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ABSTRACT OF THESIS 

 
 
 

 

AUTOMATIC PERFORMANCE LEVEL ASSESSMENT IN MINIMALLY INVASIVE SURGERY 
USING COORDINATED SENSORS AND COMPOSITE METRICS  

 

Skills assessment in Minimally Invasive Surgery (MIS) has been a challenge for 
training centers for a long time. The emerging maturity of camera-based systems has 
the potential to transform problems into solutions in many different areas, including 
MIS. The current evaluation techniques for assessing the performance of surgeons and 
trainees are direct observation, global assessments, and checklists. These techniques 
are mostly subjective and can, therefore, involve a margin of bias.  

The current automated approaches are all implemented using mechanical or 
electromagnetic sensors, which suffer limitations and influence the surgeon’s motion. 
Thus, evaluating the skills of the MIS surgeons and trainees objectively has become an 
increasing concern. In this work, we integrate and coordinate multiple camera sensors 
to assess the performance of MIS trainees and surgeons.  

This study aims at developing an objective data-driven assessment that takes 
advantage of multiple coordinated sensors.  The technical framework for the study is a 
synchronized network of sensors that captures large sets of measures from the training 
environment. The measures are then, processed to produce a reliable set of individual 
and composed metrics, coordinated in time, that suggest patterns of skill development. 
The sensors are non-invasive, real-time, and coordinated over many cues such as, eye 
movement, external shots of body and instruments, and internal shots of the operative 
field. The platform is validated by a case study of 17 subjects and 70 sessions. The 
results show that the platform output is highly accurate and reliable in detecting 
patterns of skills development and predicting the skill level of the trainees. 

 
 
 



KEYWORDS: Computer Vision, Camera Synchronization, Motion Analysis, Pattern         
Recognition, Minimally Invasive Surgery Skills Assessment. 
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Chapter 1 

 

1. Introduction 
 

This study aims at designing and developing an objective data-driven skills 

assessment for Minimally Invasive Surgery (MIS). The design employs and coordinates 

multiple sensors to extract metrics from various objects of the operation scene.  

 This chapter introduces the concept MIS and the challenges in assessing the 

performance and the skill levels of surgeons and trainees. We discuss the problem of 

the assessment along with the limitations of the current approaches. Also in this chapter 

we discuss the motivations that led to the study and its emergent contributions in 

improving the assessment. Finally, the chapter outlines the thesis structure.  

 

1.1 Overview 

 

MIS has improved in the last decade and is now popularly used. The typical 

evaluation techniques for assessing the performance of surgeons and trainees are direct 

observation, global assessments, and checklists. These techniques are mostly subjective 

and can, therefore, involve a margin of bias.  Therefore, objectively evaluating the skills 

of the MIS surgeons has caused increasing concern among researchers. This research 

seeks to improve the MIS objectives of technical skills’ assessment using the new 

technology of computer vision and multiple sensors. These technologies along with 

kinematic analysis and machine-learning will be used to improve and automate the 
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assessment process. Also, integrating several assessment techniques in one solution is 

expected to result in a more accurate and reliable solution. 

The objective quantification and assessment of MIS technical skills requires a 

defined set of metrics. Therefore, techniques to acquire the correct metrics and an 

analysis model for the data to classify the surgeon’s experience are key factors. 

However, all the previous studies acquired the metrics from either the surgical 

instruments’ placement or the surgeon’s hands movements. In addition, the metrics 

used in previous studies were unrelated, which decreased the reliability of the results. 

For example, none of the previous studies determined whether the motion may have 

taken place while the surgeon was looking at the display monitor or not.   The typical 

approach used to read the metrics in the previous work was through electromagnetic 

sensors attached to either the surgeon’s arms or to the surgical instruments. The 

limitation of what these sensors could measure might have been the reason for the 

previous studies not analyzing the relationship between the metrics.  

Using a multiple-sensor system to study the problem of MIS assessment leads to 

extracting the relationship between different kinds of motions and developing a better 

metrics set for the assessment than what other studies used. For example, studying the 

motion and direction of the surgeon’s head might lead to more useful assessment 

factors because it reveals the surgeon’s hand-eye coordination, which is a critical skill in 

MIS. Also, tracking the surgeon’s eye could lead to reliable assessment metrics since the 

eyes are the main factor in human activities. Eye-tracking and analysis of its metrics has 

not been studied before to assess MIS technical skills.  

The idea is to build multiple non-invasive sensors coordinated in time over many 

cues of eyes, external shots of body and instruments, and internal shots of operative 

field. The system combines measurements of the surgical instruments, the surgeon’s 

body movements of arms, head, and eyes in addition to heart rate factors. The 

coordinated-sensor environment allows us to extract a set of low-level metrics. The low-

level measurements (non-fusion measures) are coordinated and combined to allow 
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higher-level measurements (fusion measures). For example this system provides the 

ability to analyze and study “blind motion,” which is the motion of the surgical 

instruments or surgeon’s hands while the surgeon is looking away from the monitor, or 

when the instruments are absent from the field of view. This analysis can classify risky or 

unimportant motion, which is a critical factor in the assessment and can reveal more 

reliable data than simple observations. 

There are several novel ideas in this research that would improve the reliability of 

MIS assessment. The study utilizes multiple advanced vision systems to improve the 

assessment accuracy. Vicon, which is an advanced system to track the human body, is 

used in many researches and industry-areas such as, films, animations, gait analysis, and 

sports. However, it has never been used in the assessment process. The high accuracy of 

the Vicon system to track the motion and direction of the arms and the head can lead to 

higher accuracy in the assessment process than using electromagnetic sensors.  

This research also aims to use the head motion and direction change in the 

assessment. No previous work has investigated how much these or the eye-tracking 

factors could improve the assessment accuracy.  Therefore, the data from multiple 

vision systems can be used to develop new metrics by analyzing the relationship 

between each system. Using those ideas along with reading the heartbeat rate for the 

surgeon during the operation can lead to a robust, reliable, and valid assessment 

system. This system can be installed in the operating room or the training laboratories 

and can be helpful and time saving for the master surgeons and trainees. Further, 

integrating all these factors in order to explore their effects on the accuracy and 

robustness of the assessment is yet to be studied.     

Even with the availability of ideal data, transforming the data into a skill level poses 

yet another challenge for the research. This challenge is due to the difficulty of 

quantifying human variability.  In this research, mapping quantitative data into skill 

assessment is required in order to classify the surgeon. Analyzing high dimensionality 

metrics and quantifying them to reliable assessment measures is challenging. Part of the 



4 
 

thesis aims at discovering how best to analyze the data. There are a number of 

statistical, machine-learning, and data mining models that showed good reliability in 

classification, clustering, and finding hidden patterns in high dimensional data. To find 

the set of metrics that could accurately assess the surgeons and trainees, we used 

multiple data analysis methods. The methods used are Principal Component Analysis 

(PCA), a hybrid of partitioning and density-based clustering algorithms, and the neural 

network algorithm Multi-Layer Perceptron as classifier. 

 

1.2 Motivation and Importance 

 

Soon after the minimally invasive surgery revolution had started, the surgeons’ 

qualifications to perform such operations became a concern. MIS has improved the 

surgical results for patients [1] and reduced the recovery time. However, it significantly 

complicated the task and increased stress of the surgeon[2]. Consequently, the study of 

the MIS ergonomics is being increasingly discussed among researchers and more 

research is being conducted to reduce stress, improve skills, and evaluate the operation. 

In addition, evaluating the trainees and increasing the safety of the patient has 

necessitated the measurement of surgical skills and performance [3]. Several studies 

and professional organizations like the Royal College of Surgery in England raised the 

issue and the importance of objectively assessing the surgical performance [4-7].  Thus, 

evaluating surgeon’ skills in MIS has acquired paramount importance in all phases of 

surgical training and in surgical career in general. In surgical training, the evaluation is 

important to assess the level of expertise the trainee has gained, and the efficiency of 

the training process. Also, it gives feedback to the trainees at each step of the training 

process, which allows them to review and adjust their techniques accordingly. This 

results in decreased training time. For expert surgeons, the assessment of the surgical 

skills helps in the ergonomic studies of surgery. This in turn, offers them feedback about 
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their performance. Also, it contributes to evaluating and improving the training courses 

and techniques.  

The evaluation process is currently subjective, and the most reliable techniques are 

direct observation, global assessments, and checklists [8]. Those techniques require 

expert surgeons to observe the trainees while performing surgeries, which demands 

time, effort, and resources. For example, assessing 20 trainees using the Objective 

Structured Assessment of Technical Skill (OSATS), a technique which will be discussed in 

detail later, requires 48 examiners, three hours each [9]. Therefore, the need for 

objective methods to evaluate MIS trainees is of paramount importance, and has 

motivated many researchers to look for other approaches.  

Even though objective assessment is challenging due to differences in patients, 

operation setup, working team, and other factors [10], great efforts have been exerted 

in the past few years to develop objective evaluation techniques [11].  Therefore, MIS 

researchers in cooperation with researchers from other fields have developed different 

methods to objectively assess surgeons’ skills. However, the literature demonstrates 

that no general solid and automatic solution has been implemented to assess surgeons 

as a standalone approach. Some of the methods mentioned in literature used virtual 

reality systems that assessed the surgeons in the virtual environment, but not in the 

operating theater where the motor performance could differ significantly [10]. Other 

methods used external sensors attached to the tools or the surgeon’s body. Those 

sensors could be bulky and require and effort and knowledge to setup, as well as 

mandate that experts analyze the videos. Other common methods used expert 

observation, which is manual and subject to bias.   
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1.3 Thesis Statement 

 

This research aims at improving the assessment of the MIS technical skills by 

designing and implementing a system that uses multiple non-invasive sensors and 

computer vision techniques.  The proposed approach includes four parts:  

1) Tracking the positions and direction of the surgeon’s hands and head;  

2) Tracking the positions of the surgery tools;  

3) Tracking the surgeon’s eyes; and  

4) Reading the surgeon’s heartbeat rate during the operation or the training 

session.  

The results of the first three techniques will be transformed into kinematics 

parameters and compared to each other to produce other assessment metrics such as 

velocity, acceleration, deceleration, direction changes, path length, blind motion, blink 

rate, and fatigue. Then, an analysis model will be used to validate the system, analyze 

the produced data, and evaluate the surgeon. This research has taken place in the 

Center for Visualization and Virtual Environment (VIS) laboratories in the University of 

Kentucky.  

The research is based on the hypothesis that integrating tools, arms, head, eyes, and 

heartbeat factors using advanced vision technology and appropriate data model can 

lead to great improvements to MIS technical skills assessments. Using multiple non-

invasive, real-time, and coordinated sensors over many cues (eyes, external shots of 

body and instruments, internal shots of body and instruments) can transform the 

assessment problem to a new domain. Each part evaluates the subject from a different 

perspective. For example, eye tracking and measuring the fatigue level could assess the 

ability of the surgeons and their effectiveness of handling tools and performing tasks. 

Tracking motion and directions of the surgeon’s hand in accordance to the display 
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location could assess hand-eye coordination. Using the kinematics of tools and arms 

demonstrates the ability of controlling and performing tasks. Heartbeat rate could lead 

to measuring the physical changes during the operation. Therefore, integrating all of 

those factors can lead to reliable, valid and applicable solution to MIS technical skills 

assessment. 

 

1.4 Thesis Contribution Summary 

 

This thesis contributed in: 

 Identifying the limitations in the current assessment approaches. 

 Proposing a novel design and implementation of a new assessment system. 

 Proposing novel assessment metrics that have not been studied before.  

 Opening new venues for expansions and more analysis to study other metrics. 

 Validating the proposed design system and metrics. 

 Building a data model of metrics that can classify the assessment level in three 

levels’ resolution. 

 Improving the reliability and accuracy of the objective assessment of MIS skills.  

But one of the most valuable contributions made by this thesis is the transformation 

of the assessment problem by utilizing computer vision technology. This transformation 

allowed expanding the parameters of the assessment to increase the reliability. This 

transformation opened the door for more work and contributions to reach a satisfactory 

level to assess MIS trainees and surgeons. This could lead the computer vision 

researchers to improve other challenging issues facing minimally invasive surgery. 
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1.5 Thesis Content 

 

The remaining chapters are organized as follows: 

Chapter 2 (Minimally Invasive Surgery Assessment): This chapter reviews MIS 

assessment to understand the root of the problem. The review includes the types of MIS 

assessments and a survey of previous work to solve the problem. Then, it discusses the 

limitations of previous approaches and the challenges these methods face. Finally, the 

chapter gives a brief summary about the thesis approach to improve the accuracy and 

reliability of the assessment.  

Chapter 3 (System Design and Architecture): This chapter introduces the design of the 

platform. The platform contains several parts where each part is discussed in detail with 

description of the requirements to build each part and the theory behind it. The chapter 

then describes the parts’ integration and the time synchronization in order to minimize 

the capture offset between the subsystems. At the end, it compiles the list of metrics 

the system can extract and the details of how they are calculated. 

Chapter 4 (Experiment Design): In order to test and validate the platform, we 

developed an experiment to collect data and analyze it. In this chapter, we introduce 

the experiment design and task description used to collect data, the protocol of 

recruiting subjects, training them, and assessing their skills level. 

Chapter 5 (Data Collection and Processing): This chapter presents a high level of 

analysis of the metrics on individual basis. The analysis includes studying the correlation 

coefficient for each metric with the skill level and the variance of each metric within 

each level of skill. 

Chapter 6 (Analysis and Discussion): In this chapter, we present detailed analysis using 

the Principal Component Analysis (PCA) to understand the features of the data and the 

interrelationship between subjects and variables, and to detect the skill patterns over 

time. Visualization of this analysis is provided in the form of plots and interpretation to 
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clarify the achievements and the interrelationship. The chapter in addition provides 

analysis to validate the clustering accuracy on different metrics. As a type of 

classification implementation, we trained a classification algorithm with subset of the 

data and validated it using the other subset and a 10-fold validation. The result of the 

classification is presented in this chapter. 

Chapter 7 (Conclusion): This chapter summarizes the result achieved by the thesis and 

the overall contribution of this work toward improving the accuracy and reliability of 

performance assessment. The chapter includes a summary of the questions the research 

has answered. 

Chapter 8 (Future Work): This thesis achieved answers to several questions but it 

opened up more questions simultaneously. As a part of this thesis contribution, the 

chapter describes more ideas, questions, and directions for future research to improve 

the performance assessment and skills-level recognition.  
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Chapter 2 

 

2. Minimally Invasive Surgery 

Assessment 
 

This chapter gives a detailed background about MIS assessment to enable an 

understanding of the root of the challenge. Then, it discusses the types of MIS 

assessments and provides a comprehensive survey of previous work to study the 

challenges and find solutions. The chapter then manifests the limitations of the previous 

approaches and the challenges these methods face. A brief discussion about our 

approach and contributions, and how it contributes towards improving the accuracy and 

reliability of the assessment follows.  

 

2.1     Assessment Techniques 

 

The literature presented various approaches to assess MIS surgeons and trainees. 

The common idea among most of the assessment approaches is to acquire metrics for 

different skill levels while surgeons perform surgical tasks. After the initial step, a 

statistical analysis is performed to find the correlation between the acquired metrics 

and the skill level. The common metrics used in the assessment methods are: time, 

position, motion, kinematics such as, speed and acceleration, force/torque, and others. 

We discuss each approach in this section along with the metrics used, and how they 
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have been analyzed. The following is a list of the assessment techniques that have been 

studied: 

 Checklists, direct observation, and video tape observations 

 Kinematics and motion analysis 

 Virtual reality simulators 

 Force/Torque analysis 

2.1.1    Assessment Using Checklists, Direct Observation, and Video Tape 

Observation 

 

The conventional methods of laparoscopic skills evaluation are using checklists, 

global assessment through direct observation, and/or video tape observation. In direct 

observation, the expert surgeons observe, assess the trainees and offer feedback about 

their skills. In video tape observation, the training process or the operation is recorded 

on a video, and the master surgeons assess the trainee by editing and observing the 

recorded video. Checklists of subtasks and specific skills are used with direct and video 

observation [9, 12]. Direct observation gives a better assessment than the latter, 

because the video fails to give complete information about the surgeon’s knowledge of 

instruments and specific procedures, and efficient use of assistants. Although those 

methods are proven to be valid and reliable [9, 10, 13, 14], they are time and resource 

consuming. Further, they are subject to bias since it is an examiner’s judgment. For 

example, evaluating 20 Residents using the Objective Structured Assessment of 

Technical Skill (OSATS), which is the most common method, took 48 certified surgeons 

three hours each [9].  

OSATS was developed by Martin et al. [9]. It uses direct observation and the 

assessment is based on a task-specific checklist. The assessors directly observe residents 

performing surgical tasks on live animals or bench models. They use three types of 

scoring methods to assess the trainees. These scoring methods are task-specific 
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checklists for six procedural tasks, seven items of global rating score, and pass/fail 

judgment. Table 2.1 shows the global rating score and pass/fail judgment for OSATS. 

2.1.2    Assessment Using Kinematics and Motion Analysis 

 

The key concept behind the study of kinematics and motion analysis is to track the 

3D space positions of objects such as, hands or instruments, then, analyze the data to 

produce a kinematic signature for each skill level. The main kinematics parameters used 

are: time, economy of motion, velocity, acceleration, and deceleration. Extensive 

research on analyzing the relationship between surgical skills and motion analysis, 

especially hand motion, has taken place recently. These studies in this area show the 

correlation between the motion and the skills level [15-20]. Therefore, many motion-

tracking and analysis tools were developed in the past few years to serve as objective 

assessment tools for Laparoscopic Surgeons. Further, many tracking-tools and systems 

were developed to track the motion of laparoscopic instruments.  Examples of advanced 

systems in MIS are the Imperial College Surgical Assessment Device (ICSAD) and the 

Advanced Dundee Endoscopic Psychomotor Tester (ADEPT).   
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Table 2.1 The global rating form used to assess technical skill at each of the eight 
stations in the Objective Structured Assessment of Technical Skill (OSATS). Global rating 
forms were used in conjunction with task-specific checklists 
 

Global Rating Scale of Operative Performance 

Please circle the number corresponding to the candidate’s performance in each category, irrespective 

of training level. 

 1 2 3 4 5 

Respect for tissue Frequently used 

unnecessary force 

on tissue or 

caused damage by 

inappropriate use 

of instruments. 

 Careful handling of 

tissue but occasionally 

caused inadvertent 

damage. 

 Consistently handled 

tissues appropriately with 

minimal damage. 

Time, motion and 

flow of operation 

and forward 

planning 

Many unnecessary 

moves. Frequently 

stopped operating 

or needed to 

discuss next move. 

 Made reasonable 

progress but some 

unnecessary moves. 

Sound knowledge of 

operation but slightly 

disjointed at times. 

 Economy of movement 

and maximum efficiency. 

Obviously planned course 

of operation with 

effortless flow from one 

move to the next. 

Knowledge and 

handling of 

instruments 

Lack of knowledge 

of instruments. 

 Competent use of 

instruments but 

occasionally awkward or 

tentative. 

 Obvious familiarity with 

instruments. 

Suturing and 

knotting skills 

appropriate for 

the procedure 

Place the sutures 

inaccurately and 

tied knots 

insecurely and 

lacked attention to 

safety. 

 Knotting and suturing 

usually reliable but 

sometimes awkward. 

 Consistently placed 

sutures accurately with 

appropriately and secure 

knots with proper 

attention to safety. 
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Table 2.1 (Continued) 

Technical use of 

assistants. 

Relations with 

patient and the 

surgical team 

Consistently 

placed assistants 

poorly or failed to 

use assistants. 

Communicated 

poorly or 

frequently showed 

lack of awareness 

of the needs of the 

patient and/or the 

professional team. 

 Appropriate use of 

assistant most of the 

time. Reasonable 

communication and 

awareness of the needs 

of the patient and/or 

the professional team. 

 Strategically used 

assistants to the best 

advantage at all times. 

Consistently 

communicated and acted 

with awareness of the 

needs of the patient 

and/or of the 

professional team. 

Insight/attitude Poor 

understanding of 

the areas of 

weakness. 

 Some understanding of 

areas of weakness. 

 Fully understands areas 

of weakness. 

Documentation of 

procedures 

Limited 

documentation, 

poorly written.  

 Adequate 

documentation but with 

some omissions or areas 

that need elaborating. 

 Comprehensive legible 

documentation, 

indicating findings, 

procedure and 

postoperative 

management. 

Over all on this task , Should the candidate: F

a

i

l 

Pass 

 

ICSAD [8,21] has an electromagnetic tracking system which includes an 

electromagnetic field generator and two sensors. The sensors are attached to the back 

of the surgeon’s hand. The tracking system is connected to a laptop that has software to 

analyze the tracked positions of the hands and retrieve the time, motion, velocity, 

acceleration, and deceleration of the hand movements. Since ICSAD sensors are 

connected to the surgeon’s hands, it can assess real operation in the theater. However, 

ICSAD cannot measure rotational movements. In addition, the magnetic-field of the 

ICSAD could disturb the magnetic signals that might be present in the operation theater.  
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ADEPT [22] is a motion tracking system which uses mechanical methods to capture 

the motion of the laparoscopic tools. ADEPT is an advanced version of Dundee 

Endoscopic Psychomotor Tester (DEPT). The system has the standard MIS instruments, 

an endoscope, and a display. It tracks the three dimensional positions and the rotations 

of the tools’ tips using a dual gimbal mechanism. The sprung top plate, through which 

the laparoscopic tools pass to perform a task, has access holes to allow tasks with 

various positioning. Figure 2.1 shows the diagrammatic representation of ADEPT. The 

gimbals capture the rotation of the tools about its axis using a core that is connected to 

a potentiometer. The depth of the tools is measured by a slider that passes through the 

center and is connected to a potentiometer. In addition, there are two more 

potentiometers to capture the XY values of the tools. In summary, ADEPT uses the 

following information to assess skills: execution time, instrument error, 3D-coordinates 

(XYZ), rotation angle, and completion status for all tasks. The reliability and the validity 

of ADEPT were discussed in many studies such as [23, 24]. In [24], 40 surgeons (20 

experienced and 20 junior) performed tasks using ADEPT. The performance parameters 

used were instrument error, execution time, and task completion. The results show a 

significant difference in the instrument error between the experienced and the junior 

surgeons with a lower error rate for the experienced. However, the differences in the 

other two parameters, execution time, and task completion, were insignificant. The 

main challenge that faces ADEPT is the mechanical design limitation. The sensors that 

acquire the data are part of the training system. Therefore, it cannot be used in other 

training devices and environments or in the real operating theater.  
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Figure 2.1 Diagrammatic representation of ADEPT [22] 
 

 

Other researchers used cameras and infrared sensors to track the surgeon’s body 

movement to study the MIS ergonomics. Similar approaches can use cameras to track 

the positions and collect kinematics data for both, instruments and surgeons for the 

assessment process.  Gillette et al. [25] studied the postural parameter changes that 

occurred with different operation training tasks in their MIS ergonomics studies. Six 

cameras were used to track the motion of 37 reflective markers placed on different 

parts of the operator’s body.  The parts include the torso, head, upper arms, forearms, 

wrists, hands, and around each elbow joint. Emam et al. [26] in their laparoscopic 

suturing ergonomics study used a video-based motion analysis system called 

(Kinemetrix Model 5.0 3D/3MBM). This system includes three infrared cameras to track 

the motion of five high contrast markers placed on the surgeon’s shoulder and elbow in 

addition to supination and pronation of the forearm. The parameters used in this study 

were the angles, the joint of the elbow, the shoulder, and the forearm supination and 

pronation. 

Robotic Video and Motion Analysis Software (ROVIMAS) is software that reads the 

kinematics data produced by the Da Vinci robotic system and analyzes it to objectively 

assess the operators. The kinematics parameters that Da Vinci produces are path length, 
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number of movements, total time, average of path length, average of movements’ path 

length, and velocity parameters for both hands [27]. Different studies have used 

ROVIMAS as a tool to study the robotic surgery learning curve and surgical skills [27-32].  

This software can be used not only to assess Da Vinci robotic procedures, but also in 

other systems [31]. ICSAD is integrated to capture the kinematics data using 

electromagnetic sensors [32].  However, methods can be developed to capture 

kinematics data from non-robotic procedures and use it in similar way to assess the 

operator.  

Cotin et al. in [20] have defined metrics to evaluate laparoscopic trainees in the 

simulation environment. The defined metrics relied on instrument motion and 

kinematics analysis of the motion. These metrics are: time to perform a task, path 

length, motion smoothness which is the change in the acceleration, depth perception 

which is the total distance an instrument travels along its axis, and response orientation 

which is the rotation of the instrument about its axis. To validate the proposed metrics, 

an experiment that includes 20 novice surgeons and a number of expert surgeons was 

implemented.  Their motion was measured using a modified Virtual Laparoscopic 

Interface (VLI), and specialized software was developed for data processing and 

visualization of the motion. Each subject had to perform three training tasks multiple 

times. The results of the experiment demonstrate that the metrics could distinguish 

between the performances of experts and novices.  

2.1.3    Assessment using Virtual Reality Simulators 

 

Virtual reality simulators are used to educate MIS surgeons in the early stages of 

their training. In the last decade, several computer simulator systems have been 

developed. Separate sections for the simulators have been added because the simulator 

can provide more metrics for the assessment, such as, error score. In addition, the 

method of reading kinematics data in the simulator does not necessarily require 

tracking sensors or tools. The simulators can record metrics such as, time, positions, 
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path length, economy of motion, and other parameters. Therefore, researchers used 

simulators as objective tools to evaluate skills and to study the correlation of skills 

acquisition between the virtual systems and the actual operating theater.  In this 

section, we describe some virtual reality systems and their usage as assessment tools. 

The Minimally Invasive Surgery Trainer-Virtual Reality (MIST-VR) is a simulator that 

allows the trainee to perform simulated laparoscopic tasks using two standard 

laparoscopic instruments. The instruments are held in position-sensing gimbals which 

are connected to a computer [33]. The computer translates and reflects the movement 

of the instruments into the virtual instruments on the computer display. MIST-VR 

measures performance by recording and analyzing the completion time, error rate, and 

economy of movement of each instrument.  

LapSim is another simulator that includes eight different tasks. These tasks can be 

performed through laparoscopic instruments that control the simulation software [34]. 

LapSim tasks are more realistic than MIST-VR’s tasks because they simulate bleeding 

and structure deformation [35] in addition to providing tasks that are part of a real 

operation [34]. MIST-VR has been used in many studies and its reliability and validity 

have been proven overtime [15, 18, 19]. LapSim records various metrics and statistics of 

both, the left and right instruments to evaluate the performance of the trainee 

depending on the task being performed. Those metrics are total completion time, 

instrument navigation time, grasping time, angular path, instrument misses, lifting time, 

path length, clipping total time, incomplete targets, and blood loss [34]. Other available 

simulators are Xitact LS500 which incorporates physical objects and virtual abdomen 

with force feedback, ProMis, Reachin Laparoscopic Trainer, and LapMentor which 

enables the trainee to perform complete laparoscopic cholecystectomies with force 

feedback [36]. 

Kundhal and Grantcharov [37] studied the validity of using virtual reality simulators 

as an objective measure to evaluate the MIS skills of surgeons. The hypothesis was that 

the performance in the real operating room correlated with the performance in the 
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virtual reality simulation environment. A modified OSATS was used to assess the 

performance in the operating room. Seven tasks of the virtual reality laparoscopic 

trainer (LapSim) were used to assess the surgeons’ performance. For more details about 

the seven tasks used, see Kundhal et al. [37]. Time, error score, and economy of motion 

were the primary assessment parameters used to differentiate between the skill levels 

in the real operating room. The assessment parameters for LapSim are error score, 

economy of movement, and time. Error score is evaluated by tissue damage, incomplete 

target areas, badly placed clips, and dropped clips. Economy of movement is evaluated 

by path length and angular path. Ten surgical residents of different gender and different 

skill levels participated in the study. Each subject performed three repetitions of seven 

tasks on LapSim and one laparoscopic cholecystectomy. The cholecystectomy was 

recorded and assessed by two experts using OSATS. Spearman’s test was used for 

statistical analysis of the data. LapSim tasks and the operating theater tasks were found 

to be correlated.  

The challenge that faces the virtual reality systems is that they can only be used in 

the virtual environment. The sensors that acquire the data are part of the system. 

Therefore, these systems cannot be used in other real training and operating 

environments.  

2.1.4    Force/Torque 

 

Force/Torque approach refers to measuring the magnitude and direction of the 

force and torque the surgeon needs to perform a task. Researchers suggested that the 

signatures of the force and torque can be used to evaluate technical skills because they 

are correlated with the experience level of the surgeons [38-42]. Different methods and 

interfaces measure these magnitudes and directions.  Only one group of researchers 

used the measurement of force/torque for two types of interactions: Tool/Tissue 

interactions and Tool/Hand interactions. 
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Rosen et al. [38-41], studied the force/torque and haptic information from the 

tool/tissue interactions. The goal was to develop an objective laparoscopic surgical skill 

scale. A three-axis force/torque sensor was installed at the proximal end of a 

laparoscopic grasper, and a force sensor was installed on the grasper’s handle. The 

sensors were set to measure the force/torque at the tool/tissue interface. Video-

recording was used to define different tool/tissue interactions and synchronize each 

interaction with its corresponding force/torque data measures. The Hidden Markov 

Model (HMM) was then used on each subject to analyze the data. The results showed 

differences in force/torque values between subjects at different levels depending on 

their levels of training and expertise. Also, the results demonstrated similarity in the 

force/torque signature of subjects at the same level of experience. It is from those 

differences, that a learning curve of laparoscopic cholecystectomy operation has been 

developed. The experiment explained skill level differences in: magnitude of 

force/torque, the types of interaction between the tool and the tissue, and the time of 

each interaction. The video was analyzed manually by two expert surgeons to define the 

interactions and synchronize them with the force/torque data. The difference in the 

median completion time between the novice and the expert surgeons was significant 

[38]. The novice consumed more time in the idle state (where tools were idle) than the 

expert [38].  HMM showed differences in the statistical distance between subjects of 

different levels of experience, and the surgery skill learning curve converged 

exponentially to the expert level. 

Richards et al. [42], measured the force/torque values from the tool/hand 

interactions. The goal was to study the force/torque values between the tool and the 

hand interface during each tool/tissue interaction. A three-axis force/torque sensor was 

installed at the proximal end of the laparoscopic grasper tube and a one-axis force 

sensor was installed on the grasper’s handle. The sensors were calibrated to measure 

the torque and force at the hand/tool interface. As in [38], Richards et al. [42] used 

video recordings to define tool/tissue interactions and synchronize the interactions with 

their corresponding force/torque measures. Two expert surgeons analyzed the video 
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and defined the interactions. The data gathered from the experiment were analyzed 

using Vector Quantization analysis and clustered using the K-means algorithm. The 

experiment showed that the force/torque values in both operations between novices 

and experts were significantly different. The differences depended on the task being 

performed. As in [42], the novice surgeons used higher force/torque magnitude in tissue 

manipulation tasks, whereas in tissue dissection, they used lower force/torque 

magnitude. As in [38], [42] showed that the novice surgeons took more time to 

complete the operation than experts by a factor of 1.5-4.8. Richards et al. [42] noticed 

that the novices spend more time in idle state than the expert do.  In the previous two 

studies, the video was analyzed manually by two expert surgeons to define and 

synchronize the interactions with the tissue. Thus the approach was not completely 

objective and automatic. Table 2.2 shows a summary of the MIS technical skills studies 

literature, types of the study, and the metric used. 
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Table 2.2 Summary of MIS technical skills assessments and the metrics used 
 

Study Category Tracking System 
No. 

Subjects 
Assessments Parameter Used 

Rosen et al. [38-41] Force/Torque 

(Tool/Tissue) 

NA 8 Time, force and torque magnitude and 

direction. 

Richards et al. [42] Force/Torque 

(Tool/Hand) 

NA 10 Time, force and torque magnitude and 

direction. 

Cristancho et al. 

[10] 

Kinematics Electromagnetic 

sensors 

6 Time, position, and movement 

transitions. 

Kundhal and 

Grantcharov [37] 

Virtual Reality Electromagnetic 

sensors 

10 Time, error score, and economy of 

movement. 

Gallagher and 

Satava [15] and 

Gallagher et al.  [43] 

Virtual Reality NA 36 Time, error, economy of 

movement(left and right), and 

economy of diathermy 

Smith et al. [44] Virtual Reality NA 10 Time, path length (left and right) 

ROVIMAS software 

[27-30] 

Robotic Electromagnetic 

sensors 

and Robot API for 

capturing data 

NA path length, number of movements, 

total time, path length average, 

movements path length average and 

velocity 

Grober et al. [16] Real Operation Electromagnetic 

sensors 

2 total number of movements 

per hand, movement velocity, 

trajectory, and 

hand travel distance 

Aggarwal et al. [31] Real Operation Electromagnetic 

sensors 

19 Time taken, path 

length, and number of movements for 

each hand 

Dosis et al. [32] Real Operation Electromagnetic 

sensors 

5 Number of movements, path length, 

and time taken in addition to OSATS. 

Bann et al. [45] Lab Electromagnetic 

sensors 

30 Number of movements, time. 

Datta et al. [46] Lab Electromagnetic 

sensors 

50 Number of movements, time. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Field%20M%22%5BAuthor%5D
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Table 2.2 (Continued) 

Hernandez et al. 

[47] 

Lab Electromagnetic 

sensors 

13 Time, number of movements, and 

path length in combination with 

OSATS. 

Bodten et al. [4] Augmented 

Reality 

Cameras 24 Time spent in correct area, strength of 

the knot. 

Chmarra et al. [48] Lab Electromagnetic 

sensors 

31 Time, path length, depth perception, 

motion smoothness, angular area, and 

volume. 

Jayender et al. [49] Lab Electromagnetic 

sensors 

13 Time, position, path length, velocity, 

acceleration, and orientation. 

Salgado et al. [50] Simulator NA 8 Time, error score, efficiency of 

movements, instruments misses, and 

tissue damage 

Cotin et al. [20] Simulator NA 20+ time , path length, motion 

smoothness, depth perception , and 

response orientation 

Megali et al. [51] Simulator NA 29 Mathematical parameter defined 

using kinematics parameters. 

Allen et al. [52] Lab Electromagnetic 

sensors 

30 Time to completion, path length, 

volume,  and control effort 

Francis et al. [24] Lab Mechanical 40 Instrument error, execution time, and 

task completion. 

Hanna et al. [53] Lab Electromagnetic 

sensors 

10 Errors rate, the execution time, and 

the applied force on the target. 

Sokollik et al. [54] Lab Ultrasound system 56 Time, position of the instrument in 

space, number of errors, standardized 

time, error time, distance efficiency 

ratio, speed profile, and transit profile. 

 

 

 

 

http://www.springerlink.com/content/?Author=Jagadeesan+Jayender
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To summarize the technical methods of assessing the MIS skills, in general, all 

methods propose extracting information from surgery tasks. We can use this 

information to develop a model to assess the skills of the surgeons. The differences are 

in the parameters and the analysis approach used. Most of the studies are based on 

time and kinematics parameters in the assessment [4, 10, 15-21, 31, 43, 44, 49, 51-55]. 

The usage of the simulators to evaluate the performance of the trainees in the virtual 

environment can support the assessment process but cannot serve as a standalone 

assessment tool. Since the simulation approach does not confirm that the training skills 

acquired in virtual environment are transferable to the operating theater on an 

individual basis, the need for an evaluation system in those two environments is still 

required to confirm whether the trainee has mastered the skills in the area.  

Most of the studies used electromagnetic sensors to track and record the positions 

of the instruments or the surgeon’s hands and transform that information into 

kinematics data [8, 10, 16, 27-32, 45-49, 52, 53]. A few used the Da Vinci robot API 

system [27, 55] and one study used an ultrasound tracking system [54]. Another 

approach was to measure the force/torque required to perform a surgical task [38-42]. 

The studies that investigated the force/torque approach used small sample sizes. The 

use of such limited samples made it hard to extrapolate and generalize the validity of 

the approach. Using cameras also made the system bulky, but this bulkiness was 

isolated from the tools and the surgeon’s body and did not interfere with the surgeon’s 

motion. However, the tracked object could be lost if the reference target went out of 

the camera’s field of view while the surgeon was moving. This scenario could cause loss 

of data. Using the Vicon system could however, minimize the data loss. As the system 

describes in the next section, the eight cameras can be used so that their field of view 

can cover all angles of the operating theater. This setup increases the reliability of the 

tracking system and minimizes the data loss. 
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2.2     Limitations of the Previous Work 

 

Most of the referenced studies used expert surgeons to manually edit and segment 

the video into tasks and synchronize it with the kinematics data in order to analyze the 

skills of the surgeon performing the operation. This approach requires valuable time and 

resources from the experts. In addition, the trainees will not get continuous feedback on 

their progress if the expert surgeons are not available.  

The systems that use mechanical technology, virtual environment, and robotics 

surgery instruments are closed to their environment. The sensors that acquire the data 

are part of the system. These systems cannot be used in all tasks or different operating 

environments.  

Attaching external sensors to the surgical instruments or to the surgeon’s body 

suffers several drawbacks.  First, even though the electromagnetic and force/torque 

sensors are small, because they are attached to the surgeon’s body, they might interfere 

with the surgeon’s work. Second, the electromagnetic sensors can be affected by 

magnetic fields in the surgery and training environment. But the main limitation is 

studying an isolated type of motion or measure such as, the tools’ motion and ignoring 

the importance of the coordination between the motion of different body and 

instrument parts. The motion of the tools, hands, head, and eyes are not studied 

together to find the importance of their interrelationship. The interaction between the 

head and the eye with objects in the environment, which drives the motion, has never 

been studied. The reason for this limitation is that the technology used does not provide 

the capability to extract these measures.  
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2.3     Importance of the New Approach  

 

None of the studies used the abilities of computer vision. Probably the reason is that 

the level of the development bar has been too high to use real computer vision in this 

area. But now that the algorithms are robust enough, computer vision can be a game 

changer to transform the domain of the assessment challenge. Building and 

synchronizing a network of camera sensors to extract new metrics from the 

synchronized motion of different parts and the relationship among each other could be 

a significant contribution to the improvement of the assessment reliability and accuracy.  

The use of the non-invasive camera setup can expand the metrics acquired to assess 

the skills.  For example, the surgeon’s head can be tracked and the period of time of 

looking at the display versus the time looking at the instruments can be studied. This 

metric can measure the eye/hand coordination which is an important skill to the 

surgeon. The technology of eye-tracking systems is another option to develop new 

metrics in the assessment methods. Tracking the surgeons’ visual motion may be used 

to distinguish the levels of experience. Other proposed approaches are to read the 

physiological changes inside the surgeon’s body. Parameters like heartbeat rate and the 

change of the adrenaline level in the body could be strong qualitative measures of the 

surgeon’s confidence and skills. 

The new system design provides several features that are lacking in other systems. 

The new design encapsulates the bulkiness of the assessment tools from the training or 

operation environments and minimizes the influence of assessment tools on the 

surgeon activities. The design also encapsulates the assessment tool from the surgical 

environment. This encapsulation increases the usage validity of the system in all training 

and operation environments. The new design provides the capability of fusion motion 

analysis to capture composite metrics which represent the coordination between 

different moving parts in the environment. Therefore, the quality of the metrics used 

would improve since the system distinguishes between the types of motions and 
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metrics. Finally, studying a wide range of metrics which can only be acquired by this 

design from different moving parts, including composite metrics, increases the reliability 

of the assessment and the tolerance to noise and errors. 
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Chapter 3 

 

3. System Design 
 

This chapter describes the design of the system. The system includes several parts, 

which will be discussed in detail. The chapter also presents the description of the used 

tools, the theory, the challenges faced, and the solutions to overcome them. Finally, the 

chapter lists the metrics that the system measure, the description of those metrics, and 

how they have been captured and calculated. 

 

3.1     High Level Architecture 

 

The multi-sensor platform is composed of four subsystems in which each system 

contains one or more non-invasive sensors. Three of them contain camera sensors and 

one is a heartbeat rate monitor. Each of the three camera subsystems is responsible for 

tracking and capturing the 3D positions of one or more moving parts in the surgical or 

training environment. These subsystems are synchronized and coordinated in order to 

calculate fusion or combined metrics. The heartbeat rate monitor is responsible on 

tracking the heartbeat rate during the session activity. Figure 3.1 shows the high level 

architecture of the following four subsystems. 

 Vicon System contains eight MX3+ Cameras 

 Eye tracker contains a stereo camera 

 Laparoscope contains a stereo camera 
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 Heartbeat rate monitor 

 

Figure 3.1 High level architecture of the four subsystems  
 

The multi-sensor platform synchronizes and processes the captured data from the 

subsystems and transforms it into fusion and non-fusion assessment metrics. Those 

metrics are then analyzed to find their significant and to build a data model to find the 

hidden patterns of skill levels and to classify the skill level of subjects. The sensors 

capture data for the surgical instruments, the surgeon’s head, hands, eyes, and 

heartbeat rate. Figure 3.2 shows the block diagram of the data flow in the multi-sensor 

system. The diagram shows the parts that are monitored by different sensors, the 
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synchronization step, and the data processing. At the end of the analysis, the fusion and 

non-fusion metrics are produced to find the skill level.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Block diagram of the multi-sensor system’s data flow 
 

3.2     Tools and Sensors 

 

In this section, we describe each subsystem and how it is used to transform raw data 

into assessment metrics. In addition, it also presents an overview of each tool, the 

theory to handle it, and its role in the research. 
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3.2.1    Endoscope and MIS Tools Detection 

 

MIS uses several types of long and narrow mechanical instruments in addition to 

one laparoscope. The Laparoscope is a video camera (single or stereo) that transmits a 

2D video stream to a screen display. The MIS instruments are hand-controlled tools 

where the surgeon relies on the video display to move them in order to complete the 

surgical tasks. These tools are typically inserted through a 0.5-1.5 cm incision [59]. 

Figure 3.3 shows a sample of one instrument.  The MIS operations usually require skills 

such as grasping, pushing, pulling, cutting, transferring, suturing, knot tying, and needle 

manipulation. Different tasks require different types of tools [38]. Figure 3.4 shows the 

MIS operation room setup. 

 

Figure 3.3 MIS mechanical hand-controlled instrument  
 

The laparoscope is a stereo camera inserted in the human body to give the surgeon 

a field of view for the operation. The available device is Vista Medical Technologies’ 

stereoscope. The lenses used in this device are standard endoscopic lenses with two 

CCDs positioned slightly apart sharing the same optical path as shown in Figure 3.5. The 

cameras capture analog NTSC videos which are routed to a head-mounted display to 

provide stereoscopic viewing. The disparity between cameras is less than 5mm.         
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Figure 3.4 the MIS setup in the operation room [65] 
 

 

Figure 3.5 Vista stereoscope with single channel endoscopic lens 

 

The initial intention of using the stereoscope in this research was to track the MIS 

tools, find matching points between left and right stereo images, and reconstruct the 3D 

positions of the tools using triangulation geometry. In order to reconstruct 3D positions 

of the tools, we need to calibrate the stereo camera in the endoscope. In addition, to 
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find matching points in the inner body environment, high specular markers are placed 

on the tools. 

The attempt to use the available stereoscope has failed for several reasons. 

However, we can get better results using endoscopes that have better stereo-cameras 

than the Vista. This stereo-camera has larger lens disparity than the Vista stereoscope. 

We describe below, the approach that we have tried, the reason why it does not work, 

and where it can be useful. 

 Camera Calibration 

 

Cameras in computer vision can be modeled as ideal pinhole cameras. This model is 

important to extract the properties of the world from images and to describe the 

mapping between the three dimensional world’s coordinate and the two dimensional 

image plane. To be able to describe the mapping, the intrinsic and extrinsic parameters 

of the cameras must be approximated through the calibration process. The intrinsic 

parameters include the focal length and center of projection. The extrinsic parameters 

include the rotation and transformation matrix of the camera in relationship to the 

other camera. Using those parameters with the triangulation of epipolar geometry, we 

can construct the 3D coordinates. The intrinsic and extrinsic parameters and the 

relationship to image coordinates can be expressed in the following equations.  
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Where (x,y) is the image coordinate for the (X,Y,Z) three dimensional coordinate, Mint is 

the intrinsic camera matrix which includes the focal length (fx, fy) and the center of 

projection (cx, cy), and Mext is the extrinsic matrix that is composed of 3x3 rotation 

matrix R and translation vector t [56]. 

Cameras usually suffer from several types of distortion such as radial and tangential 

distortion. The amount of distortion increases the further the pixel is from the image 

center. Therefore, a model to remove the radial distortion is necessary. A second order 

polynomial describing the distortion is good for moderate level distortion cameras [57]. 

)1( 2

1rrrd   (3.4) 

 

Using the un-distortion model proposed by Heikkila and Silven [58], two coefficients 

of radial distortion and two for tangential distortion are computed. The following set of 

equations describes the model where (un, vn) represents the normalized undistorted 

image coordinate, and (ud, vd) represents the normalized distorted image coordinate.  

(k1, k2) are the second- and fourth-order coefficients of radial distortion. (p1, p2) are the 

de-centering coefficient tangential distortion. 
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 Tools Tracking 

 

The calibration model results can be used to reconstruct 3D points of the MIS tools. 

Therefore, the tools are tracked and their 2D positions are extracted. In order to reliably 

track the tools, shiny markers are placed on them. The markers are black/white one inch 

length rectangles. The corners can be found in the image by computing the second 

derivative based on Shi and Tomasi’s definition [59] which is based on Harris’ corner 

detector. The discovered corners can then be tracked across consecutive frames.  Shi 

and Tomasi compute the following matrix to find the good features: 
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Where 

 I: the intensity of the pixel. 

dx, dy: the horizontal and vertical displacements of the neighborhood window 

center. 

The results of this approach showed that stereo reconstruction model is unreliable 

to be used in the context we need. This approach has failed because of the high 

accumulative error. Measuring Euclidean distance between two points is used as an 

experiment to study the accuracy of the model. In this experiment, we developed a 

virtual ruler to help the surgeons in clinical analysis like measurements and decision 

making. The virtual ruler is used to analyze the accuracy of the reconstruction and its 

validity to be used in the assessment context. We have tested the ruler on a Da Vinci 

and a Vista stereoscope.  
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  Table 3.1 and Figure 3.6 report the measured distance and the true distance 

between two detected points. The table shows ten trials of distance measured between 

markers on the instruments pointing to phantom organs or the distance of the white 

bars of the markers on the instruments. The markers are tracked on various numbers of 

frames in each trial, then the distance is calculated in each frame and the mean and 

standard deviation are reported. Figure 3.7 shows the uncertainty curve for Vista’s 

error. The percentage error is 8.55% and the sources of the errors can be identified from 

calibration estimation error, tracking error, image noise, and distortion error. 

Table 3.1 The true distance and the measured distance between two points on phantom 
organs using the stereo reconstruction model using Vista stereoscope 
 

Index Type 
# of 

frames 

True 
Distance 

(mm) 

Measured 
Distance(Mean) 

(mm) 

Standard 
Deviation 

stddev 

Actual 
Error 

1 Liver 19 46 40.1 1.09 5.9 

2 Liver 9 112 113.5 11.7 1.5 

3 Lung 16 26 21.5 4.48 4.5 

4 Lung 7 36 34.5 4.44 1.5 

5 Marker 45 25.4 22.6 0.53 2.8 

6 Marker 47 25.4 26.13 4.26 0.73 

7 Kidney 14 57.15 56.257 13 0.893 

8 Live 12 99 75.3 0.8 23.7 

9 Lung 20 114 112.1 0.5 1.9 

10 Lung 16 86 81.5 0.2 4.5 
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Figure 3.6 Measured vs. truth distance using Vista stereoscope 
 

 

Figure 3.7 The error curve for the measurement using Vista stereoscope 
 

The experiment showed that the error significantly correlates to the distance of the 

markers from the endoscope. The farther the markers are from the endoscope, the 

larger is the error. Table 3.2 and Figure 3.8 show that the measured distance decreases 

by increasing the distance between the object and the cameras. The distance from the 
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endoscope tip shown in Table 3.2 is measured in inches where the values represent the 

distance from the tip plus four inches. This area is the approximate working region of 

the tools in MIS. 

Table 3.2 Sample tests of the measurement tools by increasing the distance between 
the object and the cameras using Vista stereoscope 
 

Distance 
from the 
tip of the 
scope +4 

inch 

# of 
frames 

True 
Distance 

(mm) 

Measured 
Distance(Mean) 

(mm) 
Stddev 

1 23 25.4 29.6 0.8 

2 45 25.4 22.6 0.53 

3 21 25.4 19.51 1.25 

4 22 25.4 17.13 0.73 

5 15 25.4 16.91 0.49 

6 23 25.4 16.53 0.33 

7 108 25.4 15.7 0.39 

8 54 25.4 15.35 0.83 

9 24 25.4 16 1.25 

10 71 25.4 16.2 1.17 

11 32 25.4 17.07 2.7 
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Figure 3.8 The measured vs. truth distance by varying the distance 
between the cameras and the object using Vista stereoscope 

 

Using a stereo camera with separate optical paths demonstrates a wider baseline 

than the shared optical path. The maximum working volume increases dramatically at 

the same time. Separate optical paths can greatly improve the quality of stereo 

reconstruction. Unfortunately, that camera is unavailable in the laboratory. But we 

tested the model using a bi-channel stereoscope available at the UK’s Albert B. Chandler 

Hospital. This stereoscope is part of the Da Vinci robot. As Table 3.3 shows, the results 

are more accurate and reliable than when using the single-channel stereoscope.  
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Table 3.3 The sample tests of the measurement tools on different phantom organs using 
Da Vinci cameras. The table shows the true distance and the measured distance 
 

Index Type 
# of 

frames 

True 
Distance 

(mm) 

Measured 
Distance(Mean) 

(mm) 

Standard 
Deviation 

stddev 

Actual 
Error 

1 Liver 98 70 77 3.1 7 

2 Liver 39 82 80 2 2 

3 Liver 11 112 118.5 3.1 6.5 

4 Kidney 17 40 41.5 5.09 1.5 

5 Lung 31 35 35 4.3 0 

6 Lung 22 114 102 5.8 12 

7 Lung 70 94 78 1.7 16 

8 Lung 16 82.5 82.4 1.85 0.1 

9 Lung 53 76 82.7 2.9 6.7 

10 Lung 70 91.5 95.4 5.5 3.9 

11 Lung 14 33 29.5 2.6 3.5 

12 Lung 14 51 50.7 1.98 0.3 

13 Liver 22 64 72.7 3 8.7 

14 Liver 12 73 69 3.8 4 

15 Liver 13 38 37.1 3.75 0.9 

16 Liver 11 56 54.99 3.7 1.01 

17 Liver 16 46 50.4 7.9 4.4 

18 Liver 11 121 114 3.2 7 

19 
on 

liver 50 12 13.5 1.17 1.5 

20 
on 

liver 35 19 20.6 1.97 1.6 

21 
on 

liver 35 22.2 25.1 1.64 2.9 

22 Kidney 24 57 59.5 4.3 2.5 

23 Kidney 117 47.6 46.7 1.23 0.9 

24 Kidney 379 53 57.2 1.44 4.2 

25 Kidney 8 40 35 8.2 5 

 

The uncertainty curve shown in Figure 3.9 demonstrates that the Da Vinci 

stereoscope’s percent error is 6.9% compared to 8.55% using the Vista stereoscope. 

However, outliers increase the percent error. In addition calibration estimation errors, 

tracking errors, image noise, and distortion errors can contribute inaccuracy in distance 

measurements. 
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Figure 3.9 The error curve for the measurement using Da Vinci stereoscope 
 

Another experiment we performed in the laboratory in cooperation with another 

colleague is the reconstruction of 3D images for the checkerboard used in the 

calibration process using the two types of stereoscope.  Eighteen image pairs were 

captured for the checkerboard other than the images used in the calibration step. Each 

image contained the checkerboard pattern positioned roughly parallel to the image 

plane, orthogonal to the Z axis (depth), at increasing distances from the endoscope. 

Reconstruction by stereo triangulation was performed on each pair of matching feature 

points. Figure 3.10 and Figure 3.11 show the reconstructed patterns alongside the 

original points as calculated from the images. The images show that in both cases, 

reconstruction error increases with distance from the endoscope. In the case of the 

single-channel scope, however, the error is rather high from the start and rapidly 

deteriorates beyond about 60mm. The short baseline between its cameras accounts for 

this short distance, as the useful reconstructed volume increases in direct proportion to 

the disparity of the stereo pair. 
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(a) (b) 

Figure 3.10 Single-channel reconstruction. The image on the left displays the 
approximate true positions of the planes, and the image on the right displays the 
reconstructed views. Reconstruction quality drops rapidly with distance. The camera 
appears at the origin. 
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(a) (b) 

Figure 3.11 Bi-channel reconstruction. The image on the left displays the approximate 
true positions of the planes, and the image on the right displays the reconstructed 
views. The camera appears at the origin. 
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The reconstruction quality differs greatly based on the design of the stereo camera 

system. The viewing volumes available for accurate metric reconstruction are directly 

related to the baseline of the camera pair. Increasing the distance between the cameras 

also increases the angle of the rays projected from them to world points, reducing the 

effects of residual error on stereo triangulation. The setup of single-channel endoscope, 

shared optical path, and camera separation less than 5mm reduces the accuracy of the 

data, as image noise alone introduces significant errors into reconstruction. The context 

in this research is that we need to reconstruct 3D positions for points over a stream of 

images. This error accumulates over time and the result becomes unreliable. 

Since the results show the accuracy in the single-channel scope is low, then it cannot 

be used in a process that accumulates data over a long time. In many of the calculated 

metrics for the assessment, we need to integrate distances over thousands of frames 

and these metrics are used to calculate other metrics. The error accumulates and 

increases as we track the points and calculate the distance over frames. Within a few 

thousands of frames, this error could accumulate to become more than the actual value.  

The accuracy of the assessment and classification using machine learning algorithms 

relies on the accuracy of the low level features extracted from the system. As a 

conclusion of these experiments, we propose that the stereo 3D reconstruction is useful 

in clinical analysis of MIS, like real time measurements and decision making. However, it 

is computationally intensive and has other accuracy and reliability-related challenges if 

it is needed to accumulate data over time. Therefore, we decided to forgo it to see how 

necessary it is for skills assessment. To overcome this limitation, we used the 

laparoscope camera to only detect whether the tools were moving in or out of the field 

of view to distinguish the motion in the field of view from the motion outside it. The 

tracking of the tools’ 3D positions was achieved using the Vicon system which is 

described in the next section. 
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3.2.2    Tools Detection 

 

The Tools’ detection task is achieved through: offline training and 2D tracking. In the 

training stage, a set of images with markers placed on the tools is collected. The training 

data is used to model the marker’s color intensity. In the tracking stage, markers are 

automatically detected and traced. 

Training Stage  

 

Color-based tracking is vulnerable to lighting variations as the marker may be 

present differently over frames. However, the main or only source of light is the 

laparoscope. Further, the surgery and training environment is reddish and has a limited 

set of colors. So the lighting variation is minimal and mainly based on the orientation 

and relative angle between the tools and the laparoscope. Therefore, highly 

distinguished color markers are placed on the tools. To enhance the detection, a 

training procedure is developed to collect all the possible color values that the marker 

may appear in, within different frames, and a model is built based on this training data. 

Here, a 3D Gaussian model is used to imitate the marker’s intensity change in Hue 

Saturation Value (HSV) color space. We assume each pixel has a 3D vector: },,{ vshp  . 

The marker’s color distribution can be formulated as: 
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Where }v,s ,h{µ   is the mean value of all the collected marker’s pixels.   is the 

corresponding 3 X 3 covariance matrix. p represents a pixel that is measured by this 

model, which is a 3D vector. d is the dimension of the data vector (here, it is equal to 

3). So function f  defines how likely that pixel x  is from the marker. The training step 
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takes place once, but not on every usage. The pixels in the training stage are manually 

selected. 

Tracking Stage  

 

The marker is automatically detected by the color model described above. A 

threshold t  is predefined which decides whether a pixel p is a marker pixel or not (only

tpf )( ). Due to random noise and limited lighting variations, false positive pixels 

could be wrongly assigned as markers. To handle this problem, we take into account the 

neighborhood when each pixel ),( yxI is processed. We use an indicator function f1 to 

imply whether a pixel ),( yxI  belongs to the marker: 
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Where ],[, kkji  . k specifies the size of the neighborhood, weight function ijw  

decides how much contribution of the neighboring pixel ),( jyixI   can be modeled 

as a Gaussian function. The constant value   depends on the number of neighboring 

pixels which can be obtained from training. 

After applying function f1  in formula 3.10 to every pixel of the image I , a mask 

image is obtained with each pixel equal to either 0 or 1. Then, we use a Depth First 

Search algorithm (DFS) to retrieve all the connecting regions (whose indicator is 1) on 

the mask image. If no region is detected, then, the tool is not present in the image. 

Two different color markers are placed on the surgical instruments. Two instances of 

the detection algorithm run to detect the left and right surgical instruments based on 

their color. The data gathered by the detection algorithm combined with the head 

tracking and eye-tracking enables us to calculate fusion and non-fusion metrics. More 
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details about data processing and metrics calculation from the surgical tools are in the 

Tracking Section 3.3. 

3.2.3    Vicon System 
 

The hands, head, and tools tracking data are obtained by using a remote, video-

based system that uses contrast to identify the 3D position of high contrast markers. 

The Vicon system contains eight MX3+ cameras installed on the ceiling of the room. The 

architecture of the Vicon system, as Figure 3.12 shows, contains eight cameras, MX 

Ultranet unit, and Vicon software. The eight cameras cover and record a stream for the 

Capture Volume Area. The Ultranet provides power, synchronization, and 

communication for the eight cameras.  

An MX3+ is a high quality camera fitted with a sensitive sensor. It consists of a 

distinct video camera, a strobe head unit, a suitable lens, and optical filter. Further, it 

provides high speed and low latency motion capture. Figure 3.13 shows the MX3+ 

camera and Table 3.4 presents the camera’s specifications. 
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Figure 3.12 Basic Vicon MX architecture [60] 
 

 

Figure 3.13 Vicon MX3+ Camera [60] 
 

 

 

 

 

 

 

 

 



49 
 

Table 3.4 Technical specification and performance indicators for the MX3+ cameras [60] 
 

Component Specification 

Sensor Type CMOS 

Sensor size (Megapixels) 0.3 

Sensor size (mm) 5.52 mm (H) x 4.89 mm(V)  8.15 mm(Diagonal 

Sensor dynamic range 60 dB 

Pixel size 9.9 microns x 9.9 microns 

Photosensitive pixels 659 H x 494 V 

Shuttered Yes 

Lens format C-mount options 

Size (mm) 215 (H) x 138 mm (W) x 182 kg 

Weight 2.1 kg 

Resolution (pixels) 659 H x 494 V 

Maximum frame rate (fps) for full 

resolution 

242 

Aspect ratio 4:3 

VGA monitor mode 60 kHz h x 100 Hz v 

Threshold grid size 66x50 

Threshold grid tile dimensions (pixels) 10x10 

 

The Vicon is used to capture 3D positions of a template of markers. The template 

design we developed contains five parts. Two pairs of markers are placed on the upper 

tip of the surgical tools with separation of two inches. The markers’ positions are 

extrapolated to find the 3D positions of the tips inside the body or the training box. On 

each of the two surgical gloves, we placed three markers in a triangle shape, used to 
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track the 3D positions of the subject’s hands in order to calculate the kinematics and 

rotation metrics.  We also placed three markers in a triangle shape on the surgical hat to 

calculate the kinematics and rotation of the subject’s head. Figure 3.14 shows the 

template while a subject is performing a task. 

Because the Vicon cameras are stationary, they do not need frequent calibration. 

The calibration procedure takes less than two minutes and the calibration data can be 

used as long as the cameras have not moved. Three steps are needed to calibrate the 

Vicon system. First, we apply auto-threshold to detect all infra-red reflectors from the 

scene, other than the designed template. Second, we capture a stream of images for the 

Vicon calibration 3-Marker wand to calibrate the cameras. Third, we set up the origin for 

the capture volume by placing the L-Frame in the required position in the room and 

capture a few images for that setup.  

To validate the accuracy of the Vicon tracking and compare it with the 3D 

reconstruction using the Vista stereoscope discussed above, we calculated the distances 

between each pair of markers placed on the left and right tools. The tools are solid and 

the distance between each pair is fixed. The approximate distance between each pair is 

two inches. However, the exact distances measured manually by a ruler in mm are 

47mm on the left tool and 46mm on the right tool with a potential of slight human error 

in the measurement. These numbers are used as ground truth. The distance is measured 

between the centers of both markers.  Table 3.5 summarizes the tracking results over 

26281 frames and shows that the standard deviation of the measurement over this 

number of frames is about 0.2mm for the left and the right tool. The percentage error is 

significantly lower than the error we measured using the Visa stereoscope experiment. 

The percent error in the left tool measurement is 0.25% where the error using the Vista 

is 8.55%. From this result, we conclude that using the Vicon to track the tools is more 

reliable than the Vista stereo reconstruction. The true distance between the tools is 

used to validate the positions of the points. In the data processing, if the distance 

between each pair is larger than a threshold of 5mm, we consider it as an outlier and 
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estimate the points of the markers using the previous and the next frame and adjust the 

positions accordingly.  

The triangle markers are not put on a solid object to minimize the influence on the 

motion. Therefore, the distance between the points might slightly change from subject 

to subject based on the size of the hands and head. In addition, the distance between 

the hands triangle markers might slightly change during the experiment of one subject 

based on the status of the palm, whether it is closed or open. But this possible change is 

considered part of the motion. 

 

Table 3.5 Vicon tracking validation and accuracy 
 

 
Left Tool Right Tool 

Number of 
Frames 

26281 26281 

True Value 47 46 

Mean 47.11665 46.029235 

Standard 
Deviation 

0.267064 0.2230697 

Percent Error 0.25 0.06 

    

 

 

 

 

 

 

 



52 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Template of markers used to track 3D positions and rotations of the 
subject’s head, hands, and the surgery tools. The top two pictures show the real 
markers and the bottom one shows the markers’ resolution from top view. 
 

3.2.4    Eye Tracker  

 

The eye-tracking data is obtained using a remote, video-based system that uses 

contrast to identify pupil location and size and the reflection of near-infrared and 

infrared non-collimated light to identify the cornea.  The vector between pupil and 

cornea is used as an index of gaze direction. The device is FaceLAB system produced by 
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SeeingMachines which is not intrusive and is widely used in psychological, advertising, 

and human-computer interaction research.  We used FaceLAB 4.3 integrated remote 

eye/head tracking system (www.seeingmachines.com). The eye-tracking data will be 

used to estimate fatigue and other assessment metrics. The measures are taken from 

the continuous stream of coordinates stored by the software to record fixation location 

and duration, as well as estimate the size of the pupils (and estimate size changes across 

time) in addition to garnering information about blinking. FaceLAB’s architecture 

comprises of a software application and stereo camera which enables 3D tracking. Since 

this device non-intrusive and can detect several features of the eye, it can be a useful 

tool to improve the assessment of the MIS technical skills. The following are the 

features that FaceLAB can detect: 

 Head-Pose 
The orientation of the subject’s head in 3D coordinates. It has six parameters: 

three for describing the 3D position and three for describing 3D orientation. The 

Head-Pose is measured in world coordinate frame by transforming the head 

coordinate, wX , using the following equation: 

        TXRX Hw  .        (3.11) 

Where xH is in head coordinate, R is the rotation matrix, and T is the translation 

vector. 

 Gaze 

The gaze is two rays, one for each eye. The ray is represented by an origin point 

which is the center of the eyeball and a unit vector which is the direction from 

the origin point towards the object being viewed. 

 Saccades 

The saccade is defined according to FaceLAB as a fast motion of the eye to 

change the gaze point between fixation points. FaceLAB can accurately measure 

the saccades even inside short eye blinks. 
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 Viewed Object 

This feature is the interaction of the subject with the surrounding environment 

using the gaze direction and the head pose.  This can be achieved by defining the 

surrounding environment and building the world model using simple shapes. 

 Eye Closure 
The eye closure is the percentage of the coverage of the iris for each eye. 

 PERCLOS 
This feature is an indicator for the fatigue which is based on the percentage of 

extended period of the eyes’ closure time excluding the regular eye blinks. 

 Eye Blinks 
The blink event is defined as a rapid eye closure followed by an eye opening.  

 Pupillometry 
This factor is the measure of the diameter of each pupil. 

 Facial Features 
FaceLAB can measure the face features and determine the facial gestures and 

changes by tracking points on the lips and eyebrows in 3D. 

This system requires two types of calibration, camera calibration and head-monitor 

calibration. The cameras can be stationary by attaching them to the stationary surgical 

monitor. Thus, the calibration data can be stored without the need to recalibrate on 

every use. The calibration process is simple and can be undertaken by the laboratory 

technician. The process of calibration consists of placing the calibration kit shown in 

Figure 3.15 in different angles while the system is capturing pictures. Twenty snapshots 

are needed for the calibration. 

The monitor calibration is needed to find the information matrix about the border of 

the monitor in the real world compared to the head and gaze direction of the subject. 

This calibration is a subject-specific so it should be done for every subject. A profile can 

be saved for the users of the system with their calibration data. However, re-calibration 

needs to be done more often than the camera calibration. The process of re-calibration 
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is simple and takes about 20 seconds. The process requires the subject to track a dot on 

the monitor that moves from left to right and top to bottom. 

 

 

Figure 3.15 FaceLAB eye tracker cameras with calibration kit 
 

3.2.5    Heartbeat Monitor 

 

As an internal physiological variable, we decided to study the change in the 

heartbeat rate to find whether it correlates with the skill level. The heart beat rate was 

obtained by a heart rate monitor device. The heart monitor is a tool that measures the 

heart’s electrical activities with each heartbeat over time.  The device we used was a 

Polar RS800CX as shown in Figure 3.16.  This device functions like a watch that can 

record the heart beat rate of the subject and transfer it to a computer using an infrared 

unit. The heartbeat sensors that read the activities are skin electrodes embedded in a 

rubber belt. The rubber belt includes an infrared unit to transmit the sensors read to the 

watch. The belt can be put on the subject’s chest. This heart monitor is widely used in 

sports and by athletes.  



56 
 

 

Figure 3.16 RS800CX heart beat monitor 
 

3.3     Metrics Extraction 

 

This section presents the flow of the data being processed in order to extract the 

assessment metrics but it does not present the metrics list and their details. The list of 

extracted metrics and their details are presented in Section 3.6. The system extracts two 

types of metrics: fusion and non-fusion. Those metrics are extracted from the surgical 

tools, the surgeon’s head, hands, eyes, and the surgeon’s heartbeat. Many of the 

metrics are transformations from the 3D positions of the markers’ template into 

economy of motion, kinematics, and rotational data. 
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3.3.1    Extracting Metrics from Surgical Tools 
 

Extracting the tools’ metrics requires synchronization and coordination of three 

systems: the laparoscope, the Vicon, and the eye tracker. The markers’ template as 

explained in Section 3.2.3 includes two pairs of markers placed on the upper tip of the 

surgical tools with separation of two inches. The 3D positions of the markers in space 

and time are tracked using the Vicon system. The markers’ positions are extrapolated to 

find the 3D positions of the tips inside the body or the training box given that the length 

of the tool is known. The tools’ detection algorithm is used to find whether the left and 

right tools are present in the monitor at given time. The eye tracker is used to detect 

whether the subject’s gaze intersects with the monitor at a given time.  The non-fusion 

metrics are extracted from the Vicon data. The fusion metrics are extracted using the 

data of the three systems together. Figure 3.17 shows the block diagram and the flow of 

data to extract the metrics. 

3.3.2    Extracting Metrics from the Surgeons’ Head and Hands 

 

Extracting the head and hands metrics requires synchronization and coordination of 

three systems: the laparoscope, the Vicon, and the eye tracker. The triangle markers 

placed on the head hat and hands’ gloves are used to calculate the kinematics and 

rotational motion of the head and hands. The 3D positions of the triangle vertices are 

tracked in space and time by the Vicon. The tools detection algorithm is used to find 

whether the left and right tools are present in the monitor at a given time. The eye 

tracker is used to detect whether the subject’s gaze intersects with the monitor at a 

given time.  The non-fusion metrics are extracted from the Vicon data. The fusion 

metrics are extracted using the data of the three systems together. Figure 3.18 shows 

the block diagram and the flow of data to extract the metrics. 

The training or operation stage is stationary in the field of view. Therefore, the eight 

cameras are set to cover the stage from all angles to reduce the chance of occlusion to 
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any marker in the template. If occlusion of the template’s markers occurs, it is handled 

by extrapolating the points in one frame and over multiple frames by estimating the 

distance between points. Because the capture rate is set to 120 frames/second if an 

occlusion occurs to a point in a triangle or the lined markers on the tools, its position is 

estimated by the position of the marker in the previous and the next frames.  
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Figure 3.17 MIS tool-tracking and data transforming subsystem block diagram 
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Figure 3.18 Block diagram for tracking hands and head to extract metrics 
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3.3.3    Extracting Metrics from Eyes  

 

One of the important contributions of this research is the study of the correlation of 

the eyes’ features with the MIS skills level. Metrics extracted from eye features might 

add some quality to the assessment process.  The eye-tracker system is used to extract 

the metrics related to the features of the eyes and face. The list of metrics and their 

details are described in Section 3.6.4. Figure 3.19 shows the block diagram and the flow 

of the data to extract the eye metrics. 

3.3.4    Extracting Heart Metric 

 

The change in the heartbeat rate is the only metric extracted from the heart 

monitor. The metric is measured by calculating the first derivative of the heartbeat rate 

over time.  The data of the heart rate monitor is not synchronized with other systems. 

 

3.4      Sensors Synchronization 

 

We used the Network Time Protocol (NTP) to synchronize the capture of the sensors 

together and reduce the time offset between the systems to an approximate of 16.6 

milliseconds, which is the time to capture one frame using the FaceLAB. Then, the time 

in milliseconds is recorded for each frame by each system. Finally, the time of all the 

frames is coordinated using the time offsets calculated in the first step and mapped to 

the corresponding frames among the sensors. This mapping helps in classifying the 

motion and other measures into the blind and non-blind in order to find the metrics 

based on this classification. Blind motion is the analysis of the motion while the trainee 

is looking away from the field of view or the tools are undetected in the internal 

snapshots. Non-blind motion is the analysis of the motion while the trainee is looking at 

the display and the tools are detected in the internal snapshots.  The overlap between 

the time of looking away and the time when the tools are undetected is measured in 
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order to not use redundant data. The NTP runs silently and continuously on the three 

systems to keep the offset at the level required. 

To verify that all the systems start logging data simultaneously, we connected them 

together such that they commence logging information after one mouse click and stop 

logging after another mouse click. When a subject starts the session, the data collector 

clicks the mouse. When the session ends, the data collector clicks the mouse again. The 

clicking process can be done by the subjects themselves to start and end the session. 

But since the motion analysis represents a primary factor in the data analysis, and 

clicking the mouse requires motion from the subject, it should be done by all of the 

subjects or none of them to avoid bias in data collection. However, this step can be 

automated by replacing the mouse click by a button clickable by the subjects’ foot.  
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Figure 3.19 Block diagram for tracking eyes to extract metrics 
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3.5     Data Analysis  
 

Does having read all the data and metrics, ideally imply that the problem has been 

solved?  Quantifying human behavior is a challenging problem. MIS objective technical 

skills assessment using human measures needs this type of quantification. So the 

answer to the previous question is absolutely not. Analyzing these high dimensionality 

metrics and factors and quantifying them to reliable assessment measures is 

challenging. However, there are a number of statistical, machine learning, and data 

mining models that showed good reliability in classification, clustering, and finding 

hidden patterns in high dimensional data. Therefore, the use of a robust analysis model 

is important to achieve a reliable assessment.  

We used four types of analysis on the data:  

1. Metrics individual analysis to find the correlation between each metric and the 

skill level.  

2. A multivariate data analysis to reduce the dimensionality of the metrics in order 

to find hidden patterns in the data. The multivariate method we used is Principal 

Component Analysis (PCA). 

3. Clustering analysis to study the reliability of different sets of metrics to cluster 

the data into three clusters: novice, intermediate, and expert. The clustering 

algorithm used is a hybrid of partitioning and density-based algorithms. 

4. Classification analysis to study the reliability of different sets of metrics to build a 

classification model that can find the class of the subjects among novice, 

intermediate, and expert classes. The classification algorithm used is Multi-Layer 

Perceptron. 

In order to validate the models and analysis, we used real test data in addition to 

cross-validation analysis. However, different data analysis approaches can be used. 

Chapters Five and Six present more details about data analysis. Figure 3.20 shows the 

block diagram of the metrics flow to the data analysis to detect the subject’s skill level. 
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Figure 3.20 Block diagram for the data flow of metrics to detect the skill level 

 

3.6     Extracted Metrics 

 

We setup the system to extract 55 metrics and the option is open for more analysis 

to extract other metrics. The extracted metrics can be categorized into three types:  

 Time metrics 

 Economy of motion, Kinematics, rotational metrics 

 Stress and fatigue metrics 

Each of these categories contains fusion and non-fusion metrics. In the calculation and 

extraction of metrics, if time or frame rate are needed, we used the time and frame rate 

of the Vicon since it has higher resolution than other systems. The Vicon frame rate is 

120 frames/second.  
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3.6.1    Time Metrics 

 

Time metrics include time values and ratios throughout the training session. Table 

3.6 presents a list of the time metrics and their description. 

Table 3.6 List of time metrics 
 

Metric Name Description 

Completion_time Time taken to complete the task 

display_looking_time Time spent looking at the display 

looking_away_time Time spent looking away from the display or the instruments 

are absent from the field of view 

display_looking_ratio The ratio of time looking at the display to the total time 

display_away_ratio The ratio of time looking away from the display to the total 

time 

 

3.6.2    Time Metrics Extraction 

 

The system records the time of each frame captured by each subsystem in 

milliseconds. Each frame of each subsystem is marked as a blind or non-blind frame. The 

completion time is calculated by taking the difference between the first frame and last 

frame. display_looking_time is calculated by integrating the time of the non-blind 

frames subsets. looking_away_time is calculated by integrating the time of the blind 

frames subsets. The completion time should equal the sum of the display_looking_time 

and the looking_away_time. The ratios are the percentage of time of looking at or away 

compared to the total completion time. 
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3.6.3    Economy of Motion, Kinematics, and Rotational Metrics 

 

This category includes metrics related to economy of motion, speed, acceleration, 

and jerk for the surgery tools and the trainees’ head and arms. In addition, the rotation 

of the head and the hands is measured.  Table 3.7 presents a list of the metrics in this 

category and their description. 

Table 3.7 List of Economy of Motion, Kinematics, and Rotational metrics 
 

Metric Name Description 

head_path_length The path length of the head over the task 

head_speed_mean The average speed of the head motion over the task 

head_speed_var The variance in the speed of the head motion over the 

task 

head_acceleration_mean The average acceleration of the head motion over the 

task 

head_acceleration_var The variance in the acceleration of the head motion 

over the task 

head_direction_change The accumulation of the head direction change over 

the task 

direction_change_frequency The frequency of changing the head direction over 

the task 

l_path_length The path length of the left hand over the task 

l_speed_mean The average speed of the left hand motion over the 

task 

l_speed_var The variance in the speed of the left hand motion 

over the task 

l_acceleration_mean The average acceleration of the left hand motion over 

the task 
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Table 3.7 (Continued) 

l_acceleration_var The variance in the acceleration of the left hand 

motion over the task 

l_direction_change The accumulation of the left hand direction change 

over the task 

r_path_length The path length of the right over the task 

r_speed_mean The average speed of the right hand motion over the 

task 

r_speed_var The variance in the speed of the right hand motion 

over the task 

r_acceleration_mean The average acceleration of the right hand motion 

over the task 

r_acceleration_var The variance in the acceleration of the right hand 

motion over the task 

r_direction_change The accumulation of the right hand direction change 

over the task 

l_path_length_looking_away The path length of the left hand over the task while 

the subject is looking away from the display 

l_speed_looking_away The average of the speed of the left hand over the 

task while the subject is looking away from the 

display 

l_acceleration_looking_away The average of the acceleration of the left hand over 

the task while the subject is looking away from the 

display 

r_path_length_looking_away The path length of the right hand over the task while 

the subject is looking away from the display 

r_speed_looking_away The average of the speed of the right hand over the 

task while the subject is looking away from the 

display 
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Table 3.7 (Continued) 

r_acceleration_looking_away The average of the acceleration of the right hand over 

the task while the subject is looking away from the 

display 

l_p_path_length The path length of the left instrument over the task 

l_p_speed_mean The average speed of the left instrument motion over 

the task 

l_p_speed_var The variance in the speed of the left instrument 

motion over the task 

l_p_acceleration_mean The average acceleration of the left instrument 

motion over the task 

l_p_acceleration_var The variance in the acceleration of the left instrument 

motion over the task 

r_p_path_length The path length of the right instrument over the task 

r_p_speed_mean The average speed of the right instrument motion 

over the task 

r_p_speed_var The variance in speed of the right instrument motion 

over the task 

r_p_acceleration_mean The average acceleration of the right instrument 

motion over the task 

r_p_acceleration_var The variance in the acceleration of the right 

instrument motion over the task 

 

Metrics Calculations 

 

The rotation in the hands and head is measured by integrating the change in the 

triangle surface normal for the markers placed on the hands and head. The surface 

normal of a triangle as shown in Figure 3.21 can be calculated as follows assuming the 

triangle vertices are vectors of three: 
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Figure 3.21 The triangle template to calculate the direction change in the hands and 
head 
 

 

The path length for the instruments, hands, and head is calculated by integrating the 

displacement distance of one of the triangle vertices between every two frames. The 3D 

position of the marker is detected in each frame. Then, the Euclidean distance of the 

marker between each pair of consequence frames is calculated. This displacement is 

integrated to get the total path length over the period of the task. 
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Where “p1”, “p2” are the 3D positions of a marker in to consecutive frames and “r” is 

the displacement. 

The instantaneous speed, acceleration, and jerk (smoothness) are the first, second, 

and third derivative of the displacement over time. 
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dt

dr
v 

 
(3.14) 

dt

dv
a 

 
(3.15) 

dt

da
j 

 
(3.16) 

 

Where “v” is the instantaneous speed, “a” is the instantaneous acceleration and “j” is 

the jerk. 

The mean in the speed and acceleration is measured by calculating the average 

instantaneous speed and acceleration. The variance is calculated over windows of 

frames by dividing the frames into subsets. We calculate the mean for each subset and 

then, calculate the variance over the subsets.  

The blind path length, speed, and acceleration are calculated in the same way but 

while taking into consideration whether the head direction intersects with the monitor 

or not, and whether the corresponding tool to the metric (like left or right) is present in 

the field of view or not. 

3.6.4    Stress and Fatigue Metrics 

 

Stress and fatigue metrics are measures that might represent the level of stress and 

fatigue the subjects face in the operating session. Examples of this category are blinking 

frequency, change in blinking duration, change in blinking frequency, change in motion 

smoothness, fatigue, and heart rate change. Table 3.8 compiles a list of stress and 

fatigue metrics. The completion status is included in this category.  
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Table 3.8  List of stress and fatigue metrics 
 

Metric Name Description 

Completed Whether the subject successfully completed the 

task or not 

l_smoothness The smoothness of the left hand 

r_smoothness  The smoothness of the right hand 

Fatigue  

l_smoothness_fatigue_ratio The change in the smoothness relation to the 

change of the fatigue (left hand) 

r_smoothness_fatigue_ratio The change in the smoothness relation to the 

change of the fatigue (right hand) 

fatigue_perclosVairance  

Saccade  

blinking_frequency_mean The mean of blinking frequency 

blinking_frequency_change The differential change in blinking frequency over 

time 

blinking_duration_change The change in blinking duration 

blinking_duration_change_mean The mean of the change in blinking duration 

head_interaction_percentage  

gaze_interaction_percentage  

differential_heart_rate The differential change in the heart rate over time 

 

3.7     Data Normalization 

 

The metrics values have different measurement units and different natures. In order 

to analyze them together and build a composite data model, these values have to be 

normalized. There are several ways to normalize data. The unity-based algorithm we 

followed subtracts the minimum value of a vector from each value and divides it by the 
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difference between the minimum and maximum as the equation 3.17 below shows. The 

range of the result values are in the unit interval [0,1] 

minmax

min
10,

XX

XX
X i

toi



  (3.17) 

 

Where: 

Xi = Each data point i 

Xmin = The minimum among all points in one metric 

Xmax = The maximum among all points in one metric 

Xi, 0 to 1 = The data point i normalized between 0 and 1 

 

3.8      Metrics Novelty 

 

The novelty of this research is not only in the transformation of the assessment 

problem into a new domain and the new design of the assessment tool, but also in the 

metrics studied to reach a reliable set that can accurately assess the trainees and 

surgeons. We proposed and studied many new composite and non-composite metrics 

coordinated in time that are not used in previous studies. The reason is that the 

technology used does not provide the capability to extract them. Those metrics can only 

be extracted using computer vision technology to coordinate cues of eyes, external 

shots of body and instruments, and internal shots of the operative field.                                     

Table 3.9 contains the list of metrics that are novel and have never been studied before. 
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                                   Table 3.9 List of proposed novel metrics 
 

Metric Name 

display_looking_time 

looking_away_time 

display_looking_ratio 

display_away_ratio 

head_path_length 

head_speed_mean 

head_speed_var 

head_acceleration_mean 

head_acceleration_var 

head_direction_change 

direction_change_frequency 

l_direction_change 

r_direction_change 

l_path_length_looking_away 

l_speed_looking_away 

l_acceleration_looking_away 

r_path_length_looking_away 

r_speed_looking_away 

r_acceleration_looking_away 

l_smoothness 

r_smoothness 

Fatigue 

l_smoothness_fatigue_ratio 

r_smoothness_fatigue_ratio 

fatigue_perclosVairance 

Saccade 

blinking_frequency_mean 
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                                Table 3.9 (Continued) 

blinking_frequency_change 

blinking_duration_change 

blinking_duration_change_mean 

head_interaction_percentage 

gaze_interaction_percentage 

differential_heart_rate 

 

As this chapter has shown, the proposed system is capable of observing the 

environment, and captures metrics and their relationships with each other. Unlike 

previous studies, this capability is not limited to capturing the metrics from the motion 

of a single part, but it looks at the problem as a whole and every part is important in the 

assessment process.  
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Chapter 4 

 

4. Case Study 
 

Now as the system is built and set up to capture a large number of fusion and non-

fusion metrics, we need to test and validate it to prove its reliability. To validate the 

system we need a task that mimics the surgical skills. This chapter introduces the design 

and description of the experiment and the protocol followed to recruit human subjects. 

The description includes the task for the experiment, data collection protocol, subjects 

recruiting protocol, training protocol, and other details. Chapters Five and Six introduce 

the implementation of the experiment, the data analysis, and results. 

In collaboration with the Center for Advanced Training and Simulation at the 

University of Kentucky (www.mc.uky.edu), we adopted one of the training tasks that all 

MIS trainees have to pass in their first semester of training. The protocol of the 

experiment was designed to meet the requirements of the Institutional Review Board 

(IRB) at the University of Kentucky. 

 

4.1    Study Design  

 

Human subjects were recruited to participate in the study to explore the 

relationship between the metrics, the system measures, and the skill level of performing 

laparoscopic surgery training tasks. The subjects were divided into three groups with 

three levels of training to perform one simple task. The expert group was trained for five 

http://www.mc.uky.edu/
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hours. The intermediate group was trained for 2.5 hours. The novice group was only 

introduced to the tasks.  Seventeen participants were recruited and data was acquired 

in multiple sessions for each subject. 

 

4.2     Study Population 

 

We recruited 17 research participants from among the graduate and professional 

students.  Medical students were not specifically targeted for this study, but they were 

not excluded if they chose to participate.  The participants were aged between 22 and 

40 years. We targeted students who reported frequently performing tasks requiring a 

high level of eye-hand coordination and fine motor skills such as playing certain video 

games.  Normal or corrected to normal visual acuity and normal color vision were 

required.  We did not exclude any participants based on race or ethnicity. 

 

4.3    Subject Recruitment Methods and Privacy 

 

We recruited graduate and professional students by sending emails and a mass 

email to these types of students.  The information was sent as a text.  

 

4.4     Informed Consent Process 

 

Subjects were contacted through email or by phone to provide a reminder and were 

offered the chance to ask questions of the research team. 

When participants arrived at the lab, they had the opportunity to see the equipment 

they would be using to perform the experiment. Participants were given two copies of 



79 
 

the informed consent form, one for them to read and discuss with the researcher, and 

one for them to keep for their records.  The subjects were given time to read the form 

thoroughly and then, the researcher paraphrased the form and asked the participants if 

they had questions.  After all questions were answered to the satisfaction of the 

participants, they were asked to sign the consent form if they still wanted to participate.  

These consent forms are maintained in a locked filing cabinet in Room 304E1 of the UK 

Center for Visualization and Virtual Environments, 329 Rose Street • Lexington, KY.  The 

forms are kept separate from data. Appendix A contains a copy of the collected form of 

informed consent.  

 

4.5     Research Procedures 

 

Since it is difficult to obtain approval to set up all the needed tools in a real 

operating theater and perform the experiments on real procedure, this research used 

the training box that is available in the laboratory. Participants learned to perform a 

simple task similar to those taught to medical students just starting surgical training.  

This task was performed on a surgical simulator located in the Center for Visualization 

and Virtual Environments at the University of Kentucky.  A picture of the simulator is 

shown in Figure 4.1.  The simulator is an endoscopy training box consisting of a digital 

camera controller, a light source, a fiber optic cable, and a zero-degree 10-mm camera 

mounted above the simulator cover at a 90-degree angle to the right of the participant.  

It also includes a curved canvas screen representing the torso of a patient with several 

small incisions through which a laparoscope and surgical instruments (“graspers”) are 

inserted.  Underneath the canvas surface, there is a platform on which to-be-

manipulated objects are placed.  Images of the movement of the instruments and 

objects are presented on the monitor display. 
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Figure 4.1 The training box setup 
 

Participants were taught to perform the Pegboard Ring Transfer task which is a 

standard task in the MIS training curriculum. As shown in Figure 4.2, the task aims to 

pick up ten 1-cm rings from the rings carrier using the left probe, transferring them to 

the right probe, and placing them on ten pegs using a grasper. The task is then repeated 

by grabbing the rings using the right grasper, transferring them to the left grasper, and 

placing them on the ten pegs again. This task covers the grasping, pushing, and 

transferring skills. Possible errors in this task are inappropriate hand use and dropping 

rings off of the pegs. A successful candidate should complete the task in 240 seconds 

and a medium-skilled one in 480 seconds. Candidates taking more time with errors 

should be considered novice. 
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Figure 4.2 Pegboard ring transfer task 
 

4.6     Resources 

 

All phases of the research were conducted at UK’s Center for Visualization and 

Virtual Environments (CVVE).  Students were reminded of the location of the 

experiment two days prior to the scheduled time.  The CVVE provided technical support, 

housed all equipment, and provided areas in which participants could take breaks and 

relax.  
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4.7    Potential Risks  

 

The risks participants were likely to experience or did experience were no greater 

than those experienced when playing video games.  These risks include some dizziness 

and fatigue to the arms, hands, and shoulders.  We encouraged rest breaks in the 

middle of the session to prevent these potential discomforts.  

 

4.8    Safety Precautions 

 

In order to minimize risks that may be associated with a breach of confidentiality, 

we identified data only with code numbers rather than any personal identifiers.  The 

video recordings were kept on file for a maximum of five years to be destroyed later.  It 

should be noted that the video recordings were not of the participants themselves; 

rather they were of their performance as seen through the laparoscope and the motion 

of the markers on the arms and head. The video recording did not reveal parts of the 

subject’s body. All raw and recoded data were kept in locked filing cabinets in the 

laboratory suites at the Center for Visualization and Virtual Environments. 

 

4.9    Benefit versus Risks 

 

There were no direct benefits to the participants, other than an increased 

understanding of procedures used in research on human performance.    

4.10    Research Material, Records, and Privacy 

 

All research materials were collected as part of this project.  No existing data was 

used.  The sources of data have been described in detail in the section on Research 
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Procedures above, which include 1) eye-tracking data, stored numerically as eye 

positions relative to the video monitor/display, 2) videotapes of the movement of the 

instruments controlled by the participants (no portion of the participant’s body is 

videotaped), 3) arms- and head-tracking data, stored numerically as markers positions 

(no portion of the participant’s body is videotaped), and 4) heart beat rate. Methods of 

maintaining the data are described in detail the section on Safety Precautions above. 

  

4.11    Confidentiality 

 

Code numbers were assigned to all participants, and the association between code 

number and name were destroyed after the participants completed their role in the 

research.  Thus, all data records include the code number and there is no remaining link 

to the participants’ names.  We used the videotapes of the positions of the surgical 

instruments manipulated by the participants, positions of markers represent movement 

of the arms and head of the subject, positions of the eyes, and heart beat rate. These 

tapes do not show any portion of the participant’s body. The tapes will be destroyed 

after at most five years of the study start date. 

 

4.12    Payment 

 

Graduate and professional participants in the study were volunteers. Those 

participants had the option to be compensated $20 in the form of cash for their 

participation.  
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4.13    Subject Complaints 

 

Contact information for both, the researcher and the Office of Research Integrity 

(ORI) were provided on the informed consent form.  We also made contact information 

pertinent to both, the ORI and the Principal Investigator (PI) in charge of data collection, 

available to participants through the Center for Visualization and Virtual Environment’s 

receptionist and operator.  

 

4.14    Discussion 

 

Initially the plan was to design a case study that included three MIS training tasks. In 

this scenario, the data would have been distributed over three different tasks. Thus the 

effort and analysis would be redundant over three small sets of data. To increase the 

significance of the size of the dataset and the analysis result, we decided to focus on one 

training task and perform several experiments to test the validation and robustness of 

the platform. We selected the pegboard ring transfer task and dropped the cannulation 

and robe pass tasks from the study. Several reasons led to this choice. First, the 

complexity of the pegboard ring transfer is higher than the complexity of the other two. 

Thus, the subject needs more time and effort to master, which gives a window for 

analyzing three skill levels and can reveal more discriminant features to the metrics 

measured. Second, the pegboard ring transfer task covers more MIS skills than the other 

two.  The pegboard ring transfer task covers grasping, pushing, and transferring skills 

while cannulation covers pushing and pulling, and the robe pass covers transferring 

skills. Finally, the pegboard ring transfer task is more popular in studies and training 

centers than the other two. The tasks used in the studies discussed in Chapter Two vary 

based on the nature of the experiment and the environment where the study is taking 

place. The virtual environment studies use computer-based tasks. The studies in the 

operation theater use real surgeries on humans but they are performed by surgeons. 
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Using a real surgery task as a case study is more significant but performing our study in a 

real operation room is a challenge at this point. Other laboratory studies used the 

pegboard ring transfer or different tasks. 

As briefly mentioned, studies in the literature have taken place in three different 

environments: laboratories, virtual reality, and operation theaters. The primary 

investigators of the studies that were performed in the operation theaters were 

surgeons. The studies which took place in the laboratories or virtual environments were 

undertaken by surgeons or researchers from other fields such as, engineers. Many of 

the studies that were performed in the operation theaters started initially in the 

laboratories. Our study commenced in the VIS Center laboratory and our endeavor is to 

work on conducting a study that will validate the system in a real operating theater. 

The number of subjects used in the studies reviewed in Chapter Two varies between 

two and 56 subjects. In our study, we have used 17 subjects in 70 sessions. The larger 

the dataset is the more significant and reliable the result is. Many of the previous 

researchers studied and performed the analysis on individual metrics. Few used 

approaches that are based on multivariate analysis like Support Vector Machines (SVM) 

and Hidden Markov Model. We composed metrics and studied data models that include 

multiple metrics therefore we needed large set of data. 

Two ideas that were considered have affected the system design significantly. The 

system had to be designed to enable it to acquire fusion metrics through fusion motion 

analysis and beget a wide range of metrics that might correlate to the skill level. In our 

experiment, we oversampled the metrics in data collection to study their significance 

and find a reliable combination of metrics for the assessment. Some of the metrics were 

used in previous studies and many of them were new metrics. The fusion metrics were 

all new since this idea was the first time being investigated. Also, the head- and eye-

tracking metrics including the fatigue and stress metrics were all new and had never 

been studied before. All the researchers studied a limited number of metrics as a result 

of their system limitations. Few studies used 78 metrics in the analysis. But these studies 
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were performed using the Da Vinci robot. The robot provided those metrics from its 

system. Therefore, they could not be generalized to environments other than the 

robotic and could only evaluate Da Vinci tasks.  

The system we built was designed to be non-intrusive. The markers of the template 

were placed on the gloves and hat which minimized the influence on the subject’s 

motion.  The only intrusive part in the experiment was the heart rate monitor belt. 

Subjects had to wear this rubber belt across their chest. The belt was lightly intrusive 

but did not impact the subject’s motion.  

As part of the IRB requirements, everything managed by the subjects had to be 

sterilized. To facilitate the process, we kept aside one pair of gloves and one hat with 

markers on them and second set of new gloves and hat without markers. We asked the 

subjects to wear a new hat and gloves before wearing the hat and gloves that include 

markers. If this approach was used in a real environment, the markers could become a 

standard on the gloves and hats. The heart rate monitor belt was sterilized at the 

beginning and end of each session. The belt sterilizing method was resorted to after 

consulting a nurse. 

There were protocols governing the management and handling of a subject’s visit 

and a sample of the steps followed by one subject is provided here as an instance: 

 Initially the subject shows interest in participating.  

 Some information is communicated to the subject on what he/she is 

expected to do and how long it will take. 

 If the subject decides to participate, an appointment (with a date and time) is 

scheduled for a session. 

 The subject is reminded of the appointment two days before the date. 

 If the session is the subject’s first, then, an overview of the lab and the 

experiment is provided. 
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 The informed consent form in Appendix A is handed to the subject and 

explained in detail with regard to the experiment, risk, privacy, expectations, 

and compensation. 

 The subject takes time to read the informed consent form before signing it. 

 We explain in detail the task the subject is expected to perform. A demo run 

is performed for him/her to get an idea about the task and then, he or she is 

given the chance to perform it once to experience the complexity of the task. 

 The heart rate monitor belt is sterilized and given to the subject to wear in a 

private area. 

 The gloves and hat are given to the subject to wear before the gloves and hat 

that include the marker. 

 The subject’s gaze is then calibrated relative to the display monitor in a 

process that takes less than 30 seconds. 

 The subject is requested to prompt the researcher when ready to start 

logging data. 

 The subject starts performing the task.  

 During the process the investigator collects information about the subject’s 

performance to assign a skill level as reference. As described in Chapter 

Three, the subjects are evaluated based on training time, completion time, 

completion status, and errors such as, dropping the rings at the transfer 

stage. 

 When the task is completed, the investigator stops the data logging. 

 The belt, hats, and gloves are collected from the subject. 

 The subject gets a receipt to collect the substitution, schedule another 

appointment for a training or data collection session, and then released. 

 The subject’s raw data is assigned a code as described in the confidentiality 

Section 4.11. 

 The informed consent form is archived in a locked cabinet. 

 The data is archived for processing. 
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 Any connection between the data and the subject is removed. 

In the training sessions, the subjects are only required to show up in the lab and 

perform the task for a specific number of minutes as described in the experiment 

design. The information of how long each subject had to undertake training is retained, 

but any other connection between the data and the subject is deleted.  If the session 

was not the first session, all the steps above are followed but with less details especially 

related to the task and the informed consent form, because it is assumed that the 

subject is already familiar with them. 

This chapter describes the procedure and protocols used with the human subjects 

involved in the experiment. These protocols are approved by the IRB at the University of 

Kentucky. More forms are needed in order for the experiment to be approved by the 

IRB. The forms are not reported in this thesis. This chapter at the end presents a 

discussion on the experiment and throws up a comparison with other studies. In the 

next chapter, we discuss the results of the case study and the values of the measured 

metrics as individuals. 
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Chapter 5 

 

5. Dataset Collection and Results 
 

This chapter presents a high level of analysis of the metrics including the individual 

correlation significance between each metric and the skill level. Bar graphs that 

represent the change of the metric value compared to the skill level are also presented 

for some of the metrics that have a high Pearson’s correlation coefficient (r>0.5). At the 

end of the chapter we show a brief comparison between the captured metrics and 

previously studied metrics including the novelty of the large number of metrics we were 

able to measure 

 

5.1     Metrics Analysis 

 

As mentioned in Chapter Three, there are many new metrics that can be measured 

by the multi-sensor system which have never been studied before. The transformation 

of the problem and the utilization of computer vision technology enable the 

measurements of those new metrics. The aim is not to acquire as many metrics as 

possible. The system is designed and built in order to provide the capability to capture 

metrics with potential correlation to the skill level. We need to find the correct set of 

metrics that can classify the performance and skills in high accuracy and robustness. 

Therefore, we oversampled the collected metrics with the intention of finding out which 

were correlated with the skill level and which good combination could produce a 

reliable data model. However, to validate the system and the new metrics, we need to 
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evaluate them in a significant case study.  The data was captured for the subject while 

performing the peg board transfer task as described in Chapter Four. A subset of the 

subjects was trained to reach the intermediate and the expert levels. Fifty-five metrics 

were extracted for each subject in each session in order to analyze the correlation 

between the metrics and the experience level.  

The analysis and discussion in this chapter include 58 records out of 70 and the 

former includes 19 novices, 14 intermediates, and 25 experts. There are also three sets 

of data for two more subjects that were captured from a distribution of four novices, 

four intermediates, and four experts out of a total of 12. The second set of data is 

captured after the model for data analysis was built and the data was used for 

validation. The reason for capturing more data at the expert level was to study the 

effect on the metrics with more training at that level. Figure 5.1 shows the Pearson 

correlation coefficient (r) for the 55 extracted metrics sorted on the absolute correlation 

coefficients.  
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Table 5.1 List of 55 metrics with their correlation with skill level and the P-value sorted 
on their absolute correlation coefficient 
 

Variables 

Pearson 
Correlation 
Coefficient 

(r value) 

Absolute 
Correlation 
Coefficient 

|r| 

Pearson 
Correlation 
Coefficient 
(P Value) < 

Completion_time -0.95 0.95 1.31793E-30 

r_direction_change -0.91 0.91 1.76593E-23 

r_path_length -0.86 0.86 2.89883E-18 

display_looking_time -0.85 0.85 1.82231E-17 

r_p_path_length -0.85 0.85 1.82231E-17 

l_path_length -0.84 0.84 1.00622E-16 

head_direction_change -0.84 0.84 1.00622E-16 

l_direction_change -0.82 0.82 2.20758E-15 

Completed 0.74 0.74 2.49378E-11 

l_p_path_length -0.7 0.7 8.01388E-10 

head_path_length -0.68 0.68 3.69317E-09 

l_path_length_looking_away -0.67 0.67 7.584E-09 

r_path_length_looking_away -0.67 0.67 7.584E-09 

looking_away_time -0.66 0.66 1.51545E-08 

direction_change_frequency -0.61 0.61 3.36857E-07 

display_looking_ratio 0.55 0.55 7.28292E-06 

display_away_ratio -0.55 0.55 7.28292E-06 

gaze_interaction_percentage 0.54 0.54 1.14838E-05 

head_speed_mean -0.43 0.43 0.000738471 

Saccade -0.37 0.37 0.00420177 

blinking_duration_change -0.35 0.35 0.007005563 

blinking_duration_change_mean -0.34 0.34 0.008939785 

head_acceleration_mean -0.29 0.29 0.02709483 

head_speed_var -0.28 0.28 0.033125102 

l_acceleration_mean -0.26 0.26 0.048552283 

l_speed_looking_away 0.26 0.26 0.048552283 

l_smoothness -0.25 0.25 0.058226043 

l_acceleration_var -0.24 0.24 0.069399968 

r_acceleration_var -0.23 0.23 0.082222951 

Fatigue -0.21 0.21 0.113411232 
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Table 5.1 (Continued) 

head_acceleration_var -0.2 0.2 0.13206597 

r_speed_var -0.18 0.18 0.176165015 

l_speed_mean -0.17 0.17 0.201841432 

head_interaction_percentage 0.14 0.14 0.294403823 

r_speed_mean -0.13 0.13 0.330590422 

r_p_acceleration_mean 0.13 0.13 0.330590422 

r_p_speed_mean 0.13 0.13 0.330590422 

r_smoothness -0.12 0.12 0.369454249 

r_speed_looking_away 0.12 0.12 0.369454249 

l_p_speed_mean 0.12 0.12 0.369454249 

r_acceleration_mean -0.11 0.11 0.410957667 

l_p_acceleration_mean 0.1 0.1 0.455031512 

r_p_speed_var -0.09 0.09 0.501574418 

r_acceleration_looking_away 0.07 0.07 0.601501345 

r_p_acceleration_var 0.07 0.07 0.601501345 

l_speed_var 0.06 0.06 0.654524616 

blinking_frequency_mean -0.06 0.06 0.654524616 

fatigue_perclosVairance -0.05 0.05 0.709298766 

blinking_frequency_change -0.04 0.04 0.765574328 

r_smoothness_fatigue_ratio 0.03 0.03 0.823079436 

differential_heart_rate 0.03 0.03 0.823079436 

l_acceleration_looking_away -0.02 0.02 0.881523615 

l_smoothness_fatigue_ratio 0.01 0.01 0.940602014 

l_p_acceleration_var -0.01 0.01 0.940602014 

l_p_speed_var 0 0 1 

 

Some of the measured metrics showed insignificant correlation with the skill level. 

One of the study’s goals was to find a good set of metrics that could classify the 

performance and skill levels with high accuracy and reliability, thus, the metrics were 

oversampled from the beginning. Further, the task we used in this case study may not 

have been hard enough to show the correlation between some metrics. For example, 

the fatigue and stress metrics may have needed a harder and a more stressful task in 
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order to study their correlation and examine whether they may actually contribute to 

improving the assessment. What we are trying to highlight is that the metrics that 

showed insignificant correlation in this study may need more analysis to find out their 

significance in the evaluation process and their correlation with the complexity of the 

performed task. Therefore, more analysis is needed to find out which of the metrics 

were functions of experience, which were functions of task complexity, and which were 

functions of both. In Chapter Eight which is about future work we discuss this idea and 

propose a case study with a more complex task. 

In this chapter and the next, we shall focus on the metrics that show a high 

correlation with the skill level. The case study showed 18 metrics had a significant 

correlation (|r|>0.5) to the skill level. Many of these metrics were new to the skills 

assessment analysis. In addition, the result showed that the metrics related to speed 

and acceleration, which were widely used in previous studies, had a low correlation and 

were thus, not the best metrics to use in the assessment. Table 5.2 compiles the list of 

metrics with correlation r>0.5. The shaded rows in the Table are new metrics proposed 

by this study.  
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Table 5.2 List of metrics with r >0.5. The shaded rows are new assessment metrics 
 

Variables 
Absolute 

Correlation |r| 
P-Value 

Completion_time 0.95 1.31793E-30 

r_direction_change 0.91 1.76593E-23 

r_path_length 0.86 2.89883E-18 

r_p_path_length 0.85  

display_looking_time 0.85 1.82231E-17 

l_path_length 0.84 1.00622E-16 

head_direction_change 0.84 1.00622E-16 

l_direction_change 0.82 2.20758E-15 

Completed 0.74 2.49378E-11 

l_p_path_length 0.7 8.01388E-10 

head_path_length 0.68 3.69317E-09 

l_path_length_looking_away 0.67 7.584E-09 

r_path_length_looking_away 0.67 7.584E-09 

looking_away_time 0.66 1.51545E-08 

direction_change_frequency 0.61 3.36857E-07 

display_looking_ratio 0.55 7.28292E-06 

display_away_ratio 0.55 7.28292E-06 

gaze_interaction_percentage 0.54 1.14838E-05 

 

5.2     Variance Analysis 

 

Table 5.3 and Figure 5.1 show the variance of the metrics among each category of 

subjects. In all metrics reported in Table 5.3, the variance at the novice level is higher 

than the variance at the intermediate and expert levels. The variance in the 

intermediate level is higher than the variance at the expert level. The only exception is 

in l_p_path_length metric which is highlighted in the Table. The variance of the 

intermediate level for that metric is less than that of the expert. These values of 

variance among the subjects’ levels show the similarity of the performances in the 

expert category compared to the novice category. The similarity among the subjects 

increases by moving from novice to expert. Further, the difference in the variance 
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between the novice and the intermediate compared to the difference between the 

intermediate and expert shows that the first is larger than the second except for the 

completion_time. This difference shows the intermediate level performance is closer to 

the expert than it is to the novice. 

 

5.3     Pearson’s Correlation Analysis 

 

Figures 5.3–5.19 show the bar graphs of each metric for the 58 subjects. In those 

graphs N represents the novice level, M represents the intermediate level, and E 

represents the experienced level. As we see in this set of Figures, the norm of the values 

is close among one level but differs between levels. This similarity among subjects at the 

same level and the difference among levels are less because the correlation coefficient 

is smaller. Metrics that have |r|<0.5 are not reported.  

 

 

Figure 5.1 The absolute correlation between the measured metrics and the skill level 
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Table 5.3 The variance of the metrics values for the novice, intermediate, and expert 
subjects 

Variables 
Novice 

Variance 
Intermediate 

Variance 
Expert 

Variance 

All 
Subjects 
Variance 

Completion_time 0.013351 0.010323 0.000776 0.082647 

r_direction_change 0.021797 0.005144 0.001650 0.079841 

r_path_length 0.040926 0.002027 0.001216 0.085527 

display_looking_time 0.054518 0.020253 0.001232 0.083693 

r_p_path_length 0.008952 0.000554 0.000322 0.014855 

l_path_length 0.034149 0.001220 0.000521 0.070553 

head_direction_change 0.035022 0.003422 0.000378 0.046226 

l_direction_change 0.045129 0.001538 0.000396 0.066154 

l_p_path_length 0.020502 0.000905 0.001639 0.016128 

head_path_length 0.057846 0.005056 0.000111 0.042123 

l_path_length_looking_away 0.071944 0.003274 0.000749 0.056546 

r_path_length_looking_away 0.074890 0.006556 0.000291 0.052134 

looking_away_time 0.029474 0.006553 0.000052 0.020101 

direction_change_frequency 0.072599 0.007239 0.002163 0.048859 

display_looking_ratio 0.053406 0.029619 0.001078 0.035908 

display_away_ratio 0.053406 0.029619 0.001078 0.035908 

gaze_interaction_percentage 0.018236 0.012148 0.000783 0.013347 
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Figure 5.2 The variance of the metrics values for the novice, intermediate, and expert 
subjects  
 

The metric that has the most significant correlation with the skill level is the 

completion time. Completion time represents the time taken by each subject to finish 

the required task. The Pearson correlation value for completion time is |r| = 0.95 and p-

value = 1.31793E-30. Figure 5.3 shows a bar graph of the completion time and the 

subjects’ skill level. The graph shows a clear trend of time drop from the novice to 

expert level. There is a level of variance within each experience level. There is also a 

clear level of variance between each pair of experience categories, especially between 

the intermediate and expert levels for this metric. The correlation coefficient shows that 

5% of the records do not tightly follow this trend. As we can see in Figure 5.3 some of 

the intermediate subjects consume more time than some subjects in the novice level to 

complete the task. However, this metric only represents the completion time but not 

the completion status: whether it was successfully completed or if there were errors in 

performance.  
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Figure 5.3 Completion time with |r| = 0.95  
 

The metric that has the second highest correlation is r_direction_change which is 

the direction change in the right hand. The Pearson correlation for this metric is |r|= 

0.91. Figure 5.4 shows a trend of magnitude of this metric with the skill level.  The more 

experienced the subject is, the less the magnitude of this metric. The variance in the 

metric magnitude between the novice and the intermediate level is large but it is 

smaller between the intermediate and expert levels. We can see from Figure 5.4 that 

the magnitude of some of the intermediate subjects is less than it is at the expert level. 

None of the metrics’ magnitudes at the novice level is less than any of those at the 

intermediate or expert levels.  We also can see that the variance among novice levels is 

larger than it is among the intermediate and expert subjects. 
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Figure 5.4 Right hand direction change with |r| = 0.91 
 

The path length of the right hand (r_path_length) is the third significant metric 

because the Pearson correlation value shows |r| = 0.86. Figure 5.5 shows the 

differences in the magnitude of the right hand path length. Similar to the previous two 

metrics, there is a change in the magnitude based on the level of experience and a clear 

drop in the magnitudes between the novice and the intermediate levels, along with a 

slight drop between the intermediate and the expert levels. As we can see in the graph 

there are a number of expert subjects that have a higher magnitude of r_path_length 

than the intermediate subjects. This number is more than it is in the r_direction_change 

because the correlation coefficient for r_path_length is less. But none of the novice 

subjects has a magnitude lower than that of any of the expert subjects.  These 

observations show that the performance of the intermediates is closer to the 

performance of the experts than it is to the novices’. 
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Figure 5.5 Right hand path length with |r| = 0.86 

The fourth metric is display_looking_time |r|=0.85.  This metric represents the 

magnitude of time of looking at the display from the completion time of the task. This 

metric is a fusion one thus; to measure it, we need coordination between the Vicon, the 

eye-tracker, and the laparoscope systems. Even though there is a similar trend within 

the magnitudes of this metric like the metrics discussed above, there is an interesting 

result for four records at the novice level. Figure 5.6 shows the four records at the 

novice level where the display_looking_time is low compared to the rest of the novice 

subjects. On tracking those records, we found that three of them belonged to one 

subject in three sessions and the fourth to a different subject. This subject based on this 

result did not change the direction of his head and gaze while performing the task. We 

could interpret from the graph that the magnitudes of this metric at the intermediate 

level is closer to that of the novice than it is to the expert.  It was seen that as the 

Pearson correlation decreased in the metric, the level of similarity in the metric’s 

magnitude among experience levels increased. 
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Figure 5.6 Time looking at the display with |r|=0.85 
 

The right probe path length r_p_path_length represents the magnitude of the path 

length of the instrument controlled by the right hand. The Pearson correlation for this 

metric is 0.85. As Figure 5.7 shows, the magnitudes of the intermediate and expert 

subjects are close to each other. There is a clear difference in the magnitudes of the 

novice over the intermediate level. Two records from the novice level showed 

magnitudes higher than all the other novices at a significant rate. After tracking those 

two instances, we found that they belonged to the same subject in two different 

sessions. 
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Figure 5.7 Right probe path length with |r|=0.85 
 

The features of the rest of the metrics with correlation higher than 0.5 are reported 

in Figures 5.8–5.19 in Appendix B. Each graph represents the magnitudes of one metric 

at the three different levels sorted on the absolute value of the Pearson’s correlation 

coefficient.  All Figures show that as the level of significance decreases, the clarity of the 

trend of magnitude reduction decreases at all levels. This reduction is more obvious 

between the intermediate and expert levels than it is between the novice and the 

intermediate. In many cases, there is also a clear increase in the magnitude variability 

among subjects of the same level as in Figure 5.15 looking_away_time (|r|=0.66) and 

Figure 5.16 direction_change_frequency (|r|=0.61). In addition, the trend of the 

variability within the magnitude of metrics among the novice subjects continues to be 

higher than it is at the other two levels in all the graphs but at different levels. For 

example, the variability in l_path_length_looking_away (|r|=0.67) in Figure 5.13 and 

direction_change_frequency (|r|=0.61) in Figure 5.16 is higher than it is in 

l_p_path_length (|r|=0.70) in Figure 5.11. 

Gallagher and Satava [15] and Gallagher et al. [43] have used MIST-VR system to 

compare and assess laparoscopic psychomotor skills. Thirty-six subjects participated in 

the study: 12 experienced, 12 intermediate (inexperienced), and 12 novices. Each 
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subject performed ten sessions on the MIST-VR. Each session included six MIST-VR 

tasks. The metrics collected for the evaluation were: completion time, error, economy 

of movement (left and right), and economy of diathermy. The studies reported that all 

the metrics showed differences among the three groups which reflected the differences 

in levels of experience among the groups. In trial one, the experienced group was the 

fastest and the novice group was slowest. Less experienced and novice groups showed 

significant improvements in completion time through the trials, whereas the 

experienced group showed less improvement. The novice and intermediate groups 

showed higher error rates with the highest evident for the novice. Both groups showed 

a significant drop in the error rate up to trial four.  Economy of motion for the left and 

right instruments also showed that the experienced group had higher and better 

economy than the other groups, while all the groups showed significant improvement in 

the ten trials. Similarly, the economy of diathermy which was used in tasks five and six 

showed differences among the three groups.  All groups reached the performance 

variability plateau by trial five.  

The graphs and discussions presented above for the metrics with |r|>0.5 match the 

results achieved by Gallagher and Satava and Gallagher et al. The novice subjects 

converged to the expert levels through the intermediates’ by training. As the experience 

level increased, the differences among them dropped gradually until they reached the 

experienced level. At that stage, the change rate at the novice level was higher than it 

was at the intermediate and expert levels. Further, the magnitude variance and 

differences between the intermediate and expert became smaller compared to the 

difference between the novice and other levels. Our results showed that metrics related 

to speed and acceleration, which were used in Gallagher and Satava and Gallagher et al. 

studies and widely used in other studies, were not the best metrics to use for the 

assessment. The significance of the correlation of these metrics was low.  We 

introduced many new metrics that showed high correlation to the skill level. Many of 

the metrics used were fusion metrics from fusion motion analysis compounded by 

coordinating multiple sensors. These metrics could only be extracted using computer 
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vision technology to coordinate cues of the eyes, external shots of the body and 

instruments, and internal shots of the operative field.   

This chapter presented the results and analysis of the measured metrics on an 

individual basis. It showed the correlation coefficient of each metric with the skill level 

and the effect of training on the magnitudes of the metrics. The data represented 55 

metrics which were taken for 17 subjects in 70 sessions. The system design and one of 

the study’s goals aimed at gaining the capability to collect a wide range of metrics with 

potential of correlation to the skill level. These metrics were fusion and non-fusion 

metrics. The collated metrics were oversampled. A large set of metrics showed 

significant correlation but the others showed low correlation. Many of the significant 

metrics were new metrics which were the result of transforming the assessment 

problem into a computer vision problem.  

We think some of the metrics, especially the ones related to stress and fatigue could 

have shown more significant correlation using more stressful tasks as they might be 

functions of experience and complexity together. The chapter also discussed the metrics 

variance and difference in the variance levels among groups and within each group. The 

individual metrics did not produce reliable or highly accurate data for assessment. But 

studying the metrics as a whole presents the complete picture and gives high accuracy 

and creates a precise model for the assessment. The next chapter will analyze the 

relationship between the subjects and among the metrics to find the hidden patterns in 

the metrics to present a reliable assessment model. 
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Chapter 6 

 

6. Analysis and Discussion  
 

This chapter presents a detailed analysis using Principal Component Analysis (PCA) 

to understand the features of the data and the interrelationship between subjects and 

variables, and detect the skill patterns over time. Visualization and interpretation of this 

analysis are presented to clarify the achievements and the interrelationship. The 

analysis includes a detailed study about the reliability and the effect of noise in the data 

on the features of the acquired metrics. The chapter in addition provides supervised and 

unsupervised data mining analysis in order to emphasize more the features of the data 

and achieve a reliable model to classify subjects. The chapter proposes a classification 

model that can evaluate subjects with high accuracy. Finally, the chapter presents 

comparison of the results with previous studies’ results and compiles a list of outcomes. 

 

6.1     Introduction 

 

The goal of this analysis is to find a set of metrics that can accurately and reliably 

assess the surgeons and trainees. As we have seen in Chapter Five, the collected metrics 

are oversampled and have various correlation significances.  The assessment of the 

subject’s skills cannot rely on one or two metrics only to a level of tolerance for 

measurement errors in order to increase the reliability and robustness. The 

dimensionality of the data is high and a pattern of skill level cannot be seen within it. To 
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reduce the dimensionality of the data in order to find the patterns and the hidden 

information, we used Principal Component Analysis (PCA).  

PCA is a statistical technique to decompose and reduce the dimensionality of the 

data in order to detect features of variance in it. These features enable us to understand 

the relationship between variables and how the data is structured if the dimensionality 

is high and not humanly readable. By calculating the eigenvectors and eigenvalues for 

the data covariance matrix, we can find components that represent the variance 

directions of this data. The set of components that explain the variance of most of the 

variables can be used to study the structure of the data. This data composition also 

allows visualizing the high dimensionality on papers in two or three dimensions by using 

the significant components. The principal components that can be extracted from data 

are less than or equal to the data dimension. The central axis of the direction of 

maximum variance is the best component. The axis with the second maximum variance 

is the second-best component and so on. These axes are the eigenvector with the 

largest eigenvalue, second-largest value, and so on. In this study, each acquired metric 

represents a dimension/variable in the model and each subject’s record represents a 

vector.  For more details about PCA review [69]. In our analysis, we used the 

Unscrambler® X from CAMO software to implement the PCA analysis [72]. 

The PCA is used to study the structure of the data we collected and understand the 

hidden features in the variance of the variables. We also used the highest principal 

components to visualize the data variance and the clusters within it. Finally, the PCA is 

used to find a reliable number of metrics to build a robust assessment model for a 

classifier. To find the reliable and robust model, we performed various experiments 

through adding Gaussian White Noise to the data. The robustness experiments we 

performed have been explained later in this chapter. 
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6.1.1    PCA Using Various Number of Metrics 

 

We initially sorted the normalized data in descending order based on the 

significance of their correlation with the skill level. We built three models from the data 

in order to perform analysis and find the effect of the variables and the best model to 

provide the assessment.  

The first model includes metrics that have a Pearson correlation coefficient (|r|>0.5 

or P value < 1.14838E-05). The list of metrics and their correlation coefficients and P 

values can be found in Table 6.1.  The number of metrics that have the required 

significance is 18. We decided to drop the completion time and completion status for 

reasons explained in the next section 6.2.1. Thus the number of metrics left in this 

model was 16. We will refer to this model from now on as the 16-metric model. These 

metrics represent the dimensions of this model in the PCA analysis. The dimensions of 

the data matrix are either 58x16 or 70x16 based on the number of data sessions used in 

each specific experiment. Fifty-eight is the data captured in the sessions before the 

analysis model was built. Seventy were the total data sessions including the 12 sessions 

captured after the data model was built for validation.  

The second model includes all the 55 measured metrics. We built this model to 

study the features of all the metrics combined and the effect of lower significant-metrics 

on the structure of the data while comparing it with the 16-metric model. We can see 

which model performed better by clustering the data. The PCA vectors’ dimensions for 

this model were 55 and the data matrix dimension was 58x55. We will refer to this 

model from now on as the All Measured Metrics model. 

The third model includes the three metrics with the highest correlation coefficients 

but excludes the completion time and completion status. These three metrics are 

r_direction_change, r_path_length, and display_looking_time. We built this model to 

study the features of the most significant metrics and compare it with the 16-metric 

model. The main result we were looking for by building this model was the effect of 
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reducing the number of metrics on the accuracy, reliability, and robustness of the 

assessment. We needed to find the accuracy versus robustness using this model 

compared to the 16-metric model. The PCA vector dimension for this model was three 

and the matrix dimension was 58x3. We will refer to this model from now on as the 3-

metric model.  

In all PCA models, the matrix built looks like the matrix in Equation 6.1 where each 

row represents a record of a subject and each column represents the magnitude of one 

metric for all subjects. M is the value of a variable for a subject, m is the subject’s 

number, and n is the number of metrics (variables). 
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(6.1) 

6.1.2    Validation 

 

To analyze the performance and accuracy of these models, we used both, cross-

validation and a test set validation in addition to a perturbation study to find the effect 

of noise on them. 

6.1.3    Leave-one-out validation (LOOCV) 

 

LOOCV is a type of cross-validation. In this technique, a single data record (data for 

one subject in one session) from the original dataset is used for validation and the rest 

of the dataset for training. The method is then repeated such that every record in the 

original dataset is used as a validation sample. We used this level of validation because 

the dataset we have is not large. 
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6.1.4    Perturbation  

 

To study and compare the robustness and reliability of the 16-metric and 3-metric 

models, we perturbed the data. We added various levels of noise to the data of both 

models and plotted graphs to show the effect of the noise on the values of each 

experience level in the first two principal components. This analysis shows the mutual 

support that metrics could provide each other if noise or corruption affected some 

other metrics. The noise we added to the data was Gaussian white noise and the level 

was controlled by the magnitude of the variance. The magnitude of the variance was 

added as a percentage of each variable data span.  

Two different kinds of perturbation were applied separately on the data. The first 

one was noise that was gradually increased on all the variables of the data to find out 

the tolerance of both models to noise. The two models were compared with each level 

of noise. The second experiment was that a large level of noise was applied to one 

variable in the dataset of both models. The variable we picked was the one whose 

correlation to the skill level was most significant. The most significant metric was the 

r_direction_change (r =0.91).  The magnitude of the noise was large and that dominated 

the value of the variable while enlarging the error within it. This experiment was useful 

to study the robustness of each model and determine the degree to which each one 

could tolerate corruption in capturing one or more variables. 

6.1.5    Score Graph 
 

The score plot which can be generated from the PCA result is an important tool to 

understand the relationship among the studied subjects. The graph can be generated 

using any eigenvectors against each other. The plot maps summarize the relationship 

between the subjects in the principal components’ subspace. Each principal component 

covers a ratio of the data variance and thus, the higher the variance covered by a 

component, the more the plot manifests the relationship. Usually the most important 

components are the first three. Here, we show the score plot either between the first 
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and the second principal components or the first and the third principal components. 

Also, the variance coverage of each component is added to the graph. 

6.1.6    Loading Plot 
 

The loading plot is another important tool to understand the relationship and the 

correlation among the variables. The loading plot can be viewed as a summary or a map 

of the variables and shows the size of the contribution of each variable to the principal 

components.  

The PCA scores and loading vectors can be calculated using several methods in 

which the Singular Value Decomposition (SVD) is a popular one. According to SVD, any 

matrix nxm
 can be decomposed into three matrices 

TPST ..0
where 0T

is an mxn 

normalized PCA scores matrix. S is an mxm matrix which contains the singular values in 

the diagonal. 
TP is the transposed mxm loading matrix. The PCA scores can then be 

calculated by 
STT .0

 [73]. 

 

6.2    Principal Component Analysis 

 

This section presents the results of PCA on the three data models.  

6.2.1    PCA Analysis on the 16-metric Model 

 

To find a set of reliable metrics to evaluate the subjects and validate the system, we 

have chosen from the 55 measured metrics, a subset that has a correlation coefficient 

r> 0.5. Table 6.1 shows the list of metrics that has significant correlations sorted based 

on the absolute correlation coefficient. The details about this list of metrics and how 

they are calculated can be found in Chapter Three.  
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Table 6.1   List of metrics with r >0.5 
 

Variables 

Absolute 

Correlation 
|r| 

Description 

Completion_time 0.95 Time take to complete the task 

r_direction_change 0.91 right hand accumulation direction change 

r_path_length 0.86 right hand path length 

display_looking_time 0.85 The time spent looking at the display 

r_p_path_length 0.85 right probe path length 

l_path_length 0.84 left hand path length 

head_direction_change 0.84 the head accumulation direction change 

l_direction_change 0.82 left hand accumulation direction change 

Completed 0.74 task successfully completed or not 

l_p_path_length 0.7 left probe path length 

head_path_length 0.68 head path length 

l_path_length_looking_away 0.67 
left hand path length while looking away from 
the display 

r_path_length_looking_away 0.67 
right hand path length while looking away 
from the display 

looking_away_time 0.66 total time of looking away from the display 

direction_change_frequency 0.61 the frequency of head direction change 

display_looking_ratio 0.55 
the ratio of time  looking at the display  
compared to the total completion time 

display_away_ratio 0.55 
the ratio of time  looking away from  the 
display compared to the total  completion 
time 

gaze_interaction_percentage 0.54 

the percentage the gaze intersect with the 
display(the previous attributes measured 
using the face direction, but this one is the eye 
gaze) 
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We decided to eliminate the completion time (r=0.95) and completion status 

(r=0.74) from the analysis since completion status was manually recorded and 

completion time was the main measure in the manual evaluation. We then applied the 

PCA analysis to find a relationship between the subjects’ skills. The analysis produced 

components where the first three components could describe 94% of the original data 

variance.  The first component (PC-1) described 74.8%, the second component (PC-2), 

16.7%, and the third component (PC-3) 2.5%. Table 6.2 shows the first three principal 

components. 

Table 6.2   The contribution of the first three principal components 
 

 

PC-1 PC-2 PC-3 

Contribution 74.8% 16.7% 2.5% 

Accumulation of Contribution 74.8% 91.5% 94% 

   

The score graph in Figure 6.1 shows how the performance of the 58 subjects related 

to each other. The keys in the graph are as follows: N=novice; M=intermediate; and 

E=Expert. A letter combined with the word “validation” represents the leave-one-out 

cross-validation result for each subject. Subjects close to each other have similar 

properties, whereas the properties of the subjects far from each other are dissimilar. As 

the graph shows, the novice subjects in the large red ellipse are scattered, do not have a 

consistent pattern or behavior among themselves, and are far from other subjects’ 

properties in the other two categories represented by other ellipses. This result means 

that the novices perform differently even amongst themselves, which indicates that 

they do not have the right technique to perform the task, and they use their background 

which differs from person to person. However, the diamond dots (novice) converge 

toward the middle green ellipse (intermediate) properties area because they build their 

skills and learn the proper technique by practicing. The triangle dots (intermediate) in 

the green ellipse are less scattered and the distance among subjects becomes smaller. 
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This behavior explains that the subjects’ properties become similar in nature because 

their techniques become more refined. Finally, the small blue ellipse, which represents 

the expert level, shows the properties of all subjects are dense and converged in a tight 

cluster, indicating that the properties of the performance of those subjects are more 

uniform, because they use the proper technique. We asked a subset of the experts’ 

group to practice more in order for us to learn whether their values on the x-axis (PC-1) 

could go farther towards the negative side. The result showed that giving the expert 

subjects more training did not change their properties and the results continued to be in 

the same cluster area. Since this study is based on detecting human experience 

development, there is no sharp threshold between different levels. Therefore, there 

might be an overlap between different levels, especially between the intermediate and 

expert levels.  

The loading graph in Figure 6.2 shows how metrics correlate with each other. The 

dots close to each other have high positive correlation whereas dots on opposite sides 

have negative correlation. For example, the graph shows positive correlation between 

the ratio of time spent looking at the display measured by the forehead direction and 

the ratio of the gaze intersection with the display. There is negative correlation between 

the time ratio spent looking at the display and the path length while looking away from 

the display. From our observation, the novice subjects tend to frequently redirect either 

their head or their gaze or both to the incision place instead of the display. This behavior 

indicates the difficulty they faced in trying to coordinate their visual perceptions and the 

psychomotor.  Further, the experts tended to freeze the tools while they were looking 

away from the display, whereas the novices continued the trend of motion. 

If we look at both graphs in Figure 6.1 and Figure 6.2 we find that the metrics 

(display_looking_ratio, gaze_interaction_percentage) contribute more in the expert and 

intermediate clusters. The metrics on the right side of the loading graphs contribute 

more in the novice and intermediate clusters. We can use these properties to give 

automated objective feedback to the trainees about what to improve in order to reach a 
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higher experience level. As a result, this system could decrease the training time by 

giving this continual feedback. In addition, through the analysis, we could estimate the 

time the trainees required to reach the level of experience based on the performance in 

previous sessions. To test the precision and validity of the model, the score graph shows 

the result of a leave-one-out cross validation performed among the 58 subjects. The 

validation result is presented in the graph in shapes: square for novice, star for 

intermediate, and plus for expert. The difference between the real and predicted data is 

small and none were predicted at a different level. 

Figure 6.1   PCA score plot. PC-1 (74.8%) vs. PC-2 (16.7%) 
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Figure 6.2   PCA loading plot. PC-1 vs. PC-2 
 

Figure 6.3 shows the score plot for the first principal component (PC-1 47.8%) vs. 

third component (PC-3 2.5%). Similar to Figure 6.1, the plot shows the relationship 

among subjects and how the data is clustered based on the skill level. Table 6.3 shows 

the calibration and validation contribution of the first four principal components using 

the metrics in Table 6.1. The accumulation contribution in the fourth component is 96%. 

The contribution of the other components is small as Figure 6.4 shows. The graph also 

shows that the validation curve of the explained variance grew to more than 90% at the 

third component. 
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Figure 6.3   PCA score plot. PC-1 (74.8%) vs. PC-3 (2.5%) 
 

Table 6.3   The contribution of the first 4 principal components using the metrics in 
Table 6.1 

 
PC-1 PC-2 PC-3 PC-4 

Calibration 74.84521 91.58828 94.05439 96.00191 

Validation 69.50325 88.73438 90.55489 92.63554 
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Figure 6.4   The variance contribution of the first 15 principal components using the 
metrics in Table 6.1 
 

6.2.2    PCA Analysis on All Measured Metrics Model 

 

We used all the metrics described in Chapters Three and Five in the analysis model 

to compare its accuracy with the one that used the metrics with r>0.5. As Table 6.4 and 

Figure 6.5 show, the first three principal components can explain 74.89% of the variance 

compared to 94% using the 16-metric model.  At the eighth principal component only 

89.8% of the variance is explained. In addition, the difference between the calibration 

and validation contribution in this model is large. At the 8th principal component, the 

accumulation of the validation contribution is 77.3% compared to 90.5% in the third 

principal component of the model built using the selected 16. 
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Table 6.4   The first 8 principal components’ contribution using all measured metrics 
 

 
PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7 PC-8 

Calibration 47.46 66.92 74.89 79.07 82.42 85.26 87.70 89.80 

Validation 42.36 60.90 69.40 70.17 72.36 74.11 75.93 77.31 

                

 

 

Figure 6.5   The variance contribution of the first 15 principal components using all 
metrics  
 

Figure 6.6 presents the score plot for PC-1 vs. PC-2 for the model built using all 

metrics. The graph shows trends in the data similar to the trends in Figure 6.1 but the 
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scattered and closer to the intermediate and novice subjects. This result means the 
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value is 0.083 compared to 0.036 in the previous model. Thus, the 16-metricmodel is 

more reliable and more accurate. 

 

Figure 6.6   PCA score plot. PC-1 (47.46%)  vs. PC-2 (19.46%) using all measured metrics 
model 
 

6.2.3    PCA Analysis on the 3-metric Model 

 

To study the effect of using a large number of metrics on the robustness of the 

assessment, we performed the PCA analysis on a model built using the three metrics 

that showed the significance of the highest correlation. Since it was a low dimension 

model, the PCA analysis only transforms the data into a different space. Since we chose 

the best three metrics, we expected this model to perform similar to or better than the 

other models. But we also expected its tolerance to noise and error to be lower, which 

reduces its robustness. Table 6.5 shows the contribution of the first two principal 

components which sum up to 98.65% of the variance whereas it is 94% in the first three 

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

P
C

-1
 (4

7
.4

6
%

)

PC-2(19.46%)

Score Plot PC-1 vs PC-2

N

N Validation

M

M Validation

E

E Validation



120 
 

components in the 16-metric model. The score plot in Figure 6.7 visualizes the data 

clusters using PC-1 vs. PC-2 for the 3-metric model. The Euclidean distance between the 

calibration and validation in the PC-1, PC-2 domain is calculated. The mean distance 

between the calibration and the validation values using the 3-metric is 0.019 compared 

to 0.036 in the 16-metric model. The 3-metric model shows better accuracy in the 

validation model than the 16-metric model. But how robust is this model and how much 

can it tolerate errors and noise that may affect the data? 

Table 6.5   The two principal components’ contribution using three metrics 
 

 
PC-1 PC-2 

Calibration 87.61604 98.65379 

Validation 80.27165 95.41236 

 

 

Figure 6.7   PCA score plot. PC-1 (87.61%) vs. PC-2 (11%) using three metrics model 
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6.3     Robustness 

 

To show the robustness and reliability of the built system and the proposed data 

models, we performed the experiments described in the introduction of Section 6.1. 

Two experiments were performed by perturbing the data through applying the Gaussian 

White Noise on the data models. One experiment entailed applying the noise on all data 

variables and the second applied the noise on a specified variable.  

In the first experiment, we applied various magnitudes of noise on all variables of 

the data models. The levels of the added noise were 1%, 5%, 10%, 11%, 12%, 13%, 14%, 

15%, 17%, and 20% of each variable span.  Then, performed a PCA analysis on the 

perturbed data of both models to study the effects of the perturbation level on the 

model and the built system’s robustness. The score plots in Figure 6.8–Figure 6.19 show 

how the subjects’ features were affected within each experience level. Each of these 

Figures contains two parts (a) and (b). Figure (a) represents the 16-metric model and 

Figure (b) represents the 3-metric model. 

This experiment showed that both the 16-metric model and 3-metric model are 

affected by the noise but not in the same way. The effect on the 3-metric model is 

higher than it is on the 16-metric model. Also the effect on the experienced and 

intermediate levels is higher than it is on the novice levels in both models and at all the 

noise levels. To put it simply, this observation means that the experienced and 

intermediate subjects follow a pattern in order to complete the surgical task, which 

means the data for the subjects is correlated. The novice subjects do not perform the 

task based on a pattern and the features of their data are different and less correlated. 

Adding noise to the data affects that pattern of the experienced and intermediate 

subjects which reduces the correlation among their subjects. But for the novice subjects 

the correlation between data is low and thus, the effect of the noise is less. 

As the noise level increases, the overlap among the three experience levels 

increases. The overlap between the experienced and intermediate levels increases at a 
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higher pace than the overlap between the intermediate and novice levels. Moreover, 

the disparity of the subjects within each cluster increases especially within the 

experience and the intermediate levels. The disparity increases at a higher rate in the 3-

metric model than the 16-metric model. 

Figure 6.1 shows the score plot of PC-1 and PC-2 of the 16-metric model and Figure 

6.7 shows the score plot for the 3-metric model without noise. As described earlier, 

both models show a tight cluster for the experienced in the blue ellipse, less tightness 

for the intermediate level in the green ellipse, and a sparse cluster for the novice in the 

red ellipse. The three clusters are well separated from each other in both models. After 

applying 1% noise to both models, we can see some effect on the distribution of the 

points that represent the subjects from Figure 6.8 (a) and (b). But that effect is marginal 

and the three ellipses show the well-defined clusters. 

Applying 5% noise increases the disparity among the expert cluster in blue and 

intermediate cluster in green as Figure 6.9(b) shows. In addition, the Figure shows an 

overlap between the expert and the intermediate clusters. However, the effect of this 

level of noise on the 16-metric model as Figure 6.8(a) shows is significantly less. The 

disparity between the experts and the intermediates is less than it is in the 3-metric 

model. The overlap between the expert and intermediate subjects in this model is also 

less overlapped than in the 3-metric model. Both Figures show the novice subjects are 

minimally affected and both models show significant disparity between the 

intermediate and novice levels. 

 The 16-metric model as Figure 6.10(a) shows, tolerates the 10% noise applied on 

the data. The expert subjects are clustered in the tight blue ellipse. The sparse level 

among the intermediates is similar to it in Figure 6.1 prior to the introduction of noise. 

The disparity among the three levels is also clear. However, the 3-metric shows that the 

expert in the blue ellipse is scattered and comes close to the level of the intermediate in 

the green ellipse. The overlap between the intermediate and expert levels increases but 
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the model tolerates the noise and remains capable of distinguishing between the 

intermediate and the expert on the one hand and the novice on the other. 
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.8   Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 1% 
noise applied to all metrics 
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.9   Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 5% 
noise applied to all metrics 
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.10   Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 10% 
noise applied to all metrics 
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Applying noise from 11%–15% shows gradual increase in the effect levels of both 

models. But the 16-metric model shows better tolerance to the noise than the 3-metric 

model. The increase in the level of sparse in the 16-metric model is less than it is in the 

3-metric model as Figure 6.11–Figure 6.15(a) and (b) show. Also, the increase in the 

overlap rate between the intermediate and expert levels is less in the 16-metric model 

than it is in the 3-metric model. Both models tolerate the noise and the effect was 

minimal on the disparity between the intermediate level and the novice level. However, 

it is clear that the 3-metric model in Figure 6.14(b) where 14% noise is applied and 

Figure 6.15 (b) where 15% noise is applied, mix the intermediate and expert levels but 

the 16-metric model shows a kind of disparity between both levels.  
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.11   Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 11% 
noise applied to all metrics 
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.12   Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 12% 
noise applied to all metrics 
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.13   Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 13% 
noise applied to all metrics 
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.14   Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 14% 
noise applied to all metrics 
 

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

P
C

-1
 

PC-2

Score Plot PC-1 vs PC-2

N

M

E

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P
C

-1
 

PC-2

Score Plot PC-1 vs PC-2

N

M

E



132 
 

 
a. 16-metric model 

 
b. 3-metric model 

Figure 6.15   Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 15% 
noise applied to all metrics 
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The trend of the effect of increasing the noise magnitude to 17% and 20% continues 

and in the 3-metric model, as Figure 6.16(b) 17% and Figure 6.17(b) 20% show, the 

overlap between the novice level and other experience levels starts occurring.  At level 

20% the subjects at the three experience levels are mixed and the potential error 

assessing the subject is high. In the 16-metrtic model, there is still a clear disparity 

between the novice and the other levels. 

This discussion of the noise effect shows the robustness of the 16-metric model over 

the 3-metric model. This result proves the significance of using more metrics that 

correlate to the skill level in improving the reliability of the assessment as the metrics 

mutually support each other. 
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.16   Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 17% 
noise applied to all metrics 
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.17   Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 20% 
noise applied to all metrics 
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The second robustness experiment we performed is the application of a large 

magnitude of noise to one of the variables in both data models. The goal of this 

experiment is to find the effect of the variables’ mutual support on the reliability of the 

assessment models built. The variable we picked is r_direction_change which has the 

highest level of correlation to the experience level. Two magnitudes of noise are applied 

to the 3-metric model and 16-metric model. The magnitudes of noise we added were 

50% and 90% which could simulate a total data corruption to one of the variables. 

The 16-metric model showed high level of tolerance to both levels of noise while the 

3-metric model is largely affected, especially the intermediate and expert levels. As 

Figure 6.18 (a) 50% and Figure 6.19(a) 90% show the tolerance of the 16-metric model, 

the 50% and 90% noise effect is marginal on all experience levels which indicates the 

level of mutual support of the metrics in the model. Figure 6.18(b) and Figure 6.19(b) 

show how much the 3-metric model is affected by both levels of noise. The expert level 

is severely affected and the blue points are scattered, which means the similarity among 

the expert subjects are affected and their performance is dissimilar. That indicates the 

mutual support among the metrics of this model is less which reduces the level of 

tolerance to error and noise. An interesting aspect of the 3-metric model is that the 

effect level is minimal when noise is increased from 50% to 90%. The difference in 

Figure 6.18(b) and Figure 6.19(b) is marginal. This difference indicates that increasing 

the noise on the same variable to a higher level may not affect the model, but applying 

large level of noise to one more variable will lead to failure in the model. Similarly, the 

difference between Figure 6.18(a) and 6.18 (b) is almost invisible. That means the 16-

metric model tolerates any level of noise on one variable and a large level of noise on 

more than one variable whereas the 3-metric model could fail when a large level of 

noise is added to one more variable.    
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.18  Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 50% 
noise applied to one metric 
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a. 16-metric model 

 
b. 3-metric model 

Figure 6.19  Score plot of PC-1 vs. PC-2 for the 16-metric and 3-metric models with 90% 
noise applied to one metric 
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6.4    PCA Validation with Real Data 

 

After finishing the model and all the analysis, we decided to capture data for two 

more subjects at all experience levels to study the validity of the model using real data 

and compare the newly added data to the previous subjects. Two sets of data were 

taken for each subject for each skill level for a total of 12 trials. Figure 6.20 shows the 

score plot for both old and new sets of data. The data for the new subjects are marked 

differently in the plot. The legends N_1, N_2, M_1, M_2, E_1, and E_2 represent the 

data for the first and the second subjects at the novice, intermediate, and expert levels. 

As we see, the new subjects reside in their proper clusters and they converge from 

novice to expert as their skills increase. In addition, the features of the new data comply 

with the features of the old data at all levels. 

 

Figure 6.20  PCA score plot. PC-1 vs. PC-2 to validate data captured for two subjects in all 
experience stages 
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For more illustration, we found the centroid point of each cluster and plotted it in 

Figure 6.21 with the data of the new subjects. The figure shows the relationship 

between the centroid of the cluster and each subject. The Manhattan distance and the 

Euclidean distance are calculated between the centroid of each cluster and each of the 

new points. The result of this calculation is reported in Table 6.6 and Table 6.7. As both 

Tables show, the novice data is closer to the novice centroid, the intermediate data is 

closer to the intermediate centroid, while the expert data is closer to the expert 

centroid.  

 

Figure 6.21  PCA score plot for the centroid of each skill level and the new captured data 
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Table 6.6   Manhattan distance between the centroid of each cluster and individual data 
for each subject 
 

 

Manhattan 
Distance 

To N 
Centroid 

Manhattan 
Distance 

To M 
Centroid 

Manhattan 
Distance 

To E 
Centroid 

Minimum 
Distance 

Centroid 

N_2_1 0.284401 1.434207 1.826059 0.284401 N 

N_2_2 0.953724 1.923943 2.315796 0.953724 N 

N_1_1 0.691575 2.045483 2.437335 0.691575 N 

N_1_2 0.50122 1.855128 2.246981 0.50122 N 

M_1_1 1.495842 0.302626 0.651835 0.302626 M 

M_1_2 1.512537 0.319321 0.377511 0.319321 M 

M_2_1 1.474165 0.280949 0.557326 0.280949 M 

M_2_2 1.778449 0.607556 0.85841 0.607556 M 

E_2_1 1.721613 0.367705 0.025045 0.025045 E 

E_2_2 1.955673 0.601765 0.254141 0.254141 E 

E_1_1 1.684239 0.330331 0.152157 0.152157 E 

E_1_2 1.690555 0.336647 0.055206 0.055206 E 

 

Table 6.7   Euclidean distance between the centroid of each cluster and individual data 
for each subject 
 

 

 

 

Euclidean 
Distance 

To N 

Euclidean     
Distance 

To M 

Euclidean 
Distance 

To E 

Minimum 
Distance 

 

N_2_1 0.208964 1.200603 1.529596 0.208964 N 

N_2_2 0.785662 1.370933 1.67382 0.785662 N 

N_1_1 0.491823 1.701516 2.030482 0.491823 N 

N_1_2 0.357559 1.534618 1.863536 0.357559 N 

M_1_1 1.310385 0.282111 0.462368 0.282111 M 

M_1_2 1.442199 0.226022 0.271296 0.226022 M 

M_2_1 1.338944 0.230558 0.394663 0.230558 M 

M_2_2 1.323986 0.524099 0.607428 0.524099 M 

E_2_1 1.577591 0.30512 0.0246 0.0246 E 

E_2_2 1.618732 0.425518 0.233078 0.233078 E 

E_1_1 1.50095 0.243782 0.116053 0.116053 E 

E_1_2 1.550452 0.278028 0.051594 0.051594 E 
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6.5    Cluster Analysis 

 

The data in this study represents human skills, therefore, getting high accuracy in a 

clustering analysis is challenging for several reasons. An individual’s pace of learning is 

different from another. There is no specific quantitative threshold to draw a line to 

divide people based on their skill levels. There is some overlap and a transitioning period 

between one level and another. In addition, the distribution of the data variance as we 

have seen in the PCA analysis increases the difficulty of the clustering analysis. Using a 

partitioning clustering algorithm could cluster the data, but it might falsely cluster 

subjects in the overlap areas between skill levels, especially between the intermediate 

and expert. The novice data is largely scattered and has no specific pattern which could 

be a challenge to the partitioning algorithms. Further, the small distance between the 

expert and intermediate data and the paucity of the novice data could be a challenge to 

density-based clustering.  

To overcome these challenges we decided to use a hybrid algorithm of partitioning 

and density-based clustering. The Waikato Environment for Knowledge Analysis (Weka) 

is an open source data mining tool that provides an interface to a clustering algorithm 

that wraps kmeans in a density based algorithm [70]. The algorithm is called 

MakeDensityBasedClusterer which uses kmeans output as a seed to perform density 

based clustering. The algorithm initially uses kmeans to construct the clusters based on 

the distance from the centroid. Then MakeDensityBasedClusterer reconstructs the 

clusters based on the density using normal distribution. 

Applying the algorithm on the collected data produced clusters summarized in Table 

6.8. The result shows that one subject was falsely put in a different cluster than what 

the manual assessment undertook. When we looked up the code for that subject we 

found that it was I_N_3. The code maintains that the data is the third trial as novice for 

this subject. The third trial is taken in the third session of training, in which the subject is 

expected to transition from novice to intermediate. The mis-clustered subject is marked 
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by the blue arrow in Figure 6.22 (PC-1 vs. PC-2) and Figure 6.23 (PC-1 vs. PC-3).  The 

graphs show the score plots presented at the beginning of this chapter.  The mis-

clustered subject is close to the intermediate subjects and has features similar to them. 

Figure 6.24 shows the cluster distribution among the data and the mis-clustered 

subjects. The color legend represents the ground truth and the cluster ID represents the 

generated clusters.  

Table 6.8   The truth and result clusters based on the 16-metric model 
 

Skill Level Truth Clusters Resulted Clusters 
Number of mis-

clustered subjects 
Error Rate 

Novice 19 ( 32.76%) 18 (31.04%) 1 1.72% 

Intermediate 14 ( 24.14%) 15 (25.86%) 

Expert 25 (43.1 %) 25  (43.1) 

Total 58 (100%) 58 (100%) 
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Figure 6.22  PCA score plot of PC-1 vs. PC-2. The mis-clustered subject is marked by the 
blue arrow  
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Figure 6.23  PCA score plot of PC-1 vs. PC-3. The mis-clustered subject is marked by the 
blue arrow  
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Figure 6.24  Data clusters. The color legend represents the ground truth and the cluster 
ID represents the generated clusters.  

 

To study the clustering accuracy using various numbers of metrics sorted based on 

their absolute correlation coefficient, we repeated the clustering analysis by removing 

metrics from the lowest correlation coefficient to the highest. All measured metrics are 

included in this experiment.  The error rate curve of clustering is shown in Figure 6.25. 

The graph shows that using the fewest metrics with the highest correlation does not 

necessarily give the highest accuracy. The error rate is above 13% using the highest two 

attributes. The rate decreases until it reaches 1.72% between 7-16 metrics which are 

listed in Table 6.1. The error rate then starts to increase until it reaches 55.17%. This 

result shows the importance of developing an algorithm that can extract the correct 

metrics to assess MIS skills objectively and reliably. 
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Figure 6.25  Error rate curve of mis-clustering based on the number of attributes used in 
the experiment. 
 

6.6     Classification 

 

The collected dataset in the case study is probably small to train many kinds of 

classifiers. If we train a model of tree classification such as C5, the dataset is not large 

enough to cover all cases. Therefore, many of the metrics will not affect the decision 

made by the tree. To validate the system as a classifier, we decided to use the Multi-

Layer Perceptron (MLP) which is a neural network algorithm. The reason is that all the 

input data will contribute to building the model; even the dataset is small. Since the size 

of the dataset is not large enough to reach the recommended level to train an MLP, we 

built the model using one hidden layer and minimized the number of nodes in the 

hidden layer to prove the concept of the possibility of building a reliable skill level 

classifier. To learn more about the MLP algorithm see [71]. Figure 6.26 shows the MLP 

network built using 16 metrics input and 3 levels output. The MLP model is validated in 

three stages, first using a test set, second using 10-fold validation, and finally, using the 
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data set for the two subjects collected after the model is built. Using 10-fold means 90% 

of the data is used for training which is 52 data records and 10% for testing which are 

eight subjects. 

 

Figure 6.26  The MLP network built using 16 metrics input and 3 levels output 
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6.6.1    Classification Test Set Validation 

 

The data is divided into two parts, training set and test set. Out of 58 subjects, 16 

are allocated for testing.  

Training data (42 subjects):    N:13 , M:11 , E: 18         

Test Data (16 subjects): N:6, M:3, E:7 

The model built using the 16 metrics listed in Table 6.1 was able to correctly classify 

the 16 subjects in the test set with error rate = 0%. None of the subjects was classified 

incorrectly. The confusion matrix of the classification result is given in Table 6.9. Table 

6.10 shows the detailed result including the probability distribution for each class of 

each subject. As the table shows, all subjects are predicted correctly with high 

probability.  In predicting novice and expert classes, the probability exceeds the 99% 

except for subject number six which has 78%. When predicting a novice subject, the 

probability of that subject being an expert is 0%. Similarly when predicting an expert, 

the probability of the subject being novice is 0%. When predicting the intermediate 

subjects, the probability is less than the other classes. Further, in the intermediate class, 

there is a marginal probability of the subject to be in expert or novice classes. This 

observation explains the features of the intermediate progressing from the novice to 

the expert level. 

Table 6.9   The confusion matrix of MLP classification model built using metrics on the 
test set 

 N M E 

N 6 0 0 

M 0 3 0 

E 0 0 7 
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Table 6.10   The test set classification results 
 

Subject 
Number 

Actual Predicted Error 
Distribution 

N M E 

1 1:N 1:N 
 

0.998 0.002 0 

2 1:N 1:N 
 

0.998 0.002 0 

3 1:N 1:N 
 

0.998 0.002 0 

4 1:N 1:N 
 

0.997 0.003 0 

5 1:N 1:N 
 

0.995 0.005 0 

6 1:N 1:N 
 

0.78 0.22 0 

7 2:M 2:M 
 

0.279 0.721 0 

8 2:M 2:M 
 

0.003 0.986 0.01 

9 2:M 2:M 
 

0.002 0.949 0.049 

10 3:E 3:E 
 

0 0.005 0.995 

11 3:E 3:E 
 

0 0.009 0.99 

12 3:E 3:E 
 

0 0.008 0.992 

13 3:E 3:E 
 

0 0.007 0.993 

14 3:E 3:E 
 

0 0.011 0.989 

15 3:E 3:E 
 

0 0.01 0.99 

16 3:E 3:E 
 

0 0.01 0.989 

 

6.6.2    Classification 10-Fold validation 

  

The confusion matrix in Table 6.11 shows the classification result of 10-fold 

classification. One intermediate subject was classified as novice with error rate 1.72% 

and accuracy rate 98.27%.  As in the test set trial, the 10-fold validation result shows the 

probability of prediction novice and expert classes in most cases as being above 98% 

except for the mis-classified subject. This subject (marked by red shadow in Table 6.12) 

shows that the probability of being intermediate is 41% and the probability of being 

novice is 59%. 
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Table 6.11   The confusion matrix of MLP classification model built using 16-metric and 
10-fold validation 
 

 N M E 

N 19 0 0 

M 1 13 0 

E 0 0 25 

 

Table 6.12   10-fold validation classification results 
 

Subject 
Number 

Actual Predicted Error 
Distribution 

N M E 

1 1:N 1:N 
 

0.999 0.001 0 

2 1:N 1:N 
 

0.703 0.297 0 

3 3:E 3:E 
 

0 0.018 0.982 

4 3:E 3:E 
 

0 0.012 0.988 

5 3:E 3:E 
 

0 0.014 0.985 

6 2:M 2:M 
 

0.006 0.99 0.004 

1 1:N 1:N 
 

0.972 0.027 0.001 

2 1:N 1:N 
 

0.996 0 0.004 

3 3:E 3:E 
 

0 0.007 0.993 

4 3:E 3:E 
 

0 0.005 0.995 

5 3:E 3:E 
 

0 0.011 0.989 

6 2:M 2:M 
 

0.002 0.955 0.043 

1 1:N 1:N 
 

0.995 0.005 0 

2 1:N 1:N 
 

0.999 0.001 0 

3 3:E 3:E 
 

0 0.027 0.972 

4 3:E 3:E 
 

0 0.011 0.988 

5 3:E 3:E 
 

0 0.009 0.991 

6 2:M 2:M 
 

0.015 0.983 0.002 

1 1:N 1:N 
 

0.8 0.2 0 

2 1:N 1:N 
 

0.999 0.001 0 

3 3:E 3:E 
 

0 0.021 0.979 

4 3:E 3:E 
 

0 0.012 0.988 

5 3:E 3:E 
 

0 0.007 0.992 

6 2:M 1:N + 0.591 0.407 0.002 

1 1:N 1:N 
 

0.999 0.001 0 

2 1:N 1:N 
 

0.998 0.002 0 

3 3:E 3:E 
 

0 0.023 0.977 
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Table 6.12 (Continued) 

4 3:E 3:E 
 

0 0.006 0.994 

5 2:M 2:M 
 

0.001 0.758 0.241 

6 2:M 2:M 
 

0.001 0.506 0.494 

1 1:N 1:N 
 

0.991 0.009 0 

2 1:N 1:N 
 

0.998 0.002 0 

3 3:E 3:E 
 

0 0.013 0.987 

4 3:E 3:E 
 

0 0.01 0.99 

5 2:M 2:M 
 

0.038 0.961 0.001 

6 2:M 2:M 
 

0.069 0.93 0.001 

1 1:N 1:N 
 

0.999 0.001 0 

2 1:N 1:N 
 

0.999 0.001 0 

3 3:E 3:E 
 

0 0.008 0.992 

4 3:E 3:E 
 

0 0.007 0.993 

5 2:M 2:M 
 

0.029 0.97 0.001 

6 2:M 2:M 
 

0.006 0.985 0.009 

1 1:N 1:N 
 

0.998 0.002 0 

2 1:N 1:N 
 

0.998 0.002 0 

3 3:E 3:E 
 

0 0.009 0.991 

4 3:E 3:E 
 

0 0.007 0.993 

5 2:M 2:M 
 

0.01 0.987 0.003 

6 2:M 2:M 
 

0.023 0.976 0.001 

1 1:N 1:N 
 

0.999 0.001 0 

2 1:N 1:N 
 

0.996 0.004 0 

3 3:E 3:E 
 

0 0.006 0.994 

4 3:E 3:E 
 

0 0.036 0.964 

5 2:M 2:M 
 

0.005 0.988 0.008 

1 1:N 1:N 
 

0.999 0 0.001 

2 3:E 3:E 
 

0 0.005 0.995 

3 3:E 3:E 
 

0 0.007 0.993 

4 3:E 3:E 
 

0 0.106 0.894 

5 2:M 2:M 
 

0.002 0.959 0.039 
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6.6.3    Classifier in Implementation 

 

After the model had been built and validated, we collected data for two subjects in 

three levels, two trials in each level. That meant that the total trials were 12 of which 4 

were novices, 4 intermediates, and 4 experts. The model was then used to classify this 

set of data. The confusion matrix in Table 6.13 shows one trial of intermediate subjects 

was incorrectly classified as expert. The classifier shows in Table 6.14 that the 

probability of that subject being intermediate is 40% and being expert is 60%.  

Table 6.13   The confusion matrix of MLP classification model built using 16-metric on 
the second test set 
 

 N M E 

N 4 0 0 

M 0 3 1 

E 0 0 4 

 

Table 6.14   Classification results using the second test set 
 

Subject 
Number 

Actual Predicted Error 
Distribution 

N M E 

1 1:N 1:N 
 

1 0 0 

2 1:N 1:N 
 

1 0 0 

3 2:M 2:M 
 

0.013 0.985 0.003 

4 2:M 3:E + 0 0.403 0.597 

5 3:E 3:E 
 

0 0.005 0.995 

6 3:E 3:E 
 

0 0.004 0.996 

7 1:N 1:N 
 

0.999 0.001 0 

8 1:N 1:N 
 

1 0 0 

9 2:M 2:M 
 

0.002 0.935 0.062 

10 2:M 2:M 
 

0.002 0.969 0.029 

11 3:E 3:E 
 

0 0.18 0.82 

12 3:E 3:E 
 

0 0.102 0.898 
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6.6.4    Classification Robustness 

 

We ran the built classifier on the data after applying various levels of Gaussian noise. 

The experiment result showed the robustness of the 16-metric model by retaining a 

higher level of accuracy for most of the noise levels. Ten-fold cross validation was used 

in this experiment. Table 6.15 shows the accuracy starts at 98.27% of 0% noise on both 

models. The result at 1% noise retains similar accuracy in both models. At 5% noise, the 

16-metric model retains 98.27% accuracy whereas the accuracy of the 3-metric model 

drops to 94.82%. At 10% noise, the accuracy of the 16-metric model drops to 94.82% 

and the 3-metrics model drops to 81.03%.  At 14% noise, the accuracy of the 3-metric 

model retains 81.03% whereas the accuracy of the 16-metric model drops to 89.65%. At 

20% noise, the 16-metric model retains 86.20 whereas the 3-metric model accuracy 

drops to 75.86%. There was an exception of this trend at 15% noise. The accuracy of the 

16-metric model suddenly dropped to 72.41% compared to the result of 3-metric model 

which is 77.58%. In this case, the result of the 3-metric model was better and the drop 

rate in the accuracy of the 16-metric model was significant. However, at a 20% level of 

noise, the accuracy rose again for the 16-metric model in order to be compatible with 

the trend of the accuracy rate with the noise increase. Even though we do not have a 

clear understanding why this kind of behavior is displayed, it is possible there is human 

error in handling the data. We need more investigation to give clearer analysis on this 

record.  

The accuracy rate for the 16-metric model after applying 90% noise on one metric is 

98.27%. Only one subject is incorrectly classified. However, the accuracy in the 3-metric 

model is 94.82% and 3 subjects are incorrectly classified. This accuracy proves the 

significance of mutual support among the used metrics to retain the classification 

accuracy. 
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Table 6.15   The classification accuracy and error rates at various noise levels for the 16-
metric and 3-metric models 
 

Noise 
Level 

16-Metric Model 3-Metric Model 
Accuracy 

Rate 
Error 
Rate 

Accuracy 
Rate 

Error 
Rate 

0% 98.27 1.72 98.27 1.72 

1% 98.27 1.72 98.27 1.72 

5% 98.27 1.72 94.82 5.17 

10% 94.82 5.17 81.03 18.96 

14% 89.65 10.34 81.03 18.96 

15% 72.41 27.58 77.58 22.41 

20% 86.20 13.7 77.58 22.41 

 

We used the area under the ROC Curve which is known as Area Under Curve (AUC) 

as a measure to study the effect of each noise level on the classifier result. Receiver 

operating characteristic (ROC) curve is a plot of true positive rate versus the false 

positive rate, which is 1-specificity versus sensitivity. The area can be calculated by 

integrating the ROC curve. Specificity is the percentage of negative instances that were 

predicted as negative. Sensitivity or Recall is the percentage of positive instances that 

were predicted as positive. The ROC curve is usually used in binary classifier. It also can 

be used with multiple-class classifier by calculating the specificity and sensitivity for 

each class compared to other classes.  

Table 6.16 shows the AUC for the three classes in each data model where each class 

is compared to other classes. The values in the table show that the AUC for the 16-

metric model is one for the first three noise levels (0%, 1%, and 5%). In the 3-metric 

model, the AUC for classes M and E drops to 0.99 in 1% noise and class M drops to 

0.98% in 5% noise. The results of AUC for all classes in both models decrease or retain a 

fixed value over all noise levels. The values for classes M and E drop more than in the N 

class. Further, the AUC for the M class in most cases drops more than the E class. This 

result explains the fact that the intermediates and experts are closer to each other. In 

addition, the discrimination significance of novices is higher than it is in the other two 
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levels. Also it explains that the rate of error in the intermediate class is higher than the 

other classes. At 15% noise the AUC value for class M does not follow this trend in the 

16-metic model. In this case, the value of AUC at 15% noise is less than it is for M class in 

20% noise. The 3-metric model performs better at 15% noise than the 16-metric model. 

Applying 90% noise on one variable shows that AUC values for the experience level 

are (N=1, M=1, and E=1) whereas in the 3-metric model the values are (N=1, M=0.992, 

and E=0.995). The 16-metric model performed better than the 3-metric model at 

intermediate and expert levels and both models have the same AUC value for the 

novice. 

 

Table 6.16   The AUC for the three classes at various noise levels for the 16-metric model 
and 3-metric model. 
 

Noise 
Level 

AUC 16-Metric Model  AUC 3-Metric Model 

N M E N M E 

0% 1 1 1 1 1 1 

1% 1 1 1 1 0.99 0.99 

5% 1 1 1 1 0.98 0.99 

10% 1 0.99 0.99 0.98 0.78 0.9 

14% 1 0.93 0.65 0.98 0.78 0.9 

15% 0.97 0.76 0.85 1 0.87 0.91 

20% 0.98  0.84  0.97  0.98 0.82 0.91 

 

6.7    Discussion 

 

It is complicated to compare the results we achieved with results of every study 

reviewed in Chapter Two. There are several reasons for this limitation. Many of the 

previous studies have investigated the correlation of individual metrics to the skill level 

but not the composite metrics. These studies did not go further in the analysis and 

stopped at proving that these individual metrics correlated with the skill levels. In 
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addition, some of them performed the whole experiment to study a single metric. Many 

of the experiments included manual factors and the expert’s inputs in the process. Few 

studies performed prediction analysis such as, classification performance of their 

models. However, arguments about robustness and reliability were not reported. Most 

of the studies are limited to two levels of expertise: novice and expert. Finally, many of 

the previous studies have taken place in virtual environments or robotic environments 

which are indirectly comparable to our study environment. However, few studies used 

multiple metrics to perform analysis and classification models. We review these studies 

and compare their results with our achievement below. 

Allen et al. [52] used Support Vector Machines (SVM) in an attempt to increase the 

accuracy of laparoscopic performance evaluation. Four expert subjects and 26 novice 

subjects participated in the study. Each subject performed three training tasks: 

pegboard transfer, pass rope, and cap needle. In addition to the SVM analysis, the z-

score normalization was performed to compare the results of the two types. The 

instruments’ 3D position and orientation were captured by placing two electromagnetic 

sensors on each tool. Four metrics were used in the assessment analysis: time to 

completion, path length, motion volume, and a control effort parameter that measures 

the applied forces on the instruments. The prediction results of SVM for the three tasks 

were respectively 93.7%, 91.3%, and 90.0%.   

In our study, 17 subjects performed the pegboard ring transfer in multiple sessions 

of total 70 sessions. The data were taken at three levels of experience: expert, 

intermediate and novice.  We performed two types of validation on the classification 

model that is built on the 16-metric model. The test set included data of 12 sessions that 

were captured after the system and analysis models were built and 16 records of the 

initially collected data which totaled to 28 data records. The test set validation accuracy 

we achieved was 96.43% with an error rate of 3.57%. The 10-fold validation accuracy 

was 98.27% and the error rate was 1.72%. Both validation methods we used showed 

higher classification accuracy than the Allen et al. [52] study even though they used two 
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levels of classification and we used three which is more challenging. Allen et al. did not 

provide analysis about the reliability and tolerance of their classifier for noise. However, 

they used four metrics in their model and we presented a detailed argument about the 

robustness of 3-metric and 16-metric models and showed the importance of using a 

more correlated metric to tolerate noise. This result proves the significance of the 

contribution of the system we built by using multiple coordinated sensors to measure 

composite metrics and perform fusion motion analysis to improve the assessment 

results.   

Varadarajan et al. [55] have used the kinematics data acquired by the Da Vinci robot 

API to find a data model that can accurately assess the surgeons. HMMs used as data 

analysis model to recognize specific skill gestures and sub-gestures for tasks in order to 

automatically assess robotic MIS. The task used in this study was a bench-top suturing 

task. Two experts, three intermediate, and three novices comprised the eight surgeons 

who performed the task. The kinematics data were recorded to train the model. Each 

surgeon performed the task four times in a total of thirty-two sessions. Varadarajan et 

al. collected 78 motion variables using the Da Vinci API from both patient and surgeon 

sides.  Linear discriminant analysis (LDA) based on HMM is used to reduce the motion 

variables. The accuracy of gesture recognition varied depending on the number of 

dimensions used. The maximum accuracy was obtained when the number of dimensions 

was between nine and 17. The experiment included three different setups and three 

different analyses of HMMs. The best accuracy they achieved was at 17 dimensions and 

3-state HMM where the accuracy was 87%. The authors of that study concluded the 

importance and the need for more dimensions to differentiate between motion 

gestures and performance assessment.  

Lin et al. [74] used the same 78 metrics from the Da Vinci API to build a binary Bayes 

classifier. The experiment included fifteen expert trials and 12 intermediate trials of 

performing the suturing task. The accuracy rate they got was about 92% using six 

metrics dimension. Reiley and Hager [75] used HMM to build a classifier using fourteen 
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metrics from the Da Vinci API on two levels of task and subtask. Fifty-seven trials of 

suturing at three different expertise levels were used: nineteen experts, nineteen 

intermediate, and nineteen novices. The accuracy level they achieved was 95% on the 

task level and 100% on the subtask level. 

In our study, we showed the importance of measuring the correct metrics to build 

an assessment model that includes a large number of metrics with high correlation on 

the robustness and accuracy of the assessment. The analysis we performed to find the 

best number of metrics from the 55 metrics we captured showed the best performance 

is between 7 and 16 metrics. Varadarajan et al. [55] achieved similar result with number 

of metrics between 9 and 17. Even though our results are close, the significance is not in 

the number of metrics to use. The significance is to use a collection of metrics that 

highly correlates to the experience level. Varadarajan et al. [55], Lin et al. [74], and 

Reiley and Hager [75] were able to measure 78 metrics provided by the Da Vinci API to 

find a reliable subset for the assessment. That environment is a robotic one and 

therefore the robot provides the kinematics data for the arms. These researchers have 

performed various types of analysis to improve the accuracy. The results showed great 

improvement until they reached 95% on a task level and 100% on a subtask level as 

reported by Reiley and Hager [75].   

These results achieved by Varadarajan et al. [55], Lin et al. [74], and Reiley and 

Hager [75] show the significant need of the system we designed. They achieved this 

level by using the Da Vinci robot which offers a wide range of metrics. However, the 

robotic MIS is not as widely used as the manual MIS and these approaches cannot be 

used as assessment methods in the manual environment.  Before we built our system, it 

was not possible to collect a wide variety of metrics using two electromagnetic sensors.  

We have created an assessment tool out of new technology that can measure a wide 

variety of metrics and add to it, the capability of fusion analysis to produce composite 

metrics. This system is environment-independent and can be used in labs, robotic, 

virtual, and real operation environments. We showed promising accuracy that competes 
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with the accuracies achieved in the robotic environment. It is the computer vision piece, 

coordinated with other metrics that makes it possible. 

Chmarra et al. [48] used Linear Discriminant Analysis to build a classification model 

in order to automate MIS assessment. The classification model they built included three 

classes: experience, intermediate, and novice. The number of subjects was thirty-one 

and distributed as: 10 experienced, 10 intermediate, and 11 novice. Each participant 

performed four tasks: pipe cleaner, rubber band beads, and circles. Six assessment 

metrics were used in the analysis extracted from the MIS tools motion. The metrics 

were total time, path length, depth, motion smoothness, angular area, and volume. 

Leave one out cross validation was used to test and validate the method. The result 

showed that the classification method was able to classify 23 participants out of 31 with 

an accuracy rate 74.2% and error rate 25.8%. As Chmarra et al. reported, the 

experiment showed significant difference in the skills level between the novice group 

and both, the intermediate and the experienced groups, but showed insignificant 

difference between the experienced and the intermediate groups. Similar to the 

Chmarra et al. result, our experiment showed the difference between the novice and 

intermediate as being more significant than the difference between the intermediate 

and expert levels. They used three levels of classifications similar to our experiment. The 

accuracy Chmarra et al. achieved was low compared to the accuracy achieved by the 

experiments in the robotics environment described above. But that is what can be 

achieved in the classical MIS environment without the availability of a tool that can 

provide the correct metrics for the assessment.  The accuracy we achieved is a 

significant boost because of the type of metrics the built system could provide through 

synchronized sensors. Chmarra et al. did not provide analysis about the effect of noise 

on the model.  

Rosen et al. [38-41] studied the force/torque and haptic information from the 

tool/tissue interactions and the tool/hand interactions. A video-recording was manually 

edited to define different tool/tissue and tool/hand interactions and synchronize each 
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interaction with its corresponding force/torque data measures. A classifier then 

developed based on Markov modeling (MM) and a subset of hidden Markov modeling 

(HMM) was used to classify the subjects in two categories, novice and expert.  The 

number of subjects was ten where five were novices and five were experts. The 

classification model was reported in [39].  The reported result of the classification using 

two classes is of accuracy rate 87.5% and error rate 12.5%. The incorrectly classified 

subjects were experts classified as novice. In this experiment the video editing and the 

tool/tissue interactions were manually defined; thus the method is not fully automated. 

The classification results were achieved by developing a non-intrusive system with the 

capability of producing fusion metrics and this shows improvement in the accuracy and 

robustness. The result of leave one out validation in principal component analysis and 

the 10-fold cross validation show the level of robustness and reliability of the 

assessment using the system and data model. The 10-fold cross validation classification 

accuracy rate is 98.27% and error rate is 1.72%.  

In this chapter, we presented a detailed analysis and discussion of the data collected 

in the case study. We discussed the accuracy and reliability of the system and the data 

model. The results showed high accuracy and reliability of the designed platform to 

provide automated assessment. The data is validated using different methods, and all of 

them showed the robustness of the platform. As we see in the list of metrics, many of 

them are new and have never been studied before. In addition, the chapter provided a 

comparison between our results and previous studies’ results and showed the 

significant improvement in the assessment accuracy. The platform is open to add many 

new metrics to improve the robustness. Some of these ideas are presented in the future 

work chapter. 
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Chapter 7  

 

7. Conclusion 
 

This chapter summarizes the results achieved by the thesis and the overall 

contribution of this work toward improving the accuracy and reliability of performance 

assessment. It also includes a summary of the questions the research has answered. 

 

7.1     Assessment 

 

From the discussion in Chapter One and Chapter Two we conclude that the effort to 

solve the MIS surgeons’ assessment challenge is about finding reliable, valid, and 

measurable metrics. Most of the metrics used are quantitative parameters and need 

external sensors to be measured.  This thesis has studied the current MIS assessment 

approaches and identified four categories: 

 Checklists, direct observation, and video-tape observations where master 

surgeons directly or indirectly observe the trainees and provide assessment and 

feedback about their skills. 

 Kinematics and motion analysis using electromagnetic or mechanical sensors, 

where an object or objects such as hands and instruments are tracked in the 3D 

space positions and transformed to kinematics data in order to find a correlation 

with motion signature and skill level. 
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 Force/Torque analysis where the force and torque metrics are measured to find 

their correlation significance with the skill level. 

 Virtual reality simulators where the trainee practices on computerized 

simulators and gets assessment and feedback. 

These approaches suffer from several problems and limitations. The main source of 

limitations to improve the assessment is the technology used and the method resorted 

to, to approach the problem. These limitations can be summarized as follows: 

 The checklist and direct and indirect observation methods are subjective and 

time and resource consuming. 

 The electromagnetic and force/torque sensors are attached to the surgeon’s 

body, which might influence the surgeon’s work.  

 The electromagnetic sensors can be affected by magnetic fields in the surgery 

and training environment.  

 The virtual reality simulators can only assess the subjects in the simulation 

environment but not in the real training and operation environment. 

 The main limitation is studying an isolated type of motion or measure such as 

the tools’ motion and ignoring the importance of the coordination between the 

motion of different body and instrument parts. The motion of the tools, hands, 

head, and eyes are not studied together to find the importance of their 

interrelationship. The interaction between the head and the eye with objects in 

the environment, which drives the motion, has never been studied. 

In this thesis, we proposed a platform that integrates and synchronizes multiple non-

invasive sensors to observe and extract individual and composite metrics from the 

surgery and training environment. These metrics can be used to recognize patterns of 

surgeon skills development based on their fusion motion and interactions with the 
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environment. Unlike the currently known methods, the technique used in this system 

can be automated and therefore, can scale. Using the system in a case study of 58 

subjects in addition to 12 subjects for validation showed high accuracy and reliability. 

The results showed that metrics related to speed and acceleration, which are widely 

used in previous studies, are not the best metrics for the assessment. We introduced 

many new metrics to reach a high level of accuracy. Many of the metrics used are 

composite metrics coordinated in time to get the fusion of motion analysis. These 

metrics can only be extracted using computer vision technology and coordinated cues of 

eyes, external shots of the body and instruments, and internal shots of the operative 

field.  The results show the ability to classify over a large number of subjects which 

suggests a shift in the way to approach the problem. 

 

7.2    Findings 

 

From the discussion and comparison with other studies, we can summarize the 

outcomes of this research as follows: 

  Employed computer vision techniques for skill assessment in MIS. We used 

computer vision as a non-intrusive technology and the fusion of motion analysis 

between the tools and different body parts of the trainees. 

 

 Designed and developed an environment independent system that can capture a 

wide range of metrics in which many showed high correlation with the skill level. 

The system has been developed by new technology and can be used to provide 

assessment to MIS trainees and surgeons. The goal is not to find more metrics 

but to find the correct metrics for performance evaluation. 
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 The system is able to capture composed and fusion metrics based on the 

synchronization of the multiple sensors which adds quality to the measured 

metrics. 

 

 The case study proved the significant importance of acquiring coordinated data 

from various objects in the surgery environment on the evaluation process. 

 

 In the study, we found a list of metrics that significantly correlates to the MIS 

skill level that had not been studied before. 

 

 The research provided an extensive study and analysis to prove the accuracy and 

reliability of the system and the proposed data model for the assessment.  

 

 The study showed the importance of finding the proper number and type of 

metrics to build a reliable assessment model. 

 

 The identified 16-metrics model can classify performance with less than 3.57% 

error on a test set and 1.7% error in the 10-fold validation with high robustness 

and tolerance to noise and error in data. 

 

 As a result of building this system, the case study showed significant 

improvement to the assessment accuracy and reliability. 

 

 The new system is environment independent. It can be used in all training and 

surgical environments including the robotic and virtual ones. However, it is more 

useful in the labs and real operation theater. 
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7.3     Thesis Contribution 

 

The coordinated computer vision and tracking cues we used in this study were 

crucial in allowing us to find a new, multi-cue solution to a longstanding problem in 

laparoscopy, that of automatic performance assessment in a way that is valid, sensitive, 

and fine-grained. The study collected many coordinated vision/tracking/performance 

metrics on 70 subjects, which is a large and statistically significant data set.  The vision 

cues ended up being a crucially important part of the composite metrics that gave 

correct classification results. This approach was our intuition but we were not sure 

exactly which cues and what combinations are more significant. We showed in this 

study that these cues could be appropriately collected in a surgical training 

environment, and that computer vision should now become a part of these medical 

training environments. 

From the assessment of our findings, we present the following original contributions: 

 The identification of the limitations in the current assessment approaches. 

 A novel design and implementation of an assessment system that integrates and 

synchronizes multiple non-intrusive sensors to extract metrics from the 

environment. The extraction process uses cues of eyes, external shots of the 

body and instruments, and internal shots of the operative field. The technique 

used by this system can be automated and therefore, can scale. This design is 

stand-alone and can work in the training environment as well as the operating 

theaters. 

 Based on the new system, this thesis found new assessment metrics that showed 

merit, robustness, and reliability.  

 Many other novel metrics are proposed, some showed no correlation with the 

skills level and some might need more study using more complex case studies to 

prove their reliability and validity. 
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 The system is designed to be open for expansions and more analysis to study 

other metrics. 

 The system and the metrics are validated using a case study of 58 subjects in 

addition to 12 subjects studied after the data analysis model is built. 

 The ability to extract a model of metrics that can classify the assessment level in 

three-class resolution. The result of the classification shows significant 

improvement of the previous studies which used different systems. 

 Overall this thesis contributed in improving the reliability and accuracy of MIS 

objective assessment.  

But, over and above these contributions, one of the most valuable contributions 

made by this thesis is the transformation of the way the assessment problem has been 

thought of for a long time by utilizing the new technology of computer vision. This 

transformation allowed expanding the parameters of the assessment to increase 

reliability. In addition, this transformation opened the door wide for more work and 

contributions to reach a satisfactory approach to assess MIS trainees and surgeons. This 

stud also encourages computer vision researchers to improve other challenging 

problems facing the field of minimally invasive surgery. The results of our study reveal 

objective metrics for analysis of surgical task performance. We believe these findings, in 

the context of surgical monitoring, are markedly better than all other known methods. It 

is the computer vision piece, coordinated with other metrics that makes it possible.  
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Chapter 8 

 

8. Future Work 
 

This thesis provided answers to several questions but at the same time it opened 

more questions to answer. As part of this thesis contribution, this chapter describes 

more ideas, questions, and directions for future research to improve the performance 

assessment and skills level recognition as well as to improve the designed system. In 

addition, the chapter reports preliminary results to one section of the future work to 

motivate ourselves and others to carry on this research to advanced stages. The 

following is a collection of ideas to improve the system and the case studies to validate 

it. 

 

8.1     Use More Complex Case Study 

 

The task used in the case study is a pegboard transfer task. The time to complete 

this task is short and the training time to master it is relatively short. The case study 

showed significant correlation coefficients for some metrics and low correlation for 

others. Many of those metrics are categorized in the study as stress and fatigue metrics. 

Pegboard transfer is not complex enough to show stress and fatigue in a few minutes. A 

suggestion is to design more complex case studies using a task that takes a longer time 

to complete, a longer time to master, and causes more stress and fatigue on the trainee 

than the pegboard transfer task. A suggested task is suturing which takes more time and 

requires higher control and experience of psychomotor skills as Figure 8.1 shows. 
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Further, studies need to be performed to investigate individual features of the metrics 

and find which is a function of expertise, function of task complexity, or function of 

both, and how we can utilize each type in the assessment process. 

 

Figure 8.1 Suturing training task 
 

8.2     Larger Number of Subjects 

 

The case study used data for 70 sessions for 17 subjects. A larger set of data boosts 

the significance of the results. In addition, using a larger data set helps in using analysis 

methods that require large set of data in order to give reliable results. 

 

8.3    Reduce Cost and Increase Mobility 

 

New computer vision technology can be studied to reduce the cost and increase the 

mobility of the system. An example is replacing the expensive Vicon system by four or 

six Kinect cameras.  If those cameras can give similar accuracy and reliability as Vicon, 
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the cost will be significantly reduced. In addition, Kinect cameras are smaller, lighter in 

weight, and can reduce the setup cost and increase the mobility of the system. 

 

        

Figure 8.2  Kinect camera 

 

8.4    Find New Metrics 

 

The 3D positions, time, and system synchronization raw data may be retained to 

extract more metrics. For example we can extract the volume of motion for head, 

hands, and instruments in the body while looking at or away from the field of view. 

Many other ideas can be studied to produce metrics which might correlate to the skill 

level.  
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8.5    Set up the System in a Training Center 

 

Set up the system in the Center for Advanced Training and Simulation at the 

University of Kentucky to continually capture data for trainees and validate the system 

in a real training environment. Capturing a large set of data for real trainees enables us 

to build an open library of the raw data and metrics. More researchers can use the 

library to perform more analysis that could improve the assessment and introduce new 

ideas to improve the system.  

 

8.6    Detect Progress Pace and Custom Feedback 

 

Conduct study to detect the progress pace of a trainee.  We can use algorithms to 

compare the progress of trainees with the reference data we have to detect how long 

they need to reach the experience level. Based on the principal component analysis 

discussion in Chapter Six, we can provide custom feedback to the trainee based on the 

values of metrics and find in which specific area they need to improve. This custom 

feedback could help speed up the learning and decrease the training time. 

 

8.7    Segment Tasks and Detect Errors 

 

Conduct research to develop computer vision algorithms that can segment the tasks 

into subtasks. The assessment metrics can be extracted based on the subtask instead of 

the whole task in general. For example, in pegboard transfer, we can study developing 

an algorithm that can segment the right hand stage of work and left hand. We can also 

try to segment the task into subtasks of picking rings from the ring holder, transferring 

and placing them on the pegs. The metrics for different subjects can be associated with 

these subtasks. Since we compare specific subtasks, this segmentation can increase the 
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quality of the assessment. Achieving reliable results in this study could improve the 

feedback given to the trainee to be more specific and determine the specific subtasks 

which the trainee is not performing well.  In addition, we can develop a computer vision 

algorithm to detect whether the instruments are moving to achieve a subtask, still in an 

idle state, or jerking. Further, we can detect errors such as dropping a ring or placing a 

ring in the wrong place. 

 

8.8     Increase Skill Level Resolution 

 

For complex tasks, we can increase the resolution of the skill level. Instead of using 

novice, intermediate, and expert, we can use a scale of ten to assess the level of the 

trainees. This idea however, may not be useful for a simple task like pegboard transfer, 

but it is important for complex tasks to improve detecting the progress level and 

customize feedback.  

As a preliminary result, we performed a PCA on the data we captured to find out if it 

was possible to develop a scale instead of three levels. A scale of seven was developed 

based on the session of training which lasted 30 minutes. The assignment of levels to 

the subjects was imprecise. The reason is because the idea of including this part of 

analysis had been added after disconnecting the captured data from the subjects’ 

information. In the estimation process, we used the time and date of the captured data 

using the computer file system. Figure 8.3 shows the score graph of this experiment. 

The legends in the graph (L_1-L_7) represent the assumed level of experience where L_1 

is the lowest level of experience and L_7 the highest level. The graph shows that the 

overlap in the new levels is higher than the overlap in the three levels analysis, 

especially in the early stages of training and in the experience level. After reaching a 

level that is considered the experienced level, the extra training does not change the 

behavior and signature of the metrics. Here, L_5, L_6, and L_7 are almost completely 

overlapped. By using more complex tasks in the experiment, the overlap could be less, 
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and the result of the relationship among subjects in each level could give better 

information to understand features specific to a task. 

 

 

Figure 8.3   PCA score plot of PC-1 vs. PC-2 for a scale of resolution seven 

 

8.9    Assessment Report 

 

Improve the system to produce a detailed assessment report: The idea is to add a 

feature to produce a report like the checklist used in the OSATS method described in 

Chapter Two. 
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8.10    Real Time Feedback 

 

One of the ideas worth studying is the real time assessment and feedback while the 

trainee is performing the task. The idea is to study the possibility of performing real time 

and continuous analysis as data being read by the system. This approach enables us to 

give the trainees continuous assessment and feedback that helps to improve their 

techniques while they are training. As a possible result of this feature in combination 

with the task segmentation, the system could identify the part of the task in which the 

trainee is facing difficulty. 

 

8.11    Assessing New Tools and Environments 

 

Develop a validation study of the multi-sensor system as a tool to validate and 

assess new surgery tools and environments. The base of the study is using the system to 

collect data for experts performing tasks using traditional surgical instruments and 

newly developed instruments or experts practicing in two different environments. This 

experiment could give comparisons and feedback on which environments or 

instruments are better to use. 

 

8.12    Plug-N-Play System 

 

Improve the system design to allow the user to include or exclude features. For 

example, after the improvement, the user can select which metrics to include or exclude 

in the analysis. If the user does not have all sensors such as, no heart rate monitor or no 

eye tracker, the user can exclude those sensors. The system should be able to extract 

metrics which are independent from those sensors and perform analysis based on the 

available metrics. 
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8.13    End Note 

 

This thesis contributed toward helping the minimally invasive surgery discipline to 

automatically assess skills performance and opened more venues to advance the work 

and develop skill level recognition. Similar ideas can be used in other areas that require 

psychomotor skills. If the reader of this thesis is interested in more ideas, knowing more 

about new results, or keen in extending cooperation in similar research, he or she can 

contact the author. 
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Appendix A 

Appendix A 

Appendix A contains the IRB approved consent form used in the data collection 

process. 

 

Consent to Participate in a Research Study 

Technical Skills Assessment of Minimally Invasive Surgeons Using Computer Vision 

WHY ARE YOU BEING INVITED TO TAKE PART IN THIS RESEARCH? 

You are being invited to take part in a research study about the motion during 

performing training tasks used in minimally invasive surgery and how this motion relate 

to the experience of performing the tasks. If you take part in this study, you will be one 

of about 12 people to do so at UK. 

WHO IS DOING THIS STUDY? 

This research project is to fulfill a PhD thesis in computer science department.  The 

researcher in charge of this study is Sami Taha Abu Snaineh, PhD Candidate in the 

department of Computer Science at UK.  The researcher is being guided by Brent Seales, 

PhD, Faculty in the department of computer science. 

WHAT IS THE PURPOSE OF THIS STUDY? 

The goal of this study is to develop an approach to objectively assess laparoscopic 

surgery trainees using cameras and computer vision.  This approach can be used for the 

assessment of new trainees, tools, and training environments for laparoscopic surgery 

ARE THERE REASONS WHY YOU SHOULD NOT TAKE PART IN THIS STUDY? 

You should not participate in the study if you have poor vision that is not corrected by 

using contacts or eye glasses. 
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WHERE IS THE STUDY GOING TO TAKE PLACE AND HOW LONG WILL IT LAST?  

This study will be conducted during multiple 30 minute visits to UK’s Center for 

Visualization and Virtual Environments. 

The number of required visit depends on the group you are participating in. There are 

three groups represents three level of experience in performing training tasks. 

Experienced Level: ten visits for training and data capture. In the last visit, the data will 

be captured and recorded. 

Intermediate level: five visits for training and data capture. In the last visit, the data will 

be captured and recorded. 

Novice level: One visit for one hour. You will be introduced and trained for half an hour 

and the data will be captured in half an hour. 

If you decided to be in the experienced group, you can change any time to be in a 

different group as long as the time of your training falls within the time limit of the 

other group. 

WHAT WILL I BE ASKED TO DO? 

 1)  You will be asked to perform visual-motor tasks similar to the tasks that new 

surgeons must learn.  You will use grasping instruments similar to long-handled tongs to 

pick up small objects and move them to new location.  While you are performing these 

tasks, you will not be allowed to directly see what you are doing.  Instead you must 

watch your own movements on a large display. 

 2)  You will receive instruction about how to perform the tasks described above 

and you will be allowed to practice them.  We will collect information about how quickly 

and accurately you will perform the tasks.  A video recording will be made of the images 

on the display during the session.  A continuous record will also be made of where you 

are looking on the display.  The last measurement will be made using cameras for 

tracking eye and head positions.  Information about the position of your eyes with 
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respect to the screen across time will be automatically translated into a series of 

coordinate values.  There will be no videotape of your actual face or eyes. 

 3) You will be asked to put colored markers on your arms and head (using hat) 

during the session. Those markers will be tracked to capture the motion of the arms and 

the head.  Only the coordinates of those markers will be recorded and no video will be 

recorded for the arms or the head. 

 4) You will be asked to wear a heart rate watch and belt to monitor the heart 

beat rate during the session. 

WHAT ARE THE POSSIBLE RISKS AND DISCOMFORTS? 

The things you will be doing should pose no more risk than those you experience when 

playing a computer or video game.  These risks include the potential for mild dizziness, 

and possible fatigue to your shoulders, arms and hands.  You will be asked to take a rest 

break every 15 minutes or when you feel tired in order to minimize any such symptoms.  

The eye-tracking and arms/head tracking procedure involves the use of cameras 

mounted near the display and the ceiling of the room; they do not involve placing 

sensors in or near the eyes or the body and we are not aware of any danger associated 

with its use. The markers will be attached to the arms and the hat is shiny colors that 

can be available on clothes in stores. The heart rate monitor will be placed on the arm 

like a watch as it is used training exercises. 

DO YOU HAVE TO TAKE PART IN THE STUDY? 

If you decide to take part in the study, it should be because you really want to 

volunteer. You will not lose any benefits or rights you normally have if you choose not to 

volunteer. You can stop at any time droning the study and still keep the benefits and 

rights you had before volunteering. 

IF YOU DON’T WANT TO TAKE PART IN THE STUDY, ARE THERE OTHER CHOICES? 

If you do not want to be in the study, there are no other choices except not to take part 

in the study. 
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WHAT WILL IT COST YOU TO PARTICIPATE? 

There are no costs associated with taking part in this study. 

WILL I RECEIVE ANY PAYMENT OR REWARDS FOR TAKING PART IN THE STUDY? 

After completing the study you will receive $20.  If you decide during the course of the 

experiment to stop and discontinue, you will receive $10 for your time. 

WHO WILL SEE THE INFORMATION I GIVE? 

We will make every effort to prevent people who are not on the research team from 

knowing how you performed.  We will assign your data a code number rather than use 

your name, and these data will be combined with similar data from approximately 12 

people taking part in the study.  This combined information will be used when we write 

up the study to share it with other researchers. However, you will not be personally 

identified in these written materials.  Videotapes of your performance (that is, the 

coordinates of the instruments under the camera, the coordinates of  markers on the 

head and arms, the positions of the eyes, and the heart beat rate) will be kept for a 

maximum of five years before begin destroyed. 

CAN MY TAKING PART IN THIS STUDY END EARLY? 

Yes. You have the right to decide to stop participating at any time.  Your decision to stop 

taking part in this study will not jeopardize your right to participate in other studies.  

You will not be treated negatively if you decide to stop participating before the study is 

over.  The amount money that you will receive will be determined by how much of the 

study you completed. 

WHAT IF I HAVE QUESTIONS? 

Feel free to ask any questions that might come to mind now.  Later, if you have 

questions about the study, you can call Sami Taha Abu Snaineh, 859-536-1881, 

sstaha2@uky.edu.  If you have any questions about your rights as a research volunteer, 

contact the staff of the Office of Research Integrity at the University of Kentucky at 859-



180 
 

257-9428 or toll free at 1-866-400-9428.  We will give you a copy of this consent form to 

take with you. 

_______________________________________________________________                 

______________ 

Signature of person agreeing to take part in the study     Date 

_______________________________________________________________ 

Printed name of person taking part in the study 

_______________________________________________________________           

______________ 

Signature of person obtaining informed consent                Date 
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Appendix B 

Appendix B 

Appendix B presents figures 5.8-5.19 from Chapter Five. These figures show the 

magnitude of the metrics that have Pearson’s correlation higher than 0.5. 

 

Figure 5.8  Left hand path length with |r|=0.84 

 

Figure 5.9 The change in head direction with |r|=0.84 
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Figure 5.10 The change in the left hand direction with |r|=0.82 

 

Figure 5.11 Left probe path length with |r|=0.70 
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Figure 5.12 Head path length  with |r|=0.68 

 

Figure 5.13 Left hand path length while looking away from the display  with |r|=0.67 
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Figure 5.14 Right hand path length while looking away from the display with |r|=0.67 

 

Figure 5.15 The time spent looking away from the display with |r|=0.66 
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Figure 5.16 the frequency of changing the head direction with |r|=0.61 

 

 Figure 5.17 The ratio of the time looking away from the display with |r|=0.55 
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Figure 5.18  The ratio of time looking  at the display with |r|=0.55 

 

Figure 5.19  The ratio of the gaze interaction with the display with |r|=0.54 
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