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ABSTRACT OF THESIS 

 

DEVELOPMENT OF AN EEG BRAIN-MACHINE INTERFACE 
TO AID IN RECOVERY OF MOTOR FUNCTION AFTER  

NEUROLOGICAL INJURY 
 

Impaired motor function following neurological injury may be overcome through 
therapies that induce neuroplastic changes in the brain. Therapeutic methods include 
repetitive exercises that promote use-dependent plasticity (UDP), the benefit of which 
may be increased by first administering peripheral nerve stimulation (PNS) to activate 
afferent fibers, resulting in increased cortical excitability. We speculate that PNS 
delivered only in response to attempted movement would induce timing-dependent 
plasticity (TDP), a mechanism essential to normal motor learning. Here we develop a 
brain-machine interface (BMI) to detect movement intent and effort in healthy volunteers 
(n=5) from their electroencephalogram (EEG). This could be used in the future to 
promote TDP by triggering PNS in response to a patient’s level of effort in a motor task. 
Linear classifiers were used to predict state (rest, sham, right, left) based on EEG 
variables in a handgrip task and to determine between three levels of force applied. Mean 
classification accuracy with out-of-sample data was 54% (23-73%) for tasks and 44% 
(21-65%) for force. There was a slight but significant correlation (p<0.001) between 
sample entropy and force exerted. The results indicate the feasibility of applying PNS in 
response to motor intent detected from the brain. 

KEYWORDS: Brain-Machine Interface, EEG, Rehabilitation, Neuroplasticity, Linear 
Discriminant Analysis  
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Chapter 1: Introduction  

1.1 Motivation 

Neurological injuries, such as spinal cord injury (SCI) and stroke, affect many people 

every year throughout the United States and the world. As healthcare has improved, 

many more people suffering from these events survive, leaving the majority with a 

variety of disabilities for the remainder of their lives. How exactly an individual is 

disabled depends on the location and extent of damage to the spinal cord or brain. 

Perhaps the greatest impact is made on a person’s life when the disability includes the 

loss of function of the upper limbs. In these cases, independent living is often difficult, as 

assistance may be required for simple, everyday tasks such as feeding oneself. 

Individuals with neurological injuries may undergo extensive rehabilitation, which can 

focus on a) how to perform tasks using any residual upper limb function or b) regaining 

lost function. Lost function can be regained due to the brain’s plasticity, or the ability to 

change as a result of its use. Therefore, an increase in the brain’s ability to undergo 

plastic changes further aids in the recovery of function.  

Methods to enhance neuroplasticity are a current topic of research, with somatosensory 

peripheral nerve stimulation (PNS) being one such method. In a typical PNS protocol, a 

patient undergoes two hours of stimulation, followed by several hours of guided physical 

exercise. PNS parameters are tuned to preferentially stimulate sensory afferent nerves, 

causing a short-term increase in the excitability of the sensorimotor cortex, therefore 

increasing the potentially beneficial effects of the rehabilitative exercises performed in 

the hours following stimulation. Although this protocol has demonstrated significant 

benefits in recent clinical trials, we hypothesize that artificially closing the sensorimotor 

loop by delivering afferent sensory stimulation only in response to the patient’s intent to 

move will be a more efficient way of upregulating the brain’s plasticity.  

1.2 Research Plan 

The ultimate goal in conducting this research is to test whether delivering PNS in 

response to motor intent can induce timing-dependent plasticity, leading to greater 

improvements than that seen when PNS and exercises are performed separately. In order 
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to achieve timing dependence, detection of motor intent must occur immediately after or 

even in anticipation of movement onset. Additionally, detection of this intent must be 

accurate in order for the correlation between intent and stimulation to hold. Because early 

detection is needed, as well as the difficulty in detecting motor signals from 

electromyogram (EMG) in patients with neurological injury, detection of motor intent 

must occur at the brain. The primary goal of the current study is to develop a brain-

machine interface (BMI) that utilizes electroencephalogram (EEG) signals to accurately 

detect motor intent and trigger PNS. Prior to studying this in patients, we first developed 

and tested our system in healthy volunteers without PNS. The proposed BMI will not 

only classify EEG into “rest” and “task” states, but will also deliver PNS at an intensity 

matched to the subject’s level of mental effort as well as its duration. A secondary goal of 

this study is to identify features of EEG that correlate with the level of force exerted 

during a handgrip exercise.  

This thesis will discuss in Chapter 2 what work has been done in the fields of plasticity-

inducing physical rehabilitation and brain-machine interfaces for detecting the intent to 

move. In Chapter 3, our experimental procedures will be introduced, including our data 

collection and analysis. Chapter 4 will present the results of the study, and Chapter 5 will 

discuss these results. Finally, conclusions will be drawn in Chapter 6, as well as 

suggestions for future work.  

 

2 
 



Chapter 2: Background  

2.1 Motor rehabilitation therapy 

Incomplete spinal cord injury, stroke, and many other neurological injuries result in a loss 

of motor function. Because of this, rehabilitation focuses on highly repetitive exercises of 

the extremities, referred to as “massed practice” (1). Studies have shown that cortical 

reorganization occurs after both spinal cord injury and stroke regardless of whether or not 

a patient participates in a rehabilitative program, though rehabilitation capitalizes on the 

reorganization, leading to better recovery of motor function (2; 3). When the upper 

extremities are affected, massed practice can include large, general movements of the arm 

as well as specific movements of the hand or fingers, with a single movement being 

repeated for an extended period of time (2). These movements can be performed with 

help from a therapist or with the assistance of a robot that guides the arm in a smooth 

motion. Alternatively, stimulation of multiple muscles, in the form of functional electrical 

stimulation (FES), can induce contractions in order to elicit a movement. When utilized 

only for assistance in executing massed practice exercises, it is referred to as functional 

electrical therapy (FET) (4). Stimulation is triggered manually, such as the patient or 

therapist pushing a button, which begins stimulation of muscles to induce a functional 

movement (4; 5). This method also has been shown to increase cortical excitability when 

compared to subjects who perform only massed practice without FET (6).  

2.2 Somatosensory peripheral nerve stimulation as a therapy 

Continuous sensory feedback is important in successful execution of most motor tasks. 

For instance, think of the difficulty people have speaking while their mouth is numb from 

a mandibular dental procedure. Although the anesthesia does not directly affect their 

motor control, due to the lack of proprioceptive feedback, coordinated movements of the 

lips and tongue are almost impossible. In the therapies discussed above, the emphasis is 

on self- or externally-induced movement for promoting use-dependent plasticity while 

the patient receives visual feedback, and in cases where sensory impairment in the 

affected limb is not complete, proprioceptive feedback. As may be expected, externally 
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applied PNS itself has been shown to enhance cortical excitability when used in 

conjunction with massed practice as well as when used as a standalone therapy (7). 

In several investigated protocols, PNS, a low intensity electrical stimulation, is applied to 

one or a combination of nerves in the forearm for 2 hours. Each second, five 10 Hz pulses 

of 1 ms duration are delivered over the 2 hours of stimulation, as is typical of these 

protocols (7-9). The stimulation is gentle enough to not cause muscle contraction, and 

rather stimulates afferent pathways, leading to increased excitability of the cortex (7). 

Studies show that PNS can be delivered prior to or during massed practice in order to 

increase cortical excitability, therefore enhancing the effects of massed practice (7; 9; 

10).  

2.3 Induction of timing-dependent plasticity to enhance therapy 

While PNS and FET both have proven benefits, there are potential drawbacks that may 

inhibit their efficacy. In the case of PNS, the subject is receiving stimulation without 

exerting any effort or without any correlation to their movement. However, Stefan et al. 

have shown that temporal pairing of PNS and cortical stimulation by transcranial 

magnetic stimulation (TMS) induces cortical plasticity in healthy subjects only when the 

two stimuli are delivered less than 100 ms apart (11). In terms of rehabilitation, cortical 

stimulation is not induced by TMS, but is rather the patient’s cortical activity from 

performing the massed practice exercises. This leads to the question of whether 

administering PNS prior to exercises or during the exercises with no timing dependence 

between stimulation and movement really reaps the maximum benefits of combining the 

two therapies. 

In the case of FET, the external stimulation is the primary or sole driver of the muscle 

contractions rather than the patient’s volition. While this is very appealing in situations 

where the patient cannot elicit any meaningful movement of the limb, it doesn’t 

necessarily require constant mental effort from the patient. Therefore, the subject will 

experience visual feedback of the hand moving, and if sensory pathways are at least 

partially intact, proprioceptive feedback. However, if the patient does not attempt to 

move their limb in conjunction with the stimulator, the sensory information reaching the 

cortex will lack the critical pairing with activation of the motor cortex. Even if the patient 
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does continue their mental effort while the stimulator works to move their limb, the level 

of mental effort may vary between repetitions though the stimulus intensity does not. 

This lack of correlation between the levels of mental effort and stimulation intensity 

again may not provide the optimal results from a therapeutic perspective.  

Both issues raised can be addressed by monitoring a patient’s mental activity for signs of 

attempted movement and level of mental effort in order to trigger stimulation with 

intensity proportional to the amount of mental effort the patient is putting towards the 

task. The ability to recognize motor intent is well established, and is achieved with 

devices known as sensorimotor rhythm brain-machine interfaces. Measurement of EEG 

correlates of force is a less active field of research, but some have been found.  

2.4 Brain-machine interfaces for detection of motor intent 

BMIs are devices that record brain activity and use information contained in the signals 

to control either a computer or a device (12). There are many categorizations of BMIs, 

the primary one being whether the method of obtaining the signal is invasive or 

noninvasive. Invasive techniques require surgical procedures to implant electrodes either 

on the surface of the cortex in electrocorticography (ECoG) or within the cortex with 

intracortical recording (13). Non-invasive techniques, on the other hand, only require the 

placement of electrodes on the scalp, in the case of EEG, or the placement of a subject in 

a large piece of equipment, in the case of functional magnetic resonance imaging (fMRI) 

and magnetoencephalography (MEG). While ECoG and intracortical recordings are 

superior in terms of signal quality and spatial resolution, they carry all the risks and costs 

associated with surgery. Of the non-invasive techniques, EEG is most commonly used in 

BMI development, largely due to the fact that fMRI and MEG systems are large and 

expensive, while EEG systems are much smaller and less expensive (12).   

There are many subcategories of EEG BMIs based on the signal characteristics they are 

sensitive to, which determines the type of signal processing they perform. There are two 

features of EEG seen above the motor cortex that are commonly used in BMIs to detect 

the intent to move: sensorimotor rhythms (SMRs) and movement-related cortical 

potentials (MRCPs). MRCPs, discovered in 1965, are slow waves that begin 1.5 s before 

a voluntary movement (14; 15). Until recently, detection of MRCPs typically required 
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averaging EEG over many trials, therefore limiting their usefulness for online BMI 

control (16). Only recently has detection of single MRCPs been made possible due to the 

development of new spatial filtering methods that better improve the signal-to-noise ratio 

of the EEG (17). SMRs are the 8-12 Hz mu rhythm and 18-25 Hz beta rhythm seen on 

EEG (18; 19). These rhythms have high amplitudes when an individual is as rest, but 

become much weaker on the contralateral side beginning 2 s before execution of a 

unilateral movement or during motor imagery (18). During actual movement, suppression 

of this rhythmic activity is seen on both sides of the cortex (20).  

SMR BMIs all use the power contained in the mu and beta bands from channels above 

the sensorimotor cortex as command signals, or features, for controlling the action of the 

machine in the brain-machine interface. The mental state of the subject (i.e. motor 

imagery, no motor imagery) is determined by feeding the features to a classification or 

regression algorithm. There are many types of these algorithms with varying degrees of 

complexity, several of which are discussed by Lotte et al. (21), including support vector 

machines, neural networks, and Hidden Markov Models.  One of the most commonly 

used classifier algorithms is linear discriminant analysis (LDA) because of its low 

computational requirements, its application to multiclass systems, and its good 

performance (21).  

How well a SMR BMI performs depends largely on the features and type of algorithm 

used, as well as the ability of the individual subject to modulate their sensorimotor 

rhythms. In a 2007 study, Blankertz et al. (22) tested a BMI that did not require extensive 

training periods for the users and instead only required one 20 minute calibration session 

for training the classifier. During calibration, subjects performed right and left hand and 

right foot imagery tasks. Of the three tasks, the two tasks with better discriminability 

were selected to train an LDA classifier. Features were calculated by band pass filtering 

the raw EEG signals and applying common spatial patterns, a method of spatial filtering 

that is specific to individual subjects. In online classification sessions, this BMI achieved 

an average accuracy of 88.4% for two-class classification across nine subjects.     

A study by Huang et al. (23) in 2009 looked at the effects of various features and 

classifiers. Subjects first participated in a calibration session, during which they were 
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cued to start and then either stop or continue right hand or left hand movement or 

imagery. Various classifiers were used to discriminate between four classes, movement 

or imagery of the right or left hand, and whether the action continued or stopped. Among 

the features used was signal power of 4 Hz wide frequency bands in the alpha and beta 

bands on 14 different channels. A support vector machine was one of the classifiers used 

and obtained an average accuracy of 88.1% during a 10-fold cross-validation. This was 

slightly higher than the decision tree classifier (86.4%), which the authors of the study 

consider the best of the four classification methods they used due to its performance and 

simplicity.  

A 2009 study by Yang et al. (24) compared classification accuracy of right and left hand 

imagery. The subject responded to the cue of either a right or left pointing arrow by 

performing imagery for the corresponding hand. Various features were calculated, and 

results were reported for autoregressive features, spectral peaks, and band power. The 

data was classified using k-nearest neighbor, LDA, and statistical classifiers. All 

combinations of features and classifiers obtained greater than 80% accuracy, with the 

exception of autoregressive coefficients using the k-nearest neighbors classifier. The 

highest accuracy (>90%) was achieved by using band power as features for LDA.        

2.5 Brain-machine interfaces for rehabilitation 

The idea to use brain signals to drive the movement of an impaired individual’s limb with 

either FES or a robot is not new, and has in fact been the subject of several small-scale 

studies. As early as 2000, Pfurtscheller et al. (25) tested a BMI on a tetraplegic individual 

who controlled the movement of a hand orthosis by performing motor imagery. During 

this study, the subject underwent 5 months of training in order to learn to control his mu 

rhythms, which were recorded from bipolar channels anterior and posterior to C3, C4, 

and Cz. Training sessions consisted of a right or left arrow being shown to the subject for 

1.25 s, after which he had 4 s to perform motor imagery of the appropriate limb, such as 

the right or left hand, and he received feedback in the form of a cursor moving to either 

the right or left. The performance of a two class linear discriminant analysis classifier 

using six features was evaluated for different pairings of motor imagery, and it was found 

that both feet vs. right hand imagery attained the highest accuracy at 95%. Eventually, the 
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subject was able to use this imagery to control the opening and closing of a hand orthosis 

with almost perfect accuracy, and was even able to grasp and lift objects. 

In 2003, Pfurtscheller et al. (26) reported another study which was very similar in nature 

except that FES of the forearm was used rather than a hand orthosis. The FES allowed for 

the sequential execution of one of five distinct phases of stimulation for performing a 

lateral hand grasp. Each time motor imagery of both feet was correctly classified, the next 

phase in the movement was triggered. It is important to note that motor imagery of the 

feet was found to be the easiest for the subject to control and produced the greatest 

modulation in EEG, but the imagery does not correspond with the limb movement being 

actuated. For rehabilitative purposes, it is important that the motor imagery (or 

preferably, a motor attempt) is of the limb that is being targeted in the therapy. 

Otherwise, the sensory feedback is not physiologically correlated with the activation of 

the motor cortex. Therefore, this application can be seen as an assist device rather than a 

rehabilitative device, as no functional improvement would be expected once the orthosis 

or stimulation is removed.  

A case study in 2009 by Daly et al. (27) investigated the use of a BMI and FES for the 

restoration of isolated finger movements in a stroke victim. Before beginning the study, 

the subject was able to perform limited movement of her fingers together, and was 

incapable of moving individual fingers. The subject was asked to both attempt extension 

of the index finger and to perform motor imagery of index finger extension in response to 

a cue. In both cases, she was asked to attempt to relax the index finger following each 

extension attempt or imagery. FES to extend the index finger was triggered if band power 

in particular frequency bands was lower for the current trial than the average of the three 

previous trials. If the power was higher than the average, the trial was classified as rest 

and FES was not triggered. The subject underwent 10 weeks of training, during which 

only the BMI was used in order for the subject to learn to control her brain signals. The 

subject was given visual feedback in the training sessions when she successfully activated 

or deactivated her brain signals. Three weeks of treatment followed, during which both 

the BMI and FES were used. Following treatment, the subject was able to move her index 

finger 26 degrees independently of her other fingers. 
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Soekadar et al. (28) in 2011 published results of a BMI study which used MEG to detect 

suppression at 11-14 Hz during left hand motor imagery and trigger finger extension with 

an orthosis. The study included 20 healthy volunteers and 4 subcortical stroke patients 

with an inability to extend one or more fingers. Suppression was detected by comparing 

spectral features to a reference value, which was calculated in one of two ways. For half 

the subjects (10 healthy volunteers, 2 stroke patients), the reference value was determined 

by the power during the rest period preceding an imagery task. In the event that 

suppression was detected, the orthosis extended the subject’s fingers at one of three 

speeds, determined by the level of suppression. The reference value for the other half of 

the subjects was determined by the power during the preceding rest period as well as 

previous imagery tasks. A detection of suppression in this group triggered movement of 

the orthosis at a constant speed. Healthy volunteers participated in 5 sessions and stroke 

patients underwent 15 sessions, with sessions occurring on consecutive days in both 

groups. By the end of the study, performance on the BMI had improved in both healthy 

volunteers and stroke patients from the group with the reference value determined only 

during rest and with feedback graded to the level of suppression. This study suggests that 

graded feedback may be important to motor learning, though it doesn’t confirm this, as 

the results seen could also be due to the differences in determining the reference values.  

 Niazi et al. (29) developed a BMI in eight healthy subjects that detects MRCPs of the 

EEG during motor imagery to trigger PNS. Before and after intervention, TMS was used 

to induce motor evoked potentials (MEPs) of the tibialis anterior muscle as a measure of 

cortical excitability. To train the BMI, subjects performed, on average, a minimum of 30 

self-paced dorsiflexions of their ankles. Subjects were asked to exert a force of 20%-30% 

of their maximum voluntary contraction (MVC) and were given feedback on a computer 

monitor to help gauge their level of force. This data was used to train the BMI to detect 

the initial negative component of the MRCP. The BMI was then tested while the subjects 

performed motor imagery of the ankle dorsiflexions. Detection of motor imagery 

triggered PNS of the common peroneal nerve strong enough to be perceived by the 

subject but not cause a contraction. True positives were indicated by the subject 

extending their right finger 2 s after performing imagery, while extension of the left 

finger indicated a false negative. Across all subjects, the BMI had a true positive rate of 
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67% and a false positive rate of 22%. Offline analysis showed that the BMI detected 

imagery 125±309 ms before onset. As control experiments, four additional subjects 

performed only self-paced motor imagery, and another four only received randomly 

timed stimulation of the common peroneal nerve. The increase in MEP in the BMI 

subjects was significantly greater than in subjects from either control group, indicating 

the increased benefit seen when combining exercise and PNS.  

All these studies make great contributions toward a BMI that can be used in a clinical 

setting to enhance rehabilitation of patients with neurological injuries, though none 

address all the aspects that we ultimately hope to in our research. Recovery of motor 

function may not be possible in all individuals, but for those with the potential for 

recovery, rehabilitation could provide more reliable increases in function than an assistive 

device that must be worn in order to receive any benefit. Logically, for purposes of 

rehabilitation, the motor imagery used to modulate the control signal for the BMI needs 

to correspond with the stimulation being applied or movement of the orthosis. For 

instance, although foot imagery may produce the greatest changes in the sensorimotor 

rhythm, as in Pfurtscheller’s studies, hand imagery must be used if the end goal is to 

recover volitional control of the hand.  

While Daly, Soekadar, and Niazi all address the use of BMIs as rehabilitative tools, there 

are still gaps we hope to fill. Daly and Soekadar both invoke movement of the disabled 

hand/finger, either with FES or an orthosis. Niazi’s study is the only one that looks at the 

usefulness of delivering PNS in response to motor intent. However, his study does not 

require explicit relaxation of the subjects, all of whom were healthy. When applied to a 

patient population, feedback regarding not only mental effort but also relaxation is 

needed, because, as Daly (30) points out, these patients often have difficulty with 

coordinated movements as well as relaxation. Soekadar’s study is the only one that 

provides graded feedback based on the level of effort from the subject. This graded 

feedback, in the form of the speed of finger extension actuated by an orthosis, is only 

determined by the relative amount of suppression in the sensorimotor rhythm. There is no 

evidence provided in the study that correlates the level of sensorimotor rhythm 

suppression with speed of contraction, however. While Soekadar did show that a 
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combination of graded feedback and less adaptive reference values led to greater 

improvements in control of the BMI, no attempts were made to measure functional 

improvements in the stroke patients in the study. Therefore, one can speculate that this 

particular grading of feedback may show little benefit in functional improvements. 

2.6 EEG correlates of exerted force  

A study in 1999 by Mima et al. (31) attempted to find a relationship between the force 

exerted during a sustained finger pinch and EEG power in the alpha, beta, and gamma 

bands. EEG power in the alpha band during forces at 10% to 60% of MVC was 

significantly lower than during rest periods. A negative linear correlation was found to 

exist over the contralateral sensorimotor cortex in this range of forces, though not at 80% 

of MVC. According to Liu et al (32), the frequency components of EEG which are used 

for SMR BMIs don’t capture the complexity of the EEG signal, and therefore are poor 

predictors of muscle force, perhaps explaining the inconsistency seen by Mima at 80% of 

MVC. They instead propose the use of nonlinear measures for this. In their 2005 study, 

Liu and colleagues investigated fractal dimension as a possible EEG correlate of force, 

while in 2009, Yao et al (33) looked at the largest Lyapunov exponent. Both of these 

measures quantify the level of chaos in a deterministic signal. Both studies found that the 

respective features increased nonlinearly as the exerted force increased. None of these 

studies attempted to classify the EEG.   
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Chapter 3: Experimental Design 

In the following discussion, the term “session” is used to define a 60 to 120 minute 

period of data collection, performed once a week. The term “run” is used to describe a 

sequence of 10 to 25 cue presentations, separated by short rest periods. The term “cue” 

describes the visual stimulus used to prompt the subject to perform a handgrip task.  

In these experiments, three sessions of EEG, EMG, and force data were recorded from 

each of five subjects. Each session consisted of runs in which the subject was presented 

with a visual cue and responded by squeezing a hand dynamometer at different levels of 

force. In the analysis, we address the following questions: 

1) Can we distinguish from the EEG signal whether a subject is at rest or 

engaged in a left/right hand motor task?  

2) Can we accurately label segments of a continuously recorded set of EEG 

signals as periods of rest versus left/right hand movement? 

3) Do any EEG features reflect differences in the level of effort exerted by a 

subject in a motor task? 

4) Are any EEG features correlated with varying levels of exerted force?      

All experimental procedures were performed with approval from the University of 

Kentucky’s Institutional Review Board (Protocol Number 11-0686-P4S).  

3.1 Subjects 

Five subjects were recruited from the general public and from the student body at the 

University of Kentucky, between 18 and 35 years of age, with no known health problems. 

All subjects indicated no previous experience with BMIs. Prior to participation in the 

study, individuals were required to give written informed consent. Subjects were 

compensated for their time.  

3.2 Subject preparation 

Prior to each data collection, subjects underwent the process of electrode application. To 

measure EEG, we used active EEG electrodes (g.LADYbird, g.tec, Austria), which 

contain preamplifiers to reduce noise, affixed in an electrode cap (g.GAMMAcap2, g.tec, 
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Austria) for ease of application. Electrode placement, shown in Figure 3.1, was based on 

the International 10-20 system and included the channels C3 and C4, which correspond 

the right and left hand motor areas, respectively. The electrode at AFz was used as the 

amplifier ground and the left earlobe as common signal reference. The cap was secured 

using a chinstrap, tightened to a point that was still comfortable to the subject. To 

confirm proper placement of the electrodes, Cz was measured at 50% from nasion to 

inion as well as 50% between preauricular points. An electrolyte gel (g.GAMMAgel, 

g.tec, Austria) was injected in the space between the scalp and the surface of each 

electrode, using a syringe with a curved plastic tip. Ideal contact was confirmed by 

inspecting the EEG trace for alpha waves, observed when a subject is relaxed with eyes 

closed, eyeblink artifacts, and EMG artifacts from the subject clenching his jaw, as 

shown in Figure 3.2. If inadequate contact was suspected for an electrode, the tip of the 

syringe was used to push hair from under the electrode to expose the scalp, and more 

electrolyte gel was applied as needed.  

For the initial sessions, EMG was recorded from the flexor carpi radialis and flexor 

digitorum superficialis muscles of both the right and left forearms. Prior to electrode 

application, the forearm and elbow were lightly abraded with an alcohol pad to remove 

dead skin cells and oil, and then the alcohol was allowed to dry. Two Ag/AgCl recording 

electrodes (Blue Sensor M, Ambu, Denmark) were placed on each forearm, with the 

recording electrode placed at one-third the distance from the medial epicondyle of the 

humerus to the styloid process of the radius, and the reference electrode placed 2 inches 

distal, as shown in Figure 3.3. The ground electrode was placed on the bony prominence 

of the elbow. 

3.3 Data collection 

Refer to Table 3.1 for the sequence of runs during each of the recording sessions.  

In each subject’s initial session, EMG and grip force were measured in separate trials for 

the right and left hands. EMG was collected with a 16 channel biosignal amplifier 

(g.USBamp, g.tec, Austria), which band pass filtered (2-200 Hz) and sampled the signal 

at 512 Hz. The data was then written to a LabVIEW TDMS file (National Instruments, 

Texas). The force was measured with a hand dynamometer (Vernier, Oregon) and 

13 
 



sampled at 512 Hz with a data acquisition board (NI USB-6251, National Instruments, 

Texas) and written to a separate TDMS file. After the first session, this data was analyzed 

to confirm that a correlation exists between the EMG and grip force for the subject. If this 

was confirmed, only the force was recorded in subsequent sessions instead of EMG. This 

enabled us to continue recording 16 channels of EEG and also decreased the preparation 

time for following sessions.  

EEG signals were band pass (0.5-60 Hz) and notch filtered (60 Hz), and then digitized 

and sampled at 512 Hz by a biosignal amplifier (g.USBamp, g.tec, Austria) and written to 

a TDMS file. Force data was sampled at 512 Hz with a data acquisition board (NI USB-

6251, National Instruments, Texas) and stored to a separate TDMS file. A copy of the 

visual cue state was sampled by both devices and recorded to their respective files to 

ensure that the data on the two could be properly aligned during offline analysis. A 

custom LabVIEW program which incorporated g.HIsys software (g.tec, Austria) was 

used to control the data acquisition and stimulus (visual cue) presentation. All this was 

performed on a single laptop (Dell Precision 4600) running the Windows 7 operating 

system.   

Subjects were seated upright in a recliner approximately 1 m from a monitor for the 

duration of the experiment.  

3.3.1 Sham stimulus presentation: initial session 
In a subject’s initial session, after application of the electrodes, they were shown the 

stimuli that were later used as a cue to perform the handgrip tasks. At this point, the 

subjects had never seen the stimuli or been told their purpose before so the stimuli have 

no meaning to them. The subjects are simply asked to sit quietly and focus on the screen 

while the stimuli are presented. Therefore, any cortical response in a subject’s EEG seen 

during stimulus presentation while naïve to the task can be considered a visual evoked 

potential (VEP), a passive response of the cortex to the stimulus. This trial served as a 

control to confirm that the cortical responses seen while a subject is performing the 

handgrip tasks are indeed due to the task and not VEPs.  
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3.3.2 Measurement of right and left MVC 
Each session began with a calibration of the subject’s MVC for both the right and left 

hands. Force data was collected at a rate of 200 samples/second. During this portion of 

the experiment, the subjects were given a three second countdown to prepare for the five 

second MVC collection. During MVC collection, subjects were shown a gauge of their 

exerted force. The 1000 samples collected were smoothed using a 51 sample moving 

average and the maximum resulting value was taken as the MVC. 

3.3.3 Measurement of EMG and grip force: initial session 
The initial session also included recordings of 12 channels of EEG, 4 of EMG, and force 

exerted by each hand on the dynamometer. During these runs, the subjects were shown 

cues, during which time they were asked to squeeze the hand dynamometer at uniformly 

distributed percentages between 5 and 75% of MVC. Ten cues were given during this run 

with each target percentage performed once, cued in random order. This data was 

analyzed to confirm that EMG from the forearm and grip force are correlated. If this was 

found to be true for a subject, EMG was not recorded in future sessions, reducing the 

setup time for sessions and allowing all 16 channels of EEG to be recorded. 

3.3.4 Measurement of EEG and grip force 
All sessions included the measurement of EEG and force. Runs were performed with a 

single target force (20%, 35%, or 50% MVC) with 15 repetitions, as well as with varying 

target force (uniformly distributed between 5 and 75% MVC) with 25 repetitions. The 

right hand task was always performed first, followed by the left hand. The performance 

of the task was cued with the aforementioned stimuli, shown in Figure 3.4. During the 

trials, a fixation cross was visible in the center of the screen during rest periods to aid the 

subject in focusing their gaze on the center of the screen. The cue was presented as a 

solid gray dot surrounded by three larger black lines in the center of the screen, 

prompting the subject to begin performing the hand grip task. As the subject increased 

their exerted force, the gray dot grew in size. The subject’s goal was to exert a force that 

kept the gray dot as close as possible to the second of the three outer circles, which 

represented the target force, and within the first and third circles, which represented 

±10% of MVC from the target force. In cases where subjects showed fatigue during the 

variable force runs, the MVC was lowered to 75% of its original value, essentially 

15 
 



changing the range of target forces to 3.75% to 56.25% of MVC. This was done in order 

to ensure that subjects would be able to reach the target force as well as decrease 

muscular artifacts that can occur in the EEG when subjects strain to reach the target.   

3.4 Data analysis 
Refer to Table 3.2 for a summary of the data analysis 

3.4.1 Correlation between EMG and grip force 
Before determining if EMG and force are correlated, both signals were conditioned. 

EMG was first filtered with a 4th order Butterworth high pass filter, with the cutoff 

frequency set to 10 Hz. The signal was then notch filtered with a 4th order Butterworth 

filter with cutoffs at 59.5 and 60.5 Hz to eliminate power line noise. The root-mean-

square (RMS) value of the EMG was then calculated using the equation 
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where i is one point in time, fs is the sampling rate in Hz, and x is the filtered EMG 

signal. Note that this implementation results in an RMS that is fs/10 samples shorter than 

the filtered EMG signal. In this case, the RMS was zero-padded with n/2-1 samples at the 

beginning and n/2 samples at the end. The force signal was smoothed using a 100 ms 

windowed moving average, and then Pearson’s linear correlation coefficient between the 

two signals was calculated.   

3.4.2 Preprocessing of EEG and force data 
Prior to any analysis of the EEG and force signals, several steps were followed to first 

condition the signals and select data representative of rest and task periods. As previously 

mentioned, the EEG and force data were recorded to separate files because they were 

sampled by different hardware. Because the sampling was controlled individually by each 

device, there was the possibility of small sampling rate errors leading to EEG and force 

files of different lengths. The state signal on each file was paramount in aligning the data 

from the two files. The first step taken to align the data from the two files was to remove 
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any baseline recording in excess of 2 s before the first change in state cue (from rest to 

task). In the event that there were 2 s or less of baseline recording, no data was removed. 

After aligning the beginnings of the data, the lengths of the remaining EEG and force 

data were evaluated. If one was longer than the other, samples were removed from the 

end of the longer dataset so that the two datasets were the same length.  

After shortening the EEG and force recordings, if necessary, the EEG signals were 

spatially filtered. If all channels were of acceptable quality, a Laplacian spatial filter was 

used in order to remove signal common to the surrounding geographical area of the 

scalp (35). The Laplacian filter approximates the second derivative of the electrical 

potential and emphasizes current sources (or sinks) directly beneath its spatial center. It is 

computed using the equation 
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where  

i = FC1, FC5, CP1, CP5 when j = C3 

i = FC2, FC6, CP2, CP6  when j = C4 

i = CP1, CP5, PO7, PO1 when j = P3 

i = CP2, CP6, PO8, PO2 when j = P4 

 

This left the spatially filtered C3, C4, P3, and P4 channels for analysis. In the case of 

Subject 1, who had poor signal quality on at least one channel of the Laplacian 

neighborhood that affected multiple runs, bipolar derivations (e.g., C3-FC1, C4-FC2, 

P3-PO1, and P4-PO2) were used to improve spatial resolution without contaminating the 

signal with a bad channel (36).   

At this point, the four spatially filtered EEG channels were analyzed for artifacts. First, 

the signal was high-pass filtered with a cutoff of 30 Hz and the instantaneous power 

estimated as the mean-square value calculated over a 250 ms window. The background 
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power was calculated by applying a median filter to the mean-square power, with a 

subject-specific filter size based on the time scales of artifacts typical of each subject. A 

dimensionless power ratio was determined by dividing the mean-square power by the 

background power, which suppressed the background signal and emphasized signal due 

to artifact. A subject-specific threshold was then applied to the power ratio to locate the 

occurrence of artifacts. Portions of the signal that crossed the threshold on any channel 

were marked and excluded from analysis. 

3.4.3 Selection of data for analysis 
Because the data from the EEG and force files cannot be assumed to have one-to-one 

correspondence in samples, segments of rest and task data were taken from each file, 

using the state recording to ensure that the data was aligned to the closest degree possible. 

For each occurrence of rest and task, segments of 2 s were selected. Each rest period had 

a randomized duration between 3 and 5 s (uniformly distributed), and each task period 

had a duration of either 3, 4, or 5 s, depending on the type of task performed. To select 

data for analysis from rest and sham periods, a 1 s delay from the state change was 

automatically added. In the case of rest segments, this delay was to allow the subject to 

return to a resting state following task. An automatic delay of 500 ms from the beginning 

of a task period was used in order to allow the subject time to react to the stimulus. This 

delay also reduced or eliminated data the amount of data containing visually evoked 

potentials in response to the cues, which is discussed in 3.4.4. 

The selection of the 2 s segments of the remaining periods was then determined using the 

force signal. In the case of rest and sham segments during the sham runs, where no force 

signal was recorded, all segments for analysis were taken with the automatic 1 s delay. 

For all other runs, the force signal was smoothed with a 100 ms moving average, and then 

the variances of 2 s long windows were calculated for each possible window during a 

period, shifting the window by one sample for each calculation. The window that had the 

lowest variance for each task or rest period was then selected for analysis, and the delay 

from the state change was recorded. This method for selecting data segments was chosen 

because it was assumed that a subject’s exerted force would have the least amount of 

variance when the target force level for a task period was reached. Likewise, it was 
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assumed that during rest periods the force variance would be smallest when the subject 

was not exerting any force. To control for the possibility that a subject may not have 

always reached a steady force, segments during task periods with variance which met the 

criteria for outliers on a boxplot (37) were identified and excluded from analysis. The 

task indices were then paired with the preceding rest indices, which ensured an equal 

number of rest and task samples for analysis.     

3.4.4 Evaluation of visually evoked potentials 
To determine if visually evoked potentials (VEPs) occurred in response to the cues for an 

individual subject, signal power on C3, C4, P3, and P4 was calculated from 1 s before 

cue onset to 1 s after cue offset during the sham stimulus run. The power spectrum was 

estimated over 500 ms windows with 250 ms overlap between windows, resulting in 2 Hz 

frequency resolution and 250 ms time resolution. Because all further analysis is limited to 

8-40 Hz, as explained in section 3.4.5, power data beyond this range was excluded from 

VEP analysis. To determine if a visual response occurred, paired t-tests were performed 

for each frequency range by pairing the power values immediately preceding cue onset 

(t = -0.5 to 0 s) with the power values from all other points in time. Each t-test was 

performed with an alpha of 0.05 and indicates whether a change in power after cue onset 

was significant in each time segment thereafter. To correct for 16 different t-tests (8 to 40 

Hz in 2 Hz wide bands) at each time point, results were considered significant if 

p < α/16.  

3.4.5 Comparison of task and rest 
To aid in selection of features for classification, analysis of variance (ANOVA) was 

performed on data that would be used to train the LDA classifier. In order to maximize 

the amount of training data, the 50% MVC runs from sessions 1 and 2 were pooled 

together after confirming that the power distributions were similar between the two 

sessions. Next, the power of the previously selected 2 s long windows of data 

representing rest, sham, right, and left were calculated for the 4 channels using 

Thomson’s multitaper spectral estimation method (38). The power from 8 to 40 Hz was 

integrated over 4 Hz bins. Power below 8 Hz was excluded because of the possible 

contamination by ocular artifacts that were not fully removed with spatial filtering. The 

upper limit of 40 Hz was chosen as an insignificant amount of relevant EEG information 
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is expected above that point.  In addition to calculating band power on each channel, the 

Teager energy, a nonlinear, instantaneous measure of total power, and sample entropy, a 

measure of signal complexity, were also calculated as additional features for each of the 

four channels (39; 40). ANOVA was then performed on the band power, Teager energy, 

and sample entropy data of the selected segments, comparing the values for rest, right, 

left, and sham periods across four channels (C3, C4, P3, P4). 

3.4.6 Classification of task and rest 
Offline classification using LDA was performed on data from rest, right, and left periods 

from 50% MVC runs, and rest and sham periods from the sham stimulus run. The 

50% MVC runs were chosen for this section of analysis, as we theorized that the contrast 

between the EEG features during rest and task would be greatest for 50% MVC tasks. 

The classifier was trained on the features from sessions 1 and 2 and tested on the data 

from session 3. LDA classification was performed using two different sets of features for 

each subject: the first set used the band power from 8-10, 10-12, 16-24, and 26-30 Hz on 

all four channels as features, plus each channel’s Teager energy and sample entropy, for a 

total of 24 preset features, and was applied to both the training and testing data sets; the 

second set of features was the 16 most significant features determined from ANOVA of 

sessions 1 and 2 and was applied only to the testing data set. To perform LDA 

classification, each spatially filtered channel was first band pass filtered to the desired 

frequency bands and then squared to convert the signals to power. Teager energy was 

calculated for each channel, and then the band power and Teager energies were smoothed 

with a 250 ms moving average. The signals were then decimated, reducing the time 

resolution to 250 ms, and band power converted to decibels. The cue state signal was also 

decimated. Because an accurate estimate of predictability requires more than 250 ms of 

data, sample entropy was calculated for each channel over 500 ms windows every 250 

ms. Finally, the band power, Teager energy, and sample entropy were all smoothed using 

an 8th order median filter.  

At this point, there were 24 (or 16) continuous features in each set, with each sample 

containing (either all or a combination of) 250 ms of band power data, 250 ms of Teager 

energy, and 500 ms of sample entropy for each right and left hand 50% MVC run and the 

20 
 



sham stimulus run. The corresponding state signals now consisted of 8 consecutive rest 

segments and 8 consecutive task (or sham) segments, separated by a variable number of 

segments excluded from analysis for reasons previously stated. These 8 segments 

corresponded to the 2 s windows established in section 3.4.3. To form the training set for 

the classifier, the state codes and data segments representing rest and task from each 50% 

MVC run of sessions 1 and 2 and sham stimulus run of session 1 were extracted and 

concatenated to form one feature array and one state vector.  The LDA was then cross-

validated by randomly selecting 90% of the data to train the classifier and testing its 

performance on the remaining 10%. This process was repeated 10 times and the average 

results recorded. 

The features of the 50% MVC runs from session 3 were then calculated and the 2 s 

windows extracted to form the testing set. It is important to note that the sham stimulus 

run was only performed during session 1, as this was the only point in time when the 

subjects were naïve to the visual cue and motor task. Therefore, the LDA classifier was 

trained with sham tasks but there were no true sham tasks in the testing set. The training 

set feature values and corresponding states and testing set feature values were then used 

as inputs for the Matlab “classify” function, which returns the predicted states of the 

testing set based on LDA. The performance of the classifier was then evaluated by 

comparing the true and predicted states of the testing set. To better evaluate the 

performance of the classifier on the testing set data, the performance expected by chance 

was also determined. To do this, the true states of the testing data were randomly 

reassigned to the feature data and the four measures of performance calculated. This was 

repeated 100 times, and the means for sensitivity, specificity, positive predictive value, 

and accuracy were taken as the performance expected by chance.  

To estimate how the LDA classifier would perform online, classification of session 3 was 

performed a second time using the continuous signal rather than just the selected 

segments of data. Features were calculated every 250 ms for the duration of the run, 

regardless of whether the signals contained artifacts or were during a period of unsteady 

force. This more closely mimics how the LDA classifier would function during a real-

time task. 
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3.4.7 Comparison of varying levels of force 
ANOVA was again performed, this time using power data from runs with 20%, 35%, and 

50% MVC target force on a single hand. The same process was followed as previously 

described in 3.4.5. This iteration of ANOVA indicated possible candidate features for 

discriminating between rest, 20%, 35%, and 50% MVC on the right or left hand. As 

before, ANOVA was performed on data pooled from sessions 1 and 2 to identify 

candidate features for the LDA classifier. 

3.4.8 Classification of varying levels of force 
LDA classification was performed on data from varying levels of force using the same 

process as was used for classifying rest, right hand task, left hand task, and sham periods. 

Performance expected by chance was also calculated. However, in this case, the testing 

set contained all the states that were in the training set, as sham periods were not included 

in this analysis.  

3.4.9 Correlation between EEG and force 
To determine whether a correlation exists between components of EEG and force, data 

from the randomized MVC runs was used in order to obtain samples ranging from 5 to 

75% MVC. Each subject’s data was pooled across sessions 1 and 2 and runs 11 and 13 

for the right hand, and runs 12 and 14 for the left hand. The 40 features used in ANOVA 

were log-scaled and plotted in a scatter plot as a function of force. A first order equation 

was fit to the log-scaled data from task segments and the Pearson correlation coefficient, 

ρ, and its significance, calculated.  

3.4.10 Correlation between sample entropy and force across subjects 
Correlation between sample entropy and force was also investigated across subjects. 

Sample entropy was chosen because it is amplitude invariant and therefore should be the 

least affected by the differences in amplitude between sessions and subjects. Sample 

entropy values during rest periods were assigned the force of the following task period. 

Each subject’s task and rest data was separated into 10% MVC-wide bins from 5% to 

75% MVC. Percent MVC was used in this portion rather than Newtons as there was a 

wide range between the subjects’ absolute forces. The mean sample entropy of each bin 

was calculated separately for task and rest periods. The subject means were then averaged 

across subjects and the results plotted. As in the individual subjects’ analyses, a first 
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order equation was fit to the means for each channel, and the correlation coefficient and 

significance calculated   
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Table 3.1. Order of runs in experimental sessions 

All experiments followed the order listed below. The term “Run” is used to define a 

continuously recorded group cue of presentations, separated by short rest periods, while 

the term “Session” is used to define the group of runs recorded in one day. All sessions 

began with Run 1 (electrode application). Run 2 (sham stimulus) was only performed in 

the first session. Right and left hand MVC was measured in all three sessions. Runs 3 and 

4 (recordings of force with EMG) were only performed during the first session. Runs 5 

through 10 required the subject to respond to the cues with one level of force for the 

entire run, and were performed in all three sessions. Runs 11 through 14 were also 

performed in all three sessions, and the target force for each cue presentation varied 

between 5 and 75% of MVC. Task duration indicates the amount of time subjects were 

given to respond to each cue, and Min ISI is the minimum rest period between two cues. 

Run Hand % MVC # cues Task 
duration Min ISI Sessions 

01 Electrode application - - - 1, 2, 3 

02 Sham stimulus 15 3s 3s 1only 

 Measure R and L hand MVC - - - 1, 2, 3 

03 R w/EMG Random 10 4s 3s 1 only 

04 L w/EMG Random 10 4s 3s 1 only 

05 R 50% 15 4s 3s 1, 2, 3 

06 L 50% 15 4s 3s 1, 2, 3 

07 R 35% 15 4s 3s 1, 2, 3 

08 L 35% 15 4s 3s 1, 2, 3 

09 R 20% 15 4s 3s 1, 2, 3 

10 L 20% 15 4s 3s 1, 2, 3 

11 R Random 25 5s 3s 1, 2, 3 

12 L Random 25 5s 3s 1, 2, 3 

13 R Random 25 5s 3s 1, 2, 3 

14 L Random 25 5s 3s 1, 2, 3 
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Table 3.2.  Order of data analysis 

The table below lists the different sections of data analysis performed, what data was 

used for each step of the analysis, as well as the sections of the text that discuss the 

analysis process and results. Refer to Table 3.1 for descriptions of each run. 

    Data used in analysis See text section 
Analysis   Session(s) Run(s) Analysis Results 
Subject-by-subject analysis         

Correlation of 
EMG and grip 

force 

Right hand 1 Run 3  3.4.1  4.1 
Left hand 1 Run 4 

Evaluation of 
visual evoked 

potentials 

  1 Run 2   3.4.4  4.2 

Comparison of 
task and rest 
(ANOVA) 

  1 Run 2, Run 5, Run 6  3.4.5   4.3 
  2 Run 5, Run 6  

Classification 
of task and rest 

Classifier training 1 Run 2, Run 5, Run 6   3.4.6  4.4 
2 Run 5, Run 6 

Classifier testing 3 Run 5, Run 6 
Comparison of 
varying levels 

of force 
(ANOVA) 

Right hand 1 Run 5, Run 7, Run 9  3.4.7 4.5  
2 Run 5, Run 7, Run 9 

Left hand 1 Run 6, Run 8, Run 10 
2 Run 6, Run 8, Run 10 

Classification 
of varying 

levels of force 

Classifier training 
(Right hand) 

1 Run 5, Run 7, Run 9  3.4.8  4.6 
2 Run 5, Run 7, Run 9 

Classifier testing 
(Right hand) 

3 Run 5, Run 7, Run 9 

Classifier training 
(Left hand) 

1 Run 6, Run 8, Run 10 
2 Run 6, Run 8, Run 10 

Classifier testing 
(Left hand) 

3 Run 6, Run 8, Run 10 

Correlation of 
EEG and grip 

force 

Right hand 1 Run 11, Run 13 3.4.9   4.7 
2 Run 11, Run 13 

Left hand 1 Run 12, Run 14 
2 Run 12, Run 14 

Across subject analysis 

Correlation of 
sample 

entropy and 
grip force 

Right hand 1 Run 11, Run 13  3.4.10  4.8 
2 Run 11, Run 13 

Left hand 1 Run 12, Run 14 
2 Run 12, Run 14 
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Figure 3.1.  Placement of EEG electrodes according to International 10-20 system 

Sixteen channels plus ground (AFz) and reference (left earlobe) were collected during 

each of the subjects’ three sessions. This configuration was chosen to allow Laplacian 

spatial filtering of C3 (minus the average of FC1, FC5, CP1, CP5), C4 (FC2, FC6, CP2, 

CP6), P3 (CP1, CP5, PO1, PO7), and P4 (CP2, CP6, PO2, PO8) in order to improve the 

spatial resolution of the signals. In cases where one or more channels had poor signal 

quality, bipolar channels (e.g. C3-FC1) were used rather than Laplacian spatial filtering. 
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Figure 3.2.  EEG components of good scalp-electrode contact 

(Top) While a subject is sitting with his eyes closed, strong alpha rhythms are visible 

across many channels. Here, from bottom, CP1, CP2, CP5, and CP6 are shown. (Middle) 

Ocular artifacts (from bottom: FC1, FC2, FC5, FC6) should be easily visible on the traces 

of anterior channels. They are much weaker on posterior channels. (Bottom) EMG 

artifacts from jaw clenching can be seen across all 16 EEG channels. 
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Figure 3.3.  Placement of EMG electrodes 

EMG was recorded from the flexor carpi radialis and flexor digitorum superficialis 

muscles of both the right and left forearms. The EMG electrodes were placed 2 inches 

apart on the forearm, with the ground electrode located on the bony prominence of the 

elbow.  
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Figure 3.4.  Cues shown to subjects 

The stimulus presented to subjects is a simple gray dot in the center of three circles. As 

the subject increases his force on the dynamometer, the gray dot grows in size. The solid 

middle line represents the target force, while the dotted lines represent +/-10% of the 

subject’s MVC from the target. The subjects are instructed to keep the dot between the 

two dotted lines, and to try to reach the solid line. 
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Chapter 4: Results 

4.1 Correlation between EMG and grip force 

The calculated linear correlation coefficients between the RMS of EMG and grip force 

are shown in Figure 4.1. The initial sessions gave coefficients greater than 80% for both 

the right and left arms for all subjects, except for Subject 1. Subject 1 had a correlation of 

72% on the right arm for session 1, so EMG and force were recorded again from the right 

arm in session 2, which gave a correlation of almost 86%. These results suggest that 

exerted grip force can be used as a reliable indicator of muscle activity when looking for 

EEG features predictive of motor effort.  

4.2 Evaluation of VEPs 

VEPs in response to the sham cues were found to vary greatly between subjects as well as 

between channels. Figure 4.2 shows the responses on C4 of Subject 1 and P3 and P4 of 

Subject 5. Short-lived, significant changes were seen on C4 of Subject 1 at 1-1.5 s and P4 

of Subject 5 at 0.5-1 s. Subject 5 showed longer-lasting changes on P3, reaching 

significance at 1-2.25 s after cue onset, and again at cue offset at 3-4 s. Though some of 

the other channels and subjects did exhibit some transient response to the cue, none 

reached significant levels. The changes that did occur had no discernible consistency in 

terms of timing or frequency.  

4.3 Comparison of task and rest 

In this section, signal power from 8 to 40 Hz in 4 Hz-wide bins, as well as Teager energy 

and sample entropy, were compared for rest, sham, right, and left data from sessions 1 

and 2. Post hoc analysis was performed on any features found to be significant in order to 

determine which pairs of groups (rest, sham, right, left) had significant differences. 

The results of ANOVA for Subject 1, shown in Figure 4.3 reveal that P3-PO1 and P4-

PO2 discriminate better between at least two states than C3-FC1 and C4-FC2. The best 

discrimination in the band power features is achieved at 8-24 Hz, with all channels 

showing significance in this range. Teager energy and sample entropy are most 

significant on P3-PO1 and P4-PO2. The results of the post-hoc pair wise comparisons 

30 
 



show that multiple features allow for discrimination between each of the combinations of 

tasks.  

All channels were significant for Subject 2 at 8-24 Hz, as seen in Figure 4.4. Sample 

entropy was very significant on all channels, while Teager energy had the greatest 

significance on P3 and P4. The greatest number of features discriminated between rest 

and right/left, though all pairs of tasks were found to be significantly different in at least 

two features.  

The results for Subject 3, shown in Figure 4.5, reveal that all channels were significant at 

8-24 Hz with the greatest significance on P3 and P4 at 12-20 Hz. Teager energy was 

more significant than sample entropy, again with the greatest significance on P3 and P4. 

Pair wise comparisons of the features show that all four channels contain features that can 

discriminate between rest and right or left. Features of P3 and P4 allow for discrimination 

between rest and sham, while features of C3 and C4 allow for the discrimination between 

sham and rest or left. 

Figure 4.6 shows that all features for Subject 4 were found to have significant differences 

between two or more states. The most significant differences in power were primarily at 

8-24 Hz. Overall, Teager energy was more significant than sample entropy. A large 

number of features contained significant differences between rest or sham and right or 

left. The parietal channels, P3 and P4, both had features with significant differences 

between rest and sham, while C3 and C4 each contained one feature with significant 

differences between right and left.  

Subject 5 had significant results from ANOVA on all channels at 8-20 Hz, though the 

significance is much greater on P3 and P4, shown in Figure 4.7. Teager energy and 

sample entropy were highly significant on P3 and P4, while C3 and C4 showed a lower 

level of significance for sample entropy, and no significance in Teager energy. At least 

one feature of each of the four channels contained significant differences between rest 

and right or left. No features contained significant differences between right and left.  
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4.3.1 Summary 
In general, band power showed a greater difference between states in the lower 

frequencies than the higher frequencies. The most significant differences were found at 8-

20 or 8-24 Hz for all subjects. In addition to signal band power, Teager energy and 

sample entropy were proven to vary between different states for all subjects. Overall, 

there were not only more features found to be significant on P3 and P4 than C3 and C4, 

but these features also had greater significance. Across all subjects, the greatest number 

of features contained differences between rest and right/left, and the least number of 

features contained differences between right and left.    

4.4 Classification of task vs. rest 

The performance of the classifier was quantified with sensitivity, specificity, and positive 

predictive value (PPV) for each state, as well as overall accuracy across all states. The 

sensitivity indicates the proportion of state x segments which are correctly classified as 

state x, while the specificity indicates the proportion of non-state x segments which are 

correctly identified as not being state x. PPV indicates how often segments classified as 

state x are actually state x, and the accuracy is the percent correct classifications for all 

states. All four measures are shown for each state for the cross-validation using the 24 

preset features, the testing set using the 24 preset features, and the testing set using the 16 

most promising features as determined by ANOVA. The performance expected by 

chance was also calculated for each of the four measures during classification of the 

testing set. The cross-validation values represent the mean of the 10 trials, while the error 

bars represent the standard error of the mean. It is important to note that there can never 

be a true positive for sham during out-of-sample classification because sham segments 

were not included in the testing set. Therefore, the sensitivity and PPV for sham are 

always zero when classifying the testing set. Additionally, the overall accuracy was 

computed for classification of continuous signals from session 3. An example of the 

output of a two-class classifier trained on rest and right data and applied to a continuous 

signal is shown in Figure 4.8. 

The results of the classification for Subject 1 are shown in Figure 4.9. Rest was classified 

well in both training and testing sets, reaching a sensitivity of 70% or greater and very 
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high specificity and PPV, indicating that the classifier was more likely to miss rest 

segments than incorrectly label segments as rest. Classification of rest in the testing set 

achieved much higher performance than that expected by chance. Classification of sham 

had very high specificity. Sensitivity was high as well, though the cross-validation PPV 

indicates more than 40% of the segments that were classified as sham were not in fact 

sham. Right was classified well during cross-validation, but classification of the testing 

set with the preset features yielded a low PPV, while the ANOVA-based feature selection 

led to poor specificity and PPV for right. This indicates that there were many segments 

incorrectly labeled as right. The classification of left was good during cross-validation, 

with high sensitivity and specificity. Sensitivity to left in the testing set varied greatly 

between the two sets of features, giving a sensitivity of approximately 45% when using 

the preset features and less than 10% when using the ANOVA-based features. Specificity 

was high with both sets of features, while PPV was relatively low with preset features but 

high with selected features. Both sets of features led to a large number of left segments 

being misclassified as right, with a greater incidence when the selected features were 

used. Classification accuracy was highest during cross-validation of the training data, 

reaching 84%. Classification accuracy of the test data yielded slightly better performance 

with the preset features, achieving 73% accuracy, while the selected features reached 

67% accuracy. The difference in performance between the two sets of features is even 

smaller when applying continuous classification to the testing set, with 58% and 54% 

accuracy when using the preset and selected features, respectively.  

The results of the classification for Subject 2 are shown in Figure 4.10. The classifier’s 

sensitivity to rest decreases slightly from the cross-validation to the test set using the 

preset features, then increases beyond the cross-validation values to 80% when using the 

most significant features from ANOVA.  The lower values for sensitivity to rest are 

counterbalanced by very high specificity and PPV, indicating very few false positives. 

All measures of sham classification perform very well, with the exception of PPV during 

cross-validation, which indicates a high occurrence of false positives. All three 

classifications detected right segments well, shown by the high sensitivity, though the 

relatively low values for specificity and PPV indicate frequent false positives. Finally, 

left was classified fairly well during cross-validation, but the classifier failed to label any 
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segments from the testing set as left when using either set of features. This led to zero 

sensitivity and PPV, but perfect specificity. Accuracy was highest during cross-

validation, reaching 76%. Use of the selected features led to better overall accuracy 

during classification of the test data, reaching 72% compared to 63% with the preset 

features. During continuous classification with the preset features, specificity to rest was 

much lower, while sensitivity to left remained at zero. The overall accuracy was 41%. 

The selected features again perform slightly better on the continuous classification with 

an accuracy of 53%, though a loss of specificity to rest was again seen. 

Figure 4.11 shows the results of the classification for Subject 3. During cross-validation 

slightly more than half of the rest segments were classified as rest, while the sensitivity to 

sham, right, and left were better, all between 70 and 80%. Specificity for all four states 

was very satisfactory, with rest being the highest at above 90% and left being the lowest 

at 86%. The PPV was good for rest, though it was much lower for sham, left, and right, 

indicating a regular occurrence of false positives for those states. Overall, cross-

validation performed with 64% accuracy. When classifying the testing set, the 

performance is much poorer than the cross-validation and with little difference between 

the two sets of features. There is low sensitivity for all states, with rest being the worst 

and left being the best. Specificity had the opposite trend, with rest being perfect and left 

being the lowest around 50%. PPV was again perfect for rest, but hovered around 20% 

for both right and left.  For classification with both sets of features, rest was 

overwhelmingly misclassified as right and left. Out of 224 total rest segments in the 

testing set, 103 and 108 were labeled as right and 89 and 96 were labeled as left when 

using the preset features and ANOVA features, respectively. Right was also misclassified 

as left, with 92 out of 120 using the preset features and 74 when using the ANOVA 

features. The accuracy of classification performs only as well as or worse than chance, 

with 26% accuracy when using the preset features and 23% accuracy with the selected 

features. Continuous classification gives the same results.  

The performance of the classifier for Subject 4 is shown in Figure 4.12. During cross 

validation, there is low sensitivity to rest but high specificity and PPV. Classification of 

sham, right, and left is good in all areas except for PPV, with sham performance being 
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particularly low at 50%. The relatively low sensitivity for rest indicates that many rest 

segments were misclassified. The 50% PPV for sham indicates that the misclassified rest 

segments were most likely classified as sham. Despite these misclassifications, the 

accuracy was fairly high at 77%. During classification of the testing set, classification of 

rest was slightly poorer. The high specificity for sham indicates that few segments were 

misclassified as sham. The sensitivity to right increases for classification of the testing set 

with both sets of features, though specificity drops almost 40% when using the preset 

features, and 15% when using the selected features. There is also a large decrease in PPV 

of right for the testing set, with the 16 selected features providing better performance than 

the 24 preset features. The low specificity and PPV of right is due to the misclassification 

of rest segments as right. When using the preset features, 102 rest segments and 113 right 

segments are classified as right, while the classification using the selected features 

labeled 64 rest segments and 110 right segments as right. Sensitivity to left dropped by 

almost half when using preset features, but almost achieved cross-validation performance 

when using the selected features. The specificity and PPV for left were roughly similar to 

the cross-validation performance for both sets of features.  The reason for the very low 

sensitivity to left when using the preset features is, out of 96 left segments, 25 were 

mislabeled as rest and 25 as right. The slightly better performance with the selected 

features is reflected in the 69% accuracy compared to 60% when using the preset 

features. The selected features again perform slightly better on the continuous 

classification of the testing set with 56% accuracy compared to 51% with the preset 

features.  

The performance of the classifier for Subject 5 is shown in Figure 4.13. During cross 

validation, the overall performance is good, with the exception of PPV for sham and 

right. The large standard deviations of these, shown by the error bars, indicate that there 

was large variation among the 10 trials. There was much less variation in the accuracy of 

the cross-validation trials, which averaged 82%. Classification of the testing set had very 

different results. Sensitivity to rest was only 51% and 45% for the preset and selected 

features, respectively, though specificity and PPV were almost perfect. Specificity for 

sham was very good using both sets of features. Classification of right was very poor in 

terms of sensitivity and PPV, with the preset features giving zero percent for both, and 
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the selected features giving only 3% sensitivity and 11% PPV. However, right had very 

high specificity for both sets of features. These numbers reflect that very few segments of 

other tasks were incorrectly labeled as right, but the majority of the 80 right segments 

were incorrectly labeled as another state. Right was mislabeled as left 78 times when 

using the preset features, and 73 times when using the selected features. This, along with 

the misclassification of rest as left, contributes to the low specificity and PPV for left. 

True left segments were classified very well with the preset features, shown by the high 

sensitivity, while the selected features led to fewer correct detections of left. 

Classification accuracy when using the preset features was 48% and only 40% when 

using the selected features. This difference did not hold with continuous classification, 

with both sets of features performing around 38% accuracy.   

4.4.1 Summary 
The classifier performance for all subjects is shown in Figure 4.14. In general, 

classification performance for Subject 3 was lower than for all other subjects. A mean 

accuracy of 76% (64%-84%) was achieved across subjects during cross-validation of the 

training data. Accuracy decreased to 54% for classification of the test set using both the 

preset (26%-73%) and selected (23%-72%) features. Despite the mean accuracy being 

equal for the two sets of features, for most subjects, one set of features clearly performed 

better than the other. Therefore, the decision of whether preset features or subject-specific 

features should be used should be made on a subject-by-subject basis. For all subjects, the 

classifier performed well on the testing data in terms of not mistaking non-sham 

segments as sham, as well as not mistaking non-rest segments as rest. Two common 

errors of the classifier were labeling left segments as right, or vice versa, as well as 

misclassifying rest as right and/or left. For most subjects, one type of error was seen 

much more frequently than the other.   

4.5 Comparison of varying levels of force 

In this analysis, four states were again compared, with the states being rest, 20%, 35%, 

and 50% of MVC. Sham was not used in this analysis and the states were compared 

separately for the right and left hands.  
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The results of the right hand analysis for Subject 1 are shown in Figure 4.15. All 

significant power features were below 28 Hz. The most significance was found on 

P3-PO1 and P4-PO2, which also had very significant Teager energy and sample entropy. 

The post-hoc pair wise comparisons of the significant features showed that the 

discrimination was only between rest and force. Significance between rest and 35% of 

MVC existed on 21 features, followed by 18 features with significance between rest and 

50% of MVC. Figure 4.16 shows the results for the left hand, which had significance into 

higher frequencies, although the greatest significance was again found below 28 Hz. As 

with the right hand, P3-PO1 and P4-PO2 had the greatest significance. In contrast to the 

right hand analysis, the multiple comparisons revealed some ability to discriminate 

between different levels of force, with seven features showing significance between 35% 

and 50% of MVC, and one feature showing significance between 20% and 50% of MVC.  

Figure 4.17 shows the results of the right hand analysis for Subject 2. The differences 

between levels of force are most significant below 24 Hz and for Teager energy and 

sample entropy. C3, P3, and P4 contain the most significant features. Pair wise 

comparisons of the significant features reveal that most differences occur between rest 

and force. However, two features of C3 had significant differences between 20% and 

35% of MVC, and four had significant differences between 20% and 50% of MVC. One 

feature of P3 contained a difference between 35% and 50% of MVC. The analysis of the 

left hand, shown in Figure 4.18, reveals that the most significance is again contained 

below 24 Hz and in the Teager energy and sample entropy. The significant features on P3 

and P4 are similar to the right hand analysis, but more significance is found on C4 than 

on C3 for the left hand. The pair wise comparisons again show the most differences are 

between rest and force, but one feature of P3 again shows a difference between 35% and 

50% of MVC.  

Right hand analysis for Subject 3, shown in Figure 4.19, revealed that the most 

significance occurred on C3, P3, and P4.  The significance was found in band power 

features below 28 Hz and in the Teager energy and sample entropy. Pair wise 

comparisons indicate that the significance was only between rest and force. The left hand 

analysis is shown in Figure 4.20. The results for P3 and P4 appear similar to those for the 
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right hand. However, there are many more significant features of C4 than C3, though 

Teager energy and sample entropy of C4 have low significance. Pair wise comparisons 

again show that the significant differences are between rest and force, with no 

significance between different levels of force.  

The results of the right hand analysis for Subject 4 are shown in Figure 4.21. The 

significance is fairly widespread across the power features, though the greatest 

significance is contained below 24 Hz on all channels. While the number of very 

significant features (blue) on P3 and P4 are equal, C3 contains more significant features 

than C4. The majority of the differences are between rest and force. However, features of 

C4 and P4 have significant differences between 20% and 35% of MVC as well as 20% 

and 50% of MVC. Figure 4.22 shows the results of the left hand analysis. Teager energy 

and sample entropy are very significant on all channels. The greatest significance on P3 

and P4 is contained below 24 Hz. Fewer features of C3 are found to be significant 

compared to the right hand analysis, while many more significant features are found on 

C4. Pair wise comparison shows that the majority of significant features contain a 

difference between rest and force. However, features of P4 allow discrimination between 

20% and 35% of MVC as well as 20% and 50% of MVC.  

Figure 4.23 shows the results of the right hand analysis for Subject 5. The greatest 

significance in the power features occurs below 20 Hz, with the greatest significance on 

P3 and P4. All channels have significance in the sample entropy, while P3 and P4 have 

significance in the Teager energy as well. The pair wise comparisons revealed that the 

significance only occurred between rest and force and not between the different levels of 

force. Figure 4.24 shows the results of the left hand analysis, which is similar to the right 

hand, though significant differences are found in a broader range of frequencies. Again, 

the greatest significance is found on P3 and P4. As with the right hand analysis, the 

significant differences were most often found between rest and force. One feature of C3 

revealed a significant difference between 20% and 50% of MVC.     

4.5.1 Summary 
In general, the most significance was seen in the lower frequencies, typically at 8-24 Hz, 

and in the Teager energy and sample entropy, with more features of greater significance 
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found on P3 and P4 than C3 and C4. These results are similar to those seen when 

comparing rest, sham, right, and left. Post-hoc analysis of the significant features 

revealed that most of the differences were between rest and the three levels of force. 

Differences between the different levels of force were found for some subjects, with 

significant differences between 20% and 50% MVC found most often.   

4.6 Classification of varying levels of force 

The performance of the LDA classifier was again quantified by the sensitivity, 

specificity, and PPV for rest and each of the three levels of force, and overall accuracy. In 

this classification, all four states contained in the training set are present in the testing set, 

unlike during the classification of the four tasks, for which sham was only contained in 

the training set. Additionally, classification was performed separately for the right and 

left hands. 

The performance of the LDA classifier for the right hand of Subject 1 is shown in Figure 

4.25. During cross-validation, its performance on rest is good by all measures. Good 

specificity is achieved for 20%, 35%, and 50% of MVC, but sensitivity and PPV are 

fairly low for the three levels. Of the three, 50% MVC is classified the best, with 75% 

sensitivity and 64% PPV. Classification of 20% MVC is the worst, with 55% sensitivity 

and 54% PPV. In general, those trends hold true for both classifications of the testing set, 

though the performance is usually lower than that of the cross-validation. When using the 

preset features, the sensitivity and PPV for each of the levels of force drops by 20-30%, 

with drops of less than 10% for specificity, with the specificity of 35% MVC increasing 

by 3%. The selected features provide better performance in most measures than the preset 

features. The sensitivity to rest drops, though it increases for all three levels of force. The 

sensitivity to 35% MVC and 50% MVC increase by approximately 25% compared to the 

preset features, with 50% MVC exceeding the performance during cross-validation. The 

selected features also provide better performance on the test set with regards to PPV for 

the different levels of force. By using the selected features, the PPV for 20% of MVC 

increases by almost 30%, with smaller improvements in performance for 35% and 50% 

of MVC. As expected, overall accuracy is highest during cross-validation at 77%, while 

the preset features yield 60% accuracy and the selected 65%. Application of the classifier 
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to the continuous data from the testing set yielded 47% accuracy with the preset features 

and 50% accuracy with the selected features. 

Figure 4.26 shows the results of the left hand classification for Subject 1. As with the 

right hand, the classifier performed well on rest in all measures during cross-validation 

and when using both sets of features on the testing set. During cross-validation, 

specificity was high for all three levels of force, but sensitivity ranged from 53% to 64% 

and PPV only reached 53%. Overall accuracy reached 72%. When classifying the testing 

set using the preset features, the sensitivity to all three levels of force dropped, with 50% 

MVC achieving only 3%. Specificity to 20% MVC dropped by 15%, while 35% and 50% 

MVC were similar to their cross-validation values. PPV was similar to sensitivity, with 

50% MVC falling to 5%. Accuracy fell by a greater margin to 60% when applied to the 

non-continuous data, and only reached 49% when applied to the continuous data. By 

performing classification using the selected features, performance on 20% MVC and 35% 

MVC dropped by varying degrees, though modest improvements were seen for 50% 

MVC. Classification accuracy however, was lower when using the selected features, 

falling to 55% and 45% when classifying continuous data. For both the right and left 

hands, the classifier is able to correctly detect the majority of the rest segments without 

incorrectly labeling many segments as rest. The difficulty for the classifier is assigning 

the correct labels to the different levels of force. 

The results of the right hand analysis for Subject 2 are shown in Figure 4.27. The 

classifier performance during cross-validation is good for most measures, generally 

staying above 80%, and with an overall accuracy of 84%. However, the PPV for 35% and 

50% MVC only reach 66%. When using the preset features to classify the testing set, the 

sensitivity to rest increases to 95%, though the specificity for rest falls to 22%. There is 

also a steep decrease in the PPV for rest. The low values for specificity and PPV are due 

to a large number of 20% MVC segments getting misclassified as rest. No 20% MVC 

segments are classified correctly, explaining the 0% sensitivity and PPV, but specificity 

to 20% MVC is perfect. Performance for 35% MVC is worse compared to the cross-

validation performance, with 50% sensitivity and only 11% PPV. There is little 

difference in specificity. The classifier also fails to correctly label any 50% MVC 
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segments, leading to 0% sensitivity and PPV. Specificity is very high at 98%. The 

performance when using the selected features is very similar to using the preset features. 

The only notable difference is that sensitivity to 35% MVC is much better at 75%. The 

classification accuracy is fairly low for both sets of features, at 49% with preset and 48% 

with selected features. The classification accuracy is very similar when applied to 

continuous data, with 49% with the preset features and 45% with the selected features. 

The left hand analysis results for Subject 2 are shown in Figure 4.28. During cross-

validation, sensitivity is approximately 75% and specificity is 90% or above for all 

groups. PPV is high for rest, though lower for the three levels of force, being highest for 

35% MVC at 75% and lowest for 20% MVC at 50%. Overall classification accuracy is 

75%. Classification of the testing set is much less consistent across tasks when using both 

the preset features and the selected features. When using the preset features, sensitivity to 

rest drops to 20% though specificity and PPV are perfect. The classifier fails to correctly 

label any 20% MVC segments, resulting in 0% sensitivity and PPV but perfect 

specificity. All 35% MVC segments are correctly labeled, leading to perfect sensitivity. 

However, segments of other groups are misclassified as 35% MVC, which leads to its 

low specificity and PPV. The classifier also fails to correctly label any 50% MVC 

segments, resulting in 0% sensitivity and PPV. Only two segments are incorrectly labeled 

as 50% MVC, which explains the high specificity. By training and testing the LDA with 

the selected features, the results were dramatically different for rest and 35% MVC, while 

there was little difference for 20% and 50% MVC. The sensitivity to rest increased 

almost to cross-validation levels, though its specificity and PPV dropped to 50% and 

60%, respectively, indicating an increase in the number of segments mislabeled as rest. 

The sensitivity to 35% MVC was again perfect, while the specificity increased to 71% 

and PPV to 33%.  The increases in specificity and PPV are a reflection of a decrease in 

the number of rest and 20% MVC segments misclassified as 35% MVC. These increases 

are responsible for the improvement in accuracy from 22% with the preset features (23% 

when applied to continuous data) to 48% with the selected features (44% when applied to 

the continuous data).  

41 
 



Figure 4.29 shows the results of the right hand analysis for Subject 3. During cross-

validation, classification of rest shows specificity and PPV of over 90%, indicating that 

few segments of other groups are misclassified as rest. The sensitivity, approximately 

70%, indicates that over 30% of rest segments are missed. Classification of 20% MVC 

results in high specificity but low sensitivity and PPV. This indicates that many of the 

20% MVC segments were misclassified, and that only half of the segments labeled as 

20% MVC are correct. The results for 35% MVC and 50% MVC were similar to that for 

20% MVC, with slightly worse performance in all measures. Overall accuracy was 64%. 

Classification of the test set using the preset features results in a sharp decrease in 

sensitivity to rest and a maintenance of the specificity and PPV, indicating that more rest 

segments are missed in this classification of the test set. Sensitivity to 20% MVC falls to 

only 2%, with a PPV of 7%, though specificity is high. The majority of 20% MVC 

segments are mislabeled as 35% MVC and 50% MVC, while most of the segments 

labeled as 20% MVC are rest. The best sensitivity of this classification is to 35% MVC, 

though it only reaches 56%. Specificity for 35% MVC is similar at 52%, while the PPV is 

only 17%. Sensitivity and PPV for 50% MVC are also extremely low, with marginal 

specificity. The poor performance in classification of the individual states is reflected in 

the accuracy at 25%, which is only slightly higher than that expected by chance. 

Accuracy remains at 25% when applying the classifier to the continuous data from the 

testing set. Performance of the classifier using the selected features was similarly poor, 

again only reaching 25% accuracy, and drops even further to 22% when applied to the 

continuous data. The greatest change in performance by using the selected features was 

an increase in the sensitivity and PPV for 20% MVC, though both were still very low. An 

improvement was also seen in the sensitivity and PPV for 50% MVC, which reached 

42% and 21%, respectively. In both classifications of the test set, rest was often 

misclassified as 35% MVC or 50% MVC, while the different levels of force were 

mislabeled as one another.  

The results of the classification of the left hand for Subject 3 are shown in Figure 4.30. 

Cross-validation of the training set resulted in 75% sensitivity to rest and over 90% 

specificity and PPV. The performance of the classifier for 20%, 35%, and 50% MVC is 

similar for the three levels of force, with all having lower sensitivity, specificity, and PPV 
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than rest. Overall classification accuracy was 64%. When using the preset features to 

classify the test set, there is very low sensitivity to rest, though specificity and PPV are 

perfect. This is because the classifier does not mislabel any force segments as rest, but 

most of the rest segments are mislabeled as a level of force. Sensitivity and PPV for 20% 

MVC are low, but specificity is high. In this case, more 20% MVC segments get 

mislabeled as a higher force level than get labeled correctly, and almost 75% of the 

segments labeled as 20% MVC are mislabeled. Performance on 35% MVC is worse by 

all measures compared to 20% MVC. Sensitivity is the highest for 50% MVC, though it 

only reaches 51%. Specificity and PPV are also low due to the tendency of rest and 35% 

MVC segments to get mislabeled as 50% MVC. The frequent mislabeling of segments 

leads to the low accuracy of 21%, which is only slightly higher than would be expected 

by chance. When applied to the continuous data, the accuracy drops even further to 19%. 

When using the selected features to classify the test set, little difference is seen in the 

performance regarding rest. However, the sensitivity to 20% MVC decreases while the 

specificity increases slightly, indicating an overall decrease in the number of segments 

labeled as 20% MVC. The sensitivity and PPV for 35% MVC increase, while the 

specificity drops by 10%. These numbers reflect the increase in the number of segments 

labeled as 35% MVC from all classes. There is a slight increase in all measures of 

performance for 50% MVC. Accuracy improves slightly over that seen when using the 

preset features, but still only slightly exceeds that expected by chance, at 25%, when 

applied to the selected data segments, and falls below chance to 20% when applied to the 

continuous data.  

Figure 4.31 shows the results of the right hand analysis for Subject 4.  Cross-validation of 

the training set resulted in fairly good performance on rest, with sensitivity being the 

lowest measure at 78%. Sensitivity to 20% MVC was slightly higher at 82%. Specificity 

for 20% MVC was high, but PPV was less than 70%. 35% MVC only obtained a 

sensitivity of 68% and a PPV of 59%, though specificity was high. The worst 

performance was for 50% MVC with 55% sensitivity and 46% PPV. Overall, 71% of 

segments were classified correctly. By classifying the test set using the preset features, 

half of the rest segments were incorrectly labeled, though few force segments were 

mistaken as rest. The sensitivity to all the force groups was at or below 40%, while 
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specificity was much better with a minimum of 70%. PPV was low, with all three levels 

of force reaching approximately 20%. In addition to rest segments getting mislabeled as 

force, each of the three levels of force were incorrectly labeled as the other two levels of 

force more often than they were correctly labeled, leading to an accuracy of only 39%. 

This accuracy dropped slightly to 35% when applying the classifier to the continuous 

data. By classifying the test set using the selected features, there is a slight increase in 

overall performance, reaching 49% accuracy for selected segments and 43% for 

continuous data. This is shown by the increase in most measures for the three levels of 

force, though it comes at the expense of slightly lower specificity and PPV for rest, as 

more force segments get misclassified as rest.  

Figure 4.32 shows the results of the left hand analysis for Subject 4. Cross-validation on 

the training set performed well on rest for all measures. Performance on 20% MVC 

performed well also, though the PPV was slightly below 80%. There was a lack of 

sensitivity to 35% MVC, with only 63% of the segments being labeled correctly. PPV 

was below an ideal level at 76%, but specificity was very high. Finally, sensitivity to 50% 

MVC was acceptable at 72% and had good specificity. However, PPV was less than 

50%, indicating that more than half of the segments labeled as 50% MVC were actually 

from another state. Overall, 77% of the segments were classified correctly. Classification 

of the test set using the preset features yielded good results for rest, though the sensitivity 

was slightly below the desired level at 78%. Sensitivity to 20% MVC was very low, only 

labeling 38% of the segments correctly. However, specificity was very high. The 

classifier was the most sensitive to 35% MVC, correctly detecting 80% of the segments. 

The relatively lower specificity and low PPV indicate that the classifier also labeled a 

large number of segments from other states as 35% MVC. Sensitivity is the lowest for 

50% MVC at only 24%. A combination of missing many of the 50% MVC segments and 

mislabeling other states as 50% led to a low PPV. However, the specificity was high. The 

preset features led to an overall classification accuracy of 63% when applied to the 

selected data segments and 52% when applied to the continuous data. When classifying 

the test set using the selected features from ANOVA, performance dropped, sometimes 

dramatically, for all states, causing a drop in accuracy to 48%. Classification accuracy of 

the continuous data decreased to 43%. 
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The results of the right hand analysis for Subject 5 are shown in Figure 4.33. Cross-

validation of the training set resulted in a classifier most sensitive to rest at 81%. All 

other measures of performance for rest were also high. The classifier was the least 

sensitive to 20% MVC, though the large error bars indicate there was a large amount of 

variation between the 10 cross-validation trials. The variation was also high for PPV 

which had an average of 73%. Specificity for 20% MVC was very high at 95%. 

Sensitivity and PPV for 35% MVC were marginal at 70% and 67%, respectively, while 

specificity was high. Sensitivity to 50% MVC was relatively high, though PPV was the 

lowest for this class, reaching only 57%. Overall accuracy of classification during cross-

validation was 76%. When applying the classifier to the test set using the preset features, 

the performance between classes was highly varied, correctly classifying 48% of the 

selected data segments, and 42% when classifying continuous data. Sensitivity to rest was 

very low, only detecting 26% of the rest segments. The specificity and PPV for rest were 

fairly high due to a small number of force segments being misclassified as rest. The 

opposite results were seen for 20% MVC, which was detected correctly 80% of the time, 

but had low specificity and PPV due to 184 rest segments and 77 of the 20% MVC 

segments being labeled as 20% MVC. Sensitivity to 35% MVC was lower at 69%, 

though much fewer segments were incorrectly labeled as 35% MVC, leading to a better 

PPV of 63%. Specificity was high. Sensitivity to 50% MVC was the lowest of the three 

levels of force, with 56% of the segments detected correctly. Very few segments were 

incorrectly labeled as 50% MVC, however, which led to the high specificity and 

relatively high PPV. By using the selected features to classify the test set, drastic 

differences were seen in the performance, with some measures improving and others 

doing much worse, leading to a slight drop in accuracy down to 41% when applied to the 

selected data segments, and 36% when applied to the continuous data. There was little 

difference in the sensitivity to rest, but much fewer segments were misclassified as rest, 

leading to an increase in specificity and PPV. Almost all sensitivity to 20% MVC was 

lost, with only 4% of segments being correctly labeled.  Specificity increased, primarily 

due to only 78 rest segments getting mislabeled as 20% MVC. PPV decreased, largely 

due to the inability to detect the 20% MVC segments. Sensitivity for 35% MVC was 

almost perfect, with 103 out of 104 segments getting labeled correctly. However, 
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segments from other states were also labeled as 35% MVC with fairly high frequency, 

resulting in low specificity and PPV. Changing the features of the classifier had the 

smallest effect on the performance of 50% MVC. A 12% increase in sensitivity was seen, 

along with a 12% decrease in PPV, while specificity saw almost no change. 

Figure 4.34 shows the results of the left hand analysis for Subject 5. Cross-validation of 

the training set resulted in high performance for rest. Similar performances were seen for 

all three levels of force, except for slightly lower sensitivity and PPV for each.  The 

greatest difference was seen for 35% MVC, which only had a PPV of 59%. Overall, 

however, classification of the left hand data was better than the right hand, reaching 82% 

accuracy. Consistent with the findings on the right hand analysis of Subject 5, the 

performance of the classifier on the testing set was very different for the four states. The 

preset features led to a sensitivity of 23% for rest, but perfect specificity and PPV. This is 

because many rest segments were mislabeled as force, but no force segments were 

mislabeled as rest. There was very high sensitivity for 20% MVC, but there was low 

specificity and PPV. Although 73 of 80 total 20% MVC segments were correctly labeled, 

178 segments were incorrectly labeled as 20% MVC. Sensitivity and PPV to 35% MVC 

were the worst for all four states at 14% and 15%, but specificity was high. The classifier 

was second most sensitive to 50% MVC, correctly detecting 74% of the segments. While 

PPV was only 60%, specificity was high. Using the selected features for the classifier 

once again resulted in very different performance which was neither consistently better 

nor worse. The selected features led to increased sensitivity to rest by 21%, with little 

change to other measures. The sensitivity to 20% MVC decreased by 30%, but an 

increase in specificity to almost 80% was seen. A large increase in sensitivity to 35% 

MVC occurred, along with an increase in PPV. As with the right hand analysis, changing 

the features of the classifier made little difference in the classification of 50% MVC. 

Though neither set of features resulted in better performance for all states, the preset 

features only reached an overall accuracy of 41%, while the selected features achieved an 

overall accuracy of 52% and more consistent performance between the four groups. The 

slightly better accuracy of classification with the selected features than with the preset 

features was also seen when classifying the continuous data, with 46% with the former 

and 35% with the latter. 
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4.6.1 Summary 
The classifier performance for right hand and left hand tasks of varying levels of force 

across all subjects is shown in Figure 4.35and Figure 4.36, respectively. For both right 

and left hand classifications, much better specificity is achieved than sensitivity. 

Classification accuracy during cross-validation averaged 74% for all subjects for both the 

right (64%-84%) and left hands (64%-82%). Mean accuracy dropped approximately 30% 

for classification of the testing set, with the selected features only performing slightly 

better. For classification of right hand data, the preset features reached a mean accuracy 

of 44% (25%-60%) while the selected features gave a mean accuracy of 46% (25%-

65%). Left hand analysis showed similar results, with a mean accuracy of 42% (21%-

63%) when using the preset features and 45% (25%-55%) when using the selected 

features.  Overall, the classifiers performed best at not mislabeling force segments as rest. 

However, the reverse was not true. Additionally, there was difficulty in distinguishing the 

different levels of force from one another.   

4.7 Correlation between EEG and force 

Visual inspection of the 40 log-scaled features plotted as a function of force revealed 

correlation for some features. There was wide variability in the features during rest, 

which seemed to decrease as force increased. Fitting of a linear equation to the log-scaled 

task data resulted in relatively small, but many significant, correlation coefficients. 

Subject 4 had the highest correlation coefficients, with ρ = -0.6191 and p = 3.45x10-10 on 

C4 at 8-12 Hz for the right hand, shown in Figure 4.37, and ρ = 0.6153 and p = 4.15x10-

11 in Teager energy on P4 for the left hand. These correlation coefficients were much 

higher than those calculated for most of the other features of Subject 4 as well as for 

other subjects.   

4.8 Correlation between sample entropy and force across subjects 

The average sample entropy across subjects as a function of force during right hand grip 

is shown in Figure 4.38. There appears to be a slight upward trend in sample entropy with 

force during the task segments, which is confirmed by the positive slopes of the linear 

equations fit to the data. C4 shows the strongest relationship between force and sample 

entropy in terms of the correlation coefficient and its significance, while P4 had the 
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weakest relationship by both measures. A similar relationship between sample entropy 

and force was not found during the rest segments, as would be expected since force is not 

actually being exerted during these periods.   

Figure 4.39 shows the sample entropy during left hand grip averaged across subjects. 

None of the slopes during left hand task were as steep as during right hand task on C4, 

but a better and more significant fit to the data was achieved on P4. There are no 

significant correlations between force and sample entropy on any of the channels during 

rest periods.  

48 
 



 

Figure 4.1.  Correlation between EMG and force measurements 

The correlation coefficients between RMS power of EMG and grip force measured by a 

hand dynamometer were calculated to confirm that grip force is a reliable measure of 

muscle activity. Grip force was much easier to measure than EMG, as it didn’t require 

skin preparation and placement of electrodes, and was therefore preferred over EMG. 

Correlations between RMS power of EMG and grip force were found to be 80% or 

greater for all subjects, indicating that hand force can be used as a reliable measure of 

muscle activity when looking for predictive EEG features. 
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Figure 4.2.  Visual evoked potentials in response to cue presentation 

Visual evoked potentials due to cue presentation were measured by showing the subjects 

the cue while they were naïve to its meaning. Therefore, any changes in EEG can be 

attributed to the passive visual response to the cue. The figures above show the 

significance levels of paired t-tests comparing the power in 2 Hz wide frequency bands 

during the reference segment (t = -0.5 to 0 s) with the power estimates from all other half 

second time segments. The white stars indicate a significant change in power from 

baseline, with significance at p < 0.003125, using the Bonferroni correction in order to 

achieve an overall significance of p < 0.05. Subjects 1 and 5 were the only subjects that 

showed significant changes associated with the cue presentation. (Top) Subject 1 

demonstrated a significant change in signal power at 1-1.5 s across a 12 Hz wide band. 

(Bottom left) Subject 5 experienced changes from baseline on P3 at t = 1-2.25 s after cue 

presentation and again at cue offset at t = 3 s. (Bottom Right) Subject 5 showed a 

significant response earlier on P4 at t = 0.5-1 s and at lower frequencies than on P3. 
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Figure 4.3.  Subject 1 results of ANOVA comparing rest, sham, right, and left 

(Top) Results are shown as the p-value from ANOVA comparing rest, sham, right, and 

left states. To achieve an overall significance of p < 0.05, the Bonferroni correction was 

applied, and only p < 0.0013 was considered significant. The 16 most significant features 

are marked with white stars and the remaining significant features are marked with white 

squares. It was found that most of the significant differences for Subject 1 were contained 

on P3-PO1 and P4-PO2 at 8-24 Hz and Teager energy and sample entropy. (Bottom) 

Post-hoc pair wise comparisons were performed for significant features from ANOVA to 

identify which pairs of tasks were different. The number of features that showed 

significance between a pair of tasks was tallied for each channel. The white bars inside 

the colored bars represent the 16 most significant features from ANOVA which were 

used in the second LDA classifier. All pairs of tasks had significant differences in 

multiple features. Among the16 most significant features, significant differences were 

found between each pair of tasks.  
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Figure 4.4.  Subject 2 results of ANOVA comparing rest, sham, right, and left 

(Top) Results are shown as the p-value from ANOVA comparing rest, sham, right, and 

left states. To achieve an overall significance of p < 0.05, the Bonferroni correction was 

applied, and only p < 0.0013 was considered significant. The 16 most significant features 

are marked with white stars and the remaining significant features are marked with white 

squares. All channels showed significance in band power at 8-24 Hz as well as on sample 

entropy. The greatest significance was found on P3 and P4, on which Teager energy was 

also highly significant. (Bottom) Post-hoc pair wise comparisons were performed for 

significant features from ANOVA to identify which pairs of tasks were different. The 

number of features which showed significance between a pair of tasks was tallied for 

each channel. The white bars inside the colored bars represent the 16 most significant 

features from ANOVA which were used in the second LDA classifier. Discrimination 

between rest and right or left was found on the greatest number of features. However, 

each pair of tasks had at least two features that contained significant differences between 

the tasks. Among the 16 most significant features selected for the LDA classifier, none 

contained a significant difference between right and left.  
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Figure 4.5.  Subject 3 results of ANOVA comparing rest, sham, right, and left 

(Top) Results are shown as the p-value from ANOVA comparing rest, sham, right, and 

left states. To achieve an overall significance of p < 0.05, the Bonferroni correction was 

applied, and only p < 0.0013 was considered significant. The 16 most significant features 

are marked with white stars and the remaining significant features are marked with white 

squares. All channels showed significant differences in band power at 8-24 Hz, though 

the levels of significance were much greater on P3 and P4 than on C3 and C4. Little to no 

significance was found at 28-40 Hz. (Bottom) Post-hoc pair wise comparisons were 

performed for significant features from ANOVA to identify which pairs of tasks were 

different. The number of features which showed significance between a pair of tasks was 

tallied for each channel. The white bars inside the colored bars represent the 16 most 

significant features from ANOVA which were used in the second LDA classifier. 

Significant differences between rest and right or left were found in the greatest number of 

features, with differences being found on all four channels. P3 and P4 were the only 

channels to contain differences between rest and sham, while differences between sham 

and right or left were found on C3 and C4.  
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Figure 4.6.  Subject 4 results of ANOVA comparing rest, sham, right, and left 

(Top) Results are shown as the p-value from ANOVA comparing rest, sham, right, and 

left states. To achieve an overall significance of p < 0.05, the Bonferroni correction was 

applied, and only p < 0.0013 was considered significant. The 16 most significant features 

are marked with white stars and the remaining significant features are marked with white 

squares. All features were found to contain significant differences between the four tasks. 

The greatest significance was focused on 8-24 Hz band power as well as Teager energy. 

(Bottom) Post-hoc pair wise comparisons were performed for significant features from 

ANOVA to identify which pairs of tasks were different. The number of features which 

showed significance between a pair of tasks was tallied for each channel. The white bars 

inside the colored bars represent the 16 most significant features from ANOVA which 

were used in the second LDA classifier. At least one feature was found to contain a 

significant difference between each of the pairs of states, with the greatest number of 

features containing differences between rest and right and rest and left. The two features 

with significant differences between right and left were not among the 16 most 

significant selected for the LDA classifier.   
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Figure 4.7.  Subject 5 results of ANOVA comparing rest, sham, right, and left 

(Top) Results are shown as the p-value from ANOVA comparing rest, sham, right, and 

left states. To achieve an overall significance of p < 0.05, the Bonferroni correction was 

applied, and only p < 0.0013 was considered significant. The 16 most significant features 

are marked with white stars and the remaining significant features are marked with white 

squares. The majority of significance was found on P3 and P4 in the lower frequencies 

and on Teager energy and sample entropy. (Bottom) Post-hoc pair wise comparisons 

were performed for significant features from ANOVA to identify which pairs of tasks 

were different. The number of features which showed significance between a pair of tasks 

was tallied for each channel. The white bars inside the colored bars represent the 16 most 

significant features from ANOVA which were used in the second LDA classifier. Pair 

wise comparison revealed that at least one feature contained significant differences 

between each of the paired states except for right and left.  
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Figure 4.8.  Classifier output when applied to a continuous signal 

The LDA classifier was trained on EEG data from the 50% MVC right hand runs of 

sessions 1 and 2 and tested on the corresponding run from session 3. Preset features of 

each of the four channels (8-10 Hz, 10-12 Hz, 16-24 Hz, and 26-30 Hz band power 

estimates, as well as Teager energy and sample entropy) were used in the classifier. The 

figure above shows the results applied to a continuous signal from Subject 1. The force 

signal was not used for classification, though the classifier output shows a high level of 

correlation between the two.  
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Figure 4.9.  Subject 1 rest, sham, right, and left classification performance 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for each of the four states, as well as the overall accuracy. Mean results 

of the 10 cross-validation trials are shown in blue, with the error bars representing the 

standard deviation. Also shown is the performance on the testing set using the preset 

features (in red) and the 16 most significant features selected from ANOVA (in green). 

Expected chance performance was estimated for classification of the testing set, and is 

marked by the black stars. The classifier performed fairly well on most states during 

cross-validation, while classification of the testing set gave less consistent results 

between states. The classification using the preset features performed with slightly higher 

accuracy, with 73% of the classifications being correct, while the classification with the 

selected features only reached an accuracy of 67%. All measures of performance when 

using either set of features for classifying the testing set were at or above the level 

expected by chance. 
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Figure 4.10.  Subject 2 rest, sham, right, and left classification performance 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for each of the four states, as well as the overall accuracy. Mean results 

of the 10 cross-validation trials are shown in blue, with the error bars representing the 

standard deviation. Also shown is the performance on the testing set using the preset 

features (in red) and the 16 most significant features selected from ANOVA (in green). 

Expected chance performance was estimated for classification of the testing set, and is 

marked by the black stars. Cross-validation of the training set resulted in poor sensitivity 

to rest, while the PPV for sham was low. Both classifications of the testing set failed to 

detect any left hand segments, with many left segments getting misclassified as right. 

Both sets of features used to classify the testing set resulted in classification performance 

at or above that expected by chance. The overall accuracy was higher when using the 

selected features, reaching 72%, compared to 63% when using the preset features.   
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Figure 4.11.  Subject 3 rest, sham, right, and left classification performance 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for each of the four states, as well as the overall accuracy. Mean results 

of the 10 cross-validation trials are shown in blue, with the error bars representing the 

standard deviation. Also shown is the performance on the testing set using the preset 

features (in red) and the 16 most significant features selected from ANOVA (in green). 

Expected chance performance was estimated for classification of the testing set, and is 

marked by the black stars. Cross-validation resulted in marginal to poor sensitivity to all 

four groups. The PPV was high for rest but low the three other states. Sensitivity was low 

for all four states when using both sets of features to classify the testing set. Both sets of 

features led to a high number of rest segments being misclassified as right and left. 

Sensitivity and specificity to rest in the testing set was similar to that expected by chance, 

while PPV was almost twice the chance level. Both sets of features gave lower 

sensitivity, specificity, and PPV for right than expected by chance, and left performed 

near chance. The accuracy was poor for both classifications of the testing set, reaching 

26% with the preset features, the level expected by chance, and 23% with the selected 

features, slightly below that expected by chance.  

59 
 



 

Figure 4.12.  Subject 4 rest, sham, right, and left classification performance 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for each of the four states, as well as the overall accuracy. Mean results 

of the 10 cross-validation trials are shown in blue, with the error bars representing the 

standard deviation. Also shown is the performance on the testing set using the preset 

features (in red) and the 16 most significant features selected from ANOVA (in green). 

Expected chance performance was estimated for classification of the testing set, and is 

marked by the black stars. Cross-validation of the training set resulted in good 

classification of right and left. However, it lacked sensitivity to rest, and only half the 

segments labeled as sham were correct. There was again a lack of sensitivity to rest when 

classifying the testing set with both sets of features, though it was better than that 

expected by chance. All measures of performance for right and left, as well as overall 

accuracy, were better than chance for both sets of features when classifying the testing 

set. 
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Figure 4.13.  Subject 5 rest, sham, right, and left classification performance 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for each of the four states, as well as the overall accuracy. Mean results 

of the 10 cross-validation trials are shown in blue, with the error bars representing the 

standard deviation. Also shown is the performance on the testing set using the preset 

features (in red) and the 16 most significant features selected from ANOVA (in green). 

Expected chance performance was estimated for classification of the testing set, and is 

marked by the black stars. The classifier performed well on cross-validation for all 

measures, with an overall accuracy slightly above 80%. Classification of the testing set 

using the preset features resulted in good sensitivity but poor specificity to left. 

Specificity was greater than chance, however. There were no correct detections of right 

segments. By using the selected features, 2 of 80 right hand segments were detected, 

resulting in sensitivity and PPV below that expected by chance. Overall, using the preset 

features resulted in an accuracy of 48% while classification using the selected features 

only reached 40% accuracy.  Both these are greater than accuracy expected by chance.  
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Figure 4.14.  Classifier performance for rest, sham, right, and left across all subjects 

Classifier performance during cross validation (CV), out-of-sample validation on the 

testing set with preset features (OS Preset), and out-of-sample validation on the testing 

set with the selected features (OS Select) is shown above for all subjects. There is wide 

variation between the results seen for the subjects except for specificity to rest and sham 

and PPV for rest. In general, the best results were seen during classification of data from 

Subject 4, while the worst performance was seen for data from Subject 3. Poor 

performance was also often seen for data from Subject 5.    
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Figure 4.15.  Subject 1 results of ANOVA of varying levels of force on the right hand 

(Top) Results are shown as the p-value from ANOVA comparing rest, 20%, 35% and 

50% MVC data. To achieve an overall significance of p < 0.05, the Bonferroni correction 

was applied, and only p < 0.0013 was considered significant. The 16 most significant 

features are marked with white stars and the remaining significant features are marked 

with white squares. A greater number of significant features were found on P3-PO1 and 

P4-PO2 than on C3-FC1 and C4-FC2. Significant differences were found at 8-28 Hz 

band power as well as Teager energy and sample entropy. (Bottom) Post-hoc pair wise 

comparisons were performed for significant features from ANOVA to identify which 

pairs of tasks were different. The number of features which showed significance between 

a pair of tasks was tallied for each channel. The white bars inside the colored bars 

represent the 16 most significant features from ANOVA which were used in the second 

LDA classifier. It was found that all significance occurred between rest and the different 

levels of force, but no significant differences were found between different levels of 

force. 
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Figure 4.16.  Subject 1 results of ANOVA for varying levels of force on the left hand 

(Top) Results are shown as the p-value from ANOVA comparing rest, 20%, 35% and 

50% MVC data. To achieve an overall significance of p < 0.05, the Bonferroni correction 

was applied, and only p < 0.0013 was considered significant. The 16 most significant 

features are marked with white stars and the remaining significant features are marked 

with white squares. The majority of significance was contained on P3-PO1 and P4-PO2 

in the band power at 8-24 Hz and in Teager energy and sample entropy. (Bottom) Post-

hoc pair wise comparisons were performed for significant features from ANOVA to 

identify which pairs of tasks were different. The number of features which showed 

significance between a pair of tasks was tallied for each channel. The white bars inside 

the colored bars represent the 16 most significant features from ANOVA which were 

used in the second LDA classifier. It was found that at least one feature allowed for 

discrimination between each pair of tasks, with the exception of 20% vs. 35% MVC. In 

the 16 most significant features, only one feature contained a significant difference 

between two levels of force (35% and 50% MVC). The rest of the significant differences 

were between rest and a level of force. 
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Figure 4.17.  Subject 2 results of ANOVA for varying levels of force on the right hand 

(Top) Results are shown as the p-value from ANOVA comparing rest, 20%, 35% and 

50% MVC data. To achieve an overall significance of p < 0.05, the Bonferroni correction 

was applied, and only p < 0.0013 was considered significant. The 16 most significant 

features are marked with white stars and the remaining significant features are marked 

with white squares. Several highly significant features were found on C3, P3, and P4. 

(Bottom) Post-hoc pair wise comparisons were performed for significant features from 

ANOVA to identify which pairs of tasks were different. The number of features which 

showed significance between a pair of tasks was tallied for each channel. The white bars 

inside the colored bars represent the 16 most significant features from ANOVA which 

were used in the second LDA classifier. It was found that at least one feature contained a 

significant difference for each of the pairs of states. The 16 most significant features 

contained differences between each pair of states except for 35% MVC and 50% MVC. 
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Figure 4.18.  Subject 2 results of ANOVA for varying levels of force on the left hand 

(Top) Results are shown as the p-value from ANOVA comparing rest, 20%, 35% and 

50% MVC data. To achieve an overall significance of p < 0.05, the Bonferroni correction 

was applied, and only p < 0.0013 was considered significant. The 16 most significant 

features are marked with white stars and the remaining significant features are marked 

with white squares. High levels of significance were found on all channels in the lower 

frequencies and in sample entropy. (Bottom) Post-hoc pair wise comparisons were 

performed for significant features from ANOVA to identify which pairs of tasks were 

different. The number of features which showed significance between a pair of tasks was 

tallied for each channel. The white bars inside the colored bars represent the 16 most 

significant features from ANOVA which were used in the second LDA classifier. 

Significant differences were most frequently found between rest and one of the three 

levels of force. One feature of P3, which was among the 16 most significant features of 

ANOVA, contained a difference between 35% and 50% MVC. 
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Figure 4.19.  Subject 3 results of ANOVA for varying levels of force on the right hand 

(Top) Results are shown as the p-value from ANOVA comparing rest, 20%, 35% and 

50% MVC data. To achieve an overall significance of p < 0.05, the Bonferroni correction 

was applied, and only p < 0.0013 was considered significant. The 16 most significant 

features are marked with white stars and the remaining significant features are marked 

with white squares. ANOVA revealed multiple significant features on C3, P3, and P4, 

with the significance falling in a lower frequency range on P3 and P4 than on C3. 

(Bottom) Post-hoc pair wise comparisons were performed for significant features from 

ANOVA to identify which pairs of tasks were different. The number of features which 

showed significance between a pair of tasks was tallied for each channel. The white bars 

inside the colored bars represent the 16 most significant features from ANOVA which 

were used in the second LDA classifier. It was found that all the significance was 

between rest and force pairings, with no significant differences between the different 

levels of force. 
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Figure 4.20.  Subject 3 results of ANOVA for varying levels of force on the left hand 

(Top) Results are shown as the p-value from ANOVA comparing rest, 20%, 35% and 

50% MVC data. To achieve an overall significance of p < 0.05, the Bonferroni correction 

was applied, and only p < 0.0013 was considered significant. The 16 most significant 

features are marked with white stars and the remaining significant features are marked 

with white squares. ANOVA revealed that the greatest significance was found on C4, P3, 

and P4. Significance was also found on C3, but not as strong as on the other three 

channels. (Bottom) Post-hoc pair wise comparisons were performed for significant 

features from ANOVA to identify which pairs of tasks were different. The number of 

features which showed significance between a pair of tasks was tallied for each channel. 

The white bars inside the colored bars represent the 16 most significant features from 

ANOVA which were used in the second LDA classifier. It was found that none of the 

features contained significant differences between levels of force, though significant 

differences were found between rest and each of the three levels of force. 
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Figure 4.21.  Subject 4 results of ANOVA for varying levels of force on the right hand 

(Top) Results are shown as the p-value from ANOVA comparing rest, 20%, 35% and 

50% MVC data. To achieve an overall significance of p < 0.05, the Bonferroni correction 

was applied, and only p < 0.0013 was considered significant. The 16 most significant 

features are marked with white stars and the remaining significant features are marked 

with white squares. High levels of significance were found on all channels. The 16 most 

significant features were in Teager energy and sample entropy as well as in band power 

at 8-24 Hz. (Bottom) Post-hoc pair wise comparisons were performed for significant 

features from ANOVA to identify which pairs of tasks were different. The number of 

features which showed significance between a pair of tasks was tallied for each channel. 

The white bars inside the colored bars represent the 16 most significant features from 

ANOVA which were used in the second LDA classifier. Significant differences were 

found between all pairs of states except for 35% and 50% MVC. 
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Figure 4.22.  Subject 4 results of ANOVA of varying levels of force on the left hand 

(Top) Results are shown as the p-value from ANOVA comparing rest, 20%, 35% and 

50% MVC data. To achieve an overall significance of p < 0.05, the Bonferroni correction 

was applied, and only p < 0.0013 was considered significant. The 16 most significant 

features are marked with white stars and the remaining significant features are marked 

with white squares. Highly significant differences were found on all channels, with the 

most occurring on C4. (Bottom) Post-hoc pair wise comparisons were performed for 

significant features from ANOVA to identify which pairs of tasks were different. The 

number of features which showed significance between a pair of tasks was tallied for 

each channel. The white bars inside the colored bars represent the 16 most significant 

features from ANOVA which were used in the second LDA classifier. It was found that 

the greatest number of features contained differences between rest and force. P4 was the 

only channel to contain significant differences between levels of force, with differences 

between 20% and 35% MVC as well as 20% and 50% MVC being found on four features 

each. 
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Figure 4.23.  Subject 5 results of ANOVA for varying levels of force on the right hand 

(Top) Results are shown as the p-value from ANOVA comparing rest, 20%, 35% and 

50% MVC data. To achieve an overall significance of p < 0.05, the Bonferroni correction 

was applied, and only p < 0.0013 was considered significant. The 16 most significant 

features are marked with white stars and the remaining significant features are marked 

with white squares. The greatest significance was found on P3 and P4 at 8-20 Hz, as well 

as on Teager energy and sample entropy. (Bottom) Post-hoc pair wise comparisons were 

performed for significant features from ANOVA to identify which pairs of tasks were 

different. The number of features which showed significance between a pair of tasks was 

tallied for each channel. The white bars inside the colored bars represent the 16 most 

significant features from ANOVA which were used in the second LDA classifier. It was 

found that significant differences only existed between rest and the three levels of force, 

with no significant differences between the levels of force themselves. 
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Figure 4.24.  Subject 5 results of ANOVA for varying levels of force on the left hand 

(Top) Results are shown as the p-value from ANOVA comparing rest, 20%, 35% and 

50% MVC data. To achieve an overall significance of p < 0.05, the Bonferroni correction 

was applied, and only p < 0.0013 was considered significant. The 16 most significant 

features are marked with white stars and the remaining significant features are marked 

with white squares. The greatest significance was found in band power at 8-20 Hz on C4, 

P3, and P4, and in Teager energy on P3 and P4. (Bottom) Post-hoc pair wise comparisons 

were performed for significant features from ANOVA to identify which pairs of tasks 

were different. The number of features which showed significance between a pair of tasks 

was tallied for each channel. The white bars inside the colored bars represent the 16 most 

significant features from ANOVA which were used in the second LDA classifier. It was 

found that most of the significance was between rest and force. One feature of C3 showed 

a difference between 20% and 50% MVC, but this feature was not among the 16 most 

significant which were later used in the subject-specific LDA classifier. 
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Figure 4.25.  Subject 1 classification performance for varying levels of force on the right 

hand 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value to rest and each of the three levels of force, as well as the overall 

accuracy. Mean results of the 10 cross-validation trials are shown in blue, with the error 

bars representing the standard deviation. Also shown is the performance on the testing set 

using the preset features (in red) and the 16 most significant features selected from 

ANOVA (in green). Expected chance performance was estimated for classification of the 

testing set, and is marked by the black stars. During cross-validation, the best 

performance was achieved for rest. Application of the classifier to the testing set using 

the preset features gave slightly worse performance than when using the selected 

features. Both sets of features gave better performance than that expected by chance. 
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Figure 4.26.  Subject 1 classification performance for varying levels of force on the left 

hand 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for rest and each of the three levels of force, as well as the overall 

accuracy. Mean results of the 10 cross-validation trials are shown in blue, with the error 

bars representing the standard deviation. Also shown is the performance on the testing set 

using the preset features (in red) and the 16 most significant features selected from 

ANOVA (in green). Expected chance performance was estimated for classification of the 

testing set, and is marked by the black stars. Cross-validation of the training data gave the 

best performance. Performance during classification of the testing set was better than 

chance when using both sets of features, except for sensitivity and PPV for 50% MVC. 

Slightly better accuracy was achieved with the preset features. 
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Figure 4.27.  Subject 2 classification performance for varying levels of force on the right 

hand 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for rest and each of the three levels of force, as well as the overall 

accuracy. Mean results of the 10 cross-validation trials are shown in blue, with the error 

bars representing the standard deviation. Also shown is the performance on the testing set 

using the preset features (in red) and the 16 most significant features selected from 

ANOVA (in green). Expected chance performance was estimated for classification of the 

testing set, and is marked by the black stars. Performance was good in all measures 

during cross-validation. Both sets of features had good sensitivity to rest in the testing set, 

though specificity and PPV were low. No 20% or 50% MVC segments were detected in 

the testing set when using either set of features, leading to zero sensitivity and PPV, but 

perfect specificity for both force levels. Overall accuracies were similar for both sets of 

features, and were only slightly higher than that expected by chance.  
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Figure 4.28.  Subject 2 classification performance for varying levels of force on the left 

hand 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for rest and each of the three levels of force, as well as the overall 

accuracy. Mean results of the 10 cross-validation trials are shown in blue, with the error 

bars representing the standard deviation. Also shown is the performance on the testing set 

using the preset features (in red) and the 16 most significant features selected from 

ANOVA (in green). Expected chance performance was estimated for classification of the 

testing set, and is marked by the black stars. Cross-validation gave the best performance 

overall. During classification of the testing set, both sets of features failed to detect any 

20% or 50% MVC segments. Both sets of features gave performance better than or equal 

to that expected by chance, with the exception of sensitivity and PPV for 50% MVC. 

Overall higher accuracy was achieved when classifying the testing set with the selected 

features from ANOVA. 
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Figure 4.29.  Subject 3 classification performance for varying levels of force on the right 

hand 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value tfor rest and each of the three levels of force, as well as the overall 

accuracy. Mean results of the 10 cross-validation trials are shown in blue, with the error 

bars representing the standard deviation. Also shown is the performance on the testing set 

using the preset features (in red) and the 16 most significant features selected from 

ANOVA (in green). Expected chance performance was estimated for classification of the 

testing set, and is marked by the black stars. Cross-validation performance was marginal, 

though it was much better than the performance on the testing set. Both sets of features 

used in classifying the testing set gave low sensitivity to all four states, while the PPV 

was low for all three force levels but not rest. Overall accuracy for classifying the testing 

set was slightly above that expected by chance for both sets of features.  
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Figure 4.30.  Subject 3 classification performance for varying levels of force on the left 

hand 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for rest and each of the three levels of force, as well as the overall 

accuracy. Mean results of the 10 cross-validation trials are shown in blue, with the error 

bars representing the standard deviation. Also shown is the performance on the testing set 

using the preset features (in red) and the 16 most significant features selected from 

ANOVA (in green). Expected chance performance was estimated for classification of the 

testing set, and is marked by the black stars. Classification was generally best during 

cross-validation. Both sets of features gave overall low sensitivity when classifying the 

testing set. Most performance was still above that expected by chance, with the exception 

of sensitivity, specificity, and PPV for 35% MVC when using the preset features. 

Accuracy was slightly higher than chance for both sets of features, with the selected 

features giving slightly better performance.  
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Figure 4.31.  Subject 4 classification performance for varying levels of force on the right 

hand 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for rest and each of the three levels of force, as well as the overall 

accuracy. Mean results of the 10 cross-validation trials are shown in blue, with the error 

bars representing the standard deviation. Also shown is the performance on the testing set 

using the preset features (in red) and the 16 most significant features selected from 

ANOVA (in green). Expected chance performance was estimated for classification of the 

testing set, and is marked by the black stars. Cross-validation of the training data gave the 

best overall results. While both sets of features gave better than chance performance 

when classifying the testing data, performance was slightly better with the selected 

features, as shown by the higher overall accuracy.  
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Figure 4.32.  Subject 4 classification performance for varying levels of force on the left 
hand 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for rest and each of the three levels of force, as well as the overall 

accuracy. Mean results of the 10 cross-validation trials are shown in blue, with the error 

bars representing the standard deviation. Also shown is the performance on the testing set 

using the preset features (in red) and the 16 most significant features selected from 

ANOVA (in green). Expected chance performance was estimated for classification of the 

testing set, and is marked by the black stars. Cross-validation of the classifier on the 

training data gave the best performance. Both sets of features gave better than chance 

performance when classifying the testing data, though performance was better overall 

when using the preset features.   
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Figure 4.33.  Subject 5 classification performance for varying levels of force on the right 

hand 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for rest and each of the three levels of force, as well as the overall 

accuracy. Mean results of the 10 cross-validation trials are shown in blue, with the error 

bars representing the standard deviation. Also shown is the performance on the testing set 

using the preset features (in red) and the 16 most significant features selected from 

ANOVA (in green). Expected chance performance was estimated for classification of the 

testing set, and is marked by the black stars. Cross-validation gave the best results and 

most consistent performance across the four states. During classification of the testing 

data, very different performance was seen between the two sets of features for 20% and 

35% MVC. The overall accuracy was slightly better when using the preset features than 

when using the selected features.  
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Figure 4.34.  Subject 5 classification performance for varying levels of force on the left 
hand 

Classifier performance was measured in terms of sensitivity, specificity, and positive 

predictive value for rest and each of the three levels of force, as well as the overall 

accuracy. Mean results of the 10 cross-validation trials are shown in blue, with the error 

bars representing the standard deviation. Also shown is the performance on the testing set 

using the preset features (in red) and the 16 most significant features selected from 

ANOVA (in green). Expected chance performance was estimated for classification of the 

testing set, and is marked by the black stars. Cross-validation of the training set gave very 

good performance with consistent results across the four states. During classification of 

the testing set, much variability in performance for the four states was seen between the 

two sets of features, particularly for rest, 20%, and 35% MVC. The selected features gave 

slightly higher overall accuracy than the preset features.   
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Figure 4.35.  Across-subject classification performance for varying levels of force on the 

right hand 

Classifier performance during cross validation (CV), out-of-sample validation on the 

testing set with preset features (OS Preset), and out-of-sample validation on the testing 

set with the selected features (OS Select) is shown above for all subjects. There is wide 

variability among the subjects for all measures of performance. Overall, the lowest 

performance is seen for Subject 3. However, Subjects 2 and 5 also have low performance 

on particular measures for certain states. 
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Figure 4.36.  Across-subject classifier performance for varying levels of force on the left 

hand 

Classifier performance during cross validation (CV), out-of-sample validation on the 

testing set with preset features (OS Preset), and out-of-sample validation on the testing 

set with the selected features (OS Select) is shown above for all subjects. Very wide 

variability is seen across subjects for sensitivity, specificity, and PPV. Specificity shows 

much less variation across subjects, with the low specificity to rest and 35% for Subject 2 

appearing to be an outlier.  
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Figure 4.37.  Force vs. feature value for Subject 4 right hand 

The scatter plots show force vs. EEG feature values from Subject 4 with the four most 

significant correlations. Each blue asterisk is the feature value and the corresponding 

force measurement during a single task or rest segment. The red line is the first order 

linear equation fit to the data from during the task periods. The correlation coefficients 

for the EEG feature and force, as well as the significance of the correlations, are reported 

on each plot as ρ and p. All four plots show high variance during rest and a general 

decrease in variance as force increases. The three features of C4 all show a decrease as a 

function of force, while power at 36-40 Hz on P4 shows an increase with force.  
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Figure 4.38.  Sample entropy average across subjects during right hand runs 

Markers indicate the mean sample entropy of all five subjects, and the error bars 

represent the standard error of the mean. The lines represent the first order linear equation 

fit to the data from each channel. The linear correlation coefficients between sample 

entropy and force on each channel, and their significances, are shown on the plots as 

ρ and p. Any p < 0.05 is considered significant. During task, C4 has the best fit and is the 

only channel that is significant. C3 and P3 tend towards significance, while P4 shows no 

indication of significance. Linear regression of the rest samples shows no trend between 

force and sample entropy.    
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Figure 4.39.  Sample entropy averaged across subjects during left hand runs 

Markers indicate the mean sample entropy of all five subjects, and the error bars 

represent the standard error of the mean. The lines represent the first order linear equation 

fit to the data from each channel. The linear correlation coefficients between sample 

entropy and force for each channel, and their significances, are shown on the plots as 

ρ and p. Any p < 0.05 is considered significant. During task, P4 has the strongest, most 

significant correlation. The correlation on C3 is also significant, though less so. During 

rest, no significant correlations were found, though P4 shows results trending toward 

significance.     
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Chapter 5: Discussion 

The goals of this study were to accurately detect periods of rest, non-response (sham), 

and right and left hand movements from features of EEG, as well as determine whether 

any of these features also reflect the level of force being exerted by a subject during a 

motor task. We discovered that we are able to label segments with a four-state classifier 

with accuracy better than chance for four of five subjects who participated in the study. 

Performance for each of the four states varied between subjects, and was often influenced 

by which features were used for the classifier. Right and left hand tasks were often 

mistaken for one another, but rarely mistaken for rest. Rest, on the other hand, was 

frequently mistaken as task for some subjects. Application of the classifier to continuous 

signals, rather than brief, labeled sample segments, generally resulted in decreased 

performance. However, this is not of great concern for the proposed application to 

rehabilitation, which would involve cue-based activities similar to those used in the 

present study. We found that discrimination between 20%, 35%, and 50% MVC is fairly 

difficult with the set of features used, particularly when applying the classifier to data 

from the testing set. Again, all three levels of force were rarely mistaken for rest. 

Particular features of the EEG appeared to exhibit a correlation with force during task, 

though no single feature alone appears to provide a strong enough correlation that would 

predict the level of force with acceptable accuracy.  

5.1 Design of visual cue and feedback interface 

The visual cue was designed specifically for this study and in many ways is unlike any 

we have encountered in other BMI studies. The configuration of the gray dot, which 

increased in size as exerted force increased, in the center of the three outer circles, was 

chosen in order to combine the cue and feedback in a manner that wouldn’t induce ocular 

movement biased along a particular plane. This is in contrast to several other studies that 

used a bar that originated from the middle of the screen and extended to one side to 

indicate the amount of force being exerted or the level of SMR suppression detected. The 

diameter of the outer circles was limited so that overt ocular movements were not 

necessary for following the visual feedback. The outer circles and gray dot during zero 

exerted force were the same size regardless of the target force associated with a particular 
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cue presentation in order to 1) constrain the size of the circles so that ocular movements 

aren’t required for tasks with high target forces, and 2) keep from indicating to the 

subject the magnitude of the target force during randomized target force runs. In an 

earlier version of the cue program, the two dotted circles (representing ±10% MVC from 

the target force) were not present, and instead the dot was green when within the target 

range and red when either above or below the target range. During testing of the cue 

program, the cue often flickered between red and green, which was found to be 

distracting. Additionally, red flickering stimuli have been shown to preferentially induce 

seizures in photosensitive patients (41). Although subjects in our study were healthy 

volunteers, we considered it a possibility that red stimuli could evoke stronger visual 

responses to the cue than if we used a gray, monochromatic color scheme. Therefore, the 

dot was changed to a constant gray color and the dotted circles were added to indicate the 

upper and lower limits of the target force.  

5.2 Inclusion of sham state 

The inclusion of a sham state is a novel aspect of this project. Including a sham state is 

important in order to confirm that changes seen on the EEG during presentation of a 

visual stimulus are due to performance of a motor task and not simply a passive cortical 

response to the stimulus (i.e., a visual evoked potential). With the healthy volunteers of 

this study, there was no question of whether or not the subjects were responding to the 

cues because they were performing actual motor tasks, but in future clinical studies with 

patients who are unable to translate motor intent into a physical movement, this becomes 

very important. Of the five subjects in this study, three exhibited no significant changes 

in EEG signal power from rest when shown the sham stimulus. However, because of the 

small sample size of this study, it cannot be inferred that 60% of the population will show 

no significant changes in EEG signal power in response to a visual stimulus. Therefore, 

inclusion of a sham stimulus should be a part of all cued BMI systems in order to 

determine whether discrimination between response and non-response to a cue is possible 

for each subject.  

The most similar study in terms of inclusion of a sham state was performed by Shibata et 

al. (42) in 1999. The primary purpose of this study was to investigate the changes that 
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occur in the gamma band of the EEG during a “Go/NoGo” protocol. The experiment 

included a control run, during which the subjects were shown the cues from the Go/NoGo 

protocol but were instructed not to respond. In contrast to our study, this portion was 

performed after the subjects were aware of the meaning of the cues. ANOVA was 

performed comparing the increase in power for Go, NoGo, control Go, and control NoGo 

for eight subjects. The results showed that the increase in gamma band power during 

Go/NoGo was significantly greater than either of the control states during two periods 

within the first 200 ms of cue presentation. This “sham” state was most likely included in 

order to demonstrate the immediate (< 250 ms) differences between non-response and 

active inhibition during NoGo task, while our sham was included to differentiate between 

states of rest, non-response, and response over a more prolonged period of time.    

5.3 Identification of rest, sham, right, and left 

To the best of my knowledge, there are no other BMIs that attempt to classify rest, sham, 

left hand, and right hand movement. Most studies using cued BMIs only attempt to 

discriminate tasks, though there are a small number that classify rest, left hand, and right 

hand movement/imagery. In a 2005 study by Akrami et al. (43), a single subject was cued 

to perform motor imagery of circling either the right or left arm in the shoulder or to rest, 

with each imagery/rest segment lasting 15 s. Each task was repeated for 10 trials in a 

session over 2 sessions. Data from each trial was broken into 2 s windows for analysis, 

and a combination of features and classification algorithms were used. One set of features 

used included logarithmic power spectral density components of five frequency bands 

which were calculated for C3, C4, and Cz; P3, P4, and Pz; and F3, F4, and Fz, for a total 

of 15 features for each set of channels. These features are the most similar to the features 

used in our study. Classification with a linear classifier achieved 75% accuracy when 

using C3, C4, and Cz, and 71% when using P3, P4, and Pz. In the analysis of our study, 

the highest classification accuracy of 73% was achieved when using six features from 

each of the four channels for a total of twenty-four features. While our study used nine 

more features than Akrami’s, we were classifying four classes instead of only three, 

hence our error rate per class is effectively smaller. It is also important to note that while 

in our study the rest state was sampled in the periods preceding hand grips, Akrami’s rest 

data was sampled from a prolonged period during which the subject was only resting. It is 
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known that the transition of the sensorimotor rhythms from an activity state to a relaxed 

state is not immediate (44). While the relatively short interstimulus intervals in our study 

may not allow complete rebounding of the sensorimotor rhythms, in theory it will enable 

better classification of rest when prolonged rest periods are not possible, such as in self-

paced BMI control.        

The importance of including a rest state is supported by the results published by 

Daly (30) in 2008 which used an EEG-BMI to trigger FES or a robot in rehabilitation of 

stroke survivors. When asked to perform actual movement or imagery of a 

shoulder/elbow movement, the subjects achieved fairly high accuracy in controlling their 

brain signals when performing the attempted/imagined movement, but had great 

difficulty reaching the relaxed condition. Therefore, including monitoring and feedback 

for not only imagery/attempted movements, but also relaxation (e.g., unclenching the 

hand), is needed for a BMI with neurorehabilitation applications. 

The application of a four-class system is a more rigorous test of classification capability 

than that actually required of the BMI in the targeted clinical application, in which 

discrimination between right and left hand tasks will likely not be needed. Rehabilitation 

most often focuses on either the right or left hand, thus requiring a three-class system that 

discriminates between rest, non-response (sham), and either right or left hand task. 

Because our BMI will use a cued protocol, classification can be further broken down into 

two different two-class classifiers. During rest periods, triggering of the stimulator will be 

disabled, and the classifier will only have to determine whether the subject has reached a 

state of rest. Output of the classifier will be used to provide feedback, either visually on 

the computer monitor or verbally from the therapist, to the patient regarding their 

relaxation as determined from their sensorimotor rhythms. The mislabeling of rest 

segments as task, which occurred with some frequency in our study when classifying out-

of-sample data, becomes mitigated in this case. In the event of a false detection of motor 

intent, the subject will receive inaccurate visual or verbal feedback but will not get 

stimulated. Upon presentation of the cue, the classifier must determine whether the 

subject is not responding (rest/sham) or is attempting a movement (right OR left). The 

most common error made in classification of task segments was mistaking right for left or 
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vice versa. Very few task segments were mislabeled as rest or sham. Therefore, by 

removing the need to distinguish between right and left hand tasks, further improvements 

in performance are expected.     

5.4 Identification of varying levels of force 

As mentioned in section 2.6, the relationship between EEG and force is not a highly 

researched area. To the best of our knowledge, no studies have attempted to predict force 

based on EEG. In the study by Mima et al. (31) a negative linear correlation was found to 

exist between power in the alpha band (on channels contralateral to the hand performing 

the task) and force from 10-60% of MVC during a pinch task, though no details of the 

goodness of fit or significance of differences between force levels are reported. The use 

of simple band power is an advantage of their study, however, the correlation between 

alpha band power and force does not hold at 80% of MVC, demonstrating a weakness in 

the use of alpha band power. Additionally, similar results were not consistently found in 

our study when comparing log-scaled band power at 8-12 Hz and force from the 

randomized percent MVC trials.  

The use of sample entropy (SE) in this study is similar to the use of the largest Lyapunov 

exponent (L1) by Yao et al. (33), as both features reflect the complexity of the signal. 

Yao’s subjects performed hand grips at 20, 40, 60, and 80% of MVC, while in our study 

the data for the linear regression model was taken from 5 to 75% of MVC, and binned 

into 10% intervals for analysis. Both L1 and SE increase with force, but comparison of 

the two indicates that L1 is more closely correlated with force level than SE. Yao does 

not report the slope of the line fit to the data, but the R2 values indicate a much better fit 

than that given with SE, with four out of five channels being significant, compared to one 

(right hand) or two (left hand) in our analysis. When comparing the averaged values of 

L1 for each level of force, significance was only found between 80% MVC and each of 

the lower levels. This, in a way, validates the difficulty of classifying the different levels 

of force in our study’s analysis, presented in section 4.6. Rest generally had the best 

classification rates while the classifier had difficulty distinguishing the different levels of 

force. Perhaps if the protocol of our experiment had included a higher level of force, 

classification of that group would be better than that seen for 20%, 35%, and 50% MVC. 
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Although the linear regression of section 4.7 was performed on a single feature at a time, 

perhaps the small slopes found using SE, and the likely small slope found by Yao with 

L1, indicate that discrimination between different levels of force will be difficult despite 

a strong correlation with the EEG feature.      

5.5 Possible explanations for poor performance 

Very poor performance was seen for Subject 3 in classification of rest vs. task as well as 

rest vs. varying levels of force. Cross-validation performance was lower than for the 

other subjects, but the discrepancy is even more apparent during classification of the 

testing set, for which the accuracy was at or below chance. Raw signal amplitudes for this 

subject were much lower than for the four other subjects, and mu and alpha waves were 

difficult to detect when the subject relaxed with eyes closed. The subject’s dense hair 

may have contributed to poor contact with the scalp and consequently the low signal 

amplitudes. The low amplitude in turn may have caused the difficulty in discerning the 

mu and alpha waves. It is also possible that this subject would not have exhibited large 

mu and alpha waves even if good contact with the scalp had been made. This is 

sometimes referred to as BMI “illiteracy”, which was found in approximately 20 percent 

of subjects in a study by Popescu (45). Because the subject was performing an actual 

movement rather than imagery, there is no question of whether he was performing the 

imagery correctly, which can sometimes lead to poor BMI control. 

5.6 Limitations  

The primary limitation of this study was the small sample size. With data from only five 

subjects, there is very low statistical power to this study. This precludes our ability to 

perform across-subject analyses with the needed level of confidence. While most of the 

analysis was performed separately for each subject, the results from an individual are 

much less informative than the results from a sample of a population. However, many 

published BMI studies use small sample sizes. For instance, among all the BMI studies 

cited in this work, five studies, excluding the case studies, only had data from five or 

fewer subjects, while only three studies had more than 10 subjects. Therefore, our small 

sample size is not unusual in the field of BMIs. 
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One major drawback of this study was that segments of data containing artifacts were 

excluded from analysis. The number of segments remaining for analysis varied greatly 

between subjects. In the case of Subject 2, only eight samples from 35% MVC on the 

right hand were retained in the test set, leaving very few possibilities for correct 

detections. Additionally, the need to exclude segments with artifacts will likely limit the 

accuracy of the classifier during online use, particularly in situations with frequent 

artifacts.  

Another limitation of this study was that task data were selected for analysis during 

periods of the least variance in force, with an automatic delay of 500 ms. Therefore, the 

classifier was not trained on task data prior to movement onset, leading to delayed 

detection of task periods seen when classifying continuous data. This will need to be 

investigated before the BMI can be used to trigger stimulation.    
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Chapter 6: Conclusions  

The primary goals of this study were to:  

1) Identify features of the EEG signal with significant differences when a subject is 

at rest, performing a right hand grip, and performing a left hand grip  

2) Identify features of the EEG signal with significant differences when a subject is 

performing a hand grip at varying levels of effort 

3) Accurately label portions of the EEG signal as rest/right hand grip/left hand grip 

or as the appropriate level of effort 

4) Use features of the EEG signal to accurately model varying levels of effort     

To achieve these goals, EEG was collected from five subjects while performing cued 

hand grip tasks with a dynamometer. Each subject participated in three sessions (one 

session/week). Band power and two nonlinear features were calculated for two central 

and two parietal EEG channels, and analysis (ANOVA) of these features from sessions 1 

and 2 was performed to identify which ones contained significant differences between 

tasks (rest, sham, right, and left) and varying levels of force (rest, 20%, 35%, and 50% 

MVC). The 16 most significant features identified by ANOVA, as well as 24 preset 

features (8-10 Hz, 10-12 Hz, 16-24 Hz, 26-30 Hz band power, Teager energy, and sample 

entropy from each of the four channels), were used to classify the data, training the 

classifier on data from sessions 1 and 2, and testing its performance on session 3. To 

model varying levels of effort, sample entropy from each subject during runs with 

varying force (5-75% MVC) was binned into 10% MVC wide bins and averaged. A 

grand average across subjects was then calculated and a linear model fit to it.  

Classification of rest, sham, right, and left data resulted in better accuracy than 

classification of the different levels of force. Cross-validation of the classifier on sessions 

1 and 2 yielded much better results than classification of session 3. However, with the 

exception of Subject 3, accuracy was much better than chance for all classifications of the 

test data. A significant relationship between force and sample entropy was found on C4 

during right hand tasks and on C3 and P4 during left hand tasks. However, the slopes of 

the lines fit to the data were very shallow, indicating that an accurate approximation of 
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force would be difficult using sample entropy alone. Also, the low statistical power due 

to the small sample size of this study prevents us from making definite conclusions about 

our results.  

One limitation of this study is that segments containing artifacts were excluded from 

analysis. This will likely decrease the performance of the classifier during online tasks, 

during which either artifact-containing segments will be fed to the classifier, which may 

result in misclassifications, or they will be excluded, leading to periods with no control 

signal to the BMI. Also leading to classification difficulties during online control is the 

fact that task data was taken during periods of the least variability in force, with an 

automatic delay of 500 ms from cue onset to sampling. The exclusion of data during 

motor planning and early stages of execution from analysis fails to address the need for 

early detection of intent for triggering stimulation. 

Before this study can be moved to a clinical setting, several issues will first need to be 

addressed. The first issue that will need to be addressed is the small sample size. Ideally, 

more subjects will be enrolled in this study in order to increase the statistical power. 

Another primary issue will be investigation of easily extracted features that are less 

affected by presence of artifacts in order to create a more robust system for online 

classification. The early detection of intent will also need to be explored, with possible 

solutions including calculation of band power in smaller windows, or the employment of  

a more robust classifier (e.g. support vector machines) or dynamical models (e.g., a 

hidden Markov Model) for classification.    
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Appendix 

List of commonly used abbreviations 

Abbreviation Stands for 

ANOVA analysis of variance 

BMI brain-machine interface 

ECoG electrocorticography 

EEG electroencephalogram 

EMG electromyogram 

FES functional electrical stimulation 

FET functional electrical therapy 

LDA linear discriminant analysis 

MEG magnetoencephalography 

MEP motor-evoked potential 

MRCP movement-related cortical potential 

MVC maximal voluntary contraction 

PNS peripheral nerve stimulation 

PPV positive predictive value 

SCI spinal cord injury 

SMR sensorimotor rhythm 

TMS transcranial magnetic stimulation 

VEP visual-evoked potential 
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