectors can be detected in the appressorial pore, even before 

penetration (Kleemann et al., 2012), and the authors suggest that  active 
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secretion of fungal effectors could be important to suppress host defense and 

reprogram host metabolism to predispose host cells for fungal invasion.  

The transition from appressoria to biotrophy appears to involve increased 

transcription of genes associated with activation of secreted proteases, indicated 

by enrichment in GO terms associated with peptidase activity, protein 

metabolism, proteolysis, exopeptidase and carboxypeptidase activities. Fungal 

proteases have been associated with various roles in pathogenicity of plants (ten 

Have et al., 2004, Murphy & Walton, 1996, Van den Ackerveken et al., 1993). 

Some proteases from plant pathogenic fungi can degrade host chitinases and 

induce host cell death (Movahedi & Heale, 1990, Valueva & Mosolov, 2004). 

Many of the genes within these categories are predicted subtilisin-like proteases, 

a class of serine proteases. Subtilisins are pathogenicity determinants in the 

entomopathogenic fungus Metarhizium anisopliae, where the serine protease Pr1 

is induced during host-cuticle penetration (St. Leger et al., 1992). Subtilisins have 

been implicated in penetration and colonization by plant pathogenic fungi, since 

they have the potential to degrade cell wall proteins and plant defense proteins 

(Olivieri et al., 2002).In M. oryzae, targeted deletion of the subtilisin Spm1 

severely compromised pathogenicity in rice plants (Oh et al., 2008) 

Carboxypeptidases were also significantly induced in the transition to biotrophy. 

Carboxypeptidases cleave the C-terminus peptide bonds of polypetides (Folk et 

al., 1960), but their role in fungal plant pathogens is not clear. Mutant rice plants 

that transiently expressed a carboxypeptidase inhibitor from potato (PCI), were 

highly resistant to infection by the blast fungus M. oryzae and the root pathogen 

F. verticillioides (Quilis et al., 2007). The authors proposed that fungal 

carboxypeptidases could be involved in cell wall biosynthesis, by processing and 

maturation of chitin synthase (Machida & Saito, 1993), degradation of plant cell 

wall proteins, and amino acid uptake.  

One third of the biotrophy-specific genes in C. graminicola were predicted to 

encode putative effectors. Other genes with expression elevated during biotrophy 
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included some associated with aspartic peptidase activity. Aspartic proteases 

can have lytic activity against peptide bonds of multiple proteins, and could be 

involved in host cell wall degradation, or inactivation of host proteases (Movahedi 

& Heale, 1990, Plummer et al., 2004). GO terms associated with vitamin B6 

biosynthesis (vitamin biosynthetic process, pyridoxal phosphate biosynthetic 

process and vitamin B6 biosynthetic process), were also enriched in biotrophy. 

Vitamin B6, also known as pyridoxine, is a cofactor in multiple enzymatic 

reactions, especially associated with amino acid metabolism (Percudani & 

Peracchi, 2003). Pyridoxine has also recently been associated with antioxidant 

activities and resistance to oxidative stress in plant and fungi (Bilski et al., 2000, 

Titiz et al., 2006).   

I observed that ROS seems to accumulate even before appressorial penetration, 

but is no longer detected in maize leaf sheaths at 48hpi, when biotrophic growth 

is established.  This suggests that fungal proteases and active detoxification 

mechanisms could be important to overcome defense mechanisms and establish 

a successful biotrophic interaction. 

Finally, the switch to necrotrophy was associated with an enrichment in GO 

terms related to glycosyl hydrolase activities, most likely involved in degradation 

of host cell walls. Cell wall degrading enzymes are utilized for host penetration 

and colonization, and also to obtain nutrients from plant polymers (Walton, 1994). 

This observation is similar to what has been described for necrotrophic plant 

pathogens, which normally secrete large quantities of cell wall degrading 

enzymes during host colonization (Amselem et al., 2011, Daub, 1982). 

Genes encoding putative secreted effectors are usually expressed at higher 

levels during early stages of development in planta 

Bioinformatic predictions of cellular localization of proteins encoded by the 1,383 

differentially expressed genes suggested that one third of these proteins are 

secreted. These results are similar to a previous study that investigated genes 

induced in C. graminicola-inoculated maize stalks (Tang et al., 2006). Those 
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authors reported that 22% of the in planta induced fungal genes were predicted 

to encode extracellular proteins, versus only 13% of the transcripts induced in 

vitro.  All three stages of development were associated with expression of 

numerous genes predicted to encode secreted and membrane-bound proteins. 

Each stage was characterized by production of a distinctive subset of these 

genes, presumably with distinct functions in the host-pathogen interaction.  

During host colonization, biotrophic plant pathogens secrete small effector 

proteins that are involved in suppression of the host defense response and 

reprogramming of host metabolism (Doehlemann et al., 2009, Catanzariti et al., 

2006, Kamper et al., 2006). These effector proteins are typically cysteine-rich, 

and poorly conserved among different species or genera of fungi. Among the 

non-annotated genes, I identified 37 predicted to encode small, cysteine rich, 

secreted hypothetical proteins, the majority of which were expressed more highly 

in appressoria and during biotrophy relative to necrotrophy. Two of these, 

GLRG_03688 and GLRG_07776, were also evaluated by (q)RT-PCR, which 

confirmed this pattern of early expression.  GLRG_07776 was one of the most 

highly expressed fungal genes in planta. 

I also identified orthologs of several known fungal effector protein genes, 

including BAS2 (GLRG_06284) and BAS3 (GLRG_00201) from M. oryzae 

(Mosquera et al., 2009b).  Expression of both of these genes was elevated in 

appressoria and biotrophy of C. graminicola. In M. oryzae, BAS2 and BAS3 were 

two of the most highly expressed genes during biotrophic colonization of rice 

plants (Mosquera et al., 2009b). However, deletion of either gene did not affect 

pathogenicity in rice leaf sheaths.  

Another conserved non-annotated gene, GLRG_01192, is an ortholog of 

CgEC91, a hypersensitive-response inducing protein effector, induced during the 

switch to necrotrophy in C. higginsianum. Expression of this gene was 6-fold 

increased in biotrophy relative to appressoria in the RNAseq data, although my 

(q)RT-PCR results suggested it was only 1.8-fold higher.  GLRG_07767 is an 
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ortholog of ChEC90, a LysM containing protein similar to CIH1 from C. 

lindemuthianum, involved in fungal cell wall protection against plant chitinases 

(Perfect et al., 1998b). GLRG_07767 was 2-5 fold more highly expressed in 

biotrophy and appressoria relative to necrotrophy.  

Analysis of the expression of these six putative effectors in appressoria produced 

in planta vs. in vitro indicated that all of them were plant-induced, another typical 

characteristic of fungal effectors. In both C. higginsianum and C. obiculare, 

appressoria and primary hyphae were the primary sites for expression of 

effectors (Gan et al., 2013).  These organs were proposed to function primarily 

as secretory organs for the production of these proteins for modification of the 

plant environment and induction of compatibility (Gan et al., 2013). My data 

suggest a similar pattern in C. graminicola. 

Predicted SM clusters are expressed at both early and late stages of host 

colonization 

In C. higginsianum, expression of numerous SM-associated genes occurred 

primarily during the appressorial and biotrophic phases of development. It was 

suggested that these SM acted as effectors that promoted susceptibility, rather 

than as toxins that killed host tissues (O'Connell et al., 2012). I verified co-

regulation of four potential SM clusters in C. graminicola. Clusters 18 and 35 

were significantly induced in appressoria, while clusters 22 and 38 were induced 

during necrotrophy. Induction of SM during early stages of development has 

been described in other intracellular hemibiotrophs including C. higginsianum 

(O'Connell et al., 2012); C. obiculare (Gan et al., 2013); and M. oryzae (Fudal et 

al., 2007, Collemare et al., 2008a). This behavior is not typical of biotrophs, 

which produce relatively few SM. Expression of SM genes during necrotrophy is 

more expected, given that SM are usually associated with necrotrophic plant 

pathogens (Brosch et al., 1995, Amselem et al., 2011).  

Only four of the 42 clusters predicted by SMURF were clearly co-regulated.  

However, this may be due to low to moderate levels of expression for many of 
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the genes, which made it impossible to distinguish them statistically across the 

different phases of development. The highly conserved melanin cluster was not 

predicted by SMURF. Only two genes from the cluster (GLRG_04203, a PKS 

and GLRG_04204, a multicopper oxidase) had significantly higher levels of 

expression in the appressorial stage relative to biotrophy and necrotrophy, as I 

would have expected. This suggests that low levels of fungal biomass, and high 

levels of variation, especially during the early stages of infection, may affect my 

ability to statistically identify genes that are differentially expressed.  

Cluster 18 contains 24 genes and is orthologous to cluster 10 in C. higginsianum 

(O'Connell et al., 2012). Cluster 10 was highly induced in planta, during 

appressoria and biotrophic stages in Arabidopsis (O'Connell et al., 2012). 

According to the RNAseq data, the 15 genes that are highly conserved between 

cluster 18 and cluster 10 were not expressed above background levels at any 

stage of development in C. graminicola.  However, expression of the 10 genes 

predicted in cluster 18 by SMURF that are not shared with the C. higginsianum 

cluster, was increased significantly in appressoria relative to biotrophy.  The 

single exception was GLRG_08631, a putative fungal transcription factor (TF). 

TFs are sometimes regulated post-transcriptionally: thus, a lack of co-expression 

doesn’t necessarily mean that this TF doesn’t play a role in the cluster. 

Interestingly, C. higginsianum does not have this part of cluster 18, suggesting 

that the 24 genes predicted as part of cluster 18 could actually represent two 

separate clusters in C. graminicola. The backbone in this second cluster is the 

nrPKS GLRG_08632. My phylogenetic analysis determined that this gene is an 

ortholog of C_heterostrophus_PKS20, an uncharacterized gene, and is related to 

the PKS required for melanin biosynthesis. An extensive phylogenetic analysis 

(Kroken et al., 2003b), determined that C_heterostrophus_PKS20 was related to 

PKS14 and PKS19 in the necrotrophic pathogen B. cinerea. None of these genes 

has been functionally characterized.  
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Phylogenetic analysis of the two PKSs in cluster 35 indicated that GLRG_11778 

is related to G_zeae_PKS13 and the RADS2 genes, and GLRG_11770 is related 

to G_zeae_PKS4 and the RADS1 genes. G_zeae_PKS13 and G_zeae_PKS4 

are required for the synthesis of zearalenone (ZEA) in Fusarium graminearum 

(Kim et al., 2005b). Two additional genes, ZEB1, an isoamyl alcohol oxygenase 

and ZEB2, a fungal transcription factor, are part of the ZEA biosynthesis cluster.  

BLAST searches of the C. graminicola genome indicated that genes in cluster 35 

did not contain putative homologs of ZEB1 or ZEB2. No similarities to any other 

known SM biosynthetic cluster were found for this group of genes.  

Four PKS-NRPS hybrids (ACE1, SYN2, SYN6 and SYN8) were found to be 

highly induced during early penetration stages in rice (Böhnert et al., 2004, 

Collemare et al., 2008a). My phylogenetic analysis indicated that the backbone of 

cluster 22, GLRG_09715, is related to SYN8. In a phylogenetic study, 

comparisons among some previously characterized PKS-NRPS hybrids indicated 

that SYN8 did not seem to have orthologs in other fungal species (Collemare et 

al., 2008a). Other identified SM products that require the action of a PKS-NRPS 

hybrid include compactin in Penicillium citrinum (Abe et al., 2002), equisetin in F. 

heterosporum(Sims et al., 2005) and fusarin C in F. moniliforme (Song et al., 

2004).  BLAST searches of the C. graminicola genome, indicated that cluster 22 

did not contain orthologs of any of the genes in these biosynthetic clusters. 

Based on sequence analysis of the RADS cluster in P. chlamydosporia, in 

chapter 3, I described the possibility that cluster 38 is involved in the synthesis of 

monorden and monocillins in C. graminicola. Although the nrPKS GLRG_11836 

was not significantly induced during necrotrophy, results from phylogeny and 

synteny analyses suggest that this gene is also part of the biosynthetic cluster 

(Reeves et al., 2008). Monorden and monicillins I, II and III had been identified in 

C. graminicola-infected stalks, and it was proposed that this inhibitor of HSP90, 

could be involved in suppression of basal defense responses during early 

infection and biotrophic colonization of maize (Wicklow et al., 2009). However, 
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my expression analysis suggested that genes in cluster 38 are most highly 

expressed during necrotrophy. Radicicol has been involved in generation of 

reactive oxygen species (ROS) and induction of programmed cell death in animal 

systems (Kim et al., 2012, Compton et al., 2006). It is possible that monorden 

plays a role in induction of host cell death during the switch to necrotrophy in 

maize.  The role of monorden in late stages of maize colonization needs further 

study. 

Transcriptome profiling reveals similarities and differences to both biotrophic and 

necrotrophic fungal plant pathogens 

Genes that are expressed during early stages of infection in C. gramicola 

(appresoria and biotrophy), have some similarities to genes expressed in plant-

biotrophic interactions. Analysis of gene expression of the biotroph Uromyces 

fabae colonizing bean leaves allowed the identification of various in planta 

induced genes (PIGs) (Hahn & Mendgen, 1997). These included genes involved 

in amino acid metabolism, electron transport, transmembrane transport and 

detoxification (Jakupović et al., 2006). Detoxification genes included cytochrome 

P450s and peroxidases, also overrepresented in the appressorial stage of C. 

graminicola. A gene involved in H2O2 detoxification is also required for virulence 

of the biotrophic pathogen Ustilago maydis (Molina & Kahmann, 2007). Amino 

acid metabolism and electron transport are also among the overrepresented 

categories in C. graminicola appressorial stage. Two of the most highly 

expressed genes in the haustoria of bean rust are predicted to be involved in 

vitamin B1 (thiamine) biosynthesis. Thiamine biosynthesis genes  were also 

highly expressed in wheat leaves inoculated with the rust pathogen Puccinia 

triticina (Thara et al., 2003). Vitamin metabolism also appears to be important 

during the biotrophic phase of C. graminicola in maize. As vitamins B6 and B2, 

vitamin B1 is a cofactor of different enzymes, many of them involved in carbon 

metabolism (Sohn et al., 2000). It is suggested that induction of thiamine 

biosynthetic genes in rust fungi is associated with synthesis of metabolites to 
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support fungal growth in planta (Sohn et al., 2000, Thara et al., 2003). Genes 

associated with transmembrane transport were also overrepresented in biotrophy 

relative to appressoria.   

Interestingly, biotrophy-expressed genes in C. graminicola also share similarities 

with transcripts expressed during plant colonization by necrotrophic pathogens. 

Zhuang and collaborators recently reported a transcriptome analysis of lesions 

colonized by the necrotrophic pathogen Sclerotinia sclerotiorum on stems of pea 

plants (Zhuang et al., 2012). Predicted functions of fungal genes expressed 

during colonization included host cuticle and cell wall degradation, fungal cell wall 

biosynthesis, transport, regulation of transcription, and acid proteolysis. 

Membrane transporters and aspartic acid proteases were also significantly more 

highly expressed during biotrophy in C. graminicola. Aspartic proteases (Apr) 

have been identified in B. cinerea inoculated carrots, cabbage and grapes 

(Movahedi & Heale, 1990). Application of the purified enzyme from B. cinerea 

induced cell death in carrot cell cultures, and inhibition of the enzymatic activity 

significantly reduced virulence. The authors suggest that Apr is crucial for 

induction of cell dead during tissue colonization by B. cinerea. In contrast, in C. 

gloeosporioides isolated from apple (Malus domestica), the aspartic protease 

Cgsap was expressed during appressorial formation, but targeted deletion had 

no effect on symptom development compared to the wild type (Plummer et al., 

2004). As mentioned previously, aspartic proteases can have lytic activity on 

peptide bonds from multiple proteins, and could be involved in host cell wall 

degradation, or inactivation of host proteases. 

An RNA-sequencing study of Sclerotinia homeocarpa, the causal agent of dollar 

spot disease in creeping bentgrass, indicated that 22% of the transcripts induced 

in planta 96 hpi encoded glycosyl hydrolases (Orshinsky et al., 2012). Secreted 

proteases and transporters were also overrepresented in infected tissue 

compared to mycelium grown in vitro. In our study, necrotrophy-expressed genes 

were enriched in glycosyl hydrolase activities, and this expression was 
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associated with visible host cell wall degradation. The behavior of C. graminicola 

during this phase resembles the descriptions of necrotrophs. However, my 

cytological studies described in chapter 2 also show that the borders of the 

fungal colony remain biotrophic, a behavior that seems to be shared by C. 

graminicola and the closely related C. sublineola, but not by Colletotrichum 

species infecting dicots. I assume that genes are differentially expressed in the 

hyphae in the colony centers versus at the colony edges, so that these two 

stages can coexist.  Further, my observations in chapter 2 suggest that genes 

are expressed, most likely in these leading hyphae, that encode substances that 

diffuse out ahead of the colony and promote susceptibility of the surrounding 

living cells.  In some way, the fungus must "disguise" the extreme damage that it 

is causing in the necrotrophic center from the cells beyond the colony border, so 

that they do not become sensitized, resulting in induced inaccessibility.  

Plant defense responses also suggest a combination of both lifestyles 

Expression of some plant defense-associated genes was induced even before 

pathogen penetration. PR1, PR3 and PR5 were also reportedly induced during 

early infection stages of C. graminicola on intact leaf blades (Vargas et al., 2012). 

PR1 was detected by 12 hpi, and expression of this gene continued to increase 

until 72 hpi. Another study indicated that PR1 was induced by 24 hpi, increasing 

up to 800-fold by 48 hpi, and then decreasing 500-fold by 96 hpi (Balmer et al., 

2013).  Expression of PR genes is associated with induction of the salicylic-acid 

(SA) defense pathway. Balmer and collaborators determined that in maize, 

salicylic acid accumulated at 36 and 96 hpi, while jasmonic acid (JA) was 

detected 96 hpi with C. graminicola (Balmer et al., 2013). The Bowman-birk 

trypsin inhibitor (Bti) is a marker for induction of jasmonic acid (JA) (Rakwal et al., 

2001). Expression of Bti was significantly higher in response to the appressorial 

stage in the WT compared with the MT.  Expression of Bti was also significantly 

induced in maize leaves 24 hpi with the biotrophic U. maydis, however silencing 

of this gene did not affect pathogen colonization (van der Linde et al., 2011). SA-
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dependent pathways are typically deployed against biotrophic plant pathogens, 

while JA-mediated pathways are usually associated with plant responses against 

necrotrophic pathogens (Govrin & Levine, 2000). Arabidopsis plants that are 

impaired in SA-accumulation are more susceptible to biotrophic pathogens, while 

defects in JA-signalling result in increased susceptibility to necrotrophic 

pathogens (Thomma et al., 1998). The role of SA and JA signaling defense 

pathways is less clear for hemibiotrophic plant pathogens, but my data suggests 

that both are active, possibly in different parts of the infection.   

Bax-inhibitors (Bi), can suppress programmed cell death (PCD) in plants 

(Hückelhoven, 2004). Expression of the Bax-inhibitor Bi1 was significantly 

induced in response to appressoria of the WT versus the MT. The MT was still 

able to penetrate maize epidermal cells, suggesting that expression of this gene 

is not crucial for initial penetration: however, it is interesting to speculate that it 

plays some role in delaying cell death to allow establishment of the primary 

hypha. In barley, expression of the Bax-inhibitor Bi1 was induced during infection 

by the obligate biotrophic pathogen Blumeria graminis f.sp. hordei (Eichmann et 

al., 2004). Similary, silencing of Bi1 significantly reduced infection while 

overexpression induced susceptibility to biotrophic pathogens (Eichmann et al., 

2004, Doehlemann et al., 2008). Another Bax-inhibitor was expressed in maize 

leaf blades 48 hpi with C. graminicola (Vargas et al., 2012). This suggests that 

cell death inhibitors in addition to the one tested in my study could be important 

during biotrophic colonization by C. graminicola. 

The cpr1 mutant fails very early in biotrophy 

The cpr1 mutant has a defect in one component of the signal peptidase complex, 

and it is expected, as a result, to be deficient in protein transport and secretion.  

This defect could have a feedback suppression effect on the expression of genes 

encoding secreted proteins, via activation of a secretion stress response (Pakula 

et al., 2003, Martínez & Chrispeels, 2003, Schröder & Kaufman, 2005). Indeed, 

transcripts that were expressed at a significantly lower level in MT versus WT 
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biotrophy, were enriched for secreted or membrane-localized protein-coding 

genes (more than 65%).  

Secreted and membrane protein transcripts are enriched in appressoria and 

biotrophic hyphae of both the MT and WT strains, suggesting that even at this 

early phase of development, the pathogen is already communicating with the 

host and preparing it for invasion. I had speculated that the MT might differ from 

the WT in the expression of secreted protein effectors or SM-associated genes, 

which could explain the induced susceptibility effect induced by the WT (see 

chapter 2).  However, there were relatively few differences in the expression of 

these gene classes between the MT and WT.  No significant differences were 

detected in expression of the early-induced SM clusters in the mutant, or in any 

SM-associated gene.  Only seven putative effector genes were differentially 

regulated: five were more highly expressed during WT biotrophy, while two were 

more abundant during MT biotrophy. The majority of effectors had similar 

patterns of expression. It is possible that one of the seven differentially 

expressed effectors has a highly significant role in establishment of compatibility, 

and this will be tested in future with functional analysis of these genes.   

There were no genes statistically differentially expressed between WT and MT 

appressorial stages. This observation is consistent with descriptions of the 

process of WT and MT infection in leaf blades (Thon et al., 2002, Mims & 

Vaillancourt, 2002) and in my observations leaf sheaths in chapter 2. In both 

cases, no significant differences were observed in timing or efficiency of 

appressorial formation by the WT versus MT at 24 hpi.  The percentage of the 

total reads in both samples that were fungal was around 2% [17], so differences 

in biomass are unlikely to explain the lack of differentially regulated genes.  

Instead, it appears that transcriptional development of the mutant and WT are 

similar pre-penetration. This may be related to the surprising finding that 

expression of the Cpr1 gene was similar in both mutant and WT in appressoria in 

planta.  In contrast, transcript levels were 8-fold lower in the mutant versus WT 
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appressoria in vitro.  This suggests that plant signals may regulate turnover of 

Cpr1 transcripts in planta.  Since levels of transcript are similar, I propose that 

differences in phenotype in the cpr1 mutant may relate to post-transcriptional 

aspects of Cpr1 regulation and function.  Some possibilities could include 

alternate splicing and protein modification.  

Observations from Chapter 2, indicated that the MT displayed a 24 hour delay in 

formation of primary hyphae relative to the WT, but by 48 hpi, 36% of the 

appressoria had colonized the first epidermal cell.  However, only one gene was 

significantly differentially expressed at this stage relative to appressoria. 

Interestingly, the gene is predicted to encode a putative small cysteine-rich 

effector. GLRG_03688 was 6.1-fold more highly expressed in biotrophy versus 

appressoria in the MT. This gene was also expressed at higher levels during 

biotrophy in the WT. Expression in WT biotrophy was 3.3-fold higher than in the 

MT. BLAST searches against other sequenced Colletotrichum species indicated 

that GLRG_03688 has an ortholog in C. sublineola, the closely related causal 

agent of sorghum anthracnose, but lacks orthologs in C. higginsianum and C. 

gloeosporioides, both pathogens of dicots.  

The identification of only one gene may relate to the relative fungal biomass 

produced in these stages. Only about a third of appressoria had produced 

primary hyphae, and these were small and confined only to a single cell. 

Additionally, their viability status is unknown so it is possible that many of them 

were undergoing cell death, which would reduce transcript representation. The 

biotrophic sample from the MT had much less biotrophic tissue in proportion to 

appressoria than the biotrophic sample from the WT did. It is possible that the 

majority of sequences in MT-BT were from the majority of pre-penetration 

appressoria in the MT sample, and this may have muted any statistical 

differences.  Relaxing the statistical stringency may reveal additional genes that 

are potentially expressed in biotrophic hyphae of the MT. 
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GO terms identified in genes with lower expression in the WT biotrophy relative 

to the MT, overlapped with the terms identified in genes with lower expression in 

WT biotrophy relative to appressoria. Together, these results suggest that the 

differences in gene expression observed in the comparisons between WT and 

MT biotrophic stages, are likely to be associated with the mutant stopping 

development very early in the colonization process, and failing to establish an 

effective biotrophic relationship with the plant. I had anticipated that comparative 

analysis of the mutant and WT transcriptomes would reveal more about the 

precise nature of the mutation. Although it didn’t pinpoint the defect, it did reveal 

with much more precision the point at which the mutant is affected.  It appears to 

be very early during the initial establishment of the biotrophic phase.  Although 

the mutant has apparently normal development up until that point, it is possible 

that the mutant fails to secrete proteins even earlier, at the appressorial phase, 

that are necessary to fully prepare the epidermal cell for invasion and 

establishment of biotrophy.  Some evidence in support of this was the 

observation that host tissues exposed to mutant appressoria generally 

accumulated less defense gene transcripts. Plant defense genes are activated 

before penetration occurs in response to fungal elicitors, and differences in 

expression of PR3, Bt1 and Bi-1 could be result either of the WT suppressing 

defense responses, or of the mutant failing to elicit a strong response.  

I conclude that the C. graminicola hemibiotrophic infection appears to 

encompass aspects both of biotrophy and of necrotrophy, simultaneously.  I 

speculate that biotrophy in this fungus is a very highly localized phenomenon, 

which involves only the cells at the leading edge of the developing colony.  

Likewise, necrotrophy is highly localized and isolated to the colony centers. It will 

be important in future to investigate localized expression of genes involved in SM 

and genes encoding putative fungal effectors, in order to understand the 

behaviors of the different cell types during infection.  Sheath infections provide an 

ideal bioassay for these studies, allowing visualization of labeled proteins in a 
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living host interacting with the living pathogen.  Similar studies of M. oryzae on 

rice sheaths have led to recent breakthroughs in our understanding of effector 

biology in that pathosystem. The mutant appears to have a deficiency in 

establishment of biotrophic infection in the first cell, but I discovered that this can 

be rescued by activity of a nearby WT colony, suggesting that the MT is failing to 

secrete diffusible substances that are necessary to prepare the cell for its 

occupation.  The identity of these substances does not appear to be revealed by 

the expression data, and it is possible that post-transcriptional events are of 

primary importance in this phenomenon.  Thus, the mutant may be failing to 

translate, process, or secrete proteins that are being transcribed.  The difference 

in the way the plant perceives the MT and WT appressoria, even though 

transcriptionally they appear identical, suggests there may be differences in the 

types and quantities of proteins that are being produced by these strains in 

planta.  Clearly, much more work is necessary before we can understand the 

basis for the mutant behavior and for the induced susceptibility phenomenon, but 

the data generated in this study will provide an excellent foundation for those 

future investigations. 
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Table 4.1. Genes with significantly different expression between different fungal stage comparisons. 

Higher and lower expression refers in each case to the first term in the comparison. WT=wild type. 

MT= Mutant. AP=Appressoria. BT=Biotrophic. NT=Necrotrophic. 

 

Comparison Fungal stages 
compared Lower expression Higher 

expression 
Differentially 

expressed genes 
1 WTAP-WTBT 193 479 672 
2 WTBT-WTNT 213 608 821 
3 MTAP-MTBT 0 1 1 
4 WTAP-MTAP 0 0 0 
5 WTBT-MTBT 233 34 267 
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Table 4.2. Number of genes in each comparison that were annotated using Blast2GO. WT=wild type. 

MT= Mutant. AP=Appressoria. BT=Biotrophic. NT=Necrotrophic. 
 

 
 Total genes Percentage 

Stage transition Annotated Not annotated Annotated Not annotated 
WTAP-WTBT_down 119 74 61.7 38.3 

WTAP-WTBT_up 328 151 68.5 31.5 
WTBT-WTNT_down 100 113 46.9 53.1 

WTBT-WTNT_up 365 243 60 40 
WTBT-MTBT_down 151 82 64.8 35.2 

WTBT-MTBT_up 21 13 61.8 38.2 
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Table 4. 3. Predicted secreted hypothetical proteins that were not annotated, and previously described as 

putative secreted effectors in Colletotrichum fungi. 
1
 Krijger et al, 2008. 

2 
Bhadauria et al, 2011 

3
 Kleeman et 

al, 2012 
3
. (E value 1e-4). WT=wild type. MT= Mutant. AP=Appressoria. BT=Biotrophic. NT=Necrotrophic. 

 

Comparison This study C. graminicola 1 C. truncatum 2 C. higginsianum 3 
WTAP-WTBT_up 5 4 2 1 

WTAP-WTBT_down 6 0 0 2 
WTBT-WTNT_up 6 1 1 0 

WTBT-WTNT_down 18 2 1 5 
WTBT-MTBT_up 2 1 0 1 

WTBT-MTBT_down 5 3 1 1 
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Table 4.4. Expression of selected genes, secondary metabolites and putative effector proteins by quantitative 

RT-PRC. Values indicate averages of relative expression from two biological replicates, and the calculated 

standard deviation. Fold change (FC) values of the averaged value are indicated as Log2. WT=wild type. MT= 

Mutant. C= Complemented strain. IV-AP= In vitro appressoria.AP=Appressoria. BT=Biotrophic. 

NT=Necrotrophic. 
 

 

 

Gene ID Function RE FC RE FC RE FC RE FC RE FC RE FC RE FC RE FC

GLRG_04964 CPR1 1.35±0.71 0.43 1.59±0.12 0.66 12.06±8.83 3.59 0.88±0.44 -0.18 0.54±0.06 -0.87 0.65±0.58 -0.62 0.94±0.2 -0.08 0.95±0.39 -0.07

GLRG_08626 Cluster 18 3.08±0.85 1.620 6.26±3.08 2.640 2.77±0.47 1.470 0.28±0.08 -1.820 0.22±0.08 -2.160 0.22±0.07 -2.21 1.45±0.39 0.530 1.69±0.58 0.760

GLRG_08628 Cluster 18 1.74±0.17 0.800 0.84±0.09 -0.240 0.81±0.07 -0.360 0.41±0.01 -1.280 0.3±0.04 -1.740 0.21±0.02 -2.11 1.77±0.15 0.820 1.31±0.12 0.390

GLRG_09710 Cluster 22 10.73±5.87 3.420 10.47±0.47 3.380 19.47±9.97 4.280 2.55±2.61 1.350 2.13±0.33 1.080 1.77±0.65 0.82 180.2±69.5 7.490 73.8±7.28 6.200

GLRG_09715 Cluster 22 1.46±0.49 0.540 0.80±0.59 -0.310 1.86±0.09 0.890 1.14±0.11 0.190 2.12±0.78 1.080 2.14±0.2 1.09 25.83±15.4 4.690 19.1±14.33 4.250

GLRG_11770 Cluster 35 3.29±0.55 1.710 4.55±0.03 2.180 6.06±1.22 2.590 0.21±0.11 -2.240 0.03±0 -5.040 0.35±0.1 -1.49 0.78±0.57 -0.350 0.7±0.41 -0.530

GLRG_11778 Cluster 35 3.52±1.46 1.810 19.37±6.38 4.270 10.85±2.19 3.430 0.16±0.08 -2.610 0.09±0.08 -3.390 0.53±0.15 -0.92 0.79±0.64 -0.320 1.14±1 0.190

GLRG_06284 Effector- BAS2 3.78±1.1 1.920 1.89±1.15 0.910 133.3±19.7 7.050 0.31±0.11 -1.660 0.18±0.02 -2.460 0.52±0.16 -0.95 0.18±0.02 -2.490 0.49±0.16 -1.040

GLRG_00201 Effector - BAS3 7.38±1.15 2.880 5.63±1.08 2.490 16.02±3.5 4.000 0.35±0.02 -1.480 0.35±0.01 -1.500 0.25±0 -2 0.09±0 -3.350 0.11±0.03 -3.140

GLRG_01192 Effector- ChEC91 0.92±0.5 -0.110 1.51±0.44 0.590 0.18±0.17 -2.420 3.53±1.89 1.820 8.25±0.54 3.040 0.99±0.26 0 0.63±0.02 -0.670 0.7±0.29 -0.540

GLRG_07767 Effector- ChEC90 3.28±2.48 1.710 5.37±2.64 2.520 10.77±6.72 3.420 0.28±0.11 -1.790 0.026±0.01 -5.260 0.81±0.53 -0.3 0.24±0.1 -2.070 0.41±0.21 -1.280

GLRG_03688 Effector 12.62±5.92 3.650 2.2±1.11 1.130 2.23±0.69 1.150 19.50±7.29 4.280 20.96±9.68 4.390 6.71±1.61 2.74 0.51±0.2 -0.960 0.41±0.52 -1.270

GLRG_07776 Effector 10.45±0.19 3.380 1.43±0.22 0.510 55.3±30.36 5.780 0.64±0.06 -0.640 0.30±0.05 -1.710 1.28±0.28 0.35 0.17±0.04 -2.560 0.85±0.27 -0.230

WT-NT/BT C-NT/BTWT-AP/IVAP C-IVAP/AP MT-IVAP/AP WT-BT/AP C-BT/AP MT-BT/AP
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Figure 4.1. Phenotype of WT and cpr1 mutanat strains in leaf sheaths. WT (A-
C) and MT (D-E)  on maize leaf sheaths. Appressoria (A and D) samples were 

collected 18-24 hpi. Biotrophic samples (B and E) were collected 36-48 hpi. 

Necrotrophic samples (C) were collected 60-65 hpi. AP= Appressoria. 

BH=Biotrophic hyphae. NH= Necrotrophic hyphae. Bars equal to 50 µm. 
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Figure 4.2. Patterns of relative expression of the 153 genes that were 

differentially expressed in both WT comparisons (WTAP-WTBT and WTBT-

WTNT). WT=wild type.  AP=Appressoria. BT=Biotrophic. NT=Necrotrophic. 
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  Figure 4. 3. Predictions of cellular localization. A. The entire proteome of C. 

graminicola and B. Predicted proteins from genes differentially regulated at 

some stage of fungal colonization. WTAP-WTBT= transition from 

appressoria to biotrophy. WTBT-WTNT= transition to necrotrophy. WTBT-

MT-BT= Comparison between WT biotrophy and MT biotrophy. 
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Figure 4.4. GO terms significantly overrepresented in appressoria-

expressed genes. Comparisons represent appressoria-expressed genes 

(WTAP-WTBT_down, black bars) relative to biotrophy-expressed genes 

(WTAP-WTBT_up, white bars). 
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Figure 4.5. GO terms significantly overrepresented in biotrophy-

expressed genes. Comparisons represent biotrophy-expressed 

genes(WTAP-WTBT_up, black bars) relative to appressoria-expressed 

genes (WTAP-WTBT_down, white bars). 
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Figure 4.6. GO terms significantly overrepresented in biotrophy-

expressed genes. Comparisons represent biotrophy-expressed genes 

(WTBT-WTNT_down, black bars) relative to necrotrophy-expressed 

genes (WTBT-WTNT_up, white bars). 
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Figure 4. 7.  GO terms significantly overrepresented in necrotrophy-

expressed genes. Comparisons represent nectotrophy-expressed genes 

(WTBT-WTNT_up black bars) relative to biotrophy-expressed genes 

(WTBT-WTNT_down, white bars). 
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Figure 4.8. Characterization of genes that were not annotated by Blast2GO. 

Light gray: secreted hypothetical proteins. Blue: small, secreted, cysteine rich 

proteins. Dark gray: Other secreted proteins Black: Non-secreted proteins with 

other predictions. WT=wild type. MT= Mutant. AP=Appressoria. BT=Biotrophic. 

NT=Necrotrophic. 
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Figure 4.9. Genes differentially expressed between WT and MT. A.  GO terms 

significantly overrepresented in genes with higher expression in the MT 

(WTBT-MTBT_up) relative to genes with lower expression in the MT (WTBT- 

MTBT_down) B. Number of genes differentially expressed in the transition to 

biotrophy in the WT (white) and between biotrophic stages in WT and MT 

(Buckner et al.).  Intersection represents number of genes that were common 

in both comparisons.  
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Figure 4.10.  Characterization of genes differentially expressed between 

WT and MT. A. Patterns of expression of genes differentially expressed in 

the transition to biotrophy in the WT (graphs) and in the comparisons 

between biotrophic stages in the WT and MT (black triangles). B. Predicted 

cellular localization of WTBT-MTBT genes also present in WTAP-WTBT 

(outer ring) compared to genes only found in the WTBT-MTBT 

comparisons (inner ring). 

 

 

 

B

WTAP           WTBT                  WTAP            WTBT

R
el

at
iv

e 
ex

pr
es

si
on

WTBT            MTBT                 WTBT              MTBT

A
119 genes 25 genes

Plasma membrane

Nuclear

Mitochondria

Extracellular

Cytoplasmic

Cytoskeleton



 
 
 
 
 

151 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Heatmaps of gene expression of  SMURF clusters A. cluster 

18. B. cluster 35. C. Cluster 22. D. Cluster 38. Transcript representation is 

shown as fold changes in each repetition (Log2) relative to the average 

number of normalized reads for each gene across all stages. * Expression 

significantly higher in AP (AP-BT_down)  
+ 

Expression significantly higher in 

NT (BT-NT_up). 
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  Figure 4.12. Correlation analysis of fold changes determined by RNA 

sequencing and RT-PCR. Log2 fold changes as determined by RT-PCR are 

plotted in the x-axis and determined by RNAseq are plotted in the y-axis. 
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Figure 4.13. Relative expression of Cpr1 during different stages of fungal 

infection. WT (black bars), Cpr1-C (white bars) and cpr1 mutant (dark gray 

bars), measured by quantitative RT-PCR. Expression values are shown as 

fold changes relative to expression in other fungal stages. IVAP= in vitro 

appressoria. AP= appressoria . BT= biotrophic stage NT= necrotrophic 

stage. 
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Figure 4. 14. Quantitative RT-PCR of selected SM fungal genes. Genes 

from clusters 18, 22 and 35 in WT (black bars), Cpr1-C (white bars) and 

cpr1 mutant (dark gray bars). Expression values are shown as fold 

changes relative to expression in other fungal stages. IVAP= in vitro 

appressoria. AP= appressoria . BT= biotrophic stage NT= necrotrophic 

stage. 
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Figure 4.15.Quantitative RT-PCR of putative secreted effector protein 

genes. BAS2 and BAS3= biotrophy-associated proteins 2 and 3. 

Expression in different stages of fungal infection in the  WT (black bars), 

Cpr1-C (white bars) and cpr1 mutant (dark gray bars). Expression values 

are shown as fold changes relative to expression in other fungal stages. 

IVAP= in vitro appressoria. AP= appressoria . BT= biotrophic stage NT= 

necrotrophic stage. 
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Figure 4.16. Maize defense responses are activated early into the infection 

process. Bars represent expression of each gene, relative to mock-

inoculated plants. PR: pathogenicity-related. Bti: Bowman-birk trypsin 

inhibitor (JA marker). Bi1: Bax inhibitor (cell death inhibitor). 
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Chapter 5  

Concluding Remarks 

 

The genus Colletotrichum includes hundreds of species that cause anthracnose 

and reduce yields in a variety of hosts, including fruits, legumes and cereals.  In 

spite of their importance as pathogens, relatively little is understood about the 

mechanisms that are involved in establishing the hemibiotrophic lifestyle that 

characterizes this genus.  

In my dissertation research, I utilized a combination of cytological and genomic 

approaches to describe the biotrophic and necrotrophic phases of C. graminicola 

growing in maize with a level of detail that had never been achieved previously. 

Thus, my findings from chapter 2 clearly established that C. graminicola initially 

invades host cells biotrophically, as indicated by plasmolysis and vital staining.  I 

was able to show that a previously characterized nonpathogenic mutant 

germinated and penetrated normally, and that it was disrupted specifically in its 

ability to establish a biotrophic infection. My work with this nonpathogenic mutant 

of C. graminicola also showed, for the first time, that C. graminicola produces 

diffusible factors that modify host metabolism in order to predispose plant cells 

for fungal invasion. Even more importantly, my work resulted in a bioassay that 

can be used in the future to characterize these substances.  

My cytological observations allowed me to determine that hemibiotrophy in C. 

graminicola differs from that in most other Colletotrichum species, and from 

previous descriptions of C. graminicola in the literature. Thus, infection of new 

cells, even at 60 hpi when the centers of the fungal colonies had become 

necrotrophic, still occurred biotrophically. Biotrophic stages in C. higginsianum 

and C. destructivum are limited to the first invaded cell, and in C. lindemuthianum 

biotrophy persists during the invasion of several subsequent cells. In these 

cases, the necrotrophic switch is complete, unlike C. graminicola, and after the 



 
 
 
 
 

158 
 

switch newly invaded cells are killed in advance.  I found that hemibiotrophy in C. 

graminicola was more similar to the behavior of its close relative C. sublineola, 

which had been described in the literature previously. 

Part of my dissertation research contributed to the recently published genome 

sequencing project for C. graminicola and C. higginsianum, which provided the 

first insights into the potential classes of proteins that are synthesized by these 

pathogens, and that could be important for their growth in planta. A large number 

of potential secreted fungal effectors, similar to those associated with biotrophic 

plant pathogens, and an expansion of secondary metabolites, usually associated 

with necrotrophic pathogens, suggested that these hemibiotrophic pathogens 

express aspects of both lifestyles. My analysis of our transcriptome data 

representing three major stages of infection also supported this conclusion, and 

further indicated that the pathogen first behaves more like a biotroph, and then 

later switches to behavior that is more like a necrotroph. Thus, gene expression 

during appressorial and biotrophic stages resembled previous descriptions of 

strict biotrophs, with prominent expression of functions related to detoxification, 

nutrient uptake and nutrient transport. Similarly, gene expression during 

biotrophic and necrotrophic stages shared similarities with necrotrophic 

pathogens, including the preferential expression of transcripts involved in 

transport, proteolysis, and cell wall degradation. Study of early infection stages in 

planta, in particular, has proven quite challenging, and to my knowledge, mine 

was one of the first studies that attempted to characterize and compare gene 

expression in planta during all three stages of development. 

My work also established that the early, biotrophic stages of colonization by C. 

graminicola differ in some important respects from true biotrophy. For example, 

secondary metabolism appeared to be important during pre-penetration stages in 

Colletotrichum.  This was an unexpected result, since secondary metabolism 

products are usually associated with phytotoxic activity in necrotrophic 

pathogens. The role of secondary metabolism in the early stages of maize 
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infection remains to be characterized. Additional evidence that Colletotrichum 

hemibiotrophy differs from biotrophy was my demonstration of expression of host 

defense genes, even prior to fungal penetration, that have been previously 

associated with both the SA response to biotrophs and the JA response to 

necrotrophs.   

It was disappointing that my gene expression analysis did not reveal the specific 

nature of the defect in the nonpathogenic mutant, although it did help to pinpoint 

the precise stage at which the defect occurs. Although the leaf sheath assay 

allowed me to maximize the amount of fungal biomass in these samples, some 

limitations (i.e. very low fungal biomass) still exist. Thus, I think that differences 

between the two strains at the early infection stages might exist, but that the 

small proportion of fungal transcripts caused a large amount of variation resulting 

in low statistical significance. Furthermore, although transcript levels of some 

crucial pathogenicity factors appear to be normal in the cpr1 mutant, some of 

them could be failing to be transported to the right place in the right time (i.e. 

secreted). This hypothesis could be tested by transforming candidate genes to 

express fluorescent proteins, and comparing expression and localization in the 

mutant versus the wild type. Post-transcriptional differences between the wild 

type and mutant are also likely to occur. Alternative splicing is a possibility that 

cannot be ignored. Differences could also be occurring at the level of protein 

modification.  The likelihood of post-transcriptional differences is supported by 

evidence I generated showing that expression of plant genes is different in 

response to appressorial stages of the wild type versus the mutant.   

My work indicates that hemibiotrophic development in C. graminicola is highly 

localized, with biotrophy at the borders of the expanding colony, and necrotrophy 

in the center. The nature of the intercalary primary hyphae just behind the 

advancing tips, occupying host cells that no longer plasmolyze but are not yet 

colonized by necrotrophic hyphae, remains mysterious. I speculate that gene 

expression in these fungal cells may be in a transitional state between biotrophy-
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associated gene expression (i.e. suppressing host defense responses and 

modifying host metabolism) and necrotrophy associated expression (i.e. inducing 

cell death). To address some of these questions, specific fungal and host cell 

types should be isolated, perhaps using laser capture microdissection 

microscopy. I tried, but was not successful in standardizing this technique for 

utilization on maize leaf sheaths. Better protocols are needed. 

The development and standardization of the leaf sheath assay in the C. 

graminicola-maize pathosystem, in my opinion, will be the most enduring 

contribution of my dissertation work for the future. This assay was crucial for my 

detailed characterization of the infection processes of the wild type and mutant 

strains. Additionally, it facilitated my analysis of transcript expression during 

growth in planta, allowing the observation and classification of each individual 

sample, as well as increasing the relative amount of fungal biomass for the 

analysis. Furthermore, co-inoculation experiments using the mutant strain will 

provide a useful tool for testing and characterization of effector candidates. With 

the genome and the assay, our future progress on understanding the nature of 

the maize-Colletotrichum interaction, and our ability to identify novel targets for 

therapies manage this disease, seems assured. 
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Appendix 1 

C. graminicola modulates environmental pH, but apparently not by the 
production of ammonium 

 

In C. gloeosporioides infecting avocado, and C. coccodes infecting tomato, tissue 

alkalinization and the induction and function of certain pathogenicity factors seem 

to be related. An increase in environmental pH in lesions produced on ripe fruit 

by these fungi occurs via secretion of high concentrations of ammonia by the 

fungus. Some of the ammonium is thought to be produced via the reduction of 

nitrate, because nitrate reductase (nit) mutants cannot accumulate ammonium 

and are significantly reduced in virulence (Alkan et al., 2008, Kramer-Haimovich 

et al., 2006). Increased pH due to ammonium production induces expression of 

fungal pathogenicity genes, including lytic enzymes that have high pH optima 

(Kramer-Haimovich et al., 2006, Yakoby et al., 2000, Drori et al., 2003). Deletion 

of nitrate reductase, the nitrogen regulator area and the ammonium transporter. 

Targeted deletion of AREA, a major nitrogen regulator, and AMET, an 

ammonium transporter, affects ammonium accumulation and virulence, 

suggesting that ammonium secretion is pathogenicity factor in Colletotrichum 

fungi infecting avocado and tomato fruits (Alkan et al., 2008, Shnaiderman et al., 

2013). 

In our recent article comparing the genomes and transcriptomes of C. 

graminicola and C. higginsianum, it was reported that both species cause local 

increases in pH and secrete ammonia during necrotrophy, but that C. graminicola 

does so to a lesser extent than C. higginsianum (O'Connell et al., 2012). Several 

fungal genes involved in nitrate reduction and ammonium export were reportedly 

significantly induced during tissue alkalinization by C. gloeosporioides (Miyara et 

al., 2012) .I used the transcriptome data to compare the expression of C. 

graminicola and C. higginsianum orthologues of these genes in planta  (Figure 

A1.1). The patterns of expression for these genes were similar for the two 

species, with some exceptions. First, the gene encoding nitrate reductase 
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(GLRG_02724/CH063_08184) was significantly more highly expressed during 

appresorial and biotrophic stages  in C. higginsianum, while in C. graminicola the 

levels of expression were similar, and moderate, across all stages of 

development. Second, an  ammonium importer (GLRG_03954/CH063_12269) 

was significantly more highly expressed in C. higginsianum during appressorial 

formation and biotrophy, whereas in C. graminicola this gene was siginificantly 

more highly expressed during necrotrophy. GDH2, involved in synthesis of 

ammonium, had higher expression in biotrophy, while in C. graminicola this gene 

was highly expressed in appressoria. A glutamate importer 

(GLRG_04076/CH063_12275) had significantly higher expression levels during 

necrotrophy in both species.  

C. gloeosporioides nit mutants are impaired in ammonia secretion and tissue 

alkalinization, involved in activation of some pectate lyases (Kramer-Haimovich 

et al., 2006, Yakoby et al., 2001). Induction of nitrate reductase during biotrophy 

of C. higginsianum could suggest that nitrate metabolism also plays a role in 

tissue alkalinization and activation of some lytic enzymes. Pectate lyases also 

appear to be more important during  colonization of Arabidopsis leaves by 

C.higginsianum than of maize by C. graminicola, and it is proposed that it could 

be related to the larger proportion of pectin in Arabidopsis tissue compared to 

maize (O'Connell et al., 2012). 

The ammonium importer MEP is induced during ammonium uptake and 

colonization of avocado fruits (Shnaiderman et al., 2013). Induction of this gene 

during necrotrophy could be associated with nutrient uptake from the host.  

Additionally, in C. gloeosporioides, secretion of ammonia is associated with 

induction of glutamate dehydrogenase and glutamine synthase (Miyara et al., 

2010). None of these genes was significantly induced at any stage of infection in 

C. graminicola, suggesting that pH increase and ammonium secretion differs 

from the process described for C. gloeosporioides.  
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I tested the hypothesis that C. graminicola modulates environmental pH in vitro 

by the production of ammonium. C. graminicola strain M1.001 was grown in 

different media, under different pH conditions and with different sources of 

nitrogen. Changes in pH and ammonium production in each treatment were 

measured. Results were compared with a C. gloeosporioides strain AVO06, 

collected from avocado in Israel, provided by Stanley Freeman (The Volcani 

Center, Bet Dagan, Israel).   

C. graminicola and C. gloeosporioides both increase the pH of solid media 
during growth in the presence of yeast extract up to pH=8.0 
Low ambient pH is reported to induce alkalinization and ammonium production 

by C. gloeosporioides and C. coccodes (Alkan et al., 2008, Prusky et al., 2001). I 

inoculated C. graminicola and C. gloeosporioides on solid complete media 

containing 1% yeast extract (complete medium, 3% agar)(Miyara et al., 2008), 

and with a starting pH of 4.5, 6.0, or 8.0. The plates were cultured for 4 days, and 

the pH was measured at 1.5, 3.0 and 4.0 cm from the inoculation point using a 

pH indicator paper. The results obtained showed that, when the initial pH values 

were 4.5 and 6.0, both strains increased the pH of the medium out to several 

millimeters ahead of the leading edge of the colony (Figure A1.2). However, no 

change in pH was detected in yeast extract medium at an initial pH of 8.0 (Figure 

A1.2). In all cases, non-inoculated controls remained at the starting pH values, 

except for pH 8.0, where at day 4 after inoculation, the pH had decreased slightly 

to 7.5. 

Nitrogen starvation induces an increase in pH and ammonium production 
by C. gloeosporioides, but not by C. graminicola 
Nitrogen starvation is reported to induce the production of ammonium by C. 

gloeosporioides (Drori et al., 2003, Kramer-Haimovich et al., 2006).I tested the 

effect of nitrogen starvation by two different approaches.   
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In the first experiment, C. graminicola and C. gloeosporioides were grown in rich 

medium containing 1% yeast extract, starved for nitrogen for 15 hours (induction 

treatment) and then transferred to fresh 1% yeast extract medium with an initial 

pH of 4.0. Details of 1% yeast extract medium are published elsewhere (Miyara 

et al., 2010). 

Changes in pH and ammonium accumulation were compared with non-

inoculated controls, and with treatments that had not been starved for nitrogen.  

A continuous increase in pH was detected in media inoculated with either strain, 

whether nitrogen-starved or not (Figures A1.3A and A1.3B). The increase in pH 

was correlated with accumulation of ammonium ion in both cases. Nitrogen 

starvation did not appear to significantly affect ammonium production by either 

strain. 

In a second experiment both strains were pre-grown in MS medium, starved for 

15 hours, and then transferred to SM medium at an initial pH of 4.0. MS medium 

is a nitrogen-rich medium and contains sucrose as source of carbon, while SM 

medium contains KNO3 as the sole source of nitrogen, and glucose as a carbon 

source. Details of MS medium, starvation (intermediate medium) and SM 

medium are published elsewhere (Kramer-Haimovich et al., 2006). The pH and 

ammonium concentration were measured for 5 days.  

C. gloeosporiodes and C. graminicola both increased the pH of the media, 

whether nitrogen-starved or not (Figures A1.3C, A1.3D). Five days after C. 

gloeosporioides was transferred to the SM medium, the pH had increased to 6.42 

under induced conditions, and to 6.25 under non-induced conditions (Figure 

A1.3C). After five days, pH in SM medium inoculated with C. graminicola 

increased from 4.0 to 5.15 in treatments that were starved for nitrogen and from 

4.0 to 4.91 in the non-starved treatments. C. graminicola had a significantly lower 

growth rate in this medium than C. gloeosporioides did, which might account for 

the slower changes in the pH (Figure A1.4).  
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Ammonium ion was detected in SM medium inoculated with C. gloeosporioides, 

but only in the nitrogen starvation-induced treatments (Figure A1.3C). The 

accumulation of ammonium was first detected after 96 hours of incubation and 

reached 30 mg/L by 5 dpi. No ammonium ion was detected in any of these flasks 

inoculated with C. graminicola (Figure A1.3D).  

Conclusions 
As previously reported, C. gloeosporioides seems to modulate environmental pH 

in vitro by secretion of ammonium, and ammonium production seems to be 

triggered by nitrogen starvation.  

Ammonium was produced by C. gloeosporioides in both yeast extract and SM 

medium (the latter only under starvation conditions).  However, ammonium was 

only produced by C. graminicola in yeast extract.  Production of ammonium by 

both fungal species in yeast extract was not affected by nitrogen starvation. 

These observations suggest that the ammonium produced in the yeast extract 

may have resulted from deamination of amino acids, and not production via the 

nitrate reduction pathway. Increase in pH due to production of ammonia from 

oxidative deamination aminoacids has been reported in other fungi growing at 

low pH in media containing yeast extract (St Leger et al., 1999). This possibility 

has also been considered in C. gloeosporioides (Prusky et al., 2001). 

C. graminicola was able to increase environmental pH in vitro, but to a lesser 

extent than C. gloeosporioides.  This ability was not affected by nitrogen 

starvation in either fungus in my experiments.  This does not agree with 

previously published studies that suggest that nitrogen limiting conditions induce 

a more rapid and higher alkalinization by C. gloeosporioides (Drori et al., 2003, 

Kramer-Haimovich et al., 2006) . Overall, I did not find significant evidence to 

conclude that nitrogen starvation played a role in the increase of pH, as has been 

described for C. gloeosporioides. The change in pH also was not consistently 

associated with production of ammonium.  C. graminicola was able to increase 

the pH of SM medium, but apparently not by the production of ammonium. I do 
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not know what C. graminicola might have been producing instead of ammonium 

to change the pH of the SM medium.   

The detection of pH and ammonium in vivo, reported in the paper by O'Connell 

collaborators (O'Connell et al., 2012), relied on measurements with a fluorescent 

dye in whole inoculated tissues.  I failed to obtain consistent results using this 

dye. Gene expression data do not support the hypothesis that the nitrate 

utilization pathway is involved in alkalinization during necrotrophy by C. 

graminicola. My results suggest that nitrogen metabolism and pH modulation by 

C. graminicola in maize may occur by different mechanisms than in some other 

Colletotrichum fungi.  
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Table A1.1. Gene expression of nitrogen metabolism associated genes. 

Summary of expression showing C. higginsianum and C. graminicola orthologs 

of C. gloeosporioides  genes  associated with ammonium synthesis  and 

secretion (Nit, GDH2, AMET), ammonium uptake (MEP, GLT), and ammonium 

regulation (GLRG_04139). Significant higher expression (red) or lower 

expression (green) are shown as log2 fold changes.   

 

Predicted function Gene ID AP/BT BT/NT AP/NT 

Nitrate reductase (Nit) CH063_08184 0.90 2.53 3.43 
GLRG_02724 1.48 -0.50 0.98 

Glutamate 
dehydrogenase 

(GDH2) 

CH063_04868 -2.14 0.23 -1.92 
GLRG_00422 1.57 -0.81 0.76 

Ammonium exporter 
(Spanu et al.) 

CH063_14932 -1.04 0.51 -0.52 
GLRG_06038 1.87 -0.86 1.01 

Glutamate importer 
(MEP) 

CH063_12269 0.80 3.81 4.62 
GLRG_03954 0.60 -2.52 -1.92 

Glutamate importer 
(GLT) 

CH063_12275 -0.09 -3.72 -3.81 
GLRG_04076 -2.92 -3.45 -6.37 

Glutamine synthase 
(GS1) 

CH063_04573 -0.28 -0.45 -0.74 
GLRG_04139 0.09 0.30 0.38 
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Figure A1.1. Growth of C. graminicola in 1% yeast extract medium affected pH.  

A. pH increased from 4.0 to 8 (green) below the media where the fungus had 

grown, and to pH 6.0 (yellow) milimiters ahead of the fungal colony to pH 6.0 

(yellow).  B. pH changes induced by C. gloeosporioides and C. graminicola in 

media with initial of pH 8.0 (dark gray line), pH 6.0 (black line) and pH 4.5 (light 

gray bar). Edge of the colony is shown with a dotted line. Error bars represent 

standard deviations. 
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Figure A1.2. pH changes and ammonium accumulation.  Induced by A and C. C. 

gloeosporioides and B and D. C. graminicola in 1% yeast extract (A-B) or SM 

medium (C-D) after nitrogen starvation treatment (black bar), without nitrogen 

starvation treatment  (white bar) or uninoculated media (gray bar). Lines 

represent the accumulation of ammonium after nitrogen starvation treatment 

(black line), without nitrogen starvation treatment (white line) and uninoculated 

media (gray line). Error bars represent standard deviations. 
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Figure A1.3. Biomass production by C. graminicola and C. gloeosporioides, 

under different nitrogen conditions. C. graminicola (white bars) and C. 

gloeosporioides (black bars) produced on yeast extract (YE) or secondary 

medium (SM), five days after  nitrogen starvation (induction-I) or without 

nitrogen starvation (non-induction-NI).  
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Appendix 2 

A potential role for fungal nitrate metabolism in pathogenicity of C. 
graminicola 

 

It is known that nitrogen has a significant effect on C. graminicola pathogenicity. 

When levels of host nitrogen are low, plants become predisposed to infection by 

C. graminicola (Inguagiato et al., 2008).  It is known that expression of fungal 

pathogenicity genes is often induced by nitrogen starvation (Talbot et al., 1993, 

Stephenson et al., 2000, Pérez-García et al., 2001, Donofrio et al., 2006). 

Nitrogen regulation has been implicated directly in pathogenicity of C. 

lindemuthianum: a mutation in the AreA master regulator, which functions to 

switch on genes that are under nitrogen catabolite repression, resulted in a 

nonpathogenic strain that could not colonize or switch to necrotrophy(Pellier et 

al., 2003) .Genes that are under the regulation of AreA include genes involved in 

nitrate utilization.  The nitrate reductase gene, the first gene in the nitrate 

utilization pathway, is expressed at moderate levels during all stages of C. 

graminicola development on maize sheaths, including necrotrophy (Figure A1.1).  

To better understand the role of the nitrate utilization pathway in pathogenicity, I 

tested the ability of several independently generated nitrate reductase mutants to 

infect and colonize leaf sheaths from different resistant and susceptible maize 

lines. The mutant strains are described and characterized in (Vaillancourt & 

Hanau, 1994) 

Previous studies have reported that nit mutations have varying effects on 

pathogenicity. Thus, nit mutants of C. coccodes secrete less ammonium and 

have lower infection rates, when inoculated in tomato fruits (Alkan et al., 2008). 

C. gloeosporoides nit mutants are also unable to accumulate ammonium, secrete 

pectate lyase PelB, and were significantly less virulent in avocado fruits (Kramer-

Haimovich et al., 2006). In contrast, nit mutants of C. graminicola were reported 
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to have normal levels of pathogenicity on leaf blades of a highly susceptible 

inbred maize line (Vaillancourt & Hanau, 1994).  

For my experiments, I used three independently generated nit mutant strains, 

and their progenitor strains as controls (Table A2.1). I included two versions of 

the M1.001 strain: M1.001 was the strain from which two of the nit mutants were 

produced, and was stored on silica in a -80 freezer at the same time as the nit 

mutants, in 1991.  It was the best control for these mutants, therefore. During the 

ten-year period that these strains were left in the freezer before revival, 

M1.001BH was in daily use in the laboratory of Dr. R. Hanau at Purdue (thus 

M1.001BH). Another graduate student had noted that there were minor 

differences between these two versions of the M1.001 strain, perhaps due to 

accumulation of mutations during culture of the M1.001BH strain. Leaf sheaths 

from the susceptible maize varieties Jubilee and Mo940, and from the resistant 

varieties Mp305 and H99, were harvested and inoculated as described in chapter 

2 of this dissertation. 

The nit mutants were more aggressive on leaf sheaths of the resistant 
variety H99 

All the strains were able to germinate, penetrate, and colonize maize leaf 

sheaths of all four maize varieties. I determined the number of cells colonized by 

each strain 48 hours post inoculation (hpi). All strains colonized the susceptible 

varieties to a significantly greater extent than the resistant ones (Figure A2.1) All 

strains seemed to have similar colonization rates in three of the maize varieties 

tested (Figure A2.1). However, all three nit mutants appear to have a higher rate 

of colonization in the resistant variety H99, when compared to their progenitor 

strains (Figure A2.1D), routinely colonizing up to 6 or 7 cells when the 

progenitors had typically colonized only up to 4 or 5 cells. 
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The nit mutants induce susceptibility to cpr1-ZsGreen 
The nit mutants M1.401 and M1.402 were able to induce susceptibility to cpr1-

ZsGreen in M0940 and H99 leaf sheaths when co-inoculated "at a distance" (not 

shown).  The level of susceptibility did not appear to differ from that induced by 

the WT progenitor M1.001.  

The nit mutants are also more aggressive to intact leaf blades than their 
progenitor strains. 
To determine if the difference in aggressiveness to leaf sheaths of maize variety 

H99 also occurred in whole plants, I performed quantitative whorl inoculations in 

the maize varieties Mo940 and H99, using four different spore concentrations. 

Eight days after inoculation, the plants were evaluated for the presence or 

absence of anthracnose symptoms. Three plants per treatment were used in 

each experiment, and the experiment was repeated twice.  

There were significant differences in disease incidence at different spore 

concentrations (P <0.05) between the nit mutants and their respective progenitor 

strains in the H99 plants (Figure A2.2A), but not in the Mo940 plants (Figure 

A2.2B).  

Discussion 
Three independently generated nit mutants were tested, including two different 

loci (nitrate reductase enzyme and molybdenum cofactor) that affect nitrate 

reductase activity.  All three produced similar results, strongly suggesting that the 

increased aggressiveness I observed in the leaf sheath and whorl assays are 

due to the defect they share in the nitrate utilization pathway.  In the future it will 

be important to create a targeted disruption of the nitrate reductase gene, and 

compare the knockout (KO) with ectopic and complemented strains to confirm 

these results. 

My observations confirmed previous reports that the nit mutants had normal 

pathogenicity to the susceptible maize variety Mo940.  They were also normal on 
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the highly susceptible sweet corn hybrid Jubilee and on the resistant inbred 

Mp305. This is added evidence that the nitrate utilization pathway does not play 

an important role in alkalinization of tissue as an aid to pathogenicity in C. 

graminicola (see Appendix 1 of this dissertation).  

In sheath assays I saw significant levels of colonization of the resistant varieties 

Mp305 and H99, even though leaf blades of these varieties exhibit very high 

levels of resistance to the pathogen.  This indicates that leaf sheaths are more 

susceptible than leaf blades, perhaps due to their status as sink rather than 

source tissues, which are known to express defense genes to a lesser degree 

(Coleman, 1986, Fischer et al., 1999).  Nevertheless, the degree of colonization 

of the resistant lines was significantly reduced in comparison with the susceptible 

lines, demonstrating that sheaths react to the disease in way that is correlated 

with their field reactions.  Furthermore, sheaths may provide a suitable model for 

stalk tissue, which is also a sink.  ASR is a much more economically important 

problem than ALB.  This hypothesis needs to be tested by comparing the 

interactions of the pathogen with stalk and sheath tissues in more detail.  

It is not clear why the nit mutants were more aggressive specifically to H99. H99 

is a maize inbred line that is highly susceptible to anthracnose stalk rot (ASR), 

but highly resistant to anthracnose leaf blight (ALB) (Warren & Shepherd, 1976, 

Sukno et al., 2008).The other resistant line, Mp305, is highly resistant to both 

phases of the disease, due to the activity of a single resistance locus that 

contains two LRR-type R genes (Broglie et al., 2011, Frey et al., 2011)The 

genetic basis for foliar resistance in H99 is unknown, but its expression is 

associated with a rapid and extensive production of ROS and induction of HR. 

DAB staining on sheaths inoculated with the WT and the cpr1 mutant strains, 

indicated a strong accumulation of H2O2 48 hpi, compared to the observations 

made on the susceptible cultivar Mo940 described in chapter 2. By 24 hpi,  H2O2 

was detected on sheaths inoculated with both strains (Figure A2.3A,D). Forty-

eight hours post inoculation, a wide distributed, strong accumulation of H2O2 was 
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indicated by dark brown precipitates. DAB precipitates were localized, and were 

only observed in cells in the proximity of the fungus. Interestingly, despite of the 

strong DAB precipitates, the WT was able to colonize H99 leaf sheaths, while the 

mutant did not (Figure 2.3C, F). Accumulation of DAB precipitates was previously 

described in C. graminicola infecting maize leaf blades (Vargas et al., 2012). 

Vargas and collaborators, suggest that plant-derived vesicles were responsible 

for accumulation of H2O2 around fungal hyphae which increased during the 

switch to necrotrophy. The mechanisms that C. graminicola uses to overcome 

ROS accumulation and colonize the plant tissue remain unknown.  

Nitrate-reductase deficient fungal mutants tend to accumulate nitrate. (Schinko et 

al., 2013). In animal systems, accumulation of nitrate increases activity of nitric 

oxide synthase (NOS), which can generate superoxides and induce oxidative 

stress (Schinko et al., 2010). Therefore, it is possible that nit mutants are under a 

state of constitutive oxidative stress, and this may "prime" them so that they can 

adapt to the oxidative stress that occurs during host defense more efficiently. 

This hypothesis should be tested in the future by evaluating the expression of 

NOS and also the generation of ROS and resistance to oxidative stress of these 

mutants and targeted KO strains. 
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Table A2.1. Details of nit mutant strains used to inoculate sheaths from 

anthracnose susceptible and resistant maize cultivars 
 

Parental strain nit- strain Mutation 
M9.001 M9.401 Nitrate reductase 
M1.001 M1.401 Nitrate reductase 

M1.001 M1.402 Molybdenum 
cofactor 
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Figure A2.1. Average number of maximum colonized cells (%) by the different 

nit mutants and thei parental strains in leaf sheaths of four the maize varieties. 

A. Jubilee, B. Mo940, C. Mp305 and D. H99. Arrows indicate nit mutants.                        

 Appressoria,  1 cell,  2 cells,  3 cells,  4 cells,  5 cells,  6 cells,  7 

cells. Arrows indicate nit mutants. 
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Figure A2.2.  Incidence of anthracnose symptoms caused by the nit mutants and 

parental strains on the maize varieties A. H99 and B. Mo940, inoculated with 

different spore concentrations. 1 x 106 spores/ml (light gray bars), 5 x 105 

spores/ml (black bars), 1 x 105 spores/ml (white bars) and 5 x 104 spores/ml (dark 

gray bars). Asterisks represent strains with significant differences (P <0.05) in 

pairwise comparisons. 
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Figure A2.3. Patterns of ROS accumulation on H99 leaf sheaths. Leaf 

sheaths inoculated with the WT (A-C) and cpr1 strains (D-F). Scale bars 

equal to 200µm in A-E, and 50µm in C and F. 
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