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ABSTRACT OF THESIS 

 
 
 

DIET, BACTERIA AND INFLAMMATION:  
THE INTESTINAL MUCOSA AND METABOLIC SYNDROME 

 
Long term consumption of a high fat diet (HFD) increases the risk of 

developing Metabolic Syndrome and type 2 diabetes. This led us to hypothesize 
that long term HFD consumption impairs immune tolerance to the intestinal 
bacteria. Our studies had two goals. First, we characterized the effect of long 
term HFD consumption on the systemic immune response by comparing C57BL6 
mice fed a HFD and low fat diet (LFD). Plasma immunoglobulin G (IgG) against 
Escherichia coli (LF-82), E. coli (Nissle 1917), Bacteroides thetaiotaomicron and 
Lactobacillus acidophilus were measured by a lab-developed ELISA. Fasting 
blood glucose and inflammation were measured in LFD mice and HFD mice. To 
test whether our findings were clinically relevant, anti-bacterial IgG and TNF-α 
were measured in plasma samples from lean healthy individuals, obese non-
diabetics and obese diabetics. Our second aim was to investigate the 
relationship between HFD consumption and intestinal immunity. The effect of 
HFD consumption on immune responses in the GI tract was assessed by 
measuring fecal IgA levels in HFD mice and LFD mice. HFD mice had higher 
plasma IgG against the LF82 strain of Escherichia coli as well as higher plasma 
TNF-α, neutrophil percentage and fasting blood glucose levels. Obese diabetics 
had higher plasma IgG against the LF82 strain of E. coli than lean healthy 
controls. Studies on the effect of HFD on intestinal immunity revealed that HFD 
mice had lower fecal IgA than LFD mice. Our findings are novel in that they show 
an association between long term HFD consumption, systemic inflammatory 
immune responses to pathogenic intestinal bacteria and insulin resistance. 
These studies also showed that HFD consumption may impair intestinal 
immunity.  
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CHAPTER 1 INTRODUCTION 

Metabolic syndrome: a global public health threat. 

 The drastic increase in the prevalence of type 2 diabetes is a worldwide 

problem, with an estimated six percent of the world’s adults categorized as 

diabetic. The main impact of type 2 diabetes in the past has been in the 

developed world. However this is rapidly changing as a result of the increased 

affluence of developing nations. By the year 2025 it is projected that 300 million 

individuals will be diagnosed with diabetes worldwide with most new cases being 

from developing countries [1]. The diagnostic criteria for type 2 diabetes is a 

fasting plasma glucose level >126 mg dl-1 [2]. Untreated diabetes may lead to a 

variety of debilitating complications. These include coronary artery disease, 

peripheral vascular disease, blindness and amputations [3]. Therefore it is no 

surprise that the rise in prevalence of type 2 diabetes has been accompanied by 

an increased financial burden via increased medical expenditure as well as lost 

productivity [4]. As a consequence, investigators are interested in fully 

characterizing the underlying causes of diabetes to develop new strategies to 

prevent the development of this condition.  The dramatic surge in the number of 

diabetics has been attributed to the increase in the number of individuals who are 

overweight and obese. According to the guidelines set by the World Health 

Organization a body mass index (BMI) between twenty five and thirty qualifies an 

adult as being overweight. Obesity is defined as a BMI of thirty or higher [5].  

There has been a dramatic increase in the prevalence of obesity in all segments 

of American society in the past four decades [6]. It is estimated that a third of the 
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adults in the United States are obese [7]. Furthermore, seven in ten American 

adults can be categorized as being overweight and obese [8]. The increase in the 

prevalence of overweight and obese individuals has been accompanied by the 

increased prevalence of type 2 diabetes. As a result, excess body weight is an 

established risk factor for developing type 2 diabetes  [9]. While lifestyle choices 

are a major cause for the rise in the number of diabetics it is worth noting that 

not all diabetics are obese. Additionally not all obese individuals develop 

diabetes, since a third of adults are obese but the prevalence of type 2 diabetes 

in the total population is 8.3% [10]. There are other risk factors for developing 

diabetes. These include genetic defects of beta-cell function and genetic defects 

in insulin action [11]. 

Increased body weight results when the intake of calories exceeds the 

expenditure of calories. Surplus dietary calories are converted into triglyceride 

and stored. There are two major forces that have contributed to increased 

average bodyweight. The first is an increase in dietary intake as larger portions of 

food can be obtained at a cheaper cost. The second factor is a more sedentary 

lifestyle due to automation and limited physical activity. High caloric intake and 

sedentary lifestyle can predispose an individual to developing a variety of 

metabolic abnormalities including elevated triglyceride levels, reduced high 

density lipoprotein cholesterol levels and increased blood pressure values that 

may occur simultaneously with increased body weight. This is referred to as 

metabolic syndrome. 



3 

 

Metabolic syndrome (MetS), also referred to as metabolic syndrome X, 

syndrome X or insulin resistance syndrome, refers to a combination of risk 

factors that increases the risk of developing type 2 diabetes and cardiovascular 

disease [12]. It has been estimated that metabolic syndrome affects almost one 

quarter of US adults [13]. The risk factors for metabolic syndrome utilized by the 

National Cholesterol Education Program (NCEP) are any three of the following 

five risk factors: a waist circumference ≥ 102 centimeters (cm) in men or 88 cm in 

women, triglyceride levels ≥150mg/dL, high density lipoprotein cholesterol levels 

(≤50 in women, ≤40 in men), fasting blood glucose ≥100mg/dL) and systolic BP 

≥130mmHg and diastolic BP ≥85mmHg [14]. The International Diabetes 

Federation (IDF) criteria is waist circumference values ≥ 94 centimeters (cm) in 

men, ≥ 80 cm in women and any two of the other aforementioned risk factors.  

Introduction to the immune system. 

Since these studies involve characterization of immune responses, it is 

essential first of all to introduce some key immunology concepts. The immune 

system exists to protect the host from infection by potentially harmful 

microorganisms.  The human body is under the constant threat of infection by 

microorganisms. Microorganisms such as bacteria, viruses, fungi and parasites 

are ubiquitous. Although the majority of microorganisms are harmless, some 

species have the potential to cause disease and death.  Furthermore, there is 

also the threat of aberrant cellular replication which may lead to tumor 

development. To eliminate these threats the body has devised elaborate and 

diverse mechanisms that are highly specialized. 

http://en.wikipedia.org/wiki/National_Cholesterol_Education_Program
http://en.wikipedia.org/wiki/International_Diabetes_Federation
http://en.wikipedia.org/wiki/International_Diabetes_Federation
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The entrance of microorganisms into the tissues and systemic circulation 

is termed infection. There are generalized mechanisms which protect against 

infection. The skin acts as a physical barrier which prevents infection. Chemical 

mechanisms also act against a broad range of infectious microbes. For example, 

lysozyme cleaves bacterial cell wall components. Lysozyme is present in nasal 

secretions, tears, on skin and in other bodily secretions [15]. A variety of immune 

cells eliminate infectious microorganisms. These include natural killer (NK) cells, 

macrophages and neutrophils [16-18]. These components of the host response 

are the first lines of defense against the establishment of infection. Inflammation 

also eliminates certain infections and it involves leukocytes and plasma proteins. 

The generalized mechanisms of immunity that eliminate microbes are collectively 

referred to as innate immunity.  

There are receptors which recognize molecular structures resulting from 

the presence of pathogens referred to as pattern recognition receptors (PRRs). 

There are membrane bound PRRs and cytoplasmic PRRs. The membrane 

bound PRRs include the C-type lectin receptors and the toll like receptors 

(TLRs). The C-type lectin receptors (CLRs) are present on dendritic cells and 

detect carbohydrate structures on pathogens [19]. CLRs play a vital role in the 

elimination of pathogens [20]. This is because detection by CLRs results in 

endocytosis and degradation of pathogens [21]. This facilitates the presentation 

of antigens for detection by the B and T lymphocytes. Another group of PRRs are 

the toll like receptors (TLRs). TLRs detect microbial compounds present on the 

surface of microbes such as lipopolysaccharide (LPS), peptidoglycan, flagellin 
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and lipotechoic acid. They also detect the genetic material of foreign 

microorganisms such as single stranded RNA, double stranded RNA as well as 

CpG-containing DNA. Detection of molecular structures found on 

microorganisms by TLRs triggers signaling cascades that culminate in NF-κB 

translocation into the nucleus and subsequent expression of genes encoding 

inflammatory products [22, 23].  

There are also cytosolic sensors to detect microbial products. These 

include the NOD-like receptors (NLRs) [24-26]. NLRs act by eliciting the 

production of inflammatory cytokines, antimicrobial peptides and interferon-β 

[27]. Alternatively, NLR activation results in procaspase-1 activation and the 

production of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 [28, 29]  

However, many pathogenic microorganisms have devised mechanisms 

that have enabled them to avoid the mechanisms of innate immunity. This has 

resulted in the development of elaborate and specific mechanisms of host 

immunity. These specific mechanisms of immunity which combat infections by 

microorganisms are characterized as the adaptive immune response. In 

addition to pathogen-specific effector mechanisms, another hallmark of the 

adaptive response is immunological memory. Subsequent infection by the same 

pathogen does result in disease since the immune system can mount a more 

rapid response. This prevents the reoccurrence of disease. The key components 

of the adaptive immune response are cells called lymphocytes that mature from 

lymphoid progenitors. Lymphocytes are categorized based on the location of 
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their maturation and their effector functions. There are two kinds of lymphocytes: 

B lymphocytes and T lymphocytes.  

B lymphocytes refer to lymphocytes which mature in the bone marrow and 

possess immunoglobulin receptors [30]. They detect antigens in soluble form via 

immunoglobulin receptors. They respond to infection by secreting antibodies. 

The binding of antibodies to antigens lead to their destruction via a variety of 

specialized immune pathways and cells. The next group of lymphocytes is the T-

lymphocytes. They possess T-cell receptors and mature in the thymus. The T-

lymphocytes can further be subdivided on the basis of surface markers and 

effector mechanisms [31]. Those that express the CD4-surface glycoprotein and 

respond to exogenous peptides are the CD4 T lymphocytes. Exogenous peptides 

are derived from phagocytosed antigens, e.g., extracellular protozoan parasites 

and bacteria. Those that bear the CD8 glycoprotein and respond to endogenous 

peptides are the CD8 T lymphocytes. Endogenous peptides are derived from 

proteins synthesized within the cell cytosol. These include the proteins 

synthesized in the cytosol by viruses or intracellular bacteria that have infected 

host cells.  

Inflammation is associated with Metabolic Syndrome. 

Some of the hallmarks of metabolic syndrome including central obesity, 

elevated blood glucose and hypertension have been shown to be associated with 

inflammation. Inflammation is a complex host defense mechanism that results 

from both internal and external stimuli [32]. Bacterial infection is a potent trigger 

of inflammation. Under normal circumstances the processes involved in 
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inflammation are self-limiting. However disease may arise if inflammation 

becomes continuous and chronic. A variety of disease states are associated with 

chronic inflammation. These include rheumatoid arthritis, Crohn’s Disease and 

systemic lupus erythematosus [33-35]. Chronic unwanted inflammation is also 

associated with impaired glucose tolerance [36]. It has been reported that when 

tumor necrosis factor alpha (TNF-α), an inflammatory marker is administered to 

cultured cells insulin action is impaired [37]. Furthermore, enhanced insulin 

sensitivity has been observed in obese mice deficient in functional TNF-α 

receptors [38]. These findings suggested that the insulin signaling pathway may 

be altered by TNF-α. Insulin is produced by the beta cells of the pancreas and it 

is essential to metabolic pathways of carbohydrate and fat [39]. Insulin interacts 

with cell surface receptors in adipose and muscle tissue. This results in 

autophosphorylation and phosphorylation of the insulin receptor substrate (IRS) 

family, initiating the insulin signaling pathway which culminates with glucose 

uptake. TNF-α and fatty acids have been shown to inhibit the phosphorylation of 

IRS-1, which in turn impairs insulin action [40, 41]. As a result deciphering the 

underlying causes of chronic systemic inflammation has become an important 

priority. 

High fat diet consumption and inflammation.  

Consumption of high levels of dietary fat are associated with the 

development of the obesity, insulin resistance, elevated blood pressure and 

dyslipidemia. Therefore, high fat diet consumption increases the risk of 

developing metabolic syndrome [42]. There has been an appreciable increase in 
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the fat content of food.  The most extreme cases can be found at some fast food 

restaurants where a single serving contains more than twice the recommended 

daily intake of saturated fat.  

Dietary fat itself has been implicated as the culprit that promotes 

inflammation. This is not surprising given the association between high fat diet 

consumption and inflammatory disorders. Furthermore, various studies have 

implicated high fat intake to the development of insulin resistance. Saturated fats 

and monounsaturated fatty acids have been shown to be detrimental to insulin 

signaling, while omega-3 fatty acids and polyunsaturated fatty acids do not 

negatively affect insulin signaling [43, 44]. Furthermore, the inhibition of insulin 

signaling has been attributed to increased free fatty acid levels [36]. As a 

consequence, it was imperative to investigate the role of fatty acids in promoting 

inflammation. Free fatty acids activated toll like receptor 4 signaling in adipocytes 

and macrophages [45]. Furthermore, myristic acid, palmitic acid and oleic acid 

induced interlukin-6 (IL-6) messenger RNA expression in the RAW264.7 

macrophage cell line. 

However, the role of fatty acids in promoting inflammation is controversial. 

It seems counterintuitive that the host would mount inflammatory immune 

responses against fatty acids. This is because fatty acids are integral in cell 

membrane structure and serve a variety of physiologic roles. Furthermore, a 

subsequent study showed that the bovine serum albumin (BSA) that had been 

complexed with fatty acids in the previous study were contaminated by 

lipopolysaccharide (LPS), the ligand of the toll like receptor 4 (TLR 4) [46]. Fatty 
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acids complexed with BSA elicted TLR dependent signaling. However, fatty acids 

by themselves were unable to elicit TLR signaling. The findings of this study cast 

serious doubt on the role of dietary fat as the causative factor for inflammation. 

Adipose tissue inflammation and insulin resistance. 

Adipose tissue was initially thought to be an inert triglyceride storage 

depot. However, the association between obesity and conditions such as type 2 

diabetes and cardiovascular disease prompted researchers to take a closer look 

at adipose tissue. It was observed that use of BMI values by itself was not an 

accurate means of predicting the risk of developing type 2 diabetes [47]. Visceral 

adipose tissue accumulation is associated with an increased risk of insulin 

resistance, whereas the subcutaneous adipose tissue depot is not associated 

with an increased risk of developing insulin resistance [48-51]. A variety of 

mechanisms have been proposed to explain how visceral adipose tissue 

accumulation results in the development of insulin resistance.  

 One proposed mechanism by which visceral fat promotes insulin 

resistance is the secretion of adipokines which impair insulin signaling in the liver 

and muscle tissues [52]. Excess lipid accumulation also promotes the 

development of insulin resistance. Saturated fatty acids may increase the 

biosynthesis of ceramide which may precede insulin resistance [53]. The 

conversion of triacylglycerols to diacylglyerols by adipose triglyceride lipase 

(ATGL) may also result in intracellular diacylgyercerol accumulation. ATGL 

activity has been shown to promote the development of insulin resistance [54]. 
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 Macrophage accumulation in visceral adipose tissue is another proposed 

mechanism by which adipose tissue may promote insulin resistance. The 

macrophages that accumulate in the adipose tissue release inflammatory 

cytokines, which can impair insulin sensitivity. It has been estimated that in lean 

mice and humans the percentage of macrophages is less than ten percent. This 

increases to forty percent in obese individuals [55]. Additionally, it was shown 

that macrophages present in the adipose tissue secrete a variety of inflammatory 

markers including TNF-α, iNOS and IL-6 [56-62]. It should also be noted that the 

adaptive immune response is involved in the inflammation that results from long 

term HFD consumption. CD4-T lymphocytes are present in the adipose tissue 

inflammation observed in mice fed a HFD [63]. Evidence suggests that the T 

lymphocytes may contribute to inflammation in the visceral adipose tissue prior to 

the recruitment of macrophages. Considering all these experimental findings, it is 

not surprising that inflammation associated with high fat diet intake was thought 

to be the result of excess adipose tissue accumulation. 

Linking intestinal bacteria, dietary fat and inflammation. 

Germ free mice (GF mice) were crucial in linking the intestinal bacteria to 

the obesity, inflammation and insulin resistance. Germ free mice do not harbor 

microorganisms [64]. This is because they are reared in sterile isolators which 

prevent them from being colonized by bacteria, viruses and eukaryotic parasites. 

The intestinal bacteria have been linked to the development of obesity [65]. 

Three groups of adult B6 male mice were analyzed; GF mice, mice colonized by 

intestinal bacteria from birth to adulthood (conventionally raised, CONV-R) and 
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GF mice colonized with bacteria from the cecum (conventionalized, CONV-D). 

GF mice had significantly lower body fat percentage compared to CONV-R and 

CONV-D mice. Furthermore, the epididymal fat pads of GF mice weighed less 

than CONV-R and CONV-D mice. These findings were intriguing since the GF 

mice consumed more food and had lower metabolic rates than the CONV-R and 

CONV-D mice. These findings were confirmed in a subsequent study when it 

was observed that GF mice are less prone to becoming obese after long term 

consumption of a high-fat, high-carbohydrate Western Diet [66]. These studies 

indicated that the intestinal bacteria may play a role in the development of 

obesity. 

However, it was a study by Rabot et al that showed the full extent of the 

effects of the intestinal bacteria. GF C57BL/6J mice and conventionally raised 

(conv) C57BL/6J mice were fed a high fat diet (60% of energy from fat). The GF 

mice had improved metabolic parameters compared to conventionally raised 

(conv) controls [67]. These included lower fasting blood glucose levels compared 

to the conventional controls on the high fat diet (conv/HF) as well as lower 

plasma insulin concentrations and showed improved response to an oral glucose 

challenge. GF/HF mice also had significantly lower plasma TNF-α, serum 

amyloid A (SAA), leptin and IFN-γ levels. Collectively these studies implicated 

the intestinal bacteria in the development of obesity and accumulation of adipose 

tissue. Furthermore, they showed that the intestinal bacteria play a role in the 

development of systemic inflammation and insulin resistance. However, these 

studies failed to identify the point of origin of the systemic inflammation.  
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The growing body of evidence linking the intestinal bacteria to the 

development of obesity and inflammation suggests that inflammation is not solely 

due to adipose tissue depots. Studies had also shown that the gut microbiota 

differed between obese and lean mice, as well as lean and obese human 

subjects [68]. These findings suggested that the GI tract may be the source of 

inflammation. This is not an unreasonable proposal. There are situations where 

intestinal inflammation occurs, giving rise to a variety of debilitating conditions, 

including Crohn’s Disease and Ulcerative Colitis [69]. 

The GI tract as the source of inflammation.  

A study performed by Ding et al was the first to investigate whether high 

fat diet consumption in combination with the intestinal bacteria can result in pro-

inflammatory changes within the GI tract [70]. Conventional specific pathogen 

free (SPF) C57BL/6 mice and GF mice were fed a HFD (45% kcal from fat) or a 

LFD (10% kcal from fat). Their findings were in accordance to previous studies 

using GF mice. GF mice on a HFD gained less weight than CONV controls, were 

more responsive to insulin and had lower levels of inflammatory plasma 

cytokines. TNF-α levels in the ileum of CONV/HFD was significantly increased 

compared to CONV/LFD mice whereas there was no increase in ileal TNF-α 

levels in the GF/HFD mice. This provides evidence that the GI tract is the point of 

origin of inflammation. The GI tract contains large numbers of immune cells 

which regulate the intestinal bacteria in a non-inflammatory manner. 

Inflammation of the GI tract can result in severe gastroenterological disorders, 

collectively referred to as inflammatory bowel disease (IBD). A variety of factors 
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are associated with IBD. These include certain pathogenic bacteria as well as 

defects in the immune system. For example certain strains of E. coli are 

associated with Crohn’s Disease [71, 72]. With regards to the immune system, 

defective sensors for molecular structures located on pathogenic microbes result 

in chronic inflammation [73, 74]. These include mutations in constituents of the 

inflammasomes [75]. Inflammasomes by definition are protein complexes 

capable of eliciting immune responses to a variety of stimuli including bacteria 

[76]. NLRP6 deficiency leads to reduced IL-18 and outgrowth of the 

Bacteroidetes. This promoted the development of colitis (inflammation of the 

colon).   

The intestinal bacteria are a source of inflammatory molecules. 

An estimated one hundred trillion (1014) microorganisms reside in the 

gastrointestinal tract [77]. To put things in perspective the number of 

microorganisms in the GI tract is so immense that intestinal microbes outnumber 

the total number of cells in the host by a factor of ten. The overwhelming majority 

of microorganisms that inhabit the GI tract are bacteria. Smaller numbers of 

archea and eukarya are also present [78]. Characterization of the intestinal 

bacteria remains challenging. There is considerable variability in the bacterial 

composition between different individuals. Furthermore, most of the intestinal 

bacterial species are anaerobic and difficult to culture using conventional 

methods. Advances in molecular techniques have facilitated characterization of 

the intestinal bacteria. Sequencing of the 16S ribosomal RNA gene (rRNA) led 
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researchers to identify the dominant intestinal bacterial divisions as the 

Bacteroidetes and the Firmicutes [79]. 

Pyrosequencing, which involves the detection of chemiluminescent signals 

subsequent to DNA synthesis has led researchers to identify in excess of 5,000 

bacterial taxa [80]. The majority of the intestinal bacterial species belong to the 

phyla Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and 

Verrucomicrobia [81]. The large and diverse bacterial population of the 

gastrointestinal (GI) tract is a rich source of inflammatory molecules. 

Lipopolysaccharide (LPS) is present in the outer cell membranes of the gram 

negative intestinal bacteria [82]. LPS is a potent inducer of inflammation, 

triggering the release of pro-inflammatory cytokines such as TNF-alpha, IL-6, and 

IL-1 [83]. It should be noted that gram positive bacteria residing in the GI tract 

can also trigger inflammation. Bacterial DNA from gram positive bacteria induces 

inflammation [84]. Furthermore, long term HFD consumption is associated with 

increased plasma LPS. Long term HFD consumption increases LPS containing 

bacteria residing in the GI tract [85]. It was observed that LPS infusion results in 

insulin resistance, thereby establishing a crucial link between the contents of the 

GI tract, inflammation and insulin resistance.  

Regulation and confinement of the intestinal bacteria.  

Considering the sheer quantity of inflammatory molecules within the GI 

tract, it is not surprising that a variety of mechanisms exist to prevent intestinal 

bacteria from entering the systemic circulation. The intestinal epithelial cells 

(IECs) form a physical barrier referred to as the intestinal epithelial-cell barrier 
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[86]. The IECs also possess a brush border, which is an actin rich microvilli 

covered surface on the apical surface of the IECs. This prevents the intestinal 

bacteria from adhering to the surface, thereby minimizing bacterial invasion of 

the epithelial layer. Furthermore, the proteins occludin and claudin form tight 

physical seals at the apical epithelial surface [87, 88]. However, it should be 

noted that these so called tight junctions are not fully impermeable since the GI 

tract has to absorb a variety of nutrients and ions. Goblet cells also play a role in 

preventing the intestinal bacteria from adhering to the epithelial layer. Goblet 

cells are differentiated epithelial cells which secrete mucus. The secretion of 

mucus forms a viscous impermeable glyocalyx which prevents bacterial adhesion 

to the epithelium of the GI tract [89].   

The IECs do not only function as a physical barrier. They also act by 

secreting a variety of host defense peptides that kill bacteria. These include 

defensins and cathelicidins which have broad spectrum antibiotic activity [90, 91]. 

Defensins and cathelicidins are cationic proteins. These antimicrobial proteins 

function by forming pores in bacterial cells walls. IECs are not the only cells that 

secrete these antimicrobial peptides. Paneth cells, which are specialized 

epithelial cells, secrete antimicrobial peptides [92]. In additions to defensins and 

cathelicidins other anti-microbial compounds have been identified including 

phospholipases, lysozyme, and Reg III-gamma [93-97]. 

Intestinal epithelial serum amyloid A (SAA) also plays a role in regulating 

the intestinal bacteria population. SAA regulates Gram-negative bacteria present 

in the lumen of the GI tract, including E. coli [98]. SAA binds to the outer 
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membrane protein A (OmpA) of E. coli, which leads to its elimination by 

neutrophils [99]. SAA also promotes homeostasis with the intestinal bacteria, 

since SAA deficient mice are more susceptible to dextran sodium sulfate (DSS)-

induced colitis [100] . The production of such a diverse array of antimicrobial 

compounds emphasizes the importance of regulating the immense population of 

bacteria residing within the lumen of the GI tract.  

Adaptations of intestinal immunity. 

It has been previously stated that the immense antigenic load of the GI 

tract is a vast reservoir of inflammatory molecules. As a consequence a number 

of mechanisms exist to prevent the huge bacterial population of the lumen of the 

GI tract from entering the systemic circulation. Entrance of the immense 

antigenic load into the systemic circulation has the potential to result in 

catastrophic consequences including systemic shock and sepsis. Furthermore, 

the GI tract is also exposed to a variety of pathogens that are ingested by the 

host. The large surface area of the GI tract (approximately 300m2) makes it 

especially susceptible to infection. In order to prevent bacteria from the lumen of 

the GI tract from undergoing uncontrolled proliferation and entering the 

circulation, the GI tract contains a vast and diverse population of immune cells. 

The GI tract contains B and T lymphocytes, dendritic cells as well as the largest 

reservoir of macrophages (Mψ) in the body [101]. The immune cells are located 

in specialized structures including the Peyer’s Patches as well as in isolated 

lymphoid follicles.  
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However, a paradox exists. On one hand, the presence of immune 

defenses is required to prevent the intestinal bacteria from entering the systemic 

circulation. However, it is crucial that the intestinal bacteria be regulated without 

inflammation. Failure to engage bacteria without inflammation can have 

catastrophic consequences that are usually observed in patients with 

inflammatory bowel diseases such as ulcerative colitis (UC) and Crohn’s Disease 

(CD) [102]. Furthermore it is essential that the immune system tolerate the 

intestinal bacteria since some bacterial species perform vitamin K and biotin 

synthesis [103-105]. Additionally, the intestinal bacteria may play a role in the 

overall health of the digestive system [106]. Germ-free animals are more 

susceptible to infection [107]. 

Although intestinal macrophages are abundant, they possess a variety of 

modifications that render them inert against the bacteria in the lumen of the GI 

tract. These include a lack of receptors that may activate inflammatory pathways 

such as CD14, complement receptors (CR) and the triggering receptor 

expressed on myeloid cells (TREM-1) [108, 109]. It was initially proposed that the 

intestinal macrophages did not express toll like receptors (TLRs) [110]. However, 

further analysis revealed that intestinal macrophages do in fact express toll like 

receptors [111]. The reason for these macrophages existing in an anergic state is 

a lack of downstream signaling molecules including MyD88, IRAK and TRAF6 

[112-115]. The presence of molecules that inhibit TLR pathways such as IRAK-M 

also play a role in rendering intestinal macrophages hyporesponsive [116]. 

Impaired TLR signaling prevents the transcription factor NF-κB from translocating 
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into the nucleus. This prevents the expression of inflammatory genes and 

inflammatory cytokines.  

Another mechanism of intestinal immune tolerance is the inhibition of 

inflammatory cytokine production by antigen presenting cells (APCs). APCs are 

cells which express major histocompatibility complex (MHC) molecules which 

bind and present antigenic peptides for recognition by the T lymphocytes [117]. 

Dendritic cells (DCs) are specialized APCs which can induce cell mediated 

immune responses by the T lymphocytes [118]. However, the DCs are also 

capable of inducing tolerance to certain antigens, including those of the intestinal 

bacteria. The intestinal epithelial cells (IECs) secrete certain factors which limit 

inflammatory cytokine production by DCs. The most prominent of these IEC 

derived factors are thymic stromal lymphopoietin (TSLP), transforming growth 

factor-β (TGF-β), Interleukin-10 (IL-10) and prostaglandin E2 [119-122]. These 

IEC derived factors create a microenvironment that promotes the tolerogenic 

phenotype of dendritic cells.  

The adaptive immune response to the intestinal bacteria. 

In addition to the aforementioned generalized mechanisms, specialized 

immune responses occur to prevent the intestinal bacteria from entering the 

systemic circulation.  Since the 1960’s, researchers have observed that the vast 

majority of immunoglobulins in the external secretions belong to the 

immunoglobulin A (IgA) isotype [123]. IgA exists in a monomeric form or a 

polymeric form. The predominant form of secreted polymeric IgA (pIgA) is 

dimeric IgA, which is comprised of two IgA subunits bridged by the J chain 

http://en.wikipedia.org/wiki/Histocompatibility
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polypeptide [124]. Plasma cells present in the lamina propria secrete dimeric IgA  

[125].  

The polymeric immunoglobulin receptor (pIgR) is responsible for 

transepithelial transport of polymeric IgA and IgM [126]. pIgR binds and 

internalizes polymeric immunoglobulin at the basolateral surface of the intestinal 

epithelial cells. The bound immunoglobulin is shuttled through the cell to the 

apical surface where it is secreted. It is secreted with the extracellular ligand-

binding fragment of pIgR as secretory IgA (sIgA) [127]. Adherence and invasion 

of the intestinal epithelium by bacteria is minimized by secretory IgA (sIgA) and 

secretory IgM (sIgM) [128-130]. IgA is the predominant immunoglobulin subclass 

produced in the GI tract [131]. The IgA subclass accounts for four fifths of the 

immunoglobulins produced in the duodenum and jejunum. IgA comprises ninety 

percent of the immunoglobulins produced in the colon.  

In addition to its established role in preventing the bacteria present in the 

lumen of the GI tract from entering the systemic circulation, sIgA is essential to 

preventing inflammatory responses. sIgA minimizes inflammatory immune 

responses against the commensal bacteria by downregulating the expression of 

the inflammatory cytokines TNF-α, IL-6, Cox-2 and IFN-γ [132]. The presence of 

intestinal bacteria stimulates the production of intestinal IgA [133, 134]. Although 

the vast majority of IgA is produced at the intestinal mucosa, there is also IgA 

present in the plasma. Plasma IgA production is independent of intestinal IgA 

production [135]. Plasma IgA is primarily monomeric and is produced by B 
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lymphocytes resident in the bone marrow [136]. Small quantities of monomeric 

serum IgA enter intestinal secretions by diffusion [137].  

Figure 1.1 IgA secretion  

 

 

. Within the lamina propria plasma cells secrete dimeric IgA. The 

polymeric immunoglobulin receptor (pIgR) present on the basolateral end of 

intestinal epithelial cells binds IgA dimers. The IgA dimers are transported to the 

apical end and secreted into the lumen of the GI tract with a portion of pIgR.  
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pIgR knockout mice: defining the role of active IgA secretion. 

Dimeric IgA and pentameric IgM exported by the polymeric 

immunoglobulin receptor are not the only immunoglobulins present in the 

intestinal muocsa. Serum IgA and IgG also enter intestinal mucosal secretions by 

paracellular diffusion. Mice deficient in the polymeric immunoglobulin receptor 

(pIgR KO mice) were generated to characterize the role of active immunoglobulin 

secretion by insertion of a targeting vector into the third exon of the polymeric Ig 

receptor locus (PIGR). Immunofluorescence staining of small intestine sections 

revealed that pIgR KO mice have significantly reduced IgA at the epithelial 

surface compared to wild type controls. However, pIgR KO mice have increased 

interstitial IgA indicating that the lack of IgA at the epithelium is due to impaired 

active transport, not to a defect in IgA synthesis. Comparison of serum, whole 

saliva, small intestinal secretions and fecal extracts revealed a number of major 

differences between pIgR KO mice with wild type controls.  pIgR KO mice had 

elevated serum IgA. This was the direct result of impaired IgA secretion since 

Western Blot analysis revealed that the majority of this IgA was polymeric IgA. 

pIgR KO mice had increased serum anti-E. coli IgG. However, there was no 

difference in anti-Lactobacillus IgG between pIgR KO mice and wild type 

controls. Therefore, reduced active secretion of IgA by pIgR resulted plasma IgG 

being produced selectively against E. coli. IgG was higher in the small intestinal 

secretions of pIgR KO mice than in the wild type controls.  Fecal IgG was also 

significantly higher in pIgR KO mice than in the wild type controls. This shows 
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that impairment of the mucosal barrier results in the bulk transport of IgG into the 

mucosa.  

Studies have been performed using pIgR KO mice to determine the role of 

active immunoglobulin secretion in protection against disease. pIgR KO mice are 

more susceptible to Mycobacterium bovis bacillus Calmette-Guérin (BCG) 

infections than wild-type mice [138]. pIgR KO mice had higher bacterial loads in 

their lungs compared to the wild-type controls. The capacity of pIgR KO mice to 

produce IFN-γ and TNF-α was also significantly reduced compared to wild type 

controls. pIgR KO mice are also more susceptible to nasal colonization by 

Streptococcus pneumonia [139] . Wild type C57BL/6 mice had significantly less 

serum IgG against intestinal bacterial antigens than pIgR KO mice. pIgR KO 

mice also had increased numbers of bacteria in their mesenteric lymph nodes 

than wild type controls. These findings provide evidence that active IgA secretion 

is essential in the containment of bacteria to the lumen of the GI tract [140].  

Immune responses to intestinal bacteria are localized.  

As previously stated, immune responses are mounted against the 

intestinal bacteria. These immune responses involve the generation of IgA 

exclusively within the GI tract [141]. A study by Konrad et al characterized 

systemic immune responses against select intestinal bacterial antigens [142]. 

ELISA assays revealed that the serum immunoglobulin G (IgG) response to 

these antigens was negligible in C3H/HeJ mice. Furthermore, there were no 

specific CD4+ T-cell responses to bacterial antigens. However, although these 

mice did not have systemic immune responses against bacterial protein antigens 
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they produced intestinal IgA to the same antigens. This provides strong evidence 

of a very tight compartmentalization of immunity.  

Mesenteric lymph nodes are crucial for oral tolerance. 

There is an abundance of antigens in the GI tract. These include bacterial 

antigens as well as numerous food antigens. The oral administration of antigens 

significantly impairs systemic immune responses to these same antigens if they 

are administered intravenously. This phenomenon is referred to as oral tolerance 

[141]. Mesenteric lymphadenectomy (the removal of mesenteric lymph nodes) 

abolishes oral tolerance [143]. This provides evidence that the mesenteric lymph 

nodes (MLNs) are the sites of induction of tolerance to harmless antigens 

present in the GI tact. The MLNs act as barriers, preventing the dendritic cells 

carrying commensal bacteria from gaining access to the systemic circulation 

[144]. The inability of dendritic cells carrying commensal bacteria to enter the 

systemic circulation is a major contributing factor in preventing systemic immune 

responses to the intestinal bacteria.  

The MLNs are situated along the route of chylomicron transport [145]. 

Chylomicrons are lipoprotein particles secreted by the enterocytes subsequent to 

consuming a meal containing triglycerides [146]. Triacylglyceride (TAG) is the 

major constituent of chylomicrons. In addition to TAGs chylomicrons contain 

phospholipids, cholesterol as well as proteins [147]. Chylomicrons are comprised 

of a hydrophobic core containing TAG and cholesterol esters. The hydrophilic 

surface is a phospholipid monolayer in addition to cholesterol and proteins. It is 

therefore possible that the long term consumption of high levels of dietary fat can 
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affect the functioning of the mesenteric lymph nodes. Atrophy of the mesenteric 

lymph nodes has been observed in obese mice along with a reduction in the 

numbers of regulatory T lymphocytes.  Long term consumption of a high fat diet 

is associated with apoptosis of the regulatory T lymphocytes within the MLNs 

[148].  

The regulatory T cells (Tregs) downregulate immune responses, 

preventing uncontrolled immune responses [149]. A reduction in Tregs due to 

long term consumption of a HFD may result in a switch from tightly regulated 

immune responses to the intestinal bacteria to uncontrolled systemic 

inflammation. These findings were exciting since they demonstrated that the 

implications of long term HFD consumption may also extend to impairment of 

immune tolerance.  If this occurs then a switch from the tightly controlled non-

inflammatory responses against the intestinal bacteria to systemic inflammatory 

responses against the intestinal bacteria could result. Loss of tolerance to the 

intestinal bacteria being linked to metabolic syndrome was a novel concept that 

we sought to investigate in a series of studies.  

Proposed hypothesis. 

Based on our preliminary findings and the published literature we propose 

that long term consumption of a high fat diet impairs the immune tolerance to the 

intestinal bacteria resulting in increased systemic inflammation. This systemic 

inflammation may become chronic and lead to impaired insulin signaling and the 

development of type 2 diabetes. 
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Figure 1. 2 Experimental Model 
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Experimental approach.  

In previous studies, HFD fed mice harboring gut bacteria had higher 

fasting blood glucose levels and elevated plasma inflammatory cytokines than to 

HFD fed GF mice. As a result, our first experimental goal was to determine 

whether long term HFD consumption resulted in triggering of systemic immune 

response against intestinal bacteria. We assessed the effect of long term HFD 

consumption on plasma IgG against different intestinal bacterial strains. 

Preliminary analyses revealed that long term HFD consumption resulted in 

increased plasma IgG against the LF-82 strain of Escherichia coli, an invasive 

intestinal bacterial strain.sIgA in the GI tract plays a major role in preventing 

adherence of bacteria to the intestinal epithelium. This minimizes intestinal 

bacterial translocation. As a consequence, our second experimental goal was to 

determine whether long term HFD consumption affected IgA secretion into the 

lumen of the GI tract.  This was done by comparing fecal IgA in C57BL6 mice fed 

a low fat diet (LFD) as well as HFD mice. Our third goal was to characterize the 

role of the polymeric immunoglobulin receptor (pIgR) in shaping the bacterial 

composition of the GI tract. The polymeric immunoglobulin receptor (pIgR) is a 

membrane glycoprotein is responsible for the active secretion of polymeric 

immunoglobulins into the lumen of the GI tract. Mice lacking the pIgR (pIgR KO 

mice) and wild-type C57BL6 littermates were placed on a high-fat, high-

carbohydrate Western Diet and a variety of metabolic parameters were 

evaluated.  

Copyright © Nadeem K. Mohammed 2012 
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CHAPTER 2 THE EFFECT OF HIGH FAT DIET ON SYSTEMIC 

IMMUNITY. 

INTRODUCTION. 

Studies showing improved metabolic parameters in GF mice prompted an 

investigation as to whether the bacteria residing in the GI tract are responsible for 

the development of inflammation and insulin resistance. As previously 

mentioned, immune responses against the bacteria in the GI tract are generated 

at the intestinal mucosal surface. Theoretically the systemic immune cells are 

oblivious to the presence of intestinal bacteria. Serum immunoglobulin G (IgG) 

and CD4+ T-cell specific responses against intestinal bacterial antigens are 

negligible.  

To gain a more comprehensive understanding of the effects of long term 

HFD consumption, pilot studies were performed using the plasma from BALBc 

mice fed a high fat diet (Research Diets Inc. D12492 Rodent Diet with 60% kCal 

fat) and mice fed a low fat diet (Open Source Diets D12450B Rodent Diet with 10 

kcal% fat) for 10 weeks. The pilot analyses involved measuring plasma IgG 

against the LF82 strain of E. coli, an intestinal bacterial strain. Plasma IgG was 

evaluated by Western Blot analysis, as well as by ELISA analysis. After 

performing the preliminary studies in mice, a 10 week feeding study was 

performed on C57BL6 mice fed a HFD and a LFD. Plasma IgG against protein 

extracts from E. coli LF82, E. coli Nissle 1917 (EcN), Bacteroides 

thetaiotaomicron (B. thetaiotaomicron) and Lactobacilus acidophilus (L. 

acidophilus) were measured by a lab-developed ELISA. Plasma TNF-α, blood 
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cell composition and fasting blood glucose levels were measured in order to 

determine whether a link existed between plasma IgG against intestinal bacteria, 

systemic inflammation and elevated fasting blood glucose.  

To determine whether the findings in the animal studies were clinically 

relevant, plasma samples from human subjects were also analyzed. Plasma IgG 

against E. coli LF82, E. coli Nissle 1917 (EcN), Bacteroides thetaiotaomicron (B. 

thetaiotaomicron) and Lactobacilus acidophilus (L. acidophilus) was measured in 

lean healthy controls as well as obese non-diabetics and obese diabetics. 

Plasma TNF-α was also measured in human plasma samples to determine 

whether a relationship existed between plasma IgG against intestinal bacteria 

and inflammation. The findings of this study can be found in the journal 

Metabolism: Clinical and Experimental. The title of the paper is Elevated IgG 

levels against specific bacterial antigens in obese patients with diabetes 

and in mice with diet-induced obesity and glucose intolerance. The article is 

available online and it is currently still in press. Permission to reproduce this data 

was obtained. 

METHODS. 

PRELIMINARY ANIMAL STUDIES 

The preliminary studies involved the analysis of plasma from eight BALB/c 

mice. Four of the mice had been placed on a high fat diet (Research Diets Inc. 

D12492 Rodent Diet with 60% kCal fat) and the other four had been placed on a 

low fat diet (Open Source Diets D12450B Rodent Diet with 10 kcal% fat) for ten 
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weeks. Western blots were performed to determine whether long term HFD 

consumption was associated with increased plasma IgG against the intestinal 

bacteria. 

Bacterial cultures. 

The LF82 strain of the gut microbe Eschericha coli was cultured overnight 

in Luria-Bertani Medium (LB Medium) at 36.9°C in an Isotemp Incubator (Fisher 

Scientific). 

Preparation of bacterial proteins. 

In order to obtain bacterial proteins, approximately 5 ml of bacterial 

cultures were centrifuged at 10,000 rpm for ten minutes. The supernatant was 

discarded and the bacterial pellet obtained was re-suspended in two hundred 

and fifty microliters (250µl) 4X SDS and seven hundred and fifty microliters 

(750µl) water. The re-suspended bacterial pellet was then boiled for ten minutes.  

Western Blot Analysis of anti-E. coli LF82 IgG. 

The E. coli proteins were separated on NuPAGE® 4-12% Bis Tris Gels and 

then transferred by an Invitrogen iBlot® Gel Transfer Device to PVDF 

membranes. The membranes were blocked with non-animal protein (NAP) 

blocking solution diluted 1:2 with 1X femto-TBST. The PVDF membranes were 

cut into individual strips. Each membrane strip was incubated overnight in 

plasma from an individual mouse that had been diluted 1:10 in the blocking 

solution. The membrane strips were then washed with 1X Tris-Buffered Saline 

Tween-20 (TBST). Anti-Mouse IgG (Fc specific)-Peroxidase antibody was diluted 
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1:5000 to detect the presence of anti-E.coli IgG. The membrane strips were then 

washed again with TBST and then simultaneously exposed to ECL Western 

Blotting Substrate. The western blots were then visualized on the Kodak Image 

Station 440. 

Western Blot Analysis of plasma anti-bacterial IgG. 

The intestinal bacteria are poorly characterized. To determine whether 

long term HFD consumption resulted in increased systemic immune responses to 

the intestinal bacteria, the contents of the cecum were isolated. The contents of 

the cecums were removed from each of the LFD mice, pooled and added to 

750µl of water and 250µl 4X SDS loading buffer. The mixture was boiled for 

approximately ten minutes. The mixture was then centrifuged at 10,000 rpm for 

ten minutes. The pellet was discarded while the supernatant containing the cecal 

antigens was kept for analysis. The cecal antigens were separated on NuPAGE® 

4-12% Bis Tris Gels and then transferred by an Invitrogen iBlot® Gel Transfer 

Device to PVDF membranes.  

Each membrane was cut into four individual strips. Each individual 

membrane strip was placed in non-animal protein (NAP) blocking solution diluted 

1:2 with 1X femto-TBST. Each membrane strip was incubated overnight in 

plasma from an individual mouse that had been diluted ten times in the blocking 

solution. The membrane strips were then washed with Tris-Buffered Saline 

Tween-20 (TBST) [1X]. Anti-Mouse IgG (Fc specific)-Peroxidase antibody was 

diluted 1:5000 to detect the presence of anti-E.coli IgG. The membrane strips 

were then washed again with TBST and then simultaneously exposed to ECL 
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Western Blotting Substrate. The western blots were then visualized on the Kodak 

Image Station 440. 

Development of a novel ELISA technique to quantify anti-bacterial 

IgG. 

We wanted to assess whether long term HFD consumption resulted in 

quantitative differences in IgG against bacterial proteins. To do this we 

developed a novel enzyme-linked immunosorbent assay (ELISA) to measure IgG 

against the bacteria used in these studies: E. coli LF82, E. coli Nissle 1917, 

Bacteroides thetaiotaomicron and Lactobacilus acidophilus. Soluble proteins 

from these bacteria were extracted using B-PER Bacterial Protein Extraction 

Reagents (ThermoSCIENTIFIC). Bacteria cultures were centrifuged at 5000 × g 

for 10 minutes.  

The supernatant was discarded and the remaining pellet was weighed. B-

PER Reagent was added at a ratio of 4ml/gram of cell pellet. Lysozyme and 

DNase I were added at a ratio of 2μL/mL of B-PER Reagent in order to obtain a 

higher concentration of soluble proteins. The suspension was incubated at room 

temperature for 15 minutes and then centrifuged at 15,000 × g for 5 minutes. The 

supernatant containing soluble bacterial proteins was used for preparing the 

ELISA plates. Bacterial proteins were quantified using the BCA™ Protein Assay 

(Thermo Scientific) and dissolved in a carbonate coating buffer of pH 9.6 to give 

a final concentration of 100µg/ml. 96 well flat-bottom ELISA plates (BD-Falcon) 

were coated with 10μg of bacterial protein per well and incubating the plate 

overnight at 4ºC. Details of how the ELISAs were performed are given below. 
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Long term feeding study on C57BL6 mice. 

 

Twelve six week old male C57BL6 mice were ordered at 5 weeks of age 

from Jackson Laboratories. The mice were housed three per cage and 

maintained in a 12hour light/dark cycle. We allowed the mice to become 

acclimated to their environment.  We then marked them for identification using 

tail markings. We measured the body weight and fasting blood glucose values 

prior to switching these mice from regular chow diets to special diets.  

The special diets of the mice were open formula, open source purified 

ingredients. The mice were divided into two equal groups (n = 6). One group was 

fed a high fat diet (Rodent Diets with 60 kcal% Fat D12492 from Research Diets 

Incorporated). The other group was fed a low fat diet (Rodent Diets with 10 

kcal% Fat D12450B from Research Diets Incorporated). Details of these diets 

are listed in table 2.1. The mice were placed on these diets at six weeks of age 

and euthanized after 10 weeks on the special diets.   

Measurement of body weights and fasting blood glucose 

The mice were weighed weekly to monitor changes in bodyweights. To 

assess fasting glucose levels, mice were fasted for 4 hours. Blood was collected 

from the tail tips of the mice. Blood glucose levels were assessed using the 

TRUEtrack® glucose meter (Home Diagnostics Inc.). 
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Measurement of plasma anti-bacterial IgG. 

The ELISA developed by this laboratory was used to measure plasma IgG 

against intestinal bacteria.  96 well flat-bottom ELISA plates (BD-Falcon) were 

coated with 10μg of bacterial protein per well. Plates were incubated overnight at 

4ºC. The wells were washed five times with 1X Tris-Buffered Saline Tween-20 

(TBST). Each washing step was performed for duration of five minutes. The 

plates were then blocked for one hour at room temperature by adding 250µl of 

NAP Blocking reagent diluted 1:2 in 1X TBST to each well. 100µl of plasma 

diluted 1:100 in blocking solution was then added to each well and incubated for 

2 hours at room temperature. The plates were then washed five times with 1X 

Tris-Buffered Saline Tween-20 (TBST). Bound IgG was detected by adding 

100µl/well of alkaline phosphatase-conjugated anti-mouse IgG (Fc specific) from 

Sigma-Aldrich diluted 1:5000 in blocking buffer for 1 hour. The plates were then 

washed five times with 1X Tris-Buffered Saline Tween-20 (TBST).  50µl/well of p-

nitrophenyl phosphate (pNPP) from Sigma-Aldrich) was added, and the color 

reaction was stopped with 2M sulfuric acid. Absorbance values were read at 

optical density 405nm (A405) in a Bio-Rad microplate reader. 

Processing of samples. 

Mice were humanely euthanized using carbon dioxide followed by cervical 

dislocation. Blood was immediately collected by cardiac puncture and placed into 

EDTA containing eppendorf tubes that had been kept on ice. The majority of 

blood obtained was immediately centrifuged at 8,000 rpm for 10 minutes. The 
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plasma was collected and stored at -82°C. The remaining whole blood fractions 

were used to characterize the blood cell types present by hematological analysis.  

Plasma TNF-α measurements. 

To assess the levels of circulating TNF-α we utilized the MILLIPLEX® 

Mouse Cytokine Kit (from Millipore Catalog # MPXMYCTO-70K). The data was 

read in a Bio-Plex® 200 system (BIO-RAD). 

Hematological analysis. 

Subsequent to euthanasia approximately 50µl of whole blood was 

collected from the mice by cardiac puncture. The tubes containing the whole 

blood was briefly rocked. The whole blood was then analyzed using a 

HEMAVET® 950 FS Multispecies Hematology Systems (Drew Scientific Inc.). 

This is a device which gives comprehensive hematology profiles using 20 µL of 

whole blood from different animals including mice. The hematology profiles given 

are for both leukocytes and erythrocytes.  

The leukocyte parameters given are white blood cell count, absolute 

number and percentage of neutrophils, absolute number and percentage of 

lymphocyte, absolute number and percentage of monocyte, absolute number and 

percentage of eosinophil, and absolute number and percentage of basophil. The 

erythrocyte parameters given are red blood cell count, hemoglobin, hematocrit, 

mean cell volume, mean corpuscular hemoglobin concentration and red cell 

distribution width. Additionally thrombocyte parameters including platelet counts 

and mean platelet volume are given. 
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Measuring plasma IgG against intestinal bacteria.  

Cultures of E. coli Nissle 1917, Bacteroides thetaiotaomicron and 

Lactobacilus acidophilus were kindly provided by Dr. Charlotte Kaetzel 

(Department of Microbiology, Immunology and Molecular Genetics, University of 

Kentucky). These bacteria had been obtained from the American Type Culture 

Collection (ATCC). Proteins were extracted from E. coli Nissle 1917, Bacteroides 

thetaiotaomicron and Lactobacilus acidophilus as well as the LF82 strain of E. 

coli. The ELISA developed by this laboratory was used to measure plasma IgG 

against these intestinal bacteria. Ninety six well flat-bottom ELISA plates (BD-

Falcon) were coated overnight with 100µl of the bacterial protein extracts. 

Plasma from the LFD mice and the HFD mice was diluted 1:100 to quantify IgG 

against E. coli LF82, E. coli Nissle 1917, Bacteroides thetaiotaomicron and 

Lactobacilus acidophilus. 

To determine if inflammation originates in the GI tract.  

RNA was extracted from ileum and colon using using the E.Z.N.A® Total 

RNA Kit. We used the Thermo Scientific NanoDrop 2000 spectrophotometer 

(Thermo Scientific) to measure RNA concentration. The qScript™ cDNA 

Synthesis Kit was used to generate cDNA. We analyzed the intestinal samples 

for expression of inflammatory genes. The genes we examined were Chemokine 

(C-C motif) ligand 5 (CCL5 also known as RANTES), NOD-like receptor family 

pyrin domain containing 6 (NLRP6), IL-18 and thymic stromal lymphopoietin 

(TSLP) expression using a BIORAD CFX96™ Real Time PCR detection system. 

Gene expression was normalized to Glyceraldehyde 3-phosphate 

http://en.wikipedia.org/wiki/NOD-like_receptor
http://en.wikipedia.org/wiki/Pyrin_domain
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dehydrogenase (GAPDH). The reason for examining NLRP6, IL-8 and CCL5 was 

due to their association with inflammatory responses against intestinal bacteria. 

TSLP was examined since TSLP secreted by the intestinal epithelial cells 

promote tolerance to the intestinal bacteria. The primer sequences used for RT-

PCR analysis of these genes are listed in table 2.4. 

HUMAN STUDIES. 

 

Human plasma samples from a Centers of Biomedical Research 

Excellence (COBRE) pilot study “The influence of SAA and CETP activity on 

HDL remodeling during active weight loss” were kindly provided by Dr. Anisa 

Jahangiri. All of the plasma samples obtained from this study were from obese 

patients (BMI ≥ 30). One group of the obese patients had not been diagnosed 

with type 2 diabetics (obese non-diabetics). The other group of obese patients 

had been diagnosed with type 2 diabetes (fasting plasma glucose ≥126 mg/dl). 

Plasma samples from non-diabetic individuals with BMI values in the healthy 

range (BMI ≥ 20 and ≤25) were obtained commercially from Biospecialty Corp. 

(Colmar, PA, USA) for experimental controls. The study was approved by the 

Institutional Review Board (IRB) at the University of Kentucky. Plasma samples 

were stored at -82°C and not subjected to freeze thaw cycles. Details of the 

human plasma donors are given in table 2.2. 
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Western Blot Analysis of human plasma. 

Proteins were then extracted from Escherichia coli and separated on 

NuPAGE® 4-12% Bis Tris Gels as previously described. After the proteins were 

transferred to PVDF membranes, the membranes were placed in non-animal 

protein (NAP) blocking solution diluted 1:2 with 1X femto-TBST. The PVDF 

membranes were sliced into individual strips and incubated with plasma samples 

from ten healthy control individuals as well as six obese non-diabetics and six 

obese diabetics.  

The plasma samples were diluted 1:400 in the blocking solution and 

incubated overnight at 4°C. The strips were then washed 5 times in 1X TBST. 

The membrane strips were incubated in anti-human IgG (Fc specific)-Peroxidase 

antibody diluted 1:5000 in the blocking solution for one hour. The membrane 

strips were washed five times in 1X TBST. ECL Western Blotting Substrate was 

simultaneously added to each of the membrane strips and imaging was 

performed on the Kodak Image Station 440.  

Measurement of anti-bacterial IgG. 

IgG against E. coli Nissle 1917, Bacteroides thetaiotaomicron and 

Lactobacilus acidophilus and E. coli LF82 was measured in plasma samples from 

the lean healthy controls, obese non-diabetics and obese diabetics by lab 

developed ELISA. Human plasma samples were diluted 1:400 in blocking 

solution.  
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Bound IgG was detected by adding 100µl/well of alkaline phosphatase-

conjugated anti-human IgG (Fc specific) from Sigma-Aldrich diluted 1:5000 in 

blocking buffer for 1 hour. 50µl/well of p-nitrophenyl phosphate (pNPP) from 

Sigma-Aldrich) was added, and the color reaction was stopped with 2M sulfuric 

acid. Absorbance values were read at optical density 405nm (A405) in a Bio-Rad 

microplate reader. 

Measurement of TNF-α 

Plasma TNF-α was measured in the obese non-diabetics and the obese-

diabetics using the Human TNF-alpha High Sensitivity ELISA from eBioscience 

(BMS223HS; sensitivity 0.13 pg/mL). 50 μl of human plasma was added in 

duplicate. The human plasma samples were diluted in 50 μl of sample diluent. 

Statistical analyses. 

Results were expressed as mean ± S.E.M and were analyzed with 

GraphPad Prism v5.04. Groups were compared with unpaired Student’s t-tests 

and ANOVA and Bonferroni’s post-hoc analysis. Statistical significance was 

assumed when p<0.05.  
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LIST OF TABLES. 

Table 2.1: Details of the rodent diets. 

Diet % kcal 
Protein 

% kcal 
Carbohydrate 

% kcal 
Fat 

Teklad Global 18% Protein 
Rodent Diet 2918 

24 58 18 

 Research Diets Inc. Low fat 
diet (LFD) D12450B 

20 70 10 

Research Diets Inc. High fat 
diet (HFD) D12492 

20 20 60 

Research Diets Inc.  
Western Diet D12079B 

17 43 41 

 

 

Table 2.2: Human plasma sample details. 

Patient 
group 

Sample 
size (n) 

BMI Gender 
ratio 

Lean, 
healthy 

10 24.8 ± 3.0 
 

1♀, 9♂ 

Obese 
non-diabetics 

16 41.1 ± 10.4 
 

7♀, 9♂ 
 

Obese 
diabetics 

16 40.6 ± 7.1 
 

7♀, 9♂ 
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Table 2.3: List of primer sequences used for genotyping. 

Primer Sequence 

Pigr WT A GAACTCTTGTCTTTTGTCTCC 

Pigr WT B CTCGCCTGAATACTCCTT 

Pigr KO A GAACTCTTGTCTTTTGTCTCC 

Pigr KO B TCCAGACTGCCTTGGGAAA 

 

Table 2.4: List of real time PCR primer sequences. 

Primer Sequence 

mGAPDH-F CCAGGTTGTCTCCTGCGACTT 

mGAPDH-R CCTGTTGCTGTAGCCGTATTCA 

mTNFa-F CCCTCACACTCAGATCATCTTCT 

mTNFa-R GCTACGACGTGGGCTACAG 

mIL-6-F AAGAGCCGGAAATCCACGAAA 

mIL-6-R TCTTGGCGTTACAGAGGATCA 

mNLRP6f1 TCTCTCCGTGTCAGCGTTCA 

mNLRP6r1 CGGAAGAGCCGATTAAAAGTGT 

mIL-18-F GACTCTTGCGTCAACTTCAAGG 

mIL-18-R CAGGCTGTCTTTTGTCAACGA 

mCCL5-F TTTGCCTACCTCTCCCTCG 

mCCL5-R CGACTGCAAGATTGGAGCACT 

mTSLP-F ACGGATGGGGCTAACTTACAA 

mTSLP- R ACTCCTCGATTTGCTCGAACT 
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RESULTS  

Preliminary mouse studies. 

HFD mice have higher plasma IgG against invasive intestinal 

bacteria. 

To investigate whether a high fat diet is associated with systemic immune 

responses against the intestinal bacteria, we performed Western Blots to 

determine whether there is an association between long term (10 weeks) 

HFD consumption and immunoglobulin G (IgG) against invasive intestinal 

bacteria. Our data showed that the plasma of the mice on the HFD had 

higher levels of IgG against antigens from invasive intestinal bacteria than 

the mice on the LFD (Figure 2.1). 

HFD mice have higher anti-bacterial IgG. 

Western blot analysis was then performed to compare plasma IgG against 

the antigens from the cecums of LFD mice. Plasma IgG against the 

antigens present in the cecum were low in each of the LFD mice (left 

panel Figure 2.2). Plasma IgG against the antigens present in the cecum 

was high in each of the individual HFD mice.  
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Figure 2.1  Anti-E. coli LF82 IgG 

 

 

 

  

PVDF membranes with E. coli LF82 protein extracts were cut into 

individual strips. Each strip was incubated in plasma from an individual mouse on 

a LFD (left) and individual mouse on a HFD (right). Plasma was diluted 1:10 in 

blocking reagent. 

Figure 2.2 Anti-bacterial IgG. 

 

Membrane strips were incubated in plasma from individual mice on a LFD 

(left) and individual mice on a HFD (right). Plasma was diluted 1:10 in blocking 

reagent. 
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LONG TERM FEEDING STUDY IN C57BL6 MICE. 

Increased weight gain and fasting blood glucose in HFD mice. 

As expected, HFD fed mice subsequently gained significantly more weight 

over the duration of the study than the mice on the LFD. Six weeks after 

commencing the special diets we observed a statistically significant difference 

between the bodyweights of LFD and HFD mice (Figure 2.3 A). Fasting blood 

glucose was measured using the TRUEtrack® glucose meter. After 10 weeks on 

the special diets, HFD mice had significantly higher fasting blood glucose levels 

(Figure 2.3 B, p<0.05).  

Long term HFD consumption leads to increased plasma TNF-α in 

mice.  

Plasma obtained from mice by cardiac puncture after the 10 week feeding 

regimen was analyzed for total TNF-α by the MILLIPLEX® Mouse Cytokine Kit. 

HFD mice had higher plasma TNF-α than LFD mice. The difference between the 

plasma TNF-α in the HFD mice and the LFD mice was significant (Figure 2.3 C, 

p<0.05).     

Plasma IgG against invasive intestinal bacteria is increased in HFD 

mice.  

HFD mice had significantly higher plasma IgG against protein extracts 

from the LF82 strain of E. coli (Figure 2.4 A). However statistical analysis 

revealed that there were no significant differences between LFD and HFD mice 
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in plasma IgG against E. coli Nissle 1917, Bacteroides thetaiotaomicron and 

Lactobacilus acidophilus (Figures 2.4 B, 2.4 C and 2.4 D).  

Neutrophil percentage is increased in HFD mice. 

The HEMAVET® 950 FS Multispecies Hematology System was used in 

order to measure the inflammatory immune cell subsets. It was observed that the 

HFD mice had a higher percentage of neutrophils compared to LFD mice. 

Statistical analysis revealed that the difference between both groups was 

significant (Figure 2.5 A, p < 0.05). Lymphocyte percentage in the HFD mice was 

significantly lower than in the LFD mice (Figure 2.5 B, p < 0.05). No differences 

were observed between the LFD mice and the HFD mice in the percentages of 

the monocytes, eosinophils and basophils.  

Long term HFD consumption promotes intestinal inflammation. 

Real-time quantitative PCR was performed in order to determine whether 

inflammation was present in the GI tract of HFD mice. A variety of pro-

inflammatory genes were analyzed. These included interleukin-18 (IL-18), 

chemokine (C-C motif) ligand 5 (CCL5) and the NOD-like receptor family pyrin 

domain containing 6 (NLRP6). These genes were chosen since they encode 

constituents associated with specialized inflammatory complexes against 

intestinal bacteria referred to as inflammosomes. The ileum and colon sections 

were of special interest since they harbor the highest densities of intestinal 

bacteria. There were no differences in IL-18 expression in the colon (Figure 2.6 

A). However a trend towards increased CCL5 expression in the ileum was 

observed (Figure 2.6 B, p =0.19). There was also a trend towards increased 

http://en.wikipedia.org/wiki/NOD-like_receptor
http://en.wikipedia.org/wiki/Pyrin_domain
http://en.wikipedia.org/wiki/Pyrin_domain
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NLRP6 expression in the ileum of HFD mice (Figure 2.6 C, p = 0.1154). Thymic 

stromal lymphopoietin (TSLP) expression was measured to determine whether 

tolerance to the intestinal bacteria was impaired by long term HFD consumption. 

TSLP is secreted by the intestinal epithelial cells (IECs) to prevent the dendritic 

cells from promoting inflammatory responses. A trend towards decreased TSLP 

expression in the colon of HFD mice was observed (Figure 2.6 D, p = 0.1857). 

Collectively the trend towards increased inflammation and decreased tolerance 

provides evidence that the systemic inflammation observed in HFD mice 

originates in the GI tract.  
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Figure 2.3  Comparison of LFD mice and HFD mice during a long time 

feeding study 
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(A) HFD mice gained significantly more weight than LFD mice. (B) After 

ten weeks the fasting blood glucose levels in HFD mice was significantly higher 

than in LFD mice. (C) Plasma TNF-α is higher in HFD mice than in LFD mice. * 

indicates that p < 0.05 
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Figure 2.4: The effect of long term HFD consumption on plasma IgG 

against different intestinal bacteria in C57BL6 mice.  
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(A) HFD mice have increased plasma anti-E. coli LF82 IgG (B) There is no 

difference between HFD mice and LFD mice in plasma IgG against protein 

extracts from EcN (C) There is no difference between HFD mice and LFD mice in 

plasma IgG against L. acidophilus (D) No effect of HFD on plasma IgG against  

B. thetaiotaomicron  * Indicates p < 0.05. For both groups n = 6. Plasma dilutions 

were 1:100.  
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Figure 2.5. Hematological analysis of LFD mice and HFD mice 

 

 

 

 

 

 

 

 

 

 

 

 

 (A) Neutrophil percentage is increased in HFD mice compared to LFD 

mice. (B) Lymphocyte percentage is decreased in HFD mice. (C) No differences 

in monocyte percentage. (D) No differences in eosinophil percentage (E) No 

differences in basophil percentage * indicates that p < 0.05, significant.  
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Figure 2.6 RT-PCR analysis of the ileums and colons of LFD mice 

and HFD mice. 

 

 (A) There was no difference in IL-18 expression in the colon of LFD mice 

and HFD mice. (B) There was a trend towards increased CCL5 expression in the 

ileum of HFD mice compared to LFD mice (p =0.19) (C) There was a trend 

towards increased NLRP6 expression in the ileum in HFD mice (p = 0.1154). (D) 

There was a trend towards decreased TSLP expression in the colon in HFD mice 

(p = 0.1857) 
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HUMAN STUDIES 

Obesity is associated with increased anti-E. coli LF82 IgG. 

Plasma IgG against protein extracts from the LF82 strain of E. coli was 

low in all of the lean healthy controls. Plasma anti-E. coli IgG was high in all of 

the obese subjects. Obese diabetics had higher plasma IgG against protein 

extracts from the LF82 strain of E. coli IgG than the obese non-diabetics (Figure 

2.7).  

Figure 2.7: Western Blot Analysis of plasma from human test subjects 

 

Membranes were cut into individual strips and incubated in 1:400 dilutions 

of human plasma. Left: strips blotted in plasma samples taken from lean health 

controls. Center: strips blotted in plasma from obese non-diabetics. Right: strips 

blotted in plasma obtained from obese diabetics. 

IgG against E. coli LF82 extracts is increased in obese diabetics.  

Obese diabetics had significantly higher plasma IgG against protein 

extracts from the LF82 strain of E. coli than the lean healthy controls (Figure 2.8 

A). However, there were no differences in plasma IgG against E. coli Nissle 
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1917, Bacteroides thetaiotaomicron and Lactobacilus acidophilus between the 

lean healthy controls, the obese non-diabetics and the obese-diabetics (Figures 

2.8 B, 2.8 C and 2.8 D).   

Figure 2.8 Plasma IgG against different intestinal bacteria human subjects 

 

For each obese group n =16, healthy lean controls n=10 (A) Diabetics 

have significantly increased anti-E. coli LF82 IgG compared to lean controls (B) 

No differences in IgG against EcN (C) No differences in IgG against L. 

acidophilus (D) No difference in plasma IgG against  B. thetaiotaomicron * 

indicates p <0.05. Plasma dilutions of 1:400 were used.  
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Obese diabetics have higher plasma TNF-α than obese non-

diabetics.  

We observed that plasma TNF-α was twofold higher in obese diabetics 

than obese non-diabetics. Statistical analysis revealed that the difference in 

plasma TNF-α in the obese diabetics and the obese non-diabetics was highly 

significant (Figure 2.9 A, p<0.01).  

Human plasma TNF-α correlates with IgG against the LF82 strain of 

E. coli. 

To further investigate the relationship between IgG against E. coli LF82 

and plasma TNF-α, we investigated whether a correlation existed between both 

parameters.  We observed that there was a statistically significant correlation 

between TNF-α levels and plasma IgG against the protein extracts from the E. 

coli LF-82 strain (Figure 2.9 B).  
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Figure 2.9 Analysis of plasma TNF-α in obese human subjects 
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 For each group n =16 (A) Obese diabetics had significantly higher plasma TNF-

α than the obese non-diabetics (B) There is a statistically significant correlation 

between TNF-α and plasma anti-E. coli LF82 IgG. ** indicates p < 0.001. Plasma 

dilution 1:2. 

DISCUSSION 

PRELIMINARY MOUSE STUDIES: HFD mice have higher plasma IgG 

against invasive intestinal bacteria. 

These studies were commenced in March 2010. By that time there was 

accumulating evidence that the intestinal bacteria in conjunction with long term 

consumption of a high fat diet played a role in the development of systemic 

inflammation and insulin resistance. Our research group hypothesized that long 

term consumption of a high fat diet might cause a loss of systemic immune 
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ignorance to the intestinal bacteria. We postulated that long term HFD 

consumption would result in increased systemic immune responses to the 

intestinal bacteria. To do this we decided to look at systemic immune responses 

against bacteria found exclusively in the GI tract.  

The intestinal bacteria are poorly characterized. We chose to measure 

plasma IgG against the LF82 strain of E. coli which was isolated from an ileal 

lesion of a Crohn’s Disease patient [150].  E. coli LF82 is designated as an 

adherent invasive E. coli strain (AIEC strain). Invasive strains are characterized 

by their ability to enter epithelial cells and subsequently survive and replicate 

[151, 152]. E. coli LF82 invades a number of epithelial cell lines including Caco-2, 

Intestine-407, and HCT-8 cells [153]. E. coli LF82 induces altered cytoskeletal 

arrangements in epithelial cells which leads to its uptake by endocytic vacuoles. 

This bacterial strain is more prevalent in the lesions of Crohn’s disease patients 

than in control patients without inflammatory bowel disease [154].  It should be 

emphasized that this bacterial strain is not present in the GI tract of mice. 

However, since it is an adherent and invasive strain, there may be antigens that 

are shared between this bacterial strain and uncharacterized invasive bacterial 

strains.  

Our pilot western blot analysis of the plasma of LFD and HFD mice 

revealed drastic differences between the two groups. The plasma from HFD mice 

had higher levels of IgG against invasive intestinal bacteria than the mice on the 

LFD. Plasma IgG against invasive intestinal bacteria very low in all four individual 

LFD mice (Figure 3).  The systemic immune system is oblivious to the presence 
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of the immense bacterial load of the GI tract. This is essential since the intestinal 

bacteria play important roles in vitamin synthesis and contribute to the overall 

health of the host individual.  

The higher levels of plasma IgG against invasive intestinal bacteria in HFD 

mice suggested that these mice had lost systemic ‘ignorance’ to the bacteria in 

the GI tract. IgG is produced in response to the presence of antigens in the 

systemic circulation. This may lead to triggering of the systemic immune 

response against these intestinal bacterial pathogens, resulting in increased IgG 

the amount of antigenic material present in the systemic circulation. Therefore 

the higher plasma IgG against intestinal bacteria in HFD mice is indicative of a 

loss of systemic immune ignorance to invasive intestinal bacteria. 

HFD mice have higher anti-bacterial IgG  

As it has been previously mentioned, the GI tract contains at least 500 

bacterial species. Although our finding that higher levels of anti- E. coli IgG in the 

plasma of HFD mice suggested that these mice had lost systemic ‘ignorance’ to 

the bacteria in the GI tract, we needed to establish whether there were higher 

levels of IgG against other bacterial species in the plasma of HFD mice.  

However, this aim was complicated by two major factors. The first was the 

poor characterization of the composition of the intestinal bacteria. Additionally, 

most intestinal bacterial species are anaerobic. This makes the culturing of 

intestinal bacteria challenging. To overcome these problems cecal extracts were 

prepared. The cecum is a pouch shaped structure situated between the ileum 
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and the colon. It is situated in a region of the GI tract where bacterial population 

density is extremely high. It is therefore a reservoir of intestinal bacteria.  

HFD mice had higher levels of plasma IgG against the antigenic contents 

of the cecum compared to the LFD control group (Figure 2.2). This further 

confirmed that HFD consumption is associated with a loss of systemic immune 

ignorance to the intestinal bacteria. This is because the systemic immune system 

is theoretically supposed to be oblivious to the contents of the cecum. 

Furthermore these findings strengthened our hypothesis since IgG against the 

intestinal bacteria of mice was measured. On the other hand, the LFD controls 

had low levels of IgG against the cecal contents. This may be due to the fact that 

these mice have not experienced any significant translocation of the intestinal 

bacteria into the systemic circulation. As a result, the levels of IgG against the 

antigenic components of the cecum are significantly much lower in the LFD 

controls than the HFD fed mice. 

Results from long term feeding study in C57BL6 mice 

The preliminary studies resulted in the observation that mice fed a high fat 

diet (Rodent Diets with 60 kcal% Fat D12492 from Research Diets Incorporated) 

for 10 weeks had elevated plasma anti-E. coli LF82 IgG. Although these findings 

were novel, they offered only a narrow range of interpretation. This is because 

the only parameter that had been examined thus far was plasma anti-E. coli 

LF82 IgG in relation to high fat diet consumption. To gain greater insight into the 

effects of long term HFD consumption on the systemic immune system a long 

term (ten week) feeding study was performed using C57BL6 mice.  
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Two parameters were used to define the end point of the study (i.e. the 

point at which the mice would be euthanized). These were body weight and 

fasting blood glucose. As expected, C57BL6 mice fed a HFD (60% calories from 

fat) gained significantly more weight than the mice fed a LFD (10% calories from 

fat), with bodyweights diverging significantly six weeks into the study (Figure 2.3 

A). However, weight gain by itself is not an accurate indicator of the development 

of elevated fasting blood glucose. The mice were euthanized once a significant 

difference in fasting blood glucose levels was observed. Based on the proposed 

hypothesis a significant elevation in fasting blood glucose would be observed 

subsequent to systemic inflammation and bacterial translocation. 

After 10 weeks the fasting blood glucose levels of the HFD mice were 

higher than the LFD mice (Figure 2.3 B). Statistical analysis revealed that these 

differences were significant (p<0.05) and it was at this point the study was 

terminated. The mice were euthanized and we were able to collect samples to 

evaluate a wide range of parameters.  

Long term HFD consumption leads to increased plasma TNF-α in 

mice.  

HFD mice had elevated plasma IgG against invasive intestinal bacteria. 

Previous studies have linked the IgG response to certain bacterial species to 

disease severity [155]. This is because cross-linking of FcγRs leads to 

inflammation [156, 157]. However, plasma IgG levels alone cannot be used to 

determine whether there is increased systemic inflammation. TNF-α is a widely 

used marker of inflammation. Since the proposed hypothesis states that the 
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immune responses to the intestinal bacteria lead to systemic inflammation, TNF-

α was measured in LFD mice and HFD mice. Statistical analysis revealed that 

the plasma TNF-α in the HFD mice was higher than in the LFD mice (Figure 2.3 

C; p <0.05). These findings strengthened the hypothesis that long term HFD 

consumption leads to systemic inflammatory immune responses being mounted 

against the bacterial antigens present in the lumen of the GI tract.   

A possible explanation for the increased plasma TNF-α could be the 

increase in intestinal bacteria crossing the intestinal epithelial barrier. This could 

lead to immune responses being mounted by the B lymphocytes. The B 

lymphocytes produce IgG which bind to the antigens present on the surface of 

the intestinal bacteria. It is possible that the increase in systemic IgG against 

intestinal bacteria results in increased FcγR crosslinking. This in turn leads to the 

release of TNF-α.   

Plasma IgG against invasive intestinal bacteria is increased in HFD 

mice.  

HFD mice had higher plasma IgG against invasive intestinal bacteria than 

LFD mice (Figure 2.4 A). However, there were no significant differences in 

plasma IgG against protein extracts from E. coli Nissle 1917, Bacteroides 

thetaiotaomicron and Lactobacilus acidophilus in HFD and LFD mice (Figures 2.4 

B, 2.4 C and 2.4 D). As it has been previously stated the systemic immune cells 

are naïve to the presence of the intestinal bacteria. This feeding study resulted in 

increased IgG against invasive intestinal bacteria in the HFD mice. These results 

further support the proposal that long term HFD consumption is associated with 



59 

 

increased IgG against antigens that are usually confined to the lumen of the GI 

tract.  IgG is produced as a consequence of the B lymphocytes detecting the 

presence of a particular antigen. Thus the elevated IgG against invasive 

intestinal bacteria in HFD mice was possibly due to the fact that that the B 

lymphocytes were no longer oblivious to these antigens. A possible explanation 

for this is that long term HFD consumption promotes entry of the bacteria present 

in the lumen of the GI tract into the systemic circulation. This triggers systemic 

immune responses including IgG production. 

Neutrophil percentage is increased in HFD mice. 

A variety of immune cells participate in inflammatory reactions. Since the 

sample number for the mouse studies (n = 6 for each group) was relatively small, 

further evidence was needed that long term HFD consumption results in 

inflammatory immune responses. The HEMAVET® 950 FS Multispecies 

Hematology Systems is useful in characterizing the various blood cell types 

present. After the ten week feeding study was completed, and the mice were 

euthanized we characterized the various immune cells present in whole blood 

fractions. The neutrophil percentage in the blood of the HFD mice was 

significantly increased compared to the LFD mice (Figure 2.5 A, p <0.0001). The 

increase in neutrophil percentage in HFD mice provides further evidence that 

long term HFD consumption leads to increased systemic inflammatory immune 

responses against the intestinal bacteria. Neutrophils are present in the initial 

phase of inflammation [158]. They ingest infectious microbes and eliminate them. 

The intracellular destruction of microbes by neutrophils is mediated by their 
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cytoplasmic granules via superoxide production as well as the proteases 

elastase and cathepsin G [159].  

A possible explanation for the increase in neutrophil percentage may be 

the increased plasma IgG against invasive intestinal bacteria in the HFD mice.  

Since FcγRs are expressed on the surface of neutrophils, there may be 

increased cross-linking of FcγRs with the Fc domains of the IgG against the 

intestinal bacterial antigens [160]. No significant differences were noted in 

monocyte percentage, basophil percentage or eosinophil percentage in the blood 

of HFD mice and LFD mice (Figures 2.5 C, 2.5 D and 2.5 E). This was not 

surprising since basophils are usually produced in response to infections by 

helminthes [161]. They are also usually associated with allergens and are 

associated with allergic reactions. Eosinophil percentage did not differ between 

the LFD and HFD mice. Eosinophils protect against parasitic infections [162]. Our 

discovery that long term consumption of a high fat diet specifically increases the 

percentage of neutrophils was significant. The increase in neutrophil percentage 

was observed along with increased plasma IgG against invasive intestinal 

bacteria, providing further evidence that the systemic immune responses against 

intestinal bacteria are inflammatory.  

Long term HFD consumption promotes intestinal inflammation. 

Real time PCR (RT-PCR) analysis was performed in order to determine 

whether the systemic inflammation we observed originated in the GI tract. It has 

been traditionally thought that the higher levels of inflammatory cytokines 

associated with high fat diet consumption originate in the adipose tissue [163]. 
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However, there is a growing body of evidence which suggests that inflammation 

resulting from long term HFD consumption may originate in the gastrointestinal 

(GI) tract [65]. For example, it has been reported that long term HFD 

consumption may alter the bacterial composition of the GI tract [68]. Furthermore 

Ding et al observed that conventionally raised (CONV) mice consuming a high fat 

diet experienced intestinal inflammation [70]. By contrast GF mice fed a high fat 

diet did not exhibit intestinal inflammation.  

Therefore it was crucial to determine whether the HFD mice experienced 

intestinal inflammation. The ileum and colon sections of the GI tract were 

analyzed for intestinal inflammation. This is because these regions of the GI tract 

harbor the largest bacterial populations. Different pro-inflammatory markers were 

measured. These were the NOD-like receptor family pyrin domain containing 6 

(NLRP6), Chemokine (C-C motif) ligand 5 (CCL5 also known as RANTES) and 

IL-18. RT-PCR revealed a trend towards increased NLRP6 expression in the 

ileum HFD mice (LFD 1.000 ± 0.2285, HFD 16.90 ± 9.220, p = 0.1154). NLRP6 is 

thought to play a role in inflammation via the activation of NF-κB [164]. Although 

the difference between the LFD mice and the HFD mice was not statistically 

significant, this was probably due to the relatively small sample size (where n = 

6) for each group. Although intestinal IL-18 did not differ between LFD and HFD 

mice, there was a trend towards increased CCL5 in the ileum of the HFD mice 

(LFD 1.136 ± 0.1660, HFD 2.444 ± 1.001, p = 0.1900). CCL5 plays a role in 

inflammation by recruiting macrophages [165]. Thus the trend towards increased 

http://en.wikipedia.org/wiki/NOD-like_receptor
http://en.wikipedia.org/wiki/Pyrin_domain
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CCL5 expression in the GI tract supports the idea that the systemic inflammation 

observed originates from the GI tract.  

Thymic stromal lymphopoietin (TSLP) expression was also measured. 

TSLP is constitutively secreted by the intestinal epithelial cells (IECs). The IECs 

secrete TSLP which prevents the dendritic cells (DCs) from promoting 

inflammatory immune responses. The DCs sample antigens and present them to 

T lymphocytes. RT-PCR showed a trend towards reduction of TSLP expression 

in the colon of HFD mice compared to the LFD controls (LFD 6.867 ± 4.469, HFD 

0.5141 ± 0.1141, p = 0.1857). Since TSLP is crucial to preventing intestinal 

inflammation, the trend towards decreased TSLP expression provides further 

evidence that the systemic inflammation may have originated in the GI tract.  

HUMAN STUDIES 

We decided to investigate whether long term consumption of a high fat 

diet is associated with increased plasma IgG against invasive intestinal bacteria 

in humans. We made the assumption that humans who had consumed a high fat 

diet over a long time period would have body mass index values in the 

overweight and obese range (≥ 25). When we performed Western Blot analysis 

we observed what appeared to be striking differences between the three groups.  

Plasma IgG against protein extracts from the LF82 strain of E. coli was lowest in 

the lean healthy control group. Plasma anti-E. coli LF82 IgG was higher in the 

plasma of the obese individuals. Notably there appeared to be a difference in 

plasma anti-E. coli LF82 IgG between the non-diabetic individuals and diabetic 
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patients. The obese diabetics had higher plasma anti-E. coli LF82 IgG than their 

non-diabetic counterparts.  

These findings provided further evidence that long term HFD consumption 

is associated with a loss of systemic immune ignorance to the intestinal bacteria. 

As it has been previously stated, the LF82 strain of E. coli is only known to reside 

in the GI tract. The low levels of plasma anti-E. coli LF82 IgG in the lean healthy 

controls was not surprising. The systemic immune system is ‘ignorant’ to the 

existence of the immense bacterial load of the GI tract. This is important for 

minimizing potentially harmful inflammatory immune responses against the 

immense reservoir of antigenic material in the GI tract. However, what was 

particularly striking was the difference in anti-E. coli LF82 IgG in obese non-

diabetics and obese diabetics. Anti-E. coli LF82 IgG was higher in obese 

diabetics than in obese non-diabetics. This finding suggested that the systemic 

immune responses against intestinal bacterial pathogens may be linked to insulin 

resistance and the development of type 2 diabetes.   

IgG against invasive intestinal bacteria is increased in obese 

diabetics.  

Quantifying plasma IgG against the intestinal bacteria was crucial in 

determining whether the apparent differences observed in our Western Blot 

analyses had statistical significance. Furthermore, in order to determine whether 

any quantitative relationships existed between IgG against the intestinal bacteria 

and inflammatory cytokine levels we needed a reliable quantitative assay. As a 

consequence, we developed our own laboratory made ELISA by coating 96 well 
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flat-bottom ELISA plates with soluble protein extracts from E. coli Nissle 1917, 

Bacteroides thetaiotaomicron and Lactobacilus acidophilus and E. coli LF82 

dissolved in a carbonate coating buffer. The difference between the plasma anti-

E. coli LF82 IgG in lean controls and obese diabetics was significant (p = 

0.0107). The lean controls had the lowest levels of plasma IgG against invasive 

intestinal bacteria. The low plasma anti- E. coli LF82 IgG in lean healthy controls 

is probably due to the fact that the immune system these individuals maintain a 

state of ignorance to the intestinal bacteria.  

What was particularly interesting was that while obese diabetics had 

higher plasma anti- E. coli LF82 IgG than the lean controls, there was no 

difference in plasma anti-E. coli LF82 in obese non-diabetic individuals compared 

to the lean healthy controls. The obese non-diabetics had body mass index 

values that were statistically equivalent to the obese diabetic patients. This led us 

to hypothesize that plasma IgG against the intestinal bacteria may be related to 

the transition from a non-diabetic state to a diabetic state.  

Immunoglobulin G is the major immunoglobulin subclass produced in 

response to the presence of antigens in the systemic circulation. The IgG 

response to certain bacterial species has also been correlated with disease 

severity [166]. IgG is comprised of two identical heavy chains and two identical 

light chains, arranged in a Y shaped configuration. The IgG molecule is 

comprised of an antigen binding fragment (Fab) domain and a crystalizeable 

fragment (Fc) domain. Receptors for the Fc domain of IgG (FcγRs) are located 

on the surface of immune cells. Inflammation results from the cross-linking of 
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FcγRs. It is possible that the increased IgG against intestinal bacteria could have 

resulted in increased FcγR cross-linking. This in turn could have led to increased 

systemic inflammation. Uncontrolled systemic inflammation can adversely affect 

insulin signaling pathways, leading to insulin resistance and the development of 

type 2 diabetes.   

Human plasma TNF-α correlates with IgG against the LF82 strain of 

E. coli. 

Statistical analysis was performed to determine whether there was a 

correlation between anti-E. coli LF82 IgG and TNF-α. This was done to establish 

a more definitive link between the immune responses against the intestinal 

bacteria and inflammatory markers. The sample size in the animal study (n=6 for 

each group) was insufficient to perform a correlation analysis. 

 The correlation analysis was performed using the human plasma 

samples. This is because the sample size for human subjects was larger (n=16 

for each group, 32 in total). There were two groups of obese subjects: obese 

non-diabetics and obese diabetics. Both groups had mean BMI values that were 

statistically equivalent (obese non-diabetics mean BMI 41.1 ± 10.4 versus obese 

diabetics mean BMI 40.6 ± 7.1). As a consequence, a discrepancy in adiposity 

could be ruled out. It was observed that there was a statistical correlation 

between anti-E. coli LF82 IgG and plasma TNF-α in the human subjects. The 

correlation between anti-E. coli LF82 IgG and TNF-α is further evidence that the 

systemic immune responses to the intestinal bacterial antigens are associated 

with inflammation. It is possible that the increase in IgG against intestinal 



66 

 

antigens promotes cross-linking of FcγRs, which in turn causes the release of 

pro-inflammatory markers such as TNF-α [167].  

The correlation between anti-E. coli LF82 IgG and plasma TNF-α linked 

inflammation to the immune responses against intestinal antigens. If systemic 

inflammation was linked to the development of type 2 diabetes, then theoretically 

the obese diabetics would have higher levels of plasma TNF-α. To determine 

whether this was the case, TNF-α in the human plasma samples was measured 

by ELISA. It was observed that there was a difference in plasma TNF-α between 

both groups of obese subjects. TNF-α in the obese diabetics was significantly 

higher than in the obese non-diabetics. This finding provides further evidence 

that the inflammation resulting from intestinal bacterial antigens may lead to the 

development of type 2 diabetes. It is possible that insulin signaling could have 

been adversely affected by the presence of high levels of plasma TNF-α. 
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CHAPTER 3 HIGH FAT DIET CONSUMPTION AND INTESTINAL IMMUNITY. 

INTRODUCTION 

Immunoglobulin A (IgA) actively secreted into the GI tract minimizes the 

adherence of bacteria to the intestinal epithelium. In our initial studies we 

observed an association between long term consumption of a HFD and elevated 

plasma anti-E. coli LF82 IgG. As a consequence, we investigated whether long 

term HFD consumption impairs IgA secretion into the lumen of the GI tract. To do 

this we measured fecal IgA in mice fed a LFD (10% calories from fat) and mice 

fed a HFD (60% calories from fat). Plasma IgA levels were measured in LFD and 

HFD mice. IgA is the second most abundant immunoglobulin in the plasma. 

Plasma IgA neutralizes antigens and suppresses inflammatory effects of 

antibody dependent cellular toxicity [168]. Furthermore, small quantities of 

plasma IgA enter the intestinal mucosal secretions by paracellular diffusion  

[131].  

A goal of this study was to assess whether the absence of the active 

secretion of IgA into the lumen of the GI tract by the pIgR is a predisposing factor 

for development of metabolic syndrome. The polymeric immunoglobulin receptor 

(pIgR) actively secretes polymeric immunoglobulins into the lumen of the GI tract. 

An estimated 3 grams of IgA are secreted daily. Since this involves considerable 

energy expenditure, we reasoned that this specialized secretory mechanism 

plays a role in preventing adherence of the commensal bacteria to the intestinal 

epithelial cells. 
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. Our previous studies had shown that long term HFD consumption was 

associated with increased IgG against adherent invasive intestinal bacteria. We 

postulated that perhaps mice lacking pIgR (pIgR KO mice) might be more 

susceptible to intestinal epithelial cell adherence and invasion. This could result 

in inflammatory immune responses being mounted against the resident gut 

bacteria. To determine whether this was the case, pIgR knockout mice and 

C57BL6 wild type littermate controls were placed on a Western Diet (Rodent 

Diets with 41 kcal% Fat, 43 kcal% Carbohydrate and 17 kcal% Protein).  A 

Western Diet feeding regimen was chosen since the Western Diet is 

representative of the diets that are associated with metabolic disorders in 

humans.  

The human plasma samples were also analyzed by total IgA ELISA. This 

was done in order to determine whether plasma IgA levels differed between the 

lean healthy controls, obese non-diabetics and obese diabetics. It was observed 

that plasma IgA differed between the three groups of human subjects. Lean 

controls had the highest levels of plasma IgA. Obese non-diabetics had 

significantly reduced plasma IgA compared to the lean controls. Obese diabetics 

have significantly reduced plasma IgA compared to both obese non-diabetics 

and lean controls. 
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METHODS 

Determining the effect of long term HFD consumption on fecal IgA  

C57BL6 mice aged 6 weeks were divided into two equal groups (n = 6). 

One group was fed a high fat diet (Rodent Diets with 60 kcal% Fat D12492 from 

Research Diets Incorporated). The other group was fed a low fat diet (Rodent 

Diets with 10 kcal% Fat D12450B from Research Diets Incorporated). Details of 

these diets are listed in table 2.1. The mice were placed on the special diets for 

10 weeks.  

Fecal IgA extraction 

Fecal IgA was extracted utilizing a protocol previously employed by 

Ferguson et al [169]. Fecal IgA extraction buffer was prepared utilizing 

phosphate-buffered saline (PBS, pH 7.4), 0.5% Tween® 20 and complete, EDTA-

free protease inhibitor cocktail. The extraction buffer was added to each tube at a 

ratio of 1 ml of buffer to 0.10 g of feces. The samples were manually 

homogenized and the resulting mixtures were vortexed. The resulting fecal 

suspensions were centrifuged at 14,000 rpm for 20 minutes and the supernatants 

were collected for further use. 

Total fecal IgA measurements 

Total fecal IgA was quantified using an ELISA for Mouse IgA from 

MABTECH.  96 well flat-bottom ELISA plates (BD-Falcon) were coated overnight 

with monoclonal anti-IgA antibody diluted 2µg/ml in PBS (pH 7.4). Blocking was 

performed for one hour at room temperature using incubation buffer (PBS with 
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0.05% Tween 20 and 0.1% BSA).  Subsequent to blocking fecal IgA extracts 

were diluted 100X in incubation buffer and added in triplicate. Total IgA was 

detected using anti-IgA-ALP diluted 1:500 in incubation buffer. P-nitrophenyl 

phosphate was then added and the optical density was measured at 405nm 

using a Bio-Rad microplate reader. IgA concentration was divided by the mass of 

fecal pellets to give the quantity of IgA present per gram of feces (IgA/g feces). 

Quantifying total fecal output and food intake. 

To gain an accurate estimate of total fecal IgA production per day total 

daily fecal output was measured in a separate group of C57BL6 mice. C57BL6 

mice were divided into two groups. One group was fed a high fat diet (Rodent 

Diets with 60 kcal% Fat D12492 from Research Diets Incorporated). The other 

group was fed a low fat diet (Rodent Diets with 10 kcal% Fat D12450B from 

Research Diets Incorporated).  

Total fecal output: Mice were placed in a cage with clean bedding, with 

free access to food and water. Fecal pellets were collected at intervals of 24 

hours and weighed.  It should be noted that metabolic cages were available from 

the COCVD PHYSIOLOGIC RESEARCH CORES at the University of Kentucky. 

However, the Eckhardt Laboratory did not have the required protocol approvals 

to measure fecal output in mice using these facilities.    

Quantifying food intake: Mice were given free access to food and water. 

Food was weighed at 24 hour intervals. The weight of food was subtracted from 

the previous weight to give total consumption. This was then divided by the 
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number of mice in the cage to give an estimate of the amount of food consumed 

by each mouse.  

Effect of HFD consumption on plasma IgA. 

The effect of HFD consumption on plasma IgA was assessed in HFD mice 

and LFD mice. Plasma IgA was measured using the ELISA for Mouse IgA. 96 

well flat-bottom ELISA plates (BD-Falcon) were coated overnight with 

monoclonal anti-IgA antibody diluted 2µg/ml in PBS (pH 7.4). Blocking was 

performed for one hour at room temperature using incubation buffer (PBS with 

0.05% Tween 20 containing 0.1% BSA). Subsequent to blocking plasma diluted 

100X in incubation buffer was added in triplicate. Total IgA was detected using 

anti-IgA-ALP diluted 1:500 in incubation buffer. P-nitrophenyl phosphate was 

then added and the optical density was measured at 405nm using a Bio-Rad 

microplate reader.  

To evaluate whether impaired IgA secretion increases the risk of 

developing metabolic syndrome. 

Mice: Six pIgR knockout mice (pIgR KO mice) on a C57BL/6 background 

were kindly donated by Dr. Charlotte Kaetzel (Department of Microbiology, 

Immunology and Molecular Genetics, University of Kentucky). pIgR KO mice are 

unable to actively secrete polymeric IgA into the lumen of the GI tract. This is 

because the third exon of the PIGR locus has been disrupted by the use of a 

targeting vector [170]. For controls we utilized wild type C57BL/6 littermates 

(n=7). Mice were housed three per cage and maintained in a 12h light / dark 

cycle. We allowed the mice to become acclimated to their new environment.  
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When the mice were obtained they were being fed the Teklad Global 18% 

Protein Rodent Diet (hereafter referred to as regular chow diet). Both groups of 

mice were maintained on the regular chow diet for one week after receiving 

them. The reason for doing this was to measure a variety of baseline metabolic 

parameters. The mice were then switched to a high fat, high carbohydrate 

Western Diet (Rodent Diets with 41 kcal% Fat, 43 kcal% Carbohydrate, 17 kcal% 

Protein). Details of the diets are listed in table 2.1. The mice were fed the 

Western Diet for 16 weeks.  

Processing of samples for analysis. 

Mice were euthanized using carbon dioxide. Blood was immediately 

collected by cardiac puncture and placed into EDTA containing eppendorf tubes 

that had been kept on ice. The majority of blood obtained was immediately 

centrifuged at 8,000 rpm for 10 minutes. The plasma was collected and stored at 

-82°C. The remaining blood (whole blood fraction) was used for hematological 

analysis. After mice were euthanized the ileums and colons were harvested. 

Intestinal mucosal scrapings were collected and frozen immediately in liquid 

nitrogen. 

Identification of mice.  

After the mice were obtained they were implanted with IPTT-300 

transponders (Vendor BMDS) for identification. After the mice were euthanized, 

they were identified and tail snips were collected from individual mice. DNA was 

extracted from the tail snips using the Qiagen DNeasy Blood and Tissue kit 

(QIAGEN Catalog# 69504). Polymerase chain reaction (PCR) was then 
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performed using a Perkin Elmer GeneAmp PCR System 9600. The primer 

sequences to detect the Pigr mutant gene (Pigr KO) and the wild type Pigr gene 

(Pigr WT) are listed in table 2.3. 

Body weight and body fat analyses 

pIgR KO mice and the C57BL/6 controls were weighed prior to 

commencing the Western Diet feeding regimen. Once the feeding study was 

started the mice were weighed weekly. EchoMRI™ analysis was performed in 

order to determine whether there were differences in body fat percentage.  

Plasma cytokine analysis  

To assess the levels of circulating inflammatory cytokines we utilized 

MILLIPLEX® Mouse Cytokine Kits (from Millipore). The first kit (Catalog # 

MPXMYCTO-70K) quantified the cytokines IL-1b, IL-6, IL-10 and TNF-α, IL-12, 

IL-7, IL-5 and IL-13 prior to commencing the Western Diet, as well as two and 

sixteen weeks after commencing the Western Diet feeding regimen. The second 

kit used (Catalog # MADPK-71K) measured insulin, resistin, leptin, PAI-1 and 

TNF-α eight and sixteen weeks after commencing the Western Diet feeding 

regimen.  

Hematological analysis. 

50µl of whole blood fractions collected from the mice after euthanasia was 

used. The tubes containing the whole blood was placed on a rocker for 2 

minutes. Samples were then analyzed using a HEMAVET® 950 FS Multispecies 

Hematology Systems (Drew Scientific Inc.).   
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Oral glucose tolerance test (OGTT) 

To assess oral glucose tolerance, mice were fasted for 6 hours. Blood was 

collected from the tail tips of mice and blood glucose levels were recorded using 

the TrueTrack glucose meter (Home Diagnostics Inc). The mice were gavaged 

with a dose of 2.0g/kg glucose. Blood glucose measurements were recorded at 

15, 30, 60, 90 and 120 minutes post-gavage. We performed the OGTT prior to 

commencing the Western Diet feeding and two weeks, ten weeks and sixteen 

weeks after commencing the Western Diet feeding regimen.  

Real time PCR analysis 

We compared the levels of inflammatory markers in the intestinal tissue of 

pIgR KO mice and C57BL6 controls. After mice were euthanized the small 

intestine and colon were harvested. RNA was extracted from intestinal tissues by 

the E.Z.N.A® Total RNA Kit. The RNA was converted into cDNA using the 

qScript™ cDNA Synthesis Kit.  We analyzed the samples for expression of TNF-

α and IL-6 using a BIORAD CFX96™ Real Time PCR detection system. 

Statistical analyses. 

Results were expressed as mean ± S.E.M and were analyzed with 

GraphPad Prism v5.04. Groups were compared with unpaired Student’s t-tests 

and ANOVA and Bonferroni’s post-hoc analysis. Statistical significance was 

assumed when p<0.05. Area under the curve analyses were performed using 

SigmaPlot.  
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ANALYSIS OF HUMAN PLASMA IgA. 

We also measured plasma IgA in humans. Details of the human plasma 

donors are listed in table 2.2. Total plasma IgA in the humans was assessed with 

a Human IgA ELISA kit from MABTECH (3860-1AD-6).  96 well flat-bottom 

ELISA plates (BD-Falcon) were coated overnight with MT57 antibody diluted 

2µg/ml in PBS (pH 7.4). Blocking was performed with incubation buffer and 

human plasma was diluted 400X in incubation buffer and added in triplicate. 

Total IgA present in human plasma was detected by adding a 1000 fold dilution 

of MT20-ALP. P-nitrophenyl phosphate was then added and the optical density 

was measured at 405nm using a Bio-Rad microplate reader.  

RESULTS  

HFD mice have reduced fecal IgA. 

The effect of diet on secretion of IgA into the lumen of the GI tract was 

studied in C57BL6 mice fed a HFD and a LFD. During the first three weeks of the 

study statistical analysis revealed that there were no differences between the 

fecal IgA levels in the LFD mice or the HFD mice. However, by the fourth week of 

the study fecal IgA levels between LFD and HFD mice had diverged significantly. 

The LFD mice had significantly higher fecal IgA than the HFD mice. Higher fecal 

IgA in the LFD mice compared to the HFD mice was observed throughout the 

duration of the feeding study (Figure 3.1 A).  Analysis of the fecal IgA levels in 

the LFD mice and HFD mice revealed that there was an increase in fecal IgA 

over time in the LFD mice. On the other hand, the levels of fecal IgA in the HFD 

mice remained relatively unchanged. Thus the differences noted between fecal 

http://jimmunol.org.ezproxy.uky.edu/content/187/4/1702.full#F1
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IgA in LFD and HFD mice were a consequence of increased fecal IgA in LFD 

mice relative to fecal IgA in HFD mice.  

HFD consumption reduces fecal output.  

In order to obtain a more accurate estimate of fecal IgA output, total fecal 

output was measured. HFD consumption reduced the fecal output in C57BL6 

mice compared to LFD controls. Statistical analysis revealed that this reduction 

was highly significant (Figure 3.1 B, p<0.01). 

Diet does not alter food intake.  

Since the C57BL6 mice were fed different special diets, we wanted to 

investigate whether this led to any changes in food intake. Statistical analysis 

revealed that there were no significant differences in food intake between the 

LFD mice and the HFD mice (Figure 3.1C).  

 

 

 

 

 

 



77 

 

Figure 3.1 Effect of diet on fecal IgA. 

 

  

 

 

 

 

 

 

 

 

 

(A) Fecal IgA change over time. No differences in fecal IgA for the first 

three weeks of the study (NS). From week four until the end of the study fecal 

IgA in LFD mice was higher than HFD mice. (B) Fecal output was significantly 

reduced in C57BL6 mice fed a HFD compared to C57BL6 mice fed a LFD (C) No 

difference in food intake in C57BL6 mice fed a HFD compared to C57BL6 mice 

fed a LFD.  * indicates p <0.05.  
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No effect of HFD consumption on plasma IgA.  

Plasma IgA from C57BL6 mice fed special diets (LFD and HFD) for 10 

weeks of was measured by total IgA ELISA. There was no significant difference 

in plasma IgA between HFD mice and LFD mice (Figure 3.2).  

Figure 3.2 The effect of HFD consumption on plasma IgA in C57BL6 

mice. 
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The effect of HFD consumption on plasma IgA in C57BL6 mice. Total 

plasma IgA was measured in HFD mice (n=6) and LFD mice (n=6). Statistical 

analysis revealed that plasma IgA did not differ between LFD mice and HFD 

mice.  
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To assess whether impaired IgA secretion into the lumen of the GI 

tract is a predisposing factor for development of metabolic syndrome. 

pIgR KO mice have higher plasma IgA. 

To investigate whether long term consumption of a high-fat, high-

carbohydrate Western Diet would affect plasma IgA in pIgR KO mice a total IgA 

ELISA was performed. Plasma IgA in the pIgR KO mice was higher than in the 

wild type C57BL6 controls. Statistical analysis revealed that this difference was 

highly significant (Figure 3.3; p < 0.01). 

 Figure 3.3 Plasma IgA in pIgR KO mice and wild type C57BL6 

controls. 
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The pIgR KO mice had higher plasma IgA compared to the C57BL6 WT 

controls. ** indicates p < 0.001. Plasma dilution 1:100. 
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Impaired IgA secretion does not affect weight gain or fat 

accumulation in Western Diet fed mice. 

Previous studies have linked the intestinal bacteria to increased weight 

gain and body-fat accumulation [67, 171]. Considering the magnitude of IgA 

transport by the pIgR, it is plausible that impaired IgA secretion could lead to 

changes in the composition of the intestinal bacteria. This could result in changes 

in bodyweight and fat accumulation. The bodyweights of pIgR KO mice and wild 

type C57BL6 controls were measured prior to commencing the Western Diet 

feeding regimen.  

Both groups of mice showed similar patterns of weight gain throughout the 

duration of the feeding study. At no point in the study did the bodyweights differ 

significantly between the C57BL6 mice and the pIgR KO mice (Figures 3.4A and 

3.4B). EchoMRI™ analysis gave similar body fat percentage values for the 

C57BL6 controls and the pIgR KO mice (Figure 3.4C). These results suggest that 

the absence of the polymeric immunoglobulin receptor does not significantly alter 

the accumulation of body fat or weight gain.  

Absence of pIgR does not increase plasma inflammatory markers in 

Western Diet fed mice. 

Plasma from the C57BL6 wild type controls and the pIgR KO mice was 

analyzed by MILLIPLEX® Mouse Cytokine Kits to see if consumption of a high-

fat, high-carbohydrate Western Diet in conjunction with impaired IgA secretion 

would promote increased systemic inflammation.  The plasma from the C57BL6 

controls and the pIgR KO mice was analyzed prior to commencing the Western 
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Diet as well as two and sixteen weeks after commencing the Western Diet 

feeding regimen. No differences were observed between the C57BL6 controls 

and the pIgR KO mice in plasma IL-1b, IL-6, IL-10 and TNF-α at any time point 

(Figures 3.5 A, 3.5 B, 3.5 C and 3.5 D). No differences were observed in plasma 

IL-13, IL-12, IL-5 and IL-7 (Figures 3.6 A, 3.6 B, 3.6 C and 3.6 D). These results 

indicate that there are no baseline differences in plasma inflammatory cytokines 

between C57BL6 controls and pIgR KO mice prior or subsequent to consuming a 

high-fat, high-carbohydrate Western Diet.  

Plasma adipokine levels were also analyzed subsequent to commencing 

the Western Diet feeding regimen. Notably, the pIgR KO had reduced plasma 

PAI-1 compared to the C57BL6 controls. Statistical analysis revealed that this 

difference was significant (Figure 3.7 B).  There were no differences between the 

C57BL6 controls and the pIgR KO mice in plasma insulin or resistin (Figures 3.7 

A and 3.7 C). Plasma IL-6 and TNF-α were below the detectable range in the 

C57BL6 controls and the pIgR KO mice. These results provide evidence that the 

absence of the polymeric immunoglobulin receptor does not promote increased 

systemic inflammation either in the presence or absence of high-fat diet 

consumption. It should be noted that plasma adipokine levels were not measured 

in these mice prior to commencing the Western Die and as a result there is no 

baseline date for the plasma adipokine values.  
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Figure 3.4. Bodyweight and body fat analyses 
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 (A) C57BL6 controls and pIgR KO mice had similar bodyweights 

throughout the duration of the study (B) Percentage of bodyweight relative to the 

initial bodyweight was calculated. There was no difference in percentage weight 

gain. (C) There was no significant difference in percentage body fat between 

C57BL6 mice and pIgR KO mice. 
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Figure 3.5  Plasma cytokine levels. 
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Figure 3.6 Plasma cytokine levels. 

 

Analysis of plasma from the C57BL6 wild type controls (n = 7) and the 

pIgR KO mice (n = 6) by the MILLIPLEX® Mouse Cytokine Kit (Millipore Catalog 

# MPXMYCTO-70K) after consumption of Western Diet at different time points.  

There were no differences between pIgR KO mice and C57BL6 controls in (A) 

Plasma IL-13. (B)  Plasma IL-12 (C) Plasma IL-5. (D) Plasma IL-7.  
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Figure 3.7 Plasma adipokines 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of plasma from the C57BL6 wild type controls (n = 7) and the 

pIgR KO mice (n = 6) by the MILLIPLEX® Mouse Cytokine Kit (Millipore Catalog 

# MADPK-71K) after consumption of Western Diet at different time points (A). 
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C57BL6 wild type controls than pIgR KO mice. (C) No difference in plasma 

resistin. * indicates p < 0.05 
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Absence of pIgR does not result in increased plasma IgG against 

intestinal bacteria. 

Plasma anti-E. coli LF82 IgG was measured to determine whether the 

absence of the polymeric immunoglobulin receptor leads to enhanced epithelial 

invasion by invasive intestinal bacteria. There were no differences between the 

C57BL6 wild type controls and the pIgR KO mice in plasma IgG against invasive 

intestinal bacteria (Figure 3.8). 

Figure 3.8 Anti-E coli LF82 IgG in plasma 
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plasma anti-E. coli LF82 IgG between both groups. Plasma dilution 1:100. 
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Absence of pIgR does not alter the percentages of immune cell 

subsets after long term Western Diet consumption. 

In order to determine whether the absence of the polymeric 

immunoglobulin receptor leads to increased inflammation after consuming a 

high-fat Western Diet, inflammatory immune cells were measured by the 

HEMAVET® 950 FS Multispecies Hematology System. Hematological analysis of 

whole blood revealed that there were no differences between the C57BL6 wild 

type controls and the pIgR KO mice in neutrophil percentage, basophil 

percentage, monocyte percentage and eosinophil percentage (Figures 3.9 A, 3.9 

B, 3.9 C, and 3.9 D). 

Absence of pIgR does not promote increased intestinal inflammation 

after long term Western Diet consumption. 

Real time PCR (RT-PCR) was performed in order to investigate whether 

the absence of pIgR in conjunction with long term consumption of a high-fat 

Western Diet can promote intestinal inflammation. TNF-α and IL-6 expression 

was measured in the ileum and the colon. These regions of the GI tract were 

selected for analysis since they harbor the largest bacterial populations. After 

sixteen weeks of consuming the Western Diet, no differences were observed 

between the C57BL6 controls and the pIgR KO mice in IL-6 expression in the 

ileum, and colon (Figures 3.10 A and 3.10 B).  There were no significant 

differences in TNF-α expression in the ileum and colon (Figures 3.10 C and 3.10 

D). These findings suggest that impaired IgA secretion by pIgR does not lead to 
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pro-inflammatory changes in the GI tract after long term consumption of a high-

fat Western Diet.   

Figure 3.9 Hematological analysis 
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Comparison of blood cell subsets in C57BL6 wild type controls (n = 7) and 

the pIgR KO mice (n = 6) after sixteen weeks of Western Diet consumption. 

There were no differences between pIgR KO mice and C57BL6 controls in (A) 

Neutrophil percentage (B) Basophil percentage (C) Monocyte percentage (D) 

Eosinophil percentage. Percentages of white blood cells are given. 
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Figure 3.10 Intestinal inflammatory markers  
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Intestinal inflammatory markers in C57BL6 wild type controls (n = 7) and 

the pIgR KO mice (n = 6) after sixteen weeks of Western Diet consumption. 

There were no differences between pIgR KO mice and C57BL6 controls in (A) 

Ileum IL-6 (B) IL-6 in the colon (C) Ileum TNF-α expression (D) TNF-α in the 

colon. 
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Absence of pIgR impairs insulin sensitivity after long term Western 

Diet consumption. 

Oral glucose tolerance tests (OGTTs) were performed in order to 

determine whether the absence of pIgR altered the ability to respond to an oral 

glucose challenge. OGTTs were conducted prior to commencing the Western 

Diet feeding regimen as well as at various time points throughout the feeding 

study. Area under the curve (AUC) analysis revealed that the ability to respond to 

an oral glucose challenge was similar in the C57BL/6 wild type controls and the 

pIgR KO mice prior to commencing the Western Diet (Figure 3.11 A).  

OGTT tests were subsequently performed at two, ten and sixteen weeks 

after the C57BL6 controls and pIgR KO mice were placed on the Western Diet 

feeding regimen. Area under the curve (AUC) analysis did not reveal any 

significant difference between the C57BL/6 controls and the pIgR KO mice in 

responding to an oral glucose challenge after two weeks on the Western Diet and 

ten weeks on the Western Diet (Figures 3.11 B and 3.11 C).  

However at the sixteenth week of the study the pIgR KO mice had an 

impaired ability to respond to an oral glucose challenge compared to the C57BL6 

controls (Figure 3.11 D). These results suggest that the absence of pIgR together 

with the consumption of a high-fat, high carbohydrate diet may negatively affect 

the ability to respond to an oral glucose challenge.  
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Figure 3.11 Oral glucose tolerance tests (OGTTs)  
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C57BL6 wild type controls (n=7) and pIgR KO mice (n=6). Area under the 

curve (AUC) analysis was performed. No differences between the AUC for pIgR 

KO mice and C57BL6 controls (A) Before commencing the Western Diet. (B) 

After two weeks on the Western Diet (C) After ten weeks on the Western Diet (D) 

After sixteen weeks on the Western Diet the difference between AUC for the 

C57BL6 controls and pIgR KO mice was statistically significant. * indicates p 

<0.05. 
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Decreased plasma IgA in obese diabetics.  

Analysis of the human plasma samples by total IgA ELISA revealed 

significant differences between the three groups of human subjects. The lean 

healthy controls had the highest levels of plasma IgA. Obese non-diabetics had 

significantly reduced plasma IgA compared to the lean controls (p < 0.05). There 

were also differences between plasma IgA between both groups of obese 

individuals. The obese diabetic group had plasma IgA that was significantly 

reduced compared to the obese non-diabetic group as well as the lean, healthy 

controls (Figure 3.12, p < 0.05).  

Figure 3.12: Human plasma IgA. 
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Figure 3.12: Human plasma IgA was assessed by total IgA ELISA in three 

groups of subjects. Lean healthy controls (Lean) had significantly higher levels of 

plasma IgA than obese non-diabetics (OND). Obese diabetics (OD) had 

significantly lower plasma IgA than obese non-diabetics. Sample sizes for Lean 

(n=10), OND (n =16) and OD (n =16). 
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DISCUSSION 

Long term HFD consumption decreases fecal IgA. 

Immunoglobulin A (IgA) secreted into the lumen of the GI tract minimizes 

adherence of intestinal bacteria to the intestinal epithelium. Since long term HFD 

consumption is linked to elevated plasma IgG against invasive intestinal bacteria, 

it is possible that IgA secretion into the lumen of the GI tract could be impaired. 

To determine whether this was the case, fecal IgA levels were measured in 

C57BL6 mice fed a HFD and a LFD diet on a weekly basis. It was expected that 

prior to commencing the feeding study that the fecal IgA levels would be similar. 

With time, fecal IgA levels in the HFD mice would decrease relative to the LFD 

controls. This study is not the first to investigate dietary intervention on fecal IgA 

production. The consumption of probiotic containing foods may improve overall 

health [172]. These improved indicators of health have been correlated with 

increased fecal sIgA levels. 

Prior to switching the mice to the special diets, both groups of mice had 

similar fecal IgA levels. However, by the fourth week of the feeding study there 

was a significant difference between the LFD mice and HFD mice. After four 

weeks HFD mice had significantly lower fecal IgA levels compared to LFD 

controls (Figure 3.1). However, fecal IgA/g feces did not decrease in the HFD 

mice. Instead what was observed was an increase in LFD mice relative to the 

HFD mice. When the mice were purchased they were five weeks old. The 

feeding study was commenced when they were six weeks old. 
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Secretory IgA production increases with age [173]. It is possible that in this 

feeding study an age effect was observed. B-1 cells play a major role in IgA 

production in the gut [174]. Furthermore, B-1 cells are adversely affected by 

consumption of high levels of dietary fat [175]. Therefore it is possible the 

differences between fecal IgA in LFD and HFD mice are a consequence of 

dietary fat inhibiting development of a normal immune repertoire in the HFD 

mice.  

The effect of long term HFD consumption on plasma IgA 

Long term HFD consumption did not appear to have an effect on plasma 

IgA in mice. After the ten week feeding study, both groups of mice had similar 

levels of plasma IgA (Figure 3.2). Considering the relatively small sample size in 

the study (n=6 for each group), it is likely that further studies should be performed 

using larger sample sizes.  

Absence of pIgR does not exacerbate inflammation. 

A major component of our study was to investigate whether the absence 

of active IgA secretion into the lumen of the GI tract by the polymeric 

immunoglobulin receptor (pIgR) is a predisposing factor for development of 

metabolic syndrome. As it has been previously mentioned, pIgR actively secretes 

polymeric immunoglobulins into the lumen of the GI tract. The quantity of IgA 

secreted into the lumen of the GI tract by pIgR is immense (an estimated three 

grams per day) [168, 176]. What is even more intriguing is that the pIgR 

traversing the IECs are never recycled. pIgR not bound to IgA is also secreted 

into the lumen of the GI tract as secretory component (SC). This raises the 
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question as to whether such an elaborate transport mechanism requiring a 

considerable input of energy serves a crucial purpose. We observed that long 

term HFD consumption led to increased plasma IgG against an invasive 

intestinal bacterial strain.  

In addition to our experimental findings, we were intrigued by the study 

performed by Gewirtz et al. That study utilized mice deficient in the Toll-like 

receptor 5 (TLR5) [171]. TLR5 binds flagellin, a constituent of intestinal bacteria 

[177]. TLR5 KO mice developed features of the metabolic syndrome. These 

include increased weight gain, adiposity and insulin resistance. Since TLR5 KO 

mice are unable to respond to flagellin containing bacteria, it is probable that that 

these mice have an altered intestinal bacterial population from wild type control 

mice.  

Since pIgR KO mice lack a specialized method of transporting pIgA, it was 

reasonable to hypothesize that a significant reduction in the amount of stable 

secretory IgA could result in a drastically altered intestinal bacterial composition. 

It was expected that a combination of an intestinal bacterial population enriched 

in pathogenic strains and long term consumption of a high-fat, high-carbohydrate 

Western Diet would lead to metabolic dysregulation as well as increased 

systemic inflammation. 

A wide range of parameters were evaluated prior to commencing the 

Western Diet feeding regimen. These included body weight and body fat, plasma 

inflammatory cytokines and the ability to respond to an oral glucose challenge. 
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Considering the vast quantity of IgA secreted into the lumen of the GI tract, we 

reasoned that pIgR KO mice would be more susceptible to epithelial invasion by 

invasive intestinal bacteria. Instead it was observed that plasma IgG levels 

against invasive intestinal bacteria was similar in both pIgR KO mice and the 

C57BL6 littermate controls.  

No significant differences were observed in these parameters between the 

pIgR KO mice and the C57BL6 littermate wild type controls prior to commencing 

the Western Diet feeding regimen. The mice used were relatively young (age six 

weeks). It is likely that during the nursing stage both groups of mice received 

ample amounts of IgA from the breast milk thereby negating any potential 

differences in intestinal bacteria due to the deficiency in pIgR. Despite the 

obvious difference in IgA secreting capacity, the lack of differences in metabolic 

parameters prior to consuming the Western Diet feeding regimen was not 

unexpected. 

Body weight, body fat percentage, plasma inflammatory cytokines, 

immune cell subsets, intestinal inflammation and oral glucose tolerance were 

evaluated prior to commencing the Western Diet feeding regimen, as well as at 

various points subsequent to commencing the Western Diet. There were no 

differences in plasma inflammatory cytokines between pIgR KO mice and 

C57BL6 wild type controls either prior to commencing the Western Diet or at any 

point during the feeding study. With the exception of PAI-1, plasma adipokine 

levels did not differ at 8 or 16 weeks after commencing the Western Diet feeding 

regimen.  
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There were no baseline differences in the ability to respond to an oral 

glucose challenge between the pIgR KO mice and C57BL6 wild type controls. 

Two and ten weeks after commencing Western Diet feeding  there were no 

differences in responding to an oral glucose challenge between  pIgR KO mice 

and C57BL6 wild type controls. However after sixteen weeks on the Western Diet 

area under the curve (AUC) analysis revealed that pIgR KO mice had impaired 

responses to an oral glucose challenge compared to C57BL6 controls.  

After performing euthanasia on both groups of mice, intestinal 

inflammation was measured. There were no differences in any of these 

parameters between pIgR KO mice and C57BL6 controls.  This was surprising 

given the fact that a large quantity of IgA is secreted into the lumen of the GI tract 

by pIgR. However, there are a few possible explanations as to why no 

differences in intestinal inflammation were observed between the C57BL6 and 

the pIgR KO mice. First of all, this study lasted for a shorter duration than the 

study using TLR5 KO mice. Whereas this study was performed for a total of 16 

weeks, the study performed by Gewirtz et al was a twenty week feeding study.  It 

is possible that the effects of pIgR deficiency had not yet become apparent.  

Another possible reason no differences were observed between both 

groups of mice is because pIgR KO mice are not completely deficient in intestinal 

IgA. A study performed by Johansen et al, compared fecal IgA levels in pIgR KO 

mice and wild type controls [170]. Fecal IgA was measured in pIgR KO mice and 

C57BL/6 controls by ELISA. Statistical analysis revealed that fecal IgA in pIgR 

KO mice was less than in the C57BL/6 controls. However, IgA was still 
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detectable in the feces of pIgR KO mice despite their inability to actively secrete 

IgA. This is because plasma IgA diffuses into the intestinal mucosa by 

paracellular diffusion. Furthermore, pIgR KO mice have significantly elevated 

fecal IgG which may confer protection against the intestinal bacteria.  

We observed impaired responses to an oral glucose challenge at the end 

of the study in the pIgR KO mice compared to the wild type C57BL6 mice. 

However this did not correspond to an increase in plasma and intestinal 

inflammatory cytokines. It is possible that the MILLIPLEX analysis was not the 

best method of evaluating systemic inflammation. Furthermore, in the intestinal 

tissue only a limited number of inflammatory markers were examined. Perhaps, a 

wider range of inflammatory markers need to be examined. The study of long 

term HFD consumption on pIgR KO mice is inconclusive and should be repeated 

with pIgR KO mice housed separately from wild-type controls.    

Reduced plasma IgA in obese diabetics. 

Analysis of the human plasma samples revealed differences between the 

three groups of human subjects. The lean controls had the highest levels of 

plasma IgA. Obese non-diabetics had significantly reduced plasma IgA 

compared to the lean controls. Obese diabetics had significantly reduced plasma 

IgA compared to both obese non-diabetics and lean controls (Figure 3.12). 

Relatively little is known about the precise role of plasma IgA. This has been 

attributed to difficulties in purification of plasma IgA. Plasma IgA can neutralize 

antigens. However, it has a poor ability to promote opsonization. There are a 

number of effector functions possessed by plasma IgA. These include 
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enhancement of antibacterial effect of lactoperoxidase and suppression of 

inflammatory effects of immune lysis, NK cell activity and antibody dependent 

cellular toxicity.  

Reduced serum IgA is more prevalent in individuals who have lost 

tolerance to normal food antigens [178]. Serum IgA neutralizes normally 

‘harmless’ antigenic material such as food antigens and autoantigens. Serum IgA 

clears these antigens from the systemic circulation in a non-inflammatory 

manner. It is has been suggested that IgA clearance of antigens prevents 

inappropriate responses to these antigens [179]. The higher prevalence of 

autoimmune disorders in IgA deficient individuals has been attributed 

inappropriate immune destruction of these antigens [180-182]. Thus the 

significant decrease in plasma IgA in obese-diabetics may have led to 

inflammatory immune responses that in turn led to insulin resistance.  

However, further analysis is needed on plasma IgA levels with regards to 

type 2 diabetes. A previous study by Gill et al noted that type 2 diabetics had 

higher plasma IgA levels than healthy controls  [183]. This was attributed to the 

fact that some of the diabetic individuals in that study had acute or chronic 

bacterial infections. Furthermore, subclinical infections could not be ruled out in 

the diabetics who did not have bacterial infections. A possible reason for the 

reduced plasma IgA in obese diabetics is a defect in IgA synthesis.  

 

Copyright © Nadeem K. Mohammed 2012 
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CHAPTER 4 DISCUSSION  

EVALUATION OF PROPOSED HYPOTHESIS. 

Our preliminary findings led us to propose that long term consumption of a 

high fat diet could impair intestinal IgA production, facilitating adherence and 

invasion of the intestinal epithelium by the commensal bacteria. Invasion of the 

intestinal epithelium by the commensal bacteria could trigger inflammatory 

responses, which in turn could impair insulin signaling, culminating in the 

development of type 2 diabetes.  

Decreased IgA production by long term HFD consumption: Over the 

course of a long term (10 week) feeding study C57BL6 mice fed a low fat diet 

(10% kCal from fat) experienced an increase in fecal IgA production relative to 

mice fed a high fat diet (60% kCal from fat). These findings provided evidence 

that consumption of high levels of dietary fat may impair the mucosal IgA barrier.  

Revision to proposed model-Invasion of the intestinal epithelium by 

invasive bacteria: Initially we proposed that long term consumption of a high fat 

diet could result in the commensal bacteria being able to breach the intestinal 

epithelium and elicit inflammatory responses. However, a major limitation of our 

preliminary studies was the exclusive use of E. coli LF82, an invasive intestinal 

bacterial strain. To address this concern non-invasive intestinal bacteria were 

analyzed. IgG against E. coli Nissle 1917, Bacteroides thetaiotaomicron and 

Lactobacilus acidophilus was measured in the plasma of HFD and LFD mice. 

Plasma IgG against these bacterial strains was measured using the lab based 
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ELISA. There were no significant differences in IgG against these bacteria in LFD 

mice or HFD mice (Figures 2.4 B, 2.4 C and 2.4 D).  

The studies cited earlier using GF mice suggested that the presence of 

intestinal bacteria is required for the negative effects of long term HFD 

consumption. However, none of those studies examined the role of specific 

intestinal bacterial species. The findings of our studies provide evidence that 

invasive intestinal bacterial strains are associated with inflammation and insulin 

resistance.  

The other intestinal bacterial strains examined are beneficial to the host. 

E. coli Nissle 1917 (EcN) is a widely studied probiotic. Probiotics are viable 

microbes which may confer health benefits when consumed [184]. The ability of 

EcN to confer health benefits has been known for almost a century since the First 

World War when it was isolated from a lone soldier who did not succumb to 

enterocolitis. Investigations on the effects of EcN supplementation show 

promising results for treating colitis [185, 186]. An interesting coincidence is that 

EcN has been utilized to counteract the effects of the LF82 strain of E. coli [187]. 

Reports have also provided evidence that Bacteroides thetaiotaomicron may 

prevent rotavirus infections [188]. It has been reported that Lactobacilus 

acidophilus has the ability to diminish inflammation caused by Helicobacter pylori 

[189]. By contrast, the LF-82 strain of E. coli has been described as being 

invasive in nature [151].  E. coli LF82 was isolated from an ileal lesion of a 

Crohn’s Disease patient [150]. E. coli LF82 is designated as an adherent invasive 
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E. coli strain (AIEC strain). Invasive strains are characterized by their ability to 

enter epithelial cells and subsequently survive and replicate.  

Immune responses against invasive intestinal bacteria are associated with 

inflammation. In these studies a statistical correlation between anti-E. coli LF82 

IgG and TNF-α was observed.  The correlation analysis was performed using the 

plasma samples from the obese patients. Both groups had equivalent mean BMI 

values, ruling out differences in adiposity as a TNF-α source. The correlation 

between anti-E. coli LF82 IgG and TNF-α provided evidence that immune 

responses to the intestinal bacterial antigens are associated with inflammation. It 

is possible that the increase in IgG against intestinal antigens promoted cross-

linking of FcγRs, which in turn caused the release of TNF-α. 

Inflammatory responses resulting from invasion of the intestinal epithelium 

impairs insulin signaling. Elevated plasma anti-E. coli LF82 IgG in the HFD mice 

provided evidence that long term consumption of high levels of dietary fat is 

associated with invasion of the intestinal epithelium by invasive bacteria. 

Increased plasma TNF-α and neutrophil percentage in the blood of HFD mice 

suggests that a consequence of epithelial penetration by invasive bacteria is 

inflammation. Inflammation is associated with a variety of disease states.  

One of these conditions is type 2 diabetes. The increase in fasting blood 

glucose levels in HFD mice compared to LFD mice was significant (Figure 5B, 

p<0.05). It is possible that elevated anti-E. coli LF82 IgG against intestinal 

bacteria led to increased  cross-linking of FcγRs with the Fc domains. This in turn 
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may have led to increased TNF-α secretion as well as increased neutrophils in 

the blood. The chronic inflammation could have in turn impaired insulin signaling 

pathways, leading to the development of insulin resistance. 

Significance of studies.  

These studies have significant clinical relevance. Although there is 

widespread awareness about the risk factors for developing type 2 diabetes, the 

prevalence of obesity and metabolic syndrome has continued to rise. This has 

been costly as treatment and the loss of productivity due to various disabling 

complications of type 2 diabetes continue to burden the healthcare sector. The 

research into novel mechanisms of treating type 2 diabetes is in itself a tacit 

admission that it is impossible to expect the tens of millions of overweight 

individuals to alter their lifestyle radically enough to maintain a healthy 

bodyweight.  

Apart from individuals with Crohn’s Disease the LF82 strain of E. coli is 

rare. It is unlikely that a large percentage of individuals harbor this particular 

strain. However, E. coli LF82 may possess antigens that are shared by other 

intestinal bacterial species. The intestinal bacteria remain poorly characterized. 

There is a possibility that invasive intestinal bacterial strains that have not yet 

been identified reside in the GI tract. Long term HFD consumption may enhance 

the capacity of invasive bacterial strains to cross the IEC barrier. This can elicit 

inflammation leading to insulin resistance.  
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Furthermore, our findings may explain why some obese individuals 

develop type 2 diabetes whereas others do not. Individuals harboring invasive 

intestinal bacterial strains may be more prone to chronic inflammation and 

impaired insulin signaling. To more comprehensively define the role of the 

intestinal bacteria in promoting systemic inflammation, further studies will need to 

be performed. IgG against protein extracts from invasive intestinal bacterial 

strains can be measured in diabetics and non-diabetics. Based on our findings 

we expect that diabetics would have higher IgG against invasive intestinal 

bacterial strains. Comparison of IgG in a larger group of obese non-diabetics and 

obese-diabetics would give a better indication of whether long term HFD 

consumption enhances invasion of the IEC barrier by invasive intestinal bacterial 

strains. The clinical implications of these studies could be novel methods of 

treating type 2 diabetes. It is possible that specific anti-microbial compounds 

could be developed to selectively eliminate invasive intestinal bacterial strains 

residing in obese individuals. This could spare these individuals from developing 

type 2 diabetes. It would also reduce the financial burden to the healthcare sector 

significantly.  

Technical contributions.  

These studies resulted in technical contributions for assessing immune 

responses against the intestinal bacteria. ELISA kits to assay systemic immune 

responses against intestinal bacterial antigens were difficult to obtain. To address 

the lack of commercial ELISAs we developed our own lab based ELISA. This lab 

based ELISA is a reliable, reproducible assay for assaying the humoral immune 
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response against antigens from intestinal bacterial strains. To the best of our 

knowledge, no one had developed the methods of Western Blotting to analyze 

the levels of plasma IgG against intestinal bacterial proteins. Researchers hoping 

to assess the systemic immune response against intestinal bacterial strains in a 

timely manner can use the information provided in this publication. 

EVALUATION OF THESE STUDIES. 

Strengths: These studies were the first to investigate the association 

between specific intestinal bacteria and type 2 diabetes. Previous studies had 

linked the presence of intestinal bacteria to obesity, inflammation and insulin 

resistance. However, a key flaw of those studies was that they did not examine 

which particular bacteria resulted in the development of inflammation and insulin 

resistance. The findings of previous studies implicated that bacteria residing in 

the GI tract promoted the development of inflammation. Although there is 

extensive evidence supporting this proposal, it should be kept in mind that there 

are hundreds of bacterial species residing in the GI tract. Given the enormous 

diversity of the intestinal bacteria, it cannot be assumed that all intestinal bacteria 

are equally capable of promoting systemic inflammation and insulin resistance. 

As the results from our studies indicate, not all intestinal bacteria possess the 

same ability to cross the intestinal epithelial cell barrier.  

These studies provided a more definitive link between the intestinal 

bacteria, inflammation and insulin resistance. A critical component lacking in the 

previous studies in GF mice was showing that the inflammation observed as a 

consequence of HFD consumption was the result of intestinal bacteria. Although 
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the studies comparing GF mice to conventionally raised mice measured a variety 

of parameters, none of these studies performed immunological assays that 

showed immune responses to the intestinal bacteria. This study quantified 

plasma IgG against intestinal bacteria in addition to quantifying plasma TNF-α 

and fasting blood glucose values, linking all three parameters. 

Our studies characterized the effect of HFD consumption on the localized 

immune responses at the mucosal surface of the GI tract. Although previous 

studies had linked the intestinal bacteria to systemic inflammation and insulin 

resistance, none of these studies investigated whether this was due to 

impairment of the localized adaptive intestinal mucosal responses. It should be 

noted that the effect of impairment of the intestinal immunity on shaping the 

composition of the gut microbiota was examined by Gewirtz et al using TLR5 

deficient mice. However, their study looked at the deficiency of innate immune 

mechanisms in the GI tract. Our studies examined the effect of HFD consumption 

on the adaptive immune response to the intestinal bacteria. This is an important 

topic to address given the immense load of IgA secreted into the GI tract as well 

as the documented protective effects of IgA. 

Weaknesses: A major critique of this study is the extensive use of the 

LF82 strain of E. coli. as it has been previously stated, this strain of bacteria is 

recognized as an adherent invasive bacterial strain. Therefore it is not an ideal 

strain to use as an experimental model. This experimental model deficiency was 

addressed by assessing the effect of HFD consumption on the systemic immune 

response to the non-pathogenic bacteria E. coli Nissle 1917, Bacteroides 
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thetaiotaomicron and Lactobacilus acidophilus. Despite the fact that HFD 

consumption did not appear to alter the systemic immune response to these 

bacteria, Western Blot analysis showed that HFD mice had higher plasma IgG 

against the antigens present in the cecum of control mice. Higher plasma IgG 

against the antigens from the cecum in HFD mice strengthened our hypothesis 

that HFD consumption may lead to translocation of intestinal bacteria into the 

systemic circulation. However, at this point, the only bacterial strain to which the 

systemic immune response has shown to be increased as a result of HFD 

consumption the LF82 strain of E. coli.  

The findings of these studies point to the possibility that individuals 

harboring invasive intestinal bacterial strains are at increased risk of developing 

systemic inflammatory immune responses that may increase their risk of 

developing type 2 diabetes. However, these studies did not determine whether 

the composition of the gut microbes changed during the HFD feeding regimen. 

As a consequence, it is not known if HFD consumption increases the proportion 

of invasive intestinal bacteria. 

There were flaws in the assessment of HFD consumption on the localized 

immune responses at the mucosal surface of the GI tract. Although fecal IgA was 

quantified, no other immunoglobulin classes were measured. It is known that IgM 

plays a role in preventing the intestinal bacteria from adhering to the intestinal 

epithelium. Fecal IgM was not measured. Thus it is not conclusive as to whether 

HFD consumption impairs mucosal immunity. Furthermore, a number of 

mechanisms prevent the commensal bacteria in the lumen of the GI tract from 
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adhering to the intestinal epithelial cells. These include mucus production by 

goblet cells as well as the production of defensins, cathelicidins, phospholipases, 

lysozyme, and Reg III-gamma. These parameters were not examined in LFD 

mice and HFD mice.  

EXPERIMENTAL DESIGN.  

Lab developed ELISA: A key difference between the lab developed 

ELISA and the Western Blot analysis was that the Western Blot showed 

differences between the three groups of human subjects. Western Blot analysis 

indicated that plasma anti-E. coli LF82 IgG was highest in obese diabetics, 

followed by obese non-diabetics with the lowest plasma anti-E. coli LF82 IgG 

found in the lean healthy controls. On the other hand, ELISA analysis showed 

that the obese diabetics had significantly higher plasma anti-E. coli LF82 IgG 

than lean controls with no significant differences between the obese non-

diabetics and lean healthy controls. A possible explanation for this discrepancy is 

that the ELISA was prepared by extracting bacterial proteins using Bacterial 

Protein Extraction Reagent (B-PER). This reagent specifically extracts soluble 

proteins. It is possible that during the process of soluble protein extraction, non-

soluble proteins that possessed epitopes for immune recognition were lost. 

Furthermore, the lab-developed ELISA only consisted of soluble bacterial 

proteins. Non-protein compounds such as lipopolysaccharide (LPS) can also 

elicit immune reactions. LPS is a constituent of the outer cell membrane of gram 

negative bacteria including E. coli LF82. It is one of the more potent inducers of 

inflammation and results in the release of the pro-inflammatory cytokines TNF-α, 
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IL-6, and IL-1 [190-192]. However, despite these limitations we chose to perform 

the ELISAs since it was the most readily available method to give us quantitative 

measurements. There was concern that the lab developed ELISA optimization 

was not performed accurately. These do not negate our results since the 

Western Blots show distinct differences between LFD mice and HFD mice.  

Technical flaws of pIgR KO mouse study: The magnitude of active IgA 

secretion into the lumen of the GI tract suggests that there is a rationale behind 

this specialized mechanism of active IgA transport. Furthermore, pIgR KO mice 

have significantly increased serum IgG against intestinal bacterial antigens than 

C57BL6 wild type controls. There were a number of design flaws in these 

studies. The mice were not housed according to genotype. As a consequence, it 

was possible that differences in the gut microbe composition of both groups of 

mice were minimized by coprophagy. Consumption of the fecal pellets produced 

by the wild type C57BL6 mice could result in harmless commensal bacteria being 

repopulated in the GI tract of the pIgR KO mice. These bacteria could in turn out-

compete any invasive strains, thereby preventing the anticipated outgrowth of 

invasive bacterial strains in the pIgR KO mice.  Co-housing of pIgR KO mice with 

wild type C57BL6 controls also resulted in an additional source of IgA for the 

pIgR KO mice. Small quantities of IgA reach the lumen of the GI tract in pIgR KO 

mice via paracellular diffusion. The co-housed pIgR KO mice were provided with 

an additional source of IgA in the form of fecal pellets. In addition to the IgA 

reaching the lumen of the GI tract via paracellular diffusion, the pIgR KO mice 

also obtained IgA by coprophagy. This in turn could have compensated for the 
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lack of active IgA transport by the pIgR. These technical shortcomings should be 

addressed in future studies of the effect of HFD consumption on pIgR KO mice.  

Alternative reasons for increased plasma anti-E. coli LF82 IgG.  

A question that was not addressed in these studies is whether live 

invasive bacteria invade the epithelium. The assays performed in these studies 

involved quantification of plasma IgG against E. coli LF82, E. coli Nissle 1917, 

Bacteroides thetaiotaomicron and Lactobacilus acidophilus. However, there were 

no direct methods used to determine whether live bacteria had been able to 

invade the intestinal epithelium. Given the huge bacterial population in the GI 

tract it is inevitable that some leakage across the epithelium takes place. The 

mesenteric lymph nodes act as a barrier between the GI tract and the systemic 

circulation. Dendritic cells actively sample bacteria from the lumen of the GI tract. 

The MLNs prevent the dendritic cells carrying commensal bacteria from gaining 

access to the systemic circulation. HFD consumption results in atrophy of the 

mesenteric lymph nodes and a reduction in the numbers of regulatory T 

lymphocytes.  It is possible therefore that increased systemic immune responses 

resulted from defects in the immune repertoire, not increased IEC invasion by the 

intestinal bacteria.  

 FUTURE DIRECTION OF STUDIES.  

Resolving technical issues of these studies: These studies linked the 

presence of systemic immune responses against intestinal bacteria to the 

development of type 2 diabetes. However there are a number of technical issues 

that need to be resolved. The lab based ELISA assay needs to be optimized by 
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preparing serial dilutions and plotting standard curves in order to determine the 

dynamic or linear portion of the standard curves. This would make quantification 

of plasma IgG more accurate.  

Another technical issue was the oral glucose tolerance tests performed in 

the Western Diet feeding study using the pIgR KO mice. The OGTTs were 

performed by administering an oral gavage of 2.0g/kg glucose. The blood 

glucose levels were beyond the detectable limit of the TrueTrack glucose meter 

at various time points subsequent to the oral gavage. To address this issue, an 

oral gavage of either 1.5g/kg glucose 1.0g/kg glucose needs to be administered 

to the mice.  

The effect of HFD consumption on the systemic immune response: 

Although there is now considerable evidence that the bacteria residing within the 

GI tract may promote systemic inflammation and insulin resistance, there are still 

some issues that need to be addressed. The first is to provide evidence that 

intestinal bacteria other than the LF82 strain of E. coli are associated with 

systemic inflammation and insulin resistance. This method may rely on preparing 

extracts from the cecums of control mice and performing Western Blots to assess 

IgG levels in the plasma of HFD mice and LFD mice. If HFD consumption is 

associated with increased plasma IgG against antigens from the cecum, then 

proteomic analysis could be performed to decipher what antigens are eliciting the 

systemic immune responses. This would be advantageous because identification 

of antigens triggering a systemic immune response would aid in identifying 

specific bacteria capable of penetrating the mucosal layer. Furthermore, these 
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antigens can be used for developing ELISAs for further quantitative assays of 

HFD consumption and systemic IgG responses against bacteria resident in the 

gut.  

It is also necessary to determine when the intestinal bacteria associated 

with systemic inflammatory immune responses are present. On one hand it is 

possible that some individuals harbor invasive intestinal strains that make them 

more prone to developing systemic inflammatory immune responses. On the 

other hand, HFD consumption may alter the composition of the intestinal bacteria 

resulting in an outgrowth of intestinal bacteria that may promote inflammation. To 

assess the relationship between HFD consumption and the intestinal bacteria a 

time course analysis could be performed. Fecal pellets can be collected from 

mice prior to commencing a HFD feeding regimen. The bacteria present in the 

feces can be characterized by 16SrRNA sequencing. Fecal pellets can be 

collected at various time points during feeding study and the bacteria present can 

be sequenced. These can then be referenced to LFD controls. This would 

indicate whether HFD consumption alters the intestinal bacteria over time.  

Our studies did not detect the presence of intestinal bacteria in the 

systemic circulation. Instead, we measured systemic immune responses against 

intestinal bacterial antigens by Western Blots and ELISAs that measured serum 

immunoglobulin G (IgG) responses to bacterial antigens. Trying to detect the 

presence of intestinal bacteria would have provided evidence that adherent 

bacteria breach the intestinal epithelium.  
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HFD consumption and mucosal immunity: To further characterize the 

effect of HFD consumption on the immune responses at the mucosal surface of 

the GI tract, fecal IgM will have to be measured in LFD mice and HFD mice. This 

would further strengthen the argument that mucosal immunity is impaired by HFD 

consumption. Additionally, intestinal sections can be immunostained for IgA, IgM 

and IgG in HFD mice and LFD mice. Comparisons of these IgG classes at the 

epithelium and the lamina propria may give a more comprehensive indication as 

to how HFD consumption affects immunity at the mucosal surface. 

One proposed experiment was to characterize the role of IgA responses in 

the GI tract using IgA knockout mice. The proposed study involved measuring 

and comparing body weight, adiposity, plasma inflammatory cytokines, intestinal 

inflammation and insulin resistance in mice lacking the gene for IgA production 

(IgA KO mice) and C57BL6 wild type controls. These parameters were supposed 

to be measured prior to commencing a high-fat, high-carbohydrate Western Diet 

and at different time points during the feeding study.  

IgA knockout mice are unable to synthesize IgA. This is because these 

mice lack the gene for the switch and constant regions [179]. IgA is undetectable 

in the serum and gastrointestinal secretions of IgA KO mice. Since mucosal IgA 

is important in restricting bacteria to the lumen of the GI tract, it is possible that 

the mucosal barrier of IgA KO mice may be impaired in comparison to wild type 

controls. It should be noted that IgA KO mice have significantly increased IgM 

and IgG levels in intestinal secretions. Elevations of IgM and IgG in the intestinal 

secretions of IgA KO mice may be compensatory mechanisms for the lack of IgA.  
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Therefore future evaluation of the effect of HFD consumption should not 

focus on one specific aspect of mucosal immunity. A more comprehensive array 

of parameters should be evaluated. Since the commensal bacteria residing in the 

GI tract do not cause problems in most individuals, millions of years of co-

evolution could have resulted in a number of redundant mechanisms to restrict 

bacteria to the GI tract lumen. As a result future studies should not only focus 

exclusively on IgA, but IgM as well as the production of mucus and anti-microbial 

peptides. 

Concluding statement: 

The results of these studies show that long term HFD consumption in mice 

is associated with increased plasma IgG against invasive intestinal bacterial 

strains. This is a revision from our proposed experimental model.  HFD mice had 

higher levels of IgG against invasive intestinal bacteria than LFD mice. However, 

there were no significant differences in plasma IgG against the non-invasive 

intestinal bacterial strains E. coli Nissle 1917, Bacteroides thetaiotaomicron and 

Lactobacilus acidophilus in HFD and LFD mice. These findings are clinically 

relevant since obese-diabetics had significantly higher plasma IgG against the 

invasive intestinal bacteria than lean healthy controls. Furthermore, a correlation 

exists between TNF-α and IgG against E. coli LF82. Increased anti-E. coli LF 82 

IgG and plasma TNF-α in obese-diabetics established a link between systemic 

immune responses against invasive intestinal bacterial strains, systemic 

inflammation and insulin resistance. The effect of long term HFD consumption on 

the secretory immune response in the intestinal mucosa was also investigated. It 
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was observed that fecal IgA levels were lower in HFD mice compared to LFD 

mice. These findings provide evidence that long term HFD consumption may 

reduce sIgA present in the lumen of the GI tract. Reduced sIgA may promote the 

translocation of pathogenic intestinal bacterial strains into the systemic 

circulation.  

 

Figure 4.1: A proposed model based on our experimental findings of 

how the intestinal bacteria can promote inflammation and insulin 

resistance.  
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